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Plant breeding is the science of altering a plant’s genetics to attain a desired

phenotype. In this dissertation, I explore what phenotypes to measure when breed-

ing for downy mildew resistance and improved floral scent and how to measure these

phenotypes accurately and efficiently. Traditionally, downy mildew resistance has

been measured by visually rating sporulation and hypersensitive response on leaves

or leaf discs. However, such manual ratings become intractable when dealing with

thousands of samples. Therefore, to measure sporulation on leaf discs, I developed

a computer vision system that reduced phenotyping time by more than 90% when

compared to manual ratings, and also was found to work well for phenotyping leaf

trichomes. If phenotypes are collected in the vineyard, spatial variation from in-

oculum, soil, and microclimate might have an effect on these phenotypes. Testing

this assumption, spatial processes explained some variance in vineyard phenotypes,

but accounting for the spatial variance might not lead to significantly more accu-

rate phenotypes. Quantitative phenotyping of floral scent for large numbers of

grapevines using headspace analysis is not economically feasible, so I evaluated

the robustness of a hexane extraction followed by gas chromatography-mass spec-

trometry to identify floral volatiles and found that it was robust regardless of

extraction time when flowers were sampled from the same inflorescence. After

obtaining phenotypes and genotypes of vines, quantitative trait loci are found,

traditionally using one phenotype at a time. In our case, understanding how

sporulation, HR, and leaf trichomes affected each other was of interest, in addition



to how genetic markers affected the phenotypes, so I used Bayesian networks to

explore these interactions. In one of two F1 families studied, HR had a positive

effect on sporulation, and leaf trichomes had a negative effect on both HR and

sporulation, suggesting that leaf trichome density can be selected for in breed-

ing for downy mildew disease resistance. A breeding project was started with the

intention of creating a dwarf grapevine with an attractive floral scent. With a com-

plementary interest to understand what volatile compounds were responsible for

the various floral scents in grapevine, a diverse set of genotypes from various Vitis

spp. were phenotyped for floral scent and volatiles, and it was found that similar

scents were generated from different sesquiterpene profiles. Overall, this disserta-

tion spans key concepts in the science of plant breeding, from parental selection

and hybridization, to phenotyping by computer vision and chemical analysis, to

statistical analyses of interacting phenotypes, genotypes, and spatial variability,

with the findings possibly enhancing grapevine breeding strategies and execution.
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CHAPTER 1

COMPUTER VISION FOR HIGH-THROUGHPUT

QUANTITATIVE PHENOTYPING: A CASE STUDY OF

GRAPEVINE DOWNY MILDEW SPORULATION AND LEAF

TRICHOMES

1.1 Abstract

Quantitative phenotyping of downy mildew sporulation is frequently used in plant

breeding and genetic studies, as well as in studies focused on pathogen biology,

such as chemical efficacy trials. In these scenarios, phenotyping a large number

of genotypes or treatments can be advantageous, but is often limited by time

and cost. We present a novel computational pipeline dedicated to estimating the

percent area of downy mildew sporulation from images of inoculated grapevine

leaf discs in a manner that is time and cost efficient. The pipeline was tested on

images from leaf disc assay experiments involving two F1 grapevine families, one

that had glabrous leaves (V. rupestris B38 × ‘Horizon’ [RH]) and another that had

leaf trichomes (‘Horizon’ × V. cinerea B9 [HC]). Correlations between computer

vision and manual visual ratings reached 0.89 in the RH family and 0.43 in the

HC family. Additionally, we were able to use the computer vision system prior

to sporulation to measure the percent leaf trichome area. We estimate that an

experienced rater scoring sporulation would spend at least 90% less time using

the computer vision system compared to the manual visual method. This will

allow more treatments to be phenotyped in order to better understand the genetic

architecture of downy mildew resistance and of leaf trichome density. We anticipate

this computer vision system will find applications in other pathosystems or traits
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where responses can be imaged with sufficient contrast from the background.

1.2 Introduction

Downy mildew of grapevine (Vitis spp.), caused by the obligate biotrophic

oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & de Toni, is a major

disease in humid grape-growing regions around the world. The disease is partic-

ularly devastating to Vitis vinifera cultivars, which lack genetic resistance to the

disease. On the other hand, most native North American species, e.g., V. riparia,

and certain V. vinifera hybrids with North American species have genetic resis-

tance to downy mildew (Cadle-Davidson 2008) and are commonly used as parents

in resistance breeding efforts and in genetic studies. The pathogen can only infect

the abaxial side of leaves and developing berries because it enters via stomata.

With leaves, the stomata are located on the abaxial surface, while on developing

berries, the stomata are only present before developing into lenticels, after which

infection is no longer possible (Kennelly et al. 2005). After leaf infection, three

possible symptoms and/or signs may appear. The first is the hypersensitive re-

sponse, which presents as black necrotic specks on the underside of the leaf (Bellin

et al. 2009). The second is sporulation of the pathogen, which appears as white

fuzz on the abaxial side of the leaf (Kennelly et al. 2005). The third is yellow spots

that have an oily appearance on the adaxial surface, and this symptom is spatially

connected to the abaxial sporulation. This paper will focus on the occurrence of

sporulation. The most common way to screen for sporulation in genetic studies

has been to use a leaf disc assay where a leaf disc is extracted from a leaf using

a cork borer and plated on a medium before inoculation with a single P. viticola

isolate or multiple P. viticola isolates, after which a visual rating using a scale of
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sporulation area is taken (Bellin et al. 2009).

Grapevine species are diverse with respect to their leaf trichome morphology

(Ma et al. 2016). Their hydrophobic leaf trichomes have been hypothesized to

play a role in resistance to downy mildew by preventing germination of zoospores

and preventing germinated sporangia from reaching stomata (Kortekamp and

Zyprian 1999). However, determining causality between leaf trichome density and

downy mildew resistance requires an experiment without the confounding effect be-

tween ancestry and leaf trichome density. Leaf trichomes have traditionally been

measured using International Organisation of Vine and Wine (OIV) descriptors

(Loughner et al. 2008; Paolocci et al. 2015). Due to the possible causal link be-

tween leaf trichome density and downy mildew resistance, accurately phenotyping

leaf trichome density is important for downstream analyses in distinguishing effects

of genomic variants due to morphological and non-morphological traits.

In the breeding of crops, one desires to decrease the time and money spent eval-

uating cross progeny while increasing the number of cross progeny being screened

without sacrificing phenotype quality. A common downy mildew screening method

in grapevine breeding programs is to visually screen grapevines in the field follow-

ing natural infection periods (Eibach 1998). While inexpensive, the method can

give inaccurate ratings for genotypes, especially in years with mild disease pres-

sure. In quantitative trait loci (QTL) studies, increasing the number of individuals

that are phenotyped increases the statistical power of analyses designed to locate

significant QTL. High-throughput plant phenotyping strategies would help to ac-

complish these goals in a cost-effective manner (Pauli et al. 2016). Numerous

methods to use computer vision to detect and quantify plant diseases and their

symptoms have been developed (Barbedo 2013). The benefits of using computer

3



vision rather than manual ratings to assess disease include greater precision and

accuracy; decreased time needed for ratings; and reduced labor costs (Bock et al.

2010).

Two computer vision methods using the leaf disc assay have been developed

for rating downy mildew sporulation, but they are limited in their use. In one

method (Peressotti et al. 2011), a single image is required for every leaf disc that

is being phenotyped, which is a time-consuming step if there are thousands of leaf

discs to phenotype. In the other method (Khiook et al. 2013), the leaf discs need

to be removed from their original medium and the images need to be taken on a

photographic reproduction bench under artificial lighting, increasing the time and

cost associated with the phenotyping. Additionally, proprietary software is used

to do the analysis, which further increases the cost of the method. We present a

method of using images taken from a smartphone camera that capture inoculated

leaf discs in bulk, and open source scripts are then used to quantify percent area

of downy mildew sporulation. We show that the same method can be used to

quantify the percent leaf trichome area.

1.3 Materials and Methods

1.3.1 Plant Material

Two F1 grapevine families, V. rupestris B38 × ‘Horizon’ (Vitis sp. interspecific

hybrid) (RH) and ‘Horizon’ × V. cinerea B9 (HC), were grown unreplicated in a

vineyard in Geneva, New York (Hyma et al. 2015). V. cinerea B9 and the HC

family had white trichomes on the abaxial side of their leaves, while leaves of
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‘Horizon’, V. rupestris B38, and the RH family were glabrous. In 2015, 163 and

152 F1 genotypes from the RH and HC families, respectively, were phenotyped for

downy mildew sporulation with three experiments conducted with the RH family

and two with the HC family. In 2016, only 157 and 145 genotypes from the

respective families were phenotyped with two experiments conducted with both

families; some genotypes were not available due to cold injury. The starting dates

of the experiments for the RH family were 22 June 2015, 29 June 2015, 13 July

2015, 5 July 2016, and 27 July 2016 and those for the HC family were 15 June

2015, 6 July 2015, 27 June 2016, and 12 July 2016.

1.3.2 Plasmopara viticola Isolation and Maintenance

In October 2014, a clonal isolate of P. viticola was obtained by single sporan-

giophore isolation as previously described (Cadle-Davidson 2008) from a leaf of

an organically grown ‘Frontenac Gris’ (Luby and Hemstad 2006) vine at Cornell

Orchards in Ithaca, NY. The isolate was maintained by weekly transfers to surface-

sterilized, susceptible leaves plated abaxial side up, on a 1% agar Petri dish. The

new leaf was misted with sterile water, and the sporulating leaf was inverted briefly

onto the new leaf to touch-transfer sporangia. The susceptible genotypes of leaves

used for maintenance were the V. vinifera cultivars Chardonnay, Cabernet Sauvi-

gnon, and Riesling and the interspecific hybrid cultivar Delaware.

1.3.3 Leaf Disc Assay

For each experiment, the fifth leaf from the growing tip of four shoots of each F1

genotype of a family and susceptible and resistant controls was harvested and put

5



in a flexible plastic compact disc holder with holes punched out (Cadle-Davidson

2008). Leaves were maintained at 4 to 8� until the following day, when they were

surface sterilized in 0.5% NaOCl for 2 min and rinsed in sterile double distilled

water thrice for 2 min per rinse. Two leaf discs per leaf were punched out using a

1 cm cork borer and plated abaxial side up on 30 × 20 cm Pyrex dishes filled with

sterile 1% agar. Each leaf disc replicate (eight in total for each experiment) was

placed in a separate dish such that every genotype was represented on every dish.

Genotypes were randomized in blocks of 20 in order to control for possible dish

location effects while still allowing for rapid plating of leaf discs. Susceptible and

resistant controls were included to ensure inoculum quality. For the RH family,

‘Cabernet Sauvignon’ was the susceptible control for the first two experiments in

2015, while ‘Chardonnay’ was the susceptible control for all other experiments,

and V. rupestris B38 was the resistant control. For the HC family, ‘Chardonnay’

was the susceptible control and V. cinerea B9 was the resistant control. On the

day after plating, each leaf disc was inoculated with 50 µL containing 5× 104

sporangia/mL of the P. viticola single-sporangial isolate using a HandyStep S

repeating pipette (BrandTech Scientific, Essex, CT), and the Pyrex dishes were

sealed with plastic wrap and placed in a temperature-controlled room at 23� ±

1�. The inoculation droplets were absorbed the following day with tissue paper

(Kimwipes). Sometimes the inoculation droplet failed to adhere to the leaf disc,

and phenotypes from these leaf discs were not included in the analyses. Sporulation

was evaluated between 3 days post-inoculation (dpi) and 6 dpi for the RH family

in all experiments except the second one in 2016 where it was evaluated between

4 dpi and 7 dpi due to a delay in sporulation. Sporulation was evaluated between

4 dpi and 7 dpi for the HC family in all experiments. Evaluation was done using

both manual and computer vision methods. Leaf trichomes were quantified with
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the computer vision method at 2 dpi when no sporulation was visible.

1.3.4 Manual and Computer Vision Rating Methods

The manual rating method followed an established protocol whereby sporulation

area on leaf discs was rated on a 1 to 5 ordinal scale, with 1 being no sporulation

area, 2 being small sporulation area, 3 being moderate sporulation area, 4 being

moderately high sporulation area, and 5 being high sporulation area (Kono et al.

2015). Because all the leaf discs were about the same size, the manual rating

is implicitly a percent area of sporulation phenotype. For the computer vision

rating method, digital images of leaf discs were taken using the native Camera

application (default settings; without flash) of a handheld Apple iPhone 5s with

an image resolution of 3264 × 2448 pixels. Each image contained at most 20

leaf discs in four rows and five columns. Images were taken on a black labora-

tory bench within 0.75 m of a window with the fluorescent room lights on. No

other supplemental lighting was used. All images for a particular time point of an

experiment were analyzed simultaneously via a pipeline of four Python (Python

Software Foundation) scripts developed using OpenCV, an open source computer

vision library (Bradski 2000). Of the four scripts, crop.py is used to crop the initial

images while values.py is used to find the percent area of sporulation per leaf disc.

The other two scripts, circles.py and lines.py, are used to find the correct function

parameters that are then used in the values.py script. circles.py is used to find

the threshold and Hough circle transform algorithm parameters while lines.py is

used to find the Hough line transform algorithm parameters. All the scripts are

parallelized such that when run, they automatically use all available CPU cores

for faster image processing. The scripts and a guide for the scripts can be found
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at https://github.com/kdivilov/downymildew-CV.

For the computer vision system, the images were initially cropped such that

only leaf discs that were fully contained in an image were kept (Figure 1.1). The

cropped images were then converted to Lab color space, which, unlike RGB color

space, includes all colors visible to the human eye, with all the layers thresholded

using user-specified values and masked over the original image to filter the back-

ground, which in our case was agar. The blue layer of the original images, which

highlights sporulation better than the other layers, was then selected and filtered

using a Wallis filter (Pratt 2007; Wallis 1976) to account for unequal lighting

conditions during image capture. A threshold was then applied to the grayscale

Wallis-filtered images to only keep the brightest pixels, i.e., only pixels with a

value of 255 were kept with the rest set to 0. Leaf veins that were present in

the Wallis-filtered images were removed using the Hough line transform algorithm.

Leaf discs were detected as circles using the Hough circle transform algorithm.

The phenotype obtained at the end was the number of white pixels within a leaf

disc divided by the area of the disc in pixels. This corresponded to the percent

area of sporulation for a leaf disc in the RH family, while in the HC family it

corresponded to the percent area of sporulation and leaf trichomes for a leaf disc.

We did not use the white pixel quantity as the phenotype because images were

taken at slightly different distances from the leaf discs. The area of a leaf disc thus

acted as a scaling factor to allow phenotype comparisons between images.

1.3.5 Statistical Analysis

The manual and computer vision phenotype distributions for both families were

obtained using phenotypes averaged across leaf discs and compared using violin
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Figure 1.1: Computer vision phenotyping system for grapevine downy mildew
sporulation caused by Plasmopara viticola. A, B, and C, Vitis rupestris B38 ×
Horizon family and D, E, and F, Horizon × V. cinerea B9 family. A and D,
After the initial images have been cropped; B and E, after they have been passed
through the Wallis filter; and C and F, the same as B and E, with the exception
that the detected leaf discs and their centers and the detected leaf veins have been
highlighted.
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plots made using the ggplot2 (Wickham 2009) and RColorBrewer (Neuwirth 2014)

packages in R (R Core Team). Normality of the distributions was evaluated us-

ing the ShapiroWilk test in R where the null hypothesis is that phenotypes are

normally distributed. Significance of the test statistic was determined by a z-test

with a Bonferroni-corrected alpha value of 0.0025 and 0.0031 for the RH and HC

families, respectively, obtained by dividing 0.05 by the number of experimental

time points across years and experiments. Because the computer vision phenotype

for the HC family measured the percent area of sporulation and leaf trichomes,

the effect of leaf trichomes was removed from that phenotype. To do this, a simple

linear model was fit with the explanatory variable being the averaged computer

vision phenotype for an experiment at 2 dpi, representing the percent area of leaf

trichomes, and the response variable being the averaged computer vision pheno-

type for an experiment at a particular dpi. The residuals plus the intercept from

the model added on were the new phenotypes that were used for the comparison.

The addition of the intercept did not alter the distribution as it is a constant and

was done so that the new phenotypes can have a more intuitive interpretation,

viz., the percent area of sporulation when the correlation between the averaged

computer vision phenotype and the averaged leaf trichome phenotype is zero. Be-

cause of this modification, the lower bound on the computer vision phenotype was

no longer zero.

Comparisons of manual and computer vision phenotypes for each dpi within

an experiment was conducted in R (Kim 2015) using Spearman’s rank correlation

coefficients for the RH family and semi-partial Spearman’s rank correlation coef-

ficients for the HC family with the significance of the correlations tested using a

t-test with a Bonferroni-corrected alpha value of 0.0025 and 0.0031 for the RH and

HC families, respectively. The covariate for the computer vision phenotype for
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the semi-partial Spearman’s rank correlation coefficient was the leaf trichome phe-

notype. Spearman’s rank correlation coefficient rather than Pearson’s correlation

coefficient was used because the association between the manual and computer

vision phenotypes was non-linear. Comparisons were made using averaged and

unaveraged phenotypes.

To test whether the computer vision phenotype at 2 dpi in each experiment

was capturing the leaf trichome phenotype, QTL analyses were performed as in

Hyma et al. (2015) using a previously created de novo curated genetic map from

genotyping-by-sequencing SNP linkage data of the HC family (Hyma et al. 2015),

except that the genotyping error rate used to calculate conditional genotype prob-

abilities was set to 0.001. An approximate Bayes credible interval was used to find

the region a QTL resides with probability 0.95. Physical locations of the SNPs

were obtained using the 12X.2 version (URGI 2014) of the grapevine reference

genome PN40024 (Jaillon et al. 2007).

1.4 Results

A majority of progeny and susceptible control samples had visual signs of sporu-

lation within 7 dpi. The average inoculation failure rate, i.e., the rate at which

the inoculation droplet failed to adhere to the leaf disc, was 8.9% across all experi-

ments. The average manual ratings for the susceptible control for the experiments

with the RH family at the final time point measured were 4.2, 5.0, and 3.9 in 2015

and 2.8 and 5.0 in 2016. The average manual ratings for the resistant control for

the experiments with the RH family at the final time point measured were 1.4,

1.4, and 1.3 in 2015 and 2.3 and 1.5 in 2016. The average manual ratings for the
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susceptible control for the experiments with the HC family at the final time point

measured were 5.0 and 4.9 in 2015 and 5.0 and 5.0 in 2016. The average manual

ratings for the resistant control for the experiments with the HC family at the final

time point measured were 1.0 and 1.0 in 2015 and 1.3 and 1.0 in 2016.

Using the manual visual rating method required 180 min for an experienced

rater to phenotype 1336 leaf discs on eight Pyrex dishes and 30 min to input the

phenotypes into a spreadsheet on a computer. Using the computer vision system

from raw images required 3 min for an experienced rater to capture 72 images

spanning these same samples and 15 min to phenotype the leaf discs by executing

four scripts. Using all four logical cores on a 3.10 GHz Intel Core i3-2100 Processor,

crop.py, circles.py, lines.py, and values.py took an average 1 min 38 s, 1 min 28 s,

2 min 45 s, and 2 min 16 s, respectively, when run on the 72 images. Across four

consecutive days of data collection and analysis, manual rating time totaled 840

min while the computer vision pipeline required 72 min, an estimated time savings

of 12.8 h (91%) per experiment and 115.2 h across all 9 experiments.

The computer vision phenotypes for the RH family were more often normally

distributed than the manual phenotypes, which were often skewed (Figure 1.2A

and B). For the HC family, the computer vision phenotypes were close to being

normally distributed, but at times were skewed, while the manual phenotypes

were never normally distributed (Figure 1.2C and D). Spearman’s rank correlation

coefficients for the RH family were between 0.10 and 0.81 for timepoints from 4

to 7 dpi for the unaveraged phenotypes (Figure 1.3A). Correlations at 3 dpi, and

at 4 dpi in the third experiment in 2015, were low, and these dpi corresponded to

time points when sporulation was sparse (Figure 1.2B). Semi-partial Spearman’s

rank correlation coefficients for the HC family were between -0.04 and 0.33 for the
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unaveraged scores (Figure 1.3C). For the unaveraged phenotypes, all correlations

were significant with the exception of the correlations at 3 dpi for the second

experiment in 2015 for the RH family and at 4 dpi for the second experiment

in 2015 for the HC family, as well as the correlations at all time points for the

second experiment in 2016 for the HC family. Averaging the eight scores for each

individual gave higher Spearman’s rank correlation coefficients for all time points in

the RH family except at 3 dpi in the second experiment in 2015 and at 3 dpi and 4

dpi in the third experiment in 2015 (Figure 1.3B). Averaging also gave higher semi-

partial Spearman’s rank correlation for all time points in the HC family except at

4 dpi and 5 dpi in the second experiment in 2016 (Figure 1.3D). For the averaged

phenotypes in the RH family, all correlations were significant with the exception

of the correlations at 3 dpi for the first and second experiments in 2015 and at 3

and 4 dpi for the third experiment in 2016. For the averaged phenotypes in the

HC family, all correlations were significant with the exception of the correlations

at 4 and 5 dpi for the first experiment in 2015 and at 4, 5, and 7 dpi for the second

experiment in 2015, as well as the correlations at all time points for the second

experiment in 2016.

QTL analyses using the 2 dpi phenotype in each experiment of the HC fam-

ily found two QTL in each experiment, one each on chromosomes 5 and 8 from

‘Horizon’. The 95% approximate Bayes credible interval for each of the two QTL

overlapped across experiments. The percent phenotypic variance explained by the

QTL on chromosomes 5 and 8 ranged from 10.3% to 21.6% and 13.0% to 18.1%,

respectively.
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A B

C D

Figure 1.2: Violin plots showing the A, computer vision and B, manual phenotype
distributions of the Vitis rupestris B38 × Horizon (RH) family for all experiments
and the C, computer vision and D, manual phenotype distributions of the Horizon
× V. cinerea B9 (HC) family for all experiments. The computer vision phenotypes
for the HC family were processed to account for the variation in leaf trichome den-
sity. The computer vision phenotype measures the percent area of sporulation by
Plasmopara viticola whereas the manual phenotype measures the area of sporu-
lation using a 1-to-5 ordinal scale. Distributions with dashed lines indicate those
significantly different than normal tested using a Shapiro-Wilk test of normality
with a Bonferroni-corrected alpha value.

1.5 Discussion

Key challenges in phenotyping are selecting the response that reflects the treatment

effect and accurately measuring that response at the right time (Cadle-Davidson

et al. 2016). In our case, multiple factors from penetration to colonization to

sporulation may affect grapevine downy mildew resistance (Boso and Kassemeyer
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Figure 1.3: Correlations between computer vision and manual visual ratings at all
experimental time points, shown as A, Spearman’s rank correlation coefficients for
the Vitis rupestris B38 × Horizon (RH) family unaveraged phenotypes; B, Spear-
man’s rank correlation coefficients for the RH family averaged phenotypes; C,
semipartial Spearman’s rank correlation coefficients for the Horizon × V. cinerea
B9 (HC) family unaveraged phenotypes; and D, semipartial Spearman’s rank cor-
relation coefficients for the HC family averaged phenotypes. The computer vision
phenotype measures the percent area of sporulation by Plasmopara viticola whereas
the manual phenotype measures the area of sporulation using a 1-to-5 ordinal scale.

2008). One approach is to use destructive assays, such as quantitative PCR analysis

of P. viticola DNA concentration (Valsesia et al. 2005) or microscopy of stained

samples to estimate the total amount of hyphae and spores (Boso and Kassemeyer

2008), or spore counts to quantify sporulation (Kono et al. 2015). Furthermore,

one could concentrate on the hypersensitive response elicited by the leaf disc in

response to P. viticola (Bellin et al. 2009). Alternatively, if one is interested in the

area of sporulation, one can use either the computer vision or manual visual rating
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methods. The biochemical basis for all of these phenotypes is likely not the same,

but correlations among them likely exist, as previously shown for manual visual

ratings and spore counts (Kono et al. 2015). Thus, deciding what phenotype to

use is at least partially subjective, but not trivial.

Here, we compared non-destructive methods to quantify sporulation using both

a computer vision and a manual visual rating method, and showed computer vision

can reduce the time to obtain the phenotypes by>90%. Additionally, the computer

vision system allowed one the option to capture all the images first and then analyze

them in bulk for all the experiments in a year, as was done for the experiments

in this paper, if phenotypes are not needed immediately. The images also act as

a form of documentation of an experiment that one could reexamine if necessary.

Though not tested here, a camera other than the one on the iPhone 5s could be used

provided it has enough resolution to capture sporulation, and phenotypes from two

different cameras could be compared as the phenotypes are scaled by the leaf disc

area. Another benefit of the computer vision rating system over the manual visual

scale is that the phenotypes are quantitative. As seen in Figure 1.2, the computer

vision ratings are less frequently skewed toward the most susceptible or resistant

ratings compared to the manual visual ratings. While we cannot assume that the

expected phenotype distribution should be normal, the extreme skew suggests that

the manual rating scale does not work well in differentiating sporulation area when

sporulation area is high or low.

While we do not have precise measurements of percent area of sporulation

for comparison with our computer vision measurements, because we had multiple

replications of the leaf discs, the law of large numbers (Bertsekas and Tsitsiklis

2002) tells us that we will approximately obtain the expected value of the manual or
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computer vision phenotype of a particular genotype. Because both the manual and

computer vision ratings measured the same phenotype, although on different scales,

given enough replication the average of the manual and computer vision ratings for

a particular genotype should be highly correlated. In actuality, because we only had

eight replications per genotype, we may not obtain a high correlation. However,

the high correlation between the averaged manual and computer vision ratings in

the RH family show that a computer vision system is a suitable replacement for the

manual visual rating method. When trichomes are present, the computer vision

ratings will approximate the expected value of the combined sporulation area and

trichome phenotype, which is not the phenotype of interest. Additional testing of

the computer vision system with genotypes with trichomes is needed to determine

whether standardization of illumination can remove the influence of light on the

calculated phenotype in order to increase the correlation between averaged manual

and computer vision ratings when the effect of leaf trichomes is removed from each

computer vision rating. Standardization of illumination may also produce more

precise ratings for glabrous genotypes.

The current implementation of our computer vision system suffers from minor

precision issues as seen in the violin plots for the second experiment for the RH

family in 2015 at 3 and 4 dpi (Figure 1.2A). The plot for 4 dpi is shifted down

toward lower values compared to the one at 3 dpi, though percent area of sporu-

lation cannot decrease over time. Thus, the computer vision phenotypes between

dpi within an experiment cannot be directly compared due to the presence of noise,

which is normally distributed (data not shown), and different lighting conditions.

However, manual visual ratings are not without precision issues. For example, in

the case of phenotyping northern leaf blight on maize leaves, intra-rater precision,

measured by Pearson’s correlation coefficient, was on average 0.76 and 0.60 when
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using a quantitative or ordinal scale, respectively, while inter-rater correlations

ranged from 0.65 to 0.93 and 0.58 to 0.82 when using a quantitative or ordinal

scale, respectively (Poland and Nelson 2011). Similar precision issues were found

in other pathosystems (Bock et al. 2008; Nita et al. 2003).

The leaf trichomes in the HC family presented a specific challenge, both for

manual ratings and computer vision, but we still expected moderate correlation

coefficients between the computer vision and manual visual ratings, which was not

the case for the second experiment in 2016 even when phenotypes were averaged

(Figure 1.3D). We found that if we used the 4 dpi computer vision phenotype as

a covariate instead of the 2 dpi computer vision phenotype for the second exper-

iment in 2016, the semi-partial Spearman correlations were 0.04, 0.08, and 0.18

between the manual and computer vision ratings at 5, 6, and 7 dpi for unaver-

aged phenotypes and 0.19, 0.26, and 0.29, respectively, for averaged phenotypes.

The low correlation may have been due to the inability to obtain a sufficiently

unbiased estimate of the leaf trichome phenotype for each day’s unique lighting

conditions. Yet, this is surprising given that we detected two QTL contributing to

percent area of trichomes in the 2 dpi computer vision phenotype for the second

experiment in 2016. Our results are consistent with a previous report on trichome

density QTL in Vitis since each QTL’s 95% approximate Bayes credible interval

physically overlapped with previously reported QTL (Barba 2015). However, only

34.6% of the phenotypic variance was captured by the two QTL in the second

experiment in 2016, leaving the possibility that variation other than that due to

the leaf trichomes affected the 2 dpi computer vision phenotype.

In our experiments, we found that about 9% of the inoculation droplets did not

stay on the leaf discs, and thus ratings could not be obtained. It is possible that
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spraying inoculum onto leaf discs, as done by Bellin et al. (2009), might be a better

inoculation method. While our method had the advantage of placing roughly an

equal amount of inoculum on each leaf disc, a comparison needs to be conducted

to see if such precision has an effect on reducing the variance of ratings within

genotypes, which is important if one has only a few leaf disc replicates per genotype.

Additionally, our method was slow due to the need to individually pipette inoculum

on each leaf disc, which does not scale well when a single person inoculates large

numbers of leaf discs. The current state of the art in image recognition is a

convolutional neural network (Krizhevsky et al. 2012). This technique requires

large amounts of labeled training images and those images, as well as the test

images, would have to be single leaf discs, which take longer to obtain than images

of leaf discs in bulk. However, as shown by our work, a Hough circle transform

algorithm would be an efficient way to isolate single leaf discs from an image.

Our computer vision system, on the other hand, phenotypes the leaf discs in an

unsupervised manner, so that previously phenotyped images are not needed in

order to phenotype test images. Our computer vision system is also more suited

to researchers having less technical knowledge in computer vision and machine

learning, two topics that are seldom formally taught to plant pathologists and

geneticists. We anticipate that with minor tweaking of parameters, most biologists

could use this tool for pathosystems or traits where responses can be imaged with

sufficient contrast from background.
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CHAPTER 2

SINGLE AND MULTIPLE PHENOTYPE QTL ANALYSES OF

DOWNY MILDEW RESISTANCE IN INTERSPECIFIC

GRAPEVINES

2.1 Abstract

Breeding grapevines for downy mildew disease resistance has traditionally relied on

qualitative gene resistance, which can be overcome by pathogen evolution. Analyz-

ing two interspecific F1 families, both having ancestry derived from Vitis vinifera

and wild North American Vitis species, across two years and multiple experiments,

we found multiple loci associated with downy mildew sporulation and hypersen-

sitive response in both families using a single phenotype model, and no locus

explained more than 17% of the variance for either phenotype. For two loci, we

used RNA-Seq to detect differentially transcribed genes and found that the can-

didate genes at these loci were likely not NBS-LRR genes. Additionally, using a

multiple phenotype Bayesian network analysis, we found effects between the leaf

trichome density, hypersensitive response, and sporulation phenotypes. Moderate

to high heritabilities were found for all three phenotypes, suggesting that selection

for downy mildew resistance is an achievable goal by breeding for either physi-

cal or non-physical-based resistance mechanisms, with the combination of the two

possibly providing durable resistance.
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2.2 Introduction

Downy mildew resistance in grapevine has been mapped to over a dozen loci from

over half a dozen Vitis spp. (Buonassisi et al. 2017). Most loci found explain

the majority of the variation in the disease phenotype in a particular experiment,

but some explain only a small portion of the variation (Bellin et al. 2009; Blasi

et al. 2011; Moreira et al. 2011; Venuti et al. 2013). Resistance dependent on a

single dominant locus is not seen as being durable, especially to an airborne out-

crossing pathogen like the one that causes grapevine downy mildew (Buonassisi

et al. 2017; McDonald and Linde 2002). By contrast, quantitative resistance is

controlled by many genes, each of which contributes a small portion to the resis-

tance phenotype (Poland et al. 2009). Additionally, quantitative resistance can

be controlled by different metabolic processes in the plant, including nucleotide-

binding site leucine-rich repeat (NBS-LRR) resistance genes. A pathogen evolving

to overcome quantitative resistance would face a more difficult path to affect the

same phenotype, e.g., necrosis or sporulation, as it would on a susceptible plant

because more effector genes in the pathogen would need to mutate or experience

recombination in order to overcome the multifaceted resistance in the plant. It is

especially important to prevent pathogen evolution from overcoming disease resis-

tance in grapevine because it is not economically feasible to replant a vineyard due

to loss of disease resistance if it occurs a few years after planting, unlike maize or

wheat where one can change the cultivar that is grown yearly.

Grapevine downy mildew, caused by the obligate biotrophic oomycete Plas-

mopara viticola (Berk. & M.A. Curtis) Berl. & de Toni, is a common cause of

yield loss for Vitis vinifera cultivars, which generally lack genetic resistance to

the disease (Buonassisi et al. 2017). Wild Vitis species, e.g., V. amurensis, V.
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cinerea, V. riparia, V. rupestris, on the other hand, have genetic resistance to

downy mildew (Cadle-Davidson 2008) and are commonly used as parents in re-

sistance breeding efforts and in genetic studies. Infection on grapevine leaves can

be detected by observing sporulation or host necrosis, which on resistant vines is

often associated with a hypersensitive response (HR) (Bellin et al. 2009; Buonassisi

et al. 2017). Sporulation can be quantified either manually using human vision or

by using computer vision algorithms (Divilov et al. 2017). Research in identifying

downy mildew resistance quantitative trait loci (QTL) in grapevine has focused on

disease phenotypes, e.g., sporulation and HR, but physical barriers produced by

a plant can also play a role in the prevention of disease. Kortekamp and Zyprian

(1999) used four wild Vitis accessions to demonstrate that trichomes on the abax-

ial side of grapevine leaves can play a role in disease resistance to downy mildew

by forming a hydrophobic surface above the leaf that blocks P. viticola sporangia

from reaching stomata. As with sporulation, leaf trichome density can also be

quantified using computer vision algorithms (Divilov et al. 2017).

In order to breed grapevines that have either qualitative or quantitative resis-

tance to downy mildew using marker-assisted selection, one needs to find significant

associations between downy mildew resistance ratings and genetic markers. How-

ever, it is rare to find causal genes with QTL mapping due to linkage disequilibrium

present in the region a QTL resides. Therefore, one often knows the physical lo-

cation of the causal locus only within a range of one to four megabases. RNA-Seq

(Wang et al. 2009) is a high-throughput RNA sequencing method that can be used

to identify candidate genes for QTL by finding differentially transcribed genes in

the region where a QTL resides. Here, we describe newly-identified QTL associ-

ated with downy mildew resistance phenotypes, and the use of RNA-Seq to find

candidate genes for two QTL on chromosome 14.
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2.3 Materials and Methods

2.3.1 Plant Material and Phenotyping Methods

The plant material used consisted of two F1 grapevine families, V. rupestris B38

× ‘Horizon’ (RH) and ‘Horizon’ × V. cinerea B9 (HC), grown unreplicated in

a vineyard in Geneva, New York. ‘Horizon’ ancestry is derived from V. vinifera

and North American Vitis spp. (Reisch et al. 1983). The progeny of the HC

family segregate for trichomes on the abaxial side of their leaves, while leaves of

the RH family are glabrous. Both families were phenotyped for sporulation area

and percent sporulation area using a leaf disc assay with manual and computer

vision methods, respectively, where the manual rating was on a 1 to 5 ordinal

scale and the computer vision ratings ranged between 0 and 1 (Divilov et al.

2017). The HC family was also phenotyped for percent leaf trichome area using a

leaf disc assay with the same computer vision method at 2 days post-inoculation

(dpi) (Divilov et al. 2017). Divilov et al. (2017) provided a description of the

computer vision system used as well as a detailed description of the experimental

design. Hypersensitive response (HR) was assessed in both families at 2 dpi using

a visual manual rating method where leaf discs were scored on a 1 to 5 ordinal

scale (Figure 2.1). The RH family was phenotyped in 2015 with 163 F1 genotypes

and with three experiments, and in 2016 with 157 F1 genotypes and with two

experiments. The HC family was phenotyped in 2015 and 2016 with 152 and 145

F1 genotypes, respectively, and with two experiments in each year. Susceptible and

resistant controls were included to ensure inoculum quality. For the RH family,

‘Cabernet Sauvignon’ was the susceptible control for the first two experiments in

2015, while ‘Chardonnay’ was the susceptible control for all other experiments,
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and V. rupestris B38 was the resistant control. For the HC family, ‘Chardonnay’

was the susceptible control and V. cinerea B9 was the resistant control. Each

experiment took place at a different date and consisted of four phenotypes taken

on successive days starting at either 3 or 4 dpi for the sporulation phenotype. A

phenotype within each dpi consisted of the average rating of eight leaf discs, two

from each of four leaves obtained from different shoots on a vine. The RH family

was phenotyped for HR in all experiments while the HC family was phenotyped

for HR in all experiments except the first one in 2015.

1 2 3 4 5
Figure 2.1: The ordinal visual scale for rating hypersensitive response on grapevine
leaf discs.

2.3.2 Phenotype Modeling and Heritability Analysis

In order to analyze the 2015 and 2016 multi-experiment data for a phenotype,

we fit a linear mixed model (McCulloch and Searle 2001) y = Xb + Zgug +

Zgyugy + ε for each family individually. X was a design matrix and b was a

vector of fixed effects. For the HR phenotype, X contained indicator variables for

the intercept and experiments within years. For the manual and computer vision

sporulation phenotypes, additional covariates of dpi within experiments within

years were included. For the computer vision sporulation phenotype for the HC

family, additional covariates of leaf trichomes within experiments within years were
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included. Zg and Zgy were incidence matrices relating genotypes to phenotypes

and genotypes within years to phenotypes, respectively. ug ∼ N (0, Iσ2
g) was a

vector of normally distributed genetic effects, also known as estimated breeding

values, corresponding to each genotype, where I is an identity matrix. We used

an identity matrix as our genotype covariance matrix because the F1 genotypes

within each family had no population structure. ugy ∼ N (0,E⊗Iσ2
gy) was a vector

of normally distributed genotype-by-year interaction effects corresponding to each

genotype in a year, where ⊗ is the Kronecker product and E is an identity matrix

with the number of rows and columns equal to the number of years. The genotype-

by-year interaction covariance matrix assumes that genotypic performance in 2015

was independent of genotypic performance in 2016. ε ∼ N (0, Iσ2
ε) was a vector

holding the normally distributed independent noise, or error, of the phenotypes.

From this model, the broad-sense heritability was estimated as
σ2
g

σ2
g+

σ2
gy
y

+
σ2
ε
n

where

σ2
g , σ

2
gy, σ

2
ε were the genetic, genotype-by-year interaction, and error variances,

respectively, and y and n were the number of years and number of experiments

over the years, respectively. In addition to the sporulation and HR phenotypes,

we also calculated the heritability of the leaf trichome phenotype. In that case,

the only fixed effects in the linear mixed model were the same as that for HR.

The models were fit using the EMMREML R package (Akdemir and Godfrey

2015) with the average information algorithm used to obtain estimates of variance

components.

2.3.3 Single Phenotype QTL Analysis

In order to find QTL for the breeding values of a trait, a Haley-Knott linear re-

gression model was built using forward and backward stepwise selection with R/qtl
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(Broman et al. 2003). Interaction effects were not considered for inclusion in the

model. The logarithm of odds (LOD) penalty for each trait was determined by

1,000 permutation tests with an alpha value of 0.05. Approximate Bayes credi-

ble intervals were calculated for QTL and represented the region in which a QTL

resides with probability ≥0.95. The genotyping error rate used to calculate con-

ditional genotype probabilities was set to 0.001. RH and HC family genetic maps

used for the analyses were made with HetMappS and were previously published

(Hyma et al. 2015). Imputation of missing single nucleotide polymorphism (SNP)

data was performed using the expectation-maximization algorithm in rrBLUP (En-

delman 2011). Physical locations of the SNPs in these maps were obtained using

the 12X.2 version (URGI 2014) of the grapevine reference genome PN40024 (Jaillon

et al. 2007). For comparison purposes, we performed the same stepwise regression

analysis on manual and computer vision sporulation and HR phenotypes within

years within experiments within dpi to observe what QTL were found using these

data.

2.3.4 Multiple Phenotype Bayesian Network Analysis

In order to detect effects between multiple phenotypes, as well as the effect of SNPs

on phenotypes, we constructed an averaged Bayesian network for each family us-

ing the bnlearn R package (Scutari 2010). A similar analysis has been previously

done in wheat (Scutari et al. 2014). For the RH family, we constructed a Bayesian

network using the manual sporulation and HR breeding values, as well as the

SNPs in that family. For the HC family, the leaf trichome breeding values were

included as well. We restricted the manual sporulation trait from affecting the

HR and leaf trichome traits, and we restricted the HR trait from affecting the
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leaf trichome trait. This was done because necrosis is present on the leaf prior

to the appearance of sporulation, and leaf trichomes are present on the leaf prior

to inoculation. All traits were restricted from affecting the SNPs. We used the

SI-HITON-PC algorithm (Aliferis et al. 2010) to find the Markov blanket of each

trait individually. The Markov blanket (Pearl 1988) represents the set of traits and

SNPs such that a given trait, conditional on its Markov blanket, is independent

of all other traits and SNPs. Independence was determined by non-significance of

the Pearson’s correlation coefficient between a variable conditional on its Markov

blanket and a variable outside the Markov blanket tested using a Student’s t-test

with an alpha value of 0.01. The hill-climbing algorithm (Scutari 2010) was then

used to find the structure of the Bayesian network containing the traits and their

Markov blankets. In the network, the distribution of a variable, or node, of interest

conditional on its parents, i.e., nodes with arrows pointing to the node of interest,

is parameterized as a linear regression model. The hill-climbing algorithm greed-

ily adds arrows between nodes such that the total Bayesian information criterion

(BIC), which is a function of the log likelihood of a linear regression model and

a parameter penalization term, among the linear regression models achieves its

highest value (the BIC is rescaled by -2 in bnlearn). The total BIC is the sum of

the BICs of the individual linear regression models. We allowed the SNPs within

all Markov blankets to affect any trait to account for possible pleiotropy. We con-

structed 1000 networks using a random set of 90% of the individuals in a family

for each network and then created an averaged network where we kept the struc-

tural components, i.e., the arrows, present in at least half of the networks. QTL

bootstrapped confidence intervals of the averaged network SNPs were obtained by

calculating the range of physical locations of SNPs on the same chromosome as

the averaged network SNPs found to affect the same trait in at least 5% of the
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networks. The networks were drawn using BayesNet (Luttinen 2013).

2.3.5 RNA-Seq Experimental Design and Analysis

On 11 July 2016 and 19 July 2016, two leaf disc assay experiments were con-

ducted following the same phenotyping methodology (Divilov et al. 2017) used in

the experiments described above. For RNA-Seq analyses, 28 RH genotypes were

chosen that segregated for two QTL on chromosome 14, one on each of the RH

parental maps found using the stepwise regression approach explained above with

the computer vision sporulation trait. Specifically, 15 of the 28 genotypes were

heterozygous and homozygous for the most significant marker within the QTL

from V. rupestris B38 and ‘Horizon’, respectively, while the other 13 genotypes

were homozygous and heterozygous for the most significant marker within the

QTL from V. rupestris B38 and ‘Horizon’, respectively. Because markers exist in

very close linkage to the most significant markers in both QTL credible intervals

that are of opposite phase, the phase information of the most significant marker in

both QTL credible intervals is not informative. Positive and negative control geno-

types were included to ensure inoculum quality. At 7 hours post-inoculation, single

leaf discs from each of the 28 genotypes were frozen in liquid nitrogen and stored

at -80� prior to RNA extraction using the SpectrumTM Plant Total RNA Kit

(Sigma-Aldrich). Leaf discs of each genotype from the two experiments were com-

bined prior to RNA extraction. Libraries were made using the protocol of Zhong

et al. (2011) and sequenced using the Illumina NextSeq500 to obtain single-end

75 bp reads. Reads were aligned to the 12X.2 version of the grapevine reference

genome PN40024 using HISAT2 (Kim et al. 2015) and the transcriptome was

assembled using StringTie (Pertea et al. 2015) with the CRIBI functional annota-
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tion (Vitulo et al. 2014). Transcribed genes were analyzed by fitting a linear model

y = Xb+ ε using Ballgown (Frazee et al. 2015) where y was a vector holding the

log2(FPKM+1) values of genes with FPKM (Fragments Per Kilobase of transcript

per Million reads sequenced) variances greater than one for each genotype; X was

a design matrix that contained the indicator variables for the intercept and the

genotype-phase grouping; b was a vector holding the mean and the effect of the

group value; and ε ∼ N (0, Iσ2
ε) was a vector holding the error. For each gene, the

full model was compared to a model without the grouping covariate to derive an F

statistic. The significance threshold for the F statistic was set to a q value of 0.05.

We called genes that passed the significance threshold differentially transcribed

genes. Only those physically located within the 95% approximate Bayes credible

intervals of the two QTL on chromosome 14 from V. rupestris B38 and ‘Horizon’

were considered as possible candidate genes. The UniProt database (The UniProt

Consortium 2017) was used to determine the names and GO terms of candidate

genes.

2.3.6 Data Availability

The phenotypic and genetic data, as well as the code used to run the linear mixed

models and single time point, single phenotype, and multiple phenotype Bayesian

network analyses, are available at https://github.com/kdivilov. The RNA-Seq

analysis pipeline is included in the repository as well.
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2.4 Results

The manual and computer vision sporulation phenotype distributions for both

families were previously published (Divilov et al. 2017). The RH family HR phe-

notypes and the HC family leaf trichome phenotypes were approximately normally

distributed (Figure 2.2). The HC family HR phenotype distributions were ap-

proximately truncated normal distributions. The heritabilities for the RH family

manual and computer vision sporulation and HR phenotypes were 0.40, 0.43, and

0.58, respectively. The heritabilities for the HC family manual and computer vi-

sion sporulation and HR phenotypes were 0.67, 0.21, and 0.73, respectively. The

heritability of leaf trichomes in the HC family was 0.83. Single phenotype and

multiple phenotype Bayesian network analyses in total identified ten significant

QTL for these traits on chromosomes 5, 6, 7, 8, 11, 14 (two QTL), 15, 16, and 18,

described below.

Single phenotype QTL from the RH family explained between 7% and 17% of

the variation in the traits examined. Three QTL, one on chromosome 11 from

‘Horizon’ and two on chromosome 14 from V. rupestris B38 and ‘Horizon’ were

found using the computer vision sporulation breeding values (Table 2.1). The same

QTL with overlapping physical locations were found using the manual sporulation

breeding values in addition to one on chromosome 18 from ‘Horizon’. Two QTL,

one on chromosome 8 from ‘Horizon’ and one on chromosome 11 from V. rupestris

B38 and ‘Horizon’ were found using the HR breeding values. The HR QTL on

chromosome 11 co-located with the sporulation QTL on chromosome 11. Single

phenotype QTL from the HC family explained between 8% and 15% of the variation

in the traits examined. Three QTL on chromosomes 5, 7, and 8 from ‘Horizon’

were found using the HC family manual sporulation breeding values, but no QTL
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Figure 2.2: Violin plots showing the A Vitis rupestris B38 × Horizon (RH) and B
Horizon × V. cinerea B9 (HC) hypersensitive response (HR) phenotype distribu-
tions and the C HC leaf trichome phenotype distribution across experiments within
years. Each phenotype is represented as the average of eight leaf disc ratings.
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were found using the computer vision sporulation breeding values. Three HR QTL

from ‘Horizon’ were identified, one each on chromosomes 5 and 8 that co-located

with those found with the HC manual sporulation breeding values, and one on

chromosome 6. The QTL found on chromosome 8 from the HC family manual

sporulation and HR breeding values did not co-locate with the one related to HR

in the RH family.

Comparing QTL found using the breeding values derived from the linear mixed

model that utilized all the data available to those found using phenotypes from a

single dpi within an experiment within a year, fourteen and eight QTL were found

with the latter data for RH and HC families, respectively (Table 2.2). Among

those, seven and four of the QTL in their respective families were found only

once. All five and four QTL found in the RH and HC families, respectively, using

the linear mixed model were also found using the individual time point analysis.

No QTL that was found only once using the individual time point analysis was

found using the linear mixed model approach. For the RH family, the mean and

median approximate Bayes credible intervals of QTL obtained using the breeding

values were 5.7 Mbp and 2.7 Mbp wide, while those obtained using the individual

phenotypes were 6.3 Mbp and 4.5 Mbp wide, respectively. For the HC family,

the mean and median approximate Bayes credible intervals of QTL obtained using

the breeding values were 5.6 Mbp and 4.7 Mbp, while those obtained using the

individual phenotypes were 7.9 Mbp and 6.3 Mbp, respectively.

The averaged Bayesian network for the RH family showed no effect on sporu-

lation by HR (Figure 2.3). A QTL was found to affect sporulation on chromosome

14 from V. rupestris B38 that co-located with the one from the single phenotype

analysis (Table 2.3). Three QTL were found to affect HR on chromosomes 8 and
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11 from ‘Horizon’ that co-located with those from the single phenotype analysis

and on chromosome 16 from V. rupestris B38 that was not found using the single

phenotype analysis. The averaged Bayesian network for the HC family showed

leaf trichomes having a negative effect on both sporulation and HR and HR hav-

ing a positive effect on sporulation (Figure 2.4). A QTL on chromosome 6 from

‘Horizon’ was found to have an effect on HR and a QTL on chromosome 7 from

‘Horizon’ was found to have an effect on both sporulation and leaf trichomes. Two

additional QTL on chromosomes 8 and 15 from ‘Horizon’ had an effect on leaf

trichomes. The QTL on chromosomes 6, 7, and 8 co-located with those from the

single phenotype analysis.

Of the RNA-Seq reads from the 28 genotypes, on average 86.5% aligned to the

12X.2 reference genome, ranging from 84.3% to 88.3%. In total, 30,402 genetic loci

were detected in the transcriptome, 45% of which had a FPKM variance across the

genotypes of less than one. There were 95 differentially transcribed genes, of which

75 were located on chromosome 14. Twenty-seven were within the 95% credible

intervals for the two QTL on chromosome 14 from V. rupestris B38 and ‘Horizon’.

Among these, two did not correspond to those existing in the CRIBI annotation.

The 25 remaining genes are listed in Table 2.5 and their protein GO terms are

given in Table 2.6. Nine of the 25 genes were in the credible interval of the QTL

from V. rupestris B38, while the other 16 were in the credible interval of the QTL

from ‘Horizon’.
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Sp HR

S14

S8

S11 S16

0.17 10.88 0.15 12.85 0.10 5.39

0.15 12.79

Figure 2.3: The averaged Bayesian network for the RH family manual sporulation
(Sp) and hypersensitive response (HR) traits. S8, S11, S14, and S16 correspond
to SNPs on chromosomes 8, 11, 14, and 16, respectively. The number to the left
of an edge pointing from a SNP to a trait represents the absolute effect size of the
SNP on the trait while the number to the right represents the percent variance of
the trait explained by the SNP calculated as Type III SS

Total SS
× 100. The SNP confidence

intervals are given in Table 2.4.
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Lt

HRSp

S8 S15

S7 S6

-6.09 10.54

0.52

3.74

0.27 7.66 -3.96 31.30 0.12 6.47

0.02

5.48

0.03 16.81 0.02 8.75

Figure 2.4: The averaged Bayesian network for the HC family manual sporulation
(Sp), hypersensitive response (HR), and leaf trichome (Lt) traits. S6, S7, S8, and
S15 correspond to SNPs on chromosomes 6, 7, 8, and 15, respectively. The numbers
above and to the left of an edge pointing from a trait/SNP to a trait represents the
effect size of the trait/SNP on the trait while the numbers below and to the right
represents the percent variance of the trait explained by the trait/SNP calculated
as Type III SS

Total SS
× 100. Effect sizes from SNPs are absolute values while those from

traits are not. The SNP confidence intervals are given in Table 2.4.

2.5 Discussion

When searching for QTL to introgress into grapevine germplasm, we are partic-

ularly interested in those QTL that show a consistent effect across years. In our

linear mixed model approach, we were able to take into account the effects of year

and genotype-by-year interaction because we had two years of phenotypic data.

However, the model was näıve with respect to the assumption of independence

between years. While we replicated within individual time points since each phe-

49



notype was the average of eight leaf disc ratings, this replication does not take

into account the effect of the environmental conditions prior to leaf harvest. Thus,

when analyzing experiments individually for QTL, as we did using the individ-

ual time point analysis, there is a greater level of uncertainty surrounding the

phenotypes, which play the role of breeding values in the individual time point

analysis, than if the genotypes were replicated across multiple experiments. As we

replicate genotypes, we are more certain of their estimated breeding values, and,

consequently, of the estimated marker effects. This may explain why none of the

QTL found only once using the individual time point analysis were found using

the single phenotype analysis and why the QTL found using the individual time

point phenotypes have much larger credible intervals.

The QTL found in the RH family using the single phenotype analysis were

the same for the manual or computer vision sporulation breeding values with the

exception of one additional QTL for the manual sporulation breeding values (Table

1). This is consistent with the finding that the two phenotypes are highly correlated

(Divilov et al. 2017). The failure to find any QTL using the computer vision

sporulation breeding values in the HC family and the low heritability found for

that phenotype reflects the poor accounting of lighting conditions in the computer

vision system discussed previously (Divilov et al. 2017). The QTL on chromosomes

5 and 8 from ‘Horizon’ found previously for leaf trichome density using the 2 dpi

computer vision rating (Divilov et al. 2017) were found to be QTL for disease

resistance when using the manual sporulation and HR breeding values in the single

phenotype analysis. This is consistent with our finding that leaf trichomes have

an effect on manual sporulation and HR using the multiple phenotype Bayesian

network approach. The averaged Bayesian network suggests that the QTL on

chromosome 8 operates through the modulation of leaf trichomes (Figure 3). In
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the same network, we found that the presence of HR is associated with an increase

in sporulation. While HR is a component of a resistance reaction, it does not

imply that the plant is able to completely stop pathogen colonization. However,

we did not find this association in the RH family. Further experimentation would

be required to determine the cause of this discrepancy. Likewise, the suggested

pleiotropic effect of the QTL on chromosome 7 on sporulation and leaf trichomes

would be another interesting mechanism to dissect.

While most QTL found using the single phenotype analysis were found using the

Bayesian network analysis, some of the confidence intervals in the latter analysis

were not informative (Table 2). For the RH family, the SNP found in the averaged

network to affect a trait was on a different parental map than the other SNPs

on the same chromosome found to affect the trait in at least 5% of the networks.

For the HC family, only one SNP was found for the QTL on chromosomes 6 and

15 in at least 5% of the networks. This does not mean that the QTL location

is known with certainty, but rather is a result of the robustness of the Markov

blanket found for the traits. To obtain a more informative level of uncertainty

of the QTL physical positions in such situations, one can obtain an approximate

Bayesian credible interval as was done in the single phenotype approach.

There are currently 16 known QTL reported to be associated with downy

mildew disease resistance (VIVC 2017). No QTL have been found on chromo-

somes 6, 8, 11, or 16, where we found QTL associated with sporulation and HR.

While QTL on chromosome 14 have previously been found, the QTL found by

Blasi et al. (2011) and Venuti et al. (2013) do not physically co-locate to the QTL

we found on chromosome 14. The QTL on chromosome 7 found using the HC

family single phenotype and Bayesian network analyses did not co-locate to one
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previously found on chromosome 7 by Moreira et al. (2011). We have designated

the QTL on chromosome 8 from ‘Horizon’ Rpv17 ; the QTL on chromosome 11

from ‘Horizon’ Rpv18 ; the QTL on chromosome 14 from V. rupestris B38 Rpv19 ;

the QTL on chromosome 6 from ‘Horizon’ Rpv20 ; and the QTL on chromosome

7 from ‘Horizon’ Rpv21. Because the stepwise regression and Bayesian network

analyses disagreed on whether there are one or two QTL on chromosome 14, we

only assigned a name to one QTL on that chromosome. Additionally, we have not

proposed naming any QTL found only using stepwise regression or only using the

Bayesian network analysis.

Since the QTL on chromosome 14 did not explain a large portion of the pheno-

typic variance, we did not expect to find differentially transcribed NBS-encoding

genes, which tend to play a qualitative role in disease resistance, although this role

is not absolute (Poland et al. 2009). While a gene encoding FACT (FAcilitates

Chromatin Transcription) complex subunit SSRP1 (Structure Specific Recogni-

tion Protein 1), which has a GO term associated with DNA binding, was differ-

entially transcribed, we could not find any literature showing its role in disease

resistance. Thioredoxin h4, which is part of a family of proteins that interacts

with peroxidases (Arnér and Holmgren 2000), is a promising candidate protein be-

cause there is evidence that peroxidase activity is associated with downy mildew

disease resistance (Kortekamp et al. 1998). The protein A5BE40 likely plays a

related role as it is localizes to the peroxisome. Another promising candidate gene

is VIT 14s0068g00800, whose protein is predicted to interact in a SNARE (SNAP

[Soluble NSF [N-ethylmaleimide-Sensitive Factor] Attachment Protein] REceptor)

complex. Proteins in Arabidopsis thaliana interacting in SNARE complexes were

shown to be responsible for non-host resistance to powdery mildew of barley

(Collins et al. 2003). VIT 14s0068g01970, which is involved in xylan biosynthe-
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sis, is another promising candidate gene because the presence of xylan, a type

of hemicellulose, was shown to be associated with increased infection of Fusarium

herbarum on wheat (Wingard 1941). Unfortunately, most differentially transcribed

genes were associated with proteins of unknown functionality.

In this study using a multi-year, multi-experiment analysis, we have shown that

disease resistance in the genotypes studied is a trait controlled by many QTL with

small effect sizes, and is influenced by leaf trichomes as well. Five QTL not previ-

ously described were identified. For one F1 family studied, we have some evidence

that the underlying candidate genes are likely not NBS-encoding genes. We used

a susceptible V. vinifera genome sequence for our analysis as no resistant wild

Vitis genome has been assembled, so our gene search was partially biased. We be-

lieve breeding with these quantitative genes will help to generate durably resistant

grapevine cultivars compared to breeding solely with R genes (Poland et al. 2009).

Because we found that leaf trichomes have an effect on disease resistance in one

F1 family, breeding for leaf trichomes presents another opportunity to select for

downy mildew disease resistance. We expect that stacking QTL for leaf trichomes

and sporulation and HR disease resistance would produce more durable resistance

than breeding for one mechanism of resistance alone.

2.6 Acknowledgments

We thank Nicholas Santantonio for discussions about statistical methodology and

Alisson Kovaleski for help with RNA extraction. We thank Mike Colizzi and

Steve Luce for vineyard maintenance; Mike Colizzi, Corrigan Herbert, Aaron

Green, Hema Kasinathan, Caitlyn Kumkey, Hanna Martens, Anne Repka, Michelle

53



Schaub, and Mary Jean Welser for help collecting leaves and plating leaf discs;

and David Gadoury, Michelle Schaub, and Wayne Wilcox for supplying leaves for

propagation of the P. viticola isolate used for inoculation. The authors are grate-

ful for the prior work on downy mildew resistance performed with a subset of the

same families by Atsushi Kono and Ming-Te Lu. We also thank Michael Gore

for feedback on the manuscript. This research was supported by the USDA-NIFA

Specialty Crop Research Initiative (Award No. 2011-51181-30635), The New York

Wine & Grape Foundation, Federal Capacity Funds and the Lake Erie Regional

Grape Processor’s Fund. Graduate Assistantship support for Konstantin Divilov

was provided by the Charles R. Bullis Plant Hybridization Endowment and the

Michael Nolan Endowment Fund.

2.7 References

Akdemir, D. and O. U. Godfrey (2015). EMMREML: Fitting Mixed Models with

Known Covariance Structures. R package version 3.1. url: https://CRAN.R-

project.org/package=EMMREML.

Aliferis, C. F., A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos

(2010). “Local causal and markov blanket induction for causal discovery and

feature selection for classification part I: algorithms and empirical evaluation”.

Journal of Machine Learning Research 11, 171–234.

Arnér, E. S. and A. Holmgren (2000). “Physiological functions of thioredoxin and

thioredoxin reductase”. The FEBS Journal 267 (20), 6102–6109.

Bellin, D., E. Peressotti, D. Merdinoglu, S. Wiedemann-Merdinoglu, A.-F. Adam-

Blondon, G. Cipriani, M. Morgante, R. Testolin, and G. Di Gaspero (2009).

“Resistance to Plasmopara viticola in grapevine ‘Bianca’ is controlled by a ma-

54



jor dominant gene causing localised necrosis at the infection site”. Theoretical

and Applied Genetics 120 (1), 163–176.

Blasi, P., S. Blanc, S. Wiedemann-Merdinoglu, E. Prado, E. H. Rühl, P. Mestre,
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Kozma, S. Scalabrin, M. Morgante, et al. (2013). “Historical introgression of the

downy mildew resistance gene Rpv12 from the Asian species Vitis amurensis

into grapevine varieties”. PLoS ONE 8 (4), e61228.

57



Vitulo, N., C. Forcato, E. C. Carpinelli, A. Telatin, D. Campagna, M. D’Angelo,

R. Zimbello, M. Corso, A. Vannozzi, C. Bonghi, et al. (2014). “A deep survey of

alternative splicing in grape reveals changes in the splicing machinery related

to tissue, stress condition and genotype”. BMC Plant Biology 14 (1), 99.

VIVC (2017). Table of loci for traits in grapevine relevant for breeding and genetics.

url: http://www.vivc.de/index.php?r=dbsearch%2Fdataonbreeding.

Wang, Z., M. Gerstein, and M. Snyder (2009). “RNA-Seq: a revolutionary tool for

transcriptomics”. Nature Reviews Genetics 10 (1), 57–63.

Wingard, S. (1941). “The nature of disease resistance in plants. I”. The Botanical

Review 7 (2), 59–109.

Zhong, S., J.-G. Joung, Y. Zheng, Y.-r. Chen, B. Liu, Y. Shao, J. Z. Xiang, Z. Fei,

and J. J. Giovannoni (2011). “High-throughput Illumina strand-specific RNA

sequencing library preparation”. Cold Spring Harbor Protocols 2011 (8), 940–

949.

58



CHAPTER 3

VINEYARD SPATIAL ANALYSIS USING ARMA PROCESSES

3.1 Abstract

In vineyards, spatial effects are likely involved in most measurable phenotypes.

Separation of spatial effects from phenotypes has been shown to improve selection

accuracy in field trials of agronomic crops. For one out of three vineyard data

sets analyzed, which had genetic data, the use of autoregressive-moving average

(ARMA) processes in a Gaussian process regression model improved genomic pre-

diction accuracy. Quantitative trait loci (QTL) identified were the same using

either spatially unadjusted or adjusted phenotypes. For the two data sets with

only phenotypic data, ARMA processes explained some of the variance in the phe-

notypes. Differential evolution was used to optimize the log marginal likelihood of

the models, presenting an alternative to derivative-based optimization.

3.2 Introduction

Spatial variation due to soil and environment has long been known to affect phe-

notypes measured in the field (Fisher 1935). Two general strategies have been

developed to account for this variation. The first strategy consists of dividing a

field into blocks and replicating genotypes within the blocks, which are then used

as fixed effects. As grapevines are clonally propagated, such a strategy would slow

down a grapevine breeding program. The second strategy is to assume that the

spatial variation in the field is generated by a stochastic process (Gleeson and

Cullis 1987). Such a strategy does not require replication of vines. One then
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needs to decide which stochastic process best fits the data. Two options exist for

possible objective functions. The first is the marginal likelihood of an estimated

model. A common model used in spatial analysis is a Gaussian process regression

model (Rasmussen and Williams 2006), also known as a kriging model in geo-

statistics or a best linear unbiased predictor (BLUP) model in animal and plant

breeding (Morota and Gianola 2014). The second possible objective function is the

cross-validation accuracy of genomic prediction (Lado et al. 2013). In genomic pre-

diction, genetic markers are used to build a covariance matrix that is then used as a

prior in a Gaussian process regression model (Morota and Gianola 2014), although

other models have also been used (Meuwissen et al. 2001). Genomic prediction

accuracy is of particular importance to plant breeders because improving genomic

prediction accuracy improves the genetic gain of genomic selection. Here, three

data sets were used to quantify how well a set of stochastic processes captured

spatial variation in vineyards.

3.3 Vineyard Data Sets

The first data set consisted of phenotypic and genetic data from a vineyard planted

in 1990 in Geneva, NY, with a ‘Horizon’ × Illinois 547-1 F1 family as well as ‘Chan-

cellor’, ‘Concord’, ‘Steuben’, and PI 200569 checks. The F1 family genotypes were

unreplicated while ‘Chancellor’, ‘Concord’, and ‘Steuben’ were replicated seven

times and PI 200569 was replicated twice in various locations. The vineyard was

planted in six rows and vine spacing was 1.2 m within rows and 2.7 m between

rows, except the spacing between the first and second row, which was 5.5 m. In

2002, 475 vines, including the controls, were phenotyped for powdery mildew re-

sistance in the field on a 1 to 5 scale representing percent area of sporulation on
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the vine with 1 = 0-3%, 2 = 3-12%, 3 = 12-25%, 4 = 25-50%, and 5 = >50%.

Of the 475 vines, 358 were genotyped using genotyping-by-sequencing to obtain

9,876 high quality single nucleotide polymorphisms (SNPs) (Hyma et al. 2015).

Missing SNP data were imputed using the expectation-maximization algorithm in

the rrBLUP R package (Endelman 2011). Phenotypic data were available for 350

of 358 genotyped vines.

The second data set originated with a vineyard planted in 2016 in Geneva, NY,

with a NY84.0101.03 × Vitis rupestris ‘Pillans’ F1 family as well as NY84.0101.03,

V. rupestris ‘Pillans’, ‘Chancellor’, and ‘Concord’ checks. NY84.0101.03 is a hybrid

selection from the Cornell grapevine breeding program. The F1 family genotypes

were unreplicated, while NY84.0101.03 and V. rupestris ‘Pillans’ were replicated

four times and ‘Chancellor’ and ‘Concord’ were replicated twice. The vineyard was

planted in four rows with 76 vines per row. Spacing was 1.8 m within rows and

2.7 m between rows. In 2017, 297 surviving vines, controls inclusive, of the 304

initially planted were phenotyped for powdery mildew resistance using the same 1

to 5 scale used in the first data set.

The third data set was collected from a vineyard planted in 2016 in Geneva, NY

with a NY84.0100.03 × ‘Himrod’ F1 family as well as NY84.0100.03 and ‘Himrod’

checks. The F1 family genotypes were unreplicated while the checks were replicated

four times. The vineyard was planted in three rows with 61 vines per row. Each

vine was 1.8 m apart within a row, and between row spacing was 2.7 m. In 2017,

177 vines, controls inclusive, which had never been hedged, were phenotyped for

plant height by measuring the distance from the base of each vine to the final node

on the longest shoot.
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3.4 Spatial Analysis

In a randomized vineyard, the objective of spatial analysis is to find the function

f(X) that explains the phenotypes y of the vines in the vineyard, where X is a

matrix specifying the rows and columns of the vines. f(X) can be either a fixed

(deterministic) or random (stochastic) function/process or a combination of the

two. The spatial variation is likely the additive and/or multiplicative effect of many

functions of soil, weather, and genetics, so by the Central Limit Theorem (Bert-

sekas and Tsitsiklis 2002), the spatial effect between any subset of locations can

be assumed to be produced from a Gaussian distribution, i.e., f(X) ∼ N (m,Σ),

where m are possible fixed effects and Σ is the covariance matrix. This is equiva-

lent to modeling the spatial effects as a Gaussian process, f(X) ∼ GP(m,Σ). A

Gaussian process is a collection of variables any subset of which has a Gaussian

distribution (Rasmussen and Williams 2006).

If there are no fixed effects to consider, the phenotypic mean can be subtracted

from the phenotypes and the spatial function is now f(X) ∼ N (0,Σ). Here, the

spatial function is only controlled by the covariance matrix Σ of the vine locations,

and this matrix will encode the prior assumptions about how the locations affect

each other. Assuming that the covariance between two locations, i and j, within a

row or column, |i−j| locations apart is the same for any two locations, within a row

or column, |i− j| locations apart, the spatial stochastic process can be said to be

stationary (Box et al. 2015). Stationary processes have a constant mean and thus

are specified by their covariance matrix. Two processes, one of which can be made

stationary and the other always stationary, are autoregressive processes of order p,

or AR(p) processes, and moving average processes of order q, or MA(q) processes.

These two processes can be generalized into ARMA(p,q) processes where AR(p)
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and MA(q) are ARMA(p,0) and ARMA(0,q), respectively. ARMA processes will

be the focus of the present analyses. These processes are common in time series

analysis (Box et al. 2015; Murray-Smith and Girard 2001), but have been applied

in spatial analysis as well (Bernal-Vasquez et al. 2014; Gleeson and Cullis 1987).

In an AR(p) process, the spatial effect is an additive function of the spatial

effect of p adjacent locations, in either direction within a row or column, and

white noise, or independent error (Box et al. 2015). The influence of the adjacent

locations is modulated by the parameters φ, which are estimated as explained in

the next section, with the number of parameters in φ equal to p. The covariance

matrix for an AR(1) process is a symmetric Toeplitz matrix with elements

Γi,j =
φ
|i−j|
1

1− φ2
1

σn (3.1)

where σn is the noise variance. In a Toeplitz matrix, the elements along each

diagonal are equal. The process is stationary when |φ1| < 1. The covariance

matrix for an AR(2) process is symmetric Toeplitz with elements (Muendler 2000)

Γi,j =



1−φ2

(1+φ2)((1−φ2)2−φ2
1)
σ2
n, if |i− j| = 0

φ1

(1+φ2)((1−φ2)2−φ2
1)
σ2
n, if |i− j| = 1

(φ1Γi,|i−j|−1 + φ2Γi,|i−j|−2)σ
2
n, if |i− j| > 1

(3.2)

with recursion used to generate the covariances when |i − j| > 1. The process is

stationary when φ2 + φ1 < 1, φ2 − φ1 < 1, and −1 < φ2 < 1.

In a MA(q) process, the spatial effect is an additive function of the white noise

of q adjacent locations, in either direction within a row or column, and white noise.

The influence of the adjacent locations is modulated by the parameters θ, with

the number of parameters in θ equal to q (Box et al. 2015). All MA processes are

stationary regardless of the parameter values. The covariance matrix for a MA(1)
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process is symmetric Toeplitz with elements

Γi,j =


(1 + θ21)σ

2
n, if |i− j| = 0

−θ1σ2
n, if |i− j| = 1

0 if |i− j| > 1

(3.3)

The covariance matrix for a MA(2) process is symmetric Toeplitz with elements

Γi,j =



(1 + θ21 + θ22)σ
2
n, if |i− j| = 0

(−θ1 + θ1θ2)σ
2
n, if |i− j| = 1

−θ2σ2
n if |i− j| = 2

0 if |i− j| > 2

(3.4)

A property of AR and MA processes is that any AR(p) process can be written

as a MA(∞) process and any MA(q) process can be written as an AR(∞) process

(Box et al. 2015). Under certain values of θ, AR(∞) processes associated with

MA(q) processes do not converge to finite values and are said to not be invertible.

More importantly, when a MA(q) process is not invertible, the φ parameters in the

corresponding AR(∞) process increase as |i− j| increases, which is not realistic in

most applications of spatial analysis. The constraints for θ in order for MA(1) and

MA(2) processes to be invertible are the constraints given for φ above for AR(1)

and AR(2) processes to be stationary.

In an ARMA(p,q) process the spatial effect is an additive function of p adjacent

locations, the white noise of q adjacent locations, and white noise (Box et al.

2015). The covariance matrix for a ARMA(1,1) process is symmetric Toeplitz
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with elements

Γi,j =



1+θ2
1−2φ1θ1
1−φ2

1
σ2
n, if |i− j| = 0

(1−φ1θ1)(φ1−θ1)
1−φ2

1
σ2
n, if |i− j| = 1

φ1Γi,|i−j|−1)σ
2
n, if |i− j| > 1

(3.5)

The process is stationary when |φ1| < 1 and invertible when |θ1| < 1.

As there are multiple rows and columns in the vineyard data sets, and because Γ

is the same for any row and column, an entire vineyard’s spatial covariance matrix

can be specified by a Kronecker product of the row-specific and column-specific

covariance matrices. For example, for an AR(p) process, the entire vineyard’s

spatial covariance matrix can be written as ΣAR(p) = Γr⊗Γc, where Γr and Γc are

the row-specific and column-specific AR(p) covariance matrices. The assumption

for the present analyses is that there is no spatial covariance between adjacent

rows within a column. Thus, the complete covariance matrices are Σ = I ⊗ Γc.

This assumption is made due to the small number of rows in all the vineyard data

sets, which would make estimates of row-specific φ and θ inaccurate.

3.5 Gaussian Process Regression

To find the spatial process that best fits the phenotypes of each data set, a Gaus-

sian process regression model will be used (Rasmussen and Williams 2006). In

the model, one of the spatial processes explained in the previous section will

be the prior for the spatial function. Following Bayes’ Theorem, posterior =

likelihood×prior
marginal likelihood

, or p(f |y,X) = p(y|f ,X)p(f |X)
p(y|X)

, where f are the spatial effects.

The prior is p(f |X) ∼ N (0,K), where K is a spatial covariance matrix, and

the likelihood is p(y|f ,X) ∼ N (f , σ2
nI), where σ2

n is the estimated noise vari-
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ance that is different than the one used in the spatial processes. Maximiza-

tion of the marginal likelihood, rather than the likelihood, is performed as the

marginal likelihood does not necessarily increase with increasing degrees of free-

dom used by the model, so the model will not overfit the data (Bishop 2006).

Thus, the marginal likelihood will select the true model, assuming that the

true model is within the space of models being considered. As the phenotypes

are the additive combination of the spatial effects and independent noise, i.e.,

p(y|X) = N (0,K) +N (0, σ2
nI) = N (0,K + σ2

nI), the marginal likelihood is

p(y|X) = e−
1
2
yT (K+σ2

nI)
−1y det(K + σ2

nI)−
1
2 (2π)−

n
2 (3.6)

Taking the logarithm,

log p(y|X) = −1

2
yT (K + σ2

nI)−1y − 1

2
log det (K + σ2

nI)− n

2
log 2π (3.7)

To avoid performing a matrix inversion, which is a computationally intensive ma-

trix operation, the log marginal likelihood can be computed by (Rasmussen and

Williams 2006)

log p(y|X) = −1

2
yT solve(LT , solve(L,y))−

n∑
i=1

logLii)−
n

2
log 2π (3.8)

where LLT is the Cholesky decomposition of (K+σ2
nI) and solve(A, b) solves for

c in the equation Ac = b.

In order to maximize the log marginal likelihood function, one can use ei-

ther derivative or derivative-free methods. For the present analyses, differential

evolution (Storn and Price 1997), a derivative-free optimization algorithm, from

the DEoptim R package (Mullen et al. 2011) was used that works by iteratively

transforming candidate sets of parameters, in this case φ, θ, and σ2. Differential

evolution has previously been used to optimize the log marginal likelihood function

in a Gaussian process regression model (Petelin et al. 2011). During optimization,
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the log marginal likelihood was penalized when the spatial processes were not

stationary or invertible.

After maximization of the log marginal likelihood, the estimated parameters

can be used to obtain the spatial effects by K(K + σ2
nI)−1y and the number of

degrees of freedom used by the model (Hastie and Tibshirani 1990) by tr(K(K +

σ2
nI)−1), where tr is the trace of a matrix.

3.6 Genomic Prediction and QTL Analysis

In order to see the effects of spatial adjustment for the first vineyard data set,

which had genetic data, the phenotypes, subtracted by the spatial effects, were

used to cross-validate a genomic prediction model as well as to find QTL. For

cross validation, 100 random sets of 90% of the genotypes with phenotypes were

used as the training data in a Gaussian process regression model to predict the

remaining 10%. The covariance matrix used was ZZT

2
∑s
i=1 mi(1−mi)

where Z is the

centered matrix of allele values with the number of rows equal to the number

of genotypes and the number of columns equal to the number of SNPs, mi is

the minor allele frequency for a particular SNP, and s is the number of SNPs

(VanRaden 2008). Prediction accuracy was measured by the Pearson correlation

coefficient. In this model, the log marginal likelihood function was optimized using

the Efficient Mixed Model Association (EMMA) algorithm (Kang et al. 2008) in

the sommer R package (Covarrubias-Pazaran 2016). The EMMA algorithm is a

fast optimizer when one has a single, static covariance matrix, apart from the

diagonal noise matrix, such as the case here. QTL analysis was performed using

stepwise regression in R/qtl (Broman et al. 2003) using a previously constructed
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genetic map (Hyma et al. 2015). Significance of QTL for each phenotype was

determined using 1,000 permutation tests with an alpha value of 0.05.

The phenotypic and genetic vineyard data and the code used to perform the

analyses can be obtained at https://github.com/kdivilov.

3.7 Results and Discussion

For the three data sets, AR(1), AR(2), MA(1), MA(2), and ARMA(1,1) processes

were used as priors in a Gaussian process regression model and the log marginal

likelihoods and degrees of freedom of the models were obtained. For the first data

set, we also obtained the mean and standard deviations of the cross-validation

genomic prediction accuracies using both unadjusted and spatially adjusted phe-

notypes in a Gaussian process regression model and the number and location of

QTL found using stepwise regression.

Across the data sets, AR(p) processes generally fit the data better than MA(q)

processes as they achieved higher log marginal likelihood values, with AR(2) pro-

cesses fitting better than the rest (Table 1). While previous researchers have used

the Akaike information criterion (AIC) to penalize the number of parameters being

optimized (Leiser et al. 2012), this is not necessary as the model is able to select the

optimal number of parameters to use. The fitting of an AR(2) process in the first

data set is an example of such selection, where φ2 was set to zero after maximiza-

tion of the log marginal likelihood. Similarly, the degrees of freedom used by the

models were not related to how well they fit the data as expected since maximiz-

ing the log marginal likelihood does not lead to overfitting. The reason for this is

that 1
2

log det (K + σ2
nI) in the log marginal likelihood penalizes model complexity
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(Rasmussen and Williams 2006). As mentioned previously, when selecting a model

using the log marginal likelihood, one assumes that the true model is within the

space of models being considered. This is false as the true spatial process underly-

ing the complex interaction of soil, weather, and genetics cannot be as simple as an

AR(1) process, for example. However, it is likely that ARMA processes are good

approximations for the true spatial process in most circumstances, and so selection

of the prior can be done solely based on the log marginal likelihood, in the absence

of genetic data. Such is the case in the second and third data sets where the model

estimated spatial variance parameters greater than zero. However, one does not

know if removal of the estimated spatial effects from the measured phenotypes will

improve selection accuracy because the marginal likelihood, whether penalized us-

ing the AIC or the Bayesian information criterion (BIC) or not, does not provide

information about model misspecification. The value of cross-validation using ge-

netic data as a model selection check on the prior can be seen in the first data set

where the increase in the log marginal likelihood corresponded to an increase in

prediction accuracy. For this data set, the AR(1), AR(2), and ARMA(1,1) spa-

tial effects were the same, and thus the accuracies were equivalent. While using

any spatial process increased the mean genomic prediction accuracy for powdery

mildew resistance in the first data set, the increase was within one standard devi-

ation from the mean genomic prediction accuracy for the model with unadjusted

phenotypes, suggesting that additional data need to be analyzed to confirm the

utility of the spatial correction for powdery mildew resistance.

The marginal log likelihoods achieved for the ARMA(1,1) processes for all data

sets were equivalent to those achieved with an AR(1) process (Table 1). The likely

reason for this is that an ARMA(1,1) process can be written in terms of a sum of an

independent AR(1) process and white noise (Granger and Morris 1976). Therefore,
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Table 3.1: Log marginal likelihood estimates and degrees of freedom for five spatial
processes for three data sets and the mean genomic prediction accuracies for 100
cross-validation test sets, with the standard deviations in parentheses, for the first
data set.

Phenotype Spatial Process Log ML DF Accuracy
2002 Powdery Mildew None 0.449 (0.126)
2002 Powdery Mildew AR(1) -826.854 25.007 0.487 (0.117)
2002 Powdery Mildew AR(2) -826.854 25.007 0.487 (0.117)
2002 Powdery Mildew MA(1) -838.723 281.105 0.473 (0.119)
2002 Powdery Mildew MA(2) -836.719 267.647 0.474 (0.118)
2002 Powdery Mildew ARMA(1,1) -826.854 108.822 0.487 (0.117)
2017 Powdery Mildew AR(1) -451.605 297.000
2017 Powdery Mildew AR(2) -450.908 75.459
2017 Powdery Mildew MA(1) -451.673 146.457
2017 Powdery Mildew MA(2) -451.467 114.851
2017 Powdery Mildew ARMA(1,1) -451.605 111.633

2017 Height AR(1) -1076.017 40.989
2017 Height AR(2) -1075.012 148.771
2017 Height MA(1) -1081.685 135.653
2017 Height MA(2) -1076.651 82.172
2017 Height ARMA(1,1) -1076.017 104.258

there is a white noise component from the ARMA(1,1) prior and another one from

the likelihood function. When the likelihood white noise captures all the white

noise variance, the ARMA(1,1) process acts as an AR(1) process, explaining the

equivalent log marginal likelihoods achieved by the two processes. Inclusion of

white noise from the likelihood function is necessary as otherwise adjustment of

the phenotypes is not possible.

In the Cornell grapevine breeding program, marker-assisted selection is per-

formed to screen susceptible unphenotyped seedlings using QTL found in various

F1 families phenotyped for disease resistance. The number of QTL found in the

first vineyard data set using either spatially unadjusted or adjusted phenotypes

was three, regardless of the spatial process used to calculate the spatial effects.

The QTL were in the same locations across all phenotypes, specifically on chro-
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mosomes 14 and 15 (2 QTL). This suggests that spatial variation is likely not a

limitation to successful mapping of disease resistance QTL from field data.

In this study, only data from vineyards with complete F1 families (having had

no seedling selection) were analyzed. The reason for this is that Cornell grapevine

breeding first stage selection vineyards are not randomized and the vines in those

vineyards are discarded as it becomes apparent that a vine does not have desir-

able characteristics. Second stage selection vineyards are likewise not randomized.

First stage selection vineyards contain unreplicated vines that have passed initial

nursery screening. Second stage selection vineyards contain replicated vines that

have passed first stage screening. The issue with analyzing a vineyard that is not

randomized is that the spatial and genetic effects become confounded. The issue

with discarding vines is that, other than the initial year of planting, large gaps in

the vineyard will arise, and this will lead to worse estimates of the spatial function

covariance parameters than if all, or almost all, vines were present. However, a

vineyard with gradually fewer vines is less expensive to maintain, and thus there

is a tradeoff between having phenotypic data for more vines, although with fewer

phenotypes per year as vines get discarded, and having more precise phenotypic

data for fewer vines.

From the limited set of vineyard data analyzed, we recommend an AR(1) pro-

cess as a sufficient process to account for spatial variation in a vineyard. An

AR(1) process was also found to capture most of the spatial variation in sorghum

trials (Leiser et al. 2012). The benefit of accounting for spatial variation is that

one obtains phenotypes less corrupted by spatial variation. Such adjusted pheno-

types should improve genetic gain regardless of whether one uses whole-genome

prediction for selection. Similarly, adjustment of phenotypes should aid in QTL
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mapping, although, as seen here, it might not translate to differences in the QTL

used for marker-assisted selection. A limitation to the ARMA processes presented

here is the assumption of stationarity. For example, the covariance function be-

tween two vines in one end of a vineyard is assumed to be the same as two in

another end. However, development of more realistic priors is often precluded by

the lack of information on the physiological, pedological, and climatic bases of

spatial variation.
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CHAPTER 4

TOWARD AN ORNAMENTAL DWARF GRAPEVINE WITH AN

ATTRACTIVE FLORAL SCENT

4.1 Introduction

The use of grapevine (Vitis spp.) is mostly limited to the production of consum-

able products, e.g., wine and table grapes. Vineyards near urban centers often host

events, such as weddings, and the existence of continuously flowering grapevines

with exceptional floral scent would increase the quality of the services these vine-

yards provide. Additionally, dwarf grapevine varieties for ornamental purposes can

be a unique addition in a nursery catalog. Currently, ‘Pixie’, a dwarf grapevine

derived from the L1 cell layer of the Vitis vinifera chimera ‘Pinot Meunier’, is

available for viticultural and research purposes (Cousins 2012). The dwarfism is

caused by mutation in the gene VvGAI1, which causes the vine to be insensitive

to gibberellic acid (Boss and Thomas 2002). The mutation also causes meris-

tematic uncommitted primordia in an actively growing vine to differentiate into

mostly inflorescences, which is different than wild type vines that only produce

inflorescences in latent buds.

The scent of V. vinifera flowers has been described as having a “beautiful floral

and fruity-fresh note as well as a mignonette-like, acrid-dusty and green side-note”

(Buchbauer et al. 1995). The attraction of beetles for pollination purposes to

grapevine floral scent is a possible evolutionary reason for the existence of the

scent (Branties 1978). Valencene, a sesquiterpene found in Valencia oranges, is

the compound most frequently found to be of greatest abundance evolved from

V. vinifera flowers and is localized within pollen grains (Barbagallo et al. 2014;
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Buchbauer et al. 1995; Buchbauer et al. 1994b; Buchbauer et al. 1994a; Martin

et al. 2009). However, other compounds are also present in the headspace of

the flowers, and, to our knowledge, it is not yet known what combination and

concentration of compounds are necessary to produce the floral scent, or bouquet,

typical of V. vinifera. Additionally, there is a lack of research into the compounds

evolved from flowers of grapevine species other than V. vinifera whose flowers are

not hermaphroditic.

Extraction of floral compounds can be performed in a variety of ways. Two

common methods are 1) extraction using a solvent in physical contact with flowers

that are detached from the plant, and 2) extraction where the air, or headspace,

surrounding flowers that are not detached from the plant is sampled (Buchbauer

et al. 1994b; Martin et al. 2009). While the latter method produces more bio-

logically relevant results, it is also more expensive and technical. Buchbauer et

al. (1994b) used both methods to extract floral volatiles in V. vinifera and found

that valencene was the compound with the greatest abundance regardless of the

extraction method used. After extraction, gas chromatography-mass spectrometry

(GC-MS) is performed to separate the extracted compounds by boiling point and

to identify the compounds.

Our goal was to breed a dwarf grapevine with a floral scent similar to what is

found in ‘Couderc 3309’ (Vitis riparia × Vitis rupestris). Here, we report on the

progress of that effort. Additionally, we wanted to explore what floral compounds

are released from some Vitis spp. native to North America.
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4.2 Materials and Methods

In the spring of 2015, the grapevine germplasm in Geneva, NY was partially

screened for floral scent intensity and aroma by sniffing of flowers by the author.

Couderc 3309, a male rootstock cultivar, was selected as the male parent in cross-

ing because of its pleasant, perfume-like aroma, which was even present around

the flowers after anthesis. Pollen of the male parent was collected and stored at

-20� in the same season. Cuttings of V. rupestris 187G × ‘Pixie’, a female hybrid,

were rooted in a greenhouse on November 2015 and pollinated with ‘Couderc 3309’

in the winter of 2015 and spring of 2016. ‘187G’ is a female rootstock cultivar.

In December 2016, 852 seed from the crosses were humidified for 24 h, soaked in

1.5% H2O2 for 24 h, and soaked in 5000 ppm gibberellic acid (90+% purity) for 24

h. The seed were then stratified for two months at 4� and then kept at 20� for

a week prior to germination in a greenhouse. Out of the 243 seedlings that ger-

minated, 60 were dwarf, as determined by internode length. The dwarf seedlings

were planted in a nursery in Geneva, NY, along with six ‘187G’ × ‘Pixie’ vines.

In order to find the optimal length of time for a hexane extraction of floral

volatiles, 10 open flowers from V. cinerea B9, which had a characteristic V. vinifera

scent as determined by the author, growing in the field were placed in a glass tube

with 0.5 mL of hexane and kept in the hexane at 4� for either 1, 3, 6, 12, or

24 h with three replications per time point (except the 3 h time point that only

had two replications). The flower collection was done on 17 July 2015 at 1 pm.

This method was similar to that of Martin et al. (2009). The flowers for all the

time points came from the same flower cluster. After the allotted time passed, the

solution was filtered through glass wool and stored at -20� before being sent to

the Abby and Howard P. Milstein Synthetic Chemistry Core Facility at Cornell
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University for GC-MS analysis with a temperature program similar to Martin et

al. (2009).

Using the same flower processing methodology, a diversity panel of female and

male grapevine accessions from the USDA National Germplasm Repository in

Geneva, NY were sampled for their floral volatiles. The panel included V. aestivalis

(‘Winnebago’ and Rem 30-77), V. cinerea (C-66-14), V. labrusca (Rem 26-75 and

Grem-5), V. riparia (‘Tom’s Favorite’), and V. rupestris (‘Wichita Refuge’ and

R-66-24). Additionally, ‘Couderc 3309’ was sampled from the repository as well as

‘Chardonnay’ and ‘Riesling’ (V. vinifera), both of which are hermaphroditic, from

a nearby vineyard. Rem 30-77, C-66-14, R-66-24, and ‘Couderc 3309’ are male

accessions while ‘Winnebago’, Rem 26-75, Grem-5, ‘Tom’s Favorite’, and ‘Wichita

Refuge’ are female accessions. Recently opened flowers were sampled at 9 am at

various dates in June and July of 2016 and kept in hexane for 1 hour. Due to

genetic factors, flowering dates varied and so flowers could not be sampled on the

same date for all accessions. The floral aroma of the sampled inflorescence for each

accession was recorded by the author prior to sampling.

Analysis of the GC-MS chromatograms to find the most likely compounds in

solution was performed using the Automated Mass Spectral Deconvolution and

Identification System (AMDIS) (National Institute of Standards and Technology

[NIST]) and the NIST 2008 Mass Spectral Library. Chromatogram plots were made

using the ggplot2 (Wickham 2009) and RColorBrewer (Neuwirth 2014) packages

in R. Prior to plotting, the baseline for each spectrum was removed using the

MALDIquant R package (Gibb and Strimmer 2012).
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4.3 Results and Discussion

Chromatograms were similar for all time points in the experiment with V. cinerea

B9, suggesting that 1 hour is enough to extract floral volatiles from grapevine flow-

ers (Figure 4.1). Germacrene D was by far the compound of greatest abundance

in the samples, which was unexpected because, as the floral scent in V. cinerea B9

was similar to V. vinifera flowers, we expected valencene to be of greatest abun-

dance. Running one of the samples in the GC-MS with pure valencene confirmed

that the peak was not valencene. While the abundance of compounds in V. cinerea

B9 was similar for all samples, that was not the case for the diversity panel (Figure

4.2). Specifically, ‘Winnebago’, C-66-14, R-66-24, and ‘Couderc 3309’ had much

less abundance than the rest of the panel and had compounds, such as etamiphyllin

and metacetamol, that were not found in the other accessions. We believe this low

abundance was due to sampling flowers that had no or little pollen left, assuming

that the floral volatiles arise from the pollen grains (Martin et al. 2009). However,

prior to sampling, the flowers of all accessions had a scent.

Most of the compounds identified in the diversity panel and V. cinerea B9,

e.g., germacrene D, valencene, δ-cadinene, β-selinene, α-bergamotene, levomenol,

viridiflorene, are known sesquiterpenes. Sesquiterpenes share the common precur-

sor farnesyl diphosphate (Caspi et al. 2008; Kanehisa and Goto 2000). Similar

to V. cinerea B9, Rem 30-77 produced a high level of germacrene D without va-

lencene. Rem 30-77 had a mild earthy, perfume-like scent unlike that of V. cinerea

B9. Both V. labrusca accessions, which produced germacrene D in high quantities,

also had a peak determined to be valencene. Like V. cinerea B9, these accessions

had a scent similar to V. vinifera. ‘Riesling’ had a chromatogram that we expected,

i.e., it had a high abundance of valencene. Interestingly, ‘Chardonnay’ had nei-
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ther a valencene nor germacrene D peak. For ‘Chardonnay’, α-farnesene was the

compound of greatest abundance. These results suggest that the aroma common

to V. vinifera is not only attributable to valencene.

‘Wichita Refuge’ and ‘Tom’s Favorite’, both of which did not have many

sesquiterpene peaks, did not have similar floral scents. ‘Wichita Refuge’ had a

mild perfume-like scent while ‘Tom’s Favorite’ had a scent similar to V. vinifera.

This suggests that the search for the compounds that cause the flower bouquet

in grapevine should be expanded to compounds outside the sesquiterpenes. Of

the accessions with particularly low abundance values, ‘Winnebago’ and ‘Couderc

3309’ had a perfume-like scent while C-66-14 and R-66-24 had a V. vinifera-like

scent.

The methodology used for the floral volatile study was very qualitative and

should not be taken to be definitive. First, only one date was sampled for each

accession and at only one time of the day. It is known that volatile emission in

grapevine flucuates during a day (Martin et al. 2009), and the composition of the

emission might vary as well. Second, the hexane extraction might not be a good

representation of the true floral emission composition. Validating the results with

headspace analysis would make them more biologically meaningful. Lastly, the

floral aroma was only rated by the author. Rating of aroma by a diverse group of

people would make the chromatogram to aroma phenotype conclusions stronger.

Out of the 60 (‘187G’ × ‘Pixie’) × ‘Couderc 3309’ seedlings planted in the

nursery, 35 were vigorous in the field and were transplanted to the greenhouse in

the fall of 2017 for floral scent evaluation. Early in the season, all the seedlings in

the field initially produced inflorescences that looked like tendrils except with very

few flowers at the ends (Figure 4.3). Later in the season, some seedlings produced
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inflorescences with a greater number of flowers (Figure 4.4). From two seedlings

with enough flowers, we found that the floral scent was not V. vinifera-like, but

rather perfume-like, suggesting that segregation might occur in the greenhouse

screening.

Figure 4.3: Flowers of a (‘187G’ × ‘Pixie’) × ‘Couderc 3309’ seedling on 14 August
2017.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

This dissertation explored grapevine breeding through concepts from computer

vision, graphical models, time series analysis, and traditional breeding methodol-

ogy. Adapting methodology from annual crops to grapevines can be difficult due to

the perenniality and intensive management of grapevines. Here, we discuss some

limitations of the current work and future directions of disease resistance and floral

scent research in grapevines.

The computer vision system developed can only detect white pixels, which

correspond to sporulation or leaf trichomes, but can be modified, with some effort,

to detect other colors. One can generalize the detection of disease by modeling the

pixels in a leaf disc as coming from a mixture of Gaussian distributions. This model

might also be used to remove the parameter search for thresholding the background

in the images. Most of the time spent using the computer vision system was on

finding a set of parameters for the Hough circle transform algorithm that detected

all the leaf discs as circles in a particular experiment’s image set. Recently, an

algorithm called Ellipse and Line Segment Detector, with Continuous validation

(ELSDc) (Pătrăucean et al. 2017) was developed that may be able to remove the

need for this parameter search.

A limitation of our execution of the leaf disc assay was the time and human

resources spent setting up an experiment from harvest of the leaves (4 hours, 3

people) to punching out the leaf discs and plating them on agar (6 hours, 3 people).

It would be very valuable to see how much of the work in the phenotyping procedure

was unnecessary. For example, how would the ratings of each genotype compare to

our experimental results if only one leaf disc per genotype was obtained in the field
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without any surface sterilization of leaves? Using a smaller amount of resources per

experiment can be used to address other limitations in our experiments, such as the

use of only one isolate of Plasmopara viticola. In addition to the time constraints

during the growing season, there is a human constraint to keeping multiple isolates

of the oomycete due to its obligate biotrophic nature, which means that all the

isolates must be cultured on fresh leaves every week. Moreover, the oomycete is

constantly evolving, so it is not straightforward when one should change the isolates

used to evaluate genotypes, except for when resistance is seen as deteriorating,

which can take years to determine since the deterioration might be a genotype-by-

environment (G×E) effect.

We found evidence of G×E effects in our experiments, which was not expected

because the leaf discs were inoculated in the laboratory and kept in controlled

conditions. Thus, a more detailed G×E study is needed. Planting an F1 family

in multiple locations is usually not affordable because each vineyard requires a

substantial investment to build and maintain. A feasible alternative would be

to develop a diverse set of dwarf grapevines, as we have done in the floral scent

project, and place these vines in pots with different soil types and in Personal

Food Computers (Ferrer et al. 2017), which are environment-controlled devices,

programmed to replicate growing conditions in various years and locations. This

concept is similar to the Tree Computer (OpenAg 2017) and would possibly allow

tractable evaluation of G×E effects on downy mildew resistance.

Another possibility to explore G×E effects would be to evaluate grapevine data

from multiple F1 families from various grapevine breeding programs that already

are collaborating as part of VitisGen (www.vitisgen.org). One substantial hurdle

to overcome would be the standardization of vineyard maintenance, e.g., training,
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pruning, pesticide application, as much as possible and good documentation of

how each vineyard was treated. With the availability of phenotypes, which would

also be standardized, and soil and weather data, hydrological and/or geochemical

processes, in addition to genetic data, can be integrated in modeling the pheno-

types in order to determine if such processes improve the likelihood of the model

than using genetic data only. Such data collection is similar to what is being

performed with the Genomes To Fields Initiative (www.genomes2fields.org). This

integration would help in determining where to deploy QTL found in the future

multi-state evaluations. Additionally, this data can be used to explore the impor-

tance of genotype-by-management and genotype-by-environment-by-management

effects for disease resistance. These effects can be important if it is found, for ex-

ample, that certain training systems in certain environments lead to greater disease

susceptibility of certain genotypes.

Successful implementation of long-term marker-assisted selection of the downy

mildew resistance QTL found in our work is complicated by the fact that the QTL

have small effect sizes. For large-effect NBS-LRR loci, e.g., the Rpv1 locus, em-

pirical breeding data from the Cornell grapevine breeding program show that they

produce an effect on downy mildew disease resistance regardless of other loci in a

vine. For the small effect QTL, the simplest assumption is that all the QTL will

have a small additive effect after introgression, regardless of other loci in a vine. To

test this assumption, one can test all possible combinations of the QTL in various

genetic backgrounds. To avoid this time-consuming and expensive experiment, if

one knew the genes behind the QTL and their corresponding mechanistic path-

ways, one can determine the likelihood of a QTL having an effect in a vine given

the sequences of the genes in the pathway as one can estimate the likelihood of

the resulting protein being non-functional. However, as seen by our very small
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RNA-Seq experiment, many of the genes in the Vitis vinifera reference genome

that possibly affect disease resistance currently have unknown functionality, which

makes pathway reconstruction difficult. The best approach available to us might

simply be to perform truncation selection during marker-assisted selection, keep-

ing, for example, 20% of the seedlings with the greatest amount of resistance QTL

and evaluating the combinations each year in the nursery as well as in later stages

of the breeding program.

We emphasize the importance of prior knowledge, for example, in selecting

QTL or integrating soil and weather data into hydrological and/or geochemical

processes, because of the small sample sizes common in grapevine breeding. If

large population sizes were commonplace, we could, for example, conduct the com-

binatorial experiment stated above. If large numbers of tested environments were

common, it might be possible to estimate the underlying G×E effects directly

from soil and weather data without biophysical priors. Thus, we believe grapevine

breeding will need to integrate more knowledge from diverse disciplines to generate

superior varieties in a shorter amount of time.

An important limitation in our breeding of dwarf grapevines for floral scent was

that the phenotyping was limited to a single person. Phenotyping germplasm in

the field with a large group of people is difficult because of the dynamic nature of

grapevine floral scent and human olfactory fatigue. Floral scent in a grapevine ac-

cession might change within a day or between days. Additionally, not all grapevine

accessions flower at the same time. Olfactory fatigue limits the number of acces-

sions that can be tested per person per day. All these factors, as well as the

difficulty of obtaining a large group of people trained to evaluate scent in a stan-

dardized manner, make floral scent phenotyping difficult in the field. However,
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dwarf grapevines flower constantly in the greenhouse, making phenotyping the F1

progeny from our cross manageable as there are fewer time constraints. Therefore,

the cross progeny can be used to evaluate floral scent phenotyping methods as

well as how floral scent changes with respect to inflorescence phenology. While

evaluations in a greenhouse would eliminate the possibility of evaluating many

G×E effects, partly breeding for home ornamental purposes makes this limitation

less important as homes are kept in relatively constant environmental conditions,

although breeding for environment-dependent floral scent would be an interesting

future direction.
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