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Abstract. The insider threat is one of the most serious security prob-
lems faced by modern organizations. High profile cases demonstrate the
serious consequences of successful attacks. The problem has been studied
for many years leading to a number of technologies and products that
have been widely deployed in government and commercial enterprises. A
fundamental question is how well do these systems work? How may they
be tested and how computationally expensive a widely deployed moni-
toring infrastructure cost? Measuring real systems that are dynamic in
nature, encounter unknown configuration bugs and have sensitivities to
the vagaries of human nature and adversarial behavior require a formal
means to continuously test and evaluate deployed detection systems. We
present a framework to deploy in situ simulated user bots (SUBs) that
can emulate the actions of real users. By creating a user account and
running a host in the enterprise network, a SUB can be introduced into
an enterprise system that runs at a realistic pace and does not inter-
fere with normal operations. Infusing malicious behavior into the SUB
should be detected by the insider threat monitoring infrastructure. The
SUB framework can be controlled to explore the limits of deployed sys-
tems and to test the effectiveness of insider evasion tactics, especially low
and slow behaviors. We demonstrate our framework by generating user
data to test the detection of malicious users and our ability to produce
variable ground truths through intrusion detection testing using several
commonly used machine learning techniques.

Keywords: Metrics, Simulated User Bots, Intrusion Detection Algo-
rithms, Measuring Security

1 Introduction

The insider threat is among the most severe security threats in modern orga-
nizations. A number of technologies and products are being deployed broadly
[1–3]. The User Behavior Analytics (UBA) market is predicted to approach $1
billion by 2021 [9]. The current generation of available commercial products
are based upon network monitoring sensors and large scale data analytics that
compute user models to detect abnormal behaviors indicative of malicious acts
(eg., [19, 22]). A fundamental question is how well do they actually work and
at what computational cost?
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In this paper, we introduce simulated user bots (SUBs), a novel system de-
signed to create realistic user behaviors in an enterprise computing environment
that can be programmatically designed to simulate normal or malicious users.
Similar to BotSwindler [16], we employ an endpoint agent to run host appli-
cations to mimic a real user without interfering with the normal operations on
the enterprise system. The SUBs generate network and host data in the same
manner as ordinary users, but can be controlled to purposely inject any behavior
we wish. There are no traces that would clearly indicate that the SUBs are not
real users in the system logs. To generate simulations, SUBs are dependent on
a database, a corresponding translator and actions files. The SUBs are identical
to users in almost every facet from having to login to the speed at which a user
edits a document.

For the purposes of training our models, we used a detailed dataset consisting
of 63 West Point cadets, containing up to two months of real usage data. Despite
being from a homogeneous organization, users were unique in their behaviors.
Statistics were gathered on the users in terms of the average frequency of visits
to particular types of websites, the types of activities on files, etc.

The SUB behaviors introduced in this paper are designed to generate trace
data typically used as indicators and detectors in identifying malicious users
by insider threat systems. We enumerate a sample of typical indicators used in
deployed systems in Section 3.1. These indicators are temporal statistics derived
from an analysis of monitored network logs. These statistics derive group norms
from which abnormal users are identified. A clever insider adversary should be
able to easily avoid detection. Controlling the pace and frequency of these trace
indicators generated by a SUB provides the means of testing the detection system
at its margins, and hence can provide a detailed analysis of the ease or evading
detection. Errors in the deployed monitoring infrastructure, either due to bugs
in configurations or noise introduced by faulty sensors, may also be revealed if
a SUB is undetected although it is directed to purposely exhibit the indicator.

Of particular interest is whether SUBs may be used to measure the computa-
tional costs of maintaining long term temporal statistics. Low and slow behaviors
would cause an insider threat monitoring system to keep long term state infor-
mation for many users, which would cause an increasing cost in terms of storage
and computation. Hence, the SUB testing framework may also provide a means
of evaluating not only the accuracy of a system, but its computational costs.

We have implemented our SUB framework using QEMU [13], running a
Linux host. The SUB user actions are learned from a database of real user
behavior previously acquired in prior work, that are translated to Python action
files, which make use of vncdotool [4]. The SUB framework can be applied to
any host operating system, but our work presently focuses on Linux. We present
tests off of these action files for the SUBs to determine whether they pass or fail
various commonly used algorithms for insider threat detection such as gaussian
mixture models, support vector machines and bayesian networks. The results
from our experiments validate our ability to modify the behavior of our SUBs.
The ability to programmatically create dynamic users demonstrates the ease of



deployment of SUBs in real systems at little to no cost other than creating SUB
user accounts within an enterprise system.

The remainder of the paper will be organized as follows. In Section 2, we
describe the design of the simulated user bot development framework. We present
both our experiments and results in Section 3. In Section 4, we detailed related
work. The final two parts, Sections 5 and 6, are dedicated to future work and
the conclusions of our work.

2 Design and Architecture of SUB Framework

SUBs are created to replicate a real user with no hint of artificiality from the view
of the system and its anomaly detection systems. To create users in this man-
ner builds on both tools previously used for other purposes and those specially
built for SUBs. The data generated from the SUB process is nearly identical to
a real user in a system and can be fine-tuned to have either normal or mali-
cious tendencies. The user behaviors are adapted from an existing database of
users, but user behavior itself could be further modeled. The framework is easily
modifiable and the results are not random as each user is reproducible given a
specified set of actions and controls. The framework of our SUB setup consists of
six main steps, which can further generalized into three layers: data, simulation
and analysis. An overview of the process is shown in Figure 1.

Fig. 1: Simulated User Bot System Overview

2.1 Data Layer

The data layer is composed of the first step in the diagram. Since we do not
have a real enterprise in which our work has been deployed, we have employed a



detailed dataset as our surrogate environment or have tested by deriving general
parameters from the dataset to architect more users. In either case, we employed
a SUB database translator, written in Python. The translator takes a database
stored in SQL with at least the following fields: user ID, event and timestamp.
It then converts those fields into Python action files for users. We have defined
various rules for our translator such that the translated actions can be performed
on a SUB that does not have necessarily have access to existing files on a real
user’s local machine. We have created rules for all the various types of interac-
tions a normal user may have on his or her local machine. Some of our rules for
a user’s web browsing are as follows:

1. Derive the browser used by a particular user by searching through the in-
formation provided in a given browser tab if the information is not provided
otherwise.

2. Perform the search with the same service as a given user by searching through
the information contained in the browser tab unless the information is pro-
vided in another field.

3. Search through the browser tab for information regarding the email service
used unless provided explicitly by the dataset.

4. Search social media site specified in the browser tab unless provided in the
dataset.

5. Browse to the website referred to if the browser tab contains a full HTTP
URL.

After the database has been translated, we have action files for each of the
users. We can then view the records for each user and decide to remove particular
users. By removing users, we have the baseline actions for those users and can
add noise or change normal behavior to make a user appear malicious. These
modified action files can be used to then proceed to the next steps of creating
a SUB. Alternatively, we can derive general parameters for the users from the
action files. This could also be done using the raw data, but for consistency, we
conduct all exploratory analysis on our translated actions files. In the case in
which general parameters are used, actions are selected using a random number
generator from a predefined list of activities. For example, for a social media
site visit, we have a specified list of the top ten social media sites and would
arbitrary pick one for the user and then calculate how long a user should spend
on that given site based on the history of how long other users spent on that
particular site in the past. The random selection process we utilize to provide
actions for the simulated users help guarantee that the users are unique from
one another. The downside from the process of using parameters and random
selection of actions is that we reduce the realism of the resulting user.

2.2 Simulation Layer

The simulation layer has two components: the SUB client and the log capture
steps. In the step consisting of the SUB client, we feed the actions for our prede-
fined users into the automation framework built upon Quick Emulation (QEMU)



and connected to through virtual network computing (VNC), using vncdotool.
Since we record the logs at the end of a run by our SUBs, it is paramount that
there is no extraneous activity conducted locally, which is guaranteed by using a
virtual connection. We additionally make use of Kernel Virtual Machine (KVM),
which allows for hardware virtualization and increases the performance of the
SUB client by over 40 percent. Our automation framework allows for a simulated
user to perform any task a regular user would be able to do: login to an account,
send an email, open a website, create and modify documents, etc. An example
script and action is displayed in Figure 2.

Fig. 2: Example of Simulated Email Login

In the data layer, we noted the timestamps to be aware of the gap between
activities. It is unrealistic to assume that a user proceeds directly from one task
to the next without a pause. The delta in time between activities in the database
allows us to train our users to have pauses between actions and helps improve
our overall realism. We have additionally added a system of checks into our
automation to guarantee that the prescribed action has completed execution and
that the system is in the state we would expect it to be in before we continue to
the next action. If it fails, we attempt to run the action again, before continuing
onto the subsequent actions.

In some cases, we used an open source equivalent of a commercial software to
avoid any potential issues with licensing. For example, we used Apache OpenOf-
fice instead of the corresponding Microsoft Office suite. The open source software
works nearly identically and handles all of the features that we observed in the
database. Thus, no realism was compromised by using the open source alterna-
tive. The second part of the simulation layer is to capture both the system and
web history logs. The logs allow us to understand the subtle underpinnings of
the system when performing the various actions that a normal user would in his
or her day to day activity. We originally experimented with several nonnative
solutions, including the implementation of a feature to capture all actions on
a machine and the corresponding logs. However, any external solution leaves



traces of a sensor in the logs themselves and we opted to instead use the logs
produced by the host operating system.

2.3 Analysis Layer

After the data has been generated from the simulated user, we analyze the
data that would trigger user anomaly detectors. From work declassified by an
external third party operating and analyzing a deployed insider threat solution,
we learned about the types of relationships between the threat type, behaviors,
indicators and detectors from their redacted challenge problems as seen in Table
1. The insight into how real anomaly detection systems are constructed helped
us define our own system for experiments using our SUBs.

Table 1: Example of Threat Types, Behaviors, Indicators and Detectors

For the purposes of illustrating the effectiveness of our SUB framework, we
then consider three commonly used algorithms to detect anomalous behavior:
Gaussian Mixture Models, Support Vector Machines and Bayesian Networks.
The final part of our analysis is to create a method to produce reports and to
organize all of the data into easier to understand visualizations. For the three
algorithms described below and any corresponding visualizations, we used im-



plementations in Python due to ease in which existing packages can be used and
modified to suit our needs.

Gaussian Mixture Model A Gaussian Mixture Model is a probabilistic model
that has gained popularity in intrusion detection systems. Promising results
have been found using Gaussian Mixture Models in well known datasets such as
the KDD99 data set from Lincoln Labs of MIT [11]. The model itself can be
represented as shown in Equation 1.

p(x|λ) =

M∑
i=1

wig(x|µi,Σi), (1)

where x is a D-dimensional continuous value data vector, wi are mixture weights
and g(x|µi,Σi) are component Gaussian densities. A key differentiating factor
between Gaussian Mixture Models and k-means clustering is the inclusion of
the covariance structure of the data. The EM algorithm is run to estimate the
parameters of the model. The process is done in a way such that there is a
guaranteed monotonic increase in the model’s likelihood value. Further details
on Gaussian Mixture Models and the EM algorithm can be found in the reference
by Douglas Reynolds [28].

Support Vector Machine Support vector machines are normally supervised
classifiers that attempt to map input vectors into a high dimensional feature
space using optimal hyperplanes, those with the maximal margin between the
vectors of the two classes, for separable classes. The details of the algorithm
are described in detail by Cortes and Vapnik [18]. However, researchers a few
years later pushed the concept further to tackle unlabelled data, better known as
unsupervised learning. The method attempts to find a function that is positive
on a subset of the input space and negative on the complement by mapping the
input data into a higher dimensional space and using the origin as a negative
training point. The objective function is given by

min
w∈F,ξ∈Rl,ρ∈R

1

2
||w||2 +

1

vl

∑
i

ξi − ρ

s.t. (w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

(2)

where ν is a parameter between 0 and 1 that controls how tightly the support
vector machine fits the data. Complete details on the algorithm can be found in
their seminal work [30].

Bayesian Network Bayesian Networks make use of probabilistic relationships
among variables of interest in an acyclic graphical model. Figure 3 shows an
example of how such a network can be used to model a threat type, behavior,
indicators and detectors. The flow of the diagram was adapted from challenge
problems released by an external third party operating and analyzing a deployed



Fig. 3: Bayesian Network Representing Third Party Challenge Problem

insider threat solution and is designed to be representative of a real system.
Formulaically, a bayesian network can be represented as follows:

P (X1, X2, . . . , Xn) =

n∏
i=1

P (Xi|πi) (3)

where X1, X2, . . . , Xn represents random variables and πi is the set of parents
of Xi. In many regards, it is more difficult to learn the structure of a bayesian
network than it is to learn the parameters. The EM algorithm can again be
used to learn the parameters when the structure of the network is known. It
often takes expert knowledge to suggest a structure for a given problem. Further
details on the algorithm are contained in [14].

3 Experiments and Results

3.1 Data and Preparation

Data We used a dataset collected from a group of 63 West Point cadets 1.
Each cadet had software installed on his or her machine to track usage. The
earliest installations were January 15, 2015, and the latest installation was on
February 13, 20015. Each user had a participant/device Windows System ID and
unique ID number. The cadets had up to three extraction dates for the data from
their machines, ranging from February 10, 2015, for the first pull to March 12,
2015, for the last data collection. The participants were assigned different labs to
simulate masquerader data within the dataset. Participants were given different
labs to prevent adjacent sitting cadets from influencing each other’s work. Time
stamps were taken from the desktop of the device as soon as the masquerader
turned the platform on or off. There were two masquerader labs in total. For the
purposes of our work, we opt to not use the imposter data explicitly and remove

1 Data from the West Point cadets was gathered under an IRB approved protocol



the data points from the dataset since our primary objective is to replicate how
a normal user acts on a machine without being directed to perform a certain set
of actions.

Fig. 4: Social Media Website Visits from West Point Cadets

Information contained within the dataset includes, but is not limited to, a
unique ID for each user, a time stamp for a given action, an action column
to describe the event that takes place and a details field that provides more
information on a given action. The details field contains specific information
such as the exact terms searched for in a search, the title of a page visited, etc.
The West Point dataset is a nearly homogeneous population of cadets. However,
as can be seen in Figure 2, the number of visits to social media websites vary
widely from one cadet to the next. The same observation can be made for any
variable behavior and such diversity of behavior is useful for machine learning
algorithms.

Hardware We ran all of our experiments on a MacPro with sixteen gigabytes
of RAM (DDR3, 1066MHz) and four physical cores (Intel(R) Xeon (R) CPU
E5520, 2.27 GHz). The operating system on the host machine has been changed
from the default OS X to Ubuntu 16.04 Desktop. QEMU has been developed for
both OS X and Linux distros, but performance is much better on Linux. Our
simulations are run on a image running Ubuntu 16.04 Desktop as well. However,
our framework is adapted to work on Windows-based SUBs as well.



Threat, Behavior, Indicators and Detectors We will use the challenge
problems from an external third party operating and analyzing a deployed insider
threat solutionas a guide to set our threat, behavior, indicators and detectors.
We define our threat to be individuals who use their machines with abnormal
work habits. The behavior associated with this threat is a user who uses their
machine outside normal work hours (between 5:00:01 PM and 6:59:59 AM EST).
We will consider three indicators of this behavior:

1. In the top 5 percent of the daily frequency average distribution of Google or
Bing searches between 5:00:01 PM and 6:59:59 AM EST

2. In the top 5 percent of the daily frequency average distribution of social
media website visits between 5:00:01 PM and 6:59:59 AM EST

3. In the top 5 percent of the daily frequency average distribution of actions
on files and documents between 5:00:01 PM and 6:59:59 AM EST

This corresponds to the following three detectors:

1. At least 13 log entries for a Google or Bing search between 5:00:01 PM and
6:59:59 AM EST.

2. At least 61 log entries for a social media website visit between 5:00:01 PM
and 6:59:59 AM EST.

3. At least 90 log entries for actions on files and documents between 5:00:01
PM and 6:59:59 AM EST.

3.2 Experimental Setup, Results and Discussion

For our experiments, we used a shuffling algorithm to split the 63 West Point
cadets into a training group of 50 users and the remainder were placed in the
testing group. We selected Gaussian Mixture Models as the first method to run
on the data. After running the algorithm, we determined anomalous users in the
test data composed of 13 users. We then randomly selected three users in the
test data who were not originally marked by the algorithm and added behaviors
to their actions to make them appear anomalous to test our ability to create
anomalous SUBs. We then ran the Gaussian Mixture Models, Support Vector
Machines and Bayesian Network algorithms.

Gaussian Mixture Models In our experiments, we used the detectors listed
above as the three features of our users and set the number of components in our
Gaussian Mixture Models correspondingly. We also set the false positive rate to
be 5 percent since we assume that all of our users are normal. The results are
shown in Figure 5a. Gaussian Mixture Models were able to detect all three of
the injected malicious users.

Support Vector Machines Similarly, using Support Vector Machines, we were
able to detect all three of our injected malicious users as shown in Figure 5b.
We used a grid search for hyperparameter tuning for the algorithm since poor



(a) Gaussian Mixture Model (b) Support Vector Machine

Fig. 5: Algorithms Run on Injected, Anomalous SUBs

parameters resulted in poor performance. After searching, we found the optimal
values for the parameters with ν = 0.264 and γ = 1.0. We additionally used the
gaussian kernel, which performed better than sigmoid kernel.

Bayesian Networks Given the importance of expert knowledge, we were not
surprised to find that the thresholds had to be adjusted to detect any of the
users as malicious. This is given the simple network we considered. We adjusted
the thresholds for the detectors as follows: Detector 1 to 8, Detector 2 to 40,
and Detector 3 to 50. We then assumed that the probability of an intruder given
any single detector is 1

3 and that two detectors being set off meant that the
probability of an intruder increased to 2

3 . Using the probabilities listed, we were
able to detect all three of our injected malicious users. The difficulty to define
conditional probabilities a priori is a major challenge with bayesian networks
and explains the use of either expert knowledge or significant data analysis from
an enterprise environment. Without access to either, one can only make basic
assumptions that are unlikely to be reflective of reality. It is unrealistic to assume
that all detectors are equally as predictive of an insider threat. For problems
posed by an external third party operating and analyzing a deployed insider
threat solution this is a major challenge that evaluators face as well and is often
approximated from existing datasets albeit with different users since direct access
to enterprise data is not always available. Thus, it validates the use of SUBs in
such a network to create different users of differing levels of maliciousness to
generate enough data to determine those probabilities for the development of
meaningful intrusion detection systems.

4 Related Work

Testing intrusion detection systems has been a long standing problem and one
that has been identified almost since the inception of the systems themselves.



Lincoln Laboratory of MIT performed comparative evaluation of various systems
developed under DARPA funding in both 1998 and 1999 [25, 24]. However, the
methods used by Lincoln Laboratory came under scrutiny for various reasons
such as a failure to explain the validation of their test data [26]. Despite the
identification of this issue regarding a lack of testing tools as early as the late
1990s, the 2015 report on Cybersecurity Experimentation identifies the lack of
common tools for testing systems as one of the major challenges in current
cybersecurity research [12]. Related work in this area can be categorized into
synthetic data generation approaches, network based approaches, and integrated
test bed approaches.

4.1 Synthetic Data Generation

At a high level, many have embarked on the task of generating realistic data sets,
which is a direct by product of our work with SUBs. Data generation has been
done at all levels for various purposes such as the work done by Boggs et. al. for
the purposes of defense in depth measurement of web applications [15]. Genera-
tion of synthetic data was used successfully during the DARPA ADAMS project
to test Insider Threat Detection models offline. The synthetic data generation
system developed for ADAMS used a set of interconnected models individually
trained on real world data sets to model a large organization and directly gen-
erate the data that would be collected by an Insider Threat Detection System
[21]. However, while synthetic data generation systems are evidently effective at
conducting offline tests, they cannot be used to test live systems in situ unlike
our SUBs. Given the recent advent of deep neural network based techniques,
researchers have started using deep learning based architectures for generating
synthetic data sets. Alzantot et. al. use a dataset of accelerometer traces to illus-
trate that their synthetic generator, a combination of Long Short Term Memory
networks and Mixture Density Network, can create believable data [10]. How-
ever, even their work acknowledges that discriminator models can distinguish
between real and synthetic data with an accuracy of roughly 50 percent.

4.2 Network Based Approaches

Development of Network Traffic Modeling and Generation systems is a mature
field with many open source tools available such as Ostinato, Iperf3, and Netperf
[7, 5, 6]. These tools allow the user to configure a large number of parameters
that may be measured by an Intrusion Detection System, such as flow volume
distribution, burstiness, and packet rates. In addition extensive work has been
done developing systems that both model and generate network traffic, such as
Swing [31]. More recently, Spatio-Temporal Cluster Models have been used to
model and generate traffic across a cluster [23]. All of these systems have the
potential to be used in testing network based IDS in action. However, none of
them can also drive simultaneous tests for host based IDS or Insider Threat
Detection Systems.



4.3 Integrated Test Beds

Cyber test bed systems are the most similar to SUBs in that they frequently
involve tests that drive both the host and network level events. The Lincoln
Labs of MIT testbed LARIAT has a complete framework for specifying network
configuration, driving user inputs, and modeling user behavior [32, 17]. Another
tool, the Skaion Traffic Generation Tool, is used in the National Cyber Range
and has the ability to simulate user actions within the test bed environment
[8, 20]. Integrated test beds have strong advantages but are resource intensive.
Integrated testbeds also do not test the vagaries and potential configuration bugs
in a live system as SUBs provide.

5 Future Work

In future work, the immediate application of our work would be to find a suitable
enterprise to test our framework to determine its true efficacy. A simulated
environment offers the ability to prototype, but does not allow us to test the
broader impact potential of our framework until adequate real world testing is
conducted.

In the absence of the ability to apply our work to a real enterprise, we will
test our framework with other datasets such as the Are You You? (RUU) dataset
[29]. This will allow us to generalize our SUB database translator to handle a
wider variety of datasets. More generally, we wish to create more intelligent users
that do not necessarily emulate a real user to a large extent. Through the use
of Hidden Markov Models with adequate memory, we could derive users and
their paths, building on the work applied to Clickstream [27]. There is also the
possibility of applying deep neural networks of various architectures to model
user behavior and create more robust user action files than adding systematic
noise to existing users.

In this paper, we enumerated a sample of indicators used in intrusion de-
tection systems from a third party operating and analyzing a deployed insider
threat solution. We are actively investigating other indicators to enhance SUB
behaviors to ensure those indicators are fully tested and vetted. The SUB frame-
work also provides a testing mechanism for newly created indicators that may
be proposed by security researchers.

Another area of development for the SUB framework is to improve the per-
formance albeit it is nearly native speed. We can continue work on passing the
onboard video card to the instance instead of relying on the CPU, which is a
performance constraint when using QEMU. Another area of improvement lies in
our ability to increase the speed of running a simulation by speeding up the sys-
tem clock for non-work hours. This would reduce the realism of the system, but
vastly reduce simulation time for the purposes of creating a dataset. The feature
would be optional since users in a real environment would need to emulate their
real user counterparts and be idle during non-work hours.

The SUB framework has potential for intrusion detection algorithm develop-
ment. One algorithm or method of significant interest is to detect slow insider



threats that often go unnoticed by traditional indicators and detectors such as
the ones specified in our experimental section. Slow insider attacks are difficult
to determine given the long time horizon over which they may take place. As
such, there is significant memory overhead to keep track of the activities for each
individual user. With the SUB framework, we can experiment with different al-
gorithms or memory management techniques to see if a slow insider threat can
be successfully detected consistently.

6 Conclusion

We presented the framework to design and to create SUBs. The simulated users
have the ability to almost identically mimic the behaviors and actions of real
users. All of this can be done within an enterprise network with no need to
interfere with the normal operations of the system. We were able to design an
experiment to show that we could inject malicious activities such that a normal
user appears to act as a malicious user. In the case of the malicious users added,
we were able to successfully detect them. The ability to do so provides optimism
that the same will hold true in an enterprise level deployment to determine
whether the anomaly detection system is indeed catching the intruders.
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