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Abstract

Background: The association between body mass index (BMI) and risk of breast cancer depends on time of life,
but it is unknown whether this association depends on a woman’s familial risk.

Methods: We conducted a prospective study of a cohort enriched for familial risk consisting of 16,035
women from 6701 families in the Breast Cancer Family Registry and the Kathleen Cunningham Foundation
Consortium for Research into Familial Breast Cancer followed for up to 20 years (mean 10.5 years). There were
896 incident breast cancers (mean age at diagnosis 55.7 years). We used Cox regression to model BMI risk
associations as a function of menopausal status, age, and underlying familial risk based on pedigree data
using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), all
measured at baseline.

Results: The strength and direction of the BMI risk association depended on baseline menopausal status
(P < 0.001); after adjusting for menopausal status, the association did not depend on age at baseline (P = 0.6).
In terms of absolute risk, the negative association with BMI for premenopausal women has a much smaller
influence than the positive association with BMI for postmenopausal women. Women at higher familial risk
have a much larger difference in absolute risk depending on their BMI than women at lower familial risk.

Conclusions: The greater a woman’s familial risk, the greater the influence of BMI on her absolute
postmenopausal breast cancer risk. Given that age-adjusted BMI is correlated across adulthood, maintaining a
healthy weight throughout adult life is particularly important for women with a family history of breast
cancer.
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Background
Body mass index (BMI) is an intriguing risk factor for
breast cancer because its association with the disease de-
pends on time of life. Greater BMI has been found to be
associated with an increased risk for postmenopausal
women [1–9], while for premenopausal women, young
women, and even adolescent girls [2, 4, 6, 8, 10–14],
greater BMI has been found to be associated with a de-
creased risk. These findings have been consistent across
different racial and ethnic subgroups [2, 14, 15] and
across both case–control and cohort designs globally
[1–4, 6–13], suggesting they are not a consequence of
systematic biases [9].
BMI is an important risk factor because it is poten-

tially modifiable. The fact that greater BMI appears to be
protective at young ages, yet has the opposite association
in later life, presents a potential problem for simple can-
cer control messaging; therefore, its consequences need
to be quantified. A prospective study and a case-control
study have found that the increased risk associated with
higher BMI increases with time after menopause but is
not evident until 10 years post menopause [16, 17].
A better understanding of how the BMI-associated risk

varies with age and menopausal status is needed. It is in-
teresting that, from genome-wide association studies,
genetic risk scores based on single-nucleotide polymor-
phisms (SNPs) that predict higher BMI in childhood or
adulthood are associated with lower risk of both pre-
menopausal and postmenopausal breast cancer [18, 19].
Under the assumptions of Mendelian randomization, the
authors concluded that these relationships were causal
(even though those SNPs explained only a small propor-
tion of the variation in BMI), thus lending additional
support to the evidence that the effect of BMI varies by
time of life.
Family history is another important risk factor for

breast cancer that could not exist without there being a
very strong gradient in underlying familial risk. To ex-
plain an overall average estimate of a 2-fold increased
risk associated with having an affected first-degree rela-
tive, there must be at least a 20-fold inter-quartile risk
ratio across the underlying familial causes [20]. This
gives reason to consider family history not solely as a
binary construct but rather as an underlying continuous
measure that reflects this large gradient. Underlying fa-
milial risk can be predicted from family history using
risk models that use pedigree information including age
of onset of affected relatives. It is becoming increasingly
possible to better differentiate women according to
underlying genetic risk using SNP-based scores [21, 22].
Familial risk prediction is likely to improve with larger
genome-wide association studies and the use of more in-
formative statistical methods to create better SNP-based
and family-history-based risk scores.
With the advent of gene panel testing for high-risk
mutations in known breast cancer susceptibility genes
[23–25], family cancer clinics will screen increasing
numbers of women with a family history of breast can-
cer. The vast majority of these women will, however, not
be found to carry a mutation that can currently be clas-
sified as deleterious. Therefore, a key clinical issue is risk
management advice for women at familial risk who are
found not to carry high-risk mutations. To resolve this
issue, it is essential to know if their breast cancer risk
factors are the same, and if the risk associations are of
the same magnitude, as they are for women in the gen-
eral population.
This issue of multiplicative and additive interaction with

familial risk must be considered for each risk factor. If
there is no difference in strength of associations by famil-
ial risk and the study is well-powered, advice on that risk
factor’s relevance can be confidently given to women
across the full spectrum of familial risk. In theory, if there
are no interactions between risk factors on the multiplica-
tive scale then there will be additive interactions [26, 27].
Knowledge of the extent of disease association by familial
risk will enable prevention and screening measures to be
appropriately offered to women.
To address the issues of whether breast cancer risk as-

sociated with BMI depends on the age of a woman, her
menopausal status, and her underlying familial risk, we
conducted a prospective study of women across broad
ranges of age and familial risk at baseline.

Methods
The Breast Cancer Prospective Family Study Cohort
(ProF-SC) comprises baseline and follow-up data from the
Breast Cancer Family Registry (BCFR) and the Kathleen
Cuningham Foundation Consortium for Research into
Familial Breast Cancer (kConFab) (for full details see
[28]). These prospective family cohorts are enriched for
familial risk of breast cancer and have accumulated up to
20 years of follow up. The BCFR is a collaboration of six
breast cancer family studies from the USA, Canada and
Australia, and the protocols and data collection have pre-
viously been reported for the baseline studies [29] and the
follow-up studies [28]. kConFab is an Australian and New
Zealand breast cancer family study, and details of the core
resource [30] and follow-up study [28, 31] have been pre-
viously reported. Ethics approval for the six sites of the
BCFR and for kConFab was granted by the applicable
human research ethics committees at the participating in-
stitutions. All participants in the BCFR and kConFab pro-
vided written informed consent before participation.

Recruitment and follow up
Probands and their family members were recruited to the
BCFR and kConFab according to site-specific protocols
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[28–30, 32]. At a minimum, first-degree female relatives
of the probands were recruited, and at some sites
second-degree and more distant female relatives of the pro-
bands were also recruited. In the BCFR, most of the fam-
ilies were recruited from 1996 to 2000, with some sites
recruiting new families after that time; all sites continued to
recruit additional participants within these families on an
ongoing basis as relatives decided to join or attained the
minimum eligibility age of 18 years. Australian families re-
cruited to an earlier study from 1992 to 1995 [33, 34] were
also included, while the North American sites extended the
recruitment of specific subgroups from 2001 to 2011 (mi-
norities in Philadelphia, New York, Ontario, and Northern
California; BRCA1 and BRCA2 mutation carriers in Utah;
Ashkenazim in Ontario). For kConFab, participants were
recruited continuously from 1997 onwards.
For the BCFR, systematic follow ups were conducted

10 years and 15 years after the first round of recruitment
to the BCFR, while the kConFab participants have been
followed up every 3 years. At follow-up, the risk factor
and cancer family history questionnaires were updated
and participants were asked to provide the date of death
of any deceased relatives.

Baseline questionnaires
The BCFR and kConFab used the same risk factor ques-
tionnaire [28]. At baseline, questionnaires were inter-
viewer administered, either in person or by telephone, or
administered by mail. The risk factor questionnaire
asked about each participant’s demographic characteris-
tics, height, weight, history of benign breast disease,
breast and ovarian surgeries, reproductive history, and
lifestyle factors. The cancer family history questionnaire
asked about breast and other cancers (excluding
non-melanoma skin cancer) in the participants and their
first-degree and second-degree relatives. Each partici-
pant’s cancer information was obtained from one or
more sources and was usually self-reported or reported
by a first-degree relative. Where possible, verification of
cancer diagnosis was sought through pathologist review
of tissue samples, pathology reports, cancer registries,
medical records, or death certificates [28–30].

Statistical methods
We studied women who were initially unaffected by in-
vasive breast cancer or ductal carcinoma in situ of the
breast up until 3 months following completion of their
baseline questionnaires. To be eligible, women also had
to be aged 18 to 79 years at baseline, have at least 2
months of follow up (either by completing a question-
naire before 30 June 2011 or having a family member
update their cancer and vital status), and not have had a
bilateral risk-reducing mastectomy at baseline. For these
analyses, we excluded 331 women for whom we did not
have complete data for BMI, 1220 women for whom we
were unable to determine menopausal status, and 42
women for whom we did not have complete data for
both BMI and menopausal status. From the original co-
hort of 17,628 women, this left 16,035 (91.0%) available
for analysis.
Baseline BMI was calculated as current weight (kg) divided

by squared height (m) using information captured by the
baseline risk factor questionnaire. We used log-transformed
BMI in analyses. Baseline menopausal status was determined
from questions asking about time since last menstrual period
and reason for cessation of menstruation. For each partici-
pant, the 1-year risk of invasive breast cancer and the lifetime
risk (risk to age 80 years from birth) were calculated using
the Breast and Ovarian Analysis of Disease Incidence and
Carrier Estimation Algorithm (BOADICEA) version 3 using
pedigree information at baseline. This algorithm uses infor-
mation on breast, ovarian, and male breast cancer and age at
diagnosis for first, second, and third-degree relatives, along
with date of birth, vital status, age at interview or death, and
country-specific age-specific incidences [35, 36] to calculate
risk. Where available, information on BRCA1 and BRCA2
mutation testing was also used to calculate risk. Mutations
were protein-truncating or missense mutations classified as
deleterious by the Breast Cancer Information Core [37]. De-
tails of testing are given elsewhere [38]. Sensitivity of the mu-
tation detection technique was assumed to equal 70% and
80% for BRCA1 and BRCA2, respectively.
Time in the study began 2 months after the age of

completion of the baseline questionnaire and ended at
whichever came first of the following: age last known to
be alive, diagnosis of invasive or in situ breast cancer, bi-
lateral risk-reducing mastectomy, age 80 years, or age at
death. We conducted sensitivity analyses by including
only invasive breast cancers and by excluding the 652
BRCA1 and 519 BRCA2 mutation carriers. We also con-
ducted sensitivity analyses by including women with
missing menopausal status and including a parameter
for this group.
To investigate whether the hazard ratios (HRs) for the

associations between risk of breast cancer and BMI dif-
fered by the underlying familial risk, we used Cox pro-
portional hazard models with age as the time axis and
stratified by study site and birth cohort in 10-year
groups. Familial risk was defined as the log 1-year inci-
dence of breast cancer predicted by BOADICEA ad-
justed for age and birth cohort. We fitted interaction
terms between risk factors and familial risk.
Statistical inference was made under maximum likeli-

hood theory, including consideration of the changes in log
likelihood between nested models compared with appro-
priate chi-squared (χ2) distributions (likelihood ratio cri-
terion). We considered many reproductive and other
factors (e.g. ever use of hormonal contraceptives, number
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of live births, ever use of hormone replacement therapy,
benign breast disease, ever smoked, ever consumed alco-
hol, race/ethnicity, and highest education level) as poten-
tial confounders and retained only those that were
nominally statistically significant. Analyses were therefore
adjusted for history of benign breast disease, race/ethnicity
Table 1 Baseline characteristics of study cohort and unadjusted haz
proportional hazards analysis

Unaffected

Number Perce

Age at baseline, years

18–29 2407 15.9

30–39 3087 20.4

40–49 3189 21.1

50–59 2869 19.0

60–69 2179 14.4

70–79 1408 9.3

1-year BOADICEA, %

Q1: 0–0.13 4010 26.5

Q2: 0.14–0.34 3167 23.9

Q3: 0.35–0.53 3672 24.3

Q4: 0.54–7.94 3840 25.4

Body mass index, kg/m2

Q1: 14.69–21.86 3811 25.2

Q2: 21.87–24.60 3766 24.9

Q3: 24.61–28.56 3771 24.9

Q4: 28.57–58.86 3791 25.0

History of benign breast disease

No 10,953 72.4

Yes 3878 25.6

Menopausal status

Premenopausal 8669 57.3

Postmenopausal 6470 42.7

Race/ethnicity

Non-Hispanic white 11,969 79.1

Black 726 4.8

Hispanic 1310 8.7

Asian 574 3.8

Other 417 2.8

Missing 143 0.9

Education, highest completed

High school or general education development 5031 33.2

Vocational, technical, or some college or university 5709 37.7

Bachelor or graduate degree 4341 28.7

Missing 58 0.4

HRs are unadjusted but stratified by birth cohort (10-year groups) and study site; to
Q1–Q4 quartiles 1–4
and education. Because the cohort included families with
multiple members, robust estimates of confidence inter-
vals (CI) were calculated accounting for clustering by fam-
ily. Tests of the proportional hazards assumption were
based on Schoenfeld residuals. From the test for propor-
tional hazards, we found evidence for non-proportionality
ard ratios (HRs) and 95% confidence intervals (CIs) from Cox

Affected HR 95% CI P

ntage Number Percentage

49 5.5 1.00 (referent)

182 20.3 1.34 0.81, 2.20 0.3

231 25.8 1.18 0.65, 2.14 0.6

232 25.9 1.20 0.60, 2.40 0.6

166 18.5 0.98 0.46, 2.11 1.0

36 4.0 0.53 0.20, 1.38 0.2

84 9.4 1.00 (referent)

188 21.0 2.14 1.51, 3.04 < 0.001

241 26.9 3.41 2.38, 4.89 < 0.001

383 42.8 5.20 3.65, 7.42 < 0.001

194 21.7 1.00 (referent)

227 25.3 1.07 0.89, 1.30 0.5

252 28.1 1.17 0.96, 1.41 0.1

223 24.9 1.05 0.87, 1.28 0.6

551 61.5 1.00 (referent)

323 36.1 1.33 1.15, 1.54 < 0.001

467 52.1 1.00 (referent)

429 47.9 1.02 0.81, 1.29 0.8

750 83.7 1.00 (referent)

29 3.2 0.60 0.40, 0.89 0.01

52 5.8 0.74 0.53, 1.04 0.08

39 4.4 0.87 0.60, 1.26 0.5

17 1.9 0.72 0.45, 1.15 0.2

9 1.0

260 29.0 1.00 (referent)

319 35.6 1.15 0.97, 1.37 0.1

313 34.9 1.42 1.18, 1.70 < 0.001

4 0.5

account for clustering by family, robust 95% CIs are reported



Fig. 1 Distribution of lifetime risk from birth to age 80 years (as a percent) predicted from baseline pedigree data using the Breast and Ovarian
Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA) for the cohort
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only for study site. We therefore stratified all analyses by
study site and there was no longer any evidence of
non-proportionality. Stata version 14 [39] was used for all
statistical analyses.
We plotted the predicted age-specific absolute cumu-

lative risk for women with different BMIs and different
familial risks based on BOADICEA and underlying
age-specific incidences from the Surveillance, Epidemi-
ology, and End Results Program [40–43]. We chose
three scenarios of familial risk: 12% (population aver-
age), 20% and 30%, and four scenarios of BMI (20, 25,
Fig. 2 Estimated log hazard ratio, ln(HR), for log body mass index (per 5 kg
age at baseline (in 10-year groups)
30 and 35 kg/m2). All statistical tests were two sided,
and P values < 0.05 were considered nominally statisti-
cally significant.

Results
For the 16,035 women from 6701 families (mean 2.4 par-
ticipants per family; standard deviation (SD) = 2.4; median
= 2; range = 1–75), the mean age at enrollment was
47.3 years (SD = 15.4; median = 46.6; range = 18.0–79.8)
and the mean duration of follow up was 10.5 years (SD =
4.7). There were 896 reported incident breast cancers
/m2) for premenopausal and postmenopausal women as a function of



Table 2 Adjusted hazard ratios (HRs) and 95% confidence
intervals (CIs) from Cox proportional hazards modeling of body
mass index, menopausal status and age at baseline

Model HRb 95% CI P ΔLLc

I Log body mass indexa

(per 5 kg/m2)
1.28 0.91, 1.81 0.2 2.38

Age at baseline, years 0.98 0.96, 1.00 0.1

Menopause, no/yes 1.12 0.88, 1.43 0.4

II Log body mass indexa

(per 5 kg/m2)
0.13 0.03, 0.56 0.006 7.36

Age at baseline, years 0.98 0.96, 1.00 0.1

Menopause, no/yes 1.12 0.88, 1.44 0.4

Log body mass index
(per 5 kg/m2) × Age at
baseline, years

1.05 1.02, 1.08 0.002

III Log body mass indexa

(per 5 kg/m2)
0.68 0.41, 1.01 0.1 9.14

Age at baseline, years 0.98 0.96, 1.00 0.1

Menopause, no/yes 1.12 0.87, 1.44 0.4

Log body mass index
(per 5 kg/m2) × Menopause,
no/yes

3.68 1.86, 7.28 < 0.001

IV Log body mass indexa

(per 5 kg/m2)
0.40 0.06, 2.89 0.4 9.32

Age at baseline, years 0.98 0.96, 1.00 0.1

Menopause, no/yes 1.12 0.88, 1.44 0.4

Log body mass index
(per 5 kg/m2) × Age at
baseline, years

1.01 0.97, 1.06 0.6

Log body mass index
(per 5 kg/m2) × Menopause,
no/yes

2.91 0.91, 9.31 0.07

To account for clustering by family, robust 95% CIs are reported
LL log likelihood
aAdjusted for log baseline age as a quadratic
bAdjusted for history of benign breast disease, race/ethnicity, and education;
stratified by year of birth (10-year groups) and study site
cChange in LL from the base model that includes benign breast disease, race/
ethnicity, and education
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(mean age at diagnosis 55.7 years, SD = 12.6). Details of
the participants from the seven study sites are given in
Table 1.
Figure 1 shows the distribution of predicted lifetime

breast cancer risk based on BOADICEA. The second
peak starting at 60% lifetime risk is almost entirely due
to identified BRCA1 and BRCA2 mutation carriers.
Figure 2 shows that the HR estimates for the associ-

ation between greater BMI and breast cancer risk change
from all being negative to all being positive when mov-
ing from age at baseline < 40 years to age > 60 years. The
same changes in risk occur in moving from pre- to post-
menopausal status.
The results from multivariable Cox models are shown

in Tables 2 and 3. In Table 2, we show that the strength
and direction of the BMI risk association depended on age
at baseline (model II, HR = 1.05, P = 0.002) and on meno-
pausal status (model III, HR = 3.68, P < 0.001) at baseline.
When we modeled both together, the most important fac-
tor was baseline menopausal status because once this had
been taken into account (HR = 2.91, P = 0.07), the BMI
risk association with age at baseline (HR = 1.01, P = 0.6)
was no longer significant. Comparison of log likelihoods
from model IV versus model III shows that there was no
evidence for an interaction between age at baseline and
menopausal status (χ1

2 = 0.01). A subsequent analysis
found that there was also no evidence for an association
with age at baseline for postmenopausal women (HR =
1.00, P = 1.0). Therefore, the best-fitting model for the
BMI association included an interaction term between
BMI and menopausal status only (model III).
Table 3 shows the model fits after taking familial risk

into account. The most parsimonious best fitting model
was model V, which shows that after the BMI associ-
ation was fitted as a function of menopausal status (HR
= 3.36, P < 0.001), there was evidence of an association
with familial risk (as represented by the log 1-year BOA-
DICEA estimate in model V; HR = 2.05, P < 0.001). The
other models show that there was no evidence for an
interaction of 1-year BOADICEA score with menopausal
status (model VI, HR = 1.00, P = 1.0), with BMI (model
VII, HR = 1.13, P = 0.5), or with the interaction of BMI
and menopausal status (model VIII, HR = 0.73, P = 0.4).
That is, there was no evidence that the multiplicative
interaction between BMI and menopausal status differed
by familial risk irrespective of how we modeled the BMI
association We also re-analyzed the data by including
women with missing menopausal status and putting
them in a category of their own. This made no difference
to our general findings of no evidence for gene–environ-
ment interactions on the multiplicative scale.
Figure 3 shows the overall implications of the study esti-

mates on the predicted age-specific cumulative risk for
women with different baseline BMI and familial risk and
age 50 years at menopause. In terms of absolute risk, the
risk difference for premenopausal women is small when
comparing those in the lowest BMI category with those in
the highest BMI category. In contrast, the corresponding
risk difference for postmenopausal women is much larger
and in the opposite direction. The latter difference in abso-
lute risk is even more so for women with a greater familial
risk (e.g. for cumulative risk to age 80 years, 8% for women
with high familial risk versus 4% for population risk).

Discussion
Using a large international prospective cohort enriched for
women with a family history of breast cancer [28] we have
found that the absolute breast cancer risk gradient with



Table 3 Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) from Cox proportional hazards modelling of body mass
index, menopausal status, age, and BOADICEA 1-year risk of breast cancer at baseline

Model HRb 95% CI P ΔLLc

V Log body mass indexa (per 5 kg/m2) 0.75 0.46, 1.22 0.2 158.03

Log 1-year BOADICEAa (%) 2.05 1.89, 2.23 < 0.001

Age at baseline, years 0.98 0.96, 1.00 0.1

Menopause, no/yes 1.04 0.81, 1.32 0.8

Log body mass index (per 5 kg/m2) × Menopause, no/yes 3.36 1.71, 6.62 < 0.001

VI Log body mass indexa (per 5 kg/m2) 0.75 0.46, 1.22 0.2 158.03

Log 1-year BOADICEAa (%) 2.05 1.86, 2.26 < 0.001

Age at baseline, years 0.98 0.96, 1.00 0.1

Menopause, no/yes 1.03 0.80, 1.34 0.8

Log body mass index (per 5 kg/m2) × Menopause, no/yes 3.36 1.71, 6.63 < 0.001

Menopause, no/yes × Log 1-year BOADICEAa (%) 1.00 0.85, 1.19 1.0

VII Log body mass indexa (per 5 kg/m2) 0.70 0.41, 1.18 0.2 158.24

Log 1-year BOADICEAa (%) 2.06 0.89, 2.24 < 0.001

Age at baseline, years 0.98 0.96, 1.00 0.1

Menopause, no/yes 1.04 0.81, 1.32 0.8

Log body mass index (per 5 kg/m2) × Menopause, no/yes 3.46 1.75, 6.84 < 0.001

Log body mass indexa (per 5 kg/m2) × log 1-year BOADICEAa (%) 1.13 0.79, 1.62 0.5

VIII Log body mass indexa (per 5 kg/m2) 0.66 0.38, 1.14 0.1 158.54

Log 1-year BOADICEAa (%) 2.07 1.90, 2.25 < 0.001

Age at baseline, years 0.98 0.96, 1.00 0.1

Menopause, no/yes 1.04 0.82, 1.32 0.8

Log body mass index (per 5 kg/m2) × Menopause, no/yes 3.92 1.86, 8.28 < 0.001

Log body mass indexa (per 5 kg/m2) × Log 1-year BOADICEAa (%) 1.27 0.81, 2.00 0.3

Menopause, no/yes × Log body mass indexa (per 5 kg/m2) × Log 1-year BOADICEAa (%) 0.73 0.34, 1.57 0.4

To account for clustering by family, robust 95% CIs are reported
LL log likelihood, BOADICEA Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm
aAdjusted for log baseline age as a quadratic
bAdjusted for history of benign breast disease, race/ethnicity, and education; stratified by year of birth (10-year groups) and study site
cChange in LL from the base model that includes history of benign breast disease, race/ethnicity, and education
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BMI increases with age after menopause, and with under-
lying familial risk. There are three key findings of clinical
and biological significance and they are illustrated in Fig. 3.
First, we found that greater BMI at a young adult age

is associated with a decreased risk of breast cancer, as
have others [44]. We have shown that this negative asso-
ciation with BMI does not translate into a substantial in-
fluence on absolute risk of breast cancer.
Second, our modeling confirms that BMI is associated

with an increase in risk once a woman becomes postmeno-
pausal. In terms of differences in absolute risk, it is not until
a woman is in her mid to late 50s that the risk manifests;
the influence on absolute risk then increases with age.
Third, our modeling predicts that the greater a woman’s

familial risk, the greater the influence of BMI on her abso-
lute postmenopausal breast cancer risk. We base this on
our finding that, in terms of multiplicative risk, the associ-
ation of breast cancer with BMI did not differ for women
at different underlying familial risk (Table 3). Unlike most
other cohorts, our enriched cohort has adequate statistical
power to examine interactions with underlying familial
risk [28, 45, 46]. We also created a continuous measure of
familial risk using multi-generational pedigree information
and the BOADICEA model to estimate 1-year and lifetime
(from birth) risk of breast cancer [35, 36, 43].
As illustrated in Fig. 1, about one third of our cohort

has a lifetime risk above the clinically relevant cutoff of
20% [47, 48]. Figure 3 shows that our observed lack of
multiplicative interaction means that the difference in
absolute risk between women at higher compared with
lower BMI is greater for those women who are at higher
underlying familial risk. Our finding of a lack of



Fig. 3 Predicted age-specific cumulative risk (from birth) of breast cancer, based on model V (see Table 3), by body mass index and familial risk at
baseline, where moderate familial risk is equivalent to having one affected first-degree relative and high familial risk is equivalent to having two
affected first-degree relatives
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multiplicative interaction between BMI and 1-year BOA-
DICEA score is consistent with the lack of multiplicative
interactions with BMI and more than 100 genetic vari-
ants found by a large pooled case–control analysis of al-
most 60,000 women [49].
One potential limitation is that a change in the BMI

association with baseline menopausal status could be
due to unmeasured confounders. For this to happen,
such confounders would have to have a similar
menopausal-dependent risk association. As most risk
factors related to BMI (e.g., physical activity) do not have
clear differences in association by menopausal status,
unmeasured confounding is not likely. Other limitations
include limited power to address issues specific to muta-
tion carriers and hormone receptor status of tumors.
The evidence of whether the protective association of
BMI in early life applies solely to estrogen receptor
negative disease is less consistent, with contradictory
findings from two meta-analyses [50, 51] and a recent
study based on a pooled study [52].
Although the negative breast cancer risk association

with childhood and adolescent BMI is small in terms of
absolute risk, understanding this in the light of the
genome-wide association studies results [18, 19], which
also support a negative association of BMI with breast
cancer risk at a young age, could aid in understanding the
role of breast development in breast cancer susceptibility.
While increased glucose and other nutrients might alter
the ability of BRCA1 to function as a tumor suppressor
[53], pre-pubertal estrogen exposure could increase the
ability of major breast cancer susceptibility genes to pre-
vent breast cancer through cellular differentiation [54].
An explanation of the negative association with child-

hood and adolescent BMI might be found in the growth
of mammographically dense tissue and changes to the
architecture surrounding the mammographically dense
tissue, which develops and grows rapidly in adolescence
[55]. Importantly, as we show here, although higher BMI
is associated with reduced breast cancer risk before
menopause, the direction of the association is reversed
post-menopause and is of far more consequence in
terms of absolute risk.
Laboratory studies have given insights into the mecha-

nisms that might explain why weight gain and metabol-
ically rich environments increase postmenopausal breast
cancer risk, with implications for prevention [56]. These
mechanisms include conversion of androgens to estro-
gens in adipose tissue [57], but could also include in-
flammation and metabolic processes related to cancer
risk [58, 59] and changes to epigenetically regulated
genes such as BRCA1 [53].

Conclusions
In summary, the negative association with BMI in pre-
menopausal women has a much smaller influence on ab-
solute risk than the positive association with BMI in
postmenopausal women. Women at higher familial risk
have a much larger difference in absolute risk depending
on their BMI than women at lower familial risk.
Our modeling predicted that, for young and premeno-

pausal women, the decrease in breast cancer risk associ-
ated with increasing BMI does not have a substantial
influence on absolute risk in those periods of life. Our
modeling also predicted that the absolute breast cancer
risk gradient with BMI increases with age post meno-
pause, and with underlying familial risk. We argue,
therefore, that there is no discrepancy between the con-
clusions of the Mendelian randomization studies [18, 19]
and the epidemiological literature (see “Background”).
The genetically driven protective role of BMI on breast
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cancer risk in early adulthood appears to be of little con-
sequence in terms of absolute risk and is overtaken by
an environmentally driven deleterious role of greater
adult BMI in later life that is even more important for
women at increased genetic risk. Given that age-adjusted
BMI is correlated between early and mid-adulthood [60],
maintaining a healthy weight throughout adult life is of
clinical significance for all women, and especially those
with a family history of breast cancer.
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