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1 Introduction 

1.1 Bronchial asthma  

Bronchial asthma is a chronic disease characterized bychronic airway inflammation, 

airway hyperresponsiveness and airway remodelling (Murdoch und Lloyd 2010). It is 

known as a costly chronic disorder (Böcking et al. 2012b), this enhances the need for 

further research to better understand the mechanisms of this disease and finally to 

develop curative medication (Akinbami et al. 2011).  

 

1.1.1 Epidemiology 

Asthma is a multifactor disease influenced by genetic and environmental components. 

Remarkable development in studying asthma genetics has led to identification of 

several candidate genes that are associated with asthma-related traits (Vercelli 2008). 

Furthermore, immune responses in asthmatic patients are also regulated by epigenetic 

mechanisms (Yang und Schwartz 2012). Asthma is one of the most common diseases 

worldwide, it`s global prevalence is ranging from 1% to 18% of the populations, with 

high prevalence (>10%) in developed countries and increasing rates in developing 

regions as they become more westernized (Braman 2006). Within one decade the 

average prevalence of asthma in Western Europe has nearly doubled to now 5.9%, the 

highest rate found in Scotland (18.4%), whereas  prevalence in the German population 

is 6.9% (Masoli et al. 2004). The increased prevalence of allergic diseases implied an 

important aspect in terms of health costs as well as life quality (Böcking et al. 2012a). 

Only a few data are available about the prevalence of allergic diseases in Arabic 

countries and Middle East (Al et al., 2010).  

 

1.1.2 Pathophysiology 

Human bronchial asthma is a chronic airway inflammatory disease, which affects the 

bronchial airways. Airway inflammation is recognized as the key component of the 

disease. Different cell types are supposed to be responsible of regulating this airway 

inflammation such as mast cells, eosinophils, airway epithelial cells and CD4 positive 

lymphocytes (Van Hove, C L et al. 2008).  

Eosinophilic and noneosinophilic asthma is clinically an important classification because it 

identifies groups with markedly different responses to corticosteroids and other drugs 

(Furukawa et al. 2014).   
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The detailed phenotyping of asthma can allow successful targeting of existing and novel 

therapies of this disease (Olin und Wechsler 2014). 

 

1.1.2.1 Immune response 

The immunological response in allergic asthma can be divided into two phases: 

Phase I: The awareness or sensitization phase of the allergen which begins with an 

inclusion of an antigen on the mucosa of the airways. There specialized antigen 

presenting cells (APC) such as dendritic cells (DC) uptake the allergen and present it via  

the major histocompatibility complex (MHC) II (Hsieh et al. 1993). Activated APCs migrate 

to the draining lymph nodes (Paul und Seder 1994) where naive T cells detect this antigen 

via the antigen-specific T-cell receptor (TCR) (Ting et al. 1996). The differentiation of the 

naive CD4+ T cells to Th1, Th2, Th17 or Treg cells depends on both the binding of 

antigen to the TCR and the effect of local cytokines (Vernal und Garcia-Sanz 2008). E.g. 

the differentiation of naïve Th0 cells into Th1 cells occurs under the influence of the 

cytokines IL-12 and IL-18 which are usually secreted by APCs when high doses of 

allergen are present. On the other hand, presence of the cytokine IL-4 drives the 

differentiation toward Th2 cells (Kinet 1999) (Figure 1). Transcription factor GATA-3 - 

expressing Th2 cells produce primarily IL-4, IL-5 and IL-13, whereas Th1 cells, which 

express the transcription factor Tbet, produce mainly the cytokines IL-2 and IFN-γ 

(Bousquet et al. 2000). Although Th2 cells have been considered as main orchestrators of 

allergic airway inflammation, recent studies have shown a potential interaction of other 

helper T cells as Th17 cells, an IL-9-producing subset called Th9 cells, Th22 cells which 

primarily secrete IL-22, IL-13 and tumor necrosis factor-α TNF-α and Th25 cells producing 

IL-25 (Pawankar et al. 2015). Th2 cells can also induce B cell differentiation as well as 

activation through producing IL-4 which instructs B cells to switch from IgM to allergen 

specific IgE antibody production (Heusser und Brinkmann 1994).  

Phase 2: Repeated allergen contact leads to formation of allergic airway inflammation. 

The allergen is absorbed by the airway and leads to cross linking of IgE molecules on 

mast cells which induces an immediate response by a quick release of mediators such as 

histamine, prostaglandins and leukotrienes (Jeffery 1992). These mediators cause 

contraction of the airway smooth muscles, mucus production and vasodilation (Homer und 

Elias 2000) (Figure 2). Meanwhile, the DCs take the allergen to the local lymph nodes, 

where they present the antigen again to both the memory and naive T cells, leading to 

reactivation of Th2 memory cells and further differentiation of naive T cells (Chetta et al. 

1996). In the late phase of the inflammatory response, there is an infiltration of activated 
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CD4+ T cells, eosinophils, basophils, neutrophils and macrophages under the influence of 

IL-5 and GM-CSF (Douwes et al. 2002).  

 

 

Figure 1: Differentiation of Th0 to Th1 and Th2 in the presence of different cytokines (Biederman 

et al., 2002, modified) 

 

1.1.2.2 Airway inflammation 

Airway inflammation processes are early present in the clinical picture of the disease. This 

acute allergic airway inflammation is characterized by the infiltration of eosinophils and 

Th2 cells (Lederlin et al. 2010). Many cell types are involved in the chronic allergic airway 

inflammation such as activated macrophages, lymphocytes, eosinophils and neutrophils 

(Wegmann et al. 2005). The interaction between the different inflammatory as well as 

epithelial cells, inflammatory mediators and matrix proteins induce the airway remodelling 

namely collagen deposition and smooth muscle thickening (Fang et al. 2008).  

The persistent inflammation lead to an increased airway hypersensitivity, which is defined 

as an increased bronchi obstructive reaction to the allergen or a non-specific stimulus  

(e.g., methacholine) (Zosky und Sly 2007).  

 

Th2 

Th1 

Th0 APC 

IFNγ, IL-2 

intracellular infections 

autoimmunity 

IL-4, IL-5, IL- 10, IL-13 

humoral immunity 

allergy 

TCR signal 

presence of IFNγ or IL-12, -18 

TCR signal 

presence of IL-4 
activation 

 naïve Th cell 

 



Introduction 

 4 

 

Figure 2: Immune mechanisms of asthma (Valenta R., 2002)  

 

1.1.2.2.1 Dendritic cells 

Dendritic cells (DCs) play an important role in the development of allergies by capturing 

antigens, transporting them from the airway surface to regional lymph nodes and 

presenting them to T cells. In the lymph nodes, DCs present processed antigens to T cells 

and stimulate the differentiation of naïve T cells into different T cell subtypes. Airway DCs 

also play a crucial role in the local restimulation of circulating effector T cells upon allergen 

challenge (Pouliot et al. 2010).  

 

1.1.2.2.2 Lymphocytes 

Lymphocytes play a major role in allergic asthma. There are at least six main T cell 

subpopulations known so far (Th1, Th2, Th17, Th9, Th22, Th25, Treg). Th1 cells provide 

protection against intracellular bacteria and work mainly via the secretion of cytokines 

such as IFNγ. In addition, they maximize the killing efficiency of macrophages and are the 
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main contributors to the proliferation of cytotoxic CD8+ T cells (Schmid et al. 2010). The 

central function of Th2 cells is fighting parasites via the secretion of cytokines IL-4, IL-5 

and IL-13, as well as stimulation of B cell proliferation and induction of antibody class 

switching to IgE. Th2 cells are a key factor in the initiation and exacerbation of allergy and 

asthma (Robinson et al. 1993).  

Th17 cells provide an anti-microbial immunity at epithelial barriers via the secretion of 

cytokines such as IL-17 and IL-22 (Liang et al. 2006). When the immune response is 

dysregulated, Th17 cells are thought to play a key role in autoimmune diseases such as 

multiple sclerosis and SLE (system lupus erythematosus) (Selmi 2010). 

The fourth major T cell subsets are the T regulatory cells (Treg). They are specialized to 

suppress activation of the immune system and thereby maintain an immune system 

homeostasis and tolerance to self-antigens (Harrington et al. 2005; Stockinger und 

Veldhoen 2007).  

In human allergic asthma, the development of a Th2 cytokine profile results in airway 

inflammation, development of allergen specific IgE, presence of eosinophils in the lung 

and hyperplasia of goblet cells resulting in mucus production (Cohn et al. 2004). 

Alternatively, asthma may also occur due to a reduction of Treg cells (Karagiannidis et al. 

2004). Lack of immune suppression from Treg cells results in production of IL-4 and IL-13 

which leads to a stronger Th2 phenotype and more severe asthma (Ray et al. 2010).  

The principal functions of B cells are to produce specific antibodies against different 

antigens. Upon secondary contact with an antigen, memory B cells proliferate and 

differentiate into plasma cells, which produce antibodies to resolve an infection 

(Townsend et al. 2010). In case of immune system dysregulation, B cells produce 

antibodies against harmless molecules such as birch pollen or house dust mite. In 

allergies, IgE produced by B cells causes mast cell activation and further enhancement of 

Th2 immune response (Vicario et al. 2010). 

 

1.1.2.2.3 Mast cells 

Mast cells are resident cells in mucosa / tissues and play a major role in allergic asthma. 

Activation of these cells through cross-linking of high-affinity receptors loaded with IgE 

causes the release of preformed mediators stored in granules, which significantly 

contribute to the asthma phenotype (Wasserman 1984). Increased numbers of mast cells 

in airways may be linked to airway hyperresponsiveness due to the release of 

bronchoconstriction mediators (histamine, cysteinyl-leukotrienes and prostaglandin D2) 

(Galli et al. 2005; Schroeder 2009; Bradding und Brightling 2007). In addition, release of 
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histamine increases mucus production, which worsens the asthma phenotype and can 

partially contribute to remodelling during chronification (Prussin und Metcalfe 2003). 

 

1.1.2.2.4 Eosinophils 

Eosinophils are by nature responsible for combating multicellular parasites, but in a 

dysregulated immune response they play a central role in different types of allergic 

diseases as in asthma (Chu und Martin 2001; Sampson 2000). These cells produce 

growth factors such as TGF-β1, VEGF, and PDGF, having important functions in collagen 

deposition and airway remodelling, TGF-β1 is believed to be a key regulator of the 

immune system by driving the development of CD25+ regulatory T cells (Romagnani 

2006). Eosinophils generate also leukotrienes which increase mucus production in bronchi 

as well as vascular permeability leading to infiltration of inflammatory cells in the airway 

wall (Rothenberg und Hogan 2006). Most of asthma phenotypes are associated with an 

increase of eosinophils either in lung tissue, blood or in bone marrow. IL-5, which is 

produced mainly by Th2 cells, is the key cytokine of eosinophils differentiation, maturation 

and recruitment (Bates et al. 2009).  

 

1.1.2.2.5 Neutrophils 

Neutrophils are the most abundant immune cells in the body, they are essential in innate 

immunity and are usually the first cells migrating to an inflammation site (Witko-Sarsat et 

al. 2000). Similar to eosinophils, neutrophils are present in the airways of asthmatic 

patients and they are the most abundant cell type in cases of corticosteroid resistant 

asthma, (Macdowell und Peters 2007). Neutrophils contribute to the inflammatory process 

by secreting both lactoferrin and cathelicidin, which work as antimicrobial compounds and 

act to attract other immune cell types such as macrophages and lymphocytes to the 

inflammation site. Presence of neutrophils has been linked to severe asthma attacks and 

the development of a more chronic state of the disease (Monteseirín 2009). 

 

1.1.2.3 Airway remodelling 

Airway remodelling in asthma is characterized by structural abnormalities like hypertrophy 

of airway smooth muscle, subepithelial fibrosis, goblet cell hyperplasia, and proliferation of 

airway blood vessels and nerves (Lederlin et al. 2010; Leung et al. 2004) (Figure 3). 

Airway remodelling is thought to arise either via an excessive repair process of the 
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airways (Nials und Uddin 2008), or via an unresolved allergen driven inflammation that 

leads to irreversible airway damage (Blacquière et al. 2010).  

 

1.1.2.3.1 Goblet cells hyperplasia   

Goblet cells are located in the epithelium of the conducting airways where they produce 

mucus in response to inhaled airway insults (Caramori et al. 2008). The proliferation and 

hyperplasia of this cell type as well as overproduction of mucus are important findings 

characterizing asthma (Zuhdi Alimam et al. 2000). It has been shown that the Th2 

cytokine IL-13 is the main driver of goblet cells hyperplasia and mucus production, it 

induces the differentiation of airway epithelial cells into goblet cells resulting in 

overproduction of mucus in the airways (Shim et al. 2001). MUC5AC is one of different 

genes identified to be overexpressed in human airways of asthma patients (Fahy 2001), 

This gene is overexpressed by goblet cells hyperplasia both in vitro and in vivo (Rose et al. 

2000).  Goblet cells hyperplasia has recently been also described as a suitable 

environment of infections with rhinovirus in asthma patients (Lachowicz-Scroggins et al. 

2010).  

 

1.1.2.3.2 Smooth muscle thickening 

The smooth muscle thickening is the result of the hypertrophy of airway smooth muscle 

cells and as was recently shown, the migration of such cells from other regions to the 

subepithelial area in asthma patients (Bergeron et al. 2009). 
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Figure 3: Airway remodelling in asthma. (Francis et al., Pulmonary internal medicine 2008) 

 

The role of the bronchial smooth muscle remains controversial in healthy subjects. It 

assists likely in gas exchange regulation, mucus clearance, defence mechanisms and 

coughing (Solway und Irvin 2007), whereas its role in asthmatics is well established: 

smooth muscle support the bronchial inflammation by producing different inflammatory 

mediators necessary for the recruitment and activation of different inflammatory cells such 

as mast cells and T lymphocytes (Bara et al. 2010; Damera und Panettieri 2011). In 

addition, the thickening of airway smooth muscle plays an important role in increasing the 

bronchomotor responsiveness which characterizes asthma. Exaggerated broncho-

constriction and airflow obstruction is caused by the excessive contraction of airway 

smooth muscle during the asthma attack (Stewart et al. 1994). Despite smooth muscle 

cells are the final target of different cytokines and chemokines, they are also secreting 

different mediators in response to different stimulants (Tliba und Panettieri 2009)(Figure.4).  

Through the allergic disease, smooth muscle cells proliferation increases 3-5 fold more 

than in healthy people (Hassan et al. 2010). In the past, smooth muscle thickening was a 

therapeutic target of different studies, many different medications have been used to 

minimize either the proliferation or the exaggerated contractibility of these cells (Delmotte 

et al. 2010). 
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Figure 4: Interaction between SMA cells and other inflammatory cells during asthma development. 

[Annu. Rev. Physiol. 2009.71:509-535]. 

 

1.1.2.3.3 Collagen deposition 

The thickening of the basement membrane is a marked manifestation of airway 

remodelling in asthma patients. It ranges between 7 - 23 µm in asthma patients compared 

to 4 - 5 µm in normal subjects.  

Collagen deposition originates from the recruitment, proliferation and activation of local 

connective tissue cells in response to different inflammatory factors (Kim et al. 2009), as 

well as from the migration of precursor cells such as fibroblasts from the bone marrow and 

circulation to the lung tissue (Pereira et al. 1995). A marked increase of fibrocytes which 

are identified by CD34/procollagen-1a expression have been also detected in lungs and 

blood of patients with severe chronic asthma (Schmidt et al. 2003). TGF-β1 plays an 

important role in mediating remodelling by inducing the production of extracellular matrix 

proteins and cell proliferation. Additionally, increased TGF-β1 expression, which  has 

been observed in asthmatic patients, correlates with subepithelial fibrosis  (Ohno et al. 

1996) (Vignola et al. 1997). 

Matrix metalloproteinases (MMPs) are also involved in inducing airway inflammation and 

remodelling. An increase of MMP-9 during acute asthma facilitates the migration of 

inflammatory cells to the tissue, which may also participate in the airway remodelling by 

releasing or activating pro fibrotic factors (Kelly und Jarjour 2003).  
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1.1.3 Asthma treatment and therapy 

 

1.1.3.1 Therapy aspects in humans 

Anti-inflammatory therapy with inhaled / oral corticosteroids, beta 2-agonists and 

leukotriene receptor antagonists are the most used medication in patients with asthma 

(global initiative for asthma GINA2017). The current anti-inflammatory treatment of 

asthma is predominately based on the use of inhaled glucocorticoids (ICS). Although 

these drugs are highly effective in preventing life threatening consequences of asthma 

(Suissa et al. 2002), their effect is limited in modulating airway remodelling (Caramori et al. 

2008). The synthetic glucocorticoid “budesonide” is a well-established compound used 

locally to treat allergic diseases and asthma (Chian et al. 2011). The therapeutic potential 

of budesonide has been extensively studied in acute allergic inflammation models but only 

few studies have investigated efficacy on established airway remodelling and chronic 

asthma (Bos et al. 2007; Kelly et al. 2010). There are new therapeutic options which 

target immunoglobulin E and cytokines such as (anti Ig E (omalizumab), antiIL-13 

(lebrikizumab), anti IL4Rα (dupilumab) and anti-IL-5 (mepolizumab, reslizumab) (Roth and 

Tamm 2010; Pepper et al. 2017) 

 

1.1.3.2 Therapy aspects in animals  

The majority of asthma studies which utilized animal models were based on the acute 

allergic airway inflammation model (Zosky und Sly 2007). Although this model induces 

features of a strong acute allergic inflammation, it does not develop major characteristics 

of chronic airway remodelling such as collagen deposition and smooth muscle thickening 

(Bates et al. 2009). Alternative models which reflect the pathological changes observed in 

patients are chronic asthma models, in which a variety of parameters with regard to 

airway remodelling have been developed (Wegmann et al. 2005; McMillan und Lloyd 2004; 

Temelkovski et al. 1998). Such models are required to study novel intervention methods in 

a therapeutic rather than a prophylactic setting as investigated in acute asthma models 

(Nials und Uddin 2008).  
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2 Aim of the study 

Although the development of allergen-induced airway inflammation and remodelling has 

been extensively examined,  few studies have addressed the resolution of allergic 

inflammation (Kearley et al. 2009). We still need further information about resolution of 

airway remodelling in case of an effective therapy by asthma patients. Moreover, we need 

a therapeutic model of airway resolution, in order to evaluate the efficacy of different novel 

asthma therapies. 

We are aiming in our study to characterize the inflammatory and remodelling events that 

contribute to the transition from acute to chronic experimental asthma. Furthermore we 

have studied the impact of ICS treatment during this transition phase, to specifically 

identify steroid-sensitive and resistant pathways. The reversibility of remodelling has been 

also examined following a period of ICS therapy and to as well as in the optimal situation 

of allergen avoidance. 
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3 Material and Methods 

3.1 Animals 

Female BALB/c mice aged 6–8 weeks were purchased from Harlan Winkelmann (Borchen, 

Germany) and were maintained under pathogen-free conditions in isolated ventilated 

cages with 12 hour light/dark cycles. Water and ovalbumin (OVA)-free diet were supplied 

ad libitum. All mouse experiments met German and international guidelines and were 

approved by the Regierungspraesidium Giessen, and all measures were taken to keep 

animal suffering to a minimum. 

 

3.2 Material and equipment 

20G Catheter  BD, Drogheda, Ireland 

96-well Microtiterplates Maxisorp Flachboden Nunc, Wiesbaden, D 

Absorptionsphotometer Magellan   Tecan, Männedorf, Switzerland 

Analysis software Magellan  Tecan, Männedorf, Switzerland 

BALB/c mice Harlan Winkelmann, Borchen, Germany) 

BD OptEIA Set Mouse IL-4 (ELISA kit) BD Pharmingen, San Diego, USA 

BD OptEIA Set Mouse IL-5(ELISA kit) BD Pharmingen, San Diego, USA 

BD OptEIA Set Mouse IL-13(ELISA kit) BD Pharmingen, San Diego, USA 

BD OptEIA TM Set Mouse IFN-ᵞ(ELISA kit) BD Pharmingen, San Diego, USA 

Biotinylated goat anti-rabbit  IgG antibody Vector, Brockville, Canada 

Biotinylated rabbit anti-goat IgG antibody Vector, Brockville, Canada 

Budesonide Astra Zeneca, Lund, Sweden 

CAST-Grid System Visiopharm, Hoersholm, Denmark 

Casy Cell Counter System Schaerfe Systems, Reutlingen, D 

Cell-F System Olympus, Hamburg, D 

Centrifuge Megafuge 1.0R Heraeus, Osterode, D 

Cytocentrifuge Cytospin 3 Thermo Electron Corporation,  US 

Complete Protease Inhibitor tablets Roche, Mannheim, D 

DAB Substrate Vector, Brockville, Canada 

Diff-Quick solution Dade-Behring, Marburg, D 
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Dulbecco’s Phosphate Buffered Saline (PBS) PAA Laboratories GmbH, Cölbe, D 

Eosin 1% Merck, Darmstadt, D 

Ethanol  Roth, Karlsruhe, D 

Ethanol absolute  Roth, Karlsruhe, D  

FCS Gold PAA Laboratories GmbH, Cölbe, D 

Goat anti-CD3 antibody Santa Cruz Biotechnology, UK 

Hämatoxylin nach Gill II Merck, Darmstadt, D 

Hydrogen peroxide 35% solution Acros, New jersey. USA 

ImmunoTMwash 12 Microtiterplates -Washer Nunc, Wiesbaden, D 

Inject® Alum (Al(OH)3) Pierce, Rockford, USA 

Ketamin (10mg/ml) Inresa, Freiburg, D 

L-Glutamine  PAA Laboratories GmbH, Cölbe, D 

Mikrobiologie Agar Merck, Darmstadt, D 

Microtiterplate Reader Sunrise  Tecan, Crailsheim, D 

OVA Grade V  Sigma, Hamburg, D 

OVA Grade VI  Sigma, Hamburg, D 

Periodic acid Merck, Darmstadt, D 

PC-based Olympus light microscope BX51 Olympus, Hamburg, D 

Phosphat-Puffer (PBS) Biochrom, Berlin, D 

Prism 5 Graph Pad Software GraphPad Software, Inc.,San Diego,  USA 

Rabbit anti-SMA antibody Abcam, Cambridge, UK 

Roticlear® Roth, Karlsruhe, D 

RPMI (1x) without L-Glutamine PAA Laboratories GmbH, Cölbe, D 

RTU Horseradish peroxidase strepavidin Vector, Brockville, Canada 

SCHIFF reagent Merck, Darmstadt, D 

Set Mouse TGF-β (ELISA kit) R&D Systems, Minneapolis, MN, USA 

Set Mouse TNFα (ELISA kit) R&D Systems, Minneapolis, MN, USA 

Sodium carbonate (NaHCO3) Merck, Darmstadt, D 

Sodium Phosphate (Na2HPO4) Merck, Darmstadt, D 

Streptavidin / Phosphatase Sigma, Taufkirchen, D 
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substrate diaminobenzidine (DAB, SK-4100,) Vector, Brockville, Canada 

Sulfuric acid (H2SO4)  Merck, Darmstadt, D 

Tween 20 Roth, Karlsruhe, D 

 

3.3 Experimental animal model 

Mice were sensitized to OVA by three intraperitoneal (i.p.) injections 10 µg OVA grade VI 

adsorbed to 1.5 mg Al(OH)3 diluted in 200 µl phosphate-buffered saline (PBS). Mice were 

challenged with OVA (grade V) aerosol (1% wt/ vol in PBS) twice a week on 2 consecutive 

days over a period of 18 weeks (Figure 5, protocol A). Control groups were sensitized and 

challenged with PBS. To investigate the resolution of airway inflammation and remodelling, 

mice were challenged with OVA for 12 weeks, then OVA aerosol was replaced by PBS 

during the resolution phase. Animals were analysed after 4, 8 weeks respectively (Figure 

5, protocol B). Budesonide solution was diluted in PBS to 200 µg/ml and 50 µl were given 

intranasal (ICS) four hours before OVA challenge. Budesonide treatment in the chronic 

asthma model was performed concurrently with allergen exposure beginning at week 7 

until week 15 and then discontinued; analyses were performed at weeks 6, 14 and 18 

(Figure 5, protocol C ). As no differences were detected between control mice at different 

time points, data is shown only for one PBS group (12 weeks). All experiments were 

performed once with a group size of 6–8 mice treated in parallel in accordance to German 

animal ethic regulations. Each group was coded and analysed by an investigator blinded 

to the experimental conditions. 
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Figure 5: Schematic representation of treatment protocol: Mice were sensitized to OVA by 

three intraperitoneal (i.p.) injections on days 0, 14 and 21 with OVA absorbed to alum. Mice were 

then challenged with aerosolized OVA twice weekly for up to 18 weeks as indicated. Control mice 

were sensitized and challenged with PBS. Analyses were performed after 6, 8, 12, 14, 16 and 18 

weeks of aerosol challenge (Protocol A). To investigate the resolution of airway inflammation and 

remodelling, OVA aerosol was replaced with PBS after 12 weeks for either 4 or 8 weeks (Protocol 

B). In a third study, corticosteroids were given intranasal (ICS) starting after 6 weeks of OVA 

challenge for 8 weeks (Protocol C). doi:10.1371/journal.pone.0085839.g001 

 

3.4 Broncho Alveolar Lavage Fluid (BALF) 

Bronchoalveolar lavage (BAL) is the suitable method to obtain the inflammatory cells from 

the lung airways. 48 hours after the last aerosol challenge, animals were anesthetized 

with 200 µl Ketamin, then chest was opened and the trachea was cannulated through a 

small incision using a 20G catheter, 1 ml PBS containing Complete® protease inhibitor (1 

tablet Complete®/50ml PBS) was slowly injected through the catheter and then removed 

and kept in ice.  

 

3.4.1 BALF inflammatory cell counts 

The BALF was then centrifuged at 350 g for 10 minutes, and the supernatant was taken in 

small tubes and kept at -20 °C fridges. The cells sediment was again resuspended in 1 ml 

PBS/1%BSA and the cells were counted using the cell counters system (Casy).  

      Weeks: -4   -2   -1           0     1     2      3       4      5     6     7     8     9    10    11   12    13   14    15    16    17    18   19   20  

Sensitization (i.p.)      
PBS / OVA; Alum 

Allergen cessation (12W+4) 
12 weeks OVA + 4 weeks PBS 

Allergen cessation (12W+8) 
12 weeks OVA + 8 weeks PBS 
 

ICS treatment 4h 
before challenge 

 

Protocol A 

Protocol B 

 

Protocol C 

 

Challenge / Aerosol PBS / OVA  

Analysis time points 
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3.4.2 BALF differential cell counts 

For the differentiation of cells in the BALF, cytospins were prepared as follows:  

50 μl of BALF in PBS / 1% BSA were already used for  cell counting, then these cells were 

diluted with 150 µl PBS / 1% BSA, and then pipetted and centrifuged for 5 min at 700 rpm, 

the cells were distributed on a slide and the liquid was absorbed by a filter paper. The 

slides were dried for 1 h at room temperature and then stained using Diff-Quick Solution. 

The differentiation of the individual cell types was based on staining and morphology 

using light microscopy at 400-fold Magnification.  

 

3.4.3 Determination of BALF cytokines using Enzyme-linked immunosorbent 

assay (ELISA) 

96 well plates were coated with the primary antibody (IL-5, IL-13, TGFβ-1, IFNγ, and 

TNFα). The antibodies were diluted with a coating buffer either sodium carbonate for (IL-4, 

IL-5, IL-13,  IFNγ, TNFα) or PBS for TGFβ-1 according to manufactures recommendations. 

The plates were left overnight in 4°C. On the second day the plates were washed 4 times 

with a wash buffer (PBS 0.1% tween) except TGFβ-1 with (PBS 0.5% tween), then 

blocked for 2 hours with the appropriate blocking buffer (PBS 1% BSA) and (200 µl PBS 

5 % Tween) for TGFβ-1. During incubation time, serial dilutions of the standards were 

performed in order to establish a standard curve for each of the measured cytokines. 

Once the blocking period was finished, plates were washed 4 times with wash buffer and 

then samples and standards were added. The plates were next incubated overnight in 4°C. 

Next day the plates were washed 4 times and then detecting antibodies were added 

according to the manufactures recommendation. The plates were incubated at room 

temperature for another 2 hours, then washed 4 times, streptavidin-peroxidase was added 

at a dilution of 1:1000 and incubated in the dark for 30 minutes in room temperature. After 

a final eight-time washing, a peroxidase substrate solution was added and incubated in 

the dark until colour reaction was completed, in another step the whole reaction was 

stopped using sulfuric acid. The reaction stops once the colour changes from blue to 

yellow. This was followed by photometric measurement of the plate at 450 nm and 

evaluation the measurement data using the Magellan software. 

Total TGF-β1 levels were first determined after acid activation (100 µl sample + 20 µl 1M 

HCl mixing and incubation for 10 minutes in Room Temperature (RT), then neutralizing 

the sample with 20 µl 1,2 M NaOH/ 0,5M HEPES (Hydroxyethylpiperazin-

Ethansulfonacide-Puffer) and after good mixing the sample was ready to testing). 
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3.5 Lung Histology 

Lungs were fixed in situ with 6% (wt/vol) paraformaldehyde via the trachea, removed and 

stored in 6% par formaldehyde. From the fixed lungs the remaining trachea and heart 

were removed. To include randomness in the selection, the lungs were embedded in a 

liquid solution containing 2% agar in distilled water, refrigerated for 1 hour at 4 ° C. until 

the agar was solid, the lungs were cut in 2 mm thick sections in a plane rectangular shape 

according to the "Systematic Randomized Uniform Sampling" (SURS) and covered again 

with a 2% agar. This block was put then in an Embedding cassette in formalin, transferred 

and waxed in paraffin. Thin sections of 3 µm thickness were made by microtome, and 

placed on slides and left for 48 hours in room temperature to dry. 

 

3.5.1 Hematoxylin-Eosin (HE)-Staining 

Slides were deparaffinised and rehydrated as follows: first the slides were dipped in Xylol 

for 15 min, then they were dipped in Ethanol (100%) two times each for one minute, then 

in ethanol (90%, 80%, 70%) each for one minute respectively. After that, slides were 

washed in distilled water then dipped in haematoxylin solution for 3 min. Then slides were 

dipped for 10 min in running warm tap water, then washed for short time in distilled water. 

The slides were dipped in eosin solution for 2 min and then washed in distilled water. At 

the end the slides were dipped in the raw of Ethanol (70%, 80%, 90%, 100%) each for 

one min respectively, and in Xylol for 15 min. At the end the slides were covered with Neo 

Mount. 

 

3.5.2 Periodic Acid-Schiff Staining 

To stain the sections, the slides were deparaffinised and rehydrated as mentioned before 

(2.5.1), then dipped in periodic acid 0.5 % in distilled water for 10 min. Slides were then 

dipped for 3 min in running tap water, then washed for short time in distilled water. The 

slides were dipped in Schiff reagent (always fresh prepared) for 15 min, then slides were 

dipped for 15 min in running tap water and washed for short time in distilled water. For 

contrastivity the slides were dipped in Haematoxylin solution for 1 min, then in running tap 

water for another 3 min. At the end the slides were dipped again in alcohol and Xylene as 

described in 2.5.1. 
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3.5.3 Sirius Red/Fast Green Staining 

A Sirius Red/Fast Green staining was used as a specific fibrous collagen staining in the 

lung tissue. The Sirius Red dye accumulates in the triple helix structure of collagen 

molecules. The Fast Green staining serves as a Counter stain. After deparaffinisation and 

rehydration with xylene and alcohol as described in 2.6.1, sections were dipped for 48 

hours in Sirius Red/Fast Green staining in dark, then were rinsed with water for a short 

time and at the end slides were dipped again in alcohol series and Xylene as described in 

2.5.1. 

 

3.5.4 Immunohistochemistry 

Tissue sections were first deparaffinised and then rehydrated. Endogenous tissue 

peroxidase activity was inactivated with 1% H2O2 (vol/vol in methanol) for 30 min. Antigen 

retrieval was performed through immersing slides in plastic staining holders containing 10 

mM citrate buffer in Aqua dest., then putting the holders inside the microwave oven (450W) 

for 3 – 5 minutes or until the solution started to boil. Sections were blocked for 60 mins 

with 3% milk powder in PBS. Smooth muscle actin (SMA) expression and T lymphocytes 

were detected by incubation with rabbit anti-SMA antibody and goat anti-CD3 antibody, 

respectively, in a humid chamber overnight at 4°C. Sections were then washed with PBS, 

incubated for 60 min with biotinylated goat anti-rabbit antibody or biotinylated rabbit anti-

goat antibody (1:100 in PBS / 3% milk powder). Slides were washed with PBS, then ABC 

complex (RTU Horseradish peroxidase Streptavidin) was added and incubated for 30 min 

in dark, washed and then incubated with the substrate diaminobenzidine (DAB, SK-4100) 

for 10 min in the dark. The sections were then rinsed briefly with distilled water and then 

counterstained for 1 min in haematoxylin. At the end, slides were dipped again in alcohol 

series and xylene as described in 2.5.1. 

 

3.6 Quantitative morphology 

H&E-stained tissue sections were microscopically viewed and random images were 

collected under 20 x objective. Degree of inflammation was expressed as a peribronchial 

airway inflammation score (0, normal; 1, few inflammatory cells; 2, one to two cell layers 

ring of inflammatory cells; 3, three to four cell layers ring of inflammatory cells and 4, more 

than four layers ring of inflammatory cells) (Conrad et al. 2009). H&E and CD3 

immunohistochemical stained lung sections were selected by random sampling (40–50 

images) using the 40 x objective. The number of eosinophils and CD3-positive cells were 

quantified and expressed as cell numbers per field. PAS-stained sections were viewed 
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and random images collected under 20 x objective. The fraction of the analysed basal 

membrane covered by goblet cells was then evaluated through calculating the goblet cells 

per mm basement membrane. Inflammation and goblet cells were quantified using a PC-

based Olympus light microscope BX51 equipped with a Cell-F System. Paraffin sections 

stained with Sirius Red, anti-SMA, were used to quantify changes in airway collagen 

deposition, smooth muscle cell layer thickening, respectively, using the BX51 microscope 

equipped with a CAST-Grid System [3]. All sections were delineated and the fields of view 

analysed (at 400x) were automatically defined according to systematic uniform random 

sampling, 150 random samples (30% of total lung tissue area and thus representing all 

parts of the airway tree) were taken of each section. The arithmetic mean thickness (Tcomp) 

was determined as the volume of the respective component, determined by counting all 

points intercepting the airway epithelium and Sirius Red- and a-SMA-positive components, 

respectively (Cruz-Orive und Weibel 1990; Hsia et al. 2010). Results were referred to the 

reference surface determined by counting all intersections with the airway epithelial basal 

membrane. The arithmetic mean thickness was calculated according to the formula: Tcomp 

= L(P) x Ʃ Pcomp/(2 x Ʃ Ibi) (Weibel ER, Cruz-Orive LM 1997). L(P) is the line length per test 

point, Pcomp, the number of points hitting the respective component and Ibl the number of 

intersections between the test line and the epithelial basal membrane. 

 

3.7 Statistical analysis 

Graphing and statistical analysis of normally distributed data was performed using Prism 5 

(Graph Pad Software, San Diego, CA, USA). Data are expressed as mean ± SEM and are 

analysed for significance using one-way ANOVA with Tukey's Multiple Comparison Test 

(for multiple group comparisons) or the Student’s unpaired t-test for two groups 

comparison. Statistical significance was referred to  as follows  

*p≤0.05, **p≤0.01, ***p≤0.001  

 



Results 

 20 

4 Results 

4.1 Chronic exposure to OVA results in prolonged airway inflammation and 

remodelling 

4.1.1 Airway inflammation 

The kinetic of airway inflammation was investigated using a chronic mouse model of 

experimental asthma by challenging mice with aerosolised OVA over an 18 week period 

(Figure 5, protocol A). In the bronchoalveolar lavage fluid (BALF), peak cell infiltration was 

observed at 6 weeks of OVA challenge, which steadily decreased until 12 weeks and then 

remained at almost baseline levels.  In contrast, the high level of peribronchial tissue 

inflammation observed at 6 weeks, persisted throughout all analysed time points (Figure 

6). 

 

Figure 6: Chronic allergen exposure induces airway inflammation: Mice were challenged with OVA 

for up to 18 weeks (Figure 5, Protocol A) and analysed for airway inflammation as determined by 

BALF cell counts and morphometric quantification of peribronchial inflammation. 

 

The maintenance of allergen challenge was accompanied by decreased bronchoalveolar 

inflammation. A marked proportional decrease of eosinophils after 12 weeks without 

dominance as seen before 12 weeks (Figure 7A-D)  
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Figure 7: Prolonged allergen challenge results in decreased BALF inflammatory cell recruitment: 

Differential cell counts from chronic allergic inflammation model following allergen challenge for up 

to 18 weeks, 6-8 animals per group, *p≤0.05, ***p≤0.001. 

 

4.1.2 Airway remodelling 

Hallmarks of airway remodelling are goblet cell hyperplasia, thickening of the smooth 

muscle cell layer and extracellular matrix deposition. To quantify changes in airway 

remodelling immunohistochemical analysis in combination with stereological quantification 

was performed. Comparison of PAS-stained lung sections from chronically OVA treated 

mice revealed that ~45% of all cells lining the bronchial airways throughout the whole 

observation period were Goblet cells (Figure 8). Advanced structural changes, such as 

collagen deposition and smooth muscle thickening, in the airways were not visible until 

eight weeks of OVA exposure as determined by collagen and a-SMA staining, 

respectively. Between 8 and 12 weeks the amount of airway collagen rapidly increased by 

approximately 3 fold and then remained constant. Thickening of the smooth muscle layer 

was less pronounced than collagen deposition, but increased approximately two fold 

between 6 and 12 weeks (Figure 8). Together these data show that in this mouse model 

of chronic experimental asthma, continued allergen exposure is associated with prominent 

0.0

0.5

1.0

1.5
*** ***

0.0

0.5

1.0

1.5
*

******

0.0

0.5

1.0

1.5

Eosinophils
(A)

PBS 8

Weeks OVA treatment

12 14 16 18

B
A

L
F

 C
e

ll
 C

o
u

n
t 

x
1
0

5

Lymphocytes

Macrophages
Neutrophils

0.0

0.5

1.0

***

***

***

B
A

L
F

 C
e

ll
 C

o
u

n
t 

x
1
0

5

B
A

L
F

 C
e

ll
 C

o
u

n
t 

x
1
0

5

B
A

L
F

 C
e

ll
 C

o
u

n
t 

x
1
0

5

(B)

(C) (D)

PBS 8

Weeks OVA treatment

12 14 16 18

PBS 8

Weeks OVA treatment

12 14 16 18PBS 8

Weeks OVA treatment

12 14 16 18

0.0

0.5

1.0

1.5
*** ***

0.0

0.5

1.0

1.5
*

******

0.0

0.5

1.0

1.5

Eosinophils
(A)

PBS 8

Weeks OVA treatment

12 14 16 18PBS 8

Weeks OVA treatment

12 14 16 18

B
A

L
F

 C
e

ll
 C

o
u

n
t 

x
1
0

5

Lymphocytes

Macrophages
Neutrophils

0.0

0.5

1.0

***

***

***

B
A

L
F

 C
e

ll
 C

o
u

n
t 

x
1
0

5

B
A

L
F

 C
e

ll
 C

o
u

n
t 

x
1
0

5

B
A

L
F

 C
e

ll
 C

o
u

n
t 

x
1
0

5

(B)

(C) (D)

PBS 8

Weeks OVA treatment

12 14 16 18PBS 8

Weeks OVA treatment

12 14 16 18

PBS 8

Weeks OVA treatment

12 14 16 18PBS 8

Weeks OVA treatment

12 14 16 18PBS 8

Weeks OVA treatment

12 14 16 18PBS 8

Weeks OVA treatment

12 14 16 18



Results 

 22 

and persistent airway inflammation and structural alterations (Alrifai et al. 2014) 

publication attached. 

 

 

Figure 8: Chronic allergen exposure induces airway remodelling: Mice were challenged with OVA 

for up to 18 weeks (Figure 5, Protocol A) Airway remodelling was determined by quantification of 

Goblet cell hyperplasia, subepithelial collagen deposition and smooth muscle thickening. Data 

points represent means 6 ± ∓ SEM of n=6-8 animals per group. 

 

4.2 Cessation of allergen exposure reverses airway inflammation and 

remodelling 

To mimic the situation of effective allergen avoidance, it was further investigated how 

allergen cessation can affect established airway remodelling and inflammation. 

4.2.1 Airway inflammation 

4.2.1.1 BAL inflammation 

Following 12 weeks of OVA challenge mice exhibited robust airway inflammation and fully 

established remodelling, including thickening of the smooth muscle layers and increased 

deposition of collagen. Therefore, this time point was chosen as the reference point for the 
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chronic situation and used to investigate the effects of allergen cessation over the 

following 8 week period. After 4 weeks of resolution, total BALF cell numbers remained 

constant while the numbers of eosinophils and neutrophils decreased to baseline levels 

during this period (Figure 9B, D). The number of lymphocytes in the BALF resolved much 

slower, returning to control levels after 8 weeks together with total BALF cell counts 

(Figure 9A, C). Interestingly, the number of alveolar macrophages initially increased 

significantly then decreased almost to control levels after 8 weeks of resolution (Figure 

9E). 

 

 

Figure 9: Resolution of BALF inflammation following allergen cessation: Mice were challenged with 

OVA twice weekly for 12 weeks to establish features of chronic asthma; OVA challenge was then 

discontinued and replaced with PBS for subsequent 4 or 8 weeks (Figure 5, Protocol B). 

Bronchoalveolar (BAL) inflammation was analysed after 12 (+ 0), 16 (+ 4) or 20 (+ 8) weeks of 

challenge. The results represent data from n=6-8 animals per group, *p≤0.05, **p≤0.01, ***p≤0.001. 

 

4.2.1.2 Lung tissue inflammation  

Tissue inflammation was assessed by simple H&E and immunohistochemical staining in 

combination with stereological quantification (Figure 10). The high level of lung tissue 

inflammation observed before allergen cessation slowly decreased and returned to 

baseline levels after the 8 week resolution period (Figure 10A, C). While lung tissue 

eosinophils rapidly disappeared (Figure 10D), many CD3+ T lymphocytes were still 
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present after 4 weeks and only reduced after 8 weeks of allergen cessation (Figure 10B, 

E). 

 

 

 

 

Figure 10: Resolution of airway tissue inflammation and remodelling following chronic allergen 

exposure: Chronic asthma was established by challenging OVA sensitized mice for 12 weeks twice 

weekly. OVA challenge was then discontinued and replaced with PBS for subsequent 4 or 8 weeks. 

Outcome measurements were made at either 12 (+ 0), 16 (+ 4) or 20 (+ 8) weeks of challenge 

(Figure 5, Protocol B).  (Figure 10A) Representative photomicrographs of haematoxylin & eosin 

(H&E) stained sections (arrows indicate eosinophils), (Figure 10B) immunohistochemical staining 

of CD3. (Figure 10C) Histological quantification of lung inflammation, (Figure 10D) eosinophil 

numbers as determined by morphological criteria in H&E stained lung sections, (Figure 10E) CD3+ 

lymphocytes per field of observation. Box and whisker plots show mean and percentiles with n=6-8 

animals per group, *p≤0.05, **p≤0.01, ***p≤0.001. 

 

4.2.2 BAL cytokines profile 

Before allergen cessation and during the 8 week resolution phase, the levels of IL-5 in the 

BALF were indistinguishable from the PBS group (Figure 11A). The levels of IL-13 were 

increased at the chronic reference point (12 weeks of OVA challenge) then decreased 

during resolution period, however, these changes did not reach statistical significance 
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(Figure 11B). In contrast, the levels of IFN-Ƴ were increased during the resolution phase 

(Figure 11C). High levels of the pro-remodelling cytokine TGF-β were detected in the 

BALF at 12 weeks of OVA challenge, which then returned to baseline levels after 8 weeks 

of allergen cessation (Figure 11D). 

 

 

 

Figure 11: Cytokine profiles following allergen cessation: Mice were challenged with OVA twice 

weekly for 12 weeks to establish features of chronic asthma; OVA challenge was then discontinued 

and replaced with PBS for subsequent 4 or 8 weeks (Figure 5, Protocol B). Bronchoalveolar (BAL) 

cytokines were analysed after 12 (+ 0), 16 (+ 4) or 20 (+ 8) weeks of challenge. The results 

represent data from n=6-8 animals per group, *p≤0.05, **p≤0.01, ***p≤0.001. 

 

4.2.3 Airway remodelling 

Before resolution ~40% of the lining airway epithelium consisted of goblet cells, which 

decreased to ~8% after 4 weeks of allergen cessation then further decreased to complete 

absence after 8 weeks of resolution (Figure 12A, D). Airway collagen deposition exhibited 

a similar trend, rapidly decreasing in thickness during the initial four weeks of allergen 

avoidance and finally resolving at eight weeks (Figure 12B, E). On the other hand, smooth 

muscle thickening was much slower to resolve, requiring the full eight weeks to return to 
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control levels (Figure 12C, F). Together these data show that the resolution of 

inflammation and remodelling are highly dynamic processes that occur with different 

kinetics for individual parameters.  

 

 

 

 

 

Figure 12: Resolution of airway tissue inflammation and remodelling following chronic allergen 

exposure: Chronic asthma was established by challenging OVA sensitized mice for 12 weeks twice 

weekly. OVA challenge was then discontinued and replaced with PBS for four or eight weeks. 

Outcome measurements were made at either 12 (+ 0), 16 (+ 4) or 20 (+ 8) weeks of challenge 

(Figure 5, Protocol B). (Figure 12A) Representative photomicrographs of periodic acid-Schiff (PAS), 

(Figure 12B) Sirius Red staining and (Figure 12C) immunohistochemical staining of smooth muscle 

actin (SMA). (Figure 12D) Histological quantification of PAS positive Goblet cells, (Figure 12E) 

collagen deposition and (F) SMA thickness. Box and whisker plots show mean and percentiles 

from n=6-8 animals per group, *p≤0.05, **p≤0.01, ***p≤0.001. 
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4.3 Corticosteroids protect against the full establishment of airway 

remodelling during development of chronic asthma 

It was finally investigated whether therapeutic intervention could interfere with the 

development of advanced airway remodelling. The efficacy of Steroid treatment at the 

given dose was first determined using an acute model of experimental asthma (Figure 

13A). As expected, acute OVA challenge induced a strong recruitment of inflammatory 

cells into the BALF, predominately consisting of eosinophils as well as high levels of 

Goblet cell hyperplasia. ICS administration significantly attenuated the OVA-induced 

asthma phenotype. However, treatment did not completely attenuate experimental asthma 

manifestation, as the numbers of eosinophils and Goblet cells remained significantly 

higher than in control mice (Figure 13B-G). 

 

 

 

 

 

 

 

 

 

Figure 13: corticosteroids attenuates features of acute airway inflammation: (A) Acute airway 

inflammation was generated in mice via intraperitoneal (i.p.) injection of OVA conjugated to Alum 

and subsequent challenge with OVA for three days with or without the prior treatment with 

intranasal corticosteroids (ICS). Mice were analysed 48 hrs after last challenge for; (B) total BALF 

cells, (C) eosinophils, (D) lymphocytes, (E) neutrophils, (F) macrophages and (G) quantified for the 

number of Goblet cells. Basement membrane (BM). The results are shown as box and whiskers-

plots showing mean and percentiles with 6-8 animals per group, *p≤0.05, **p≤0.01, ***p≤0.001. 
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The effect of ICS on the development and progression of airway remodelling was then 

examined in the chronic model; Corticosteroid treatment started at a time when initial 

remodelling processes are observed (week 6) and then continued during the period of 

reinforcement and full establishment of remodelling until week 14 (Figure 5).  

Prior to ICS therapy (week 6), OVA challenge induced a strong bronchoalveolar and 

tissue inflammation, recruiting eosinophils, neutrophils and lymphocytes to the BALF 

(Figure 14, black bars). Treatment of mice with ICS for 8 weeks did not alter the level of 

bronchoalveolar inflammation (Figure 14A-E, light grey bars), however, significantly 

reduced tissue inflammation (Figure 14F, light grey bars) compared to mice challenged 

with OVA alone. ICS therapy also diminished Goblet cell numbers and collagen deposition 

but had no effect on smooth muscle thickening (Figure 14G-I, light grey bars).  

To investigate whether this protection persisted following discontinuation of ICS, mice 

were further exposed to OVA for another four weeks in the absence of corticosteroids. 

Mice previously treated with ICS exhibited increased eosinophil numbers in the BALF as 

compared to mice that never received ICS (Figure 14B, dark grey bars). However, mice 

that were treated with ICS maintained lower Goblet cell numbers and reduced collagen 

deposition compared to mice that did not receive ICS (Figure 14G H, dark grey bars). 

Together, these data show that ICS confers some protection from advance remodelling 

during the transition from the acute to the chronic phase. However, some beneficial 

effects of ICS are lost in the case of subsequent allergen exposure. 
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Figure 8: intranasal corticosteroids attenuate some but not all characteristics of chronic asthma: 

Mice were sensitized and challenged for 6 weeks with PBS as control and OVA (black bars). OVA 

treatment was continued for another 8 weeks (light grey bars), with or without parallel treatment 

with intranasal corticosteroids (ICS). OVA treatment was then continued for another 4 weeks 

without ICS application (dark grey bars) (Protocol C). Data are presented as mean +/- SEM, n=6-8 

animals per group, *p≤0.05, **p≤0.01, ***p≤0.001. 
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5 Discussion 

Pronounced airway remodelling is a hallmark of chronic asthma and is characterised by 

Goblet cell hyperplasia, deposition of extracellular matrix components and thickening of 

the smooth muscle layer. The presence of advanced airway remodelling is associated 

with a poorer clinical prognosis and is therefore, considered an important therapeutic 

target (Ge et al. 2010; Murdoch und Lloyd 2010). Unfortunately, current anti-inflammatory 

therapeutic strategies including corticosteroids, while effective for reducing inflammation 

are less successful in treating structural alterations in airway remodelling (Kelly et al. 

2010). Furthermore, the reversibility of airway remodelling is still unclear; it is not fully 

understood whether cessation of allergen exposure can lead to the full resolution of 

established remodelling (McMillan und Lloyd 2004).  

To address these open questions, we have utilised a mouse model of chronic asthma 

which exhibits pronounced airway remodelling at 12 weeks of aerosol allergen exposure 

and is maintained throughout the entire challenge period of 18 weeks. The maintenance 

of chronic asthma and tissue inflammation was accompanied by decreased 

bronchoalveolar inflammation but persistence of tissue inflammation. The low levels of 

eosinophils and lymphocytes present within the BALF at the later time points during 

allergen challenge is consistent with previous studies (Wegmann et al. 2005; Sakai et al. 

2001). This data also supports clinical observations by Persson et al. who described that a 

decrease in inflammatory BALF cells but the persistence of lung tissue inflammation is an 

index of worse outcome in asthma (Persson und Uller 2010). These data demonstrate that 

decreased inflammatory cell numbers in the BALF but maintenance of tissue inflammation 

correlates with the progression of chronic allergic asthma and is independent from 

resolution. Although compartmentalization of airway-inflammation seems to be a critical 

step during the transition from an acute to a chronic phenotype, the underlying molecular 

mechanisms which regulate compartmentalization of inflammatory cells are still not known. 

It is likely that selective and spatial recruitment processes direct this phenotype, which 

includes the expression of adhesion molecules, chemokines and/or chemokine receptors. 

It has been reported that prolonged allergen challenge can lead to immune tolerance and 

loss of inflammation (van Hove et al. 2007). However, in this and other studies it has been 

demonstrated that prolonged allergen exposure results in persistent Goblet cell 

hyperplasia and chronic tissue inflammation (Sakai et al. 2001). The discrepancy between 

these reports is most likely due to the use of different mice strains; C57BL/6 versus 

BALB/c as used in our study (Chu et al. 2006; Hogan et al. 2008; Nygaard et al. 2005), 

which indicates an underlying genetic component in asthma susceptibility and recovery.  
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In mice with fully established airway inflammation and remodelling, allergen cessation 

(four weeks) resulted in a rapid decrease in inflammatory cells such as eosinophils and 

neutrophils from the BALF. In contrast, macrophage numbers revealed a different kinetics 

initially increasing in numbers before returning to baseline levels. This temporary increase 

in macrophage numbers adds further support to the important role of this cell type in the 

resolution of inflammation (Leung et al. 2004, Porcheray et al. 2005, 2005). 

 Allergen cessation resulted in a rapid decrease in Goblet cell numbers, which is in line 

with observations made by other investigators (Blyth et al. 2000; Southam et al. 2008b; 

Kumar et al. 2004). Our study expands on these investigations by performing 

comprehensive analysis of both inflammatory and remodelling parameters. It has been 

proposed that the cessation of allergen exposure does not completely attenuate airway 

remodelling (Henderson, JR et al. 2006; McMillan und Lloyd 2004; Kumar et al. 2004; 

Leigh et al. 2002). In the studies by McMillan et al. and by Kumar et al. four weeks of 

allergen cessation was not sufficient to fully resolve airway remodelling (Kumar et al. 2004; 

McMillan und Lloyd 2004). This observation was confirmed by the results of our study, 

however, prolongation of the resolution period to eight weeks completely attenuated lung 

tissue inflammation and fully reversed airway remodelling (Alrifai et al. 2014). Together 

this supports the notion that continued allergen exposure is required for the persistence of 

allergic airway inflammation and remodelling, and that avoidance of allergen exposure 

could ameliorate airway inflammation and remodelling at least in mice.  

The extensive airway remodelling at twelve weeks of OVA challenge correlated with high 

levels of TGF- β in the BALF. TGF- β has important roles in mediating remodelling by 

inducing the production of extracellular matrix proteins and cell proliferation. It has been 

shown that TGF- β has a significant role in pulmonary fibrosis (Khalil et al. 1991). 

Additionally increased TGF- β expression has been observed in asthmatic patients, which 

correlated with subepithelial fibrosis (Redington et al. 1997; Halwani et al. 2011; Vignola 

et al. 1997). Furthermore, in our study the decreasing level of TGF- β in BALF following 

allergen cessation also correlated with the resolution of airway remodelling, which further 

indicates the important role of this cytokine in remodelling and resolution. The increased 

IFN-Ƴ levels observed during resolution phases may also serve to further antagonise the 

profibrotic effects of TGF- β (Eickelberg et al. 2001).  

ICS are the mainstay of asthma therapy in humans (Baran 1987). Studies in mice have 

predominately focused on the effects of ICS in acute asthma models (Chian et al. 2011; 

Schmidt et al. 1994; Shen et al. 2002). We have here investigated the effects of ICS 

during the establishment of airway remodelling. The experimental protocol closely mimics 

the clinical situation, in which patients suffer from acute allergic asthma symptoms at the 

starting point of treatment. The data from the acute model confirmed the efficacy of the 
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ICS treatment and is consistent with other studies (Chian et al. 2011; Schmidt et al. 1994; 

Shen et al. 2002). Applying ICS during the transition from acute to chronic asthma, 

resulted in lower lung tissue inflammation, Goblet cell hyperplasia and collagen deposition. 

ICS however did not alter allergen induced smooth muscle thickening. Together these 

results indicate that despite ICS OVA sensitization is retained and that ICS delay some 

but not all characteristics of chronic remodelling. Similar observations were reported in a 

chronic OVA-induced asthma model when budesonide was given for four weeks following 

allergen cessation, however in this case no differences in collagen deposition and smooth 

muscle mass were observed (Southam et al. 2008a).  

Similar results have been obtained following the co-application of OVA and 

dexamethasone, which reduced Goblet cell hyperplasia but did not affect smooth muscle 

thickness (Karras et al. 2007; Miller et al. 2006). These observations again demonstrate 

that slowly progressing remodelling features are more resistant to therapeutic 

interventions. Our study also expands on works of Kumar and Herbert in which the 

authors showed that dexamethasone treatment resulted in reduced lung inflammation and 

collagen deposition (Herbert et al. 2008; Kumar et al. 2003), by investigating airway 

inflammation and remodelling over a longer treatment period and by maintaining allergen 

challenge after the cessation of ICS.  

In a study by Southam et al. the simultaneous removal of both, the allergen and ICS, 

resulted in a marked rebound of Goblet cell hyperplasia, which was most apparent after 

prolonged co-application of budesonide and allergen (Southam et al. 2008b). Interestingly 

a minimum of six weeks of concurrent budesonide/ICS administration was required to 

confer this rebound effect. In our study the continuation of allergen challenge after the 

discontinuation of ICS resulted in slightly increased eosinophil counts but did not affect 

Goblet cell numbers or other remodelling characteristics. An important difference between 

these studies was that we maintained allergen challenge after cessation of ICS, a 

situation which reflects a non-compliant patient. The disparity between ICS effects in 

acute and chronic asthma supports the concept that there is a shift in immune responses 

throughout disease progression in allergic asthma (Wegmann et al. 2005). Therefore, the 

same therapy could confer different efficacy because of variability in the immune response 

pattern of different asthma patients. ICS are highly effective in reducing allergen induced 

eosinophilia and consequently in treating acute experimental asthma in which the 

eosinophils are the dominant cell type (Gauvreau et al. 2000). However, in chronic asthma 

phenotypes, which exhibit decreased eosinophils counts, other inflammatory cells have a 

more predominate role and are less responsive to corticosteroid therapy.  

In conclusion, using a chronic model of experimental asthma we have shown that 

continuous allergen exposure in mice induces reversible airway remodelling. Treatment of 
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established inflammation and remodeling can be partially accomplished with 

corticosteroids, however, most prominent beneficial effects are observed by allergen 

avoidance. This model offers new opportunities to further delineate the cellular and 

molecular signaling pathways that contribute to the transition from the acute to the chronic 

phenotype, and to elaborate the pathways of normal repair and structural reorganisation. 
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Summary 

Asthma is associated with chronic airway inflammation and progressive airway 

remodelling. However, the dynamics of the development of these features and their 

spontaneous and pharmacological reversibility are still poorly understood. We have 

therefore investigated the dynamics of airway remodelling and repair in an experimental 

asthma model and studied how pharmacological intervention affects these processes. 

Using BALB/c mice, the kinetics of chronic asthma progression and resolution were 

characterised in absence and presence of inhaled corticosteroid (ICS) treatment. Airway 

inflammation and remodelling was assessed by the analysis of bronchoalveolar and 

peribronichal inflammatory cell infiltrate, Goblet cell hyperplasia, collagen deposition and 

smooth muscle thickening. Chronic allergen exposure resulted in early (goblet cell 

hyperplasia) and late remodelling (collagen deposition and smooth muscle thickening). 

After four weeks of allergen cessation eosinophilic inflammation, goblet cell hyperplasia 

and collagen deposition were resolved, full resolution of lymphocyte inflammation and 

smooth muscle thickening was only observed after eight weeks. ICS therapy when started 

before the full establishment of chronic asthma reduced the development of lung 

Inflammation, decreased goblet cell hyperplasia and collagen deposition, but did not affect 

smooth muscle thickening. These effects of ICS on airway remodelling were maintained 

for a further four weeks even when therapy was discontinued. 

Utilising a model of experimental chronic asthma we have shown that repeated allergen 

exposure induces reversible airway remodelling and inflammation in mice. Therapeutic 

intervention with ICS was partially effective in inhibiting the transition from acute to chronic 

asthma by reducing airway inflammation and remodelling but was ineffective in preventing 

smooth muscle hypertrophy. 
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Zusammenfassung 

Asthma bronchiale ist eine chronisch-entzündliche Erkrankung der Atemwege mit 

progressiv ausgeprägten pathologischen Umbauprozessen in den Atemwegen 

(Remodelling). Die Dynamik der Entwicklung dieser Merkmale und ihre spontane und 

pharmakologische Reversibilität sind bisher nicht ganz verstanden. Wir haben daher in 

einem experimentellen Asthmamodell die Dynamik des Remodelling und der Reparatur 

der Atemwege sowie die Auswirkung pharmakologischer Interventionen auf diese 

Prozesse untersucht. 

Unter Verwendung von BALB/c-Mäusen wurde die Kinetik der Entwicklung und des 

Rückgangs des chronischen Asthmas in Abwesenheit bzw. Anwesenheit einer inhalativen 

Corticosteroid (ICS)-Behandlung charakterisiert. Die Entzündung und das Remodelling 

der Atemwege wurden mittels der Analyse des entzündlichen Zellinfiltrats der 

Bronchoalveolar- und Peribronchialzellen, der Becherzell-Hyperplasie, der 

Kollagenablagerung und der Verdickung der glatten Muskulatur beurteilt. Chronische 

Allergenexposition führte zu frühem (Becherzell-Hyperplasie) bzw. zu spätem 

Remodelling (Kollagenablagerung und Verdickung der glatten Muskulatur). Vier Wochen 

nach dem Absetzen des Allergens waren eosinophile Infiltration, Becherzell-Hyperplasie 

und Kollagenablagerung wieder  vollständig zurückgegangen; bis zum kompletten 

Rückgang der lymphozytären Infiltration und der Verdickung der glatten Muskulatur 

dauerte es 8 Wochen. Wurde die ICS-Therapie vor der vollständigen Etablierung eines 

chronischen Asthmas begonnen, reduzierte sie die Entwicklung von Lungenentzündung 

und verringerte Becherzell-Hyperplasie sowie Kollagenablagerung, beeinflusste jedoch 

nicht die Verdickung der glatten Muskulatur. Diese Effekte von ICS auf das Remodelling 

der Atemwege wurden für weitere vier Wochen aufrechterhalten, selbst wenn die 

Therapie unterbrochen wurde. 

Unter Verwendung eines Modells von experimentellem chronischem Asthma haben wir 

gezeigt, dass wiederholte Allergenexposition bei Mäusen reversibel Remodelling und 

Entzündung der Atemwege induziert. Therapeutische Intervention mit ICS war teilweise 

wirksam bei der Hemmung des Übergangs von akutem zu chronischem Asthma durch die 

Verringerung der Entzündung der Atemwege und Remodelling, war aber unwirksam bei 

der Verhinderung der Hypertrophie der glatten Muskulatur. 
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