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ABSTRACT

Essays in information relaxations and scenario analysis for partially observable

settings

Octavio Ruiz Lacedelli

This dissertation consists of three main essays in which we study important problems in engineering

and finance.

In the first part of this dissertation, we study the use of Information Relaxations to obtain dual

bounds in the context of Partially Observable Markov Decision Processes (POMDPs). POMDPs

are in general intractable problems and the best we can do is obtain suboptimal policies. To

evaluate these policies, we investigate and extend the information relaxation approach developed

originally for Markov Decision Processes. The use of information relaxation duality for POMDPs

presents important challenges, and we show how change-of-measure arguments can be used to

overcome them. As a second contribution, we show that many value function approximations

for POMDPs are supersolutions. By constructing penalties from supersolutions we are able to

achieve significant variance reduction when estimating the duality gap directly, and the resulting

dual bounds are guaranteed to provide tighter bounds than those provided by the supersolutions

themselves. Applications in robotic navigation and telecommunications are given in Chapter 2.

A further application of this approach is provided in Chapter 5 in the context of personalized

medicine.

In the second part of this dissertation, we discuss a number of weaknesses inherent in traditional

scenario analysis. For instance, the standard approach to scenario analysis aims to compute the

P&L of a portfolio resulting from joint stresses to underlying risk factors, leaving all unstressed risk

factors set to zero. This approach ignores thereby the conditional distribution of the unstressed

risk factors given the stressed risk factors. We address these weaknesses by embedding the scenario



analysis within a dynamic factor model for the underlying risk factors. We recur to multivari-

ate state-space models that allow the modeling of real-world behavior of financial markets, like

volatility clustering for example. Additionally, these models are sufficiently tractable to permit

the computation (or simulation from) the conditional distribution of unstressed risk factors. Our

approach permits the use of observable and unobservable risk factors. We provide applications to

fixed income and options portfolios, where we are able to show the degree in which the two scenario

analysis approaches can lead to dramatic differences.

In the third part, we propose a framework to study a Human-Machine interaction system within

the context of financial Robo-advising. In this setting, based on risk-sensitive dynamic games, the

robo-advisor adaptively learns the preferences of the investor as the investor makes decisions that

optimize her risk-sensitive criterion. The investor and machine’s objectives are aligned but the

presence of asymmetric information makes this joint optimization process a game with strategic

interactions. By considering an investor with mean-variance risk preferences we are able to reduce

the game to a POMDP. The human-machine interaction protocol features a trade-off between

allowing the robo-advisor to learn the investors preferences through costly communications and

optimizing the investor’s objective relying on outdated information.
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1

Chapter 1

Introduction

This dissertation consists of three main and independent essays in which we study important

problems in engineering and finance.

In Chapter 2, we investigate how Information Relaxations can be used to obtain dual bounds in

the context of Partially Observable Markov Decision Processes (POMDPs). In general, POMDPs

result in intractable problems and we must be satisfied with sub-optimal policies. The question

of evaluating these policies has been addressed in the Markov decision process (MDP) literature

through the use of information relaxation based duality. In this chapter we study and extend this

approach to POMDPs, where we highlight the challenges presented in the partially observable set-

ting. We use recently-developed change-of-measure arguments to be able to solve the so-called inner

problems and use standard filtering arguments to identify the appropriate Radon-Nikodym deriva-

tives. As a second contribution we show that standard value function approximations for POMDPs

are in fact supersolutions. This is of interest for of two important reasons: 1) if penalties are con-

structed from supersolutions, then absolute continuity of the change-of-measure is not required and

we can achieve significant variance reduction when estimating the duality gap directly, and 2) dual

bounds constructed from supersolution-based penalties are guaranteed to provide tighter bounds

than those provided by the supersolutions themselves. We finally provide results for applications

in robotic navigation, telecommunications, and a further application in personalized medicine is

provided in Chapter 5.



2

In Chapter 3, we discuss a number of inherent weaknesses of scenario analysis as typically

applied in practice. For instance, in an index options portfolio, a risk manager would compute

the stressed P&L of her portfolio resulting from joint stresses to the underlying index and parallel

movements to the implied volatility surface of the index options. The scenario analysis report would

then be presented as a grid of stressed P&L numbers for each stress scenario under consideration.

The implicit assumption of this approach is that all other risk factors are set to zero. However, the

expected values of non-stressed factors conditional on the stresses are generally non-zero. Moreover,

convexity effects of portfolios that depend non-linearly on the risk factors may result in further

inaccuracy of the standard approach. In this chapter, we address these weaknesses by embedding

the scenario analysis within a dynamic factor model for the underlying risk factors. In order to

model the real-world behavior of financial markets, e.g volatility clustering, we use multivariate

state-space models that are sufficiently tractable so that we can compute (or simulate from) the

conditional distribution of unstressed risk factors. We demonstrate our approach for observable and

unobservable risk factors in applications to fixed income and option markets. In these applications,

we are able to show how these two approaches can lead to dramatically different results. Finally,

we argue for a more accurate and scientific approach for scenario analysis, where the reported P&L

numbers of a given model can be back-tested and therefore possibly rejected.

In Chapter 4, we propose a framework to study a Human-Machine interaction system within

the context of financial Robo-advising. In this setting, based on risk-sensitive dynamic games, the

robo-advisor adaptively learns the preferences of the investor as the investor makes decisions that

optimize her risk-sensitive criterion. The investor and machine’s objectives are aligned but the

presence of asymmetric information makes this joint optimization process a game with strategic

interactions. By considering an investor with mean-variance risk preferences we are able to reduce

the game to a POMDP. The human-machine interaction protocol features a trade-off between

allowing the robo-advisor to learn the investors preferences through costly communications and

optimizing the investor’s objective relying on outdated information.
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Chapter 2

Information Relaxation Bounds for

Partially Observed Markov Decision

Processes

Partially observed Markov decision processes (POMDPs) are an important class of control problems

that are ubiquitous in a wide range of fields. Unfortunately these problems are generally intractable

and so in general we must be satisfied with sub-optimal policies. But how do we evaluate the

quality of these policies? This question has been addressed in recent years in the Markov decision

process (MDP) literature through the use of information relaxation based duality where the non-

anticipativity constraints are relaxed but a penalty is imposed for violations of these constraints.

In this chapter we extend the information relaxation approach to POMDPs. It is of course well

known that the belief-state formulation of a POMDP is an MDP and so the previously developed

results for MDPs also apply to POMDPs. Under the belief-state formulation, we use recently

developed change-of-measure arguments to solve the so-called inner problems and we use standard

filtering arguments to identify the appropriate Radon-Nikodym derivatives. We also show, however,

that dual bounds can also be constructed without resorting to the belief-state formulation. In

this case, change-of-measure arguments are required for the evaluation of so-called dual feasible

penalties rather than for the solution of the inner problems. We compare dual bounds for both
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formulations and argue that in general the belief-state formulation provides tighter bounds. The

second main contribution of this chapter is to show that several value function approximations for

POMDPs are in fact supersolutions. This is of interest because it can be particularly advantageous

to construct penalties from supersolutions since absolute continuity (of the change-of-measure) is no

longer required and so significant variance reduction can be achieved when estimating the duality

gap directly. Dual bounds constructed from supersolution based penalties are also guaranteed

to provide tighter bounds than the bounds provided by the supersolutions themselves. We use

applications from robotic navigation and telecommunication to demonstrate our results.

2.1 Introduction

Partially observed Markov decision processes (POMDPs) are an important class of control problems

with wide-ranging applications in fields as diverse as engineering, machine learning and economics.

The resulting problems are often very difficult to solve, however, due to the so-called curse of

dimensionality. In general then, these problems are intractable and so we must make do with

constructing sub-optimal policies that are (hopefully) close to optimal. But how can we evaluate a

given sub-optimal policy? We can of course simulate it many times and obtain a primal bound, i.e.

a lower (upper) bound in the case of a maximization (minimization) problem, on the true optimal

value function. But absent a dual bound, i.e. an upper (lower) bound, there is no easy way in

general to conclude that the policy is close to optimal.

In the case of Markov decision processes (MDPs), we can construct such dual bounds using

the information relaxation approach that was developed independently by Brown, Smith and Sun

[17] (hereafter BSS) and Rogers [69]. The information relaxation approach proceeds in two steps:

(i) relax the non-anticipativity constraints that any feasible policy must satisfy and (ii) include a

penalty that punishes violations of these constraints. In a finite horizon setting BSS showed how to

construct a general class of dual feasible penalties and proved versions of weak and strong duality.

In particular, they showed that if the dual feasible penalties were constructed using the optimal

value function, then the resulting dual bound would be tight, i.e. it would equal the optimal value

function. In practice of course, the optimal value function is unknown but the strong duality result
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suggests that a penalty constructed from a good approximate value function (AVF) should lead to

a good dual bound. If a good primal bound is also available, e.g. possibly by simulating the policy

that is greedy with respect to the approximate value function, then the primal and dual bounds

will be close and therefore yield a “certificate” of near-optimality for the policy.

The main goal of this work is to extend the information relaxation approach to POMDPs. It

is well known of course that POMDPs can be formulated as MDPs by working with the belief-

state formulation of the POMDP and so the results established for MDPs therefore also apply to

POMDPs. Under the belief-state formulation, we use the recently developed change-of-measure

arguments of Brown and Haugh [15] (hereafter BH) to solve the so-called inner problems and we

use standard filtering arguments to identify the appropriate Radon-Nikodym derivatives. We also

show that information relaxation bounds can also be constructed without resorting to the belief-

state formulation of the POMDP. In particular, we can still construct these bounds if we work

with the non-belief-state formulation of the POMDP, i.e. with the explicit dynamics for the hidden

state transitions and observations. If we work with the non-belief-state formulation, however, then

the evaluation of so-called dual feasible penalties requires the evaluation of expectations that in

general are not available explicitly and are strongly action-dependent. Indeed we need to be able

to calculate these expectations efficiently for all possible action histories at each time point on each

of the simulated inner problems (see (2.15)). We show that this obstacle can be overcome by again

using a change-of-measure argument that limits dramatically the number of expectations that must

be computed. The expectations that are required can then be computed using standard filtering

techniques and so we can proceed to compute the corresponding dual bounds in the usual manner.

Regardless then of the formulation of the POMDP that we choose to work with, we can use

change-of-measure arguments to ensure that dual bounds can be computed efficiently. It is perhaps

worth emphasizing, however, that the motivation for using a change-of-measure depends on the

POMDP formulation that we work with. With the belief-state formulation evaluating the dual

penalties is easy but solving the inner problems is hard. In contrast, when we work with the explicit

dynamics for the hidden state transitions and observations, then evaluating the dual penalties is

hard but solving the inner problems is easy.
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We compare the perfect-information (PI) relaxation bounds that arise from the belief-state and

non-belief-state formulation of the POMDP. We argue that the two bounds should be identical

in general but that this changes for a specific but natural choice of the change-of-measures. In

particular, when calculating the belief-state bound we can use a suitably integrated version of the

change-of-measure that we used for the non-belief-state formulation. In that case we argue that

the resulting information relaxation bound for the belief-state formulation will be tighter than than

information relaxation bound for the non-belief-state formulation.

The second main contribution of this chapter is to show that several standard value function

approximations for POMDPs are in fact supersolutions. Supersolutions are feasible solutions for

the linear programming formulation of an MDP and are therefore upper bounds (in the case of a

maximization problem) on the unknown optimal value function. Desai et al. [27] showed how to ob-

tain bound improvements in approximate linear programming with perfect information relaxations,

and BH showed information relaxation bounds constructed from supersolution based penalties are

guaranteed to provide tighter bounds than the bounds provided by the supersolutions themselves.

A further advantage of constructing penalties from supersolutions is that absolute continuity (of

the change-of-measure) is no longer required and so significant variance reduction can be achieved

when estimating the duality gap directly. These advantages were identified by BH although per-

haps not emphasized sufficiently. We therefore believe that the information relaxation approach

is particularly valuable in the context of POMDPs. One of the standard AVFs we consider is the

so-called fast informed bound update AVF [42]. We extend this approach in a natural way to

construct what we call the Lag-2 AVF. We show the Lag-2 AVF is a supersolution and prove that

it is a tighter upper bound than that provided by the fast informed bound update AVF.

We demonstrate our results in applications from robotic navigation and telecommunications.

The robotic navigation application requires controlling the movements of a robot in a maze with

the goal of reaching a desired state within a finite number of time-steps. Our telecommunications

application concerns packet transmissions in a multi-access communication setting that uses the

slotted aloha protocol. In both cases we use the aforementioned supersolutions to construct penalties

for the dual bounds. We also use them to construct primal bounds by simulating the policies that
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are greedy with respect to them. We demonstrate the bound improvement results of BH and also

show that tight duality gaps can be achieved in these applications. In particular, the duality gap

can be as much as 85% smaller than the gap given by the primal bound and the corresponding

supersolution. (This reduction in duality gap under-estimates the upper bound improvement since

the duality gap includes the gap from the primal lower bound to the unknown optimal value

function.) In our robotic navigation application, for example, we will see that the tightest duality

gap, i.e. the gap between our best lower bound and our best information relaxation-based upper

bound, is obtained using the Lag-2 AVF. Moreover, the duality gap is so small that we could argue

that we have essentially succeeded in solving the problem.

A further contribution of this work is the implication that the information relaxation approach

can be extended to other non-Markovian settings beyond POMDPs. The basic underlying prob-

ability structure of a POMDP is a (controlled) hidden Markov model (HMM) where the filtered

probability distributions that we need can be computed efficiently. It should be clear from this

work that other structures, specifically controlled hidden singly-connected graphical models, would

also be amenable to the information relaxation approach since filtered probability distributions for

these models can also be computed very quickly. More generally, it should be possible to tackle

control problems where the controlled hidden states form a multiply-connected graphical model as

is often the case with influence diagrams in the decision sciences literature. In this latter case, we

suspect that the non-belief-state formulation is the more natural approach to take.

2.1.1 Literature Review and Chapter Outline

The work of BSS and [69] follows earlier work by [38] and [68] on the pricing of high-dimensional

American options. Other related work on American option pricing includes [21] and [2]. The pricing

of swing options with multiple exercise opportunities is an important problem in energy markets and

the information relaxation approach was soon extended to this problem via the work of [58], [74],

[1], [12] and [20] among others. BSS were the the first to extend the information relaxation approach

to general MDPs and demonstrate the tractability of the approach on large-scale problems. Other

notable developments include work by [18] and [16] on the structure of dual feasible penalties,
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extensions by BH and [87] to infinite horizon settings, bound improvements in approximate linear

programming with perfect information relaxations in [27], the bound improvement guarantees of

BH who also use change-of-measure arguments (building in part on Rogers [69]) to solve intractable

inner problems. The approach has also been extended to continuous-time stochastic control by [86],

and dynamic zero sum-games by [41] and [13]. Recently [8] and [7] have shown how information

relaxations can be used to construct analytical bounds on the suboptimality of heuristic policies for

problems including the stochastic knapsack and scheduling.

The information relaxation methodology has now become well established in the operations

research and quantitative finance community with applications in revenue management, inventory

control, portfolio optimization, multi-class queuing control and finance. Other interesting applica-

tions and developments include [53], [49], [37], [40], [30] and [88].

Finally, we note that POMDPs are a well-established and important class of problems and doing

justice to the enormous literature on POMDPs is beyond the scope of this chapter. Instead we

refer the interested reader to the recent text [51] for a detailed introduction to the topic as well as

an extensive list of references.

The remainder of this chapter is organized as follows. In Section 2.2 we formulate our discrete-

time, discrete-state POMDP and also discuss its belief-state formulation there. In Section 2.3 we

review information relaxations and the change-of-measure approach of BH for solving the difficult

inner problems that arise in the belief-state formulation of POMDPs. In Section 2.4 we consider

information relaxations for the non-belief-state formulation and then compare information relax-

ation bounds from the belief-state and non-belief state formulations in Section 2.5. We construct

several standard value function approximations for POMDPs in Section 2.6. We also introduce

our Lag-2 AVF there and prove that all of these AVFs are in fact supersolutions. We describe our

applications to robotic navigation and multiaccess communication in Sections 2.7 and 2.8, respec-

tively. We conclude in Section 2.9. Derivations, proofs and various technical details including how

to extend our approach to the infinite horizon setting are relegated to the appendices.
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2.2 Discrete-Time POMDPs

We begin with the standard POMDP formulation where we explicitly model the hidden state

transitions and observations. We consider a discrete-time setting with a finite horizon T and time

indexed by t ∈ {0, 1, . . . , T}. At each time t there is a hidden state, ht ∈ H, as well as a noisy

observation, ot ∈ O, of ht. After observing ot at time t > 0, the decision maker (DM) chooses an

action at ∈ A. We also assume a known prior distribution, π0, on the initial hidden state, h0, and

the initial action a0 is based on π0. For ease of exposition we assume that H, O and A are all

finite. It is standard to describe the dynamics1 for t = 1, . . . , T via the following:

• A |H| × |H| matrix, P (a), of transition probabilities for each action a ∈ A with

Pij(a) := P(ht = j | ht−1 = i, at−1 = a), i, j ∈ H. (2.1)

• A |H| × |O| matrix, B(a), of observation probabilities for each action a ∈ A with

Bij(a) := P(ot = j | ht = i, at−1 = a), i ∈ H, j ∈ O. (2.2)

Our POMDP formulation is therefore time-homogeneous but there is no difficulty extending our

results to the time-inhomogeneous setting where P and B may also depend on t. Rather than

using (2.1) and (2.2), however, we will find it more convenient to use the following alternative, but

equivalent, dynamics. In particular, we assume the hidden state and observation dynamics satisfy

ht+1 = fh(ht, at, wt+1), (2.3)

ot+1 = fo(ht+1, at, vt+1) (2.4)

for t = 0, 1, . . . , T −1 and where the vt’s and wt’s are IID U(0, 1) random variables for t = 1, . . . , T .

We can interpret the vt’s and wt’s as being the IID uniform random variables that are required by

the inverse transform approach to generate the state transitions and observations of (2.1) and (2.2),

respectively. At each time t, we assume the DM obtains a reward, rt(ht, at), which is a function of

1 It may be the case that an initial observation, o0, is also available and this presents no difficulty as long as its

distribution conditional on h0 is known.
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the hidden state, ht, and the action, at. As rewards depend directly on hidden states, but not the

observations, the DM does not have perfect knowledge of the rewards obtained. We will assume,

however, that the final observation satisfies oT = hT so that rT (hT ) = rT (oT ). This is without

loss of generality since the DM cannot act at time T and so there is no benefit to receiving any

information at time T .

A policy µ = (µ0, µ1, . . . , µT ) is non-anticipative if it only depends on past and current ob-

servations (as well as on the initial distribution, π0, over h0). For such a policy we can therefore

write the time t action at as at = µt(o1:t) where o1:t := (o1, . . . , ot) and where we have omitted the

implicit dependence on π0. We define a filtration F = (F0, . . . ,FT ) to be the filtration generated by

the observations so that Ft is the σ-algebra generated by o1:t. A non-anticipative policy is therefore

F-adapted. We also define F := FT . We denote the class of all non-anticipative policies by UF. The

objective of the DM is to find an F-adapted policy, µ∗, that maximizes the expected total reward.

The POMDP problem is therefore to solve for

V ∗0 (π0) = max
µ∈UF

E

{
T∑
t=0

rt(ht, µt)
∣∣∣F0

}
(2.5)

and where we acknowledge2 a slight abuse of notation in (2.5) since there is no time T action µT .

2.2.1 The Belief State Formulation of the POMDP

Rather than use the hidden state and observation dynamics of (2.3) and (2.4), we can instead define

the POMDP state dynamics in terms of the belief state process, πt, which lies in the |H|-dimensional

simplex. Specifically we can equivalently write the POMDP dynamics as

πt+1 = fπ(πt, at, ut+1), t = 0, 1, . . . , T − 1 (2.6)

where the ut’s are IID U(0,1) random variables and fπ is the state transition function which is

only defined implicitly via the filtering3 algorithm. We now define the filtration Fπ = (Fπ

0 , . . . ,F
π

T )

where Fπ

t is the σ-algebra generated by π0:t. We note that the filtrations F and Fπ are not identical

2 This abuse is also found elsewhere in this article but we can resolve it by simply assuming the existence of a

dummy action at time T which has no impact on the time T reward.

3 The filtering algorithm takes πt and ot+1 (which is a function of πt, at and ut+1) as inputs and outputs πt+1.
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and while they are of course related, they actually live on different probability spaces. We can also

write the time t reward as a function of the belief state by setting4 r(πt, at) := E[r(ht, at) | F
π

t ].

The analog of (2.5) under the belief-state formulation is then

V ∗0 (π0) = max
µ∈UFπ

E

{
T∑
t=0

rt(πt, µt)
∣∣∣Fπ

0

}
(2.7)

where we use UFπ to denote the class of Fπ -adapted policies. The advantage of formulating the

POMDP via the belief-state is that the problem becomes an MDP albeit a potentially high-

dimensional one.

2.3 A Review of Information Relaxations

We now briefly describe the information relaxation approach for obtaining dual bounds. Because

this theory has been developed for MDPs, we will focus on the belief-state formulation of (2.7).

Solving (2.7) is generally an intractable problem so the best we can hope for is to construct a good

sub-optimal policy. In order to evaluate the quality of such a policy, however, we need to know how

far its value is from the (unknown) optimal value function, V ∗0 (π0). If we could somehow bound

V ∗0 (π0) with a lower bound, V lower
0 , and an upper bound, V upper

0 , satisfying V lower
0 ≤ V ∗0 (π0) ≤ V upper

0

with V lower
0 ≈ V upper

0 then we can answer this question by simulating the policy in question and

comparing its value to V upper

0 . In practice, we take V lower
0 to be the value of our best Fπ -adapted

policy which can typically be estimated to any required accuracy via Monte-Carlo. The goal then

is to construct V upper

0 and if it is sufficiently close to V lower
0 then we have a “certificate” of near-

optimality for the policy in question.

Towards this end we will use the concept of information relaxations and our development will

follow that of BSS which can be consulted for additional details and proofs. An information

relaxation Gπ
of the filtration Fπ is a filtration Gπ

= (Gπ0 ,G
π

1 , . . . ,G
π

T ), where Fπ

t ⊆ G
π

t for each

t. We denote by UGπ the set of Gπ
-adapted policies. Then, UFπ ⊆ UGπ . Note that a Gπ

-adapted

4 Indeed, when simulating a policy to compute a primal bound using the original POMDP formulation of Section

2.2, we can use rt(πt, at) instead of rt(ht, at) to compute the rewards. Using rt(πt, at) instead of rt(ht, at) to estimate

a primal bound amounts to performing a conditional Monte-Carlo which is a standard variance reduction technique.



12

policy is generally not feasible for the original primal problem in (2.7) as such a policy can take

advantage of information that is not available to an Fπ -adapted policy.

Before proceeding we also need the concept of dual penalties. Penalties, like rewards, depend

on states and actions and are incurred in each period. Specifically, for each t, we define a dual

penalty, ct, according to

ct := E[ϑt+1(πt+1) | Fπ

t ]− E[ϑt+1(πt+1) | Gπt ] (2.8)

where ϑt+1(πt+1) is5 a bounded real-valued function of the time t+1 state πt+1. It is straightforward

to see that E[ct | F
π

t ] = 0 for all t and any Fπ -adapted policy. (In general this is not the case for a

Gπ
-adapted policy.) This in turn implies E[

∑T
t=0 ct | F

π

0 ] = 0 for any Fπ -adapted policy. Beginning

with (2.7) we now obtain

V ∗0 (π0) = max
µ∈UFπ

E

[
T∑
t=0

rt(πt, µt)
∣∣∣Fπ

0

]
= max

µ∈UFπ
E

[
T∑
t=0

rt(πt, µt) + ct

∣∣∣Fπ

0

]

≤ max
µ∈UGπ

E

[
T∑
t=0

rt(πt, µt) + ct

∣∣∣Fπ

0

]
. (2.9)

BSS also showed that strong duality holds. Specifically, if we could take ϑt+1(πt+1) = V ∗t+1(πt+1), i.e.

use the (unknown) optimal value function as our generating function in (2.8), then we would have

equality in (2.9). Indeed a simple inductive proof that works backwards from time T establishes

strong duality and also shows that equality holds in (2.9) almost surely. That is, if we could use

the optimal value function V ∗t to construct the dual penalties then the optimal value of the inner

problem (inside the expectation in (2.9)) would equal V ∗0 (π0) almost surely. This result has two

implications when we have a good approximation, Ṽt, to V ∗t and we take ϑt+1(πt+1) = Ṽt+1(πt+1).

First it suggests that (2.9) should yield a good upper bound on V ∗0 and second, the almost sure

property of the preceding paragraph suggests that relatively few sample paths should be needed to

estimate V upper

0 to any given accuracy.

5 In practice we will take ϑt+1(πt+1) to be an approximation to the time t + 1 optimal value function. We note

that dual feasible penalties are essentially action-dependent control variates, a standard variance reduction technique

in the simulation literature. Recall also that πt+1 is a function of the actions a0:t as well as exogenous noise as

described in (2.6).
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We can use (2.9) to construct upper bounds on V ∗0 (π0) for general information relaxations Gπ

but it is perhaps easier to understand how to do this when we use the perfect information relaxation,

which is the most common choice in applications. We will actually refer to this relaxation as the

belief-state perfect information relaxation (BSPI) as it is the perfect information relaxation for the

belief-state formulation of the problem.

2.3.1 The BSPI Relaxation

The BSPI information relaxation is given by the filtration Bπ := (Bπ0 , . . . ,BπT ) where Bπ0 = Bπ1 =

· · · = BπT := σ(u1:T ) where the ut’s are as in (2.6). The DM therefore gets to observe u1:T at time

0 under the BSPI relaxation. Moreover, knowledge of u1:T implies knowledge of the belief states

π0:T corresponding to all possible action sequences, which implies that Fπ

t ⊆ Bπt for all t so that

Bπ is indeed a relaxation of Fπ . The upper bound of (2.9) now yields

V ∗0 (π0) ≤ E

[
max
a0:T−1

T∑
t=0

r(πt, at) + ct

∣∣∣Fπ

0

]
(2.10)

where ct now takes the form

ct := E[ϑt+1(πt+1) | Fπ

t ]− ϑt+1(πt+1). (2.11)

In principle we can evaluate the right-hand-side of (2.10) by simulating J sample paths,
(
u

(j)
1:T

)
, for

j = 1, . . . , J , and solving the deterministic maximization problem inside the expectation in (2.10)

(the inner problem) for each path. If we let V (j) denote the optimal value of the jth inner problem,

then
∑

j V
(j)/J provides an unbiased estimator of an upper bound, V upper

0 , on the optimal value

function, V ∗0 (π0). Moreover standard methods can be used to construct approximate confidence

intervals for V upper

0 .

In the BSPI setting, however, the state space is the |H|-dimensional simplex. As a result, solving

the inner problem in (2.10) amounts to solving a deterministic DP with a |H|−1-dimensional state

space. For all but the smallest problems, these deterministic DPs will in generally be intractable.
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2.3.2 The Uncontrolled Formulation

BH showed how this problem could be solved using a change-of-measure approach. In particular

they reformulated the primal problem of (2.7) using an equivalent probability measure under which

the chosen actions do not influence the state transition dynamics. Instead, the actions are accounted

for by the Radon-Nikodym (RN) derivatives which adjust for the change-of-probability measure.

BH called this an uncontrolled formulation and showed that their weak and strong duality results

continued to hold under such a formulation. In this case the analog of (2.10), i.e. weak duality

under the uncontrolled BSPI relaxation, is given by

V ∗0 (π0) ≤ Ẽ

[
max
a0:T−1

T∑
t=0

Φπ
t [rt(πt, at) + ct]

∣∣∣Fπ

0

]
(2.12)

where

ct := E[ϑt+1(πt+1) | Fπ

t ]− φ(πt, πt+1, at)ϑt+1(πt+1) (2.13)

Φπ
t (π0:t, a0:t−1) :=

t−1∏
s=0

φ(πs, πs+1, as) (2.14)

and where Ẽ[·] denotes an expectation under the new probability6 measure, P̃. The φ(πt, πt+1, at)

terms in (2.13) and (2.14) are appropriately defined one-step RN derivative terms. Explicit expres-

sions for these RN derivatives are provided and justified in Appendix A.1.1.

Using an uncontrolled formulation results in a dramatic reduction of the state space that needs

to be considered in solving the inner problem in (2.12). In particular, when we solve the inner

problem as a deterministic dynamic program, we do not need to solve this DP for all possible states

πt in the |H|-dimensional simplex. This is because the sequence of states π0, . . . , πT is fixed inside

the inner problem of (2.12) due to the uncontrolled nature of the formulation where the history of

actions does not influence the state transition dynamics. As such, the deterministic DP that solves

the inner problem only needs to be solved along a single path of states π0, . . . , πT . Of course this

state path will vary across inner problem instances.

6 Throughout the chapter we will use P to denote the probability measure for a controlled POMDP formulation

such as (2.6) or (2.3) and (2.4). We will use P̃ to denote the probability measure for any uncontrolled POMDP

formulation. The particular controlled or uncontrolled formulation should be clear from the context.
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2.4 Information Relaxations for the Non-Belief-State Formulation

Until now we have followed the approach of BSS and BH to outline how information relaxation dual

bounds can be computed for POMDPs using the belief-state (and hence MDP) formulation of these

problems. In this section we will show that information relaxation bounds for POMDPs can also

be obtained using the non-belief-state formulation of the problem as described in the first part of

Section 2.2. This leads to a very different form of inner problem which in principle is much simpler

to solve. We will still need to use an uncontrolled formulation, however, in order to evaluate the

dual penalties. This is in contrast to the inner problems of the BSPI relaxation where, as discussed

in Section 2.3.2, an uncontrolled formulation was required to reduce the effective dimension of the

inner problem.

In Section 2.5 we will argue that the information relaxation bounds provided by the non-belief

state formulation of this section are weaker than the corresponding bounds provided by the belief-

state formulation. Nonetheless, some subtleties (regarding how the inner paths are generated)

arise in our argument. Moreover, we believe the non-belief state formulation (and the resulting

PI relaxation) may potentially be useful for other non-Markovian control problems where a belief-

state formulation doesn’t arise as naturally as it does in the case of POMDPs. Influence diagrams,

for example, is one such class of problems. See [46] or Chapter 23 of [50] for an introduction to

influence diagrams.

2.4.1 The Perfect Information Relaxation

We now assume that the POMDP is formulated using the hidden state and observation dynamics

of (2.3) and (2.4). We recall that the filtration F = (F0, . . . ,FT ) is the filtration generated by

the observations so that Ft is the σ-algebra generated by o1:t and π0. The perfect information

(PI) relaxation corresponds to the filtration I = (I0, I1, . . . , IT ), with It = σ(h0, w1:T , v1:T ) for

all t. In particular, the DM gets to observe all of the wt’s, vt’s and h0 at time 0 under I. It is

worth noting that knowledge of the wt’s, vt’s and h0 implies knowledge of the observations o1:T

corresponding to all possible action sequences. It therefore follows that Ft ⊆ It for all t so that I

is indeed a relaxation of F. Under the PI relaxation, the equivalent of (2.10), i.e. weak duality for
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the non-belief-state formulation, corresponds to

V ∗0 (π0) ≤ E

[
max
a0:T−1

T∑
t=0

rt(ht, at) + ct

∣∣∣F0

]
(2.15)

where the ct’s now take the form

ct := E[ϑt+1(o1:t+1) | Ft]− ϑt+1(o1:t+1). (2.16)

We note that that the same ϑt+1’s that we use in (2.11) can also be used in (2.16). This follows

because πt+1 is in fact a function of o1:t+1 and so it is perfectly fine to write ϑt+1(o1:t+1) instead of

ϑt+1(πt+1).

In principle we can again compute an unbiased estimate of the right-hand-side of (2.15) by

first simulating J sample paths,
(
h

(j)
0 , w

(j)
1:T , v

(j)
1:T

)
, for j = 1, . . . , J . We solve the inner problem

inside the expectation in (2.15) for each such path and then average the corresponding optimal

objective functions. It is perhaps worth emphasizing that we still inherit strong duality from the

BSPI formulation of the POMDP. In particular, this suggests that a good choice of ϑt+1 should

lead to good upper bounds on V ∗0 (π0).

2.4.2 Solving the Inner Problem in (2.15)

We would therefore like to use the PI relaxation to construct an upper bound on V ∗0 by solving the

inner problem in (2.15) as a deterministic dynamic program. The main obstacle we will encounter

under the PI relaxation, however, is computing the ct’s as defined in (2.16). We can see this most

clearly if we consider the zero-penalty case where we set ϑt+1 ≡ 0. In that case ct ≡ 0 for all t and

the inner problem in (2.15) is a simple deterministic DP with just |H| states. In contrast, when

ct ≡ 0 in (2.10), we see that the inner problem in (2.10) is still a deterministic DP but now the state

space lies in the |H|-dimensional simplex. The inner problems in (2.10) for the BSPI relaxation are

therefore in principle considerably more challenging than the inner problems in (2.15) and this is

why the uncontrolled formulation of (2.12) was required.

Unfortunately, if we want to use a non-zero ϑt+1 (as is typically the case), then evaluating the

E[ϑt+1(o1:t+1) | Ft] term in (2.16) is challenging. With the PI relaxation of the non-belief-state

formulation of (2.3) and (2.4), however, this is not possible because the probability distribution
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required to compute E[ϑt+1(o1:t+1) | Ft] depends on the entire history of actions, a0:t, up to time

t. Moreover, this probability distribution is not available explicitly and must be calculated via

a filtering algorithm. This means that in solving the inner problem in (2.15) as a deterministic

dynamic program, we would need to compute E[ϑt+1(o1:t+1) | Ft] at each time t for all possible

action histories, a0:t. In fact this is also true for the second term in (2.16), ϑt+1(o1:t+1). Evaluating

the penalties ct for all possible action histories is therefore clearly impractical for any realistic

application. Once again, however, we can use an uncontrolled formulation to resolve this problem.

Before proceeding to the uncontrolled formulation, however, it is worth emphasizing why the

calculation of these penalty terms is straightforward for the BSPI relaxation. Consider the term

E[ϑt+1(πt+1) | Fπ

t ] that arises in the calculation of the penalty in (2.11) in the case of the BSPI

relaxation. Because we are conditioning on Fπ

t the calculation of E[ϑt+1(πt+1) | Fπ

t ] depends on πt

(which is known given Fπ

t ) and the time t action at. In particular, it does not depend on the action

history a0:t−1 which is in contrast to the term E[ϑt+1(o1:t+1) | Ft] that arises in the PI penalty

of (2.16). Therefore under the BSPI relaxation the penalties are easy to calculate for any state

πt. Of course, what is really happening here is that the complexity of evaluating penalties for the

inner problems of the PI relaxation is transferred to the complexity of working with a much higher

dimensional state-space when solving inner problems for the BSPI relaxation. Either way then, we

must use an uncontrolled formulation.

2.4.3 The Uncontrolled Formulation

In order to define an action-independent change-of-probability-measure, we simply define a hidden

Markov model (HMM) on the same hidden state and observation spaces as our POMDP. Specifically,

for t = 1, . . . , T we define:

• A |H| × |H| matrix, Q, of transition probabilities, with

Qij := P(ht = j | ht−1 = i), i, j ∈ H. (2.17)

• A |H| × |O| matrix, E, of observation probabilities with

Eij := P(ot = j | ht = i), i ∈ H, j ∈ O. (2.18)
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Note that both Q and E are action independent although in general they could depend on time

in which case we would write Qtij and Etij . In general7 we will also require them to satisfy the

following absolute continuity conditions:

1. Qij > 0 for any i, j ∈ H for which there exists an action a ∈ A such that Pij(a) > 0

2. Eij > 0 for any i ∈ H and j ∈ O for which there exists an action a ∈ A such that Bij(a) > 0.

A trivial way to ensure these conditions is to have Qij > 0 and Eik > 0 for all i, j ∈ H and k ∈ O. As

mentioned earlier, we let P̃ denote the probability measure induced by Q and E with Ẽ denoting

expectations under P̃. We now proceed by reformulating our POMDP under P̃ and adjusting

rewards (and penalties) with appropriate Radon-Nikodym (RN) derivatives. In Appendix A.1.2 we

show that these RN derivatives are of the form dP/dP̃ = ΦT (h0:T , o1:T , a0:T−1) with

φ(i, j, k, a) :=
Pij(a)

Qij
·
Bjk(a)

Ejk
(2.19)

Φt(h0:t, o1:t, a0:t−1) :=
t−1∏
s=0

φ(hs, hs+1, os+1, as). (2.20)

It is then straightforward to see that

V ∗0 (π0) = max
µ∈UF

E

[
T∑
t=0

rt(ht, µt)
∣∣∣F0

]
= max

µ∈UF
Ẽ

[
T∑
t=0

Φtrt(ht, µt)
∣∣∣F0

]
. (2.21)

We refer to (2.21) as an uncontrolled formulation of the non-belief-state POMDP formulation. The

“uncontrolled” terminology reflects the fact that the policy, µ, does not influence the dynamics

of the system which are now determined by the action independent transition and observation

distributions in Q and E, respectively. The impact of the policy instead manifests itself via the

Φt’s. With this uncontrolled formulation the analog of (2.15), i.e. weak duality for the PI relaxation,

is given by

V ∗0 (π0) ≤ Ẽ

[
max
a0:T−1

T∑
t=0

Φt[rt(ht, at) + ct]
∣∣∣F0

]
(2.22)

with

ct := E[ϑt+1(o1:t+1) | Ft]− φ(ht, ht+1, ot+1, at)ϑt+1(o1:t+1). (2.23)

7 We will see later in Section 2.6.2 that we can ignore these absolutely continuity conditions when we take the

ϑt’s to be supersolutions.
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Returning to the penalty in (2.16) we recall that we need to compute E [ϑt+1(o1:t+1) | Ft] but note

that we no longer need to compute it for all possible action histories, a0:t, when solving an inner

problem in (2.22). This is because the action histories under P̃ influence neither the dynamics of the

hidden states nor the observations. This means we only need to compute E [ϑt+1(o1:t+1) | Ft] once

for each time t in each inner problem. This is a straightforward calculation and the expectation

can be computed as

E [ϑt+1(o1:t+1) | Ft] =
∑

o∈O;h,h′∈H
πt(h)Phh′(at)Bh′o(at)ϑt+1(o1:t, o) (2.24)

where πt(h) := P̃(ht = h | o1:t) can be calculated efficiently using standard HMM filtering methods.

As discussed in Section 2.4.1, we can now calculate an unbiased upper bound on V ∗0 by solving J

instances of the inner problems in (2.22) and averaging their optimal objective values. Note that

an inner problem can be solved recursively according to

V I
t = max

a
{rt(ht, a) + ct + φ(ht, ht+1, ot+1, a)V I

t+1} (2.25)

for t = 0, . . . , T − 1 and where h0:T and o1:T are the hidden states and observations that were

generated for that specific inner problem. We also have the terminal condition V I
T = rT (hT ) since

cT = 0 as each ϑT+1 can be assumed to be identically zero. Each of these J inner problem instances

should be independently generated via P̃ and they can be solved as deterministic dynamic programs.

Strong duality suggests that if ϑt is a “good” approximation to the optimal value function, V ∗t , then

we should obtain tight upper bounds on V ∗0 . We will see that this is indeed the case in the robotic

navigation and multi-access communication applications of Sections 2.7 and 2.8, respectively.

2.5 Comparing the BSPI and PI Dual Bounds

Consider now the primal problems in (2.5) and (2.7) corresponding to the non-belief-state and

belief-state formulations, respectively. In (2.5) the rewards are rt(ht, at) and the optimisation is

over F-adapted policies. In contrast, the rewards are rt(πt, at) and the optimisation is over Fπ -

adapted policies in (2.7). Of course the two objectives are equal since r(πt, at) := E[r(ht, at) | F
π

t ]

and because Ft contains no relevant information beyond what is in Fπ

t (even though Fπ

t ⊂ Ft).
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Consider now a third equivalent formulation where the rewards are r(πt, at) but the optimisation

is over F-adapted policies. In this case we have

V ∗0 (π0) = max
µ∈UF

E

{
T∑
t=0

rt(πt, µt)
∣∣∣Fπ

0

}
(2.26)

where we note the only difference between (2.7) and (2.26) is that the optimisation is over µ ∈ UFπ

in the former and over µ ∈ UF in the latter. Despite the presence of rt(πt, µt) in (2.26), this is also

a non-belief-state formulation of the problem because F = (F0, . . . ,FT ) where Ft is the σ-algebra

generated by o1:t (and π0).

The PI relaxation bound corresponding to formulation (2.26) is given by

E[V I
0 ] := E

[
max
a0:T−1

T∑
t=0

rt(πt, at) + ct

∣∣∣Fπ

0

]

= Eh0:T ,o1:T

[
max
a0:T−1

T∑
t=0

[rt(πt, at) + E[ϑt+1(o1:t+1) | Ft]− ϑt+1(o1:t+1)]
∣∣∣Fπ

0

]
(2.27)

where we have substituted for ct using (2.16) and where we have used Ex to denote an expectation

taken w.r.t. the random vector x. As we shall see in Section 2.6 all our AVFs ϑ(o1:t) can be written

equivalently as ϑ(πt). Together with the fact that Ft contains no relevant information beyond what

is in Fπ

t , this implies we can write (2.27) as

E[V I
0 ] = Eh0:T ,o1:T

[
max
a0:T−1

T∑
t=0

[
rt(πt, at) + E[ϑt+1(πt+1) | Fπ

t ]− ϑt+1(πt+1)
] ∣∣∣Fπ

0

]

= Eo1:T

[
Eh0:T

[
max
a0:T−1

T∑
t=0

[
rt(πt, at) + E[ϑt+1(πt+1) | Fπ

t ]− ϑt+1(πt+1)
]
| o1:T ,F

π

0

] ∣∣∣Fπ

0

]
(2.28)

where the second equality follows from the tower property. Note that the πt’s appearing inside

the inner expectation in (2.28) are deterministic functions of π0, o1:t and a0:t−1 and as such, are

independent of h0:T , given π0, o1:T and a0:T . It therefore follows that (2.28) becomes

E[V I
0 ] = Eo1:T

[
max
a0:T−1

T∑
t=0

[
rt(πt, at) + E[ϑt+1(πt+1) | Fπ

t ]− ϑt+1(πt+1)
] ∣∣∣Fπ

0

]
(2.29)

= Eπ1:T

[
max
a0:T−1

T∑
t=0

[
rt(πt, at) + E[ϑt+1(πt+1) | Fπ

t ]− ϑt+1(πt+1)
] ∣∣∣Fπ

0

]
(2.30)

= E[V Bπ
0 ] (2.31)
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where we recognize the right-hand-side of (2.30) as the BSPI relaxation bound in (2.10) with

penalties given by (2.11) and we use V Bπ
0 to denote the optimal value of a BSPI inner problem. We

therefore have the following result.

Proposition 2.5.1. Given penalties constructed from the same AVF, the BSPI information relax-

ation bound is equal to the PI information relaxation bound with rewards rt(πt, at).

Remark 2.5.1. One direction of Proposition 2.5.1 is quite obvious and follows immediately from

BSS. In particular we note that the BSPI relaxation is weaker than the PI relaxation, i.e. Bπt ⊆ It

for all t. This follows because knowledge of (v1:t, w1:t) together with π0 and the action history a0:t−1

is sufficient to determine πt. That the BSPI bound is at least as good as the PI bound (with rewards

rt(πt, at)) now follows immediately from Prop. 2.3(i) of BSS since the rewards are identical in both

formulations.

Note that it’s clear that Proposition 2.5.1 continues to hold under the same absolutely con-

tinuous change-of-measure. In particular, such a measure change will preserve equality in (2.29)

to (2.31). That said, we never use the same change-of-measure for the PI and BSPI bounds. In

general, it is difficult to compare bounds constructed via different changes-of-measure but that will

not be true in our POMDP case as the change-of-measures that we propose to use for the PI and

BSPI bounds will be closely related. This is most easily explained by way of a simple example

where to make matters simple, we will assume the penalties are identically zero.

Consider a POMDP with just two periods, t = 0 and t = 1. For the PI bound, we consider

the change-of-measure given by (2.17) and (2.18), so that the PI relaxation bound corresponding

to formulation (2.26) is given by

E[V I
0 ] := Ẽ

[
max
a0

r0(π0, a0) + φ(h0:1, o1, a0)r1(π1)
∣∣∣Fπ

0

]
= Ẽo1

[
Ẽh0:1

[
max
a0

r0(π0, a0) + φ(h0:1, o1, a0)r1(π1) | o1,F
π

0

] ∣∣∣Fπ

0

]
(2.32)

where (2.32) follows from the tower property. We can no longer ignore the Ẽh0:1 expectation in

(2.32), however, because the term φ(h0:1, o1, a0) is not independent of h0:1, given π0, o1 and a0.

However, we can use Jensen’s inequality to exchange the maximization with the expectation w.r.t
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h0:1 to obtain

E[V I
0 ] ≥ Ẽo1

[
max
a0

Ẽh0:1
[
r0(π0, a0) + φ(h0:1, o1, a0)r1(π1) | o1,F

π

0

] ∣∣∣Fπ

0

]
(2.33)

= Ẽo1
[
max
a0

r0(π0, a0) + r1(π1)Ẽh0:1
[
φ(h0:1, o1, a0) | o1,F

π

0

] ∣∣∣Fπ

0

]
. (2.34)

On the other hand, the corresponding uncontrolled BSPI bound is given by the r.h.s of (2.12) with

zero penalties and satisfies

E[V Bπ
0 ] := Ẽπ1

[
max
a0

r0(π0, a0) + φ(π0:1, a0)r1(π1)
∣∣∣Fπ

0

]
. (2.35)

If we now define the RN derivative

φ(π0:1, a0) := Ẽh0:1
[
φ(h0:1, o1, a0) | Fπ

0 , o1

]
(2.36)

so that the change-of-measure (2.36) for the belief-state formulation is simply an integrated version

of the change-of-measure for the non-belief-state formulation, then we recognize that the r.h.s of

(2.34) is equal to the BSPI dual bound in (2.35). In particular, the BSPI bound is tighter than the

PI bound when the BSPI change-of-measure is an integrated version of the PI change-of-measure

for the PI bound. Such an argument provides some intuition for why we see the BSPI bounds

outperforming the corresponding PI bounds in the numerical applications of Sections 2.7 and 2.8.

Which PI Dual Bound is Better?

Based on the previous discussion there are two PI dual bounds of interest, the original with rewards

rt(ht, at) and the new one with rewards rt(πt, at). The latter bounds will be tighter in general than

the former. To see this, consider the following POMDP again with just two periods, t = 0 and

t = 1. There are two possible hidden states hgood and hbad and the initial belief-state distribution

π0 puts equal probability on each of hgood and hbad. The only possible actions are astay and aswitch.

If the chosen action at time t = 0 is astay then at time t = 1 you will stay in the same hidden state

that you were in at time t = 0. If the chosen action is aswitch at time t = 0 then at time t = 1

you will move to the other hidden state. So for example, if h0 = hbad and you choose action aswitch

then w.p.1 h1 = hgood. A reward of 1 is realised at t = 1 if h1 = hgood and this in the only possible

reward. The observations in this POMDP are completely uninformative.
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Consider now an inner problem in the PI formulation with rewards rt(ht, at) and zero penalties.

In this case the DM is guaranteed to get a reward of 1 since she will see h0. In particular, she will

know which of astay and aswitch she should choose to guarantee she is in state h1 = hgood at time

t = 1 and therefore earn the reward of 1. For the inner problem in the PI formulation with rewards

rt(πt, at) and (zero penalties), the DM can again guarantee that h1 = hgood. This time, however,

the reward is r1(π1, a1) = 1/2 because the observations are non-informative and so π1 puts equal

weight on the two possible hidden states at time t = 1. So even though the PI decision-maker

knows what the true state is at t = 1 she only receives a reward of 1/2 for this.

More generally, suppose that the observations were informative although in general still noisy.

With rewards rt(ht, at) the DM can always guarantee a reward of 1 at time t = 1 in the PI relaxation.

In contrast, with rewards rt(πt, at), the DM would receive a reward of rt(πt, at) ∈ (1/2, 1] at time

t = 1 if she ensured h1 = hgood since πi would then put more weight on h1 = hgood given that the

observations are informative. We note in passing that for the PI bounds of Sections 2.7 and 2.8,

we always use the rt(πt, at) form of the rewards.

2.6 Approximate Value Functions and Supersolutions

We now discuss several standard approaches for obtaining approximations to the optimal value

function in our POMDP setting. In general we can use each such approximation, Ṽt, to:

1. Construct a lower bound, V lower
0 , on V ∗0 , by simulating the policy that is greedy8 with respect

to Ṽt. Towards this end, we can generate J independent sample paths
(
h

(j)
0 , w

(j)
1:T , v

(j)
1:T

)
,

for j = 1, . . . , J , where we recall the w’s and v’s are used for generating the hidden and

observation states in equations (2.3) and (2.4) in Section 2.2. For each sample path j we

calculate at time t the corresponding belief state πt using standard filtering techniques, and

take the action at that obtains the maximum in the chosen AVF from each of (C.5), (C.7) or

(2.44) below. If we denote by V
(j)
lower the reward obtained from following one of these policies

8 Recall that a policy is said to be greedy with respect to Ṽt if the action, at, chosen by the policy at time

t is an action that maximizes the current time t reward plus the expected discounted value of Ṽt+1, i.e. at =

argmaxa{rt(πt, a) + E[Ṽt+1(πt+1) | F
π

t ]}.
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on the jth sample path, then an unbiased estimator of a lower bound on the true optimal

value function is given by
∑

j V
(j)
lower/J .

2. Construct an upper bound, V upper

0 , via our BSPI and PI uncontrolled information relaxations

by setting ϑt = Ṽt in (2.13) and (2.23). This of course is motivated by the strong duality

result of BSS which states that if we take ϑt = V ∗t then the dual bound will be tight and

coincide almost surely with V ∗0 .

If our best lower bound is close to our best upper bound then we will have a certificate of near-

optimality for the policy that yielded the best lower bound. Later in Section 2.6.1 we will discuss the

concept of supersolutions and state a proposition asserting that the approximate-value functions

that we define below are indeed supersolutions. The significance of supersolutions will then be

discussed in Sections 2.6.1 and 2.6.2.

We now describe the MDP, QMDP and Fast Informed (Lag-1) value function approximations

together with the Lag-2 approximation which we propose as a natural extension of the Lag-1

approximation. More generally, we could define a Lag-d approximation but the computational

requirements for calculating it scale exponentially in the number of lags d. Other approximate

solution approaches can be found, for example, in [51]. Before proceeding further, we note that the

optimal value function V ∗T (πT ) is known at time T and satisfies V ∗T (πT ) = rT (oT ) because of our

earlier w.l.o.g. assumption that oT = hT . This means that each of our AVFs can also be assumed

to satisfy ṼT (πT ) = rT (oT ).

The MDP Approximate Value Function

The MDP AVF is constructed from V MDP
t (h), the optimal value function from the corresponding

fully observable MDP formulation where the hidden state, ht, is actually observed at each time t.

It is generally easy to solve for V MDP
t in typical POMDP settings and we can use it to construct an

AVF according to

Ṽ MDP
t (πt) := E[V MDP

t (ht) | F
π

t ] =
∑
h∈H

πt(h)V MDP
t (h) (2.37)
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where V MDP
T (h) := rT (h) and for t ∈ {0, . . . , T − 1} we define

V MDP
t (h) := max

at∈A

{
rt(h, at) + E[V MDP

t+1 (ht+1) | ht = h]
}
. (2.38)

The QMDP Approximate Value Function

The QMDP AVF is constructed using the Q-values [54] which are defined as

V Q

t (h, a) := rt(h, a) +
∑
h′∈H

Phh′(a)V MDP
t+1 (h′) (2.39)

for t ∈ {0, . . . , T − 1}. The QMDP AVF is then defined according to

Ṽ Q

t (πt) := max
at

∑
h∈H

πt(h)V Q

t (h, at). (2.40)

Note that by exchanging the order of the expectation and max operators in (C.5) and then applying

Jensen’s inequality, we easily obtain that the QMDP value function is less than or equal to the

MDP value function in (2.37).

The Lag-1 Approximate Value Function

The Lag-1 approximation was first proposed in [42] as the fast informed bound update. This ap-

proximation uses the optimal value function, V L1
t (ht−1, at−1, ot), from the corresponding lag-1 for-

mulation of the POMDP where the hidden state, ht−1, is observed before deciding on the time t

action at for all t < T . We can calculate V L1
t recursively via

V L1
t (ht−1, at−1, ot) = max

at
E[rt(ht, at) + V L1

t+1(ht, at, ot+1) | ht−1, ot] (2.41)

for t ∈ {1, . . . , T − 1} and with terminal condition V L1
T (hT−1, aT−1, oT ) := rT (hT ) (since oT = hT ).

The corresponding AVF is then defined according to

Ṽ L1
t (πt) := max

at
E[rt(ht, at) + V L1

t+1(ht, at, ot+1) | Fπ

t ] (2.42)

where the expectation is taken with respect to ot+1 and ht, given the current belief state, πt.

Further details on calculating V L1
t can be found in Appendix A.2.
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The Lag-2 Approximate Value Function

The Lag-2 approximation is derived by first constructing the optimal value function

V L2
t (ht−2, at−2:t−1, ot−1:t)

corresponding to the MDP where the hidden state, ht−2, is observed before taking the decision at

at time t for all t < T . Again the terminal value function is

V L2
T (hT−2, aT−2:T−1, oT−1:T ) := rT (oT ) = rT (hT )

and the optimal value function, V L2
t , at earlier times is computed iteratively according to

V L2
t (ht−2, at−2:t−1, ot−1:t) := max

at
E[rt(ht, at) + V L2

t+1(ht−1, at−1:t, ot:t+1) | ht−2, ot−1:t] (2.43)

for t ∈ {2, . . . , T−1}. When t = 0 or 1 we must adjust (2.43) appropriately so that we only condition

on o0 and o0:1, respectively. The calculation of V L2
t is clearly more demanding than the calculation

of V L1
t since its state space is larger and since the expectation in (2.43) over (ht−1, ht, ot+1) is

more demanding to compute than the expectation in (C.6) which is over (ht, ot+1). We define the

corresponding Lag-2 AVF according to

Ṽ L2
t (πt) :=

max
at

E[max
at+1

E[rt(ht, at) + rt+1(ht+1, at+1) + V L2
t+2(ht, at:t+1, ot+1:t+2) | Fπ

t , ot+1] | Fπ

t ]

(2.44)

for t ∈ {0, . . . , T − 2}, with the understanding that when t = T − 1, the Lag-2 approximation is

equal to the Lag-1 approximation, as there is only one time period remaining at that point. While

more demanding to compute, we show in Appendix A.2.3 that the Lag-2 AVF is superior to the

Lag-1 AVF in that V ∗t (πt) ≤ Ṽ L2
t (πt) ≤ Ṽ L1

t (πt). (The first inequality follows from the supersolution

property of the AVFs as discussed in Section 2.6.1 below.) Before proceeding we mention that an

alternative and perhaps more natural definition of the Lag-2 AVF is

Ṽ Alt2
t (πt) := max

at
E[rt(ht, at) + V L2

t+1(ht−1, at−1:t, ot:t+1) | Fπ

t ]. (2.45)

However, it is straightforward to show that Ṽ L2
t (πt) ≤ Ṽ Alt2

t (πt) and so we prefer to use Ṽ L2
t (πt) as

our generalization of the Lag-1 AVF.
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2.6.1 Supersolutions and Bound Guarantees

We begin by defining the concept of a supersolution.

Definition 2.6.1. Let ϑt be any AVF that satisfies

ϑt(πt) ≥ max
at∈A

{
rt(πt, at) + E[ϑt+1(πt+1) | Fπ

t ]
}

(2.46)

for all belief states πt, and all t ∈ {0, . . . , T}. Then we say that ϑt is a supersolution.

It is well-known9 that a supersolution ϑt is an upper bound on the optimal value function

V ∗t (πt). Indeed the condition (2.46) is simply the feasibility condition for the linear programming

formulation of the belief-state MDP. The supersolution property is particularly important in the

context of information relaxations and there are two reasons for this, the first of which is Proposition

2.6.1 below from BH.10

Proposition 2.6.1. (Prop 4.1 in Brown & Haugh, 2017) An information relaxation upper bound

based on a penalty constructed from a supersolution is guaranteed to be at least as good as the upper

bound provided by the supersolution itself.

We now state the main result of this section. A proof can be found in Appendix A.3.

Proposition 2.6.2. The MDP, QMDP, Lag-1 and Lag-2 AVFs are all supersolutions.

The significance of Proposition 2.6.2, however, is that a dual upper bound (as given by (2.12))

based on a penalty constructed from a supersolution is guaranteed to be no worse than the original

upper bound provided by the supersolution itself. We will see this result in action in the numerical

results of Sections 2.7 and 2.8 when we see that the information relaxation upper bound is typically

significantly better than the bound provided by the supersolution.

9 A proof can be found in standard dynamic programming texts and is based on the linear-programming formu-

lation of the Bellman equation. Note that the “supersolution” terminology was introduced by BH.

10This result was first developed by Desai et al. [27] in the context of approximate linear programming with perfect

information relaxations.
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The Non-Belief State Formulation

While the MDP, QMDP, Lag-1 and Lag2 AVFs were all defined for the belief-state formulation of

the POMDP it is clear that they can be viewed as functions of the observation history o1:t (and

implicitly the action history a0:t−1) rather than the belief state πt. As such, there is no problem

in using these AVFs to construct penalties for the PI relaxation upper bounds corresponding to

the non-belief-state formulation of the POMDP. Moreover, Propositions 2.6.1 and 2.6.2 will still

apply as long as we take rt(πt, at) := E[rt(ht, at) | Ft] rather than rt(ht, at) to be the rewards

in the non-belief-state formulation. This is because the constraint (2.46) defining a supersolution

requires rt(πt, at) rather than rt(ht, at). As discussed at the end of Section 2.5, however, using

rt(πt, at) rather than rt(ht, at) is straightforward and indeed should lead to tighter bounds for the

PI relaxation.

2.6.2 Using Supersolutions to Estimate the Duality Gap Directly

A second advantage of working with a supersolution AVF is that when the dual penalties are

constructed using a supersolution then the requirement that P � P̃ can be ignored. This was

shown by BH who then exploited11 this fact by directly estimating the duality gap V upper

0 − V lower
0 .

We describe their approach here and defer to Appendix A.4 an explanation for why the absolute

continuity condition, i.e. P � P̃, can be ignored when the dual penalties are constructed using a

supersolution.

Specifically, suppose we have a good candidate Fπ
-adapted policy, µ, and let P̃ be the probability

measure induced by following this policy. If we set V lower
0 to be the expected value of this policy,

we then have

V lower
0 = E

[ T∑
t=0

(rt(πt, µt) + ct) | F
π

0

]
= Ẽ

[ T∑
t=0

Φt(µ)
(
rt(πt, µt) + ct

)
| Fπ

0

]
(2.47)

11 BH discussed this in their Section 4.3.1 but perhaps under-emphasized this practically important aspect of

working with supersolutions.
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where the ct’s now play the role of (action-dependent) control variates and where Φt = Φt(µ) = 1

for all t in (2.47) because P and P̃ coincide when the policy µ is followed. We can use this same P̃

to estimate an upper bound

V upper

0 = Ẽ
[

max
a0:T−1

T∑
t=0

Φt(a0:t−1;µ)
(
rt(πt, µt) + ct

)
| Fπ

0

]
(2.48)

as long as ϑt is constructed from a supersolution and where (2.48) now explicitly recognizes the

dependence of the Φt’s on a0:t−1 and µ. Since both lower and upper bounds (2.47) and (2.48)

are simulated using the same measure, P̃, we may as well use the same set of paths to estimate

each bound. This has an obvious computational advantage since the rt(πt, µt)’s and ct’s that were

computed along each sample path for estimating (2.47) can now be re-used on the corresponding

inner problem in (2.48).

There is a further benefit to this proposal, however. Because the actions of the policy, µ, are

feasible for the inner problem in (2.48), it is clear the term inside the expectation in (2.47) will

be less than or equal to the optimal objective of the inner problem in (2.48) along each simulated

path. In fact the difference, D, between the two terms satisfies

0 ≤D := max
a0:T−1

T∑
t=0

Φt(a0:t−1;µ)
(
rt(πt, µt) + ct

)
−

T∑
t=0

(rt(πt, µt) + ct) P̃ a.s. (2.49)

and provides an unbiased estimate of the duality gap, V upper

0 − V lower
0 . Finally, we expect that

the variance of the random variable, D, should be very small due to a strong positive correlation

between each of the terms in (2.49). As a result, we anticipate that very few sample paths should

be required to estimate the duality gap to a given desired accuracy as long as µ is sufficiently close

to optimal. This approach to evaluating a strategy, i.e. by estimating the duality gap, requires

very little work over and beyond the work required to estimate V lower
0 . And because the variance of

D is often extremely small, we generally only need to estimate the duality gap and solve the inner

problem on a small subset of the paths that may have been used to estimate V lower
0 directly.
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Figure 2.1: Maze representation for the robot navigation problem. The white spaces indicate the

possible hidden states where the robot can be located. The star indicates the goal state.

2.7 An Application to Robotic Navigation

We now apply our results to a well-known robotic navigation application and our problem formu-

lation follows [54][43][63]. A robot is placed randomly in one of the 22 white squares (excluding

the goal state) inside the maze depicted in Figure 2.1. The robot must navigate the maze, one

space at a time, with the objective of reaching the goal state in 10 movements and only traversal

along white squares is possible. The exact position within the maze is not directly known to the

robot. Sensors placed on the robot provide noisy information on whether or not a wall (depicted

as grey squares and edges of the maze) is present on the neighboring space for each of the four

compass directions. After taking these readings, the robot must choose one of five possible actions:

(attempt to) move north, east, south or west, or stay in the current position.

The sensors have a noise factor of α ∈ [0, 1]. This factor represents two types of errors: a

wall will fail to be recognized with probability α when a wall exists, and a wall is incorrectly

observed with probability α/2 when it does not exist. A second source of uncertainty results from

the imperfect movements of the robot. Specifically, after a decision to move has been made, the
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robot will move in the opposite direction with probability 0.001, the +90 degree direction with

probability 0.01, the -90 degree direction with probability 0.01 and it will fail to move at all with

probability 0.089. The robot therefore succeeds in moving in the desired direction with probability

0.89. These movement probabilities are normalized in the event that a particular direction is not

possible due to the presence of a wall. The robot may also choose to stay in its current location

and such a decision is successful with probability 1.

We formulate the control problem as a POMDP with horizon T = 10 periods, 23 hidden states

including the goal state hgoal, five actions and 16 possible observations. The hidden state ht at time

t is the current position of the robot and is 1 of the 23 white squares in the maze. The observation

at time t < T is a 4 × 1 binary vector of sensor readings indicating whether or not a wall was

observed in each compass direction. The possible actions are the direction of desired movement

or the decision to stay. Note the observation probabilities are action-independent conditional on

the current hidden state. That is, Bij in (2.2) (or equivalently fo in (2.4)) does not depend on

the current action a given the current hidden state h. At time t = 0 the robot is allowed to take

an initial sensor reading o0, with the distribution of o0 as described above. Prior to this initial

observation, the robot has a prior distribution over the initial hidden state h0 that is uniform over

the 22 non-goal states.

There is a reward function at time T which is defined as rT (hT ) = 1 if hT = hgoal, and zero

otherwise. All intermediate rewards are zero. Finally, we define oT ≡ hT so that we know for

certain whether or not the terminal reward was earned or not at the end of the horizon.

2.7.1 The Uncontrolled Formulation

Because all of our AVFs are supersolutions we were able to ignore the absolute continuity re-

quirement when defining the change-of-measures for the uncontrolled formulations. Specifically we

used the policies that were greedy w.r.t the QMDP, Lag-1 and Lag-2 AVFs to define uncontrolled-

measure changes for the PI bounds. The corresponding measure change for the BSPI bound was

then obtained by filtering the actions (that were greedy w.r.t the AVF under consideration) and

observations to obtain an action-independent belief-state distribution. This amounts to integrating
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the RN derivatives for the uncontrolled non-belief-state formulation to obtain the RN derivatives

for the uncontrolled belief-state formulation as discussed in Section 2.5. Further details and explicit

calculation of these RN derivatives are described in Appendix A.1.

We can then solve the inner problems in (2.12) and (2.22) as simple deterministic dynamic

programs with terminal value VT (o0:T ) := 1{hT=hgoal}. Because the hidden states and observations

on each simulated path are fixed, only one expectation needs to be computed at each time t to

evaluate the penalty in (2.13) or (2.23). We can then calculate an unbiased upper bound on V ∗0 by

averaging the optimal values of each the J inner problem instances for the PI and BSPI relaxations,

respectively. Moreover, since our penalties are constructed from supersolutions we are guaranteed

to obtain dual upper bounds that improve on the upper bounds provided by the supersolutions

themselves. Furthermore, we can use these penalties as control-variates for the primal problem and

therefore estimate the duality gap directly as explained in Section 2.6.2.

2.7.2 Numerical Results

Figures 2.2 and 2.3 display numerical results from our experiments. Specifically, Figure 2.2 dis-

plays12 the MDP, QMDP, Lag-1 and Lag-2 AVFs at time t = 0. Since these approximations

are supersolutions we know they are also valid upper bounds on the true unknown optimal value

function. We also display the dual upper bounds obtained from the uncontrolled PI and BSPI

relaxations when the penalties were constructed from the Lag-1 and Lag-2 AVFs, respectively. All

of these bounds are displayed as a function of α with the time horizon fixed at T = 10 periods.

The best lower bound was obtained by simulating the policy that is greedy w.r.t the Lag-2 AVF.

Several observations are in order. We see that each of the dual upper bounds improves upon

the respective supersolution that was used to construct the dual penalty in each case. We also see

from Figure 2.2 that the duality gap decreases as α decreases and this of course is to be expected.

Indeed when α = 0 all of the bounds coincide and the duality gap is zero. This is because at

that point the robot has enough accuracy and time to be able to infer its position in the maze,

12 The figures actually report E[Ṽ MDP
0 (o0) | π0], E[Ṽ Q

0 (o0) | π0] etc. All of the numerical results in this section and

the next were obtained using MATLAB release 2016b on a MacOS Sierra with a 1.3 GHz Intel Core i5 processor and

4 GB of RAM.
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Figure 2.2: Comparison of upper bounds as a function of the noise factor α. The thick dotted lines

correspond to the MDP, QMDP, Lag-1 and Lag-2 approximations. The solid (thin dotted) red

and blue lines correspond to the dual PI (BSPI) relaxation upper bounds resulting from penalties

constructed using the Lag-1 and Lag-2 approximations, respectively. The solid black line displays

the best lower bound which in this case is obtained by simulating the policy that is greedy w.r.t.

the Lag-2 AVF.

essentially collapsing the POMDP into the MDP version of the problem where the hidden state,

ht, is correctly observed at each time t.

Figure 2.3a displays lower and upper bounds corresponding to each of the four AVFs with α =

0.10 and T = 10 while Figure 2.3b focuses directly on the corresponding duality gaps. Approximate

95% confidence intervals are also provided and so we see that the various bounds are computed
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(a) (b)

Figure 2.3: (a) Lower and upper bounds corresponding to each of the four AVFs. The supersolution

upper bound is plotted together with the corresponding dual upper bounds obtained from the

perfect information (PI) and belief state perfect information (BSPI) relaxations. Approximate 95%

confidence intervals are also provided via error bars. The model parameters were α = 0.10 and

T = 10. (b) Duality gap estimates and confidence intervals for the value function approximations

from Figure 2.3a. Details on how the duality gap can be estimated directly are provided in Appendix

A.4.

to a high degree of accuracy. Several observations are again in order. First, we note the lower

and upper bounds improve as we go from the MDP approximation to the QMDP approximation

to the Lag-1 and Lag-2 approximations. This is not surprising since each of these approximations

uses successively less information regarding the true hidden state at each time t. Second, we again

see that each of the dual upper bounds improves upon its corresponding supersolution. We also

observe that regardless of the AVF (that we used to construct the penalties and resulting change-
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of-measure), the BSPI bound is always superior to the corresponding PI bound.

We also note that the best duality gap (approximately 92.06% − 91.96% = 0.10%) is approx-

imately an 85% relative improvement over the gap between the Lag-2 supersolution and the best

lower bound (which is given by the policy that is greedy w.r.t the Lag-2 supersolution). While

these numbers may not appear very significant on an absolute (rather than relative) basis, in many

applications these differences can be significant at the margin. Moreover, there are undoubtedly ap-

plications where the best available supersolution will not be close to its corresponding lower bound

in which case the improvement provided by the best information relaxation dual bound could be

very significant.

The number of simulated paths that we used to generate the various PI and BSPI bounds and

duality gaps are reported in Table 2.1 together with corresponding run-times and mean standard

errors. All of the numbers are reported as percentages so for example, the BSPI Lag-2 duality

gap is a mere 0.10%. The most obvious feature of the tables is how little time was required to

compute the dual bounds in comparison to the lower bounds. This comparison is a somewhat

misleading, however. In particular, the lower bounds were constructed using the penalties as

(action-dependent) control variates, a standard variance reduction technique. Once these control

variates were calculated on each simulated path, they could then be re-used as penalties when

solving the inner problem along the same path. These control variates were quite expensive to

compute, however, and in Table 2.1 this cost has been allocated to the run times for the lower

bound. It is therefore fairer to add the run-times for the LB and DG columns and interpret that as

the overall time required to compute the lower bounds and duality gap. We do note, however, that

the reported standard errors are very small and so we could have used significantly fewer sample

paths to still obtain sufficiently accurate estimates of the lower bounds and duality gaps.
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Approx. MDP QMDP Lag-1 Lag-2

LB∗ DG LB DG LB DG LB DG

PI results

Mean - 1.15 91.73 0.82 91.84 0.43 91.96 0.12

Std. dev. - 0.016 0.039 0.009 0.038 0.007 0.038 0.002

Run time (in minutes) - 0.26 6.56 0.49 6.97 0.55 233 1.04

Supersolution UB 94.08 93.82 93.04 92.64

DG reduction 51% 61% 64% 82%

BSPI results

Mean - 0.97 91.73 0.69 91.84 0.38 91.96 0.10

Std. dev. - 0.015 0.039 0.008 0.038 0.007 0.038 0.002

Run time (in minutes) - 0.41 6.58 0.77 6.89 0.81 235 1.59

Supersolution UB 94.08 93.82 93.04 92.64

DG reduction 59% 67% 68% 85%

*There is no greedy policy w.r.t. the MDP AVF.

Table 2.1: Numerical results for the maze application with α = 0.10. We used 50,000 sample paths

to estimate the lower bounds and their corresponding dual upper bounds and duality gaps (DG).

All numbers are expressed as percentages.

2.8 An Application to Multiaccess Communication

Our second application is a well-known13 multiaccess communication problem in which multiple

remote users share a common channel. Users with information packets wish to transmit them

through the channel and this can only be done at integer times. Users only submit at most one

packet per time slot. If only one user submits a packet through the channel in a given time slot

then the packet will be successfully transmitted in that slot. If more than one user submits a

13See, for example, Chapter 4 of [14] for an overview of the problem.
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packet, however, then the packets will collide, transmission fails and the packets are returned to

their respective users to be sent at a later time slot. If no packet was sent during a time slot, then

the system is said to be idle in that slot. Users cannot communicate with each other and therefore

do not know the action histories of other users.

The total number of packets waiting to be delivered at time t is called the backlog and is

denoted by ht. While the backlog is not directly observed by the users, they do know the history

of the channel activity via observations of collisions (ot = 2), successful transmissions (ot = 1) and

idle time slots (ot = 0). In addition, new packets arrive randomly to the backlog at the end of

period t. The number of arrivals, denoted by zt ≥ 0, are assumed to follow some discrete probability

distribution independent of prior arrivals, and they can be first scheduled for transmission beginning

in period t+ 1. The backlog therefore evolves according to

ht+1 =


ht + zt − 1, if ot = 1

ht + zt, otherwise.

(2.50)

The slotted Aloha scheduling strategy prescribes each packet in the backlog to be scheduled for

transmission with probability at ∈ A := [0, 1]. This probability is common to all waiting packets

and transmission attempts are independent across packages. It is therefore easy to see that the

probability of a transmission (ot = 1) during slot t is htat(1 − at)ht−1. We assume a reward of

rt(ht) is obtained at time t where rt(·) is a monotonically decreasing function of the backlog. The

objective is to choose a transmission probability at to maintain a small backlog or equivalently, to

maximize the probability of a transmission. In the fully-observable case where ht is observed by the

DM, it is straightforward to see that the maximum transmission probability is attained at at = 1/ht

when ht ≥ 1. However, in the POMDP setting where ht is not directly observable computing an

optimal policy is generally intractable.

In order to adapt this problem to our finite state and action framework, we restrict the maximum

number of packets in the backlog to be Mh = 30, so that ht ∈ H = {0, 1, . . . ,Mh}. We assume that

arrivals zt follow a Poisson distribution with mean λ, but truncate this distribution so that, if the

current backlog is ht, then the maximum number of arrivals is limited to Mh − ht. This is easily
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accomplished by taking

Pz(k | ht) := P (zt = k | ht) =
f(k;λ)

F (Mh − ht;λ)
, for k = 0, . . . ,Mh − ht (2.51)

where f(·;λ) and F (·;λ) denote the PMF and CDF, respectively, of the Poisson distribution with

parameter λ. To deal with the continuous action space, we must discretize [0, 1]. Following [19],

and recalling that at = 1/ht maximizes the transmission probability for a given known state ht, we

set the discrete action set to be

A :=
{ 1

m
: m = 1, . . . ,Mh

}
(2.52)

As stated earlier, observations ot of the channel history satisfy ot ∈ O = {0, 1, 2}. The observa-

tion probabilities depend on the current backlog ht and decision at, and satisfy

Bho(a) :=


(1− a)h, if o = 0

ha(1− a)h−1, if o = 1

1− (1− a)h − ha(1− a)h−1, if o = 2

(2.53)

where Bho(a) := P(ot = o | ht = h, at = a). The state transmission probabilities implied by (2.50)

satisfy for h, h′ ∈ {0, 1, . . . ,Mh}

Phh′(o) =


0, if h′ < h− 1,

Pz(h
′ − h+ 1 | h) if o = 1 and h′ ≥ h− 1,

Pz(h
′ − h | h) if o ∈ {0, 2} and h′ ≥ h

(2.54)

where Phh′(o) := P(ht+1 = h′ | ht = h, ot = o) and where Pz(k | h) corresponds to the probability

mass function of the truncated Poisson arrivals given in (2.51).

A couple of observations are in order. First, we note that in contrast to our earlier description

of the POMDP framework, we assume here that the observation ot is a function of the current

action at rather than the previous action at−1. This results in a slightly different but equally

straightforward filtering algorithm to compute the belief-state any point in time. Second, we note

that conditional on the observation ot, the hidden-state dynamics are action-independent. This

means that in defining an action-independent change-of-measure it will only be necessary to change

the observation probabilities Bho(a).
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2.8.1 Value Function Approximations

To simplify matters we only consider the MDP and QMDP AVFs in this application. They satisfy

Ṽ MDP
t (πt) :=

∑
h∈H

πt(h) max
at∈A

V Q

t (h, at) (2.55)

Ṽ Q

t (πt) := max
at

∑
h∈H

πt(h)V Q

t (h, at) (2.56)

where

V Q

t (h, a) := rt(h) +
∑
h′∈H

∑
o∈O

Phh′(o)Bho(a)V MDP
t+1 (h′)

V MDP
t (h) := max

at∈A
V Q

t (h, at)

for t ∈ {0, . . . , T} with terminal condition V MDP
T+1 := 0. Note that because the time t observation

ot is now a function of at, the belief state πt is a function of the observation and action histories

o0:t−1 and a0:t−1, respectively, rather than o1:t and a0:t−1.

2.8.2 The Uncontrolled Formulation

Since the MDP and QMDP AVFs are14 supersolutions, we can ignore the absolute continuity

requirement and define an uncontrolled emission probability matrix according to

Etij ≡ Bij
(

argmax
a∈A

V Q

t (i, a)
)
, (2.57)

That is, we use the emission probability matrix induced by following a policy that is greedy w.r.t

the QMDP value function approximation. Because the hidden-state transitions are already action-

independent (given the current observation) we leave those dynamics unchanged under P̃. As

previously mentioned, the POMDP dynamics here are different to the baseline case as defined in

Section 2.2 because of the timing of observations and actions whereby the the observation ot is a

function of at rather than at−1. This results in slightly different filtering updates and RN derivative

calculations and we give them explicitly in Appendix A.5.

14 It is easy to adapt the proofs of Appendix A.3 (to handle the fact that the observation ot is a function of at

rather than at−1) to show that the MDP and QMDP AVFs are supersolutions.
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2.8.3 Numerical Results

We consider a system with T = 30 periods and initial belief-state π0 = [1, 0, . . . , 0] so that the

system is initially empty w.p. 1. We assume a linear function rt(ht) := Mh−ht so that the reward

is maximal (and equal to Mh) when the backlog is zero and minimal (and equal to zero) when the

backlog is at its maximum. We used 1,000 sample paths to estimate the dual upper bounds and

duality gaps for the PI and BSPI relaxations.

Figure 2.4a displays the lower and upper bounds corresponding to each of the two AVFs used

for various values of λ. We display the dual bounds in that figure for the BSPI relaxation but

we remark that the PI dual bounds lie between the supersolution upper bound (the yellow curve)

and the BSPI upper bound with penalties constructed using the MDP AVF (the red curve). We

also note that the MDP and QMDP supersolution upper bounds are equal because by assumption

the system is empty initially so that the left-hand-sides of (2.55) and (2.56) are equal at time

t = 0. Figure 2.4b illustrates the duality gaps that we estimated directly for both value function

approximations and for both relaxations.

A few additional observations are in order. First, we note the dual bounds for the QMDP

approximation outperform the corresponding dual bounds for the MDP approximation. This is not

surprising since we believe the QMDP AVF to be a better approximation to the unknown optimal

value function than the MDP approximation. Second, we observe from Figure 2.4a that both dual

bounds obtained from the MDP and QMDP approximations improve upon the supersolution upper

bound. (This was also true for the PI relaxation dual bounds.) Finally, we observe that the dual

gaps increase in λ up to values of λ ≈ 0.7, and decrease in λ thereafter. This non-monotonicity in λ

can be explained by the fact that as λ↗ 1 the system becomes rapidly saturated in which case the

DM can infer with a higher degree of confidence (than he would be able to at intermediate values

of λ) that the time t backlog is likely to be close to the system cap Mh. As a result we expect the

duality gap to decrease as λ ↗ 1. Likewise when λ ↘ 0, we expect the best duality gap to also

converge to 0 since the system will generally be empty and the DM will be able to infer this with

increasing confidence as fewer and fewer collisions (ot = 2) occur.

When we used the MDP AVF to construct the penalties, the total running time (to calculate



41

(a) (b)

Figure 2.4: (a) Upper bounds for the slotted Aloha system as a function of the arrival parameter

λ. The lower bound is obtained by simulating the policy that is greedy w.r.t. the QMDP AVF.

The dual bounds are generated using the BSPI relaxation. (b) Duality gap estimates for the BSPI

and PI relaxations as a function of the arrival parameter λ. The widths of the (non-displayed) 95%

confidence intervals varied between approximately 0.2 for lower values of λ, to 1 for higher values

of λ.

the lower bound and duality gap for each value of λ) was 45.9 seconds and 52.3 seconds for the

PI and BSPI relaxations, respectively. Using the QMDP approximation, the corresponding times

were 53.6 and 58.9 seconds, respectively.

2.9 Conclusions and Further Research

We have shown how change of measure arguments and an uncontrolled problem formulation can

be used to extend the information relaxation approach to POMDP settings where the calculation

of dual penalties would otherwise be impossible except in the smallest of problem instances. We

have exploited the structure of POMDPs to construct various value function approximations and
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show that they are supersolutions. Numerical applications to robotic control and multiaccess

communications have demonstrated that significant bound improvements can be obtained using

information relaxations when the penalties are constructed from supersolutions. We also used the

supersolution property to estimate the duality gap directly and take advantage of the significant

variance reduction that follows from this approach.

There are several possible directions for future research. One direction would be to extend the

approach to other non-Markovian control problems where the difficulty associated with calculating

dual feasible penalties would also be problematic. A particularly interesting application would be

to dynamic zero-sum games (ZSG’s) where the players have asymmetric information. Following

[41], dual bounds on the optimal value of the game can be computed by fixing one player’s strategy

and bounding the other player’s best response. In the case of asymmetric information (which was

not considered by [41]), bounding the other player’s best response amounts to finding a dual bound

on a POMDP and so the techniques developed in this chapter also apply in that setting. Moreover,

due to Shapley’s seminal results strong duality continues to hold in the ZSG framework so the dual

bounds can be used to construct a certificate of near-optimality when each player has close-to-

optimal strategies. Another interesting non-Markovian setting is the influence diagram framework

which is popular in the decision science literature.

A second direction would be to explore the relationship between the quality of the dual bound

and the action-independent transition and observation distributions. While the primal, i.e. lower

bound, does not depend on the action-independent distributions of the uncontrolled problem for-

mulation, this is not true for the dual bound. Indeed as pointed out in BH, the specific value of the

dual bound will depend on the quality of the penalties and the action-independent distributions.

It would therefore be of interest to explore this dependence further. Moreover, because of the

abundance of supersolutions in the POMDP setting, absolute continuity of the action-independent

distributions is not a requirement and so, as discussed in Appendix A.4, we would be free to explore

dual bounds when the action-independent distributions are defined by good feasible policies.
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Chapter 3

Embedding Scenario Analysis in

Dynamic Factor Models

A classic approach to financial risk management is the use of scenario analysis to stress test port-

folios. In the case of an S&P 500 options portfolio, for example, a risk manager might compute

the P&L resulting from joint stresses of the underlying security, i.e. the S&P 500, and parallel

movements in the S&P 500’s implied volatility surface. For example this exercise might report a

P&L of $1m in the event that the S&P 500 falls 5% and its implied volatility surface increases

by 3 percentage points. But how accurate is this reported value of $1m? Typically such a num-

ber is computed under the (implicit) assumption that all other risk factors are set to zero. But

this assumption is generally not justified as it ignores the often substantial statistical dependence

among the risk factors. In particular, the expected values of the non-stressed factors conditional

on the values of the stressed factors are generally non-zero. Moreover, even if the non-stressed

factors were set to their conditional expected values rather than zero, the reported P&L might still

be inaccurate due to convexity effects in the case of derivatives portfolios whose values typically

depend in a non-linear manner on the risk factors. A further weakness of this standard approach

to scenario analysis is that the reported P&L numbers are not back-tested so that their accuracy

is not subjected to any statistical tests. There are many reasons for this but the main one is that

standard scenario analysis is typically conducted without having a probabilistic model for the un-
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derlying dynamics of the risk factors. In this chapter we address these weaknesses by embedding

the scenario analysis within a dynamic factor model for the underlying risk factors. Such an ap-

proach requires multivariate state-space models that can model the real-world behavior of financial

markets, e.g volatility clustering, and that are sufficiently tractable so that we can compute (or

simulate from) the conditional distribution of unstressed risk factors. We demonstrate how this

can be done for observable as well as latent risk factors in examples drawn from fixed income and

options markets. We show how the two forms of scenario analysis can lead to dramatically different

results particularly in the case of portfolios that have been designed to be neutral to a subset of

the risk factors. The contributions of this chapter are: (i) to highlight just how inaccurate the

standard approach to scenario analysis can be and (ii) to argue for a more accurate and scientific

approach whereby the reported P&L numbers of a given model can be back-tested and therefore

possibly rejected.

3.1 Introduction

It goes without saying that financial risk management is a key function throughout the finance and

insurance industries. At the aggregate level banks, investments firms and insurance companies all

need to understand their exposure to adverse movements in the financial markets. This is also true

within these firms at the level of a portfolio manager (p.m.) or trading desk where it is important to

operate within certain risk constraints. One of the main approaches to financial risk management

is the use of scalar risk measures such as Value-at-Risk (VaR) or Conditional Value-at-Risk (CVaR)

to measure the riskiness of a given portfolio over a given time horizon such as one day or one week.

While VaR (and to a lesser extent CVaR) are very popular and often mandated by regulators it

does have serious weaknesses. First and foremost it can be extremely difficult to estimate the VaR

of a portfolio and this is particularly true for portfolios containing complex derivative securities,

structured products, asset-backed securities etc. Even when the VaR can be estimated accurately,

it is impossible to adequately characterize the risk of a portfolio via a single scalar risk measure

such as its VaR. In addition, a VaR does not identify the risk factors within the portfolio nor the

exposure of the portfolio to those factors. One way to mitigate this for a derivatives portfolio is
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via the so-called Greeks such as the delta, vega and theta of an options portfolio. But the Greeks

are only local risk measures and can be extremely inaccurate for large moves in the corresponding

risk factors. Such moves, of course, are the principal concern in risk management.

It is no surprise then that scenario analysis is one of the most popular approaches to risk

management. While there are many forms of scenario analysis, the basic idea behind it is to

compute the P&L of the portfolio under various combinations of stresses to one or more of the

risk factors (or securities) driving the portfolio’s valuation. Given these P&L numbers, the risk

management team can assess whether or not the portfolio is too exposed to any of the risk factors

and if so, what actions to take in order to reduce the exposure. In the case of an S&P 500 options

portfolio, for example, a risk manager might compute the P&L resulting from joint stresses of the

underlying security, i.e. the S&P 500, and parallel movements in the S&P 500’s implied volatility

surface. For example, this exercise might report a P&L of -$1m in the event that the S&P 500 falls

5% and its implied volatility surface increases by 3 points.

One supposed advantage of scenario analysis is that a probabilistic model for the risk factor

dynamics is not required. In the example above, for example, a model is not required to assess

how likely is the scenario that the S&P 500 falls approx. 5% and its implied volatility surface

increases by approx. 3 points. Instead the portfolio manager or risk management team can use

their experience or intuition to assess which scenarios are more likely. For example, it is very

unlikely indeed that a large drop in the S&P 500 would be accompanied by a drop in implied

volatilities and so the experienced risk manager will know that such a scenario can be discounted.

Nonetheless, this approach is not scientific and we are led to wonder as to just how accurate is the

reported value of -$1m in the original scenario above?

In fact we argue in this chapter that a scenario P&L number can be very inaccurate. First, such

a number is typically computed under the (implicit) assumption that all other risk factors, i.e. all

risk factors besides the underling and parallel shifts in the volatility surface in our example above,

are set to zero. But this assumption is generally not justified as it ignores the often substantial

statistical dependence among the risk factors. In particular, the expected values of the non-stressed

factors conditional on the values of the stressed factors, are generally non-zero. Second, even if the
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non-stressed factors were set to their conditional expected values rather than zero, the reported

P&L might still be inaccurate due to convexity effects in the case of derivatives portfolios whose

values typically depend in a non-linear manner on the risk factors. A further weakness of this

standard approach to scenario analysis is that the reported P&L numbers are not back-tested so

that their accuracy is not subjected to any statistical tests. There are many reasons for this but

the main one is that standard scenario analysis, as mentioned above, is typically conducted without

having a probabilistic model for the underlying dynamics of the risk factors. A second reason is

that none of the considered scenarios ever actually occurs since they’re zero probability events.

After all, the probability of the S&P 500 falling exactly 5% and its entire implied volatility surface

increasing by exactly 3 volatility points is zero so one can’t immediately reject the number of -$1m.

This is in contrast to the use of VaR where it is quite standard to count the so-called VaR

exceptions and subject them to various statistical tests that are used to determine the accuracy

of the VaR estimation procedure. But the back-testing of VaR is inherently easier at it only

requires the use of univariate time-series models for the portfolio P&L. In contrast, back-testing

scenario analysis would require multivariate time-series models for the various risk-factors and they

are considerably more complicated to estimate and work with than their univariate counterparts.

Moreover risk-factor returns are often latent and therefore necessitate the use of state-space models.

This adds a further complication to back-testing since after the fact one can only estimate (rather

than know with certainty) what the realized latent risk factor returns were.

In this chapter we attempt to address these weaknesses with standard scenario analysis by

embedding it within a dynamic factor model for the underlying risk factors. Such an approach

requires multivariate time series or state-space models that can model the real-world behavior of

financial markets, e.g volatility clustering, and that are sufficiently tractable so that we can compute

and simulate1 from the distribution of unstressed risk factors conditional on the given scenario. We

demonstrate how this can be done for observable as well as latent risk factors in examples drawn

from fixed income and options markets. We also show how the two forms of scenario analysis can

1 One of the advantages of using simulation is that we can easily estimate other risk measures besides the expected

P&L in a given scenario. For example we could estimate the P&L’s standard deviation or VaR conditional on the

scenario.
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lead to dramatically different results particularly in the case of portfolios that have been designed

to be neutral to a subset of the risk factors. The twin goals of this chapter then are: (i) to highlight

just how inaccurate the standard approach to scenario analysis can be and (ii) to argue for a

more accurate and scientific approach whereby the reported P&L numbers of a given model can be

back-tested and therefore possibly rejected. The particular models that we use in our numerical

applications are intended to simply demonstrate that it is possible and important to embed scenario

analysis in a dynamic factor model framework. As such they are merely a vehicle for demonstrating

our approach and we don’t claim they are the “best” such models or that they would be difficult

to improve upon.

The remainder of this chapter is organized as follows. In Section 3.2 we introduce standard

scenario analysis and discuss in further detail its many weaknesses. We show how scenario analysis

can be embedded in a dynamic factor model framework in Section 3.3 and in Section 3.4 we discuss

how this framework can be used to evaluate the performance of standard scenario analysis. We

then consider an application to a portfolio of U.S. Treasury securities in Section 3.5 and a portfolio

of options on the S&P 500 in Section 3.6. In Section 3.7 we discuss statistical approaches for

validating a dynamic factor model in the context of scenario analysis. We conclude in Section 3.8

where we also outline some directions for future research. Certain technical details are relegated to

the various appendices.

3.2 Preliminaries and Standard Scenario Analysis

We assume we have a fixed portfolio of securities which in principle could include any combination

of securities – derivatives or otherwise – from any combination of asset classes. In practice, however,

we are limited to reasonably liquid securities for which historical price data is available. Moreover,

because of the many difficulties associated with modelling across asset classes, we mainly have

in mind portfolios that contain only securities from just one or two closely related asset classes.

Examples include portfolios of options and futures on the S&P 500 or portfolios of US Treasury

securities. We consider such portfolios in the numerical experiments of this chapter but it should

be possible to handle more complex portfolios albeit at the cost of requiring more sophisticated
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models. These more complex examples might include portfolios consisting of options and equity

positions on US stocks, portfolios of spot and option position on the major FX currency pairs, or

even more ambitiously, portfolios consisting of CDS and CDO positions on US credits.

We assume then we are given a fixed portfolio and the goal is to perform some form of scenario

analysis on this portfolio. We let Vt denote the time t value so that the portfolio P&L at time t+ 1

is ∆Vt := Vt+1 − Vt. In the financial context, we have in mind that time is measured in days so

that ∆Vt would then be a daily P&L. We assume Vt is known at time t but ∆Vt is random. A

fundamental goal of risk managers then is to understand the distribution of ∆Vt. This is required,

for example, to estimate the VaR or CVaR of the portfolio.

As is standard in the risk management literature, we will assume the portfolio value Vt is a

function of n risk factors whose time t value we denote by xt ∈ Rn. It therefore follows that

Vt = v(xt) for some function v : Rn → R. The components of xt might include stock prices in the

case of equity portfolios, yields for fixed income portfolios or implied volatility levels for a number

of strike-maturity combinations in the case of an equity options portfolios. While xt is random,

we assume it is Ft-adapted where F := {Ft} denotes the filtration generated by all relevant and

observable security prices and risk factors in the market. We define the change in risk factor vector

∆xt := xt+1 − xt so that

∆Vt(∆xt) = v(xt + ∆xt)− v(xt) (3.1)

where we have omitted the dependence of ∆Vt on xt in (3.1) since xt is known at time t and so the

uncertainty in ∆Vt is driven entirely by ∆xt.

3.2.1 Standard Scenario Analysis

In a standard scenario analysis (SSA hereafter), the risk manager would identify various stresses to

apply to ∆xt in (3.1). For example, such stresses might include parallel shifts or curvature changes

in the yield curve for a fixed income portfolio. In the case of a portfolio of futures and options

on the S&P 500, these stresses might include shifts to the value of the underlying, i.e. the S&P

500, as well some combination of parallel shifts to the implied volatility surface and a steepening /

flattening of the skew or term structure of implied volatilities.
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When critiquing SSA it is convenient to work with a factor model for the risk factors ∆xt. Such

a factor model might take the form

∆xt = Bft+1 + εt+1, t = 0, 1, . . . (3.2)

where:

• ft+1 ∈ Rm is the common risk factor (c.r.f.) random return vector. Some of these factor

returns may be latent.

• B = [b1 . . . bm] ∈ Rn×m is the matrix of factor loadings and bi ∈ Rn is the ith column of B.

• The εt+1’s ∈ Rn are an i.i.d. sequence of zero-mean random vectors representing idiosyncratic

error terms that are assumed to be independent of the common factors returns.

Consider for example a portfolio of US Treasury securities. Then ∆xt would naturally represent

changes in yields with each component of ∆xt corresponding to a different maturity. If the first

common risk factor represented parallel shifts of the yield curve, we would fix b1 to be a vector

of ones. If we then wished to consider a scenario where all yields increase by 20 basis points, we

would set f1,t, the first component of ft+1, equal to +20 bps and set the other m − 1 components

of ft+1 (as well as εt+1) to zero. The portfolio P&L would then be computed via (3.1) with ∆xt

determined by the stress and (3.2).

More generally, we can define a scenario by jointly stressing any number k ≤ m of the c.r.f.’s.

Consider again our example of an options and futures portfolio on the S&P 500. In this case suppose

the first component of ∆xt refers to the log-return on the S&P 500 between days t and t+ 1 with

the other components of ∆xt then representing2 changes in the implied volatilities (between days

t and t + 1) for the various strike-maturity option combinations that appear in the portfolio. If

f1,t+1 represents changes in the S&P 500 spot price then3 b1 = [1 0 · · · 0]>. Similarly, if f2,t+1

2 We are assuming that the main risks in the portfolio are underlying and volatility risks. If for example, the

portfolio was exposed to substantial dividend or interest rate risk, which is quite possible in an S&P options portfolio,

then additional risk factors for these risks should be included.

3 We would also have Var (ε1,t) = 0 since this would be an instance where a component of ∆xt coincides with one

of the c.r.f.’s.
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represents parallel shifts to the implied volatility surface then the second column of B would be

b2 = [0 1 · · · 1]>. We can now consider a scenario where f1,t+1 and f2,t+1 are simultaneously

stressed. For example, a scenario of interest might be one where (f1,t+1, f2,t+1) = (−5%, +10)

corresponding to a 5% fall in the S&P 500 and a 10 volatility point increase across its entire

volatility surface. Once again, under the SSA approach the portfolio P&L can be computed via

(3.1) with ∆xt determined by (3.2) where (f1,t+1, f2,t+1) = (−5%, +10) and all other components

of ft+1 and εt+1 set to zero.

In practice, a matrix of scenario P&L’s might be computed as above and in fact multiple two-

or even three-dimensional matrices can be computed corresponding to the simultaneous stressing

of k = 2 or k = 3 different common factors. It is important to emphasize that the typical risk /

portfolio manager employing SSA does not have an explicit model like (3.2) at hand nor does he /

she need one. The main point of this article then is to highlight the many weaknesses of SSA and

to argue for a more systematic and scientific approach to it. We can do this by explicitly embedding

SSA in a factor model such as (3.2) and computing the scenario P&L by also accounting for the

dependence structure in (3.2) and not blindly setting εt+1 and the unstressed components of ft+1

to zero.

3.2.2 Problems with Standard Scenario Analysis

Before proceeding, we first expand on the many weaknesses of SSA. They include:

1. A factor model of the form (3.2) is rarely explicitly stated. In fact, it may be the case that

only a subset of the factors, say the first l ≤ m, are ever considered for stressing. In that case

standard scenario analysis works with a “model” of the form

∆xt = B1:l,tf1:l,t+1 (3.3)

where B1:l,t refers to the matrix containing the first l columns of B and f1:l,t+1 the vector

containing the first l elements of ft+1. The important feature of (3.3) is that probability

distributions are not specified and in fact play no role in it. It is therefore not a probabilistic

model for the risk factor returns ∆xt.
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2. Let fs,t+1 := (fs1,t+1, . . . , fsk,t+1) denote the subset of c.r.f.’s that are stressed under a given

scenario. We assume k ≤ l and each si ≤ l. Then SSA implicitly assumes

Et[fsc,t+1 | fs,t+1] = 0 (3.4)

where fsc,t+1 denotes the non-stressed risk factors in the scenario and we use (here and

elsewhere) Et[·] to denote expectations that are conditional on Ft. But (3.4) is typically not

justified and can lead to a very inaccurate estimated P&L for the scenario.

3. Following on from the previous point, an obvious solution would be to set the unstressed

factors fsc,t+1 equal to their conditional expectation Et[fsc,t+1 | fs,t+1] when estimating the

scenario’s P&L. While this should be an improvement over SSA, it ignores the uncertainty in

εt+1 and fsc,t+1 | (Ft, fs,t+1). This uncertainty may be significant, particularly for portfolios

containing securities whose values depend non-linearly on ∆xt. But even setting fsc,t+1 =

Et[fsc,t+1 | fs,t+1] is not a straightforward task, however, as it requires a model for the common

risk factor return dynamics.

4. Finally, SSA does not lend itself to rigorous back-testing and so SSA is not open to statistical

rejection. There are several reasons for this. First, each of the scenarios considered by an SSA

are zero probability events and none of the considered scenarios will have actually occurred

on day t+ 1. If this were the only problem, then it would be easy to overcome. Specifically,

on day t + 1 we could “see” exactly what the return in the S&P 500 was over the period

[t, t + 1]. Similarly we could see what parallel change in the implied volatility surface took

place over the period [t, t+ 1].

We could then rerun the scenario analysis for exactly this scenario, i.e. the scenario that

transpired, and then compare the estimated and realised P&L’s. The problem with this,

however, is that we cannot directly observe the actual parallel change in the implied volatility

surface that transpired. This is because this factor is a latent factor and so could only be

estimated / inferred. But to do this a probabilistic model would be required and as we have

noted, SSA often proceeds without a probabilistic model. Following on from this point, any

probabilistic factor model as in (3.2) would surely be rejected statistically if it did not also
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include a multivariate time series component that can capture the fact that the common risk

factor return dynamics are not IID but in fact are dependent across time.

We now proceed to explain how SSA can be embedded in a dynamic risk factor model and therefore

how the weaknesses mentioned above can be overcome. We note that the dynamic risk factor

model is not intended to replace the non-probabilistic model of (3.3). Indeed it is quite possible

the portfolio manager likes to think in terms of the risk factors f1:l,t+1 and would be reluctant to

see these replaced by alternative risk factors. The goal here then is to embed (3.3) in a dynamic

risk factor model as in (3.2).

3.3 A Dynamic Factor Model-Based Approach to Scenario Anal-

ysis

In order to embed the SSA approach within a dynamic factor model we need to be able to perform

the following steps:

1. Select and estimate a multivariate times series or state-space model for the common factor

returns ft+1. We need to be able to handle both observable and latent factors.

2. Specify a factor model (3.2) for the risk factor changes ∆xt.

3. Simulate samples of εt+1 and ft+1 | (Ft, fs,t+1) .

4. Compute the portfolio P&L (3.1) for each simulated sample from Step 3. Given these sample

P&L’s we can estimate the expected P&L for that scenario as well as any other quantities of

interest, e.g. a VaR or CVar for that scenario.

Together Steps 1 and 2 enable us to estimate the joint distribution of the common factor returns

conditional on time t information. Specifically, they enable us to estimate πt+1 where

ft+1 | Ft ∼ πt+1. (3.5)

We assume Ft includes the time series of risk factor changes ∆x0, . . . ,∆xt−1, as well as the time

series of observable common factor returns. Step 3 then enables us to generate samples from the
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distribution of the risk factors ∆xt conditional on Ft and the scenario fs,t+1. Given these samples,

Step 4 is a matter of computing the portfolio P&L for each sample and we assume this step is

a straightforward task so that any pricing models required to compute ∆Vt(∆xt) given ∆xt are

available and easy to implement.

c.r.f.’s can be either observable or latent. Observable common factors might include market

indices such as the S&P 500 or Eurostoxx index, foreign exchange rates, index CDS rates, com-

modity prices etc. The returns of c.r.f.’s that are latent, however, can only be inferred or estimated

from other observable data such as the ∆xt’s. Examples of latent common factors might include

c.r.f.’s that drive the implied volatility surface of the S&P 500, for example. A popular specifi-

cation would include three c.r.f.’s that drive parallel shifts, term-structure shifts and skew shifts

in the implied volatility surface, respectively. Note that such shifts are never observable and can

only be inferred from the changes (the ∆xt’s) in the implied volatilities of S&P 500 options of

various strike-maturity combinations. Another example of latent c.r.f.’s would be the factors that

are motivated by a principal components analysis (PCA) of the returns on US Treasuries of various

maturities. While there may be twenty or more maturities available, a PCA analysis suggests that

changes in the yield curve are driven by just three factors representing, in order of importance,

a parallel shift in the yield curve, a steepening / flattening of the yield curve, and a change in

curvature of the yield curve, respectively.

Because most settings have one or more latent c.r.f.’s our main focus will be on the use of

state-space models to tackle steps 1 to 3. We begin with the case where all c.r.f.’s are latent.

3.3.1 State-Space Modeling of the Common Factor Returns

Suppose then that all common factor returns are latent. One way to proceed is to simply construct

point estimates of the latent factors by solving for k = 1, . . . , t an MLE problem4 of the form

min
fk∈Rm

− logPε(∆xk−1 −Bfk) (3.6)

where Pε(·) is the PDF of εk from (3.2). Let f̂k denote the optimal solution to (3.6). We could then

take the f̂k’s to be observable risk factors and use them, for example in a multivariate GARCH

4 As an alternative to (3.6) we could obtain the point estimate f̂t by solving a cross-sectional regression problem.
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setting, to estimate the distribution πt+1 of ft+1 | Ft. This is clearly sub-optimal, however, as the

estimation of the fk’s ignores the temporal dependence in their dynamics. Moreover, by treating

f̂t as the true value of ft (rather than just a noisy point estimate), we are underestimating the

conditional uncertainty in ft+1 when we use these point estimates to estimate πt+1.

Our second and preferred approach overcomes these issues by defining a state-space model for

the unobservable common factors then and treating ∆x0, . . . ,∆xt−1 as noisy observations of the

underlying states f1, . . . , ft. For example, we could model the unobservable common factor returns

via an auto-regressive stochastic process of the form

ft+1 = Gft + ηt+1 (3.7)

for some matrix G ∈ Rm×m and where the process innovation terms ηt ∈ Rm are assumed to

have zero mean and constant covariance matrix Ση. The initial state f0 is assumed to follow some

probability distribution π0. The hidden-state process (3.7) together with the observable risk factor

changes ∆xt from the factor model in (3.2) now form a state-space model.

As before, our goal is to estimate πt+1, the distribution of ft+1 | Ft, where Ft now only includes

the history of observations ∆x0:t−1 := {∆x0, . . . ,∆xt−1}. Note that if we are able to obtain

the filtered probability distribution P(ft | ∆x0:t−1), then (3.7) implies we can obtain πt+1 as the

convolution of the two random variables Gft | Ft and ηt+1. Suppose for example, that π0 and both

process innovations ηt+1 in (3.7) and εt+1 in (3.2) are all Gaussian. Then the filtered distribution

ft+1 | Ft is also Gaussian and its mean vector and covariance matrix can be calculated explicitly

via the Kalman Filter [48]. In this case πt+1 would then also be Gaussian.

For non-Gaussian state-space models, however, obtaining the posterior probability exactly is

generally an intractable problem although there are many tractable approaches that can be used to

approximate the distribution of ft+1 | Ft. The Extended Kalman Filter and the Unscented Kalman

Filter [85] can be used for non-linear Gaussian state space models, for example. More generally

particle filters [34] or MCMC [82] could also be used to approximate the filtered distribution for

non-gaussian state space models. Particle filters suffer from the curse of dimensionality, however,

while MCMC is computationally expensive. Nonetheless implementing an MCMC or particle filter

(in the lower dimensional setting) for non-linear / non-Gaussian state-space models should not be
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too demanding given modern computing power.

As an alternative to computing or approximating the filtered distribution P(ft | ∆x0:t−1), we

could simply compute its posterior mean E[ft | ∆x0:t−1] or its maximum5 a posteriori (MAP)

estimate. Then, using f̂t as an approximation to the actual realization of ft, we can approximate

πt+1 as the distribution of Gf̂t + ηt+1, i.e., the right-hand-side of (3.7), which would simply be the

distribution of ηt+1 shifted to have mean Gf̂t. While this neglects the uncertainty in our estimation

of ft this is often a second-order issue relative to obtaining the correct mean of πt+1. We consider

both the Kalman filtering and MAP approaches in Section 3.5 when we consider scenario analysis

for fixed income portfolios consisting of US Treasury securities.

3.3.2 Modeling Both Observable and Unobservable Common Factor Returns

Situations in which there are a combination of observable and latent common factor returns are

not uncommon. For example, in an S&P 500 options portfolio a scenario would typically include

stresses to some combination of the S&P 500 (observable) and parallel, skew or term structure

shifts (latent) in the S&P 500’s implied volatility surface. In this case, the challenge is to construct

a multivariate state-space / time series model that can simultaneously accommodate observable

and latent c.r.f. returns. While there may be many ways to tackle this modeling problem, one

obvious approach is to assume all of the c.r.f.’s are latent but that the noisy signals for a subset of

them (the observable ones) are essentially noiseless.

To make this more precise, we assume we have mo observable and mu latent common factors

so that the factor model (3.2) can then be written as

∆xt = Bofot+1 + Bufut+1 + εt+1 (3.8)

where Bo ∈ Rn×mo and Bu ∈ Rn×mu are the factor loadings matrices for the observable and latent

common factors fot+1 and fut+1, respectively. Our objective is to estimate πt+1, the probability

distribution of ft+1 | Ft, where Ft now corresponds to the σ-algebra generated by the history

5 The MAP estimator is given by f̂t := argmaxft
P(ft | ∆x0:t−1) which is the mode of the filtered distribution.

Alternatively, we could instead compute argmaxf0:t
P(f0:t |∆x0:t−1) and then take f̂t to be the (t+1)st component of

the argmax. Both optimization problems can be solved efficiently using modern optimization techniques. One such

technique is discussed in Appendix B.4.
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of risk factor changes ∆x0:t−1 and of the observable common factor returns fo1:t. We define the

no := n+mo dimensional vector

yt :=

∆xt

fot+1


which we treat as the time t + 1 observations vector. The model’s latent state variables at time

t+ 1 are given by the m := mo +mu dimensional vector

ft+1 :=

fot+1

fut+1

 .
We now assume the observation dynamics satisfy

yt =

∆xt

fot+1

 =

Bo Bu

Imo 0mou

fot+1

fut+1

+

εt+1

0mo

 t = 0, 1, . . . (3.9)

where Imo is the mo × mo identity matrix, 0mou is the mo × mo matrix of zeros and 0mo is an

mo×1 vector of zeros. We can again assume latent state dynamics of the form given in (3.7). Since

(3.7) and (3.9) form a state-space model, we can fit the model and estimate πt+1 using the various

approaches described above. For instance, assuming εt+1 and ηt+1 to be normally distributed, we

could use the EM algorithm to estimate the parameters of the state-space model (3.7) and (3.9)

using historical data. The Kalman Filter can then be employed to obtain the filtered probability

distribution P(ft | y0:t−1) for any sequence of observations y0:t−1. Finally, we can then obtain πt+1

exactly as the sum of two normal random vectors Gft | Ft and ηt+1, which of course is also normal.

We follow this approach in Section 3.6 where we consider portfolios containing options and futures

on the S&P 500 index.

3.4 Evaluating the Performance of SSA

The objective of the dynamic factor model-based scenario analysis (hereafter DFMSA) is to compute

∆V dfm
t (c) := Et[∆Vt(ft+1, εt+1) | fs,t+1 = c] (3.10)

where c denotes the levels of the stressed factors in the given scenario, and Et[·] := E[· | Ft] denotes

an expectation taken with respect to the distribution πt+1. It’s clear we have to be able to compute
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or simulate from the distribution of ft+1 | (Ft, fs,t+1 = c) in order6 to calculate the conditional

expectation in (3.10) .

Since πt+1 is the true conditional distribution of ft+1 | Ft, we know that ∆V dfm
t (c) is the correct

way to estimate the scenario P&L. We can therefore calculate the error obtained from following

the SSA approach for a given scenario c as

Eabs
t (c) := |∆V dfm

t (c)−∆V ss
t (c)| (3.11)

where ∆V ss
t (c) denotes the estimated scenario P&L at time t according to the SSA approach. We

must of course acknowledge that the error in (3.11) is somewhat misleading in that it assumes

our dynamic factor model is indeed the correct model that governs the real-world security price

dynamics and that we know this. Nonetheless, it seems reasonable to assume that there is some

dynamic factor model that governs the real-world security price dynamics and that if our model

is not a reasonably good approximation to it, then it would be rejected by one or more of the

statistical tests that are briefly discussed in Section 3.7. As such, we feel it is reasonable to take

(3.11) as a ballpark estimate of the error than can arise from adopting the SSA approach.

We can also provide a partial decomposition of the error in (3.11) by calculating an alternative

scenario P&L that is given by

∆V alt
t (c) := ∆Vt(Bµct) (3.12)

where B is the factor loadings matrix of the factor model (3.2) and

µct := Et[ft+1 | fs,t+1 = c]. (3.13)

This alternative scenario P&L estimator (suggested in point #3 from Section 3.2.2) goes beyond the

SSA approach by using the expected value of the common factor returns conditional on the scenario

to estimate the risk factor changes ∆xt via the factor model (3.2), i.e. by setting ∆xt = Bµct .

This leads to the alternative estimated scenario P&L in (3.12). Note that the alternative scenario

6 We also note that the conditional distribution of εt+1 | (Ft, fs,t+1 = c) (where εt+1 is given in (3.2)) is equal to

its unconditional distribution since it is assumed to be independent of Ft and ft+1 by assumption.
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P&L ∆V alt
t (c) will in general differ from7 and be less accurate than ∆V dfm

t (c) as defined in (3.10).

We can then decompose the error in (3.11) by

Eabs
t (c) = |∆V dfm

t (c)−∆V ss
t (c)|

= |∆V dfm
t (c)−∆V alt

t (c) + ∆V alt
t (c)−∆V ss

t (c)|

≤ |∆V dfm
t (c)−∆V alt

t (c)|+ |∆V alt
t (c)−∆V ss

t (c)|. (3.14)

We note that |∆V dfm
t (c) − ∆V alt

t (c)| gives a measure of the error that results from ignoring the

variance in the conditional distribution of the common factor returns and the idiosyncratic error

terms. In contrast, |∆V alt
t (c)−∆V ss

t (c)| provides a measure of the error that results from setting

the unstressed common factor returns to zero rather than their conditional expected values. While

the sum of these two errors does not equal the true error we see from (3.14) that their sum does

provide an upper bound on this error. In our numerical applications we found that the second term

on the r.h.s. of (3.14), i.e. |∆V alt
t (c)−∆V ss

t (c)|, is considerably more significant than the first term

on the r.h.s. and is a much better approximation to the true error on the l.h.s. of (3.14). Of course

this may not be the case in general, particularly with portfolios whose P&L is very non-linear in

the risk factors ∆xt and where the conditional variance of the non-stressed factors is substantial.

3.4.1 Backtesting Procedure for Evaluating SSA

In our numerical experiments we will simulate a ground truth model for T periods and for each

period compute the SSA error as defined in (3.11). We can then average these errors across time to

get some idea of how poorly (or well) SSA performs in relation to DFMSA. Since the ground truth

model will coincide with the dynamic factor-model that we use to perform the scenario analysis,

this approach assumes the estimated P&Ls from the DFMSA are “correct”. While of course this is

optimistic, it does serve to highlight just how inaccurate the P&Ls reported by SSA can be. It is

also worth emphasizing that while we assume we know the structure of the ground truth model in

7 Suppose for example that ∆Vt(·) is a convex function. Then Jensen’s inequality implies ∆V alt
t (c) = ∆Vt(Bµct) =

∆Vt(Et[Bft+1 + εt+1 | fs,t+1 = c]) ≤ Et[∆Vt(Bft+1 + εt+1) | fs,t+1 = c] = ∆V dfm
t (c). In this case ∆V alt

t (c)

would underestimate the estimated scenario P&L when ∆Vt(·) is convex. Similarly ∆V alt
t (c) would overestimate the

estimated scenario P&L when ∆Vt(·) is concave.
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these backtests, we still do not get to observe the latent c.r.f.’s. These latent factor returns must

be inferred in our backtests from the risk factor returns, i.e. the ∆xt’s, as well as the observable

c.r.f. returns. In general, we will also be required to re-estimate the parameters of the model each

day within the backtests rather than simply assuming these parameters are given and known to us.

More specifically, in each of our backtests we assume we have T days of simulated data. We

choose s where 0 < s < T to be the size of the rolling window that we will use to re-estimate the

model at each time t ≥ s. Having estimated the dynamic-model’s parameters, we then estimate

πt+1 and use it to estimate the DFMSA P&L ∆V dfm
t . The SSA P&L ∆V ss

t is also computed at

this time. At the end of the backtest we can calculate the average of the backtest P&L for each

approach according to

∆V dfm :=
1

T − s

T−1∑
t=s

∆V dfm
t ∆V ss :=

1

T − s

T−1∑
t=s

∆V ss
t (3.15)

Comparing ∆V ss with ∆V dfm gives a measure of the bias of the SSA approach over the course of

the backtest. We can also calculate the mean absolute difference between the estimated SSA P&L

and the estimated DFMSA P&L. That is we define

Eabs :=
1

T − s

T−1∑
t=s

∣∣∣∆V dfm
t −∆V ss

t

∣∣∣ (3.16)

as the average error in the P&L estimated by the SSA approach. Of course this error depends on

the ground truth model and its parameters as well as the portfolio and scenario under consideration.

Our general back-testing procedure is outlined in Algorithm 1 below.

3.4.2 What Portfolios to Backtest?

Before proceeding to our numerical experiments, it is worth discussing what kinds of portfolios

we have in mind when comparing the SSA approach with the DFMSA approach. For all of the

reasons outlined earlier we would argue that, regardless of the portfolio, any scenario analysis ought

to be embedded in a dynamic factor model setting. Nonetheless, it stands to reason that certain

types of portfolios might show little difference between the scenario P&Ls reported by the SSA and

DFMSA approaches, respectively. On the other hand, it is not difficult to imagine settings where
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Algorithm 1 Backtesting to Estimate Average SSA Error for a Given Scenario and Ground-Truth Model

Input: s, T,K, gmodel, C, c . s = # periods in rolling window for model training

. T = # periods in backtest horizon

. K = # of samples used to estimate factor model-based scenario P&L

. gmodel is the ground-truth model

. c, s define the scenario.

1: Generate f0 from gmodel

2: for t← 0 to T − 1 do

3: Generate (ft+1, ∆xt) | ft from gmodel

4: if t ≥ s then

5: Estimate DFM parameters

6: Estimate πt+1 from (fo(t−s):t, ∆x(t−s):(t−1)) . fot−s:t are observable

7: for k ← 1 to K do

8: Generate f
(k)
t+1 | (Ft, fs,t+1 = c) and ε

(k)
t+1 to obtain ∆x

(k)
t

9: Compute scenario P&L ∆Vt(∆x
(k)
t )

10: end for

11: Compute ∆V dfm
t :=

∑K
k=1 ∆Vt(∆x

(k)
t )/K . Estimated scenario P&L

12: Compute ∆V ss
t . SSA P&L obtained by setting εt+1, non-stressed common factors to 0

13: Compute Eabs
t :=

∣∣∣∆V dfm
t −∆V ss

t

∣∣∣
14: end if

15: end for

16: Compute ∆V dfm,∆V ss and Eabs as defined in (3.15) and (3.16)

Output: ∆V dfm,∆V ss and Eabs

the two scenario P&Ls might be very different. For example, consider a setting with securities

whose daily P&L’s are non-linear functions of their risk factor changes and where some of the c.r.f.

returns are at least moderately8 dependent. Consider now a portfolio that was designed to be: (i)

neutral to the subset of c.r.f.’s that are stressed in scenarios and (ii) highly exposed to the c.r.f.

8 The assumption that some of the c.r.f. returns might display moderate dependence is not a strong assumption

since even uncorrelated c.r.f. returns can display moderate dependence. Suppose for example that the c.r.f. returns

have a joint multivariate t distribution with ν degrees-of-freedom. These factor returns can be uncorrelated and yet

still have extreme tail dependence [57]. As a result the distribution of these factors conditional on an extreme scenario

can display strong dependence.
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returns that are never stressed in any of the scenarios. If some of the non-stressed c.r.f. returns are

conditionally dependent with some of the stressed c.r.f. returns then such a portfolio should result

in very different scenario P&Ls for the SSA and DFMSA approaches.

For an adversarial example, let fe where e ⊂ {1, . . . ,m} denote the subset of the c.r.f.’s to

which the p.m. wants to be exposed. It’s possible for example that the p.m. has a strong view

regarding the direction of fe over the short term and wishes to trade on that view. Similarly, let

fn where n ⊂ {1, . . . ,m} denote the set of c.r.f.’s to which the trader is required to be neutral

according to the risk-management team. We assume the p.m. computes scenario P&Ls using the

DFMSA approach uses the SSA approach. The p.m. can then easily construct a risky portfolio

that gives her the desired exposure to fe but that appears to have little risk according to the risk

management team’s perspective. If some of the c.r.f. returns in fn are dependent (conditional on

the scenario) with some of the c.r.f. returns in fe then this portfolio should result in very different

scenario P&Ls for the SSA and DFMSA approaches. In Appendix B.1 we outline a simple linear

programming approach for constructing these portfolio and we will consider them portfolios in our

numerical experiments of Sections 3.5 and 3.6.

We also note that this setting is not at all contrived since it is quite possible for a p.m. to

have a strong view on a less important risk factor which may not be a risk-factor considered by the

risk-management team. Less generously, it may be the case that the p.m. is incentivized to take on

a lot of risk regardless of whether or not he / she has a view justifying this risk-taking. Regardless

of the p.m.’s motivation, the use of SSA instead of DFMSA can lead to very misleading scenario

P&L’s.

3.5 An Application to a Portfolio of U.S. Treasury Securities

We now consider a fixed income setting where the p.m. can invest in U.S. treasury securities of

n distinct maturities τ1, . . . , τn. The risk factor changes for any such portfolio chosen by the p.m.

will then be the vector ∆xt ∈ Rn whose ith component denotes the change in yield from dates t

to t+ 1 of the zero-coupon-bond maturing at time τi. Our first step towards specifying a dynamic

factor model is to specify the c.r.f’s as in (3.2). A principal components analysis (PCA) of yield
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curve data suggests there are m = 3 c.r.f.’s for the U.S. yield curve and that these factors can

explain anywhere from 85% to 95% of the total noise in the yield curve changes. In decreasing

order of importance these c.r.f.’s drive parallel, slope and curvature changes, respectively, in the

yield curve. To specify a parametric model of these c.r.f.’s we will use the model of Diebold and Li

[28] and modify it to include an idiosyncratic noise term εt+1 as in (3.2). The resulting yield curve

model can then be written as

∆xt(τ) = f1,t+1 +

(
1− e−λτi
λτi

)
f2,t+1 +

(
1− e−λτi
λτi

− e−λτi
)
f3,t+1 + εt+1(τ) (3.17)

where ∆xt(τ) corresponds to the change in yield curve value for maturity τ , f1,t+1, f2,t+1 and f3,t+1

are the c.r.f. returns, and εt+1(τ) is the component of εt+1 corresponding to maturity τ . The

parameter λ is a positive scalar that can be chosen9 to optimize the fit to the yield curve across

some time window. The model (3.17) can be written in matrix form ∆xt = Bft+1 + εt+1 (as in

(3.2)) with bi,1 := 1, bi,2 := (1 − e−λτi)/λτi and bi,3 := bi,2 − e−λτi where bi,j denotes the (i, j)th

element of B.

It’s clear that b1, the first column of B, can capture parallel changes to the yield curve. For

example, a value of f1,t+1 = 1% will result in the entire yield curve increasing by 1%. The second

column b2 captures changes in the slope of the yield curve which are driven by f2,t+1. We can

see this in the left-hand plot of Figure 3.1 below where we see that the loadings are monotonically

decreasing in τ . This means, for example, that if f2,t+1 = 1%, for example, then short-term yields

will increase considerably more than long-term yields thereby reducing the slope of the yield curve.

If the current yield curve happened to be upward-sloping then this would result in a flattening of

the yield curve. The third column b3 captures changes in the curvature of the yield curve which

are driven by f3,t+1. We can see this in the right-hand plot of Figure 3.1 where we see that the

loadings are monotonically increasing in τ for the first few years after which they are monotonically

decreasing. Shocks to f3,t+1 will therefore change the curvature of the current yield curve.

Of course the c.r.f. returns are latent and so we will use the state-space model of (3.7) together

with the observation process (3.17) to complete the specification of our model. Specifically, we will

9 Diebold and Li [28] chose a value of λ = 0.7308 for the US Treasury yield curve.
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Figure 3.1: Factor Loadings for the Diebold factor model.

use a linear Gaussian state-space model as in (3.7) and assume that ηt, εt and f0 are normally

distributed.

3.5.1 Model Calibration and Backtesting

In order to backtest our model we obtained US Treasury yield data from January 2008 through

December 2017 for n = 11 maturities: 1, 3 and 6 months, and 1, 2, 3, 5, 7, 10, 20 and 30 years.

We take our ground-truth model to be the model we obtain by using the EM algorithm to fit the

linear Gaussian state-space model of (3.7) and (3.17) to the aforementioned yield curve data. The

estimated parameters of the ground-truth model are provided in Appendix B.2.

For each day of our backtest we construct a portfolio using the linear programming approach

described in Section 3.4.2 and Appendix B.1. The securities used to build the portfolio are zero-

coupon risk-free bonds for the n = 11 maturities listed above as well as a risk-free cash account –

the (n+ 1)st security – that each day returns 0% w.p. 1. We include a cash-account because it is

realistic – p.m.s always have the option to take on zero risk by keeping their funds in cash – and

it also provides a simple guarantee that there is a feasible portfolio, i.e. 100% in the cash-account,

that satisfies all of the risk-constraints.
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We consider a p.m. that on each day t believes f1,t+1 will equal -12 basis points (1 b.p. = .01%)

and that f2,t+1 will equal -16 b.p.s. The p.m. is therefore always anticipating a parallel fall in the

yield curve combined with an increase in it’s slope. Note that the magnitude of these movements

in the c.r.f. is given by the corresponding columns of B in the factor model (3.17). For example,

if i corresponds to the 30 year maturity then bi,1 = 1 and bi,2 = 0.05 (see Appendix B.1) so that

the resulting move in the 30-year yield is −1× 0.12− 0.05× 0.16 = −0.128, i.e. a fall of 12.8 b.p.s.

(This assumes the third c.r.f. return f3,t+1 and εt+1 are both zero.) These anticipated movements

correspond to −2 standard deviation moves in each of the first two c.r.f.s. and the p.m. wishes to

construct10 her portfolio to maximize her P&L with this view in mind.

We assume: (i) the p.m. can take on short positions so that wi can be negative for each i and

(ii) a leverage limit of 10 on each risky security so that −10 ≤ wi ≤ 10 for each i. In addition to

these constraints we assume the risk-management desk requires the p.m.’s portfolio to be “neutral”

with respect to several scenarios involving joint stresses to pairwise combinations of the three c.r.f.s.

They define “neutral” in such a way that the SSA P&L for the specified scenarios must be within

±α = 3% of the value of the portfolio at time t. More specifically, each scenarios is given by an

element of the cross-product of ΩParallelShift × ΩSlope or ΩParallelShift × ΩCurvature where

ΩParallelShift := {−24,−12, 0, 12, 24}

ΩSlope := {−32,−16, 0, 16, 32} (3.18)

ΩCurvature := {−64,−32, 0, 32, 64}.

The values in ΩParallelShift, ΩSlope and ΩCurvature were calibrated to be approximately 0,±2 and ±4

standard deviations of the three c.r.f. returns, respectively and their units are b.p.s. Once the

portfolio has been constructed we then apply SSA and DFMSA on it using the following scenarios:

1. Simultaneous stresses to the parallel shift and slope c.r.f. returns, with shocks in the cross-

product of ΩParallelShift and ΩSlope,

10 It’s worth emphasizing that our back-tests are not at all concerned with why the p.m. has this particular view

or whether or not it is ever justified. The view is simply used to construct a portfolio to which we then apply SSA

and DFMSA.
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2. Simultaneous stresses to the parallel shift and curvature c.r.f. returns, with shocks in the

cross-product of ΩParallelShift and ΩCurvature,

Note that the same set of scenarios are used to both construct the portfolio (via constraints on the

LP) and analyze the risk of the portfolio. This of course makes sense since the constraints in the

LP are driven by the scenario analysis that the risk-management desk routinely performs.

We back-tested the model using Algorithm 1 from Section 3.4.1 and where we used the ground-

truth model to simulate data for a backtest horizon of T = 1, 000 days. We set the training window

to be of size s = 500 days. For each time t ∈ {s, . . . , T − 1}, we use the EM algorithm on the

observable simulated data ∆xt−s:t−1 to re-estimate the model parameters G, Ση, Σε as well as the

parameters of the normal distribution πt−s governing the initial state ft−s. Once the model has

been (re-)trained at time t we can use the Kalman filter to calculate the mean vector and covariance

matrix of the distribution of ft |∆xt−s:t−1. Given the c.r.f. return dynamics in (3.7), it then follows

that πt+1 is the convolution of the distribution of the Gaussian random variables Gft | ∆xt−s:t−1

and ηt+1 and is therefore also Gaussian. Note that, even though we simulate the c.r.f. returns from

the ground truth model in step 3 of Algorithm 1, these are assumed unobservable and are therefore

not used by the EM algorithm to re-estimate the model parameters in step 5 of the algorithm. The

SSA and DFMSA approaches are then implemented in the remaining steps of the algorithm.

3.5.2 Numerical Results

Tables 3.1 to 3.3 display the results of our backtest. Table 3.1 shows the average backtested P&L

∆V ss as reported by the SSA approach. On each day of the backtest the portfolio was constructed

in such a way that the SSA loss conditional on the given scenario would be within ±α = 3%.

It is therefore no surprise to see that the average-backtested P&L numbers are also within ±3%

and so this portfolio strategy appears to have relatively little risk. In contrast Table 3.2 displays

the true average backtested expected P&L ∆V dfm conditional on the given scenario. These P&L

numbers were computed using the DFMSA approach and we can see from them that the portfolio

is not “neutral” w.r.t. the specified scenarios. For example, when the slope c.r.f. is shocked by 32

b.p.s and the parallel c.r.f. return remains flat, the SSA approach yields a 2.6% loss whereas the
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∆V ss

(a) Slope (bps) (b) Curvature (bps)

Parallel Shift (bps) -32 -16 0 16 32 -64 -32 0 32 64

-24 3.0 1.7 0.4 -0.9 -2.2 -2.3 -1.0 0.4 1.7 3.0

-12 2.8 1.5 0.2 -1.2 -2.5 -2.5 -1.2 0.2 1.5 2.8

0 2.6 1.3 0.0 -1.3 -2.6 -2.6 -1.3 0.0 1.3 2.6

12 2.5 1.2 -0.1 -1.4 -2.7 -2.7 -1.4 -0.1 1.2 2.5

24 2.5 1.2 -0.1 -1.4 -2.7 -2.7 -1.4 -0.1 1.2 2.4

Table 3.1: Average of backtest SSA P&L ∆V ss (defined in (3.15)) for a portfolio that is constructed

to have: (i) exposure to negative changes to the parallel and slope c.r.f. returns and (ii) to be

approximately neutral (max. loss within ±α := 3% according to SSA) with respect to the pre-

specified scenarios in the table. Subtable (a) displays the average SSA P&L when simultaneously

stressing the parallel and slope c.r.f. returns. Subtable (b) displays the average SSA P&L when

simultaneously stressing the parallel and the curvature c.r.f. returns. All P&L numbers are in

dollars per $100 of face value of the portfolio. The portfolio is constructed anew on each day of the

back-test period.

DFMSA approach yields a 4.8% loss. We see that the differences between the two approaches can

differ by up to a factor of 3. Moreover, it’s possible for SSA to report a scenario loss while DFMSA

reports an expected scenario profit and vice versa. We also note that it’s possible to obtain more

extreme discrepancies between the two approaches. For example, we could have the p.m. take a

more extreme view on the parallel and slope c.r.f. returns or have her take a view on the slope and

curvature c.r.f. returns. Joint movements of these two c.r.f. returns are not considered in any of

the scenarios and so a view on these two c.r.f. returns might allow the p.m. to better game the

risk-management constraints.

Table 3.3 displays the mean absolute error Eabs (as defined in (3.16)) of the SSA approach. Once

again we observe the large errors produced by SSA. The largest error shown is 4.1% for the scenario

in which the slope and parallel c.r.f. returns are stressed to -32 bps and -24bps, respectively.
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∆V dfm

(a) Slope (bps) (b) Curvature (bps)

Parallel Shift (bps) -32 -16 0 16 32 -64 -32 0 32 64

-24 7.1 4.7 2.3 -0.1 -2.4 -5.3 -3.4 -1.7 0.0 1.7

-12 6.0 4.2 1.2 -1.3 -3.6 -4.2 -2.6 -0.9 0.9 2.6

0 5.0 2.4 0.1 -2.4 -4.8 -3.4 -1.8 0.0 1.7 3.4

12 3.7 1.5 -1.1 -3.3 -5.8 -2.5 -0.7 1.0 2.8 4.4

24 2.9 0.6 -1.9 -4.3 -6.6 -1.3 0.3 2.0 3.7 5.5

Table 3.2: Average of backtest DFMSA P&L ∆V dfm for the same portfolio and scenarios as reported

in Table 3.1. All P&L numbers are in dollars per $100 of face value of the portfolio.

Eabs

(a) Slope (bps) (b) Curvature (bps)

Parallel Shift (bps) -32 -16 0 16 32 -64 -32 0 32 64

-24 4.1 3.0 2.0 0.9 0.5 3.0 2.4 2.1 1.7 1.3

-12 3.2 2.8 1.1 0.4 1.1 1.9 1.5 1.1 0.6 0.4

0 2.3 1.1 0.4 1.1 2.2 0.8 0.6 0.3 0.6 0.9

12 1.2 0.4 1.0 2.0 3.1 0.5 0.7 1.1 1.6 2.0

24 0.5 0.7 1.8 2.9 3.9 1.4 1.7 2.1 2.5 3.0

Table 3.3: Average backtest error Eabs of the SSA P&L for the same portfolio and scenarios as in

Tables 3.1 and 3.2. Eabs is defined in (3.16).

3.6 An Application to an Equity Options Portfolio

In this application we consider a p.m. that can invest in European call and put options on the

S&P 500 index as well as in the index itself. As is standard market practice, we will use the

Black-Scholes formula to price these options. We will therefore11 assume the vector of risk factor

changes ∆xt to consist of the daily log-return of the S&P 500 together with daily changes in the

11 We assume the risk-free rate of interest and dividend yield remain constant throughout and therefore do not

model risk factors associated with them. This is typical for equity options setting unless the p.m. wishes to trade

with a specific view on dividends. We also acknowledge that in practice one trades futures on the S&P 500 index

rather than the index itself. Given the assumption of a constant risk-free rate and dividend yield, there is essentially

no difference in assuming we can trade the index itself, however, and so we will make that assumption here.
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implied volatilities of specific strike-maturity combinations. More precisely, we let It(ξ, τ) denote

the implied volatility at time t of a European option with time-to-maturity τ and option moneyness

ξ := K/St where K denotes the option strike and St is the time t price of the S&P 500. We assume

that on each day we can observe the implied volatility surface at a finite set of moneyness-maturity

pairs {(ξ1, τ1), . . . , (ξn−1, τn−1)}. For a fixed pair (ξ, τ), we denote the change in implied volatility

from t to t+ 1 by

∆It(ξ, τ) := It+1(ξ, τ)− It(ξ, τ). (3.19)

The risk factors changes is then given by the n-dimensional vector

∆xt := (log(St+1/St),∆It(ξ1, τ1), . . . ,∆It(ξn−1, τn−1))> (3.20)

where the moneyness-maturity pairs in (3.20) cover the distinct moneyness-maturity combinations

of the options in the market.

Our dynamic factor model will consist of four c.r.f.’s. Naturally we will take the daily log-return

of the S&P 500 to be the first c.r.f. and of course this is observable. The other m = 3 c.r.f.’s will

be latent factors that drive changes in the implied volatility surface, specifically parallel12 changes

in the surface, a steepening / flattening of the volatility skew, and a steepening / flattening of the

term structure. As our model will contain both observable and latent c.r.f.s we will proceed as

discussed in Section 3.3.2 and use a linear Gaussian state-space model. In particular, we will use a

slightly modified version of (3.9) and define

∆xt =

 1

bo

 fot+1 +

0>3

Bu

 fut+1 +

 0

εt+1

 (3.21)

where fot+1 := log(St+1/St) is the observable c.r.f. (and coincides with the first component of

∆xt), fut+1 ∈ R3 denotes the vector of latent c.r.f.s and 03 ∈ R3 denotes the zero vector. The

12 We acknowledge that the absence of arbitrage imposes restrictions on the magnitude of permissable c.r.f. stresses.

For example, Rogers [70] has shown that the implied volatility surface cannot move in parallel without introducing

arbitrage opportunities. Indeed it is well known that moves in the implied volatilities are more likely to follow a

“square-root-of-time” rule and we will model this below with our first latent c.r.f. For another example, it is also

well-known that that volatility cannot become too steep without introducing arbitrage. We don’t explicitly rule out

scenarios that allow for arbitrage but note that such scenarios would have to be very extreme indeed. Moreover, it

is easy to check a given scenario for arbitrage and so ruling out such scenarios would be very straightforward.
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factor loadings for the observable and latent c.r.f.s are denoted by bo ∈ Rn−1 and Bu ∈ R(n−1)×3,

respectively. The ith element of bo indicates how a shock to the S&P 500 affects the implied

volatility ∆It(ξi, τi). The matrix Bu is constructed to model the aforementioned m = 3 types of

stresses on the implied volatility surface. Specifically (and recalling that the (i + 1)st component

of ∆xt is ∆It(ξi, τi)), we assume

∆It(ξi, τi) = boi f
o
t+1 +

(
1
√
τi

)
fu1,t+1 + (1− ξi) fu2,t+1 + ln(2τi)f

u
3,t+1 + εi,t+1, (3.22)

for i = 1, . . . , n − 1, where boi , f
u
i,t+1 and εi,t+1 denote the ith elements of bo, fut+1 and εt+1,

respectively, in (3.21). Comparing (3.21) and (3.22), we see that bi,1 := 1/
√
τi, bi,2 := 1 − ξi and

bi,3 := ln(2τi) where bi,j is the (i, j)th element of Bu.

A few comments on (3.22) are now in order. It is well known (see for example Natenberg [60])

that when volatility rises (falls), the implied volatility of long-term options rises (falls) less than the

implied volatility of short-term options. This empirical observation has led to the commonly used

“square-root-of-time” rule whereby the relative difference in implied volatility changes for options

with the same moneyness but different maturities is in proportion to the square-roots of their

relative maturities. We model this rule via the factor loadings for the parallel-shift c.r.f. Suppose,

for example, there is a fu1,t+1 = 1 volatility point shock to the parallel-shift c.r.f. Then the implied

volatility of 1-year options would increase by 1 point exactly, whereas the implied volatility of a

1-month option would increase by 1/
√

1/12 ≈ 3.46 points.

The second latent c.r.f. is used to drive changes in the implied volatility skews13 in the surface.

We use the so-called “sticky-moneyness” rule which assumes that, for a given maturity, the implied

volatility is a univariate function of the moneyness ξ = K/S. The “sticky-moneyness” rule that we

adopt in (3.22) can be motivated by first assuming

It(ξ, τ) = I0(1, τ)− βt (ξ − 1) (3.23)

where I0(1, τ) is the implied volatility of an at-the-money option, i.e. with ξ = 1, with maturity

13 An implied volatility skew is the cross-section of the implied volatility surface that we obtain when we hold the

time-to-maturity fixed. There is therefore a different skew for each time-to-maturity. There are various skew models

in the literature and we refer the interested reader to the work of Derman and Miller [26] who describe some of these

models.
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τ at some initial time t = 0, and where βt determines the slope of the skew at time t. The model

(3.23) implies the implied volatility for at-the-money options remains constant for a given maturity

τ , and that changes in implied volatility are given by

∆It(ξ, τ) = −∆βt (ξ − 1) (3.24)

where ∆βt := βt+1 − βt defines the change in skew (or slope) of the implied volatility. We account

for this skew behavior in our factor model (3.21) by taking ∆βt to be the c.r.f. fu2,t+1 and setting

the corresponding factor loadings to (1−ξ). Then if fu2,t+1 > 0, for example, the implied volatilities

of options with moneyness < 1 (> 1) would increase (decrease) thereby resulting in the steepening

of the skew for any given maturity τ . Similarly a shock fu2,t+1 < 0 would result in a flattening of

the skew.

The third c.r.f. fu3,t+1 models changes to the term-structure of implied volatility for any given

level of moneyness. The loading term ln(2τi) means that a positive shock to fu3,t+1 would leave

6-month volatilities unchanged, but would increase (decrease) the volatilities of options with longer

(shorter) maturities thereby resulting in the flattening of an inverted term structure or steepening

of an already upward sloping term structure. We note that the parallel shift c.r.f. also affects the

term structure due to the square-root-of-time rule. However, including the term structure c.r.f.

enriches the dynamics of the volatility surface model as it allows for a broader variety of systematic

moves, i.e. moves driven only by the c.r.f.s.

Finally, we note that in this section we are neither arguing for or against the specific model of

(3.7) and (3.22). We are merely using this model as an example for demonstrating the DFMSA

approach where we assume the ground truth model coincides with (3.7) and (3.22). Whether or not

the model would work well in practice (where we wouldn’t know the ground truth model) would

depend on its ability to pass the various statistical tests outlined in Section 3.7.

3.6.1 Model Calibration

We obtained implied volatility data on the S&P 500 for the period January 2006 through August

2013 from the OptionMetrics IVY database. In particular, we used the daily implied volatility data
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that OptionMetrics provide for various delta-maturity14 combinations. We transformed the data

to moneyness-maturity coordinates using a non-parametric Nadaraya-Watson estimator based on

an independent bivariate Gaussian kernel [32]. We can therefore obtain the implied volatilities on

any given day for the fixed set of moneyness-maturity pairs given by the cross-product of

ξ ∈ Ωξ := {0.8, 0.9, 0.95, 1.0, 1.05, 1.1, 1.2} and τ ∈ Ωτ := {1/12, 2/12, 3/12, 6/12, 1} ,

(3.25)

where the time-to-maturity τ is measured in years. We then used this data to fit the linear Gaussian

state-space model of (3.7) and (3.21) via the EM algorithm. We take our ground-truth model to

be the resulting fitted model. The parameters of this ground-truth model are given in Appendix

B.3.

We assume our portfolio can contain the S&P 500 index, at-the-money and out-of-the-money

call options with moneyness (ξ = K/S) in the set {1.00, 1.025, 1.05, 1.075, 1.10, 1.15} and out-

of-the-money put options with moneyness in the set {0.85, 0.90, 0.925, 0.95, 0.975}. The options

are assumed to have maturities in the set Ω′τ := {i/12 : i = 1, . . . , 12} so there are a total of

N = 133 securities in the universe. Each option is priced using the Black-Scholes formula and so

we interpolate the implied volatility surface as necessary to obtain the implied volatility for certain

moneyness-maturity pairs that are not explicitly modeled. As was the case in Section 3.5.1, we

again assume that a risk-free cash account is also available. The cash account is the (N + 1)st

security and each day it returns 0% w.p. 1.

On each day of our backtest, we construct a portfolio using the LP approach as described in

Section 3.4.2 and Appendix B.1. We consider a p.m. who on each day t believes (i) the S&P

500 will fall by 3% and (ii) the parallel shift c.r.f. will increase by 1 volatility point. We note

from (3.21) that a 1 volatility point increase in the parallel shift c.r.f. would translate to a 1/
√
τ

volatility points increase for options with maturity τ , assuming the idiosyncratic noise and other

c.r.f. returns were zero. For example, a 1-month option would then see a 1/
√

1/12 = 3.46 volatility

points increase. These anticipated movements correspond to -2 and +2 standard deviation moves

14 Roughly speaking, they build an implied volatility surface based on each day’s closing prices (of the S&P 500

and its traded options) and then use this surface to read off volatilities for the various delta-maturity combinations.
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in the two c.r.f.s, respectively.

We assume the p.m. can take short positions on any of the securities except for the cash account

so that 0 ≤ wN+1 ≤ 1. We also assume that −0.3 ≤ wi ≤ 0.3 for i = 1, . . . , N so that the risk in

any one security is limited. We also have the budget constraint
∑N+1

i=1 wi = 1. In addition to these

constraints, we assume that the risk-management desk requires portfolios to be kept “neutral”

with respect to a given set of scenarios involving joint stresses to pairwise combinations of the

first three c.r.f. returns, i.e., the S&P 500, the parallel shift and skew c.r.f. returns. Neutrality

to a given scenario is defined as having the portfolio SSA P&L under that scenario to be within

±α = 2% of the initial portfolio value. The given scenarios are the elements of the cross-product

of ΩMkt × ΩParallelShift or ΩMkt × ΩSkew, where

ΩMkt := {−4.5%,−3.0%,−1.5%, 0.0%, 1.5%, 3.0%, 4.5%}

ΩParallelShift := {−1.5, −1.0, −0.5, 0.0, 0.5, 1.0, 1.5} (3.26)

ΩSkew := {−21, −14, −7, 0, 7, 14, 21}.

The values in ΩMkt,ΩParallelShift and ΩSkew were calibrated to be approximately 0,±1,±2 and ±3

standard deviations of the S&P 500, parallel shift and skew c.r.f. daily returns, respectively. The

shocks in ΩMkt are in log-return percentage changes while the units of ΩParallelShift and ΩSkew are

volatility points. Recall that the magnitude of these movements in the c.r.f.s is given by the

corresponding columns of bo and Bu in the factor model (3.21). For example, a -21 unit move in

the skew c.r.f. return translates to a (1− ξ)×−21 move in the implied volatility for options with

moneyness ξ assuming the idiosyncratic noise and other c.r.f. returns were zero. This translates

to a decrease in implied volatility of 2.1 volatility points for options with ξ = 0.9 and an increase

of 3.15 volatility points for options with ξ = 1.15. Finally, we also impose the (linear equality)

constraints that require the portfolio to be delta, gamma and vega neutral. We impose the latter

constraints to allow for the fact that SSA is typically not done in isolation and so it would be

typical for any risk manager / p.m. to also know the delta, gamma and vega of the portfolio. By

insisting that the portfolio be neutral to the Greeks we are simply making it more difficult for the

p.m. to “game” the fact that the scenario constraints are based on SSA rather than the correct
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DFMSA.

On each day of the back-test we constructed the portfolio and then apply SSA and DFMSA

to it using the same scenarios that we used to define the scenario constraints on the portfolio,

i.e. scenarios corresponding to shocks in the cross-product of ΩMkt and ΩParallelShift and ΩMkt and

ΩSkew. We back-tested the model using Algorithm 1 and using the ground-truth model to simulate

data for a backtesting horizon of T = 1, 000 periods. We used an initial training window of size

s = 500 and then for each t ∈ {s, . . . , T −1} we used the EM algorithm on the observable simulated

data ∆x(t−s):(t−1) to re-estimate the model parameters bo,G,Ση and Σε, as well as the parameters

of the normal distribution governing the initial state ft−s. Having re-trained the model at time t,

we use the Kalman Filter to obtain the distribution of ft |∆xt−s:t−1. We finally obtain πt+1 as the

distribution of the convolution of Gft | ∆x(t−s):(t−1) and ηt+1 and simulate samples from πt+1 to

estimate the scenario P&L’s under both SSA and DFMSA approaches.

3.6.2 Numerical Results

The results of the backtest are displayed in Tables 3.4 to 3.6 below. Table 3.4 contains the average

P&L ∆V ss as estimated by the SSA approach for the same set of scenarios that were used to

construct the portfolio. As a result, it is not surprising to see the reported P&L’s are all less than

2% in absolute value. The average estimated P&L ∆V dfm obtained using the DFMSA approach is

then reported in Table 3.5 for the same set of scenarios. It is very clear that the portfolio is (on

average) not at all neutral to the various scenarios. For example, when the market c.r.f. return and

the parallel shift c.r.f. are shocked by +3% and -1, respectively, the DFMSA approach estimates a

loss of 8.2% whereas the SSA approach estimates a loss of just 1.3%. Similarly, a shock to the skew

c.r.f. of -21 yields an estimated 4.3% loss under the DFMSA approach whereas the SSA approach

only yields a loss of 0.1%.

It is also clear from Table 3.5 that, as designed, the portfolio has the correct directional exposure

to positive moves in the parallel shift c.r.f. and negative moves in the market c.r.f. Furthermore,

the portfolio also reacts positively to positive moves in the skew c.r.f. This can be explained by

observing the correlations between the skew and the parallel shift c.r.f. returns as reported in
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∆V ss

(a) Parallel Shift (b) Skew

Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5 -21 -14 -7 0 7 14 21

-4.5% 1.1 1.5 1.7 1.8 1.9 1.9 2.0 1.0 1.5 1.6 1.8 1.9 1.7 1.6

-3.0% 0.5 0.8 1.1 1.4 1.7 1.9 1.9 0.7 1.2 1.5 1.5 1.4 1.2 1.2

-1.5% -0.8 -0.5 0.1 0.5 0.9 1.1 1.2 0.2 0.3 0.3 0.4 0.4 0.3 0.2

0.0% -1.2 -0.8 -0.3 0.2 0.6 0.8 1.0 -0.1 -0.1 0.0 0.0 0.1 0.2 0.2

1.5% -1.7 -1.2 -0.5 -0.1 0.1 0.3 0.6 -0.9 -0.6 -0.4 -0.1 0.0 0.1 0.1

3.0% -1.8 -1.3 -0.5 0.0 0.3 0.4 0.7 -1.2 -0.6 -0.2 0.0 0.3 0.8 1.2

4.5% -1.7 -1.1 -0.3 0.2 0.5 0.7 1.0 -1.3 -0.5 0.0 0.4 0.9 1.2 1.5

Table 3.4: Average of backtest SSA P&L ∆V ss (defined in (3.15)) for a portfolio that is constructed

to have: (i) exposure to negative changes to the market (S&P index) c.r.f. returns and exposure

to positive changes to the parallel shift c.r.f. returns and (ii) to be approximately neutral (max.

loss within ±α := 2% according to SSA) with respect to the pre-specified scenarios in the table.

Subtable (a) displays the average SSA P&L when simultaneously stressing the market and parallel

shift c.r.f. returns. Subtable (b) displays the average SSA P&L when simultaneously stressing

the market and skew c.r.f. returns. All P&L numbers are in dollars per $100 of face value of the

portfolio. The portfolio is constructed anew on each day of the back-test period.

Appendix B.3. Specifically, the skew c.r.f. return is positively correlated with the parallel shift

c.r.f. (0.3002 correlation) and has close to zero correlation to the market c.r.f. return (0.0236

correlation). Since the portfolio is positively exposed to shocks in the parallel shift c.r.f. return it

is therefore no surprise to see the portfolio is also positively exposed to positive shocks to the skew

c.r.f. too. This of course is not captured by the SSA results in Table 3.4.

Motivated by the (partial) error decomposition in (3.14) from Section 3.4, we define

Eabs
cond :=

1

T − s

T−1∑
t=s

∣∣∣∆V alt
t −∆V ss

t

∣∣∣ Eabs
vol :=

1

T − s

T−1∑
t=s

∣∣∣∆V dfm
t −∆V alt

t

∣∣∣ (3.27)

where ∆V alt
t is defined in (3.12) and is our alternative estimated scenario P&L. We obtain ∆V alt

t

by setting ∆xt = Bµct where µct (defined in (3.13)) is the expected value of the c.r.f. returns
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∆V dfm

(a) Parallel Shift (b) Skew

Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5 -21 -14 -7 0 7 14 21

-4.5% -9.1 -5.6 -1.5 2.4 5.9 9.8 13.1 -2.5 -0.7 0.5 1.7 2.9 4.7 6.1

-3.0% -9.6 -5.9 -1.9 1.5 5.5 9.6 12.7 -3.4 -1.5 0.1 1.5 2.7 4.0 5.5

-1.5% -10.8 -6.7 -3.5 0.4 4.1 8.9 11.2 -4.1 -2.4 -0.8 0.3 1.8 3.2 4.5

0.0% -11.2 -7.4 -3.8 -0.1 3.6 8.2 11.1 -4.3 -2.9 -1.3 -0.1 1.7 2.5 4.2

1.5% -11.7 -7.9 -4.2 -0.4 3.4 6.9 10.5 -4.7 -3.5 -2.2 -0.4 1.2 2.4 4.5

3.0% -12.5 -8.2 -4.5 -0.5 3.5 7.9 11.9 -5.3 -3.8 -2.0 0.1 1.5 3.3 5.1

4.5% -12.7 -8.9 -4.7 -0.4 3.5 8.4 12.4 -5.8 -3.9 -1.9 0.5 2.4 3.7 5.9

Table 3.5: Average of backtest DFMSA P&L ∆V dfm for the same portfolio and scenarios as reported

in Table 3.4. All P&L numbers are in dollars per $100 of face value of the portfolio.

conditional on the scenario. It follows from the triangle inequality in (3.14) for each t = s, . . . , T −1

that Eabs ≤ Eabs
cond + Eabs

vol .

Tables 3.6 and 3.7 display the average values of Eabs
vol and Eabs

cond, respectively, in our backtest.

It is clear from Table 3.6 that the error in reported P&L’s that results from using the alternative

∆V alt
t is relatively small and is less than 1% in all of considered scenarios. In contrast, the errors

in Table 3.7 are significantly larger. These observations suggest (at least in this example), that the

main source of error in the SSA approach is in setting the non-stressed factors to zero rather than

their expectations conditional on the given scenario.

We can also observe from Table 3.7 (a) that the largest absolute errors occur when the parallel

shift c.r.f. return is subjected to the most extreme shocks. This indicates that setting the skew and

term-structure c.r.f. returns to zero (which is how SSA would proceed) results in higher errors when

the parallel shift c.r.f. return is more severely stressed. Referring to the c.r.f. return correlations

that are reported in Appendix B.3, we see this observation can be explained by noting that the

parallel shift c.r.f. return is strongly correlated with the term-structure c.r.f. (0.9283 correlation)

and is moderately correlated with the skew c.r.f. return (0.3002 correlation). Clearly setting the

term-structure and skew c.r.f. returns to zero would be highly inaccurate in this setting.
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Eabs
vol

(a) Parallel Shift (b) Skew

Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5 -21 -14 -7 0 7 14 21

-4.5% 0.6 0.6 0.5 0.4 0.4 0.7 0.7 0.8 0.7 0.6 0.7 0.7 0.5 0.7

-3.0% 0.5 0.5 0.5 0.6 0.6 0.5 0.6 0.8 0.7 0.6 0.6 0.7 0.5 0.6

-1.5% 0.5 0.5 0.4 0.5 0.6 0.5 0.4 0.7 0.6 0.6 0.6 0.6 0.6 0.7

0.0% 0.5 0.4 0.5 0.5 0.4 0.6 0.5 0.5 0.6 0.7 0.7 0.6 0.6 0.6

1.5% 0.4 0.5 0.4 0.5 0.5 0.5 0.4 0.6 0.7 0.5 0.6 0.6 0.7 0.6

3.0% 0.5 0.5 0.5 0.4 0.6 0.5 0.5 0.6 0.5 0.6 0.7 0.7 0.5 0.5

4.5% 0.5 0.6 0.5 0.5 0.5 0.6 0.4 0.7 0.7 0.6 0.5 0.6 0.7 0.7

Table 3.6: Average backtest error Eabs
vol of the SSA P&L for the same portfolio and scenarios as in

Tables 3.4 and 3.5.

Eabs
cond

(a) Parallel Shift (b) Skew

Mkt -1.5 -1.0 -0.5 0 0.5 1.0 1.5 -21 -14 -7 0 7 14 21

-4.5% 10.0 6.8 3.2 0.4 3.8 7.1 10.9 3.5 2.3 1.1 03 1.1 2.9 4.5

-3.0% 10.1 6.8 3.3 0.2 3.9 7.1 10.9 4.0 2.7 1.4 0.3 1.3 2.8 4.3

-1.5% 10.1 6.9 3.5 0.2 3.5 7.2 11.0 4.1 2.8 1.4 0.2 1.5 2.8 4.3

0.0% 10.2 7.1 3.6 0.2 3.2 7.3 11.1 4.1 2.9 1.5 0.1 1.5 2.6 4.3

1.5% 10.3 7.1 3.7 0.3 3.3 7.2 11.1 4.2 3.0 1.7 0.2 1.4 2.5 4.4

3.0% 10.8 7.3 3.9 0.4 3.3 7.4 11.3 4.4 3.2 1.8 0.2 1.4 2.6 4.4

4.5% 11.2 7.8 4.4 0.5 3.2 7.7 11.5 4.6 3.4 1.9 0.3 1.5 2.6 4.4

Table 3.7: Average backtest error Eabs
cond of the SSA P&L for the same portfolio and scenarios as in

Tables 3.4, 3.5 and 3.6.

3.6.3 Historical backtesting

While DFMSA and SSA performed on simulated paths of the ground-truth model provides good

insight into their relative performance, a comparison of both approaches on actual historical scenar-

ios would provide more concrete support. To accomplish this, we perform both SSA and DFMSA

for a selection of derivative securities during days of extreme market volatility in the 2008 financial
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crisis. As a benchmark, we compute the true realized P&L for each of the securities during these

dates. We then compare the true realized P&L to the stressed P&Ls obtained via SSA on one hand,

and to the stressed P&Ls obtained via DFMSA on the other. The objective of this comparison is of

course to analyze whether DFMSA provides a better picture of the risks of a security or portfolio

than SSA.

To perform the historical backtest on a specific day t, we first estimate the parameters of the

d.f.m. using a window of the s > 0 periods up to and excluding day t. The historical stress scenario

is selected by choosing a subset of c.r.f.s and setting them to their realized values on day t. While

this is straightforward for observable c.r.f. returns, it presents a difficulty if we choose any latent

c.r.f. returns to stress. A good estimate of the realized c.r.f. returns can be obtained via the

smoothed distribution by using the observable information in the window of periods t− s through

t + s′, with s′ > 0. In other words, we compute f̂t+1 := E[ft+1 | fo(t−s):(t+s′), ∆x(t−s):(t+s′−1)],

where we recall that fot corresponds to the observable c.r.f. returns, and set c = f̂s,t+1 as the stress

scenario.15 We then proceed to calculate the stressed P&Ls via DFMSA and SSA. The historical

backtesting procedure is outlined in Algorithm 2 below.

We select 3 dates to perform this historical analysis, namely September 29, 2008, when the log-

returns of the S&P500 index was -9.22%, October 13, 2008 when the S&P index rallied by 10.96%,

and October 15, 2008 when the S&P sold off by 9.47%. For any given day t, we use a window of

the s = 500 previous trading days to fit the state-space model (3.21) and (3.7), as described in

Section 3.6.1. We then compute the smoothed estimate f̂t+1 of the realization of the c.r.f. returns

using the observations of periods t− s to t+ s′, where s′ = 250, as described previously. Note that

we know the actual realizations of the observable c.r.f., and this realization of course coincides with

15 We acknowledge the fact that setting the scenario to the smoothed estimates of the c.r.f. returns introduces

a degree of bias in our results. Indeed, by using the scenario that is most consistent with our model and with the

observed risk factor returns we are giving implicit advantage to DFMSA. To see this, suppose that the true realized

ft+1 = 0 and that εt+1 resulted in extreme values, so that we estimate f̂t+1 = c1 very distinct from 0. DFMSA will

then be based on the stress scenario that is a subset of c1 and so the resulting stressed P&L would likely be close to

the true realized P&L, showing a much better performance than SSA, where in reality both DFMSA and SSA should

have given similar results under the true scenario c = 0. However, it should be noted that, by using the smoothed

estimates instead of filtered estimates, we reduce this bias as the impact of any large εt would be smoothed over a

few periods.
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Algorithm 2 Historical Backtesting to Compare SSA and DFMSA

Input: s, t,K, s . s = # periods in window for model training

. t = period to perform SA

. K = # of samples used to estimate factor model-based scenario P&L

. s = indices of c.r.f. returns to stress.

1: Estimate DFM parameters

2: Estimate πt+1 from (fo(t−s):t, ∆x(t−s):(t−1)) . fo(t−s):t are observable

3: Compute smoothed estimate f̂t+1 := E[ft+1 | fo(t−s):(t+s), ∆x(t−s):(t+s−1)]

4: Set c = f̂s,t+1

5: for k ← 1 to K do

6: Generate f
(k)
t+1 | (Ft, fs,t+1 = c) and ε

(k)
t+1 to obtain ∆x

(k)
t

7: Compute scenario P&L ∆Vt(∆x
(k)
t )

8: end for

9: Compute ∆V dfm
t :=

∑K
k=1 ∆Vt(∆x

(k)
t )/K . Estimated scenario P&L

10: Compute ∆V ss
t . SSA P&L obtained by setting εt+1, non-stressed common factors to 0

11: Compute ∆V act
t using the realized value of ∆xt . Actual realized P&L

12: Compute errors Edfm
t :=

∣∣∣∆V dfm
t −∆V act

t

∣∣∣ and Ess
t :=

∣∣∆V ss
t −∆V act

t

∣∣
13: Compute the ratio Eratio

t := Edfm
t /Ess

t

Output: ∆V dfm
t ,∆V ss

t ,∆V
act
t ,Edfm

t ,Ess
t and Eratio

t

the smoothed estimate. We then set the scenario to be the realized return of the S&P500 index

and the estimated realized return of the parallel shifts c.r.f., and proceed with SSA and DFMSA

to obtain the stressed P&Ls ∆V dfm
t and ∆V ss

t . Denoting the actual time t realized P&L by ∆V act
t ,

we calculate the absolute errors of each SA approach as

Edfm
t :=

∣∣∣∆V dfm
t −∆V act

t

∣∣∣ Ess
t :=

∣∣∆V ss
t −∆V act

t

∣∣ (3.28)

Finally, we display the ratio Edfm
t /Ess

t . This ratio provides a measure of the performance of DFMSA

compared to SSA. For example, if the ratio is equal to 1 then both approaches provide similar errors,

whereas a ratio that is smaller (greater) than 1 indicates that DFMSA gave a more (less) accurate

P&L than SSA. Evidently, the lower the ratio of absolute errors, the better the performance of

DFMSA compared to SSA.
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Table 3.8 shows the results of the historical backtest for out-of-the-money call and put options

with 10 months to maturity, as well as for a hedged portfolio constructed via the LP procedure

as described in Sections 3.4.2 and 3.6.1. For each date, the table indicates the realized S&P500

log-return and the smoothed estimate of the parallel shifts c.r.f. return, which are used as the

stress scenario for that date to perform SSA and DFMSA. For example, on September 29, 2008,

the S&P500 index dropped by 9.22% (in log-returns), or about 6 standard deviations, and the

smoothed estimate of the parallel shifts c.r.f. return was 3.94 volatility points, or about 6.5 standard

deviations, which corresponds to an equivalent increase in the volatility surface for 1 year options,

as we recall that the factor loadings for the parallel shifts c.r.f. is 1/
√
τ . By comparing the P&L

numbers obtained by each approach to the actual P&L, we can observe that the DFMSA results

are consistently closer to the actual P&L than the SSA results. The absolute error ratios are below

80% for the considered securities and portfolios during these times of high market volatility, which

illustrates that DFMSA is able to track better the stressed P&L.

Table 3.9 shows the results of the historical backtest for the same securities and dates as those

in Table 3.8, but where the scenarios were set to the filtered estimates of the c.r.f. returns, i.e.,

using f̂t+1 := E[ft+1 | fo(t−s):(t+1), ∆x(t−s):t], rather than the smoothed estimates. Here we observe

that the stressed P&L numbers obtained from DFMSA are closer to the realized P&L, compared

to those obtained in Table 3.8, where the scenarios were estimated using the smoothed distribution

of the c.r.f. returns. This of course is to be expected, as discussed previously, since the implicit

bias resulting from setting the scenarios to the estimated c.r.f. returns is smaller when smoothing

large εt+1 over many periods.

Finally, Table 3.10 shows the results when using the S&P500 returns as the only c.r.f. to

be stressed. This set of results eliminate the implicit bias as we no longer need to estimate the

unobserved c.r.f. returns for setting the scenarios. We note that both DFMSA and SSA provide

worse results than in the previous two tables. However, it is important to highlight that the absolute

error ratios are considerably smaller than in Tables 3.9 and 3.8. This can be explained by the fact

that in DFMSA we use the conditional distribution for the unstressed c.r.f. returns, instead of

setting them to zero as in SSA. By using the conditional distribution we capture the correlations
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Date S&P Ret. Parallel Shift Security ∆V ss
t ∆V dfm

t ∆V act
t Edfm

t /Ess
t

9/29/08 -9.22% 3.94 vol. pts 0.90 mness, 10m. Put 65.0 71.0 77.2 50.8%

9/29/08 -9.22% 3.94 vol. pts 1.05 mness, 10m. Call -39.1 -37.3 -33.7 67.5%

9/29/08 -9.22% 3.94 vol. pts LP Portfolio 20.5 35.3 63.9 65.9%

10/13/08 +10.96% -6.39 vol. pts 0.90 mness, 10m. Put -36.8 -44.6 -42.6 35.1%

10/13/08 +10.96% -6.39 vol. pts 1.05 mness, 10m. Call 36.5 32.8 28.1 55.9%

10/13/08 +10.96% -6.39 vol. pts LP Portfolio -5.5 -13.3 -15.1 19.0%

10/15/08 -9.47% 3.17 vol. pts 0.90 mness, 10m. Put 35.2 37.3 40.0 56.8%

10/15/08 -9.47% 3.17 vol. pts 1.05 mness, 10m. Call -32.8 -32.2 -29.7 79.6%

10/15/08 -9.47% 3.17 vol. pts LP Portfolio -5.5 2.4 10.0 49.0%

Table 3.8: Historical SA backtest on three dates during the financial crisis for two out-of-the-money

options with 10 month maturity and for the portfolio described in Section 3.6.1. For each date,

we use the realized S&P500 log-return and the estimated parallel shift c.r.f. return as scenarios.

We display the P&L resulting from SSA and DFMSA, as well as the actual P&L realized for each

security / portfolio. We also display the ratio of the DFMSA absolute error to the SSA absolute

error, serving as a measure of the relative performance between the two approaches, as mentioned

in Section 3.6.3. All P&L numbers are in dollars per $100 of face value.

of the unstressed c.r.f. allowing us to estimate the stressed P&L better.

3.7 Statistical Evaluation of the Model in DFMSA

While not the focus of this chapter, a key aspect to implementing DFMSA in practice is the

statistical evaluation of the dynamic factor model (d.f.m.) in question. We have argued that the

SSA approach does not require or use a probabilistic model (see (3.3)) and therefore does not

lend itself to any form of statistical testing. This is not true of DFMSA and in this section we

briefly outline some potential approaches to the statistical validation of the underlying d.f.m.s. At

a high level a data-set will consist of observations (∆xt, fot ) for t = 1, . . . , T of the risk factor

returns and observable c.r.f. returns. While most of the state-space model literature, e.g. [82;

76], tends to focus on the estimation and implementation of these models there appears to be
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Date S&P Ret. Parallel Shift Security ∆V ss
t ∆V dfm

t ∆V act
t Edfm

t /Ess
t

9/29/08 -9.22% 4.01 vol. pts 0.90 mness, 10m. Put 65.8 72.3 77.2 43.0%

9/29/08 -9.22% 4.01 vol. pts 1.05 mness, 10m. Call -39.0 -36.6 -33.7 54.5%

9/29/08 -9.22% 4.01 vol. pts LP Portfolio 21.6 36.4 63.9 65.1%

10/13/08 +10.96% -6.52 vol. pts 0.90 mness, 10m. Put -36.8 -40.8 -42.6 24.0%

10/13/08 +10.96% -6.52 vol. pts 1.05 mness, 10m. Call 32.9 30.6 28.1 69.6%

10/13/08 +10.96% -6.52 vol. pts LP Portfolio -8.7 -14.5 -15.1 9.2%

10/15/08 -9.47% 3.35 vol. pts 0.90 mness, 10m. Put 37.0 41.1 40.0 37.6%

10/15/08 -9.47% 3.35 vol. pts 1.05 mness, 10m. Call -31.3 -30.8 -29.7 71.2%

10/15/08 -9.47% 3.35 vol. pts LP Portfolio -4.7 3.1 10.0 46.9%

Table 3.9: Historical SA backtest on three dates during the financial crisis for the same securities

as in Table 3.8, but where the scenarios where set to the filtered estimates of the c.r.f.s, instead of

the smoothed estimates. All P&L numbers are in dollars per $100 of face value.

Date S&P Log-Return Security ∆V ss
t ∆V dfm

t ∆V act
t Edfm

t /Ess
t

9/29/2008 -9.22% 0.90 mness, 10 m. Put 39.8 69.0 77.2 21.9%

9/29/2008 -9.22% 1.05 mness, 10 m. Call -56.8 -37.8 -33.7 17.9%

9/29/2008 -9.22% LP Portfolio -10.4 29.0 63.9 47.0%

10/13/2008 +10.96% 0.90 mness, 10 m. Put -14.7 -30.5 -42.6 43.5%

10/13/2008 +10.96% 1.05 mness, 10 m. Call 61.1 44.7 28.1 50.3%

10/13/2008 +10.96% LP Portfolio 12.3 -4.9 -15.1 37.4%

10/15/2008 -9.47% 0.90 mness, 10 m. Put 19.9 38.1 40.0 9.3%

10/15/2008 -9.47% 1.05 mness, 10 m. Call -46.5 -31.6 -29.7 11.4%

10/15/2008 -9.47% LP Portfolio -10.4 2.6 10.0 36.2%

Table 3.10: Historical SA backtest on three dates during the financial crisis for the same securities

as in Table 3.8, but where the scenarios are set to be the realized (observed) S&P c.r.f. return, to

avoid the bias introduced when using smoothed or filtered estimates of the latent c.r.f. returns as

scenarios. All P&L numbers are in dollars per $100 of face value.

relatively little work on the statistical testing of these models. Some notable exceptions include [67;

81]. Because the ultimate goal of these models in our context is the accurate estimation of the daily
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P&L for a given portfolio (in a given scenario) we will focus here on some tests that can be applied

to the one-dimensional time-series of portfolio returns.

3.7.1 VaR Exceptions for a Given Portfolio

Given any portfolio, by assumption we can use the ∆xt’s to construct the univariate time series of

the portfolio’s realized P&L’s, i.e. the ∆Vt(∆xt)’s. As a first test of the d.f.m. it seems reasonable

to require that, at the very least, the realized ∆Vt(∆xt)’s should be consistent with the estimated

∆Vt(∆xt)’s predicted by the d.f.m. A straightforward and commonly used approach for doing this

is through the use of so-called Value-at-Risk (VaR) exceptions. Towards this end we recall that the

time t α-VaR (for a given portfolio) is the Ft-measurable random variable VaRt+1(α) that satisfies

P (∆Vt(∆xt) < VaRt+1(α) | Ft) = 1− α

for any fixed α ∈ (0, 1). The time t α-VaR is therefore the (1 − α)-quantile of the distribution of

the portfolio P&L conditional on Ft. We define a VaR exception as the event that the realized

∆Vt is lower than VaRt+1(α) and use It+1(α) to denote the indicator function for such an event.

Specifically, we define

It+1(α) :=


1, if ∆Vt(∆xt) < VaRt+1(α)

0, otherwise.

(3.29)

It follows that It+1(α) is a Bernoulli random variable with success probability 1 − α. Since the

{It(α)}t’s are adapted to the filtration {Ft}t≥1, it can in fact be easily shown16 that they form an

i.i.d. sequence of Bernoulli random variables. This result forms the basis of several simple tests for

the d.f.m. under consideration.

We begin by letting V̂aRt+1(α) be our d.f.m. estimate of VaRt+1(α) conditional on Ft for

t = 1, . . . , T . For example, in the linear-Gaussian state-space models of Sections 3.5 and 3.6, we

can use the Kalman Filter to obtain the mean vector and covariance matrix of the distribution of

ft+1 | Ft. We can then use (3.7) and (3.2), respectively, to simulate K samples from the distributions

16For a proof of this statement see Lemma 9.5 in [57], for example.
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of ft+1 | Ft and εt+1 and from there use (3.1) to obtain K samples ∆V
(1)
t , . . . ,∆V

(K)
t of the P&L

∆Vt(∆xt). We then take the (1 − α)-quantile V̂aRt+1(α) of the empirical distribution obtained

from these K samples as our d.f.m’s estimate of VaRt+1(α).

We can construct the sequence of empirical VaR exception indicators Ît+1(α) by substituting

V̂aRt+1(α) for VaRt+1(α) in (3.29). Under the null hypothesis that our state-space model is correct,

it follows that
∑T−1

t=0 Ît+1(α) has a Binomial(T, 1− α) distribution. We can therefore use standard

tests for the binomial to test the null hypothesis. For example, Kupiec [52] describes a two-sided

binomial test with test statistic

ZT =

∑T
t=1 Ît(α)− T (1− α)√

Tα(1− α)
. (3.30)

In particular, we then reject the null hypothesis at the κ level if |ZT | ≥ Φ−1(1− κ/2), where Φ(·)

denotes the standard normal CDF.

Various other tests can also be employed. For example, under the same null hypothesis that our

state-space model is correct, it follows that the time between consecutive VaRt+1(α) exceptions are

independent and geometrically distributed with success probability α. This property can be tested

by approximating the geometric distribution with an exponential distribution and using a Q-Q

plot or a likelihood ratio test as proposed by [22]. See also [57] for further details and additional

discussion of these and other tests.

Table 3.11 shows the results of the VaR exceptions’ binomial test for the dynamic factor model,

as described in Section 3.6, where for each day t we fit the model using observable data for the

previous s = 500 trading days. We note that in 2008 and 2011 the model results in a statistically

significant high number of 95% and 99% VaR exceptions for most of the assets analyzed. Addi-

tionally, the model gives a statistically significant low number of 95% VaR exceptions in 2009. The

reason for the poor performance in periods of changing volatilities is the fact that the state-space

model assumes a static covariance matrix for the error terms ηt and εt. A dynamic factor model

with a stochastic volatility component, as in GARCH models, would be able to capture the changes

in volatility levels and, as such, we would expect such a model to perform better in the binomial

test.
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Year 2008 2009 2010 2011 2012 2013* All years

95% VaR Exceptions

Expected 13 13 13 13 13 8.5 71

S&P500 index 34 4 13 22 4 10 87

0.90 mness, 6 m. Put 26 4 14 22 5 16 87

1.05 mness, 6 m. Call 39 2 4 19 7 3 74

0.90 mness, 9 m. Put 24 4 12 22 4 13 79

1.05 mness, 9 m. Call 39 2 5 17 6 4 73

0.90 mness, 12 m. Put 18 4 10 18 3 4 57

1.05 mness, 12 m. Call 42 4 8 22 5 6 87

99% VaR Exceptions

Expected 2.6 2.6 2.6 2.6 2.6 1.7 14.3

S&P500 index 20 0 7 14 1 3 45

0.90 mness, 6 m. Put 14 3 5 12 1 7 42

1.05 mness, 6 m. Call 18 2 2 10 1 0 33

0.90 mness, 9 m. Put 14 2 4 12 1 2 35

1.05 mness, 9 m. Call 18 1 2 12 1 1 35

0.90 mness, 12 m. Put 10 1 3 9 1 1 25

1.05 mness, 12 m. Call 17 1 3 10 1 2 34

*Options data was available through August 2013.

Table 3.11: Number of 95% and 99% VaR exceptions of the d.f.m. for the S&P500 index and for

a selection of out-of-the-money options. We highlight significant differences between the expected

and realized number of exceptions, according to the binomial test at the 5% confidence level.

3.7.2 Scenario VaR Exceptions

We can use the same VaR exception framework to evaluate the state-space model within the

context of scenario analysis. In particular, instead of calculating the VaR from the distribution of

∆Vt(∆xt) | Ft, we use the distribution of ∆Vt(∆xt) | (Ft, fs,t+1 = ct+1) for some subset s of the

c.r.f. vector ft+1 and for some time t + 1 scenario ct+1. In order to count the VaR exceptions,

however, we must be able to obtain the realization of the P&L conditional on Ft and fs,t+1 = ct+1.



86

We therefore must set ct+1 to be equal to the realized value of fs,t+1. If the subset includes latent

c.r.f.s, however, we need to be able to obtain good estimates of the realized c.r.f. returns, which

can be obtained via the smoothing distribution P(f0:T | fo0:T ,∆x0:(T−1)) where we recall that fo0:T

corresponds to the observable c.r.f. returns.

For example,, within the linear-Gaussian state-space model framework, we can use the Kalman

smoothing algorithm to obtain the smoothed estimates of the c.r.f. returns, i.e., f̂0:T := E[f0:T |

fo0:T ,∆x0:(T−1)]. We then set ct = f̂c,t for each t = 1, . . . , T so that the scenario we consider at each

time t is our best estimate of the scenario that actually transpired at time t+ 1. For each time t we

estimate V̂aRt+1(α) | (Ft, fs,t+1 = ct+1) again using Monte Carlo as described in Section 3.7.1 but

where we now sample from ft+1 | (Ft, fs,t+1 = ct+1). Having estimated each scenario-conditional

V̂aRt+1(α), we can compute the empirical VaR exception indicator Ît+1(α) and conduct the same

tests as described in Section 3.7.1.

Note, however, that Ît+1(α) is no longer Ft+1-adapted. Indeed, in the calculation of V̂aRt+1(α),

we use information up to the horizon T to obtain smoothed estimates of the c.r.f. returns. This

introduces a bias into the results and so the resulting tests would only be approximate at best.

Indeed unless we can estimate the c.r.f. returns with a high-degree of certainty the bias may be

quite severe and serve to make the VaR exceptions occur less frequently than α% of the time even

if the null hypothesis is true. Because of this bias issue we suggest only conditioning on scenarios

that only stress observable c.r.f. returns. In the options example of Section 3.6, for example, we

could consider scenarios where we stress the return on the underlying security, i.e. the S&P 500,

as these returns are observable.

Table 3.12 shows the results of the VaR exceptions’ binomial test for the dynamic factor model,

conditional on the scenario where we set the S&P500 index to its realized value. The results are

qualitatively similar to the ones illustrated in Table 3.11 of Section 3.7.1, meaning that evidently

the model fails to capture changes in volatility levels and therefore results in a statistically signif-

icant high number of VaR exceptions for the most part. Again, the use of a stochastic volatility

component in the model would be expected to improve the performance in the binomial test.
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Year 2008 2009 2010 2011 2012 2013* All years

95% VaR Exceptions

Expected 13 13 13 13 13 8.5 71

0.90 mness, 6 m. Put 27 5 18 30 16 16 112

1.05 mness, 6 m. Call 32 5 16 29 14 9 105

0.90 mness, 9 m. Put 30 5 17 26 17 13 108

1.05 mness, 9 m. Call 31 4 14 22 15 5 91

0.90 mness, 12 m. Put 25 3 9 17 6 2 62

1.05 mness, 12 m. Call 23 2 8 14 10 3 60

99% VaR Exceptions

Expected 2.6 2.6 2.6 2.6 2.6 1.7 14.3

0.90 mness, 6 m. Put 15 2 11 14 7 10 59

1.05 mness, 6 m. Call 21 2 8 14 5 4 54

0.90 mness, 9 m. Put 20 2 10 11 3 7 53

1.05 mness, 9 m. Call 15 1 7 11 5 3 42

0.90 mness, 12 m. Put 13 2 6 7 2 2 32

1.05 mness, 12 m. Call 15 0 4 9 2 2 32

*Options data was available through August 2013.

Table 3.12: Number of 95% and 99% VaR exceptions of the d.f.m. conditional on the scenario where

we stress the S&P500 index. We use the same selection of out-of-the-money options as in Table

3.11. We highlight significant differences between the expected and realized number of exceptions,

according to the binomial test at the 5% confidence level.

3.8 Conclusions and Further Research

We have argued in this chapter for the embedding of scenario analysis inside a dynamic factor

model framework so that more accurate estimates of scenario P&L’s can be computed and so that

these estimates can be subjected to a rigorous backtesting framework.

There are many interesting directions for future research. It would be particularly interesting

to extend and develop the state-space modeling framework to more complex asset classes than
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considered in Sections 3.5 and 3.6. For example, we would like to be perform DFMSA for portfolios

consisting of options and equity positions on US stocks or portfolios of spot and option position

on the major FX currency pairs. It would also be of interest to extend these models to allow for

stochastic correlation which would by necessity move us beyond the linear-Gaussian framework.

More recently Rebonato [65; 66] has proposed the use of graphical models for scenario analysis in a

context where macro-economic and systemic risk factors might be stressed. It might be interesting

to try and combine our DFMSA approach within such a graphical model framework.
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Chapter 4

Robo-Advising as a Human-Machine

Interaction System

Robo-advising enhances a humans efficiency in investment decisions. We propose a framework based

on risk-sensitive dynamic games, where the investor optimizes her risk-sensitive criterion while the

machine adaptively learns the investors preferences. Even though the investors and machines

objectives are aligned, asymmetric information makes their joint optimization process a game with

strategic interactions. We consider an investor with mean-variance preferences and reduce the

game to a partially observed Markov decision process. The human-machine interaction protocol

features a trade-off between allowing the robo-advisor to learn the investors preferences through

costly communications and optimizing the investors objective relying on outdated information.

4.1 Introduction

Robo-advising can substantially enhance human efficiency in investment decisions by handling time-

intensive operations. It is crucial, however, that the investor is able to efficiently communicate her

preferences to the machine to optimize her risk criterion. A machine can only provide a useful or

reliable service if its valuation of the costs and risks associated with each action are aligned with

the investor that it serves.
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In this chapter, we propose a framework that views robo-advising as a human-machine interac-

tion system. The objectives of the human and the machine are aligned, but there are informational

asymmetries. The machine is unable to directly observe the human’s preferences, and must infer

them via a dynamic learning process by analyzing the human’s actions. The machine is designed to

serve a broad class of humans, rather than tailored to a specific category. It is thus important for

the machine to personalize itself to the human, and self-calibrate as the human reveals information

regarding her risk preferences and objectives.

The distinguishing feature of our human-machine interacting framework is the simultaneous

handling of human-driven and context-driven risks. The uncertainty over the human’s characteris-

tics, such as her risk preferences, goals, and objectives, presents a human-driven risk to the machine.

Depending on the machine’s attitude toward risk, it could, for example, operate to provide a good

performance to the average human. Alternatively, it could target humans whose characteristics

belong to a specific quartile. On the other hand, the unpredictable nature of market conditions in

which the decisions need to be executed presents context-driven risks to the human.

Both human and machine share the cooperative goal of optimizing the human’s value. However,

informational asymmetries make the joint minimization process of human’s costs a strategic game.

As such, we introduce the new equilibrium concept of risk-sensitive Bayesian equilibrium. In the

absence of informational asymmetries, the objectives of the human and the machine are perfectly

aligned, so that the game becomes cooperative. We show that, under mild assumptions on the

monotonicity of the risk functions being optimized, the game theoretical problem can be reduced

a related single-agent, risk-sensitive, optimization problem.

We take the perspective of an investment firm wishing to develop a robo-advising tool that

constantly takes feedback from its clients, and uses it to best manage their investment portfolios.

In each period, the robo-advisor must place the clients’ capital into one of several pre-constructed

portfolios, each having a specific risk-return profile that dynamically changes based on updated mar-

ket information. Each portfolio decision reflects the robo-advisor’s belief on that specific investor’s

risk preferences. The investor may elect to make the portfolio decisions herself over the recommen-

dation of the robo-advisor, through the firm’s communication channels and in doing so it reveals
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information about her type to the machine. Overriding the portfolio choice of the robo-advisor,

however, presents an opportunity cost to the investor. Through our framework, the robo-advisor

can estimate the preferences of the client by observing her overriding investment decisions, or lack

thereof. Additionally, the firm faces risk as aggressive portfolio choices by the robo-advisor will

damage its reputation with the investor, if its estimates of the client’s preferences are incorrect

and the client is thus burdened with frequent override investment decisions. The tolerance that

the firm has towards the uncertainty over the investor’s preferences presents a human-driven risk

to the machine, which is defined explicitly in our framework.

We consider an investor wishing to optimize the sum of each period’s short-term risk-adjusted

returns. Examples include casual investors focusing on short-term gains and other investors whose

compensation package is dependent on their short-term performance. Since the robo-advisor does

not know the specific risk-aversion parameter of the investor, it averages the investor’s optimal

value over the probability distribution on the investor’s risk preferences learned on the basis of past

investor’s communication. We illustrate the fundamental benefit/cost trade-off faced by the investor

in communicating her risk preferences to the robo-advisor to obtain more tailored investment

decisions. The investor is only willing to override the machines’ decision if the performance loss,

defined as the difference between the risk-adjusted return of the optimal investor’s portfolio and

that achieved by the robo-advisor, is higher than the overriding costs. If the performance gain from

human’s intervention does not overcompensate for the overriding costs, then the investor would

tolerate investment decisions that are suboptimal given her true risk-aversion parameter. Through

numerical examples, we find that the robo-advising system achieves a value of the risk function that

is lower than that of an investor-only model, in which the investor chooses the portfolio herself, but

incurs opportunity costs due to market research and frequent portfolio rebalancing. The avoidance

of these opportunity costs is one of the major advantages of robo-advising, because it allows the

investor to delegate time-consuming activities to the machine and considerably reduce these costs.

The chapter proceeds as follows. Section 4.2 puts our chapter in perspective with existing

literature. Section 4.3 develops the human-machine interaction framework. Section 4.4 specializes

the framework to robo-advising. Section 4.5 concludes the chapter and discusses avenues of further
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research.

4.2 Contributions and Related Work

The proposed framework describes the cooperative decision making problem of a human and a

machine, that are both sensitive towards risk. In a recent work, [35] develop a framework for

human-machine interactions, based on the theory of inverse reinforcement learning (IRL). Both the

machine and the human are risk-neutral agents and, as such, their framework does not capture

human-driven or context-driven risk. They reduce the two agent-model to a joint optimization

problem building on an earlier study of [61], and compare their solution concepts to existing IRL

methods. In our study, we introduce a notion of risk-sensitive equilibrium to deal with risk aversion

of both human and machine, and both agents minimize a risk function.

One of the defining features of our framework is that both human and machine share the common

goal of optimizing the human’s objective. [62] introduce a model of decentralized stochastic control,

where a team of agents work together to minimize a common objective. They show that this

problem can be reduced to a POMDP by constructing a coordinator that determines strategies for

the agents, based on the common information available in each period. Similar approaches have

been employed by [83] [84] to solve incomplete information games between agents with conflicting

objectives. The coordinator technique is appealing because it reduces a game of multiple agents

to a single-agent optimization problem. In our framework, we show that, under the assumption

that the risk functions are monotone with respect to risk, the solution of the coordinator problem

corresponds to an equilibrium of the human-machine interaction system.

Our chapter is related to existing literature on risk-sensitive Markov decision processes (MDP).

Risk aversion in MDPs has been extensively studied. Earlier contributions focused on exponential

utility as in [44], mean-variance criteria an in [78], and percentile risk criteria an in [31]. [71]

consider the class of risk measures, and show that these lead to tractable dynamic programming

formulations. Recent contributions by [11] and [10] solve the utility maximization process and the

conditional value at risk criterion for a MDP. [36] generalize these studies to a wider class of risk

measures using a convex analytic approach. All these studies deal with the optimization of a single
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agent. In contrast, our framework features strategic interactions between agents, and employs risk-

sensitive optimization to solve for a new class of equilibria corresponding to the optimal pair of

human-machine actions.

The literature on robo-advising is still at its infancy. A popular approach in the wealth man-

agement industry is goals-based investing. Investors specify quantifiable objectives such as guar-

anteeing the expected wealth to be above a certain threshold, given that the expected loss from

return outcomes falling below the threshold is smaller than a certain value. The goals-based invest-

ment strategy is followed by Betterment, a leading robo-advisor firm, and has been investigated

in academic literature by [24; 25]. [25] define a goals-based wealth management approach which

restricts the efficient frontier to the subset of portfolios that achieve, with a specified probability,

the investors’ chosen target wealth levels. In contrast, our approach elicits information about the

investor’s risk preference, by offering a discrete catalogue of portfolios to the investor that may be

viewed as lying on the Markowitz’s efficient frontier.

Another popular robo-advising firm, Wealthfront, estimates investors’ subjective risk toler-

ance by asking clients whether they are focused on maximizing gains, minimizing losses, or both

equally. They construct a risk metric that is a weighted combination of subjective and objective

risk measures, with a higher weight assigned to the component indicating higher risk aversion. The

robo-advisor adopts a mean-variance optimization framework a-la [56] or variations of it. In this

framework, the utility function of the investor trades off the expected return with the risk of the

portfolio, weighted by the risk tolerance level of the investor. Thus, less risk-averse investors select

portfolios with a higher risk and higher expected return as compared with risk-averse investors. Our

approach to obtaining optimal portfolios is related to that used by Wealthfront in the short-term:

in each period, the robo-advisor chooses from a catalogue of portfolios on the efficient frontier.

However, in our model the investor and the machine interact throughout the whole investment

horizon, and the strategy reflects the machine’s learning process of the investor’s risk preferences

based on the investor’s decisions. Our optimization criterion accounts for a long-term objective,

given by the sum of single period mean-variance Markowitz utilities over the investment horizon.

Most recently, [23] develop a dynamic mean-variance framework in the context of robo-advising.
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In their model, the input to the machine is the expected return of the investor, that uniquely

identifies the mean-variance parameter. They argue that a quantitative asset allocation model

should be based mainly on risk profile and investment horizon, while other factors such as age,

labor, and income can be captured in ad-hoc ways by the financial advisor after running the asset

allocation model.

4.3 The Framework

We model both the human and the machine as risk-averse agents, in order to capture context-

driven and human-driven risk. We use risk functions to quantify the risk preferences of human

and machine. We refer to [75] for a treatment of single agent optimization based on risk-functions.

Consider a probability space (Ω,F , P ), and let L∞ be the space of essentially bounded random

variables.1 A risk function is a mapping ρ: L∞ → < from an uncertain outcome Z onto the set of

real numbers; see also [72]. Risk functions can thus account for the entire probability distribution

of an uncertain outcome, whereas expected utility functions can only depend on the realization of

that outcome. We require the risk function to be monotone, i.e., that higher risk is associated with

larger loss.2

Definition 4.3.1. A human-machine interaction game is a T period dynamic game with asymmetric

information played between two risk sensitive agents: a human, H, and a machine, M. The game

is described by a tuple
〈
S,
{
AH,AM

}
,Θ,

{
ρH, ρM

}
, P, c, π1

〉
, whose elements are defined as:

S is a discrete or continuous set of system states: s ∈ S;

AH is a discrete or continuous set of actions for H: aH ∈ AH;

AM is a discrete or continuous set of actions for M: aM ∈ AM;

Θ is a discrete or continuous set of possible risk parameters, only observed by H: θ ∈ Θ;

1 A random variable Z is essentially bounded if there exists M ≥ 0 such that P (|Z| > M) = 0.

2 Risk Functions which satisfy the axioms of monotonicity, translation invariance and convexity are referred to as

risk measures. See [5]. In our framework, we only require the monotonicity assumption to study the risk-sensitive

Bayesian equilibrium.
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ρHθ (·) is H’s risk function, parameterized by θ;

ρM(·) is M’s risk function;

P (·|·, ·, ·) is the probability transition function on the future state, given the current state and

joint action: P (s′|s, aH, aM);

c(·, ·, ·) is an instantaneous cost function that maps the system state and joint actions to a

vector of real numbers: c : S ×AH ×AR → <;

π1(·) is a common prior distribution over the risk parameters: π1(θ) ∈ P(Θ).

Remark 4.3.1. We assume that the set of actions AH does not include the action of the human

directly communicating her risk-aversion parameter to the machine. In general, risk-preferences

can be indirectly estimated by posing subjective questions to the human that reflect her behavioral

attitudes towards risk. However, it is well known from the behavioral economics literature that

humans do not provide consistent answers, for instance, research shows that individuals consistently

overstate their true risk-tolerance ([9]). It is therefore the case that direct communication of the

risk-aversion parameter by the human is unrealistic, and hence we exclude it from the action space.

After each period t, the human and the machine incur a common cost, c(st, a
H
t , a

M
t ) ∈ <,

depending on the current state of the system, and their joint action. Their incentives are partially

aligned as both the human and the machine prefer to keep the total system costs low over the T

period horizon. The human’s objective is to minimize the costs using her risk function ρHθ as the

optimization criterion, where θ is the human’s risk parameter. For example, the mean-variance risk

function ρHθ = θV ar
[∑T

t=1 c(st, a
H
t , a

M
t )
]
− E

[∑T
t=1 c(st, a

H
t , a

M
t )
]

maps the random outcome for

the total costs to a quantity through the parameter θ ∈ <. The machine does not know the value

of θ at the initial stage of the game, but begins with a prior distribution π1(·) ∈ P(Θ), where we

have used P(Θ) to denote the set of probability distributions on Θ. The machine’s objective is to

minimize the risk function criterion ρM.

Denote the set of public histories as

Ht :=
(
AH ×AM

)t−1 × St, (4.1)
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where ht =
(
s1, a

H
1 , a

M
1 , . . . , aHt−1, a

M
t−1, st

)
∈ Ht for t > 1 and h1 = s1. A public history contains

information that is observed by both the human and the machine, which includes the realization of

the system’s states and the actions executed by both agents. The machine maintains the posterior

distribution over the human’s type, πt(x) := P (θ = x|ht), which we refer to as the machine’s belief

in period t.

A Markov strategy for the human σH = (σH1 , . . . , σ
H
T ) is a sequence of measurable maps σHt :

S × P(Θ)×Θ→ P
(
AH
)

so that

σHt (a|st, πt, θ) = P (aHt = a|st, πt, θ), ∀t ∈ {1, . . . , T}, a ∈ AH.

A Markov strategy for the machine σM = (σM1 , . . . , σMT ) is a sequence of measurable maps σMt :

S × P(Θ)→ P
(
AM

)
so that

σMt (b|st, πt) = P (aMt = b|st, πt), ∀t ∈ {1, . . . , T}, b ∈ AM

Notice that the human’s Markov strategy depends on the machine’s current beliefs because the

action of the human is influenced by the action of the machine, which in turn depends on its belief

over the human’s type. The total (cumulative) cost is given by the random variable

CT :=
T∑
t=1

c
(
st, a

H
t , a

M
t

)
.

We define the risk-sensitive Bayesian equilibrium as a pair of strategies
(
σ∗H, σ∗M

)
and a belief

profile π∗ := (π∗1, . . . , π
∗
T ) such that

ρHθ
(
CT |σ∗H, σ∗M, π∗1, h1

)
≤ ρHθ

(
CT |σ̃H, σ∗M, π∗1, h1

)
,

ρM
(
ρHθ
(
CT |σ∗H, σ∗M, π∗1, h1

)
|π∗1
)
≤ ρM

(
ρHθ
(
CT |σ∗H, σ̃M, π∗1, h1

)
|π∗1
)
, (4.2)

for all strategies σ̃H, σ̃M. Furthermore, the machine’s belief profile π∗ must be consistent with the

strategies
(
σ∗H, σ∗M

)
in that Bayes’ rule is used to update the beliefs. Specifically, the machine’s

belief on the true value of the human’s risk parameter θ satisfies the standard nonlinear filter

equation ([33])

π∗t+1(θ) :=
π∗t (θ)σ

∗H(aHt |st, π∗t , θ)∑
θ̃ π
∗
t (θ̃)σ

∗H(aHt |st, π∗t , θ̃)
, (4.3)



97

provided there exists a value of θ̃ such that π∗t (θ̃) > 0 and σ∗H(aHt |st, π∗t , θ) > 0. In period 1, the

belief profile π∗1 is equal to the prior π1.

The first of the two inequalities in equation (4.2) indicates that the human has no incentive

to unilaterally deviate from her action σ∗H to any other action σ̃H because her risk-adjusted total

cost would increase. Similarly, the second inequality stipulates that the machine’s action yields the

smallest risk-adjusted total cost, according to both the human’s risk parameter and the machine’s

beliefs over the human’s risk parameter.

The canonical solution concept for dynamic games of incomplete information is the Bayesian

equilibrium (BE). However, standard equilibrium concepts rely on maximizing the expectation of

utility functions assigned to each player. A Bayesian equilibrium in our setup would require that

both agents minimize the expected disutility of total system costs, rather than the general risk

functions we present.

Context-driven risk in our model is captured by applying the risk function ρH to the total

system cost. This allows us to capture a wide variety of cost criteria that depend on the statistical

properties of the cumulative costs, including value at risk, conditional value at risk, and worst case

measures. A special case of context-driven risk is when the human minimizes the expectation of a

convex utility function on costs. Human-driven risk is quantified by the risk function ρM over the

distribution of human’s risk parameters. For example, if ρM is the expectation operator, then the

machine aims for the best service to the average human type. On the other hand, if ρM represents

the value at risk for some level of service α, then the machine aims to provide a good service for

1 − α percentage of the human’s types. Lastly, if the human’s type is revealed to the machine

before T , then there is no human-driven risk. In this case, ρM
(
ρHθ (CT )

)
= ρHθ (CT ), so that the

two inequalities in Eq. 4.2 coincide, and the game becomes cooperative.

The solution methodology that we propose to address the human-machine framework is to

transform the strategic game to a single-agent problem by introducing a coordinator agent C. The

coordinator assigns a policy σC = (gM, gHθ ) such that gM is a strategy for the machine and gHθ

is a decision function, which prescribes the human’s strategy for each possible realization of θ.

Hence, the coordinator is unaware of the human’s risk parameter, but instead chooses a strategy
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for every possible type of human. The coordinator’s objective is to use these controls to minimize

the machine’s risk function

min
gM,gHθ

ρM
(
ρHθ
(
CT |gHθ , gM, π1, h1

)
|π1

)
. (4.4)

The resulting problem is a partially-observable, risk-sensitive, Markov decision process (risk-POMDP).

The following theorem connects the solution to the coordinator problem with the equilibrium con-

cept for the human-machine interaction game.

Theorem 4.3.1. A solution to the coordinator problem is a risk-sensitive Bayesian equilibrium to

the two-agent human-machine interaction game.

The proof of Theorem 4.3.1 is included in appendix C.1.

4.4 Robo-Advising with Myopic Mean-Variance Preferences

We specialize the general framework presented in Section 4.3 to capture decision making in robo-

advising settings. We consider a T period investment framework in which an investor hires a robo-

advisor to select an investment portfolio at each period t. The robo-advisor learns the investor’s

risk preference over time, and selects the risk-return profile of the portfolio that best reflects the

learned preferences. For instance, if the investor’s tolerance for risk was known to be high, then the

robo-advisor would choose a portfolio with a higher expected return, irrespective of its variance.

Conversely, if the robo-advisor knew that the investor were very sensitive to risk, then it would

avoid portfolios with a high variance even if they had higher expected return.

The human H corresponds to the investor, and the machine M corresponds to the robo-advisor.

The system states model the market environment, assumed to be represented by the expected

return and standard deviation of m available investment portfolios at each time t. Formally,

S = {s(1), . . . , s(n)} represents the set of economic scenarios. Portfolio i in state s ∈ S is assumed

to have a known expected return µ(s, i) and standard deviation σ(s, i). For example, s = s(1) may

correspond to a low return-low volatility market scenario, while s = s(n) may represent a high
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return-high volatility scenario.3 Note that the expected return and standard deviation parameters

of each portfolio are time invariant, i.e., they depend on the actual state s, but not on the time t.

The probability of a transition from state s to state s′ is assumed to be independent of the human’s

action, and is denoted by P (s′ | s) for all s, s′ ∈ S. This means that the investor’s decisions cannot

influence the market environment.

The set of actions available for M corresponds to the m available portfolios, i.e., AM =

{a(1), . . . , a(m)}. An action aMt = a(i) ∈ AM corresponds to M choosing portfolio a(i) at time

t. In addition, the investor is allowed to override the decision of the robo-advisor, and therefore

has a set of actions AH = {a(0), a(1), . . . , a(m)}, where aHt = a(0) corresponds to no-override at t (so

that the investor keeps the portfolio selected by M), and aHt = a(i) > 0 corresponds to the investor

overriding M’s decision with portfolio a(i). We denote the actual portfolio selected at time t by

at :=


aMt , if aHt = a(0)

aHt , if aHt 6= a(0)

(4.5)

Active intervention by the investor is costly, and we denote this cost by κ(aHt ). We can interpret

the investor’s override decision as a two-stage process: First, the investor decides whether or not

the portfolio chosen by M is adequate (the investor’s policy is discussed in Section 4.4.3). Given

that the first decision (whether to override or not) is made at every period, we can assume that

κ(a(0)) = 0 without loss of generality. If aMt is inadequate, then the investor must choose an

alternative portfolio by performing costly operations, including market research, etc.... Hence, in

periods when an override has been decided, additional opportunity costs are incurred. Therefore,

we assume that override decisions are costly, i.e., κ(aHt ) = κc > 0 if aHt 6= a(0).

3 In an empirical setting, we would define s ∈ S to be a specific economic regime, and then estimate the expected

return and standard deviation of a pre-defined set of portfolios from historical data. Note, however, that the focus

of the present work is to analyze how the machine learns from the decisions of the investor and to quantify the value

added by a robo-advisor. Hence, we abstract away from the inference and selection of those scenarios, and assume

that they have been computed beforehand.
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4.4.1 The Risk-Aversion Parameter

The investor’s risk-aversion levels are assumed to belong to a finite set Θ, such that |Θ| = p. The

robo-advisor’s initial belief over the risk-aversion levels is given by π1 ∈ Rp. This initial belief could

be obtained and estimated by the robo-advisor from a series of questionnaires given to the investor

during sign-up.

We model the investor’s decision making process as if she were aware of her own risk-aversion

parameter, while M does not know it and must estimate it using available information. We highlight

the difference between the prior distribution π1 on the initial risk-aversion parameter from the

implied risk-aversion parameter that the investor indirectly communicates through her trading

decisions. In practice, an investor may not be aware of what her risk-aversion parameter is at any

given point in time. For example, it is well known that investors consistently overestimate their

risk-tolerance, hence relying on an investor’s self-reported risk-tolerance may lead to a suboptimal

choice of portfolios. Instead, she makes decisions in accordance with an internal system of beliefs

which implicitly, rather than explicitly, quantifies risk.

Our modeling framework provides a mechanism to infer the implied risk-aversion parameter

of the investor. The decisions of the investor allow the robo-advisor to learn the risk-aversion

parameter via a standard Bayesian update, as described in equation (4.3).

4.4.2 Costs and Objective Functions

As discussed in Section 4.3, the objective of the human-machine interaction system is to minimize

the risk-adjusted expected cost for each period of the investment horizon. In particular, the cost

in period t is given by4

cθ(st, a
H
t , a

M
t ) = θσ2(st, at)− µ(st, at) + κ(aHt ),

where at represents the chosen portfolio and is given by (4.5). The cost function above weights the

risk associated with the investment decision against the expected portfolio return, and accounts for

the costs of overriding the robo-advisor’s decision. This cost function penalizes the amount of risk

4 Transaction costs, although an important factor in any investment strategy, are not considered in this framework.
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undertaken (captured by the variance of the selected portfolio) according to the risk-aversion level

of the investor. The total cumulative cost is then given by

CT (s1:T , a
H
1:T , a

M
1:T ) :=

T∑
t=1

cθ(st, a
H
t , a

M
t ),

where s1:T denotes the state path s1, . . . , sT , while aH1:T := {aH1 , . . . , aHT } and aM1:T := {aM1 , . . . , aMT }

denote the set of investor and robo-advisor actions, respectively. We then define the coordinator

policy as σC = (gM, gHθ ), where, as discussed in Section 4.3, gM := {gM1 , . . . , gMT } denotes a strat-

egy for the machine and gHθ := {gHθ,1, . . . , gHθ,T } prescribes the human’s strategy for each possible

realization of θ. Note that gM and gHθ are policies that are adapted to the set of public histo-

ries given by (4.1). The risk function of the human is then given by ρHθ (CT | gM, gHθ , π1, h1) :=

Es[CT (s1:T , g
M, gHθ ) | π1, h1], where the expectation is taken with respect to the probability dis-

tribution of the state path s1:T . We assume that the robo-advisor captures the human-driven risk

using ρM(ρHθ | π1) := Eπ[ρHθ | π1], where in this case the expectation is taken with respect to the

robo-advisor’s belief states π1, . . . , πT on the risk-aversion parameter θ. In other words, we assume

that the robo-advisor is neutral with respect to the investor’s type.

The objective function of the human-machine interaction system corresponds to the minimiza-

tion criterion in the coordinator problem given by (4.4), and takes the explicit form

min
gM,gHθ

Eπ,s
[ T∑
t=1

θσ2(st, gt)− µ(st, gt) + κ(gHθ,t))
]
, (4.6)

where the expectation is taken with respect to the joint distribution of the belief states π1, . . . , πT

and the state path s1:T , and where gt is defined similar to at in (4.5), but replacing actions aMt

and aHt with strategies gMt and gHθ,t, respectively. This choice of objective function reflects that

the robo-advisor averages an investor’s optimal risk criterion, including the cost of communication,

over the filtering probability distribution of the investor’s risk preference conditioned on the set of

public histories. The investor wishes to optimize the sum of each period’s risk function.

4.4.3 Investor’s Policy

From the form of the objective function in (4.6) and the learning capabilities of the robo-advisor, it

is evident that the investor faces a trade-off. On the one hand, the investor would like to frequently
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communicate her risk preferences (through overriding actions) so that the robo-advisor is better

informed to make investment decisions. On the other hand, the investor would like to keep the

costs low and not override, unless communication leads to significant improvements in the robo-

advisor’s portfolio selection strategy. In other words, if the override costs κ(aHt ), for aHt > 0, is

large enough, the investor would not have any incentive to override the robo-advisor’s decisions,

even if they appear suboptimal for a given risk-aversion parameter. Under these circumstances, the

robo-advisor will not be able to learn the risk-aversion of the investor. On the other hand, if the

override cost is sufficiently low, the investor may find it optimal to communicate her preferences

very frequently, and the robo-advisor will be able to learn the investor’s risk preferences fast.

Assuming that the investor behaves myopically, as described in Section 4.4.2, we can explicitly

write the investor’s myopic policy aHt . First, we denote by a∗ the myopic optimal portfolio at time

t, i.e.,

a∗ := argmin
a∈AH\{a(0)}

θσ2(st, a)− µ(st, a) (4.7)

Then the myopic investor’s policy, after observing the machine decision aMt , is given by

aHt =


a(0), if θσ2(st, a

M
t )− µ(st, a

M
t ) ≤ θσ2(st, a

∗)− µ(st, a
∗) + κ(a∗)

a∗, otherwise.

Hence, the investor will only override if the risk-adjusted cost of portfolio aMt is lower than the

risk-adjusted cost of the myopic optimal portfolio a∗ plus the override cost.

The above policy assumes that the investor always acts optimally, so that any override decision

only happens if the portfolio chosen by the robo-advisor significantly differs from the optimal myopic

portfolio of the investor. However, there can be situations in which an investor does not have the

time or flexibility to override a suboptimal decision made by the robo-advisor. The frequency of

these errors would be higher for short time-scales, because the investor has a smaller amount of time

at her disposal to make decisions. Therefore, we consider a situation in which an investor behaves

as an imperfect agent. More specifically, we allow the investor to commit a missed override error,

in which she fails to override a suboptimal decision taken by the robo-advisor. More specifically,
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the error is captured by the imperfect human policy given by

aHt = a(0) if Dt > 0.

where Dt is a measure of the sub-optimality of the robo-advisor’s decision, and is given by

Dt := θtσ
2(st, a

M
t )− µ(st, a

M
t )−

[
θtσ

2(st, a
∗)− µ(st, a

∗) + κ(a∗)
]

We assume the missed override error occurs randomly with probability Pm(Dt), conditional on

Dt > 0. We expect that larger discrepancies would be easier to perceive for an investor, while lower

discrepancies would be harder to detect or less important to correct. To capture this behavior we

choose Pm(Dt) to be a non-increasing function of Dt, so that the probability of a missed override is

smaller if the differences between the robo-advisor chosen portfolio and the optimal myopic investor

portfolio is larger. Note that these errors would slow down the learning process of the robo-advisor,

who will take longer to learn the risk-aversion parameter of the investor.

4.4.4 Robo-advisor’s Policy

As discussed in Section 4.3, the optimization criterion of the robo-advising system may be formu-

lated as a POMDP. It is well known that finding the optimal solution of a POMDP is, in general,

computationally intractable. Many approximation algorithms have been proposed in the literature,

and we refer to [51] for a comprehensive review of POMDPs.5

We consider a simple heuristic that is based on the greedy policy with respect to the so-called

Q-function, and defined by

Qt(θ, st, a
M
t , a

H
t ) := θσ2(st, at)− µ(st, at) + κ(aHt ) + E

[
Vt+1(θ, st+1) | st

]
, t = 0, . . . , T (4.8)

where we recall that at is defined in (4.5), and we define

Vt(θ, st+1) := min
aMt ,aHt

Qt(θ, st, a
M
t , a

H
t ), t = 0, . . . , T (4.9)

5 See also [55], [54] and [47], who review several methods that yield near-optimal policies, along with the efficiencies

and weaknesses of these procedures. Recent work by [39] uses the so-called supersolutions to construct efficient

approximate value functions.
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with boundary condition VT+1 = 0. The greedy policy with respect to the Q-function is then given

by

(gMt (πt), g
H
t (πt)) := argmin

at

∑
θ∈Θ

πt(θ)Qt(θ, st, at), (4.10)

where πt represents the filtering distribution (or belief state) on the risk-aversion parameter at time

t.6 We refer the reader to Appendix C.2 for a description of alternative heuristic procedures to

approximate solutions of POMDPs.

Having set a heuristic policy for the robo-advisor, we construct an upper bound V upper
0 on (4.6)

via Monte Carlo simulation. We sample J paths of the state process and calculate the greedy policy

(4.10) at each time t. Using this policy, we compute the cumulative cost on each sample path, and

then take the average to obtain V upper
0 . To measure the performance of the heuristic, however, we

need to calculate a so-called dual bound, which is a lower bound for the minimization problem in

(4.6). A dual bound is obtained directly from the Q-function at time t = 0, by setting

V lower
0 = min

a0

∑
θ∈Θ

π0(θ)Q0(θ, s0, a0). (4.11)

As our numerical results in Section 4.4.5 show, the above described heuristic above is close to

optimal because the duality gap is relatively small. It is worth highlighting that the quality of

the approximation depends on the particular POMDP that is being solved. For completeness, we

provide a brief discussion on more sophisticated approaches to calculate dual bounds in Appendix

C.2.

4.4.5 Numerical Results

This section develops a numerical study to analyze the rate at which the machine learns the human’s

risk preferences, and to measure the value added by the robo-advisor over the stand-alone investor.

6 We remark that the Q-function heuristic does not consider exploration-exploitation tradeoffs. Despite this being

an important concept in the reinforcement learning literature, exploration is not desirable in a system where the

client pays the robo-advisor to be given optimal investment decisions. Proposing portfolio choices that explore the

risk-aversion space of the investor, for example by choosing a random portfolio with probability ε > 0, would reflect

badly on the robo-advisor system and may burden the client with unnecessary costly override decisions.
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We use Monte Carlo simulation of the greedy policy given in 4.4.4 to estimate an upper bound for

the solution of the robo-advising system (4.6). We fix the number of investment periods to T = 10,

and set the number of portfolios available to the investor at each time t to n = 4. We assume that

there are m = 20 admissible values for the investor’s risk-aversion parameter. Additional details

on the numerical study are reported in Appendix C.3.

We start analyzing how the machine learns, over time, the investor’s risk aversion parameter

θ. Figure 4.1 illustrates the learning process on two distinct simulated paths of the system, for an

error-prone investor with Pm = 0.4 for Dt ≤ 3%, and Pm = 0 otherwise. Based on the investor’s

decisions to override, the machine revises its belief on the investor’s risk-aversion parameter via

Bayesian updating (4.3). At time t = 1, the robo-advisor places a uniform prior distribution on

the set Θ of possible risk-aversion parameters for the investor (see Appendix C.3 for details). With

time, the mass of the posterior distribution concentrates on the set of plausible values, i.e., those

that are consistent with the investor’s decisions so far.

Figure 4.1: Updating of beliefs on the risk-aversion parameter for an error-prone investor with

Pm = 0.4 for Dt ≤ 3%, and Pm = 0 otherwise. We illustrate the result on two sample paths of the

robo-advising system.

Next, we analyze the value added by the robo-advisor in making decisions, as compared to an
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investor-only model who makes decisions without any machine support. To perform this compar-

ison, we first calculate the approximate expected optimal value produced by the chosen heuristic

in the risk-POMDP, for a given override cost κ(aHt ) = k if aHt > 0. Then, we consider an investor-

only system by reducing the action space of the investor to be AH
0 := AH \ {a(0)}. This means

that the investor needs to choose her own portfolio at every period t (or equivalently, she must

always override the choice of the machine). For comparison purposes, in the investor-only setting

we assume that any action aHt ∈ AH
0 has the same cost κ(aHt ) = k. This cost may be interpreted as

the effort incurred by the investor for choosing a portfolio. She needs to closely monitor financial

markets, solving her own optimization problem, and communicating her choice to an asset man-

ager. Moreover, the attention span required to make decisions on short time-scales is subtracted to

other activities, and thus represents an opportunity cost for the investor. Clearly, the investor-only

system corresponds to a fully-observed problem, because the investor is aware of her own risk-

aversion parameter, and so the criterion (4.6) becomes a fully-observed Markov Decision Process

(MDP) which can be solved to optimality. Figure 4.2 shows the approximate optimal value of the

risk-POMDP corresponding with the human-machine interaction system, and compares it to the

optimal value of a human-only MDP, for different choices of the cost parameter k.

Figure 4.2: Approximate value of the minimum expected cost of the robo-advisor system (green)

and expected minimum cost of the investor-only system (yellow), as a function of the cost parameter

k. We assume that the cost of an override decision in the robo-advisor system is equal to the cost

of an investment decision in the investor-only system. The blue bars represent the lower bound on

the true-optimal value of the robo-advisor system computed using Eq. (4.11).
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Figure 4.2 illustrates the value added by the robo-advisor. Assuming the override cost in the

robo-advisor system equals the decision cost in the investor-only system, we observe that the robo-

advisor system yields a lower expected cumulative cost over the investment horizon, compared to

the investor-only system. This difference can be explained by two main observations. First, the

investor will not incur costs if the robo-advisor selects a portfolio that is close to the myopically

optimal one, given the true (unknown) risk-aversion parameter (i.e., no override is needed). By

contrast, these decision costs are incurred every period in the investor-only system. From an

operational perspective, this is one of the primary advantages of robo-advising, in that it allows

the investor to delegate research on investment instruments, times for portfolio re-balancing, and

other time-consuming activities to the robo-advisor. Such a delegating process may considerably

reduce the investor’s costs. It also appears from Figure 4.2 that, as the override / decision cost

increases, the overall expected cumulative cost increases (i.e., it becomes less negative). However,

this increase in cost is not reflected in a similar fashion by the human-only and the robo-advisor

system. In the human-only system, we observe a linear increase in expected cumulative cost, while

in the robo-advisor system, the expected cumulative cost increases at a slower rate for override

costs greater than 4%. This effect can be explained by the previously mentioned trade-off faced

by the investor when deciding on overriding: if the override cost is too high, the investor never

chooses to override and the robo-advisor does not efficiently learn the risk-aversion parameter of

the investor. As a result, it will make decisions that satisfy the average investor, where the average

is taken with respect to the initial belief on the investor’s risk aversion.

4.4.6 Model Extensions - Dynamic Risk-Aversion

We present an extension of the modeling framework, that can accommodate risk-preferences which

are not necessarily static, but rather dynamically change overtime as the market moves and invest-

ment decisions are made.

We consider a dynamic risk-aversion parameter θt ∈ Θ, whose transitions are determined by

the following function

θt+1 = f(θt, a
H
t , a

M
t , st, st+1) for t = 1, . . . , T − 1. (4.12)
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The transition function f may be designed by the modeler to reflect typical behavior of an investor.

Note that f is not only a function of the decisions aHt and aMt , but also of the current state st

and next state st+1. Hence, risk-aversion parameter transitions are both impacted by investment

decisions and changes in the market environment. For example, the modeler may believe that

riskier choices, i.e. portfolios with a higher standard deviation, should have a higher impact on

the risk-aversion parameter. More specifically, an investor could end up with a higher appetite for

risk if the market moves in a favorable direction and the portfolio chosen was high-risk high-return,

because the resulting capital and the investor’s optimism would then have increased. Similarly, if

the high-risk high-return portfolio was chosen but the market moved in an adverse direction, the

appetite for risk could be lower because both the resulting capital and her optimism would have

taken a hit. Additionally, the magnitude of the change in risk preferences may also depend on the

riskiness of the chosen portfolio, so that a high-risk high-return portfolio may have a higher impact

on the capital and optimism than a low-risk low-return portfolio.

We can combine the transition function of the risk-aversion parameter (4.12) with the state

transitions P (st+1 | st) to obtain a risk-aversion transition probability function, given by

P (θt+1 | θt, aHt , aMt , st) :=
∑

st+1∈S
I{θt+1=f(θt,aHt ,a

M
t ,st,st+1)}P (st+1 | st), (4.13)

where I denotes the indicator function. The above expression is useful to perform Bayesian updating

of the risk-aversion parameter. For a given investor strategy σH, the robo-advisor learns and tracks

the risk-aversion parameter using via Bayesian updating. The resulting formula is an extension of

that given in Eq. (4.3) for the static case, and takes the following form in the case of dynamically

changing risk-aversion

π∗t+1(θt+1) :=

∑
θt
π∗t (θt)σ

∗H(aHt |st, π∗t , θt)P (θt+1 | θt, aHt , aMt , st)∑
θ̃

∑
θt
π∗t (θt)σ

∗H(aHt |st, π∗t , θt)P (θ̃ | θt, aHt , aMt , st)
, (4.14)

Figure 4.3 illustrates the estimation process of an error-prone investor on one simulated path of

the state process, assuming that risk preferences change dynamically as prescribed by Eq. (4.12).

Figure 4.3 shows how the robo-advisor tracks the risk-aversion parameter, as it changes according

to market movements and past decisions. Noticeably, the mode of the filtering probability mass

adapts to reflect the actual dynamics of the risk-aversion parameter.
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Figure 4.3: Updating of beliefs that track the dynamic risk-aversion parameter, using the Bayesian

filtering distribution in Eq. (4.14). We consider an error-prone investor with Pm = 0.4 for Dt ≤ 3%,

and Pm = 0 otherwise. The red vertical lines correspond to the value of the true (unknown) risk

aversion parameter in that period.

4.5 Conclusion and Future Work

In this chapter, we presented a framework for human-machine decision making, accounting for

both human-driven and context-driven risk. Due to the different sensitivities to risk by the human

and the machine, respectively, to the context in which the task is being executed and to the

category of humans served, the optimal decision making problem may be formulated as a game

with strategic interactions. We have introduced the concept of risk-sensitive equilibria to deal with

the corresponding game, and shown that it can be computed by solving a risk-POMDP through a

coordinator problem.

We have specialized our framework to capture the interactions between an investor and a robo-

advising firm. Our numerical study highlights the trade-off between frequent communication of

preferences by the investor and the costs of such a communication. If the investor intervenes

frequently, the machine can learn the risk-aversion parameter of the investor faster, and therefore

make more tailored portfolio decisions. On the other hand, each override decision of the investor

is costly, and these total costs may exceed the performance gain stemming from more informed

investment decisions by the machine. The robo-advising firm provides a service to the investor that

may be superior to a stand-alone investor making all investment decisions on her own. Assuming

that override costs occurring in the human-machine system and market research costs occurring in

the human-only system are equal, our numerical analysis suggests that the objective risk function is
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lower in the human-machine interacting system. More importantly, since human costs are incurred

in all periods for the human-only system, an increase in these costs translates to a linear increase

in the human-only expected cumulative costs. On the other hand, the cost increase in the human-

machine system is bounded. This is because if the investor does not communicate her preferences,

the robo-advisor will make portfolio decisions using its initial belief on the human’s risk aversion,

without updating it. These decisions, however, will not be tailored to the specific risk-profile of the

investor.

Future directions for this research include the development of new solution methods to integrate

risk optimization techniques with concepts from game theory. A key refinement to equilibrium in

dynamic games is the notion of subgame perfection. This enforces incentive compatibility for both

agents in each subgame initiated at the start of each period. However, many commonly used risk

functions are not time-separable, i.e. the risk over the entire horizon cannot be decomposed into a

set of risks, each allocated to a different time period. Without time separability, the risk-POMDP

no longer satisfies the Markov property. For example, when an investor chooses an action at a

specific time, she may account for the implications of such an investment decision on her future

risk preferences. Changes in the investor’s risk attitudes depend both on machine observable

information, such as the current wealth level of the investor, and on investor-specific information,

such as updates on her educational or family status, that is unobserved by the machine. The

establishment of an effective communication protocol, accounting for the fact that the investor will

optimize a different objective functional at later points in time, is left for future research.
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Chapter 5

Information Relaxation Bounds for

POMDPs: An Application to

Personalized Medicine in

Mammography Screening

To date there have been relatively few1 successful medical applications of POMDPs. The reasons for

this include the difficulty of determining a suitable objective to optimize, the difficulty of estimating

the POMDP parameters and the general difficulty of solving POMDP problems. Recently Ayer et

al. [6] proposed a POMDP formulation with the goal of determining an optimal screening policy

for breast cancer, the most common cancer among U.S. women according to the American Cancer

Society (ACS). The recommendation guidelines provided by the ACS in 2015 [64] is for women

with an average risk of breast cancer to take mammograms beginning at age 45, and to continue

annually until age 54. Beginning at age 55, they are then recommended to undergo biannual

screenings (but they have the opportunity to continue annually if desired) and to continue taking

mammograms as long as their life expectancy is at least 10 years. In addition, the ACS indicates

1 A review of applications of MDPs and POMDPs to medical decision problems can be found in [73].
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that women aged 40 to 44 may choose to begin mammogram screening if desired. In contrast, in

2016 the U.S. Preventive Services Task Force (USPSTF) [77] recommended that women aged 50 to

74 screen biannually using mammography, and they left open the decision for women aged 40-49.

In addition, they did not find enough evidence to recommend taking mammograms beyond the age

of 75.

5.1 Modeling Screenings as a POMDP

In this chapter we apply the information relaxation approach to the POMDP formulation of Ayer

et al. We will use the term decision-maker (DM) to refer to the woman or patient in question but

the decision-maker could also refer to a doctor or some other medical professional. We assume

the DM has the objective of maximizing her total expected quality-adjusted life years (QALYs).

We assume a finite-horizon discrete-time model where the time intervals correspond to six-month

periods beginning at age 40 and ending at age 100 so that t ∈ {0, . . . , 120}. The hidden state space

represents the true health state of the patient with H = {0, 1, 2, 3, 4, 5}. Specifically:

• State 0 represents a cancer-free patient.

• States 1 and 2 indicate the presence of in situ and invasive cancer, respectively.

• States 3 and 4 represent fully observed absorbing states in which the patient has been diag-

nosed with in situ and invasive cancer, respectively, and has begun treatment.

• State 5 is a fully observed absorbing state representing the death of the patient.

Clearly states 3, 4 and 5 can be explicitly observed and are therefore not actually hidden. We include

them among the set of hidden states, however, to account for the possible transition dynamics of the

other hidden states into these absorbing states. The knowledge of being in these hidden absorbing

states can then be modeled correctly through noiseless observations of them. We will refer to the

subset of hidden states {0, 1, 2} as pre-cancer states and the absorbing states {3, 4, 5} as post-cancer

states.
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At each time t, the DM can choose to either have a mammography screening (M) or wait (W ).

If the decision to wait is made, the patient may perform a self-detection screening which will have

either a positive or negative result. That is, if through self-detection the patient has reason to be

concerned about the presence of cancer, we say the self-test is positive. The possible results of a

mammogram are also positive or negative. In the former case, an accurate procedure, e.g. a biopsy,

is then prescribed to precisely determine the true cancer status of the patient. If the biopsy result

is positive and cancer is found with certainty, the patient will then exit the screening process and

move into one of the absorbing states, 3 or 4, to indicate that cancer treatment has commenced.

To code this behavior, Ayer uses hidden state transitions that are functions of the observations. To

model this behavior as a conventional POMDP (where hidden state transitions do not depend on

observations), we introduce an exit action (E) as the only available action after a positive biopsy

has been observed. The transition into absorbing state 3 or 4 will now only depend on the current

hidden state and the exit action which must be taken if the biopsy result is positive and cancer is

found with certainty. The set of possible observations is therefore O = {R−, R+, B1, B2, D} where:

• R− is a negative test result (either from a mammography or self-detection).

• R+ is a positive test result (including a negative biopsy if the test was a positive mammo-

gram).

• B1 and B2 represent in situ cancer and invasive cancer, respectively, and they can be observed

via a biopsy following a positive mammogram. If B1 or B2 are observed, the action space is

then restricted to the exit action E which transfers the patient to the corresponding absorbing

state.

• D represents the death of the patient.

We assume a prior probability distribution, π0, on the true health-state of the woman at age 40.

The transition probabilities of the latent pre-cancer health states are assumed to be age-specific

and therefore a function of time t. We assume that a screening decision does not influence the

development of cancer and therefore have P tij(M) = P tij(W ) for all t and for all i, j ∈ H. The time
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t transition matrices for the screening and wait actions, M and W , are then given by

P t(M) = P t(W ) =



pt00 pt01 pt02 0 0 mt
0

0 pt11 pt12 0 0 mt
1

0 0 pt22 0 0 mt
2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(5.1)

where mt
i represents the mortality rates for each health-state, i, pt01 and pt02 represent the in situ and

invasive cancer incidence rates, respectively, and pt12 is the probability that in situ cancer develops

into invasive cancer. Recalling that time steps in the POMDP correspond to half-year periods,

all rates correspond to effective semiannual rates. Estimates for some of the parameters in (5.1)

were obtained from various sources (see Table 5.1 below), and we used reasonable assumptions to

estimate the parameters for which we could not find external estimates. We note that we have not

conducted a full study on the appropriateness2 of these parameters, but rather we treat them as

ballpark estimates in order to illustrate the information relaxation POMDP methodology. Finally,

the exit action, E, will take pre-cancer states to post-cancer treatments with probability 1, i.e.

P t1,3(E) = 1 and P t2,4(E) = 1. Since this action is only available to true health-states 1 and 2, we

need not define the transitions for other health-states.

The observation probabilities are determined by the accuracy of the examinations, which are

commonly referred to as specificity and sensitivity. The specificity of a test corresponds to the true

negative rate, i.e. the probability that a cancer-free woman obtains a negative test result, while the

sensitivity of a test is the true positive rate, i.e. the probability of a positive test result given that

the woman has cancer. For each test we employ the age-specific sensitivity and specificity factors

2 Experts in the field of breast cancer could almost certainly provide superior estimates for those parameters where

we could not find external estimates.
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Parameter Source

Mortality m0 SSA Period Life Table, 2013, Female mortality [79]

Mortality m1,m2 SEER [45] Table 4.13, all stages and all ages3

Incidence p01 SEER Table 4.12, all races

Incidence p02 SEER Table 4.11, all races

Incidence p12 Assumed equal to p02

Initial risk π0 SEER Table 4.24, female 40-49 4

Table 5.1: Sources of the demographic rates for the transition probabilities.

that were computed and reported by Ayer et al. They are:

spect(W ) = 0.92, ∀t senst(W ) = 0.44, ∀t

spect(M) =


0.889, if t ∈ {0, . . . , 19}

0.893, if t ∈ {20, . . . , 39}

0.897, if t ≥ 40

senst(M) =


0.722, if t ∈ {0, . . . , 29}

0.81, if t ∈ {30, . . . , 59}

0.862, if t ≥ 60.

Using these rates, we define the age-specific observation matrices according to

Bt(W ) =



spect(W ) 1− spect(W ) 0 0 0

1− senst(W ) senst(W ) 0 0 0

1− senst(W ) senst(W ) 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


3 We approximated the invasive cancer mortality rate by inferring the 6-month mortality rate from the 5 year

survival rate (0.897) and used the maximum of this 6-month rate and the average female 6-month mortality for a

woman of that age. We assumed that in situ mortality is equal to the female mortality times 1.02 for women of the

same age.

4 The initial risk for an average woman was taken from the breast cancer prevalence rate (0.9462%) and split 80%

for invasive cancer and 20% for in situ cancer, as discussed in [80].
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and

Bt(M) =



spect(M) 1− spect(M) 0 0 0

1− senst(M) 0 senst(M) 0 0

1− senst(M) 0 0 senst(M) 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


where Bt

ij(a) is the probability of observation j ∈ O when action a is taken and the hidden state

is i ∈ H. Note that the observability of the hidden absorbing states 3, 4 and 5 is made evident

through these matrices. It is worth pointing out that once action E has been chosen, the DM

immediately transitions to an absorbing fully-observable state, and therefore there is no need to

define Bt(E).

A characteristic of medical decision problems, as pointed out in Ayer et al., is that the obser-

vation at time t is a function of the current action, Bij(a) := P(ot = j | ht = i, at = a), as opposed

to a conventional POMDP where the observation is a function of the prior action; see (2.2). This

means that events take place in the following order: given a belief state the DM first takes an

action, then immediately observes the result of the action and updates the belief, then a transition

takes place and the belief is “carried forward”. This technicality results in a different version of

the standard filtering update in which the transition occurs prior to the observation. Nonetheless,

filtering in this non-standard form of the POMDP is stilla straightforward task. And for the same

reason, the natural filtration for the medical decision problem is one where Ft is defined to be the

σ-algebra generated by o0:t−1, for t ≥ 1, and with F0 defined to be the σ-algebra generated by π0,

the prior distribution on the initial hidden state.

We define the reward obtained at time t, rt(ht, at, ot), as the expected QALYs between times t

and t+ 1 that a person in true health-state ht would accrue after making decision at and obtaining

observation ot. Note that although the reward is a function of the as yet unseen observation (see
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previous paragraph), ot, we can instead use5 its expected value

rt(ht, at) := E[rt(ht, at, ot) | ht] (5.2)

which is easy to calculate and is now in the standard form for a POMDP.

We follow the same calculations as Ayer et al. to define the reward functions. If the patient is in

a pre-cancer state i ∈ {0, 1, 2}, the wait action reward is given by rt(i,W, ot) = 0.25mt
i+0.5(1−mt

i)

where the mt
i’s are the (semi-annual) mortality rates given in Table 5.1. This is the reward for

a woman in period t and true pre-cancer health state, i, and in fact does not depend on the

observation ot. Specifically, if death occurs in the next six months (which occurs w.p. mt
i), it

is assumed to happen exactly at the three month mark and so the woman will therefore obtain

0.25 years of lifetime. In contrast, if she survives (which occurs w.p. 1 −mt
i) she obtains the 0.5

half-years of lifetime in that period.

For the mammography screening action, we subtract a disutility function, du(ht, ot), from the

reward so that rt(ht,M, ot) := rt(ht,W, ot) − du(ht, ot). The disutility is given a value of 0.5

days for a negative mammogram, two weeks for a true positive mammogram and four weeks for a

false positive mammogram. True positive mammograms will in addition force the DM to exit the

system in the next period, and provide a lump-sum reward of Rt(i) := rt(i, E) for i = 1, 2. Recall

that a true positive mammogram followed by an exit action refers to a woman being accurately

diagnosed with cancer and then going into treatment immediately. We expect that a patient under

treatment would have a lower remaining expected lifetime than the remaining expected lifetime,

et(0) say, of a healthy woman of the same age, but higher than the remaining expected lifetime,

et(i) say, of a woman with cancer i ∈ {1, 2} who is undiagnosed and of the same age. (Note that

the expected remaining lifetimes can be calculated using the corresponding mortality rates from

times t to T .) We therefore assume et(0) < Rt(i) < et(i) and in our numerical example, we set

Rt(i) = 0.5et(0)+0.5et(i) for i = 1, 2. We also assume that the absorbing states provide no rewards.

It is perhaps worth noting how the benefit of mammography screening is modelled in our

POMDP setting. Specifically, it arises from the possibility of identifying a cancer early and therefore

5 We acknowledge a slight abuse of notation here in that we are using the same rt to denote time t rewards

rt(ht, at), rt(ht, at, ot) and rt(πt, at). It should be clear from the context what version of the reward we have in mind.



118

entering treatment and having an expected remaining lifetime that is greater than if the cancer

went undiagnosed. The reduced expected lifetime of a woman with an undiagnosed cancer will be

reflected via the specific values of the transition and mortality rates of the second and third rows

(corresponding to undiagnosed cancer states 1 and 2) in (5.1). There is a cost to mammography

screening, however, which is reflected via the disutility function and so the ultimate goal is to find

a policy that trades the benefits of mammography screening off against its disutility.

5.1.1 Value Function Approximations

Two methods were used to obtain value function approximations: a QMDP approximation, adapted

from the robot navigation problem to include intermediate rewards, and a grid-based approxima-

tion. The QMDP approximation is given by

Ṽt(o0:t−1) := max
at

∑
h∈H

πt(h)V Q

t (h, at) (5.3)

with the understanding that at t = 0, Ṽ0 := Ṽ0(π0), and where V Q
t is the Q-function of the

corresponding fully observable MDP formulation, i.e.

V Q

t (h, a) := rt(h, a) +
∑
h′∈H

Phh′(a)V MDP
t+1 (h′) (5.4)

V MDP
t (h) := max

at∈A
V Q

t (h, at) (5.5)

for t ∈ {0, . . . , T} with terminal condition VMDP
T+1 := 0. Note that the only difference between these

definitions and those given for the robot navigation application is the inclusion here of intermediate

rewards.

The grid approximation corresponds to a point-based value iteration method using a fixed and

finite grid approximation of the belief space, Π (see [55][42]). A standard approximation tool in

dynamic programming is to represent an infinite state space as a finite grid of points, P ⊂ Π, and

obtain an AVF by linear interpolation for points not in P . Specifically, the AVF is obtained by

solving a dynamic program with terminal condition ṼT+1 = 0 and Bellman equation

Ṽt(π) = max
at

[
rt(π, at) +

∑
o

Pat(o | π)Ṽt+1(f(π, at, o))
]

(5.6)
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for t ∈ {0, . . . , T}, π ∈ P and where rt(π, a) :=
∑

h rt(h, a)π(h), f(π, a, o) is the belief update

function, and Pa(o | π) :=
∑

h Pa(o | h)π(h). Note that in general f(π, at, o) will not be an

element in P and so we use linear interpolation to evaluate the AVF at those points. To tie in the

grid approximation with our application, we take the 3-dimensional subspace corresponding to the

pre-cancer states

Π̃ := {π ∈ Π | π = (π0, π1, π2, 0, 0, 0), π0 + π1 + π2 = 1}

of the 6-dimensional simplex Π. We call Π̃ the pre-cancer belief space simplex6 and form a finite

grid P ⊂ Π̃. We then solve the dynamic program (5.6) for all elements of P union the elements

(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0) and (0, 0, 0, 0, 0, 1). For our application, we use a grid P with elements

0.05×(i1, i2, i3) with i1, i2, i3 integer valued and such that they lie on Π̃, i.e. 0.05×(i1 +i2 +i3) = 1.

We can now generate lower bounds on the optimal value function, V ∗0 (π0), by simulating the

policies that are greedy w.r.t. each of the value function approximations. We will compare the

performance of these greedy policies to the official policies recommended by ACS and USPSTF.

5.1.2 The Uncontrolled Formulation

The action-independent transition and emission matrices are built using different approaches for

each AVF. First, using the fact that the QMDP approximation is a supersolution, we can drop the

absolute continuity requirement and set the transition matrices, Qt, using (A.7) and, similarly, we

set the uncontrolled emission matrices according to

Etij ≡ Bij
(

argmax
a∈A

V Q
t (i, a)

)
. (5.7)

In contrast, there is no guarantee that the AVF based on the grid approximation is a supersolution

and so we must satisfy the absolute continuity conditions. To achieve this, we add a small positive

quantity ε = 0.001 to each Qtij if j can be reached from i under some action, and then normalize the

probabilities. Similarly, we add ε to Bt
ik only if k can be observed from state i under some action

and again we then normalize the probabilities. This approach allows our transition and emission

6 Although the dimension of the hidden state space is 6, in reality the uncertainty in the process is entirely

restricted to the 3 pre-cancer states. We can therefore reduce our analysis to the 3-dimensional pre-cancer belief

space simplex.
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probabilities to satisfy absolute continuity for the PI relaxation. For the BSPI relaxation we would

need to make an additional adjustment (as described in Appendix A.1.1) but the BSPI results were

slightly inferior to the PI results (as was the case with the maze application) and so we don’t report

them in our numerical results.

5.1.3 Numerical Results

We consider two different test cases: case 1 represents a woman at age 40 with an average risk of

having cancer and therefore an initial distribution over hidden states given by

π0 = [0.9905, 0.0019, 0.0076, 0, 0, 0].

Case 2 represents a woman at age 40 with a high-risk of having cancer; she has an initial distribution

of π0 = [0.96, 0.02, 0.02, 0, 0, 0]. In Figure 5.1a we display the lower bounds obtained by simulating

each of the four policies, namely the policies recommended USPSTF and ACS, as well as the

policies that are greedy w.r.t. the QMDP and grid-based AVFs. We note that the latter two

policies outperform the official recommendations of USPSTF and ACS, with the best lower bound

coming from the grid approximation.

Figure 5.1b displays the upper bounds obtained with the PI relaxation using penalties con-

structed from each of the two AVFs. Since the QMDP AVF is a supersolution and therefore also

an upper bound we also plot its value in the figure. As a reference, we also display the value of the

best lower bound to obtain a visual representation of the duality gap. The duality gap reduction

of the best dual bound with respect to the supersolution is 57% in case 1, and 51% in case 2, or

equivalently, 19.7 and 29.6 days respectively.

In Ayer et al., the authors were able to solve the POMDP to optimality using Monahan’s

algorithm [59] with Eagle’s reduction [29]. The authors used an Intel Xeon 2.33 GHz processor

with 16 GB RAM for their computations, and were able to solve the problem in 55.95 hours. As

with our robot navigation application, we used MATLAB Release 2016b, and a MacOS Sierra with

1.3 GHz Intel Core i5 processor with 4 GB RAM. The numerical results in Table 5.2 display the

running times and other statistics for the various Case 1 bounds as well as the best bounds in bold

font. As we have noted, our bound approximations result in a very tight duality gap (19.7 days or
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Bound Expected value Standard dev. Number of paths Running time

USPSTF (Lower) 41.15 0.0188 400,000 6.75 mins.

ACS (Lower) 41.14 0.0185 400,000 6.79 mins.

Greedy QMDP (Lower) 41.56 0.0160 500 11.1 secs.*

Greedy Grid (Lower) 41.72 0.0128 800,000 35.05 mins

Grid PI (Upper) 41.77 0.0001 100 9.9 secs.

QMDP PI (Upper) 41.83 0.00004 500 8.1 secs.

QMDP Supersol. (Upper) 41.84 - 1 0.02 secs.

*Lower bound for QMDP greedy strategy was estimated using the penalties

as control variates - see Appendix A.4

Table 5.2: Summary statistics for the lower and upper bounds for the Case 1 scenario.

0.054 QALYs for an average woman) and we were able to obtain the best lower and upper bounds

in 35.05 minutes and 9.9 seconds, respectively, with narrow confidence intervals. So while Ayer et

al. were able to solve the problem to optimality, we were able to get provably close to optimality

using7 a slower processor and less RAM with a total runtime that was approximately 2 orders of

magnitude smaller. We also note that even tighter bounds information relaxation bounds should

be attainable here if so desired using a partially controlled formulation as introduced in BH.

7 We do not know what software Ayer et al. used
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(a)

(b)

Figure 5.1: (a) Lower bounds on the optimal value function obtained from simulating the USPSTF

and ACS recommended policies as well as policies that are greedy w.r.t. the QMDP and grid-based

AVFs. Case 1 corresponds to an average risk 40-year old woman while case 2 corresponds to a

high risk 40-year old woman. The vertical lines on each bar represent 95% confidence intervals. (b)

Upper bounds on the optimal value function compared to the best lower bound which was obtained

by simulating the policy that is greedy w.r.t. the grid-based AVF. The best upper bound was also

obtained by constructing penalties for the PI relaxation from the grid-based AVF. The optimal

duality gap is displayed in each case.
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Appendix A

Chapter 2 - Supplemental Content

A.1 RN Derivative Calculations

A.1.1 The Uncontrolled Belief State POMDP Formulation

In order to compute the RN derivatives for the uncontrolled belief state POMDP formulation

we must first define the uncontrolled belief-state dynamics for πt which lies in the |H|-dimensional

simplex. Note that while there are infinitely many points in the simplex only a finite number of these

points will have a strictly positive probability under P conditional on π0 which is assumed known.

These points with strictly positive P-probability arise from the various possible combinations of

action / observation sequences which are finite in number by assumption.

An obvious approach to defining uncontrolled belief-state dynamics for πt would be to use

(2.17) and (2.18) to generate uncontrolled hidden state / observation sequences and then simply

use the generated observations to update the belief state appropriately, beginning with π0. The

only problem with this is that P will not be absolutely continuous w.r.t P̃ even if Q and E as defined

in (2.17) and (2.18) do satisfy their absolute continuity conditions. To see this note that the belief

state updates under P are computed according to

πt+1(h′; a, o) =

∑
h πt(h)Phh′(a)Bh′o(a)∑
h,h′ πt(h)Phh′(a)Bh′o(a)

(A.1)

where we explicitly recognize the P-dependence of πt+1 on at = a and ot+1 = o. In contrast, the
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belief state updates under P̃ are computed according to

π̃t+1(h′) =

∑
h πt(h)Qhh′Eh′o∑
h,h′ πt(h)Qhh′Eh′o

. (A.2)

Even if Q and E satisfy their absolute continuity conditions, there will in general be πt+1(· ; a, o)’s

that satisfy P (πt+1(· ; a, o) | πt) > 0 and P̃ (πt+1(· ; a, o) | πt) = 0. As such, P will not be absolutely

continuous w.r.t. P̃. There are many ways to resolve this issue and we mention just two of them:

1. We can instead assume that under P̃ the current belief state π transitions with strictly positive

probability to any belief state π′ which is feasible for some available action a ∈ A given π.

Specifically, we define the belief-state transition probability

P̃(π′ | π) :=
1

|A| × |O|
∑

(a,o)∈A×O

1{π′=f(π;a,o)} (A.3)

where each component of f(π; a, o) in the |H|-dimensional simplex is defined according to

(A.1) with πt = π. While it is of course possible to define other P̃’s, (A.3) seems like a

particularly easy way (in our finite action and observation setting) to guarantee that P is

absolutely continuous w.r.t. P̃.

2. As before use (2.17) and (2.18) to generate action-independent hidden state and observation

sequences. Given these sequences, we generate an action a ∈ A randomly (with each a having

strictly positive probability) and then generate πt+1 using (A.1) (rather than (A.2)). It is also

straightforward to write down P̃(π′ | π) for this absolutely continuous change-of-measure.

Regardless of the specific form of P̃, the RN derivatives take the form

dP
dP̃

=: Φπ
T (π0:T , a0:T−1) :=

T−1∏
s=0

φ(πs, πs+1, as) (A.4)

φ(π, π′, a) :=

∑
i,j,k π(i)Pij(a)Bjk(a)1{π′=f(π,a,k)}

P̃(π′ | π)
.

In order to justify (A.4) we first express the time t reward as a function of the belief state according

to rt(πt, at) := E[rt(ht, at) | F
π

t ] =
∑

ht
rt(ht, at)πt(ht). The RN derivatives must then satisfy (by

a standard conditioning argument to obtain the second equality)

E
[
rt(πt, at)

∣∣∣Fπ

0

]
= Ẽ

[
Φπ
T rt(πt, at)

∣∣∣Fπ

0

]
= Ẽ

[
Φπ
t rt(πt, at)

∣∣∣Fπ

0

]
.
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Writing the expectations explicitly, we must have

∑
π1:t

rt(πt, at)Pa0:t−1(π1:t) =
∑
π1:t

Φπ
t rt(πt, at)P̃(π1:t)

where Pa0:t−1 explicitly recognizes the dependence of the given probabilities on a0:t−1 and π1:t :=

{π1, . . . , πt}. It is clear then that the RN derivatives must satisfy

Φπ
t :=

Pa0:t−1(π1:t)

P̃(π1:t)
. (A.5)

We can compute the numerator of (A.5) as

Pa0:t−1(π1:t) =

t−1∏
s=0

Pas(πs+1 | πs)

=

t−1∏
s=0

∑
os+1

Pas(os+1 | πs)Pas(πs+1 | os+1, πs)

=
t−1∏
s=0

∑
h,h′,os+1

πs(h)Pas(h′ | h)Pas(os+1 | h′)1{πs+1=f(πs,as,os+1)}

=
t−1∏
s=0

∑
h,h′,o

πs(h)Phh′(as)Bh′o(as)1{πs+1=f(πs,as,o)}. (A.6)

Substituting P̃(π1:t) =
∏t−1
s=0 P̃(πs+1 | πs) and (A.6) into (A.5) then establishes that (A.4) is correct.

The Robotic Navigation Application

It is worth emphasizing that in the numerical results of Sections 2.7 and 2.8, our penalties were

constructed using supersolutions. As explained in Appendix A.4, the absolute continuity of P w.r.t.

P̃ is no longer required in this case and so in fact we did not need to define P̃ using either of the two

options described above. Instead we defined P̃ to be the measure induced by following the policy

that was greedy with respect to the AVF under consideration, i.e. the QMDP, Lag-1 or Lag-2

AVF. In the case of robotic navigation application of Section 2.7, the action-independent transition

probabilities1 induced by following the policy that is greedy with respect to the QMDP AVF were

1 Recall that the emission matrix B was already action-independent, and so we continued to use B in the uncon-

trolled formulation
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defined according to

Qtij ≡ Pij
(

argmax
a∈A

V Q
t (i, a)

)
(A.7)

for t ∈ {0, . . . , T−1}. Similarly, the action-independent transition probabilities induced by following

the policy that is greedy with respect to the Lag-1 AVF (C.7) were defined according to

Qtij ≡ Pij
(

argmax
a∈A

E
[
rt(ht, a) + V L1

t+1(ht, a, ot+1) | ht = i
])

(A.8)

and for the Lag-2 AVF (2.44) we defined

Qtij ≡ Pij
(

argmax
a∈A

E
[
max
at+1

E
[
rt(ht, a) + rt+1(ht+1, at+1) + V L2

t+2(ht, at:t+1, ot+1:t+2) | ht = i, ot+1

]
| ht = i

])
. (A.9)

For each AVF under consideration, the denominator of (A.5) is computed as

P̃(π1:t) =
t−1∏
s=0

P̃(πs+1 | πs) =
t−1∏
s=0

∑
h,h′,o

πs(h)Qshh′Bh′o1{πs+1=f̃s(πs,o)} (A.10)

where Qshh′ is given by either (A.7), (A.8) or (A.9), and where each component of f̃s(πs; o) in the

|H|-dimensional simplex is defined according to

f̃s(πs; o)(h
′) =

∑
h πs(h)Qshh′Bh′o∑
h,h′ πs(h)Qshh′Bh′o

. (A.11)

A.1.2 The Uncontrolled Non-Belief-State POMDP Formulation

To show that the general RN derivatives in (2.19) and (2.20) are correct under the PI relaxation

framework, it suffices to prove that E
[∑T

t=0 rt(ht, at)
∣∣∣F0

]
= Ẽ

[∑T
t=0 Φtrt(ht, at)

∣∣∣F0

]
or equiva-

lently that

E
[
rt(ht, at)

∣∣∣F0

]
= Ẽ

[
Φtrt(ht, at)

∣∣∣F0

]
(A.12)

for all t ∈ {0, . . . , T}, where we recall that E and Ẽ correspond to expectations under P and P̃,

respectively. We first write the expectation on the r.h.s. of (A.12) explicitly to obtain

∑
o1:t,h0:t

Φt(h0:t, o1:t, a0:t−1)rt(ht, at)P̃(o1:t, h0:t | π0) (A.13)
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where π0 is the initial hidden state distribution. Recalling (2.19) and (2.20) we have

Φt(·) =
t−1∏
s=0

Phshs+1(as)Bhs+1os+1(as)

Qhshs+1Ehs+1os+1

≡
t−1∏
s=0

Pas(hs+1 | hs)Pas(os+1 | hs+1)

P̃(hs+1 | hs)P̃(os+1 | hs+1)

=
Pa0:t−1(o1:t, h0:t | h0)π0(h0)

P̃(o1:t, h0:t | h0)π0(h0)

=
Pa0:t−1(o1:t, h0:t | π0)

P̃(o1:t, h0:t | π0)
(A.14)

where Pa0:t−1 and Pas explicitly recognize the dependence of the given probabilities on a0:t−1 and

as, respectively. If we substitute (A.14) into (A.13) we obtain

∑
o1:t,h0:t

rt(ht, at)Pa0:t−1(o1:t, h0:t | π0) = E
[
rt(ht, at)

∣∣∣F0

]
(A.15)

which establishes the correctness of the RN derivatives in (2.19) and (2.20). Once again for the

robotic navigation application, we did not need to impose absolute continuity of the measure

change due to our use of supersolution AVFs and so we used the Q’s of (A.7), (A.8) or (A.9) in the

denominator of (A.14).

A.2 The Lag-1 and Lag-2 Approximate Value Functions

A.2.1 Computing the Optimal Value Function for the Lag-1 MDP

The Lag-1 formulation corresponds to the relaxed problem in which the time t DM knows the true

state ht−1 that prevailed at time t − 1, the observation history o0:t and the action history a0:t−1.

Given the dependence structure of the hidden states and observations in the POMDP, it follows

that the Lag-1 optimal value function V L1
t only depends on (ht−1, at−1, ot). The terminal value

function satisfies V L1
T (hT−1, aT−1, oT ) := rT (oT ) = rT (hT ) with

V L1
t (ht−1, at−1, ot) := max

at
E[rt(ht, at) + V L1

t+1(ht, at, ot+1) | ht−1, ot]

= max
at

∑
ht,ot+1

Pat−1:t(ht, ot+1 | ht−1, ot)[rt(ht, at) + V L1
t+1(ht, at, ot+1)]

for t ∈ {1, . . . , T − 1} and where Pat−1:t recognizes the dependence of the conditional PMF on the

actions at−1:t. These probabilities can be calculated explicitly using standard manipulations. In



136

particular, we have

Pat−1:t(ht, ot+1 | ht−1, ot) =
Pat−1:t(ht, ot, ot+1 | ht−1)

Pat−1:t(ot | ht−1)

=

∑
ht+1

Pat−1:t(ht, ot, ht+1, ot+1 | ht−1)∑
ht
Pat−1:t(ht, ot | ht−1)

=
Pht−1htBhtot

∑
ht+1

Phtht+1Bht+1ot+1∑
ht
Pht−1htBhtot

(A.16)

where for ease of exposition we have suppressed2 the dependence of the various quantities in (A.16)

on the various actions. We can calculate V L1
0 in a similar fashion by noting that

V L1
0 (o0) := max

a0
E[r0(h0, a0) + V L1

1 (h0, a0, o1) | o0]

= max
a0

∑
h0,o1

Pa0(h0, o1 | o0)[r0(h0, a0) + V L1
1 (h0, a0, o1)]

where Pa0(h0, o1 | o0) can be calculated as in (A.16) but with Pht−1ht(at−1) replaced by P (h0).

A.2.2 The Lag-2 Approximate Value Function

We must first show how the optimal value function for the Lag-2 MDP can be calculated.

Computing the Optimal Value Function for the Lag-2 MDP

The Lag-2 formulation corresponds to the relaxed problem in which the time t DM knows the true

state ht−2 that prevailed at time t − 2, the observation history o0:t and the action history a0:t−1.

The terminal value function satisfies V L2
T (hT−2, aT−2:T−1, oT−1:T ) := rT (oT ) = rT (hT ) with

V L2
t (ht−2, at−2:t−1, ot−1:t) := max

at
E[rt(ht, at) + V L2

t+1(ht−1, at−1:t, ot:t+1) | ht−2, ot−1:t]

= max
at

∑
ht−1:t,ot+1

Pat−2:t(ht−1:t, ot+1 | ht−2, ot−1:t)[rt(ht, at) + V L2
t+1(ht−1, at−1:t, ot:t+1)] (A.17)

2 In these appendices we will often suppress the dependence of the various transition and observation probabilities

on the chosen actions. For example, it should be clear in (A.16) that Pht−1ht depends on at−1 while Bht+1ot+1 depend

on at.
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for t ∈ {2, . . . , T − 1} and where we use Pat−2:t to denote a probability that depends on at−2:t. We

note it is straightforward to calculate Pat−2:t(· | ·) using standard arguments. Specifically, we have

Pat−2:t(ht−1:t, ot+1 | ht−2, ot−1:t) =
Pat−2:t(ht−1:t, ot−1:t+1 | ht−2)

Pat−2:t(ot−1:t | ht−2)

=

∑
ht+1

Pat−2:t(ht−1:t+1, ot−1:t+1 | ht−2)∑
ht−1:t

Pat−2:t(ht−1:t, ot−1:t | ht−2)

=
PBt−2PBt−1

∑
ht+1

PBt∑
ht−1,ht

PBt−2PBt−1
(A.18)

where we use PBt to denote Phtht+1Bht+1ot+1 and again we have suppressed the action dependence

of the various terms. A slightly different calculation is required for each of V L2
0 and V L2

1 as there is

no hidden state information available at times t = 0 and t = 1. For t = 1 we have

V L2
1 (o0:1, a0) := max

a1
E[r1(h1, a1) + V L2

2 (h0, a0:1, o1:2) | o0:1]

= max
a1

∑
h0,o2

Pa0:1(h0:1, o1 | o0:1)[r1(h1, a1) + V L2
2 (h0, a0:1, o1:2)]

where Pa0:1(h0:1, o1 | o0:1) is calculated as in (A.18) but where we replace Pht−2ht−1(at−2) in PBt−2

with the initial distribution P (h0). Similarly, at t = 0 we have

V L2
0 (o0) := max

a0
E[r0(h0, a0) + V L2

1 (o0:1, a0) | o0]

= max
a0

∑
o1

Pa0(h0, o1 | o0)[r0(h0, a0) + V L2
1 (o0:1, a0)]

and where

Pa0(h0, o1|o0) =
P (h0)Bh0o0

∑
h1
PB0∑

h0
P (h0)Bh0o0

.

Computing the Lag-2 Approximate Value Function for the POMDP

Following (2.44) we can write the Lag-2 AVF as

Ṽ L2
t (πt) =

max
at

E[rt(ht, at) + max
at+1

E[rt+1(ht+1, at+1) + V L2
t+2(ht, at:t+1, ot+1:t+2) | Fπ

t , ot+1] | Fπ

t ]. (A.19)

The inner expectation in (A.19) can be calculated according to∑
ht:t+1,ot+2

Pat:t+1(ht:t+1, ot+2 | πt, ot+1)[rt+1(ht+1, at+1) + V L2
t+2(ht, at:t+1, ot+1:t+2)]. (A.20)
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The probability in (A.20) can then be computed using standard arguments. In particular, we have

Pat:t+1(ht:t+1, ot+2 | πt, ot+1) =
Pat:t+1(ht:t+1, ot+1:t+2 | πt)

Pat(ot+1 | πt)

=

∑
ht+2

Pat:t+1(ht:t+2, ot+1:t+2 | πt)∑
ht:t+1

Pat(ht:t+1, ot+1 | πt)

=
πt(ht)PBt

∑
ht+2

PBt+1∑
ht,ht+1

πt(ht)PBt
(A.21)

where we once again denote by PBt ≡ Phtht+1(at)Bht+1ot+1(at).

Remark A.2.1. We note that if T = 2, then we recover the optimal value V ∗0 (π0) of the POMDP.

In particular,

Ṽ L2
0 (π0) = max

a0
E[max

a1
E[r0(h0, a0) + r1(h1, a1) + V L2

2 (h0, a0:1, o1:2) | Fπ

0 , o1] | Fπ

0 ]

= max
a0

E[r0(h0, a0) + max
a1

E[r1(h1, a1) + r2(h2) | Fπ

0 , o1] | Fπ

0 ] = V ∗0 (π0)

where the second equality follows from the tower property of conditional expectations.

A.2.3 Comparing the Lag-1 and Lag-2 Approximate Value Functions

We begin by proving the unsurprising result that the Lag-2 AVF is tighter than the Lag-1 AVF.

Proposition A.2.1. For all t we have V ∗t (πt) ≤ Ṽ L2
t (πt) ≤ Ṽ L1

t (πt).

Proof. We show in Appendix A.3 that Ṽ L2
t (πt) is a supersolution and so it follows that V ∗t (πt) ≤

Ṽ L2
t (πt). To prove the second inequality we begin with the definition of Ṽ L1

t (πt) in (C.7) for

t = 0, . . . , T − 2. (We recall that at t = T − 1 and t = T we have that Ṽ L2
t (πt) = Ṽ L1

t (πt) for all



139

πt.) We obtain

Ṽ L1
t (πt) := max

at
E
[
rt(ht, at) + V L1

t+1(ht, at, ot+1) | F
π

t

]
(a)
= max

at
Eht,ot+1

[
rt(ht, at) + max

at+1

Eht+1,ot+2

[
rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | ht, ot+1

]
| F

π

t

]
(b)
= max

at
Eht,ot+1

[
max
at+1

rt(ht, at) + Eht+1,ot+2

[
rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | ht, ot+1

]
| F

π

t

]
(c)

≥ max
at

Eot+1

[
max
at+1

Eht
[
rt(ht, at) + Eht+1,ot+2

[
rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | ht, ot+1

]
| F

π

t , ot+1

]
| F

π

t

]
(d)
= max

at
Eot+1

[
max
at+1

Eht:t+1,ot+2

[
rt(ht, at) + rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | F
π

t , ot+1

]
| F

π

t

]
(e)
= max

at
Eot+1

[
max
at+1

Eht:t+1,ot+2

[
rt(ht, at) + rt+1(ht+1, at+1) + V L2

t+2(ht+1, at:t+1, ot+1:t+2) | F
π

t , ot+1

]
| F

π

t

]
= Ṽ L2

t (πt)

where (a) results from using the definition of V L1
t+1 and (b) follows by simply moving rt(ht, at) inside

the maximization of at+1. Inequality (c) results from applying Jensen’s inequality when exchanging

the order of the expectation w.r.t. ht and the maximization of at+1. Equality (d) results from the

tower property and noting that the argument inside the inner expectation, conditional on ht, is

independent of Fπ

t . Inequality (e) follows by replacing V L1
t+2 with V L2

t+2 and then using Lemma A.2.1

below. Finally, the last equality follows from the definition of Ṽ L2
t (πt) in (2.44).

Lemma A.2.1. E[V L1
t+2(ht+1, at+1, ot+2) | Fπ

t , ot+1] ≥ E[V L2
t+2(ht, at:t+1, ot+1:t+2) | Fπ

t , ot+1] for all

t = 0, . . . , T − 2.

Proof. To begin we note that it suffices to prove that

E[V L1
t+2(ht+1, at+1, ot+2) | ht, ot+1:t+2] ≥ V L2

t+2(ht, at:t+1, ot+1:t+2) (A.22)

since taking expectation E[· | Fπ

t , ot+1] on both sides of (A.22) and applying the tower property

yields3 the desired result. We now prove (A.22) by induction for t = 0, . . . , T − 2. The base case

follows immediately since V L1
T = V L2

T = rT (hT ) and so E[V L1
T | hT−2, oT−1:T ] = rT (hT ) = V L2

T

where we recall that oT ≡ hT . We now assume the result is true for time t + 3 so that E[V L1
t+3 |

3 Note that the term inside the expectation on the left-hand-side of (A.22), conditional on ht, is independent of

F
π

t , and so the tower property indeed yields the result.
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ht+1, ot+2:t+3] ≥ V L2
t+3. An application of the tower property then implies

E[V L1
t+3(ht+2, at+2, ot+3) | ht+1, ot+2] ≥ E[V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht+1, ot+2]. (A.23)

It then follows that

E
[
V L1
t+2(ht+1, at+1, ot+2) | ht, ot+1:t+2

]
(a)
= E

[
max
at+2

E
[
rt+2(ht+2, at+2) + V L1

t+3(ht+2, at+2, ot+3) | ht+1, ot+2

]
| ht, ot+1:t+2

]
(b)

≥ max
at+2

E
[
E
[
rt+2(ht+2, at+2) + V L1

t+3(ht+2, at+2, ot+3) | ht+1, ot+2

]
| ht, ot+1:t+2

]
(c)

≥ max
at+2

E
[
E
[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht+1, ot+2

]
| ht, ot+1:t+2

]
(d)
= max

at+2

E
[
E
[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht:t+1, ot+1:t+2

]
| ht, ot+1:t+2

]
(e)
= max

at+2

E
[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht, ot+1:t+2

]
= V L2

t+2(ht, at:t+1, ot+1:t+2)

where we use the definition of V L1
t+2 in (a). Inequality (b) follows from Jensen’s inequality after

exchanging the outer expectation with maxat+2 . We obtain (c) from the induction hypothesis and

inequality (A.23). Equality (d) follows by noting that the argument inside the inner expectation,

conditional on ht+1, is independent of ht and ot+1. Equality (e) then follows from the tower property

and the final equality results from the definition of V L2
t+2. We have therefore shown the desired result

for time t+ 2 and so the proof is complete.

A.3 Proving that the Approximate Value Functions Are Superso-

lutions

We now prove Proposition 2.6.2 which states that all of our AVFs are supersolutions. Recall that

a supersolution is an AVF ϑ that for all possible time t belief states πt satisfies

ϑt(πt) ≥ max
at∈A

{
rt(πt, at) + E

[
ϑt+1(πt) | F

π

t

]}
. (A.24)
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Before proceeding we note that given the current belief state πt and the next observation ot+1, the

belief state πt+1 can be computed according to

πt+1(h′) =

∑
h πt(h)Phh′Bh′o
σ(o, πt)

(A.25)

where4 σ(o, πt) := P (ot+1 | πt) =
∑

h,h′ πt(h)Phh′Bh′o for t ∈ {0, . . . , T − 1}.

Proof that the MDP Approximation is a Supersolution

Following (2.37) and (2.38) we have

Ṽ MDP
t (πt) =

∑
h

πt(h) max
at

{
rt(h, at) +

∑
h′

Phh′(at)V
MDP
t+1 (h′)

}
(a)

≥ max
at

∑
h

πt(h)

{
rt(h, at) +

∑
h′

Phh′(at)V
MDP
t+1 (h′)

}

(b)
= max

at

rt(πt, at) +
∑
h′,ot+1

[∑
h

πt(h)Phh′(at)Bh′ot+1(at)

]
V MDP
t+1 (h′)


(c)
= max

at

rt(πt, at) +
∑
h′,ot+1

P (ot+1 | πt)πt+1(h′)V MDP
t+1 (h′)


(d)
= max

at

rt(πt, at) +
∑
ot+1

P (ot+1 | πt)Ṽ MDP
t+1 (πt+1)


≡ max

at

{
rt(πt, at) + E

[
Ṽ MDP
t+1 (πt+1) | Fπ

t

]}
where (a) results from Jensen’s inequality and (b) follows from including the factor

∑
ot+1

Bh′ot+1 = 1

and then a simple re-ordering of the terms. Equality (c) follows from (A.25) while we have used

the definition of Ṽ MDP
t+1 (πt+1) to obtain (d).

4 As before, we will often suppress the dependence of the various transmission and emission probabilities on the

actions.
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Proof that the QMDP Approximation is a Supersolution

The proof for the QMDP approximation follows a similar argument. From (C.4) and (C.5) we have

Ṽ Q

t (πt) = max
at

∑
h

πt(h)

{
rt(h, at) +

∑
h′

Phh′(at)V
MDP
t+1 (h′)

}

(a)
= max

at

rt(πt, at) +
∑
h′,ot+1

P (ot+1 | πt)πt+1(h′)V MDP
t+1 (h′)


(b)
= max

at

rt(πt, at) +
∑
h′,ot+1

P (ot+1 | πt)πt+1(h′) max
a′

V Q
t+1(h′, a′)


(c)

≥ max
at

rt(πt, at) +
∑
ot+1

P (ot+1 | πt) max
a′

∑
h′

πt+1(h′)V Q

t+1(h′, a′)


(d)
= max

at

rt(πt, at) +
∑
ot+1

P (ot+1 | πt)Ṽ Q

t+1(πt+1)


≡ max

at

{
rt(πt, at) + E

[
Ṽ Q

t+1(πt+1) | Fπ

t

]}
where (a) follows from following steps (b) to (d) of the MDP proof above and (b) then follows

from the definition of both V MDP
t+1 and V Q

t+1. Inequality (c) follows from Jensen’s inequality after

changing the order of maxa′ and the marginalization of h′. Finally (d) follows from the definition

of Ṽ Q

t+1(πt+1).

Proof that the Lag-1 Approximation is a Supersolution

Because of the many terms involved, throughout the proof we will write the relevant quantities

as expectations and we will use EX to denote an expectation taken over the random variable X.
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Following its definition in (C.7), the Lag-1 AVF satisfies

Ṽ L1
t (πt)

(a)
= max

at
Eht,ot+1

[
rt(ht, at)

+ max
at+1

Eht+1,ot+2

[
rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | ht, ot+1

]
| F

π

t

]
(b)
= max

at

{
rt(πt, at)+

Eht,ot+1

[
max
at+1

Eht+1,ot+2

[
rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | ht, ot+1

]
| F

π

t

]}
(c)
= max

at

{
rt(πt, at) + Eot+1

[
Eht
[

max
at+1

Eht+1,ot+2

[
rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | ht, ot+1

]
| ot+1,F

π

t

]
| F

π

t

]}
(d)

≥ max
at

{
rt(πt, at) + Eot+1

[
max
at+1

Eht
[

Eht+1,ot+2

[
rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | ht, ot+1

]
| ot+1,F

π

t

]
| F

π

t

]}
(e)
= max

at

{
rt(πt, at) + Eot+1

[
max
at+1

Eht
[

Eht+1,ot+2

[
rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | ht, ot+1,F
π

t

]
| ot+1,F

π

t

]
| F

π

t

}
(f)
= max

at

{
rt(πt, at)+

Eot+1

[
max
at+1

Eht+1,ot+2

[
rt+1(ht+1, at+1) + V L1

t+2(ht+1, at+1, ot+2) | ot+1,F
π

t

]
| F

π

t

]}
(g)
= max

at

{
rt(πt, at) + E

[
Ṽ L1
t+1(πt+1) | F

π

t

]}
where (a) follows from the definition of V L1

t+1 in (C.6) and (b) follows from noting that the expectation

of rt(ht, at) conditional on Fπ

t is rt(πt, at). Equality (c) follows from the tower property while (d)

follows from Jensen’s inequality after changing the order of maxat+1 and the expectation over ht.

Equality (e) follows since the function inside the expectation E[· | ht, ot+1] is independent of Fπ

t

after conditioning on ht. Equality (f) follows from applying the tower property to the nested

expectations. Finally (g) follows from the definition of Ṽ L1
t+1(πt+1) and where we note that πt+1 is

completely determined given πt, ot+1 and at.
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Proof that the Lag-2 Approximation is a Supersolution

Proving that the Lag-2 AVF is a supersolution is similar to proving that the Lag-1 AVF is a

supersolution but the details are a little more involved. From (2.44) we have

Ṽ L2
t (πt) := max

at
Eot+1

[
max
at+1

Eht:t+1,ot+2

[
rt(ht, at) + rt+1(ht+1, at+1) + V L2

t+2(ht, at:t+1, ot+1:t+2) | F
π

t , ot+1

]
| F

π

t

]
(a)
= max

at
Eot+1

[
max
at+1

Eht:t+1,ot+2

[
rt(ht, at) + rt+1(ht+1, at+1) + max

at+2

Eht+1:t+2,ot+3

[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht, ot+1:t+2

]
| F

π

t , ot+1

]
| F

π

t

]
(b)
= max

at

{
rt(πt, at) + Eot+1

[
max
at+1

Eht:t+1,ot+2

[
rt+1(ht+1, at+1) + max

at+2

Eht+1:t+2,ot+3

[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht, ot+1:t+2

]
| F

π

t , ot+1

]
| F

π

t

]}
(c)
= max

at

{
rt(πt, at) + Eot+1

[
max
at+1

Eht:t+1,ot+2

[
max
at+2

{
rt+1(ht+1, at+1) + Eht+1:t+2,ot+3

[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht, ot+1:t+2

]}
| F

π

t , ot+1

]
| F

π

t

]} (A.26)

where (a) follows from the definition of V L2
t+2 in (A.17). We obtain (b) by taking the expectation

of rt(ht, at) outside the maximization of at+1 (which is fine since at+1 has no bearing on rt(ht, at))

and then using the tower property with the outer expectation to obtain rt(πt, at). Equality (c)

follows from taking rt+1(ht+1, at+1) inside the maximization of at+2 which is again fine since at+2

has no bearing on rt+1(ht+1, at+1). We focus now on the term inside the outermost expectation
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Eot+1 [· | Fπ

t ] of (A.26). It satisfies

max
at+1

Eht:t+1,ot+2

[
max
at+2

{
rt+1(ht+1, at+1)+

Eht+1:t+2,ot+3

[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht, ot+1:t+2

]}
| F

π

t , ot+1

]
(d)
= max

at+1

Eot+2

[
Eht:t+1

[
max
at+2

{
rt+1(ht+1, at+1) + Eht+1:t+2,ot+3

[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht, ot+1:t+2

]}
| F

π

t , ot+1:t+2

]
| F

π

t , ot+1

]
(e)

≥ max
at+1

Eot+2

[
max
at+2

{
Eht:t+1

[
rt+1(ht+1, at+1) + Eht+1:t+2,ot+3

[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht, ot+1:t+2

]
| F

π

t , ot+1:t+2

]}
| F

π

t , ot+1

]
(f)
= max

at+1

Eot+2

[
max
at+2

{
Eht+1

[
rt+1(ht+1, at+1) | F

π

t , ot+1:t+2

]
+ Eht

[
Eht+1:t+2,ot+3

[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | ht, ot+1:t+2

]
| F

π

t , ot+1:t+2

]}
| F

π

t , ot+1

]
(g)
= max

at+1

Eot+2

[
max
at+2

{
Eht+1

[
rt+1(ht+1, at+1) | F

π

t , ot+1:t+2

]
+

Eht+1:t+2,ot+3

[
rt+2(ht+2, at+2) + V L2

t+3(ht+1, at+1:t+2, ot+2:t+3) | F
π

t , ot+1:t+2

]}
| F

π

t , ot+1

]
(h)
= max

at+1

Eot+2

[
max
at+2

Eht+1:t+2,ot+3

[
rt+1(ht+1, at+1)+

rt+2(ht+2, at+2) + V L2
t+3(ht+1, at+1:t+2, ot+2:t+3) | F

π

t , ot+1:t+2

]
| F

π

t , ot+1

]
(i)
= Ṽ L2

t+1(πt+1)

where (d) follows from the tower property so that

Eht:t+1,ot+2

[
· | Fπ

t , ot+1

]
= Eot+2

[
Eht:t+1

[
· | Fπ

t , ot+1:t+2

]
| Fπ

t , ot+1

]
and (e) follows from Jensen’s inequality after changing the order of the maxat+2 operator and the

marginalization of ht and ht+1. We obtain (f) by simply writing the conditional expectation of a

sum as the sum of conditional expectations. Equality (g) follows from applying the tower property

to the nested expectations while (h) follows from grouping together the two conditional expectations

E[· | Fπ

t , ot+1:t+2]. Finally, (i) follows from the definition of the Ṽ L2
t+1(πt+1) and where we note again

that πt+1 is completely determined given πt, ot+1 and at.

The overall result now follows by substituting Ṽ L2
t+1(πt+1) in for the conditional expectation

Eot+1 [· | Fπ

t ] in (A.26) with the equality there replaced by a greater-than-or-equal to inequality.
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A.4 Dropping the Requirement that P� P̃

We explain here why we do not require P, the probability measure for the controlled formulation, to

be absolutely continuous w.r.t P̃ (the probability measure for the original uncontrolled formulation),

when the penalties in (2.16) are constructed from supersolutions. This result was originally shown

by BH in [15] but we outline the details here in the finite horizon case for the sake of completeness.

We will work with the PI relaxation of belief-state POMDP formulation, i.e. the BSPI relaxation,

but it should be clear that the result is general and holds for general information relaxations.

We therefore assume the penalty function, ct := E[ϑt+1(πt+1) | Fπ

t ]−ϑt+1(πt+1), is such that ϑt

is a supersolution satisfying5 ϑT+1 ≡ 0. From Definition 2.6.1, it follows that for each t ∈ {0, . . . , T}

and πt we have

ϑt(πt) ≥ rt(πt, at) + E[ϑt+1(πt+1) | Fπ

t ] ∀at ∈ A. (A.27)

Subtracting ϑt(πt) from both sides of (A.27), summing over t and recalling that ϑT+1 ≡ 0, we

obtain

0 ≥
T∑
t=0

{
rt(πt, at) + E[ϑt+1(π0:t+1) | Fπ

t ]− ϑt(πt)
}

=
T∑
t=0

{
rt(πt, at) + ct

}
− ϑ0(π0). (A.28)

We now obtain

V ∗0 − ϑ0 = max
µ∈UFπ

V µ
0 − ϑ0

(a)
= max

µ∈UFπ
E
[ T∑
t=0

(rt + ct)− ϑ0 | F
π

0

]
(A.29)

(b)

≤ max
µ∈UFπ

Ẽ
[ T∑
t=0

Φt

(
rt + ct

)
− ϑ0 | F

π

0

]
(c)

≤ Ẽ
[

max
a0:T−1

T∑
t=0

Φt

(
rt + ct

)
| Fπ

0

]
− ϑ0. (A.30)

5 There is no difficulty in assuming ϑT+1 ≡ 0 since ϑt(πt) represents an AVF and all of our AVFs naturally satisfy

this assumption.
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where we have omitted the arguments of rt and ϑ0 for the sake of clarity. Equality (a) follows since

E[
∑T

t=0 ct | F
π

0 ] = 0 for any Fπ -adapted policy and since ϑ0(π0) is Fπ

0 -adapted. In order to establish

inequality (b), we first note that (A.28) implies the random quantity inside the expectation in (A.29)

is non-positive w.p. 1. The inequality then follows6 for any probability measure, P̃, regardless of

whether or not P is absolutely continuous w.r.t P̃. Inequality (c) follows from the usual weak duality

argument. We also note that Φ0 ≡ 1 which explains why there is no RN term multiplying ϑ0(π0).

We can now add ϑ0(π0) across both sides of (A.30) to establish the result, i.e. weak duality

continues to hold even if the probability measure, P, is not absolutely continuous w.r.t P̃ as long

as the penalty is constructed from a supersolution. It is also interesting to note that inequality (b)

will in fact be an equality if P̃ is the measure induced by following an optimal policy for the primal

problem since in that case P and P̃ will coincide. Strong duality will then also continue to hold.

In particular, (c) will then also be an equality if ϑt coincides with the optimal value function, V ∗t ,

which is itself a supersolution.

A.5 Further Details for the Multiaccess Communication Applica-

tion

The main difference between the multiaccess communication application and the POMDP frame-

work as defined in Section 2.2 is the timing of observations. Specifically, in the multiaccess com-

munication application an observation occurs immediately after an action is taken and is therefore

a function of the current hidden state and the current action. In contrast, in the usual POMDP

setting, an observation is a function of the current hidden state and the action from the previous

period. Therefore the filtering algorithm for the belief-state update is different than the standard

update as given in (A.25) (where the action dependence was suppressed). The belief update for

6 This result was stated as Lemma A.1 in [15] and we state it here for the sake of completeness. Consider a

measurable space (Ω,Σ) and two probability measures P and Q. Let φ represent the Radon-Nikodym derivative of

the absolutely continuous component of P with respect to Q. If Y = Y (ω) is a bounded random variable such that

Y (ω) ≤ 0 for all ω 6∈ ΩQ := {ω ∈ Ω : Q(ω) > 0}, then EP [Y ] ≤ EQ[φY ].
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the slotted Aloha dynamics satisfies

πt+1(h′) =

∑
h πt(h)Bhot(at)Phh′(ot)∑

h πt(h)Bhot(at)
(A.31)

for t ∈ {0, . . . , T − 1} and where we recognize the denominator in (A.31) as Pat(ot | πt). It is worth

emphasizing that the belief state for time t+ 1 is a function of the time t action and observation.

Moreover, the hidden-state transition probabilities under P are action-independent given the current

observation. As a result we assume the hidden state transitions probabilities are unchanged when

we go from P to P̃.

These alternative dynamics also impact the calculations of the RN derivatives. In the case of the

belief-state formulation, the arguments in Appendix A.1.1 that led to (A.5) still apply. However,

in the multiaccess communication application the numerator of (A.5) now satisfies

Pa0:t−1(π1:t) =

t−1∏
s=0

Pas(πs+1 | πs)

=

t−1∏
s=0

∑
os

Pas(os | πs)Pas(πs+1 | os, πs)

=
t−1∏
s=0

∑
h,h′,os

πs(h)Pas(os | h)P(h′ | h, os)1{πs+1=f(πs,as,os)}

=

t−1∏
s=0

∑
h,o

πs(h)Bho(as)1{πs+1=f(πs,as,o)} (A.32)

where f(πs, as, os) lies in the |H|-dimensional simplex with each of its components defined according

to

f(πs, as, os)(h
′) :=

∑
h πs(h)Bho(as)Phh′(o)∑

h πs(h)Bho(as)
.

Using similar arguments, we see that the denominator of (A.5) satisfies

P̃(π1:t) =

t−1∏
s=0

∑
h,o

πs(h)Esho1{πs+1=f̃s(πs;o)}

where Esho is the uncontrolled emission matrix defined in (5.7) and where f̃s(πs; o) lies in the

|H|-dimensional simplex with each of its components defined according to

f̃s(πs; o)(h
′) :=

∑
h πs(h)EshoPhh′(o)∑

h πs(h)Esho
.
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In the case of the non-belief-state formulation of the problem, the RN derivatives satisfy

Φt :=
Pa0:t−1(o0:t−1, h0:t)

P̃(o0:t−1, h0:t)
(A.33)

where

Pa0:t−1(o0:t−1, h0:t) = π0(h0)

t−1∏
s=0

Pas(os | hs)P(hs+1 | hs, os) (A.34)

P̃(o0:t−1, h0:t) = π0(h0)

t−1∏
s=0

P̃(os | hs)P(hs+1 | hs, os). (A.35)

It immediately follows from (A.34) and (A.35) that the RN derivatives for the uncontrolled non-

belief-state formulation satisfy

φt(i, k, a) :=
Bik(a)

Etik

Φt(h0:t, o0:t−1, a0:t−1) :=

t−1∏
s=0

φs(hs, os, as).

A.6 Extension to Infinite Horizon Problems

We can extend these techniques to the infinite horizon class of POMDPs with discounted rewards

following the approach of BH and [87]. Let the discount factor be denoted by δ ∈ [0, 1), indicating

that rewards received at a later time contribute less than rewards received earlier. The correspond-

ing infinite-horizon POMDP can be stated as solving the following optimization problem

V ∗0 := max
µ∈UFπ

E

[ ∞∑
t=0

δtr(πt, µt)
∣∣∣Fπ

0

]
(A.36)

In order to solve the dual problem using a BSPI relaxation, we would have to simulate an infinite

sequence of random variables {ut}t≥0, which is not possible in practice. An equivalent formulation,

however, is to replace the discounting by a costless, absorbing state πa which can be reached

from every belief-state and feasible action with probability 1 − δ, at each t. The state transition

distribution remains as in (2.6), conditional on not reaching the absorbing state. The equivalent

absorbing state formulation is then given by

V ∗0 := max
µ∈UFπ

E

[
τ∑
t=0

r(πt, µt)
∣∣∣Fπ

0

]
(A.37)
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where τ = inf{t : πt = πa} is the absorption time, distributed as a geometric random variable

with parameter 1− δ. In (A.37) the expected value is calculated over the modified state transition

function that accounts for the presence of the absorbing state. In the dual problem formulation,

knowledge of the absorption time should be included in the relevant information relaxation. For

example, under the BSPI relaxation, the dual upper bound can be expressed as

V ∗0 (π0) ≤ Ẽ

[
max
a0:τ−1

τ∑
t=0

Φt[rt(πt, at) + ct]
∣∣∣Fπ

0

]
. (A.38)

An inner problem inside the expectation on the r.h.s of (A.38) can be generated by first simulating

the absorption time τ ∼ Geom(1− δ), and then generating the belief states πt using some action-

independent change of measure. A lower bound can be obtained of course by simply simulating

many paths of some feasible policy.

One concern with the bound of (A.38) is that the optimal objective of the inner problem in

(A.38) might have an infinite variance. This was not a concern in the finite horizon setting with

finite state and action spaces. It is a concern, however, in the infinite horizon setting where τ

is now random and the presence of the RN derivative terms Φt might now cause the variance to

explode. BH resolved this issue through the use of supersolutions to construct dual penalties. In

that case their bound improvement result7 and other considerations allowed them to conclude that

the variance of the upper bound estimator in (A.38) would remain bounded.

Of course an alternative approach to guarantee finite variance estimators is to truncate the

infinite horizon to some large fixed value, T , and then add δT r̄/(1 − δ) as a terminal reward

where r̄ := maxπ,a r(π, a). Because the terminal reward is an upper bound on the total discounted

remaining reward after time T in the infinite horizon problem, we are guaranteed that a dual upper

bound for the truncated problem will also be a valid upper bound on the infinite horizon problem.

By choosing T suitably large we can minimize the effect of truncation on the quality of the dual

bound for the infinite horizon problem.

7 See also the discussion immediately following our Proposition 2.6.2.
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Appendix B

Chapter 3 - Supplemental Content

B.1 Portfolio Construction Via Linear Programming

We develop a simple linear programming (LP) approach to construct a portfolio according to the

setting and notation introduced in Section 3.4.2. We assume the p.m can trade in N securities

and that their daily P&L, ∆vi(∆x), for i = 1, . . . , N , depends on the vector of risk factor changes

∆x ∈ Rn. The p.m. wishes to determine the portfolio weights w1, . . . , wN where
∑N

i=1wi = 1

and where wi is the percentage of the portfolio value allocated to security i. The p.m. believes

fe = c at the end of the next period and wishes to construct per portfolio to take advantage of this

belief. The p.m. also believes and uses the DFM approach and has therefore estimated πt+1 as

well as the parameters of the model (3.2) and the corresponding dynamic factor model for ft. She

can therefore easily simulate K samples of the risk factor changes, ∆x(1), . . . ,∆x(K) and the use

these samples to estimate the expected P&L for each of the N securities conditional on the view,

i.e. scenario, that fe = c. We let ∆vfm
i := 1

K

∑K
k=1 ∆vi(∆x(k)) denote these expected conditional

P&Ls. Letting w := (w1, . . . , wN ), the p.m.’s objective function will therefore be given by

F (w) :=
N∑
i=1

wi∆v
fm
i (B.1)

which is her expected portfolio P&L conditional on the view fe = c.

The p.m. must also satisfy certain constraints imposed by the risk management team. In

particular, the risk management team require that the estimated scenario P&L’s for L different
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scenarios must lie between −α% and α%. These estimated scenario P&L’s are computed using

the SSA approach and involve stresses to combinations of the c.r.f.’s in fn. For each security

i = 1, . . . , N and each scenario l = 1, . . . , L, we can use the SSA approach to estimate the P&L

of the ith security in that scenario. If we denote this estimated P&L by ∆v
(l)
i then these risk

constraints will result in the following linear constraints for the LP:

Al+(w) :=

N∑
i=1

wi∆v
(l)
i ≤ α for l = 1, . . . , L

Al−(w) :=
N∑
i=1

wi∆v
(l)
i ≥ −α for l = 1, . . . , L (B.2)

We can then combine (B.1) and (B.2) together with the constraint 1>w = 1 to obtain the full LP

that the p.m. must solve to obtain her optimal portfolio.

We note that it’s easy to formulate more realistic LPs. For example, it would make sense to

allow α to be scenario dependent and only limit the downside risk in the L scenarios. Similarly,

we could assume the risk-management team is more sophisticated and therefore use DFMSA when

estimating the scenario P&Ls. Likewise, it is easy to include constraints imposed by the p.m.

rather than the risk-management team. Additional constraints on the so-called Greeks, e.g. delta,

gamma, vega etc, of the overall portfolio as well as position constraints could also be imposed in

the LP. Nonetheless the LP formulated above seems like a very straightforward way to highlight

the problems that can arise when using SSA rather than DFMSA.

B.2 Ground Truth Parameters for the Yield Curve Model of Sec-

tion 3.5

Our yield curve model from (3.17) in matrix form is ∆xt = Bft+1 + εt+1 where we recall ∆xt

denotes the yield changes in b.p.s for the n maturities and

ft+1 :=
[
ParallelShiftt+1 Slopet+1 Curvaturet+1

]>
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denotes the 3× 1 vector of c.r.f. returns between dates t and t+ 1. Following Diebold and Li [28]

we take λ = 0.7308 which results in the loadings matrix

B =


1 1 1 1 1 1 1 1 1 1

0.97 0.91 0.84 0.71 0.53 0.41 0.27 0.19 0.14 0.07

0.03 0.08 0.14 0.23 0.29 0.29 0.24 0.19 0.14 0.07

1

0.05

0.05


>

.

The parameter estimates for Σε,G and Ση in (3.7) were obtained from the EM algorithm and

G was constrained to be diagonal so that each c.r.f. return follows a univariate AR(1) process

with no exogenous covariates, i.e., fi,t+1 = gi,ifi,t + ηi,t+1 for i = 1, 2, 3 where gi,i denotes the

ith diagonal element of G. As a result, the cross-sectional dependence between c.r.f’s in ft+1 are

induced exclusively via the covariance of the innovation process ηt+1. The ground-truth model

parameters were estimated to be

diag(Σ1/2
ε ) =[

0.0600 0.0312 0.0146 0.0165 0.0158 0.0109 0.0112 0.0135 0.0107 0.0056 0.0097
]>

G =


0.0383 0.0000 0.0000

0.0000 0.0727 0.0000

0.0000 0.0000 0.0399

 Ση =


0.0036 −0.0038 −0.0002

−0.0038 0.0066 −0.0039

−0.0002 −0.0039 0.0266

 .

The initial distribution π0 of the c.r.f. returns was assumed to be Gaussian with mean zero and

diagonal covariance matrix with diagonal elements equal to 0.01.

B.3 Ground Truth Parameters for the Options Portfolio Model of

Section 3.6

Our state-space model (3.21) from Section 3.6 assumes the observation model

∆xt =

 1

bo

 fot+1 +

0>3

Bu

 fut+1 +

 0

εt+1


where the first component of ∆xt represents the daily log-return (in percentage points) of the S&P

500 and the remaining components represent the daily changes (in volatility points) in implied
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volatility for n − 1 moneyness-maturity pairs. The factor loadings matrix Bu corresponding to

the latent c.r.f. returns is given explicitly for each moneyness-maturity pair by. The parameter

estimates for bo,G,Ση and Σε in (3.7) and (3.21) were obtained via the EM algorithm where we

also imposed the constraint that G is diagonal. While not strictly necessary, this assumption was

made to help the convergence of the EM algorithm and it implies that (i) each c.r.f. return follows a

univariate AR(1) process with no exogenous covariates and (ii) the dependence in ft+1 conditional

on Ft is induced via the covariance matrix Ση.

The ground-truth model parameters for the observation model (3.21) were obtained as

bo =



−1.22

−1.19

−1.12

−1.04

−0.94

−0.83

−0.60

...



Bu =



3.46 0.20 −1.79

3.46 0.10 −1.79

3.46 0.05 −1.79

3.46 0.00 −1.79

3.46 −0.05 −1.79

3.46 −0.10 −1.79

3.46 −0.20 −1.79

...
...

...



diag(Σ1/2
ε ) =



0.0196

0.0091

0.0058

0.0031

0.0002

0.0040

0.0142

...


where we show only1 the rows of bo,Bu and diag(Σ

1/2
ε ) that correspond to the first seven

moneyness-maturity pairs (ξ, τ): (0.80, 30d), (0.90, 30d), (0.95, 30d), (1.00, 30d), (1.05, 30d), (1.10, 30d)

and (1.20, 30d).

The estimated parameters of the c.r.f. returns model (3.7) are

G =


−0.1161 0.0000 0.0000 0.0000

0.0000 −0.1176 0.0000 0.0000

0.0000 0.0000 −0.4127 0.0000

0.0000 0.0000 0.0000 −0.0466

 Ση =


0.00018 0.00001 0.00002 0.00000

0.00001 0.00003 0.00013 0.00002

0.00002 0.00013 0.00523 0.00010

0.00000 0.00002 0.00010 0.00002


where the first, second, third and fourth rows (and columns) of G and Ση represent the S&P

500, parallel shift, skew and term structure c.r.f. returns, respectively. For reference, the standard

1 The complete model parameters are available upon request.
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deviations and correlation matrix of the innovations ηt’s are given by

diag(Σ1/2
η ) =


0.0138

0.0058

0.0723

0.0039

 ρη =


1.0000 0.1525 0.0236 0.0921

0.1525 1.0000 0.3002 0.9283

0.0236 0.3002 1.0000 0.3543

0.0921 0.9283 0.3543 1.0000


The initial distribution π0 was assumed to be normal with a zero mean vector and a diagonal

covariance matrix with all diagonal elements set to 0.005.

B.4 Obtaining MAP Estimates of the Latent C.R.F. Returns

Here we provide a brief outline of the optimization approach to obtaining smoothed MAP estimates

of the latent state variables, developed by [4] and [3]. In the following discussion, we refer to ft+1

as the state-vector and ∆xt as the observation vector, in the sense than ∆xt, through the factor

model (3.2), provides a noisy observation of the underlying latent state variables ft+1, which follow

the dynamics (3.7).

In this appendix, and following [4] and [3], we use a general state space model given by

ft = gt(ft−1) + ηt, t = 1, . . . , T

yt = ht(ft) + εt, t = 1, . . . , T (B.3)

with initial condition f0 is a known constant vector. In (B.3), gt : Rm → Rm and ht : Rm → Rn

are known smooth functions, yt ≡ ∆xt−1, and ηt and εt are mutually independent zero-mean

random vectors with Pηt(·) and Pεt(·) probability density functions, respectively. Note that by

setting ht(ft) = Bft and gt(ft−1) = Gft−1 for each t, we obtain equations (3.2) and (3.7) as special

cases. Using the notation

F := vec({ft}Tt=1) :=



f1

f2

...

fT


∈ RmT
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and similarly, denoting Y := vec({yt}Tt=1) ∈ RnT , we can write the likelihood of the latent common

factor returns given the observations as

P(F | Y) ∝ P(Y | F)P(F) =
T∏
t=1

P(yt | ft)P(ft | ft−1) =
T∏
t=1

Pεt (yt − ht(ft))Pηt (ft − gt(ft−1)) (B.4)

We obtain the MAP estimates of the common factors by solving the optimization problem

max
f1:T

T∏
t=1

Pεt (yt − ht(ft))Pηt (ft − gt(ft−1)) (B.5)

i.e., by maximizing the objective function (B.4) for a given set of observations y1:T and initial

condition f0. In the case where ηt and εt are normally distributed, and gt(·) and ht(·) are linear, the

MAP estimates can be obtained explicitly via the Kalman Filter and Kalman Smoother algorithms

[48]. If either one or both of ηt and εt are not normally distributed, solving the optimization

problem (B.5) to obtain the MAP estimates of the common factors results in an intractable problem

in general. The recent work of Aravkin [4] proposes an optimization technique to solve (B.5) for

the case in which ηt and εt are mutually independent Student-t distributed random variables.

Maximizing the likelihood (B.4) is equivalent to minimizing the negative log-posterior. If we

let ηt and εt be mutually independent Student-t distributed random variables, with covariance

matrices St and Rt, respectively, and degrees of freedom parameters s and r, respectively. Then

the negative log-posterior can be written as proportional to

L(F) :=
T∑
t=1

r ln

1 +
‖yt − ht(ft)‖

2
R−1
t

r

+ s ln

1 +
‖ft − gt(ft−1)‖2

S−1
t

s

 (B.6)

where ‖u‖2A := u>Au, for any vector u and matrix A of suitable sizes.

Note that the objective function (B.6) is a non-convex function of the common factors. A

solution method is proposed in [4], in which the objective function is iteratively approximated

locally using a convex function. This method follows a modified Gauss-Newton procedure in which

information about the curvature of the log-likelihood is included in the Hessian approximation.

More specifically, the modified Gauss-Newton procedure is an iterative method of the form

Fk+1 = Fk + γkdk (B.7)
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where Fk is the k-th iterate approximation to the optimal F∗ in (B.6), starting from some ap-

proximation F0, and where γk is a scalar that guarantees that L(Fk+1) < L(Fk) and is obtained

by a standard backtracking line-search procedure.Finally, dk is the modified Gauss-Newton search

direction, obtained by solving the subproblem

min
d∈RmT

L(Fk) + L(1)(Fk)>d + 1
2d>U(Fk)d (B.8)

where L(1)(Fk) denotes the gradient of the objective function (B.6) at current estimate Fk, and

U(Fk) is a matrix that approximates the curvature of the log-likelihood around Fk. The form of

the matrix U is given in [4] as a symmetric positive definite block tridiagonal matrix. The block

tridiagonal and positive definite structure of U allows an efficient calculation of the optimal d in

(B.8), with the solution given by d∗ = −U−1L(1).

Note that the solution method can also handle the inclusion of a regularization term ρ to the

objective function (B.6), as long as ρ(·) is a smooth convex function.
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Appendix C

Chapter 4 - Supplemental Content

C.1 Proof of Theorem 1

Given a solution to the coordinator problem, σ∗C = (g∗M, g∗Hθ ), assume that the human’s true type

is an arbitrary value θ̄ ∈ Θ. Then, it is sufficient to confirm that the strategies σ∗H = g∗H
θ̄

and

σ∗M = g∗M satisfy the three properties for the risk-sensitive Bayesian equilibrium:

(I) Machine’s incentive compatibility

ρM
(
ρHθ
(
CT |σ∗H, σ∗M, π1, h1

)
|π1

)
≤ ρM

(
ρHθ
(
CT |σ∗H, σ̃M, π1, h1

)
|π1

)
.

(II) Human’s incentive compatibility

ρHθ̄
(
CT |σ∗H, σ∗M, π1, h1

)
≤ ρHθ̄

(
CT |σ̃H, σ∗M, π1, h1

)
.

(III) The consistent belief profile

π∗t+1(θ) :=
π∗t (θ)σ

∗H(aHt |st, π∗t , θ)∑
θ̃ π
∗
t (θ̃)σ

∗H(aHt |st, π∗t , θ̃)
. (C.1)

The machine’s incentive compatibility (I) is satisfied since the objective function of the coordi-

nator is equal to the objective function of the machine. The consistent belief profile (III) follows

directly from the formulation of the coordinator problem as a POMDP. The human’s incentive
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compatibility condition (II) follows from the monotonicity property of the risk measures ρHθ and

ρM by the following logic. Assume that there exists a strategy σ̃H
θ̄

such that

ρHθ̄
(
CT |σ∗H, σ∗M, π1, h1

)
> ρHθ̄

(
CT |σ̃H, σ∗M, π1, h1

)
.

Then the monotonicity property implies that the coordinator’s objective function can be decreased

using the strategy gH
θ̄

= σ̃H. Thus we arrive at the desired contradiction that the solution to the

coordinator problem is optimal.

C.2 Approximate Solutions and Bounds for POMDPs

In this appendix, we discuss various approaches for finding approximate solutions to POMDPs.

We also discuss approaches for obtaining dual bounds, that provide a lower (upper) bound for the

optimal value of a minimization (maximization) problem, and therefore serve to evaluate how close

the approximate solutions are to optimality. Before going further, it is important to highlight that

POMDPs can be formulated as MDPs, if we work with the belief-state (instead of hidden states

and observations).

If we have a general POMDP with hidden states xt ∈ X , observations ot ∈ O, actions at ∈ A

and cost functions ct(xt, at), so that the POMDP problem can be written as

V ∗1 := min
g∈U

E

{
T∑
t=1

ct(xt, gt) | π1

}
(C.2)

where π1 denotes the initial distribution over x1, and where g = (g1, g1, . . . , gT ) is taken from the

set of non-anticipative policies U , i.e., gt depends on π1 and the history of observations o1:t so that

the action at time t is given by at = gt(π1, o1:t). Equivalently, we can instead define the POMDP

in terms of the belief-state πt
1. In this case, we can write the time t cost as a function of the

belief-state by setting c̃t(πt, at) := Eπ[ct(xt, at) | πt] so that the POMDP problem is reformulated

1 The belief-state is defined on the |X |-dimensional simplex and can be calculated by a standard filtering algorithm,

which takes πt, at and ot+1 as inputs, and outputs the belief-state πt+1. In our specific robo-advising framework, the

filtering updates are given by (4.3).



160

as

V ∗1 := min
g∈Uπ

E

{
T∑
t=1

c̃t(πt, gt) | π1

}
(C.3)

where in this case the set of non-anticipative policies Uπ corresponds to those gt that depend on

the belief-state history up to time t, π1:t.

In our robo-advising framework, the hidden states xt correspond to the pair (θ, st). In the

model extension with a dynamic risk-aversion parameter, the pair would be (θt, st), i.e., both

components change over time.) The observations ot correspond to the market state st and the

investor’s actions aHt . Such an action provides information about the unknown parameter θt to the

robo-advisor. Therefore, the natural filtration of the POMDP, given by the σ-algebra generated by

the observations o1:t, corresponds to the set of public histories Ht, defined by (4.1).

Even though we can reformulate a POMDP as an MDP, the state space of the resulting MDPs is

the belief-state simplex, typically high dimensional, which makes the MDP formulation intractable

as well. This formulation nevertheless helps in obtaining approximate value functions and dual

bounds, as discussed in the next section.

C.2.1 Approximate Value Functions and Primal Bounds

Approximate value functions (AVF) can be used to obtain sub-optimal policies for an MDP or

POMDP. If we simulate such a policy, we obtain an unbiased estimator of a primal bound, which

represents an upper (lower) bound for the optimal value of a minimization (maximization) problem.

Section 4.4.4 describes a direct approach for constructing an AVF via the Q-function. Here, we

show how that approach can be extended to obtain improved approximations that may yield better

policies.

The QMDP AVF, introduced in Section 4.4.4, formulates the POMDP as a fully observed

problem, i.e., the hidden states are fully observed at each time t, and defines the Q-function as

V Q
t (x, a) := ct(x, a) +

∑
x′∈X

Pxx′(a) min
a′

V Q
t (x′, a′) (C.4)

for t ∈ {0, . . . , T − 1}. The QMDP AVF is then defined by

Ṽ Q
t (πt) := min

at

∑
x∈X

πt(x)V Q
t (x, at). (C.5)
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[42] proposed the fast informed bound which improves on the QMDP AVF. This AVF formulates

the POMDP as a problem where the hidden state xt−1 is known when action at is selected, for all

t < T , so that the Lag-1 value function, V L1
t , is calculated recursively via

V L1
t (xt−1, at−1, ot) := min

at
Ext,ot+1 [rt(xt, at) + V L1

t+1(xt, at, ot+1) | xt−1, ot], (C.6)

for t ∈ {1, . . . , T − 1}, with terminal condition V L1
T+1 ≡ 0. We then define the Lag-1 AVF as

Ṽ L1
t (πt) := min

at
Ext,ot+1 [rt(xt, at) + V L1

t+1(xt, at, ot+1) | πt] (C.7)

where the expectation is calculated with respect to the joint distribution of ot+1 and xt, conditional

on the current belief state, πt.

More recently, [39] formulate a natural extension to the fast-informed bound by exchanging the

order of the minimization and expectation operation, and obtain the so-called Lag-2 AVF. The

complexity increases considerably for the calculation of such bound, but it provably provides a

bound that is tighter than the fast informed bound.

The greedy policies corresponding to the AVF methods discussed above can then be accordingly

defined as

gQt (πt) := argmin
a∈A

∑
x∈H

πt(x)V Q
t (x, at) (C.8)

gL1
t (πt) := argmin

a∈A
E
[
rt(xt, a) + V L1

t+1(xt, a, ot+1) | πt
]

(C.9)

for t ∈ {0, . . . , T − 1}.

We can then simulate each policy by first simulating the hidden states and observations to

calculate the belief-state in each time t, and then taking the action prescribed by the greedy policy

(C.8) or (C.9).

C.2.2 Dual Bounds

As discussed in Section 4.4.4, a dual bound is useful to be able to conclude that a policy is close

enough to optimal. [39] have shown that the aforementioned AVFs are subsolutions2, where a

2 We highlight that [15] introduced the subsolution terminology.
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subsolution ϑ is defined as any AVF that satisfies

ϑt(πt) ≤ min
at∈A

{rt(πt, at) + E[ϑt+1(πt+1) | πt]} (C.10)

for all belief states πt, and all t ∈ {0, . . . , T}. From (C.10), it follows immediately that any

subsolution ϑ is a feasible solution of the linear programming formulation of the Bellman equation.

Therefore, the subsolutions presented above are all dual (lower) bounds on the optimal value of the

original minimization problem.

It is often the case that in realistic applications, it is impractical to calculate the tighter AVFs,

and this may result in unsatisfactory duality gaps. [39] recently generalized information relax-

ation approaches to obtaining dual bounds for POMDPs, which are guaranteed to improve on the

dual bounds given by the subsolutions themselves. Their methodology extends the information

relaxation approach for MDPs, developed independently by [17] and [69]. Such an approach first

relaxes the non-anticipativity constraints of feasible policies, and then penalizes violations of these

constraints through the so-called dual penalties that act as action-dependent control variates in the

optimization problem. In the context of MDPs, [15] showed that the use of subsolutions in the

construction of the dual penalties guarantees a tighter bound than that obtained by the subsolu-

tion itself. In POMDPs, this becomes particularly useful since many AVFs are also subsolutions,

as discussed above.

In our context, the duality gap resulting from the QMDP subsolution (dual bound) and greedy

policy (primal bound) is small enough (see figure 4.2) to highlight the main qualitative properties

of the solution.

C.3 Details on the Numerical Study

We provide further details on the numerical study conducted in Section 5.1. Recall that we are

assuming the time horizon T = 10, and setting the number of portfolios to n = 4.

We take the state space to be the set of indices S := {1, 2, . . . , s(n) = 21}, with state transitions
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given by

P (s′|s) =



0.5, if s < s(n) and s′ = s+ 1,

0.5, if s = s(n) and s′ = s(n),

0.5, if s > 1 and s′ = s− 1,

0.5, if s = 1 and s′ = 1,

0, otherwise

(C.11)

We take the portfolio space to be the set of indices AM := {a(1), a(2), a(3), a(4)} ≡ {1, 2, 3, 4}. As

mentioned in Section 4.4, for each state s ∈ S and portfolio i ∈ {1, 2, 3, 4} we have expected return

µ(s, i) and standard deviation σ(s, i). We define these state and portfolio dependent parameters

using a parametric specification. For each portfolio i, we specify the expected return and standard

deviation for the state in the middle of the index set S and then define the expected returns and

standard deviations of the other states relative to s̃, i.e., for s̃ = 11 we set µ(s̃, 1) = 0.05, µ(s̃, 2) =

0.10, µ(s̃, 3) = 0.15, µ(s̃, 4) = 0.20, and σ(s̃, 1) = 0.05, σ(s̃, 2) = 0.15, σ(s̃, 3) = 0.30, σ(s̃, 4) = 0.50.

Hence, µ(s̃, i) and σ(s̃, i) are increasing with respect to the index i, with portfolio 4 being the

riskiest and portfolio 1 being the safer. The remaining parameters are given by

µ(s, i) = µ(s̃, i) + 0.02(s− s̃), for s ∈ S, i = 1, 2, 3, 4,

σ(s, 1) = σ(s̃, 1)− 0.005(s− s̃), for s ∈ S,

σ(s, 2) = σ(s̃, 2)− 0.01(s− s̃), for s ∈ S,

σ(s, 3) = σ(s̃, 3)− 0.02(s− s̃), for s ∈ S,

σ(s, 4) = σ(s̃, 4)− 0.04(s− s̃), for s ∈ S.

Hence, portfolios feature the risk-return tradeoff. Riskier portfolios have a higher standard devi-

ation, i.e., σ(s, 1) < σ(s, 2) < σ(s, 3) < σ(s0, 4) for all s ∈ S, and higher expected returns, i.e.,

µ(s, 1) < µ(s, 2) < µ(s, 3) < µ(s, 4). Note also that, when the market move causes an increase

in expected return, the standard deviation corresponding decreases. This characteristic is also

observed in equity markets, and known as the leverage effect.
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The space Θ of risk-aversion parameters consists of equally spaced points on a grid of size

m = 20 on the interval [0, 1], i.e., Θ = {0.05, 0.10, . . . , 0.95, 1.0}. The initial probability is chosen

to be uniform over Θ, i.e., π1(θ) = 0.05 for all θ ∈ Θ, and zero otherwise. For the numerical study

on the dynamic risk-aversion parameter, we define the transition function f as

f(θt, a
H
t , a

M
t , st, st+1) :=


min(θt + 0.05× at, 1.0), if st < st+1

θt, if st = st+1

max(θt − 0.05× at, 0.05), if st > st+1

where at is given by (4.5). Note that this definition of f captures the properties discussed in

Section 4.4, i.e., changes in the risk-parameter are greater for riskier portfolios (as given by at),

while the direction of the change in risk-aversion is determined by the sign of the state change, so

that θt+1 > θt if st < st+1 and θt+1 < θt if st > st+1, as discussed in Section 4.4.
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