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Abstract

Background: The development of sequencing techniques and statistical methods provides great opportunities for
identifying the impact of rare genetic variation on complex traits. However, there is a lack of knowledge on the
impact of sample size, case numbers, the balance of cases vs controls for both burden and dispersion based rare
variant association methods. For example, Phenome-Wide Association Studies may have a wide range of case and
control sample sizes across hundreds of diagnoses and traits, and with the application of statistical methods to rare
variants, it is important to understand the strengths and limitations of the analyses.

Results: We conducted a large-scale simulation of randomly selected low-frequency protein-coding regions using
twelve different balanced samples with an equal number of cases and controls as well as twenty-one unbalanced
sample scenarios. We further explored statistical performance of different minor allele frequency thresholds and a
range of genetic effect sizes. Our simulation results demonstrate that using an unbalanced study design has an
overall higher type I error rate for both burden and dispersion tests compared with a balanced study design.
Regression has an overall higher type I error with balanced cases and controls, while SKAT has higher type I error
for unbalanced case-control scenarios. We also found that both type I error and power were driven by the number
of cases in addition to the case to control ratio under large control group scenarios. Based on our power
simulations, we observed that a SKAT analysis with case numbers larger than 200 for unbalanced case-control
models yielded over 90% power with relatively well controlled type I error. To achieve similar power in regression,
over 500 cases are needed. Moreover, SKAT showed higher power to detect associations in unbalanced case-
control scenarios than regression.

Conclusions: Our results provide important insights into rare variant association study designs by providing a
landscape of type I error and statistical power for a wide range of sample sizes. These results can serve as a
benchmark for making decisions about study design for rare variant analyses.
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Background
During the last decade, Genome-Wide Association Stud-
ies (GWAS) have greatly advanced our understanding of
the impact of common variants on complex traits. The
associations of alleles with frequency more than 1–5%
have provided important insights into research and
clinical practice [1, 2]. Despite GWAS revealing novel
disease associations, limited genetic heritability has been
explained by GWAS results [3]. Rare alleles, with mod-
erately large genetic effect sizes, may explain more of
the phenotypic variance of complex disease [4]. Low fre-
quency or rare variants may have an essential contribu-
tion to unexplained missing heritability [5, 6]. The
development of sequencing technologies has increased
access to rare variation data for large sample sizes. How-
ever, it is crucial to better understand the statistical
power and analytic limitations of rare variant association
approaches.
Due to the low frequency of rare variants, single locus

association tests in traditional GWAS are underpowered
for rare variant association analysis [7] unless the casual
variants have very large effect sizes [8]. To boost power,
region-based collapsing or binning approaches have be-
come a standard for analyzing rare variants [7]. These
methods evaluate the association of the joint effect of
multiple rare variants in a biologically relevant region
with the outcome [8].
Numerous association methods have been developed

[7, 9–18], and this manuscript focuses on evaluating two
of the most commonly used approaches for gene-based
testing, burden and dispersion, using a simulation ap-
proach. Burden tests summarize the cumulative effect of
multiple rare variants into a single genetic score and test
the association between this score and phenotypic
groups using regression [8]. The major assumption of
burden tests is that all rare variants in a group have the
same direction and magnitude of effect on the trait [8],
and violation of this assumption leads to a loss of power
[14]. Dispersion tests, on the other hand, evaluate the
distribution of genetic effects between cases and controls
by applying a score-based variance-component test [8].
The sequence kernel association test (SKAT) is a widely
used dispersion method. It applies a multiple regression
model to directly regress the phenotype on genetic vari-
ants in a region, followed by a kernel association test on
the regression coefficients [9]. SKAT is robust to the
magnitude and direction of genetic effects as well as to
the presence of neutral variants, or a small portion of
disease variants [8, 9].
Statistical power for both burden and dispersion tests

has been assessed in many simulation settings [7, 9, 15,
19, 20], however, these simulations have focused on an
equal (or balanced) number of cases and controls. In real
data scenarios, researchers often have unequal (or

unbalanced) number of cases and controls. With the ap-
plication of association methods on unbalanced samples,
it is beneficial to acquire the expected type I error and
power to guide the study design for rare variant associ-
ation tests. For example, for diseases that have a low
prevalence in the population, what number of cases and
how many controls are necessary to detect the impact of
rare variation on the disease? In Phenome-Wide Associ-
ation Studies (PheWAS) [21] there are potentially a wide
range of case and control numbers and overall sample
sizes across hundreds of diagnoses and traits [22–24]. A
challenge for PheWAS studies using rare variants is to
understand the impact of varying sample sizes, varying
case numbers, and genetic effect sizes [24].
In this study, we performed extensive simulation ana-

lyses to assess the influence of sample size on the type I
error and power distribution for regression (a burden
test) and SKAT (a dispersion test). We designed twelve
balanced sample size datasets and twenty-one unbal-
anced sample size scenarios. Since a large sample size
has been widely known as a necessity for detecting sig-
nificant rare variant associations [7, 8, 25], in this paper,
we mainly simulate unbalanced scenarios using a large
total sample size. BioBin [26–30] was used for rare vari-
ant binning and association testing. Results on the statis-
tical performance of both logistic regression and SKAT
can serve as a benchmark for making decisions about fu-
ture rare variant association studies.

Results
We evaluated burden-based tests using logistic regres-
sion and dispersion-based tests using SKAT. All associa-
tions are evaluated for a binary outcome on a simulated
gene with an average of 143 rare variant loci. We varied
the number of cases, controls, and also the balance be-
tween cases and controls. All reported results here have
a MAF upper bound (UB) set at 0.01. The supplemen-
tary material (Additional file 1: Figures S1 and S2) shows
results with a MAF upper bound (UB) of 0.05.

Type I error results
Figure 1 displays the overall type I error simulation re-
sults for both balanced and unbalanced sample sizes. As
shown in Fig. 1a, with balanced number of cases and
controls, the type I error for both regression and SKAT
is well controlled under 0.05 with a few exceptions (the
type I error for these was still below 0.1). Interestingly,
regression had an overall higher type I error rate com-
pared with SKAT for balanced samples. In addition,
SKAT had an overall slightly increased type I error as
the overall sample size increased. For regression, how-
ever, with increasing overall sample size, we did not ob-
serve an overall increasing trend in the Type I error rate.
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Fig. 1 (See legend on next page.)
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Similar results have also been observed with MAF UB of
0.05 (Additional file 1: Figure S1A).
For unbalanced sample sizes, we investigated whether

the type I error rate was driven by the ratio of the cases
to controls or by the number of cases when having a
large control sample. We ordered the sample sizes by
case to control ratio in Fig. 1b, and by case number
within the same control sample size in Fig. 1c and Fig.
1d. The type I error distribution for differing numbers of
cases regardless of the number of controls had similar
trends (Fig. 1c and Fig. 1d). Thus, our results suggest
that number of cases tends to drive the type I error rate
in addition to the case to control ratio under large con-
trol group scenarios.
An overall higher type I error rate in unbalanced

case-control ratios (Fig. 1b) was observed compared to
balanced case-control ratios (Fig. 1a) for both tests, most
of which are higher than 0.05. Contrary to what was
seen in balanced samples, type I error rates for SKAT
were overall higher than regression. An exception to this
for SKAT is seen when the case number increase signifi-
cantly such as 5000 and 7000 cases with 10,000 controls.
Overall, for SKAT there is decreasing type I error trend
as case number increases (Fig. 1c and Fig. 1d). Regres-
sion, on the other hand, has a relatively consistent type I
error in the unbalanced case control ratio tests.

Power results
Odds ratio 2.5
For balanced numbers of cases and controls and an odds
ratio 2.5 for rare disease loci, the power distribution is
shown in Fig. 2a. The results indicate that regression has
relatively higher power than SKAT for a sample size less
than 1000, while SKAT has higher power given larger
sample sizes (≥4000). For a total sample size less than
2000, both methods have less than 50% power to detect
true positive effects. In order to achieve 90% power, a
total balanced sample size of 4000 is needed for SKAT
and nearly 14,000 is needed for regression, based on our
power simulation settings.
Importantly, SKAT has an overall higher power for un-

balanced cases and controls than regression (Fig. 2b).
Similar to the type I error distribution, power was also
driven by the number of cases instead of the ratio of
cases to controls under large control group scenarios
(Fig. 2b-d). Notably, overall power was improved

whether tested via SKAT or regression approach with an
unbalanced case control ratio compared to the balanced
case control ratio simulations.
The power analyses for unbalanced samples suggest an

overall increasing trend as the number of cases in-
creases. Based on the MAF UB of 0.01 results (Fig. 2c
and d), SKAT power for an unbalanced number of cases
with case numbers larger than 200 does yield a mean
power over 90%. For regression with an unbalanced
sample size, more than 1000 cases would yield a mean
power of 90% under a 10,000 controls sample size, while
case numbers more than 500 would yield the same
power under a 30,000 subject control sample size. The
same trend has been observed for a MAF UB of 0.05
(Additional file 1: Figure S2c and d).

Mixture of genetic variation contributing to risk and
protection for outcome
The above power simulations were performed on 10 dis-
ease loci where rare variants had an odds ratio 2.5 con-
tributing to risk. In order to better assess the
performance of statistical methods, we designed three
sets of models containing variants contributing to both
protection and risk with varied effect sizes for 10 disease
loci (see Methods for more details). We compare four
scenarios here: an upper bound on simulated rare vari-
ants with a MAF of 0.01 and 0.05; a balanced sample
size with 2000 cases and 2000 controls, and an unbal-
anced sample size with 200 cases and 10,000 controls.
We chose these sample sizes from the results of our pre-
vious simulations as we observed both regression and
SKAT to have adequate power and controlled type I
error with these case control numbers.
As shown in Fig. 3, the power increases as the impact

of rare variation on outcome increases. SKAT outper-
forms regression in all scenarios, which is expected since
the power for burden tests decrease when both protect-
ive and risk effects are present. Comparing a MAF UB
of 0.05 (left two plots) and a MAF UB of 0.01(right two
plots) indicates that SKAT has higher power for MAF
UB of 0.05 whereas regression doesn’t have distinguish-
able power differences. When comparing the top two
plots of Fig. 3 with the bottom two plots, we observe
higher power for regression in unbalanced samples with
200 cases and 10 k controls compared to 2000 cases and

(See figure on previous page.)
Fig. 1 Type I error simulation results with MAF UB of 0.01. For visualization and comparison purposes, blue and red horizontal lines indicate type
I error at 0.05 and 0.1 respectively. Fig. (a) shows the results for type I error for an equal number of cases and controls for differing sample sizes.
Note that the y-axis only goes to a type I error rate of 0.1. Fig. (b) shows the type I error rate for different unbalanced cases and controls as
arranged by case to control ratio. The axis is labeled by the number of cases then the number of controls for each simulation. The percentage of
cases to controls is also listed below the number of cases and controls. Figs. (c and d) show the results as ordered by the number of cases.
Figure 1c has 10,000 control and Fig. 1d has 30,000 control
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Fig. 2 Power simulation results with cutoff for evaluated variation of MAF 0.01. Fig. (a) shows the results when cases and controls are equal in
number. Fig. (b) shows the impact of unbalanced cases and controls on power ranked by the case/control ratio. The percent case to control ratio
is listed below the x-axis. Figs. (c and d) show the results for power with unbalanced cases and controls ordered by case number with 10,000
controls (c) and 30,000 controls (d)
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2000 controls. However, the opposite trend was ob-
served for SKAT.

Discussion
Previous simulation studies have been conducted to
characterize the statistical performance for burden and
dispersion-based approaches using a balanced popula-
tion of cases and controls [7, 9, 19, 20]. However, there
are many scenarios where there may not be balanced
case control data for a study, and it is important to know
if this will be impactful as rare variant association
methods evaluate the joint effect of multiple rare vari-
ants between case and control groups. In this study, we
sought to evaluate the influence of case control balance
on the statistical performance of logistic regression and
SKAT rare variant methods.

We found an overall higher type I error rate for unbal-
anced samples (mostly above 0.05) compared with bal-
anced samples (mostly below 0.05) for both tests,
suggesting that an unequal number of cases and controls
has a clear statistical impact on type I error for rare vari-
ant association analysis. Previous research has reported
that the type I error rate for SKAT is conservative for
smaller sample sizes [9]. Indeed, our balanced sample
size simulations suggest the same trend. However, SKAT
has an inflated type I error for unbalanced samples with
cases less than 200, thus we recommend researchers in-
terpret those results with caution. Interestingly, regres-
sion shows a well-controlled type I error rate for both
balanced and unbalanced samples. If controlling type I
error is the priority, logistic regression is a more appro-
priate method than SKAT for both balanced and unbal-
anced scenarios.

A B

C D

Fig. 3 Power comparison of three models with differing contributions from protective and risk rare genetic variation. The results are shown for
variants contributing low, moderate, or high impact on outcome risk or protection. Methods describe the range of odds ratios corresponding to the
different categories. (a) Total sample size of 4000 for balanced cases and controls with MAF UB 0.05. (b) Total sample size of 4000 for balanced cases
and controls with MAF UB 0.01. (c) 200 cases and 10,000 controls with MAF UB 0.05. (d) 200 cases and 10,000 controls with MAF UB 0.01
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Statistical power largely depends on the number of
disease loci and the odds ratio. In this paper, we evalu-
ated both same-direction signal (i.e. 2.5 odds ratio) and
mixed odds ratio models (Table 3) on 10 disease loci out
of an average of 143 rare variant loci. We assessed the
power distribution across various sample sizes using an
odds ratio of 2.5. For balanced samples, given that both
SKAT and regression have an overall controlled type I
error, a total sample size less than 2000 obtains power
less than 50% and more than 4000 obtains power higher
than 50%. For unbalanced sample scenarios, SKAT has
an overall higher power distribution than regression. Re-
sults show that at least 200 case samples are needed to
obtain a power of 90% via SKAT, and an even larger
number of cases are required for the regression
approach.
As for models with a range of variants contributing to

risk and protection for an outcome, our results suggest
that SKAT has an overall higher power compared with
logistic regression. The results are expected since burden
tests lose power when variants contribute to a range of
risk and protection for an outcome. Understandably, as
the impact of the rare variants on outcome increases,
power increases for all scenarios.
Based on our type I error and power results across

various unbalanced sample sizes, a clear trend exists be-
tween these statistics and the number of cases in
addition to the case to control ratio (simulation results
of constant case to control ratio are shown in Additional
file 1: Figure S3). As many studies ensure the proper
case to control ratio, we also recommend that re-
searchers pay attention to the number of cases in the
rare variation association studies to help achieve ex-
pected type I error and power rates. To our knowledge,
our work is the first to propose the landscape of statis-
tics while varying the balance of sample sizes for rare
variant association methods.
The likely reason that our simulations present rela-

tively lower power for regression could be a small pro-
portion of disease loci being simulated. As the number
of disease loci increases, we expect to observe higher
power for burden-based approaches. Future work will
aim to simulate various disease loci and odds ratio com-
binations to provide comprehensive implications on
power assessment.

Conclusion
In this paper, we have presented a simulation study
through a wide range of balanced and unbalanced sam-
ple sizes, to fully assess the type I error and power distri-
bution for burden and dispersion based rare variant
association methods. We observe an impact of sample
size imbalance on the statistical performance which can
serve as a benchmark for future rare variant analysis.

Methods
BioBin
BioBin is a C++ command line tool that performs rare
variant binning and association testing via a biological
knowledge driven multi-level approach [29]. The frame-
work of a BioBin analysis is to group rare variants into
“bins” based on user-defined biological features followed
by statistical tests upon each bin. Biological features,
which include genes, inter-genic regions, pathways, and
others, are defined by prior knowledge obtained from
the Library of Knowledge Integration (LOKI) database
[26]. LOKI is a local repository which unifies resources
from over thirteen public databases, such as the National
Center for Biotechnology dbSNP and gene Entrez data-
base information [31], Kyoto Encyclopedia of Genes and
Genomes [32], Pharmacogenomics Knowledge Base [33],
Gene Ontology [34], and others. Several select burden
and dispersion-based statistical tests have been imple-
mented into BioBin [27, 29], namely linear regression,
logistic regression, Wilcoxon rank-sum test, and SKAT
[9], which allows users the option of choosing the appro-
priate test(s). All of the statistical tests have been
retained as their original statistical testing framework
within BioBin. BioBin also enables users to perform as-
sociation analysis across multiple phenotypes in a rare
variant PheWAS. In this paper, we evaluate power and
type I error using both logistic regression and SKAT
using the BioBin 2.3.0 software [29]. BioBin software and
the user manual are freely available at Ritchie Lab web-
site [35] .

Simulation design
Sample size and case control ratios
Simulations were designed to systematically evaluate the
impact of different sample sizes, as well as different case
control ratios for rare variant association tests. Twelve
different scenarios for a balanced number of cases and
controls with a total sample size ranging from 20 to
20,000 were simulated. For unbalanced scenarios, a wide
range of tests were constructed with case numbers vary-
ing from 10 to 7000 and two sets of large control sam-
ples (10,000 and 30,000). Case to control ratio was
calculated as the number of cases divided by the number
of controls. Details of the study design with respect to
sample size are shown in Table 1. Moreover, we also de-
signed a few simulations with larger control group
(50,000; 100,000; and 200,000), results of which are
shown in the Additional file 1: Table S1. Finally, it is im-
portant to note that the results would be comparable
even if the scenario is reversed and the data include
more cases than controls. As long as the customized
Madsen and Browning weighting scheme is used, then
the results would be the same whether the data include
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1000 cases and 100 controls or 100 cases and 1000 con-
trols (Additional file 1: Figure S4).

Minor allele frequency
Minor allele frequencies (MAFs) were randomly
assigned to our simulated rare variants using allele fre-
quency distribution data from actual whole exome se-
quencing data from 50,726 patients from the MyCode
Community Health Initiative as a part of the DiscovEHR
project [36]. Due to the rounding precision of MAF that
SeqSIMLA2 [37] requires, we used 0.0015 as the MAF
lower boundary to avoid zero MAF for simulated vari-
ants. For the MAF upper bound (MAF UB), we simu-
lated two sets of data, one with MAF UB 0.01 and the
other with MAF UB 0.05, respectively.

Parameter settings
As our primary goal is to compare the effect of
case-control sample sizes, we set other parameters as con-
stant across all the datasets (Table 2). All simulations were
generated with an average of 143 loci per dataset as we
calculated this to be the mean number of rare loci from
800 genes in a recent PheWAS study [38]. Here, “locus”
refers to a genetic location which harbors genetic variants.
We also applied a customized Madsen and Browning [12]
weighting scheme as implemented in BioBin for all data-
sets in order to increase statistical power [27].

Simulation model
All of the datasets were generated using the software
SeqSIMLA2.8, which can be used to design simulated

datasets given user-specified sample size, effect sizes for
genetic traits, and genetic model [37]. The disease pene-
trance model in SeqSIMLA is based on a logistic func-
tion [37]:

logit P caseð Þð Þ ¼ αþ β1x1 þ β2x2 þ β3x3 þ…þ βpxp

x1, x2, x3, …, xp represent the genotypes across p dis-
ease loci. β1, β2, β3, …, βp represent the log of the odds
ratios. SeqSIMLA will search for α so that the disease
prevalence is close to the specified prevalence. Here, dis-
ease prevalence was set to 5%.

Type I error (T1E) and power simulation
Each type I error or power value was calculated from
1000 independent simulated datasets with significance
assessed at α = 0.05. We replicated 1000 runs 30 times
as to account for sampling variability. Running 30 repli-
cates of 1000 datasets was optimal to reduce computa-
tional and memory burden. The simulated data did not
have any missingness in either genotype or phenotype.
Type I error was obtained from null datasets with no
genetic association signal. For power, 10 random disease
loci with an odds ratio of 2.5 per locus were simulated.
In our study, power is defined as the probability of de-
tecting a true signal (i.e. to reject the null hypothesis)
when the null hypothesis is false. Power is calculated as
the number of datasets that have rejected the null hy-
pothesis at α = 0.05 level divided by the total number of
datasets (i.e. 1000). We also designed three sets of mixed
odds ratio models where half of the 10 disease loci had
protective effects, and half had risk effects, as described
more in the next section.

Mixed odds ratio models
For most of the simulations, an odds ratio of 2.5 was
used for 10 disease loci, indicating consistent risk for all
associated rare variants. We also designed three types of
protective and risk odds ratio combinations for the 10
disease loci. The detailed odds ratio for 10 disease loci
are shown in Table 3, where variants were assigned a
range of “Low”, “Moderate”, or “High” risk or protective
impact, randomly. For each mixed model, we calculated
protective (OR < 1) effect as the same as the risk effect
as to retain the consistent range of association signals.

Table 1 Simulation Design

Balanced Cases and Controls

Total Sample Size 20, 50, 100, 200, 400, 1000, 2000, 4000, 6000, 10,000,
14,000, 20,000

Unbalanced Cases and Controls

Number of controls 10,000 Number of controls 30,000

Number of cases
10, 25, 50, 75, 85, 100, 200, 500, 1000,
3000, 5000, 7000

Number of cases
10, 25, 50, 75, 85, 100, 200,
500, 1000

Table 2 Other Parameter Settings

Number of Simulations 1000 runs times 30 replicates for each
sample size scenario

Upper Threshold for MAF 0.01 and 0.05

Variant Weighting Madsen and Browning [12]

Disease Prevalence 5%

Number of Disease Loci 10

Odds Ratio (OR) All disease loci with OR 2.5; Half
of disease loci with risk effect,
the other half with protective effect

Table 3 Detailed Parameters for Mixture Odds Ratio Design

Randomly Selected 10 Disease loci

Signal Level OR > 1 range (Risk) OR < 1 range (Protective)

Low 2.3 2.73 3.15 3.58 4 0.43 0.37 0.32 0.28 0.25

Moderate 4 5.25 6.5 7.75 9 0.25 0.19 0.15 0.13 0.11

High 9 11.5 14 16.4 19 0.11 0.087 0.07 0.06 0.053

Note: The numbers in bold represent the boundaries when selecting the
odds ratios
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Boxplot
All of the boxplots were generated using the “geom_box-
plot” function within “ggplot2” R package [39]. The “re-
shape2” R package [40] was used for format changing
purposes. Each boxplot bar represents the distribution of
type I error or power calculated from 30 replicates.

Additional files

Additional file 1: Figure S1 and S2. Type I error and power simulation
results with MAF upper bound of 0.05. Figure S3. Type I error and power
simulation results using a constant case to control ratio. Figure S4. Type
I error comparison when case control sample size is reversed. Table S1.
Simulation results for case sample size of 200 and control sample size of
50 k, 100 k and 200 k. (PDF 551 kb)

Additional file 2: A summary of results for type I error and power
simulations with MAF upper bound of 0.01. (XLS 109 kb)
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