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GENOMIC SELECTION IN AFRICAN CASSAVA.

Uche Godfrey Okeke, Ph.D.

Cornell University 2017.

Genomic selection (GS) could help accelerate African cassava breeding towards

the development of high yielding, high dry matter (DM), disease resistant and

provitamin A varieties. This work addresses some issues for implementing

GS in cassava. First, we evaluated multivariate and univariate GS models via

prediction accuracies. Second, the genetic basis for DM content was investi-

gated using the Regional Heritability Mapping (RHM) procedure. Lastly, the

genetic basis for co-inheritance of DM, root color and fresh yield (FYLD) were

investigated using the Regional co-heritability Mapping (RHM) procedure. Key

lessons were: (1) Multitrait (MT) models for single location data offered 40%

higher average prediction accuracies for genomic breeding values (GEBVs) of

six target traits across 3 locations compared to single-trait (uT) models. (2)

Multivariate multi-environment (ME) models also offered 12% higher average

prediction accuracies compared to a compound symmetric multi-environment

model (uE) parameterized as a univariate multi-kernel model for multi-year

multi-environment data. (3) The RHM analysis identified segments associ-

ated with DM in white cassava on chromosomes 1, 4, 5, 10, 17,18 and on yel-

low cassava chromosome 1. Candidates extracted from genes adjacent to the

RHM significant segments include: glycosyltransferases, serine-threonine ki-

nases (SnRKs), invertases and fructose bisphosphate aldolase. Prediction accu-

racies from these candidates and all genes in the RHM significant regions sug-



gest that they may be tagging regions associated with DM. (4) Genome-wide

segment correlations from the RcHM analysis in yellow cassava showed a lim-

ited prospect for high DM yellow cassava development but good prospects for

high DM, high yielding white cassava development.
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CHAPTER 1

INTRODUCTION

1.1 Rationale and significance:

Cassava (Manihot esculenta Crantz) ranks as the sixth most important staple

crop consumed mostly in Africa, South America and Asia by over 500 million

people [1]. It is an outbreeding species cultivated clonally using stem cuttings of

about 15 -30 cm long [1-2]. Cassava is hardy and can give substantial yields in

marginal land or low input systems [3-4]. It is mainly cultivated for its root

consisting of water and dry matter (DM) [6-8]. Cassava DM is made up of

90% starch making it very attractive as a high calorie staple or other starch-

dependent industries [6-8]. The high demand for cassava [9-10] has necessi-

tated urgent and rapid genetic improvement of this crop [11-12]. Another re-

lated component is the goal of biofortification of this crop geared towards for-

tifying cassava roots with beta-carotene, a provitamin A precursor [13-14]. The

target is towards health benefits brought about by consumption of provitamin

A cassava especially critical for maternal and child health development [13-14].

Plant breeding techniques and especially genomic selection (GS) offer vital tools

for meeting these improved productivity and biofortification targets for cassava

[13-14].

Efforts have been made over several decades towards genetic improvement

of cassava [11,16,17]. However with the recent developments in genomics, rapid

gains can be achieved towards improved productivity, disease resistance and

biofortification of cassava via GS [18-20]. GS can accelerate breeding for quanti-

tative traits [19-20]. This is especially useful for African cassava with previously
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low research investments [21] and incomplete pedigree records. Another useful

component is the need to understand the genetic basis of some complex traits

in cassava. This understanding will help in the development of tools relevant

for accelerating gains in cassava. Lastly, so much is yet to be unraveled on the

implementation process for GS in African cassava genetic improvement.

1.2 Objectives:

This work addresses four major issues relevant for the implementation of GS

in the genetic improvement of African cassava. Again, the primary focus is

for improved productivity and development of provitamin A cassava. These

include:

1. Understanding the accuracies of univariate and multivariate genomic pre-

diction models in African cassava.

2. Understanding the genetic basis for the inheritance of DM content in

African white and yellow cassava subpopulations via Regional heritability

Mapping (RHM).

3. Understanding the genetic basis for the co-inheritance of DM, root color

and fresh root yield (FYLD) in different cassava subpopulations via the

Regional co-heritability Mapping (RcHM) procedure.
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1.3 Literature review:

1.3.1 Cassava genomics:

The cassava genome spans 770 megabases (Mb) in 18 chromosomes [18, 22]. The

version 4.1 cassava genome spans 532.5 Mb and consists of 30,666 protein cod-

ing genes with 3,485 alternative transcripts, median exon and intron lengths of

148 and 166 respectively [18]. The average number of genes per chromosome is

1700. Repetitive sequences covered 37.5% of the genome [18] consisting mainly

of long interspersed nuclear elements and long-terminal repeat elements [23].

The cassava genome contained 147 regulatory microRNAs with a good number

of other non-coding RNAs [23]. The number of genes in the cassava genome

represent a less gene dense genome compared to rice and soybean [18]. The

level of linkage disequilibrium in cassava varies by chromosomes (Figure1.1,

non-published data from Roberto Lozano) and especially for chromosomes 1

and 4 with introgressions [80,66].

1.3.2 African cassava genetic improvement:

The International Institute of Tropical Agriculture (IITA) is at the center of cas-

sava breeding in sub-Saharan Africa [17,24]. Over the past 3 to 4 decades, IITA

in partnership with national agricultural research programs (NARPs) in over 20

sub-Saharan African countries have been involved in the development and dis-

semination of improved cassava varieties [17,24]. A total of 206 improved cas-

sava varieties were released by NARPs in partnership with IITA in 20 African

countries between 1970 and 1998 [17]. This number has increased dramatically

3



Figure 1.1: Linkage disequilibrium decay in cassava. LD decay calcu-
lated by pairwise correlation of GBS SNPs. Each dot represents
a correlation value between SNPs at a chromosome and the
blue line represents a smoothening line from a loess fit.

in recent times [17]. The majority of germplasm used in the development of

these varieties were sourced from IITA breeding materials [17,24]. However,

the germplasm base used to develop these breeding materials were assembled

from local varieties in Africa, IITAs early breeding population, exotic materials

from the International Center for Tropical Agriculture (CIAT) and wild cassava

from Brazil [17,24].
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In the 1970s, cassava genetic improvement was focused mainly on develop-

ing varieties resistant to cassava mosaic disease (CMD) and cassava bacterial

blight (CBB) [17, 24-27]. Two geminiviruses including the African cassava mo-

saic virus (ACMV) and the East African cassava mosaic virus (EACMV) were

responsible for the CMD [17, 24-26]. These viruses are transmitted by white-

fly (Bemisia tabaci) and resulted in economic losses estimated then at 2 billion

USD annually [17]. CBB was first reported in 1972 in Nigeria and was caused

by Xanthamonas campestris pv. manihotis [17, 25]. IITA initiated breeding for re-

sistance against CMD and CBB in 1971 using a resistant genotype (No. 58308)

developed by the pioneer cassava breeding program in Africa at the Amani

Research Station, Tanzania in 1930s. [24, 27-28]. Within a decade from 1971,

several CMD and CBB resistant clones were developed from this program [17].

These elite clones also had stable yields and were accepted by consumers [17].

In summary, the breeding goal of the cassava breeding program of the IITA be-

tween 1970 and 1980 were resistance to CMD and CBB, consumer acceptability

and yield stability [17, 27]. Germplasm from this early breeding effort were

referred to as IITA early breeding population. This stock were founders and

members of the Genetic Gain population. The success of this program was seen

in a 1998 IITA survey which showed that improved varieties released by NARPs

and IITA covered 22% of the 9 million hectares of cassava planted in 20 different

sub-Saharan African countries [17]. These varieties accounted for 49% yield in-

crease compared to the average yield and an annual increase of 10 million tons

of fresh root [17]. Planting these improved varieties resulted in a gain of 204

USD per hectare [17].

However at the onset of the 1990s, a multi-disciplinary approach termed

the Collaborative Study of Cassava in Africa (COSCA) was used to generate a
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wealth of user information from local stakeholders in cassava including farm-

ers, processors and marketers [29-31]. The COSCA study unraveled the at-

tributes desired by farmers in six cassava producing countries (Congo, Cote

d’ivoire, Ghana, Nigeria, Tanzania, and Uganda) and found that farmers pref-

erence for varieties were based on: high yield, earliness of bulking (early matur-

ing), weed suppression ability, desirable branching habits, in-ground storability,

pest and disease tolerance, low cyanogen level of storage roots, ease of peeling,

mealiness after cooking, drought tolerance, high leaf yield, and ease of harvest-

ing [29-30]. This information was used to re-organize the cassava breeding pro-

gram at IITA in the 1990s leading to emphasis on target traits including: seedling

vigor (VIGOR), Number of storage roots per hectare at harvest (RTNO), Fresh

weight of harvested roots expressed in tons per hectare (T/ha) (FYLD), Harvest

index (HI) measured as ratio of root weight to total biomass, percent dry mat-

ter (DM) of storage roots, which measures root dry weight as the percentage

of the root fresh weight, plot mean cassava mosaic disease severity (MCMDS),

rated on a scale from 1 (no symptoms) to 5 (extremely severe), and plot mean

cassava green mite (MCGM) severity, rated on a scale from 1 (no symptoms) to

5 (extremely severe). The cassava green mite is Mononychellus tanajoa [32] High

throughput measurements of mealiness and drought tolerance are still challeng-

ing (Personal communication, Ismail Rabbi). These breeding efforts post 1990s

have led to the development and release of a few more varieties combining some

of these traits especially MCMDS, DM and FYLD [17, 33].

Breeding for high provitamin A levels in African cassava was initiated by

the HarvestPlus initiative Discovery Phase I (2003 - 2008) [34-35]. The breeding

goals for this program were targeted towards high yielding (FYLD), virus resis-

tant (MCMDS) and at least 25% of the daily required Vitamin A for women and

6



children. The latter goal was hinged on the measurement of total carotene con-

tent in cassava roots (TCC) using a portable iCheck device [35], a near-infrared

spectroscopy device (NIRS) and a visual scoring based on the degree of yel-

lowness of the roots (PLPCOL) scored as 1 for white to cream and 2 for deep

cream to deep yellow roots [35]. The HarvestPlus initiative Development Phase

II (2009 - 2013) program was used to develop protocols for rapid screening of

cassava clones and rapid recurrent selection schemes for improving TCC [35].

In the Democratic Republic of Congo (DRC), HarvestPlus has officially released

a variety (I011661) in 2008 with 7 ppm provitamin A content amounting to 46%

of the 2003 set goal of 15 ppm provitamin A in the yellow cassava storage root

[35]. Breeding effort for provitamin A cassava now contributes as much as 50%

of IITAs total cassava breeding effort [35].

1.3.3 African cassava genetic improvement: Selection scheme

Most early stages of genotype evaluation for the IITA cassava breeding program

are conducted at Ibadan (7.40 N, 3.90 E), Nigeria. Ibadan is a typical southern

rainforest region with a good distribution of rainfall annually. Other stations

where both early and advanced cassava evaluation trials are carried out in-

clude: Abuja (9.06 N, 7.40 E), Akure (7.26 N, 5.19 E), Ikenne (6.88 N, 3.70 E),

Ilorin (8.48 N, 4.55 E), Mokwa (9.30 N, 5.0 E), Ubiaja (6.66 N, 6.38 E), Onne (4.74

N, 7.04 E), Warri (5.56 N, 5.79 E), Zaria (11.30 N, 7.69 E), Akwa-Ibom (5.07 N,

7.89 E), Benue (7.58 N, 8.69 E), Calabar (4.98 N, 8.34 E), Imo (5.52 N, 7.11 E),

Taraba (8.71 N, 10.97 E), Umudike (5.47 N, 7.54 E) and Anambra (6.19 N, 7.11 E).

These represent a good percentage of the cassava production areas in Nigeria

and also reflect a range of the agro-ecological zones that may be typical in the
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sub-Saharan African belt. Cassava breeding starts by hybridization of selected

clones. This is usually carried out at Ubiaja (6.66 N, 6.38 E) where breeders have

observed that most clones flower profusely (Personal communication, Ikpan

Smith). Subsequently, selected F1 botanical seeds resulting from this hybridiza-

tion go through the following cycle:

1. Seedling nursery (SN): Selected F1 seeds are sown in about 8cm depth

plastic containers or bags by families (usually half sib or full sib). After

about 45 days post germination [36], these seedlings are transplanted to

a ridged field at a 1m2 spacing. Here, data on CMD severity are collected

at 3, 6 and 9 months after planting (MAP). At harvest, data on number of

roots, root weight, PLPCOL and TCC are also collected. Based on these

data, some seedlings are selected and then cloned in the next stage (Per-

sonal communication, Ikpan Smith). It is worth mentioning that roots

from cassava seedlings are fibrous thus inedible. This is why measure-

ment of critical traits like DM and FYLD are skipped at this stage.

2. Clonal evaluation trials (CETs): The CET is a very critical stage in cas-

sava breeding. It is the stage at which selection is imposed based on the

breeding goals set using information from COSCA. The design of the CET

is augmented with about 10-25 blocks depending on the size and area of

the field. Each block contains about 15 - 20 clone accessions with 2 known

checks in each block. Checks are usually I30572, TME 419 or other well

utilized clone from the Genetic gain population. Accession plots are usu-

ally a row of 10 plants [38] although CIAT plots are a row of 12 plants [36].

Spacing is 1m between rows and plants. CETs are usually carried out in a

single location. They are also unreplicated. Clone accessions are random-

ized. Clone accessions range from 250 to 400 mostly. However, using GS
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approaches, CETs can be taken to multiple locations taking advantage of

replication by families. This means that clones from a half sib or full sib

family at taken to other locations and connectivity of data is achieved by

using the genomic relationship matrix (GRM). This will be discussed later

in detail. The selection criteria at this stage is the selection index values.

Estimates of the genotypic value based on Best Linear Unbiased Prediction

(BLUP) values [39] or adjusted means [40] are weighted with the economic

weights set by the breeder. The selection index values are obtained as: vT X

where v are the economic weights and X represents the genotypic values

of clones for target traits [41-42]. The selection index provides the basis for

ranking all clones in the CETs. Selected top clones then move to the next

stage.

3. Preliminary yield trials (PYTs): The PYT design is as the CET but with re-

duced clone accessions (about 35 - 80) and with 2 - 3 replications. PYTs are

multilocation trials with about 2 - 3 locations. Accession plots are usually

4 rows of 5 plants (20 plants; Personal communication, IKpan Smith).

4. Advanced yield trials (AYTs): The AYT design is as the PYT but with re-

duced clone accessions (about 24 - 40) and with 3 replications. AYTs are

multilocation trials with about 3 - 4 locations. Accession plots are usu-

ally 6-7 rows of 6 plants (36 - 42 plants) (Personal communication, IKpan

Smith).

5. Uniform yield trials (UYTs): The UYT design is a randomized complete

block design with reduced clone accessions (about 15 - 25) and with 3 -

4 replications. UYTs are multilocation trials with about 3 - 4 locations.

Accession plots are usually 6-7 rows of 6 plants (36 - 42 plants; Personal

communication, IKpan Smith).
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6. On-farm trials: Following UYTs, 2 - 5 elite clones are selected and evalu-

ated in different regions at farmers fields. Then chosen clones are sent to

the varietal release committee.

This scheme takes about 7-9 years before a variety is due for release. Elite clones

are also distributed to other countries in sub-Saharan Africa using a tissue cul-

ture protocol to avoid dissemination of clones with virus contaminations [17].

1.3.4 An overview of GS:

GS is a selection technique based on genomic breeding values (GEBVs) pre-

dicted from whole genome markers (usually SNPs). GS has become feasible

due to the large number of SNPs discovered by genome sequencing and new

methods to efficiently genotype these SNPs [43-45]. Implementation of GS re-

quires phenotyping and genotyping of a reference or training population [43-

45]. Given this data, a prediction model that generates GEBVs from associat-

ing phenotypes to genotypes are obtained [43-45]. Subsequently, this predic-

tion model is used to obtain GEBVs for selection candidates genotyped for SNP

markers as in the reference population but not phenotyped [43,45]. Selections

of new parents are now made using GEBVs of these candidates. This gain in

time due to non phenotyping of candidates before selection is made, leads to

shorter breeding cycles [46]. However, to maintain the accuracy of the predic-

tion model, selected candidates need to be phenotyped and these used to up-

date the prediction model [43-46]. GS has been shown to lead to higher gains

per unit time compared to phenotypic selection in crops [46-47]. Implementa-

tion of GS has major implications for genetic evaluation systems and for genetic
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improvement programmes [43-45]. These implications for cassava breeding is

discussed in a later section. For complex traits that adhere to the assumptions

of the infinitesimal model, the Genomic BLUP (GBLUP) model should perform

well while for oligogenic traits, bayesian alphabet models that have some form

of variable selection on SNPs imposed due to different priors should perform

better [49-50]. However, it has been shown that accuracies of these GS predic-

tion models are similar [51]. Higher prediction accuracies of GS models for dif-

ferent traits of interest are mostly due to better tracking of genetic relationship

between genotypes [52].

1.3.5 GS for cassava genetic improvement:

Providing breeding value estimates from data is termed the genetic evaluation

system. The type of GS prediction model used in the genetic evaluation system

impacts the prediction accuracy and selection gain [51]. Genetic evaluation sys-

tems on many species have usually been carried out using the single-trait BLUP

prediction model (uT) [53]. The uT GBLUP model yields GEBVs for one trait at

a time ignoring information from genetically correlated traits [54]. In contrast,

the multitrait BLUP prediction model (MT) accounts for genomic and residual

correlations between traits when predicting GEBVs [55-56]. The genomic co-

variance matrix from the MT model is unstructured with diagonals as the ge-

nomic variances for traits in the analysis and the off-diagonals are genomic co-

variances between analyzed traits. The MT residual covariance matrix is similar

with error variances on diagonals and error correlations in off-diagonals. When

traits with low heritabilities are jointly analysed with high heritability traits in

the MT GBLUP model, the later should benefit more from the former thereby
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leading to more accurate breeding values provided that genetic correlations be-

tween these traits are significant [57]. These high heritability traits can also get

little benefits from such analysis. With significant genetic correlations between

traits, low residual correlations and joint analysis of high and low heritability

traits; the MT model prediction accuracies are expected to be higher than those

from the uT model [54,57]. However if this is not the case, the MT model does

not provide any advantages over the uT model [54]. In this work (Objective 1),

we tried to compare prediction accuracies from the uT and MT GBLUP models

using data from the IITA collected for 16 years at three locations Ubiaja, Mokwa

and Ibadan.

Another application of the MT model is for understanding the impact of GxE

on the accuracies of GEBVs. When same trait at different locations are fit jointly

in an MT model, we term that the multivariate multi-environment model (ME)

[58-59]. The genomic covariance matrix from the ME model is unstructured

and captures the genomic variance of a trait at different locations in its diag-

onals. The genomic covariances between a trait at analyzed locations in the

off-diagonals of this matrix represent estimates of GxE. However, the error co-

variances from the ME model is fixed at zero reflecting an assumption that there

is no residual correlation between a trait measured at multiple locations [59]. It

is interesting to compare the ME model to a univariate multi-environment (uE)

model. The uE model of our interest is a multikernel mixed model that fits the

genomic effect as one kernel and the genomic clone-by-location effect as a sec-

ond kernel. This model is equivalent to the compound symmetry (CS) model.

Data for the uE model is a concatenated vector of a trait at different locations

and the known covariance for the first kernel is the GRM. However the known

covariance for the second kernel is a block diagonal matrix of GRMs of clones
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evaluated at the different locations in the analysis. This block diagonal matrix

assists in extracting the heritable genomic component of the clone-by-location

interaction.

In this work, we compared the uE and ME models using 16 years multi-

environment (METs) data from the IITA (Objective 1). This is the first attempt

to the best of our knowledge where the uT and MT or the uE and ME models

were compared in cassava. In other species, the uT and MT models have been

compared [57].

A critical point where cassava breeding can take advantage of GS is at the

CETs stage. For a breeding scheme based on GS, several recurrent selection cy-

cles from the CETs to the crossing block, seedling nursery and back to the CETs

can be performed. We know that prediction accuracies of GS models are also af-

fected by genotype-by-environment (GxE) interactions [60]. However, a breeder

can capture GxE impacts as early as the CETs stage using the GRM if the siblings

from same family (half or full sib families) are planted across different locations.

Since the GRM can track genetic relationships [52], then the GS model can better

connect phenotypic information from families and also account for the effect of

GxE [81]. Theoretically, this should result in more accurate breeding values for

the evaluated clones. At the stage of PYT and AYT, more accurate GEBV esti-

mates of FYLD and RTNO are obtained because replications within trials and

between locations help to reduce signal-to-noise ratios and also better differenti-

ate genomic and GxE signals. At this stage, a good clone can still be sent back to

the crossing block to generate superior progenies. In the next section, we delve

into mapping complex traits in African cassava via methods based on genomic

segments instead of SNPs.
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1.3.6 Mapping complex traits in cassava using the Re-

gional Heritability Mapping (RHM) or the Regional co-

heritability Mapping (RcHM) procedures:

Genetic mapping of complex traits has been an interesting arena in the field of

quantitative genetics. Plant populations harbour a diversity of phenotypic vari-

ation for morphology, physiology, behaviour, performance and disease suscep-

tibility. This observed variation is due to an underlying genetic complexity from

interaction of many loci, with allelic effects that are sensitive to the environmen-

tal cues an individual is exposed to [61-62]. The principles of mapping quan-

titative trait loci (QTL) that affect variation in complex traits are known [63].

This is based on assumed linkage of segregating polymorphic genetic markers

with underlying QTLs affecting traits of interest [63-64]. Mapping QTLs has

two components: detection and localization [64]. The power to detect QTL af-

fecting a complex trait depends on their effects and allele frequencies [64]. The

effect is the average difference in the phenotype between marker allele geno-

types scaled by the phenotypic standard deviation of the trait within marker

genotype classes [64]. QTL mapping takes advantage of recent recombination

events although with large blocks of local linkage disequilibrium (LD) in an F2

or backcross population [62]. However with the advent of genotyping tech-

nologies that can type many SNPs across the genome, a divergent population

with different distributions of global LD (due to ancient recombinations and

coalescence) across the genome can be used to associate QTLs to a trait with

better precision on the localization of the underlying QTL [64]. This procedure

is known as genome-wide association analysis (GWAS) [65]. GWAS has been

successful in mapping some important cassava traits [66]. GWAS is based on
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single-SNPs associations which have been shown to be powerful at capturing

common variants associated with traits of interest [65,67]. However, some stud-

ies have utilized multi-SNP association approaches based on haplotypes for un-

derstanding the genetic basis of complex traits [68-69]. As an inheritance unit

and a form of genetic variation, a haplotype like SNPs may affect phenotypes ei-

ther through influencing promoters and protein structure [70-71] or by tagging

nearby untyped or rare causal variants [72-73]. This makes haplotype associ-

ation of great interest for unraveling the genetic basis of complex traits [67].

Multi-SNP association approaches take into account two types of heterogeneity

that are blind spots for the single-SNP GWAS analysis [67]. These include allelic

heterogeneity - a situation where different mutations within a gene cause a simi-

lar phenotype or locus heterogeneity - where mutations at different genes cause

a similar phenotype [67]. These make multi-SNP association approaches more

powerful than GWAS [67]. Also multi-SNP association approaches account for

possible interactions among SNP markers [67]. Another multi-SNP association

approach which is markedly different from the haplotype association analysis

is the RHM [74-75].

The differences between haplotype association analysis and RHM are de-

tailed below:

1. Haplotype analysis relies on complex powerful models called Hidden

Markov Models to infer ancestral haplotypes from SNP data [67,76-77].

These algorithms have been shown to be accurate with the PHASE soft-

ware being a standard in this arena [76-77]. However after reconstructing

haplotypes from data, haplotypes need to be grouped to avoid testing a

large number of haplotypes [67] which will decrease the degrees of free-
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dom for the test statistic. However for RHM, a sliding window approach

based on a given number of SNPs is used to construct genomic segments

along the genome [74-75]. The number of SNPs within the window may

be arbitrary but information on the local LD along the chromosome can

be used to construct genomic segments or regions. These segments may

represent pseudo haplotypes.

2. Haplotypes are multi-allelic but still need to be grouped and coded into

different genotype classes [67]. However for RHM segments, a GRM is

calculated at each segment and these help track the genetic relationship

between genotypes at target segments. This represents a key difference

between haplotypes and RHM segments and is expected to influence the

results of both analysis.

It is expected that both haplotype and RHM methods can capture rare vari-

ants and QTL interactions that affect complex traits [74-75, 78]. Hence results

from both analyses are not expected to be markedly different.

We also developed an RcHM analysis akin to the RHM. The RcHM analysis

differs from the RHM in the dimension of traits. The RcHM attempts to map

the co-inheritance of two traits at each segment in the genome. An ideal RcHM

analysis slides through the genome in windows and fits a bivariate model with

two kernels representing the target genomic segment and the rest of the genome

respectively. The later accounts for background effects in the genome or corrects

for population structure. However due to convergence problems, an alternative

RcHM was developed in objective 4 of this work which fits a bivariate SNP-

BLUP model [79] first and then sums of the effects of SNPs in a segment to

obtain genomic segment values (GSVs) for both traits. Subsequently, a pair-
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wise correlation of GSVs for both traits at each segment yields genomic seg-

ment correlations which represent the co-inheritance of both traits at each seg-

ment. A genome-wide map of genomic segment correlations would reveal the

co-inheritance profile of two traits across the entire genome. This information

will allow the breeder to understand the association of two traits at all segments

in the genome thus providing a vital information that may affect how both traits

are genetically improved.

1.4 Dissertation organization:

The second chapter deals with the comparison of multivariate and univari-

ate GS models via prediction accuracies in African cassava. The third chapter

addresses the genetic basis of cassava DM in two subpopulations of cassava

using the RHM procedure. The fourth chapter provides insights into the co-

inheritance of DM, tuber yellowness and FYLD in different cassava subpopula-

tions using the RcHM procedure. The fifth and final chapter provides a conclu-

sion for the dissertation.
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CHAPTER 2

ACCURACIES OF UNIVARIATE AND MULTIVARIATE GENOMIC

PREDICTION MODELS IN AFRICAN CASSAVA.

2.1 Abstract

Genomic selection (GS) promises to accelerate genetic gain in plant breeding

programs especially for crops like cassava that have long breeding cycles. To

practically implement GS in cassava breeding, it is useful to evaluate different

GS models and to develop suitable models for an optimized breeding pipeline.

In this paper we: (1) compared prediction accuracies from a single-trait (uT)

and a multi-trait (MT) mixed model for a single-environment genetic evalua-

tion (Scenario 1), (2) compared accuracies from a compound symmetric multi-

environment model (uE) parameterized as a univariate multi-kernel model and

a multivariate (ME) multi-environment mixed model that each accounts for

genotype-by-environment interaction for multi-environment genetic evaluation

(Scenario 2). We used sixteen years of public cassava breeding data for six tar-

get cassava traits for these analyses. A 5-fold cross validation scheme with 10-

repeat cycles was used to assess model prediction accuracies. In Scenario 1, the

MT models had higher prediction accuracies than the uT models for most traits

and locations analyzed, amounting to 40% better prediction accuracy on aver-

age. For Scenario 2, we observed that the ME model had on average (across all

locations and traits) 12% better predictive ability than the uE model. We recom-

mend the use of multivariate mixed models (MT and ME) for cassava genetic

evaluation. These models may be useful for other plant species.
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2.2 Keywords

Genomic selection, plant genetic evaluation, cassava breeding, single trait mod-

els, univariate multi-environment models, multi-trait (MT) models, multivari-

ate multi-environment (ME) models, GxE interactions, prediction accuracies,

Genomic estimated breeding values (GEBVs).

2.3 Background

Cassava (Manihot esculenta Crantz)[1] is a staple food for over 700 million peo-

ple in Africa, South America and Asia [2]. Cassava also has immense industrial

potential. White cassava starch is easy to extract and contains low levels of fat

(about 1.5%), protein (about 0.6%) and phosphorus (about 4%), which are de-

sirable attributes for the food industry [3,4]. Given the issues of climate change

and rapid population growth in countries that rely heavily on cassava, rapid

genetic improvement of cassava is critically needed. To enable rapid genetic

improvement of cassava, genetic evaluation protocols based on Best Linear Un-

biased Prediction (BLUP) analysis [5,6] and selection on a merit index [7,8] have

been recommended [9] to maximize gain from selection.

Genomic selection (GS) [10] offers crops like cassava tremendous opportu-

nity for accelerated genetic gains [11] by making use of whole genome SNP

markers scored with methods like the genotyping-by-sequencing (GBS) [12].

These whole genome SNP markers could be dense enough to be in linkage dis-

equilibrium with most quantitative trait loci (QTL) affecting traits of interest.

Using GS, selection is imposed at these QTL without actually identifying the
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QTL or the functional polymorphisms [10]. Also these markers will help to bet-

ter track relatedness [24]. This yields an improvement in selection accuracies

especially where pedigree records are not fully available [25].

GS models for plant genetic evaluation: Genetic evaluation [9] starts with

accurately estimating the genetic value of an individual for a wide range of

traits using its own performance records, progeny performance records, records

from relatives, or a combination of the three [13]. This estimation has usually

been carried out using single trait (uT) BLUP methodology [14] for obtaining

estimated breeding values (EBVs) for one trait at a time. In plant and animal

breeding, breeders usually select on the basis of multiple traits that are often ge-

netically correlated. The uT model for traits measured in a single environment

assumes zero genetic and residual covariances between these traits such that

information from other traits are not utilized when obtaining EBVs of the eval-

uated individuals for the traits in the analysis. However, the optimal estimation

procedure to combine information from multiple trait records and obtain EBVs

is the multi-trait BLUP methodology (MT) [15,16]. The MT model does not as-

sume zero genetic and residual covariances but rather estimates them and also

uses this information when obtaining individual EBVs for the traits in the anal-

ysis. The MT model has several advantages over the uT model including:

• Higher prediction accuracies for individual traits in the model because

of more information (direct or indirect) and better connectedness of the

data [17], especially when traits with varying heritabilities are analyzed

jointly. This is true if the genetic correlations in the model are significant

or substantial.

• Simplified index selection because optimal weight factors for the total
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merit index are the economic weights [17].

• Procedures for obtaining genetic and residual covariances and incorporat-

ing these into EBV estimates for across-location, -country or -region eval-

uations [18, 19].

• Better selection accuracies when all target traits under selection are in-

cluded in the model [20] in addition to the use of all individuals (selected

or not) in the relationship matrix.

While MT models have clear advantages over uT models they require the esti-

mation of additional parameters (i.e., the genetic and error covariances), which

will affect accuracies of EBVs. The number of additional parameters increases

as the number of traits increases. For large models, many additional parameters

can lead to convergence problems in the analysis. Lastly, an appreciable amount

of data is required to get good estimates of these additional parameters.

In most plant breeding programs, genotypes are evaluated in multi-

environment trials (METs) usually at advanced stages of breeding. The goal

is to sample the influence on selection candidates of the range of environments

for which varieties will be targeted. Addressing the problem of the analysis of

METs brings into focus another potential use for MT models [30]. Here, phe-

notypes of the same trait, but measured at different locations are parameter-

ized as different traits in the MT model [31], producing what we call a multi-

environment BLUP (ME) model. Like the MT model, the ME model estimates

genetic covariances between a single trait measured at multiple environments

which may lead to more accurate estimates of individual EBVs for the trait at

all the environments where data has been recorded. For ME models used for

modelling MET data, residual covariances are set to zero reflecting the assump-
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tion that no mechanism generates error covariances between a trait measured

in different environments [18]. In contrast, the typical univariate BLUP model

for modelling METs data, termed the univariate multi-environment model (uE),

fits a multi-kernel mixed model with the genotypic effect as one kernel and the

genotype-by-environment (GxE) effect as the second kernel and maybe envi-

ronment as third kernel [26]. This model yields a GxE variance for a MET and

individuals can be ranked on their performance at different locations. Different

variants of the ME model have been used for modeling environment covariance

structures in plant [32-35] and in animal breeding [36,37]. Genetic covariances

from the ME model offer a convenient tool for assessing the impact of GxE on a

trait. The genetic covariances relate directly to the extent of GxE at all locations

in the analysis. A low genetic correlation of the EBVs between a trait at different

locations from the ME model indicates high GxE impact on that trait [9, 38-41].

Selecting the GS model to be employed in a practical cassava breeding pro-

gram requires comparing models that will be useful in the different stages of

cassava breeding with METs data. Finally, fitting multivariate BLUP models is

not trivial. Even with software that can in principle fit these models, model con-

vergence is not guaranteed and may require several attempts [21-23] such that

univariate models may be more practical if benefits of the multivariate models

are not substantial.
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The objectives of this paper are to:

• Compare multi-trait (MT) and single trait (uT) mixed models for single

environment data using cross-validated prediction accuracies.

• Compare the multivariate multi-environment (ME) model to a single-trait

multi-environment (uE) model using cross-validated prediction accura-

cies and assessing GxE impact on analyzed traits via genetic covariances

from the ME model fit.

2.4 Materials and Methods

2.4.1 Cassava phenotype data:

We used historical phenotype data from different trials conducted by the cas-

sava breeding program at the International Institute of Tropical Agriculture

(IITA), Ibadan, Nigeria in our analysis. The Genetic Gain population represents

a collection of clones selected from the 1970s to 2007 by the cassava breeding

program at the IITA [48,49]. Some of these clones are West African landraces

and some are of East African origin. Clones in the Genetic Gain population have

gone through advanced stages of the cassava breeding process up to on-farm

variety testing trials. The data used in our analysis comprises data collected on

clonal evaluation trials (CETs) which are augmented design trials with typically

2 known checks and unreplicated plots with 5 plants. These data were collected

from three target locations in Nigeria: Ibadan (7.40 N, 3.90 E), Mokwa (9.3 N,

5.0 E), and Ubiaja (6.66 N, 6.38 E). These locations represent regions which en-

compass about 35% of the cassava production base in Nigeria. Data sets were
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collected from 2000 to 2015 and included trials with most of the 739 clones

of the Genetic Gain population. Six target agronomic traits were used in the

analysis including seedling vigor (VIGOR), Number of storage roots per plot at

harvest (RTNO), Fresh weight of harvested roots expressed in tons per hectare

(T/ha) (FYLD), percent dry matter (DM) of storage roots, which measures root

dry weight as the % of the root fresh weight, plot mean cassava mosaic disease

severity (MCMDS), rated on a scale from 1 (no symptoms) to 5 (extremely se-

vere), and plot mean cassava green mite (MCGM) severity, rated on a scale from

1 (no symptoms) to 5 (extremely severe). Cassava mosaic disease is caused by a

Begomovirus that belongs to the Geminiviridae family, and is carried and trans-

mitted by the whitefly Bemisia tabaci. The cassava green mite is Mononychellus

tanajoa [50]. These traits are target traits used in the selection index for selection

decisions in the IITA cassava breeding program. Phenotype data metrics are

shown in Table 2.1. All trait records were plot averages for both clonal acces-

sions and checks. All checks were included in the analysis.
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Table 2.1: Cassava phenotype means and standard deviations (in braces)
at 3 locations: Ubiaja, Mokwa, and Ibadan.

Ubiaja Mokwa Ibadan

No. of records 7806 5345 5579

No. of Clones 739 573 691

VIGOR 6.51 (1.12) 6.52 (0.93) 6.11 (1.23)

RTNO 31.71 (17.30) 37.05 (21.76) 37.87 (23.91)

FYLD 12.61 (7.70) 16.51 (9.54) 15.84 (10.72)

DM 31.95 (6.42) 29.01 (6.38) 30.8 (6.79)

MCMDS 1.59 (0.93) 1.21 (0.57) 2.14 (1.01)

MCGM 3.56 (0.97) 2.99 (0.67) 3.00 (0.85)

Traits are: VIGOR (seedling vigor), RTNO (Number of storage roots per plot), FYLD

(fresh weight of harvested roots in tons per hectare), DM (percentage dry matter in

roots), MCMDS (plot mean cassava mosaic disease severity) and MCGM (plot mean

cassava green mites severity).

2.4.2 Cassava genotype data:

DNA was extracted using DNeasy Plant Mini Kits (Qiagen) from 739 clones

from the 2013 Genetic Gain trial at IITA and was quantified using PicoGreen.

Genotyping-by-sequencing (GBS) was used for genotyping [12] these clones.

Six 95-plex and one 75-plex ApeKI libraries were constructed and sequenced on

Illumina HiSeq, one lane per library. Single nucleotide polymorphisms (SNPs)

were called from the sequence data using the TASSEL pipeline version 4.0 [51],

using an alignment to the Manihot esculenta version 6 reference genome [52]. Av-

erage sequencing depth for polymorphic loci was 5x. Individuals with greater

than 80% and markers with more than 60% missing calls were removed. The
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marker data was converted to dosage format (0, 1, 2) and missing genotypic

data were imputed using a LASSO regression method (Ariel Chan, personal

communication, 2014) implemented using the R glmnet package [53]. The final

data set consisted of 183,201 SNPs scored in 739 clones.

2.4.3 Statistical analysis:

We structured the cassava phenotype data described above into two types of

data common in most plant breeding programs. The first set was achieved by

pooling data from multiple years at specific locations (multi-year trials data).

We termed this scenario the single-environment genetic evaluation (Scenario

1). The resulting predictive ability from this data were assessed for the three

locations. The second scenario was achieved by using data from multiple loca-

tions and years (METs) but in this case extracting location specific information

by modeling GxE interaction. We termed this scenario the multi-environment

genetic evaluation (Scenario 2). The goal of the latter scenario is to assess the

value of evaluating the impact of GxE and check if this yields better predictive

value of the breeding value of a clone.

37



2.4.4 Pseudo-true genetic values for model accuracy computa-

tions:

For validating the models in this study, we define first a univariate single trait

mixed model for each trait at each location separately (to preserve the variation

embedded in each location) using an identity covariance matrix among clone

effects, which assumes no relationship among all clones. The univariate mixed

model was as follows:

y = Xb + Zu + e

u ∼ N(0, σ2
uI); e ∼ N(0, σ2

eI)
(2.1)

Where y is a vector of observations, b is a vector of fixed effects with design ma-

trix X (relating observations to fixed effects in this case including grand mean

and a nested effect of Trial-within-Year and the ratio of plants harvested to num-

ber planted); u is a vector of clonal genetic effects with design matrix Z (relat-

ing observations to clones). This model was fit using the lmer function in the

R lme4 package [55] and resulting BLUP values û, which we refer to as Esti-

mated Genotypic Values (EGVs), were used as pseudo-true genetic effects for

prediction accuracy computations. This follows practice in the plant breeding

literature [50, 70-71].
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2.4.5 GS models for Scenario 1:

We define two mixed models fitted here as follows:

2.4.6 The single trait mixed model (uT):

y = Xβ + Zu + e

u ∼ N(0, σ2
uK); e ∼ N(0, σ2

eI)
(2.2)

Where y is the response vector of a trait for a location, β is the vector of fixed

effects with design matrix X (relating observations to fixed effects namely the

grand mean, nesting of Trial-within-Year and ratio of plants harvested to num-

ber planted); u is the vector of random additive genomic effects with design

matrix Z (relating trait values to clones) and K is the additive genomic relation-

ship matrix generated from SNP markers as in method 1 of VanRaden, 2008 [63]

implemented in preGSf90 [62].

2.4.7 The multitrait mixed model (MT):

y = Xβ + Zu + e

y = (y
′

1, y
′

2, y
′

3, y
′

4, ..., y
′

d); u = (u
′

1,u
′

2, ..., u
′

d);

e = (e
′

1, e
′

2, e
′

3, e
′

4, ..., e
′

d);

(2.3)

Response y is a vector of d traits (six core traits described above) in locations

a, b and c (corresponding to Ubiaja, Mokwa and Ibadan) recorded for n clones,

X and Z were design matrices as Xa, Xb or Xc and Za, Zb or Zc respectively

for for fixed effects β (with components as in model 2 above for every location

and trait) and random genetic effects u for the locations a, b and c allowing for
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missing clones and observations. Following a multivariate normal distribution

(Nm), the marginal density of y is given as:

(y | β,R,G) ∼ Nm(Xβ,V)

var(y) = V = Z(G ⊗K)ZT + R ⊗ I); û = (G ⊗K)ZT V−1(y − Xβ)
(2.4)

The matrices G and R are d × d symmetric unstructured genomic and error co-

variance matrices respectively, K remains the additive genomic relationship ma-

trix for n clones generated from SNP markers as above, I is an identity matrix

and u are the genomic estimated breeding values (GEBVs) of the clones for the

traits in the analysis.

Models (2.2) and (2.3) were fitted separately for the locations Ubiaja, Mokwa

and Ibadan respectively, allowing the error (co)variances associated with these

locations to be distinct. Note also that genotype-by-location effects are con-

founded with main genotype effects in these models such that variance compo-

nents may change between locations. The effects of years and trials were fixed

because our emphasis was on location effects as these locations represented dif-

ferent production regions and we sought to capture consistent effects of these

locations. In contrast, year effects are variable and by definition not consistent.

Also following practice in cassava breeding [70-71], multiple observations of a

clone were not considered as repeated measures. Although these subjects were

genetic clones, data was collected from distinct individuals making them in-

dependent. Hence these measurements were treated as samples of clones and

should lead to better precision in prediction of breeding values.
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2.4.8 GS models for Scenario 2:

We also defined two mixed models here with the aim of modeling genotype-by-

environment interaction effects as follows:

2.4.9 The compound symmetric multi-environment model

(uE):

We describe the uE model the way it is fit first, then show its compound sym-

metry structure. The model is as follows:

y = Xβ + Z1u + Z2w + e

y = (y
′

a, y
′

b, y
′

c)
′

u = (u
′

a,u
′

b,u
′

c)
′
; e = (e

′

a, e
′

b, e
′

c)
′

u ∼ N(0, σ2
uK); w ∼ N(0, σ2

wI3 ⊗K); e ∼ N(0, σ2
eI)

var(y) = V = σ2u(Z1KZ
′

1) + σ2w(Z2KZ
′

2) + σeI

Z2 = diag(Za,Zb,Zc)

(2.5)

Where y is a vector of a trait at locations a, b and c (corresponding to Ubiaja,

Mokwa and Ibadan), β is the vector of fixed effects with design matrix X (re-

lating observations to fixed effects as in model 2); I is an identity matrix and

I3 is a 3 × 3 identity matrix, u is the vector of random additive genomic effects

with design matrix Z1 (relating trait values to clones), w is the vector of random

clone-by-location interaction effects with design matrix Z2 (relating trait values

to clones-location combinations). For the cth location, a column of Zc may be all

zeros if the clone represented by the column was not evaluated in that location.

K is the additive genomic relationship matrix generated from SNP markers as

above. In this model, the genomic value of a clone for the cth location was es-
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timated as û + ŵc. A more complete accounting of error terms would have in-

cluded clone-by-year and clone-by-location-by-year terms in the model. While

such a model would have characterized error in more detail we believe that its

improvement of within-location estimation would have been marginal. Model

2.5 implies a compound symmetric structure [72] described below:

2.4.10 The uE model defined as a compound symmetry (CS) co-

variance structure model:

We define a model with compound symmetry covariance structure which is

equivalent to the uE model (using same symbolism as defined in the uE model)

as :

y = Xβ + Z2w + e

y = (y
′

a, y
′

b, y
′

c)
′

e = (e
′

a, e
′

b, e
′

c)
′

w ∼ N
(
0, (σ2

u + σ
2
w)Φ ⊗ K

)
;

Φ =


1 ρ ρ

ρ 1 ρ

ρ ρ 1


ρ =

σ2
u

σ2
u + σ

2
w

var(y) = V = (σ2
u + σ

2
w)(Z2(Φ ⊗K)Z

′

2) + σ2
eI

Z2 = diag(Za,Zb,Zc)

(2.6)

The genomic effect from this CS model ŵ is equal to û + ŵ from the uE model.
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The Za,Zb,Zc are design matrices relating records to clones in locations a, b and

c respectively. Compared to the ME model described below which replaces Φ

with an unstructured covariance matrix with 9 parameters (6 for genetic and 3

for error (co)variances respectively), the CS model has 3 parametersσ2
u+w (equiv-

alent to σ2
u + σ

2
w in the uE model), σ2

e and ρ. For any trait where the CS covari-

ance structure best fits the data, it is expected that uE will provide more accurate

GEBVs than the ME which will overfit the data. Furthermore, the uE defined

here assumes a homogeneous variance across locations a, b and c. Although

a CS model with heterogeneous variances can be fit, this was not the case for

the uE model. This assumption will be incorrect if there are significant hetero-

geneous variances across these locations. In such a case, the ME model should

provide more accurate breeding values.

2.4.11 The multivariate multi-environment (ME) model:

y = Xβ + Zu + e

y = (y
′

a, y
′

b, y
′

c)
′

u = (u
′

a,u
′

b,u
′

c)
′
; e = (e

′

a, e
′

b, e
′

c)
′

(2.7)

Where y is a vector of same trait in locations a, b, and c (corresponding to Ubi-

aja, Mokwa and Ibadan) recorded for n clones, X and Z design matrices are

block diagonal matrices represented as diag(Xa,Xb,Xc) and diag(Za,Zb,Zc) re-

spectively allowing for missing clones and observations. X is a design matrix

for fixed effects β (with components as in model 2) and Z is a design matrix for

random genomic effects u. Following a multivariate normal distribution (Nm),

the marginal density of y is given as:

(y | β,R,G) ∼ Nm(Xβ,V)

var(y) = V = Z(G ⊗K)ZT + R ⊗ I); û = (G ⊗K)ZT V−1(y − Xβ)
(2.8)
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Given that d is number of locations being analyzed, G is a d × d symmetric and

unstructured genomic covariance matrix while R is a d-dimensional diagonal

error covariance matrix, K remains the additive genomic relationship matrix

for n clones generated from SNP markers as above, I is an identity matrix and

û are the genomic estimated breeding values (GEBVs) of the clones and for the

traits in the analysis. In this model, the error covariance matrix R is diagonal

thus allowing heterogeneous variances of a trait for different locations but the

covariances are fixed to zero following the assumption that no mechanism gen-

erates error covariances between a trait at multiple locations.

Estimation of the parameters in models (2,3,5 and 6) were performed using

the average information (AI) REML procedure implemented in the airemlf90

program [62] from which BLUEs of fixed effects and BLUPs of random effects

were obtained by solving the mixed model equations (MME) [5,6]. Custom R-

scripts were used for cross validation.

2.4.12 Comparison of prediction accuracies:

We used a 5-fold cross validation scheme with 10 repeats for comparisons be-

tween the univariate and multivariate models. The same folds were used for the

models in each scenario. We hereafter refer to predicted BLUPs or genomic ef-

fects from these models as Genomic EBVs (GEBVs). Prediction accuracies were

calculated as a correlation of the validation fold GEBVs to their corresponding

EGVs.
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2.5 Results:

2.5.1 Scenario 1: MT vs uT models:

In Scenario 1, we observed that the prediction accuracies of the MT model were

higher than those from the uT models for all traits and locations in our analy-

sis (Table 2.2). On average (across traits and locations), the MT model had 59%

higher prediction accuracy for VIGOR, 43% for RTNO, 27% for DM, 40% for

MCMDS, 55% for FYLD and 18% for MCGM compared to the uT model. Aver-

aged across traits and locations, the MT models were 40% more accurate than

the uT models.

2.5.2 Scenario 2: ME vs uE models:

In Scenario 2, we observed different patterns of prediction accuracies of the uE

and ME models. The ME model had higher prediction accuracies for DM and

MCMDS at all locations. On average (across locations), the uE model had 2%

better predictive ability for VIGOR and 1% for RTNO while the ME model had

32% better predictive ability for DM, 24% for MCMDS, 5% for FYLD, and 4%

for MCGM. The ME model had 12% higher predictive ability than the uE model

averaged across all traits and locations in the model. Trait correlations from the

ME model representing the expected correlated responses to selection ranged

from 0.21 to 0.66 for VIGOR, 0.36 to 0.54 for RTNO, 0.57 to 0.81 for DM, 0.68

to 0.87 for MCMDS, 0.31 to 0.52 for FYLD and 0.24 to 0.53 for MCGM. Thus,

genetic effects for MCMDS and DM were more consistent across locations than

were the genetic effects for other traits.
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Table 2.2: Cross validation prediction accuracies for GS models in sce-
narios 1 and 2.

GS Scenario 1

Single trait single environment (uT) Multi-trait (MT)

Ubiaja Mokwa Ibadan Ubiaja Mokwa Ibadan

VIGOR 0.24 (0.02) 0.16 (0.03) 0.42 (0.02) 0.41 (0.02) 0.31 (0.03) 0.58 (0.01)

RTNO 0.32 (0.02) 0.17 (0.02) 0.37 (0.02) 0.46 (0.02) 0.24 (0.03) 0.53 (0.02)

DM 0.60 (0.01) 0.33 (0.02) 0.51 (0.01) 0.72 (0.01) 0.46 (0.02) 0.64 (0.02)

MCMDS 0.49 (0.01) 0.37 (0.03) 0.59 (0.01) 0.69 (0.02) 0.60 (0.04) 0.74 (0.01)

FYLD 0.41 (0.02) 0.11 (0.03) 0.40 (0.01) 0.58 (0.02) 0.30 (0.03) 0.55 (0.02)

MCGM 0.38 (0.01) 0.50 (0.02) 0.58 (0.01) 0.48 (0.01) 0.56 (0.02) 0.69 (0.01)

GS Scenario 2

Single trait multi-environment (uE) Multi-environment (ME)

Ubiaja Mokwa Ibadan Ubiaja Mokwa Ibadan

VIGOR 0.22 (0.01) 0.10 (0.01) 0.37 (0.01) 0.24 (0.01) 0.12 (0.02) 0.32 (0.01)

RTNO 0.29 (0.01) 0.11 (0.01) 0.34 (0.01) 0.27 (0.02) 0.13 (0.01) 0.34 (0.02)

DM 0.49 (0.01) 0.20 (0.02) 0.40 (0.01) 0.60 (0.01) 0.35 (0.01) 0.50 (0.01)

MCMDS 0.40 (0.01) 0.23 (0.01) 0.53 (0.01) 0.48 (0.01) 0.39 (0.02) 0.57 (0.01)

FYLD 0.38 (0.01) 0.10 (0.02) 0.35 (0.01) 0.37 (0.01) 0.12 (0.03) 0.36 (0.02)

MCGM 0.31 (0.01) 0.48 (0.01) 0.56 (0.01) 0.38 (0.02) 0.47 (0.01) 0.55 (0.01)

Prediction accuracies for MT and uT models (GS scenario 1) and for ME and uE

models (GS scenario 2). The numbers in braces are standard deviations for cross

validation repeat cycles.
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2.6 Discussion:

2.6.1 Scenario 1: MT vs uT model:

Some studies have reported comparisons between MT and uT genomic selection

models in simulation studies or also real data sets [57-59]. Guo et al., 2014 [59]

and Calus et al., 2011 [58] in their studies with simulated data sets reported simi-

lar accuracies with small differences between their MT and uT models where ac-

curacies for the MT models for low heritability traits were slightly higher when

genomic correlations between the traits increased. VanRaden et al., 2014 [57] in

research on Holstein and Jersey breed datasets from the US Dairy National eval-

uation program also reported similar accuracies with small differences between

their MT and uT models for all the traits in their analysis. In several traits, their

uT model accuracies were slightly higher than those of their MT model. Ac-

curacies from the MT model may not be clearly better than those from the uT

model for traits with high heritability, especially if these traits have complete

phenotypic data are available [59]. Improvement in prediction accuracies for

the MT model is accrued mostly for low heritability traits analyzed jointly with

high heritability traits that have medium to high genomic correlations and low

residual correlations [58, 59]. Our results were consistent with other studies

[58,59] where our MT model had higher accuracies for most traits and locations

in our analysis as a result of joint analysis of low heritability traits with other

traits of higher heritabilities. Most of the genetic correlations between traits at

all locations in the MT models were significant (substantial) with low error cor-

relations (not shown). These significant genetic correlations contributed to the

increased prediction accuracies observed for MT models compared to those of
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uT models. Substantial increases in prediction accuracies of MT models were

observed for VIGOR, RTNO, and FYLD which had mostly moderate to high

genetic correlations with other traits at all locations even though their heritabil-

ities were mostly low. We also observed (Table 2.6) that a combination of high

genetic correlations and higher differences between the genetic variances of a

trait across locations resulted in increased average prediction accuracies from

the MT model. VIGOR, FYLD, RTNO and MCMDS benefited more from this

combination while MCGM and DM benefited less.

For parental selections in specific locations, we recommend the use of MT

models. Further studies on the selection gains based on these models are rec-

ommended to confirm this recommendation.

2.6.2 Scenario 2: ME vs uE model:

Again, some comparisons of different ME and uE genomic selection models

have been done in plant breeding literature [67-69]. However, Burgueno et

al., 2012 [35] conducted extensive modeling for multi-environment trials us-

ing pedigree and genomic markers and incorporated many covariance struc-

tures including diagonal, factor analytic (FA), identity and unstructured co-

variances for both the genomic and error components in their models. They

observed higher prediction accuracies for their genomic uE model with a het-

erogeneous genomic variances and error variances (MED-D) compared to their

genomic ME model with a FA genomic covariance structure and diagonal er-

ror covariance (MEFA-D) for most of the locations in their analysis based on

their cross-validation scheme (CV1) [35]. This MED-D is a univariate model
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with fewer parameters but may be compared to our uE model. Although the uE

model assumed same genomic and error variances for all locations analyzed,

total phenotypic variance was partitioned into direct clonal genomic, clone-by-

location interaction and error variance components. Hence effects due to clones

and clone-by-location interaction were combined to generate location specific

GEBVs which may be compared to location specific GEBVs obtained in the

MED-D model. Our results were in line with this study for the traits VIGOR

and RTNO at all our locations where the uE model had higher prediction ac-

curacies than the ME models and differed from this study for the traits DM

and MCMDS at all locations where the ME models had higher prediction ac-

curacies. However on average across locations and traits, the ME models had

better predictability. To further understand the strength of the impact of GxE on

the cassava core traits analyzed in this study, we utilized information from the

proportion of total variation explained by clonal and clone-by-location effects

from the uE model (Table 2.5). These reflected the fraction of total variance that

was captured by whole genome GBS markers for these effects. From the total

variation explained by markers, the effect of clone-by-location interaction were

approximately 30% for VIGOR, 48% for RTNO, 12% for DM, 15% for MCMDS,

56% for FYLD and 46% for MCGM. This portrays the impact of location and

hence strong clone-by-location interactions for the traits FYLD, RTNO, MCGM

and VIGOR while being weak for the traits DM and MCGM. The ME models

provided higher predictability and more accurate breeding values for the two

traits DM and MCMDS.

The genetic correlations between the 3 locations for DM and MCMDS were

relatively high ranging from 57 to 81% and 68 to 87% respectively (Table 2.4).

These high correlations revealed that cassava DM and MCMDS were highly re-
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peatable across the locations in our study suggesting that genotypes selected

for these traits will perform comparably across the locations. From the genetic

correlations in Table 2.4, improvement for RTNO and FYLD at Ubiaja will result

in a correlated response of about 50% for these traits at Mokwa and about 35%

at Ibadan. The low predicted correlated responses confirm that the environ-

ment had higher impacts on RTNO, FYLD, VIGOR and MCGM making their

improvement more challenging. This makes a case for decentralized breeding

especially for yield component traits. Breeding for good varieties that combine

these core traits may be targeted towards specific locations or groups of loca-

tions with specific genotypes selected for these locations.

The ME model exploits the positive genomic correlations captured in its

G matrix for prediction. The differences between the prediction accuracies of

the ME and uE models were mainly due to the estimation of genetic covari-

ances since their genomic variances were very similar. Genomic covariances

from ME models are a reflection of GxE interactions of the trait of interest and

ME breeding values capture both additive genotypic and additive genotype-

by-environment effects. However lack of information from between-trait corre-

lations (which are captured by MT models) in ME breeding values presents a

challenge when selection decisions based on information from interconnection

of multiple trait and multiple location data is desired. There is need for this

information interconnection since valuable single environment and METs data

are available.

Another potential use of ME models is for clustering of environments into

target population of environments (TPEs). Using genomic correlations from

these models, if correlated responses to selection of target traits are high for cer-
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tain locations, then the locations can be grouped into a TPE. Regional breeding

can commence within this TPE and all multi-location trials carried out within

this TPE. As an example, Ubiaja and Ibadan can belong to same TPE consider-

ing the traits VIGOR, DM and MCMDS with correlated responses to selection

ranging from 66 to 87% (Table 2.4).

Lower average (across locations) genetic correlations from the ME model for

DM and MCMDS compared to those from the uE model (Table 2.7) resulted in

32% and 24% increased prediction accuracies respectively for these traits. This

implied that the unstructured covariance structure from the ME model provided

a better fit for the DM and MCMDS METs data. However no significant differ-

ences were observed in the prediction accuracies of the uE and ME models for

the traits VIGOR, RTNO, FYLD and MCGM even though the estimated genetic

correlations from the uE model were lower for most of these traits (Table 2.7).

This technically implies that the uE model with less parameters is more parsi-

monious and should be favored more than the ME for the traits VIGOR, RTNO,

FYLD and MCGM. However, more research is needed to understand the im-

pacts of ranking of clones based on GEBVs from the uE and ME models and

how these rankings affects gains since their accuracies were not significantly

different.

2.6.3 Parameter estimates and implications for cassava breed-

ing:

The estimates of genomic correlations and heritabilities shown in Table 2.3 have

interesting implications for cassava genetic improvement. MT model genomic
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correlation estimates between RTNO and FYLD were high and positive at all

locations (ranging from 0.65 to 0.8); those between RTNO and DM were neu-

tral to positive (ranging from -0.003 to 0.20) while those between FYLD and DM

ranged between -0.02 and 0.11. The genomic correlations between these core

production traits (DM, RTNO and FYLD) indicate that a concurrent improve-

ment of these traits is achievable. However, more replication in trials targeting

these production traits will help reduce error variances and improve the ac-

curacy of parental selections given the low heritabilities for FYLD and RTNO.

VIGOR can also be improved concurrently with these production traits as it is

mostly positively correlated with them (Table 2.3). The disease trait (MCMDS)

showed moderate to strong negative genomic correlations with VIGOR and the

production traits, which is favorable for cassava breeding in Africa especially

where the cassava mosaic disease (CMD) pressure is high. Consequently, cas-

sava breeders have tried to fix genes for CMD resistance [64, 65]. With the favor-

able genomic correlations between these target traits in mind, the merit index

from MT breeding values should be efficient as it takes into account genomic

correlations.

We would like to make it clear here that fitting MT and ME models is com-

putationally expensive requiring in our case the estimation of 90 and 36 addi-

tional covariance parameters for MT and ME models respectively compared to

the uT and uE models. We had a few thousand records to accurately estimate

these parameters as the standard error of these estimates show in Tables 2.3 and

2.4. When these correlations are not significant, breeding values from univari-

ate models suffice because MT models are not expected to result in improved

prediction accuracies [66].
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However the traits VIGOR, RTNO, FYLD and MCGM (with heritability less

or equal to 0.3) will benefit more from the MT model than the uT model. This

is due to the joint analysis of these traits with DM and MCMDS with higher

heritabilities exceeding 0.4. These benefits were accrued due to significant ge-

netic correlations (exceeding 0.1) of these low heritability traits with other traits

of high heritability. The significant genetic correlations between the traits an-

alyzed in this study explain the higher accuracies observed for the MT model

compared to the uT at all locations in this study (Table 2.2).

2.7 Conclusion:

The effectiveness of a breeding program is evaluated by its ability to provide

adapted and productive varieties to the farming community in the TPEs it

serves. To achieve this goal for the cassava breeding program at IITA, we recom-

mend a decentralized breeding strategy for the different agroecological zones in

Nigeria using total merit indices based on MT breeding values. Further stud-

ies should be conducted to understand how much selection gain can be made

using this strategy. ME models provided less of an improvement in prediction

accuracy but were useful for understanding GxE.
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Table 2.3: Genetic correlations and heritabilities for analyzed traits.
Plot-basis heritabilities on diagonal, genetic correlations from
the MT model off diagonal and standard errors in braces.

Ubiaja

VIGOR RTNO DM MCMDS FYLD MCGM

VIGOR 0.16

RTNO 0.63 (0.007) 0.21

DM 0.27 (0.014) 0.19 (0.009) 0.42

MCMDS -0.67 (0.020) -0.53 (0.013) -0.22 (0.025) 0.62

FYLD 0.62 (0.009) 0.80 (0.008) 0.11 (0.012) -0.42 (0.017) 0.26

MCGM 0.05 (0.006) -0.03 (0.004) -0.17 (0.009) 0.22 (0.012) -0.08 (0.006) 0.1

Mokwa

VIGOR RTNO DM MCMDS FYLD MCGM

VIGOR 0.06

RTNO -0.11 (0.008) 0.16

DM 0.12 (0.015) -0.003 (0.010) 0.31

MCMDS -0.03 (0.016) -0.35 (0.011) -0.14 (0.020) 0.64

FYLD 0.04 (0.010) 0.65 (0.008) -0.15 (0.013) -0.18 (0.013) 0.21

MCGM 0.32 (0.008) -0.15 (0.006) -0.02 (0.011) -0.03 (0.011) -0.1(0.007) 0.26

Ibadan

VIGOR RTNO DM MCMDS FYLD MCGM

VIGOR 0.19

RTNO 0.46 (0.014) 0.26

DM 0.18 (0.016) 0.20 (0.015) 0.37

MCMDS -0.64 (0.033) -0.52 (0.029) -0.13 (0.032) 0.77

FYLD 0.34 (0.019) 0.77 (0.020) -0.02 (0.019) -0.44 (0.037) 0.35

MCGM -0.14 (0.012) 0.16 (0.011) -0.08 (0.013) 0.11 (0.026) 0.11 (0.015) 0.22
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Table 2.4: Genetic correlations from the multi-environment analysis.
Genetic correlation estimates from the ME model are shown
with the standard error of estimates in braces.

Ubiaja Mokwa

VIGOR Mokwa 0.39 (0.023)

Ibadan 0.66 (0.027) 0.21 (0.033)

RTNO Mokwa 0.54 (0.076)

Ibadan 0.36 (0.074) 0.38 (0.080)

DM Mokwa 0.57 (0.004)

Ibadan 0.81 (0.002) 0.77 (0.001)

MCMDS Mokwa 0.80 (0.031)

Ibadan 0.87 (0.048) 0.68 (0.035)

FYLD Mokwa 0.52 (0.020)

Ibadan 0.31 (0.024) 0.33 (0.041)

MCGM Mokwa 0.34 (0.006)

Ibadan 0.24 (0.008) 0.53 (0.010)
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Table 2.5: Proportion of explained variance by clonal and clone-by-
location effects based on whole genome markers from the uE
model.

Variance explained by effect (%)

TRAIT Clone x Location Clone

VIGOR 4.52 10.70

RTNO 8.70 9.54

DM 4.59 33.52

MCMDS 10.00 58.90

FYLD 13.01 10.11

MCGM 7.00 8.33

Table 2.6: Range of genetic correlations, genetic variances and the per-
centage increase in prediction accuracy from the MT model.
The σ2

u were estimated genetic variances for Ubiaja, Mokwa or
Ibadan from the MT model for six target traits. ρmax and ρmin were
maximum and minimum genetic correlations between a target
trait and other traits from the MT model at all three locations.

TRAIT |ρmax| − |ρmin| max(σ2
u)−min(σ2

u)
max(σ2

u)+min(σ2
u)

% Increase in accuracy across locations

VIGOR 0.64 0.63 59

RTNO 0.80 0.45 43

DM 0.27 0.18 27

MCMDS 0.64 0.57 40

FYLD 0.78 0.50 55

MCGM 0.30 0.57 18
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Table 2.7: Estimated genetic correlations from the ME and uE models
for six cassava traits. ρuE, the genetic correlation from the CS
model was estimated using variance components from the uE
model while ρME were genetic correlations from the ME model.
ρ̄ME represents mean of ME genetic correlations across locations
while % accuracy increase reflects increased ME model accura-
cies over those of the uE across all locations.

TRAIT ρuE = ( σ2
u

σ2
u+σ

2
w

) ρ̄ME max(ρME) −min(ρME) max(σ2
u)−min(σ2

u)
max(σ2

u)+min(σ2
u)

% accuracy increase

VIGOR 0.65 0.42 0.45 0.33 -2

RTNO 0.36 0.43 0.18 0.36 -1

DM 0.79 0.72 0.24 0.10 32

MCMDS 0.82 0.78 0.19 0.47 24

FYLD 0.29 0.39 0.21 0.31 5

MCGM 0.35 0.37 0.29 0.43 4
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CHAPTER 3

REGIONAL HERITABILITY MAPPING PROVIDES INSIGHTS INTO DRY

MATTER (DM) CONTENT IN AFRICAN WHITE AND YELLOW

CASSAVA POPULATIONS.

3.1 Abstract:

The HarvestPlus program for cassava (Manihot esculenta Crantz) fortifies cas-

sava with beta-carotene by breeding for carotene-rich tubers (yellow cassava).

However, a negative correlation between yellowness and dry matter (DM) con-

tent has been identified. Here, we investigated the genetic control of DM in

white and yellow cassava subpopulations. We used regional heritability map-

ping (RHM) to associate DM to genomic segments in both subpopulations. Sig-

nificant segments were subjected to candidate gene analysis and we attempted

to validate candidates using prediction accuracies. The RHM procedure was

validated using a simulation approach. The RHM revealed significant hits for

white cassava on chromosomes 1, 4, 5, 10, 17 and 18 while hits for the yellow

were on chromosome 1. Candidate gene analysis revealed genes in the carbo-

hydrate biosynthesis pathway including the plant serine-threonine protein ki-

nases (SnRKs), UDP-glycosyltransferases, UDP-sugar transporters, invertases,

pectinases, and some regulatory genes. Validation using 1252 unique identifiers

from the SnRK gene family genome-wide recovered 50% of the predictive accu-

racy of whole genome SNPs for DM while validation using 53 likely (extracted

from literature) genes from significant segments recovered 32%. Genes includ-

ing an acid invertase, a neutral/alkaline invertase and a glucose-6-phosphate

isomerase were validated based on an a priori list for the cassava starch path-
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way and also a fructose-biphosphate aldolase from the calvin cycle pathway.

The power of the RHM procedure was estimated at 47 percent when the causal

QTL generated 10% of the phenotypic variance with sample size of 451. Cassava

DM genetics is complex. RHM may be useful for complex traits.

3.2 Core ideas:

• Regional heritability mapping (RHM) is effective for understanding the

genetic architecture of complex traits in cassava.

• Prediction accuracies can reflect the impact of genomic segments on cas-

sava dry matter (DM) content.

• Serine-threonine protein kinases (SnRKs) are candidates positionally asso-

ciated with cassava DM.

• Prediction accuracy of SnRKs for cassava DM was 50% of the total accu-

racy from genome-wide SNPs.

3.3 List of Abbreviations:

• Dry matter content (DM)

• Fresh root yield (FYLD)

• Linkage disequilibrium (LD)

• Quantitative trait loci (QTL)

• Regional heritability mapping (RHM)

• Serine-threonine protein kinases (SnRKs)
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• Single nucleotide polymorphisms (SNPs)

• Genotype-by-sequencing (GBS)

• Genome-wide association analysis (GWAS)

3.4 Background:

Cassava currently ranks as the sixth world staple crop consumed by more than

500 million people in Africa, Asia and South America (El-Sharkawy, 2003). It

was originally a perennial shrub but is cultivated now as an annual for its

starchy root (El-Sharkawy, 2003). It is an outbreeding species and considered to

be an amphidiploid or sequential allopolyploid (El-Sharkawy, 2003). The crop

is clonally propagated by mature woody stem cuttings called stakes, which are

15-30 cm long and planted mostly inclined on ridged soils (Keating et al., 1988).

Botanical seeds are used mainly in breeding programs with up to three seeds

produced per pod (Iglesias et al., 1994, Iglesias and Hershey, 1994). Storage

roots are generally harvested 7 to 24 months after planting (El-Sharkawy, 2003).

Dry matter (DM) is the major product from cassava roots apart from moisture

and traces of water-soluble vitamins and pigments (Holleman and Aten, 1956;

Barrios and Bressani, 1967; Lim, 1968). On average, cassava DM is made up

of about 90% carbohydrates (mainly starch), 2% protein, 1% fat, 3% minerals

and ash and 4% fiber (Holleman and Aten, 1956; Barrios and Bressani, 1967;

Lim, 1968). This starch deposit makes cassava attractive for the food industry

and other industries that rely heavily on starch as their primary raw material

(Lim, 1968). The value of cassava derives from a combination of fresh root yield

and the percentage DM that can be extracted from fresh roots, referred to as
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dry yield. Fresh cassava roots with high DM content are also preferred by local

farmers and processors (Kawano et al., 1987; Safo-Kantanka and Owusu-Nipah,

1992; Enidiok et al., 2008) who transform cassava roots into valuable staples con-

sumed by many in developing countries. With 263 million metric tons produced

in 2012 (FAOSTAT Database, 2013), cassava has become an indispensable staple

in the world and improvement of cassava for high dry yield is needed. This

improvement should also endeavor to increase micronutrient content, as it is

much needed in the cassava consuming regions of the world. Biofortification is

a successful genetic improvement technique for increasing micronutrient con-

tent in staple crops (Meenakshi et al., 2010a; Bouis et al., 2011) and represents

a promising approach for solving the problem of micronutrient malnutrition

around the world (Meenakshi et al., 2010a; Meenakshi et al., 2010b; Pfeiffer and

McClafferty, 2007).

The target of biofortification is to increase the content of essential micronutri-

ents such as Iron, Zinc, and Vitamin A (Meenakshi et al., 2010a; Meenakshi et al.,

2010b; Pfeiffer and McClafferty, 2007), hence improving the health of millions

of people who depend on these staples for daily nutrition. The biofortification

process is facilitated by plant breeding (Meenakshi et al., 2010a; Bouis et al.,

2011). Since the early 2000s, the HarvestPlus initiative (Meenakshi et al., 2010b;

Pfeiffer and McClafferty, 2007) has been tasked with biofortification of staple

crops including cassava, sweet potato, maize, rice and wheat. Biofortification

of cassava is geared towards breeding varieties containing increased levels of

provitamin A, or beta-carotene, a precursor for vitamin A. The so-called yellow

cassava (Liu et al., 2010; Plus, 2009; Aniedu and Omodamiro, 2012; La Frano et

al., 2013) is designed to address public health issues including child mortality,

impaired vision and night blindness, reduced immunity to diseases and other
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consequences of vitamin A deficiency (Liu et al., 2010; Plus, 2009).

Breeding for required levels of provitamin A necessitates the accumulation

of beta-carotene in cassava roots (Aniedu and Omodamiro, 2012; La Frano et

al., 2013). Many breeding programs use yellow flesh color as a proxy for mea-

suring beta-carotene amount in cassava despite the fact that yellowness is more

of an indication of total carotenoids in the root (Chvez et al., 2005; Ssemakula

et al., 2007; Akinwale et al., 2010). This protocol is used to visually pre-select

lines containing beta-carotenoids prior to quantification of different carotenoid

levels using HPLC protocols (Kimura et al., 2007; Adewusi and Bradbury, 1993).

Breeding for farmer preferred bio-fortified cassava involves the development of

high yielding clones with high DM and high beta-carotene accumulation in a

single clone or variety (Ceballos et al., 2004; Raji et al., 2007). Incorporating all

these characteristics in a single variety of cassava makes for a challenging breed-

ing task. Some studies have shown that there is a negative genetic correlation

between DM and yellow root flesh color in cassava making this breeding task

even more challenging since the target is towards full adoption of pro-vitamin

A varieties by local farmers and processors (Akinwale et al., 2010; Vimala et al.,

2008). It is therefore useful to understand the genetic control of DM content

and beta-carotene accumulation in cassava to facilitate the breeding of farmer-

preferred varieties.

Regional heritability mapping (RHM) is a relatively new procedure for iden-

tifying loci affecting quantitative traits (Nagamine et al., 2012; Riggio and Pong-

Wong, 2014; Riggio et al., 2013; Shirali et al., 2015). Unlike single marker GWAS

methods which the lack power to detect rare genetic variants (Bodmer and Tom-

linson, 2010; Gibson, 2012; Wood et al., 2014), RHM can capture both rare and
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common genetic variants giving it more power to identify loci that cannot be

detected by standard GWAS (Nagamine et al., 2012; Riggio and Pong-Wong,

2014; Riggio et al., 2013). The RHM has been shown to detect both common and

rare genetic variants implicated in disease traits in human genomics (Shirali et

al., 2015; Uemoto et al., 2013; Zeng et al., 2016) and recently in tree genomics

(Resende et al., 2017). RHM is a suitable method for capturing the effect of a ge-

nomic block or segment since it can identify genomic segment-trait associations

for regions spanning multiple loci (Nagamine et al., 2012; Riggio and Pong-

Wong, 2014; Riggio et al., 2013; Caballero et al., 2015). A multi-marker mapping

approach like the RHM may identify both common and rare variants involved

in the expression of DM in white and yellow subpopulations of African cassava.

To the best of our knowledge, this is the first attempt to use the RHM procedure

in an annual crop.

The objectives of this study were:

1. To understand the genetic basis of DM in white and yellow root African

cassava populations.

2. To determine the power of the RHM procedure to detect genomic seg-

ments carrying QTL using the hide-a-causal-SNP procedure.
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3.5 Materials and Methods:

Cassava phenotypic data for discovery: We used phenotypic data collected from

the Genetic Gain (GG) population trials conducted by the cassava breeding pro-

gram at the Institute of Tropical Agriculture (IITA), Ibadan, Nigeria for our anal-

ysis. The GG population (713 clones) is an elite population bred from the 1970s

to 2007 by the cassava breeding program at the IITA (Maziya-Dixon et al., 2007;

Okechukwu and Dixon, 2008; Ly et al., 2013). Most GG clones are of African

origin with very good performance such that they were advanced to advanced

to multi-environment uniform yield trials. For this study, we used clonal eval-

uation trials (CETs) of the GG population planted in an augmented design. The

CET uses an unreplicated incomplete block design consisting of a layout of be-

tween 18 to 30 blocks with 22 accessions and two checks in each block. Ac-

cession plots were a single row (1m x 1m spacing) of five-plant stands without

borders. All checks were included in the analysis. A few trials were replicated

twice. These trials were conducted in three locations in Nigeria: Ibadan (7.40

N, 3.90 E), Mokwa (9.3 N, 5.0 E), and Ubiaja (6.66 N, 6.38 E) between 2013 and

2015. Three core agronomic traits were measured for these trials including fresh

weight of harvested roots expressed in tons per hectares (T/ha) (FYLD), per-

centage dry matter (DM) of storage roots, which measures root dry weight as

the percentage of the root fresh weight, and pulp color (PLPCOL) a binary trait

rated on a scale from 1 (white flesh to light cream root) to 2 (deep cream to yel-

low flesh root). The DM trait was measured using the oven method: 100g grated

root sample (with thorough mixing of 10-15 randomly selected roots from a plot)

were collected per accession and oven dried. DM content was then measured as

residual weight after oven drying. We further divided the GG population (713
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clones) into two subpopulations of white (451 clones) and yellow (262 clones)

cassava using the PLPCOL trait where clones with a score of 1 for this trait were

grouped into the white population and those with score 2 into the yellow pop-

ulation.

3.5.1 Cassava phenotypic data for validation:

To validate results from the RHM analysis, we used data from a population

called the GS-C, which consisted of progenies of clones from the GG population

described above. Phenotypes from the GS-C1 were obtained from clonal eval-

uation trials (CETs) of 1,651 clones split into trials at three locations: Ibadan,

Mokwa and Ikenne (652N 343E). These trials were planted using an augmented

design consisting of between 20 to 30 blocks with 22-24 clones and two checks in

each block. Plots were a single row of five-plant stands (1m x 1m spacing) with-

out borders and without replication and trials were planted during 2014 and

2015. Cassava trait measurements for this population were as described earlier,

except that no strict distinction between yellow and white flesh color was used

because the GS-C1 were majorly white and cream clones; thus we performed

validation analysis using all clones.

3.5.2 Cassava genotype data:

DNA was extracted using DNeasy Plant Mini Kits (Qiagen) from 713 clones

from the 2013 Genetic Gain trial at IITA and was quantified using PicoGreen.

Genotyping-by-sequencing (GBS) was used for genotyping (Elshire et al., 2011)
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these clones. Six 95-plex and one 75-plex ApeKI libraries were constructed

and sequenced on Illumina HiSeq, one lane per library. Single nucleotide

polymorphisms (SNPs) were called from the sequence data using the TASSEL

pipeline version 4.0 (Glaubitz et al., 2012), using an alignment to the M. escu-

lenta version-6 reference genome (Goodstein et al., 2012). The marker data was

converted to dosage format (0, 1, 2) and missing genotypic data were imputed

using the Beagle software (Ayres et al., 2011). The final data set consisted of

177,201 SNPs scored in 713 clones. Members of the GS-C1 used in the validation

analysis were genotyped in 2014 as described above. SNPs from both popula-

tions were called together using the TASSEL pipeline (Glaubitz et al., 2012) and

missing genotypes also imputed using Beagle (Ayres et al., 2011) yielding the

same number of SNPs as above.

3.5.3 Data analysis:

Genome-wide Regional Heritability mapping (RHM):

RHM was carried out using the following procedure (Nagamine et al., 2012;

Riggio and Pong-Wong, 2014; Riggio et al., 2013):

(a) Chromosomes were divided into 100 SNP segments in sliding windows

with 50 SNPs overlapping between adjacent windows.
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(b) A multikernel univariate mixed model was used to partition the genomic

additive variation due to trait of interest into components of the target ge-

nomic segment and the whole genome SNP markers as follows:

y = Xβ + Zu1 + Zu2 + e

u1 ∼ N(0, σ2
u1

Ku1); u2 ∼ N(0, σ2
u2

Ku2); e ∼ N(0, σ2
e In×n)

var(y) = V = Z(σ2
u1

Ku1)Z
T + Z(σ2

u2
Ku2)Z

T + σ2
eI

û1 = (σ2
u1

Ku1)Z
T V−1(y − Xβ̂); û2 = (σ2

u2
Ku2)Z

T V−1(y − Xβ̂)

(3.1)

Where y is a response variable (DM), X is a known incidence matrix for

fixed effects β (including grand mean and a nested effect of Rep within Trial

within Year within Location), Z is a known incidence matrix for clonal addi-

tive genomic effects u1 for the target genomic segment and u2 for the whole

genome SNPs. Ku1 and Ku2 are the genomic relationship matrices calculated

from the SNPs using the procedure of VanRaden (2008) as:

G =
MMT

2Σp(1 − p)
(3.2)

where G is the genomic relationship matrix, M is a centered marker matrix

coded as -1,0,1 and p is the major allele frequency vector. Other components

of the model include the genomic variance for the target genomic segment

σ2
u1

and the total genomic variance for the whole genome σ2
u1

is the genomic

error variance and e are the residuals from the model. Model (4.1) was fit

using the R EMMREML package (Akdemir and Okeke, 2014). Note that the

Ku2 genomic relationship matrix serves to statistically control for population

structure effects as the kinship matrix does in standard GWAS.

(c) Following model fit from step (b) above, genomic heritability for each target
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genomic segment was computed as follows:

h2 =
σ2

u1

σ2
u1
+ σ2

u2
+ σ2

e
(3.3)

where h2 is genomic heritability for a target genomic segment and variance

components are described above.

(d) A likelihood ratio test (LRT) was used to test the significance of target ge-

nomic segments with the alternative model as Model (4.1) and the null

model as model (4.1) without the target genomic kernel component ie

y = Xβ + Zu2 + e. This model was also fit using the EMMREML package

(Akdemir and Okeke, 2014). P-values were obtained using the pchisq func-

tion in R (R Core Development Team, 2016).

(e) Local FDR (LFDR) was estimated using the R qvalue package (Sorey and

Tibshirani, 2003; Storey et al., 2015).

(f) Genomic segment LFDRs were then plotted across the genome in a Manhat-

tan plot with a cutoff of 0.05 used to assess significance.

We carried out the RHM procedure separately for the white and yellow cas-

sava subpopulations of GG. No defined population structure was found on in

the GG population in a previous GWAS study (Wolfe et al., 2015). Therefore,

the genomic relationship matrix from the whole genome SNPs in the RHM was

sufficient to account for structure in this analysis (in fact we refer to this more

as background effect).

78



Candidate gene analysis:

We identified candidate genes from the significant hits of the RHM analysis

based on annotations for the v6 M. esculenta genome on phytozome (Goodstein

et al., 2012). We used plant physiology information to narrow down the list of

genes associated with carbohydrate biosynthesis including genes functional in

starch and sugar biosynthesis, cell wall loosening and degradation, and root

sink and plant growth pathways. We carried out validation tests on selected

candidates based on prediction accuracies on the GS-C1 population as described

below.

Validation models and procedures:

We conducted validation analyses for the significant hits of the RHM analysis

and for the RHM procedure itself. Validation here was geared towards under-

standing the prediction accuracies obtained from genes and gene families on

RHM significant segments. Validation proceeded as follows:

Validation using SnRK genes (a candidate gene family):

To obtain genotypic data for this analysis, we searched the Phytozome M. es-

culenta v6.1 web portal (Goodstein et al., 2012) using the keyword serine threo-

nine kinases to recover all its instances in the cassava genome, resulting in 2,408

hits. We filtered the resulting list to remove all hits not containing gene on-

tology or Eukaryotic Orthologous Groups function definitions for the keyword

serine threonine kinase. We then manually added genes containing known ser-

ine threonine kinases that did not contain a function definition, for example the
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SNF1 gene. We extracted all markers within 2.5 kb of the start and end of each

gene model using the Bedtools intersect function (Quinlan and Hall, 2010) re-

sulting in 7,203 unique SNPs. We refer to these SNPs as candidate SNPs below.

For validation of these candidate SNPs on the GS-C1 data we fit the following

model:

y = Xβ + Zs + Zg + e

s ∼ N(0, σ2
s Ks); g ∼ N(0, σ2

gKg); e ∼ N(0, σ2
e In×n)

var(y) = V = Z(σ2
sKs)ZT + Z(σ2

gKg)ZT + σ2
eI

ŝ = (σ2
sKs)ZT V−1(y − Xβ̂); ĝ = (σ2

gKg)ZT V−1(y − Xβ̂)

(3.4)

Where y is a vector of the raw phenotypic values for DM, X is the known

incidence matrix for fixed effects β (including grand mean and a nested effect of

Trial within Year within Location), Z is known incidence matrix for clonal ad-

ditive candidate genomic effects s and whole genomic effects g. For Ks, and Kg

we used the candidate SNPs and the remaining SNPs from the whole genome

excluding the candidate SNPs, respectively, to generate genomic relationship

matrices for the 1,651 clones of the GS-C1 population as above. A third kinship

matrix, Krand, was generated as a control from 7,203 SNPs anchored to 2000 ran-

domly selected genes from the cassava genome and used in Model (2) in place

of Ks, while we calculated Kg using SNPs from the whole genome excluding

those in Krand. Other components of the model include the SnRKs candidate

genetic variance σ2
s and the genetic variance from other parts of the genome σ2

g,

σ2
e is the error variance and e is the residuals from the model. Model (2) was fit

using the EMMREML. To assess prediction accuracies, we fit another model as

follows:
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y = Xb + Zu + e

u ∼ N(0, σ2
uI); e ∼ N(0, σ2

eI)

var(y) = V = Z(σ2
uI)ZT + σ2

eI; û = (σ2
uI)ZT V−1(y − Xβ̂)

(3.5)

where most components of Model (4.5) remain same as in Model (4.4) apart

from the genetic effect u having an identity matrix I as its covariance matrix

signifying that the 1,651 GS-C1 validation clones are unrelated. Model (4.5) was

also fit using R EMMREML. Model (4.4) was fit using a 5-fold a cross validation

(CV) scheme with 10 repeats and prediction accuracies were obtained for this

CV scheme by a correlation of ŝ of each clone from Model (4.4) to its û value

from Model (4.5).

Validation using 53 candidate genes extracted from plant physiology litera-

ture and 53 randomly selected genes from the RHM significant regions:

We performed a second procedure to validate the 53 candidate genes iden-

tified in significant hit regions in the RHM analysis based on plant physiology

literature (Table ??). Using the cassava genome unique gene identifiers from

Phytozome (Goodstein et al., 2012), we extracted all markers within 2.5Kb flank-

ing the start and end of each gene as before, resulting in 400 unique SNPs. We

refer to these SNPs as likely candidate SNPs. We also picked 53 single copy

genes at random from within the RHM significant regions and anchored them

to 395 SNPs as controls for the likely candidate SNPs. We term these the un-

likely candidate SNPs. To validate these, we also fit the GBLUP Model (2) with

these modifications: (1) for Ks we used K53 which was a genomic relationship

matrix calculated from the 400 likely candidate SNPs for the 1,651 clones of the

GS-C1 population (as above), (2) we calculated Kg using SNPs from the whole
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genome excluding these likely candidate SNPs, (3) Krand was also calculated as

above (as a control) from 402 SNPs anchored to 53 randomly selected genes from

the cassava genome (with 7.5 kb flanking the start and end of these genes), (4)

Kunlikely was calculated from the 395 unlikely candidate SNPs. These were also

used in place of Ks in Model (4.4) with their appropriate Kg calculated as other

SNPs in the genome excluding those in Krand and Kunlikely. Other components of

the model were as described for Model (4.4) and prediction accuracies were ob-

tained in the same way. To assess the prediction accuracy of the whole genome

SNPs, we also fit a model analogous to Model (4.5) with covariance of u coming

from a genomic relationship matrix with whole genome SNPs. We term this the

predictive accuracy of the whole genome SNPs.

Validation using all genes within 1Mb of the RHM significant list and an a

priori list of starch genes in cassava:

We performed another validation procedure to provide a validation for all

the genes identified in the significant hit regions in the RHM analysis, including

those shown in Table 3.2 and those not shown because they were not selected

on the basis of information from literature. Using the cassava genome unique

gene identifiers from Phytozome (Goodstein et al., 2012), we extracted all SNPs

within a 1 Mb region centered on each of these candidates using Bedtools re-

sulting in 2,297 SNPs from 650 unique genes. We refer to these SNPs as all

RHM region SNPs (RHM-regions). In addition we extracted SNPs anchored

to 123 unique genes in the cassava starch pathway compiled by Saithong et al.

(2013), resulting in 419 SNPs. We refer to these SNPs as cassava starch SNPs. To

validate these SNPs, we fit Model (4.4) using genomic relationship matrices cal-

culated as above from RHM-region and cassava starch SNPs, in place of Ks with
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their appropriate Kg calculated from remaining SNPs. We also picked 650 sin-

gle copy genes at random excluding the RHM significant regions and anchored

them to approximately 2300 SNPs as controls for the RHM-region and cassava

starch SNPs. We refer to these as Random-650 SNPs. We calculated Krandom−650

using these SNPs and an appropriate Kg. These kernels were also fit in Model

(4.4) as Ks and Kg respectively. In addition to prediction accuracies from these

candidates, we validated genes in the RHM-regions by searching for them in

two a priori lists compiled by Saithong et al. (2013) including one for the cas-

sava starch pathway and another for the Calvin Cycle pathway. RHM-region

genes that made this list were considered validated.

Assessing the RHM power via the hide-a-causal-SNP procedure:

To validate the RHM procedure, we performed an analysis similar to the clas-

sical hide-a-causal-SNP approach as follows:

(a) Chromosomes were divided into 100 SNP segments in sliding windows

with 50 SNPs overlapping between adjacent segments.

(b) Five (5) adjacent segments were randomly selected on each chromosome.

(c) On the third segment, effects were added to a random SNP to inflate the

phenotypic variance of the DM trait by 10%.

(d) Genomic relationship matrices were made for these segments but for seg-

ment 3, the random pseudo-causal SNP was excluded when calculating the

genomic relationship matrix.

(e) Subsequently, steps (b) to (d) of the RHM procedure above were carried out,

resulting in P-values for these five adjacent segments. Steps (a) to (e) were

repeated twelve times, resulting in 216 tests.
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(f) We then calculated the P-value from the RHM analysis on our data that

corresponded to the LFDR threshold of 0.05 and used this as significance

threshold.

(g) The power of the RHM analysis was then calculated as the number of times

any of the five segment P-values were significant given the significance

threshold from (f) above.

(h) To make a decision on the bounds set for extracting adjacent candidate

genes from the M. esculenta genome for a significant segment in the RHM

analysis, the number of times either the 1st or 5th segment P-values were

significant conditional on the 3rd segment having a higher P-value were

also calculated. This reflected how far away adjacent segments captured

causal variants.

3.6 Results:

3.6.1 RHM for DM in white and yellow cassava populations:

The genomic heritabilities for DM in white and yellow cassava based on whole

genome SNPs were 0.57 and 0.48 respectively. These heritabilities are some-

what higher than those found by Ly et al. (2013), presumably because they

worked with more locations and years and thus experienced higher genotype-

by-environment interaction. We observed different genetic control patterns for

DM in the white and yellow cassava subpopulations as shown by Manhattan

plots from the RHM analysis (Figure 3.1). Significant genomic segments for the

white cassava DM were observed on chromosomes 1, 4, 5, 10, 17 and 18 while
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Figure 3.1: Manhattan plots showing dry matter content genomic seg-
ment associations.

Upper and lower figures show RHM discovery associations for white and yellow

cassava populations, respectively.

for the yellow cassava a significant segment was only observed on chromosome

1 (Figure 3.1). Due to the difference between the sample sizes of both subpopu-

lations, it is unclear if the DM genetic control patterns between these subpopu-

lations were different. A non-significant but strong signal was also observed on

chromosome 9 of both cassava subpopulations.
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3.6.2 Candidate gene analysis:

Using information from the estimates of the mean LD between genomic seg-

ments per chromosome (Figure 3.2), the distribution of the length of genomic

segments in our analysis (Figure 3.3) and information on the number of times

adjacent segments captured causal variations in the simulation analysis; we set

the bound for the region where candidate genes were sought to 1.0 Mb (500Kb

flanking each hit), representing from two to three genomic segments adjacent to

the top hit genomic segment.

3.6.3 Candidates for the white and yellow cassava subpopula-

tions:

For the top RHM hits in both cassava gene pools, we identified possible can-

didate genes and transcriptional regulators adjacent to these hits based on

their involvement in the carbohydrate biosynthesis pathway including mem-

bers of the serine/threonine kinase family (SnRKs), members of the UDP-

glycosyltransferase family (including starch and sucrose synthases), and UDP-

sugar transporters, specific plant transcriptional factors including members of

the beta helix-loop-helix (bHLH) family and mini zinc fingers, and other genes

involved in cell wall processes, root storage and development including pecti-

nases and beta vacuolar processing enzymes. We show a list of these genes in

Table 3.2. An additional candidate gene, phosphofructokinase, was associated

with the non-significant peak on chromosome 9 which was more pronounced

in the yellow cassava germplasm.
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Figure 3.2: Genome-wide linkage disequilibrium between segments in
the RHM analysis.

Linkage disequilibrium is measured as the mean correlation between all pairs of

SNPs where one SNP is on one segment and the other is on the adjacent segment.
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Figure 3.3: Histogram of the size of genomic segments in the RHM anal-
ysis.

The size of the window is the physical distance in base pairs between the first and

the last of the 100 SNPs in the window.

3.6.4 Validation results for SnRKs:

The predictive accuracy of the whole genome SNPs was 0.54 (0.03). Using the

set of candidate SnRK SNPs, prediction accuracies from the CV using Model

(2) were 0.26 (0.04) and 0.12 (0.06) for the candidate and random SNPs, respec-

tively, with standard deviation of the cross validation repeat cycles shown in

parentheses. The predictive ability of the genome-wide SnRK candidates (7,203
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SNPs) had approximately 50 percent of the total prediction accuracy from our

set of genome-wide SNPs (177,201) for the GS-C1 population.

3.6.5 Validation using 53 likely candidate genes extracted from

plant physiology literature and 53 unlikely candidate

genes from the RHM significant regions:

Using the likely candidate SNPs from the genes identified for all the top hit ge-

nomic segments genome-wide (shown in Table 3.2), prediction accuracies from

the CV using a modified Model (2) were 0.17 (0.03), those for the 53 unlikely

genes randomly selected from the top hit genomic segments genome-wide were

0.14 (0.02) and those for the SNPs from random 53 genes from the cassava

genome were 0.06 (0.08) with standard deviation of the cross validation repeat

cycles in parentheses.
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Figure 3.4: Sucrose/starch metabolism in a heterotrophic plant cell like
the cassava tuber.

Key enzymes including sucrose transporter, invertase, phospho-glucose isomerase,

and phosphofructokinase were within 500Kb of significant RHM segments.

3.6.6 Validation using all genes within 1Mb of the RHM signif-

icant list and an a priori list of starch genes in cassava:

Using the RHM-region, cassava starch and Random-650 SNPs, the predic-

tion accuracies from the CV using a modified Model (2) were 0.17 (0.04), 0.18

(0.03) and 0.03 (0.01) respectively. Based on two a priori lists compiled by

Saithong et al. (2013) including one for the cassava starch pathway and an-

other for the Calvin cycle pathway, we found three RHM-region genes on the

cassava starch pathway list including an acid invertase (Manes.01G076500),

a glucose-6-phosphate isomerase (Manes.18G060600) and a neutral or alka-

line invertase (Manes.04G006900). However, from the Calvin Cycle pathway
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list we found one RHM-region gene, namely fructose-biphosphate aldolase

(Manes.04G007900). These genes are known to play key roles in starch biosyn-

thesis and storage (Junker, 2004; Ap Rees, 1992; Appeldoorn et al., 1997; Renz et

al., 1993). To assess if these genes were significantly enriched in RHM regions,

we performed a simple calculation by multiplying the 650 genes in the RHM

region with 123 genes in the cassava starch pathway (Saithong et al., 2013) and

divided them by the total number of genes in the cassava genome (33,030). The

result was 2.4, which is the expectation of a Poisson process of obtaining the

genes in the cassava starch pathway. However we calculated the probability of

drawing 3 cassava starch pathway genes from the genome at random resulting

in p = 0.22 indicating no significant enrichment.

3.6.7 Assessing the RHM power via the hide-a-causal-SNP pro-

cedure:

We calculated the statistical power of the RHM procedure to detect simulated

causal effects from 216 analyses as the number of times any of the five segment

P-values were significant. The P-value from the RHM analysis on our data that

corresponded to the LFDR threshold of 0.05 was 0.00024, which became our sig-

nificance threshold for this analysis. We found that 102 tests were significant out

of a total of 216 representing a 47 percent statistical power to detect the simu-

lated causal region. To set the bounds for how far in the genome to cover when

extracting candidate genes from an RHM significant segment, we also calcu-

lated the number of times P-values from the 1st or 5th genomic segments were

significant conditional on the 3rd segments P-value being higher. With a total
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Table 3.1: Summary of validation results for RHM significant candi-
dates.

Genomic Segment Prediction accuracy

SnRKs (7,203) 0.26 (0.04)

Random control for SnRKs (7,203) 0.12 (0.06)

53 Likely candidates (400) 0.17 (0.03)

53 Unlikely candidates (395) 0.14 (0.02)

Random control for 53 candidates (402) 0.06 (0.08)

RHM-region genes (2,297) 0.17 (0.04)

Cassava Starch genes (419) 0.18 (0.03)

Random-650 (2,300) 0.03 (0.01)

Whole genome SNPs (177,201) 0.54 (0.03)

Prediction accuracies from selected candidate genes or genomic segments used to

validate significance of the RHM hits are given with the number of markers used

in each analysis (left column) or the standard deviation of cross validation repeat

cycles (right column) in parentheses.

of 216 analysis, 27 cases had significant P-values on segment 3 and 15 cases had

significant P-values from segments 1 or 5 when the P-values from segment 3

were higher. This represents 15 percent coverage farther away from the causal

segment. With this information we chose an adjacent span of 500,000 kb pairs

flanking an RHM significant segment as the bounds for extracting adjacent can-

didate genes.
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Figure 3.5: Selected candidate genes and positions of significant RHM
segments.

Circos plot of carbohydrate biosynthesis candidate genes or gene families and sig-

nificant RHM segments shown by paired dotted lines. Points are randomly scat-

tered along the y-axis to avoid overlaps and better visualize gene families.
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3.7 Discussion:

The RHM results in the high DM and white cassava populations clearly demon-

strate the polygenic nature of the DM trait. DM is composed of carbohydrates

(mostly starch), cell wall components and fiber, as well as other non-starchy

polysaccharides. Thus, it is not surprising that this trait is complex and con-

trolled by many genes. Also the RHM procedure in this study showed a 47%

power for detection of association with a sample size of less than 500.

3.7.1 SnRKs may be involved in regulation of cassava carbohy-

drate biosynthesis:

The serine/threonine protein kinase (SnRKs) gene family in plants is homolo-

gous to the sucrose non-fermenting 1 (SNF1) protein kinase family in yeast and

the AMPK gene family in mammals. Its members have gained recognition as

critical elements in transcriptional, metabolic and developmental regulation in

plants (Halford et al., 2003; Halford et al., 1998; Polge and Thomas, 2007; Xue-

Fei et al., 2012; Crozet et al., 2014; Jossier et al., 2009). The most studied mem-

ber of this family is the SnRK1 (Halford et al., 1998; Polge and Thomas, 2007).

SnRKs play a vital role as global regulators of carbon metabolism and mediate

cross talk between metabolic and other plant signaling pathways (Halford et al.,

1998; Polge and Thomas, 2007; Xue-Fei et al., 2012). SnRK1 was shown to play

a key role in seed filling and maturation and in embryo development in peas

(Radchuk et al., 2010; Radchuk et al., 2006). In potato and wheat, SnRK1 phos-

phorylates and inactivates key enzymes in the sugar and starch biosynthesis
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Figure 3.6: Zoom-in plot of candidate genes and significant RHM seg-
ments in a 21Mb region of Chromosome 1.

The same genes or gene families as Figure 3.5 are shown along with two significant

RHM segments. The double line separates candidate genes with random y-axis

positions from log 10 (LFDR) plotting of the significance of RHM segments.
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pathway, affecting sucrose synthase, trehalose phosphate synthase and alpha

amylase (Purcell et al., 1998; Laurie et al., 2003), and in potato, it stimulates

the redox activation of ADP-glucose pyrophosphorylase (AGPase) in response

to high sucrose levels (Geigenberger, 2003; Tiessen et al, 2003). Antisense ex-

pression of SnRK1 resulted in a reduction in the expression of sucrose synthase

in potato tubers (Purcell et al., 1998) and alpha amylase in cultured wheat em-

bryos (Laurie et al., 2003). However, the overexpression of SnRK1 in potatoes

resulted in a significant increase in starch accumulation in tubers and a decrease

in glucose levels resulting from a dramatic increase in the activity and expres-

sion levels of sucrose synthase and AGPase (McKibbin et al., 2006). SnRK1 is

activated by high cellular sucrose and/ or low glucose or a dark period (Rolland

et al., 2002). The model of sugar and starch biosynthesis in potato from McK-

ibbin et al. (2006) showed SnRK1 at the heart of these processes. Using RHM

analysis in the white cassava population, we identified significant genomic seg-

ments containing some of the proteins or enzymes in the model given in this

illustration (McKibbin et al., 2006) including SnRKs, UDP-Glycosyltransferases

and UDP-sugar transporters, an ADP-type starch synthase 2 and a neutral in-

vertase. Glycosyltransferases are a family of enzymes involved in carbohydrate

biosynthesis of which sucrose and starch synthases are members (Momma and

Fujimoto, 2012). Using the RHM procedure and candidate gene analysis, sev-

eral of these known carbohydrate biosynthesis enzymes (Table 3.2, Figure 3.4)

were putatively associated with the cassava DM trait.
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3.7.2 Other possible candidates that are involved in sugar and

starch biosynthesis in Cassava:

Other proteins located within significant genomic segments that are also in-

volved in the carbohydrate biosynthesis pathway include invertase inhibitors

which have been shown to form complexes with SnRKs and lead to reduced

accumulation of reducing sugars and increased accumulation of starch in pota-

toes (Lin et al., 2015), and BAK1, a brassinosteroid insensitive 1 (BR1) associated

receptor-like kinase and a member of the somatic embryogenesis receptor-like

kinase (SERKs) subfamily involved in regulation of root development (Du et

al., 2012). BAK1/serk1 positively controls starch granule accumulation in Ara-

bidopsis root tips (Du et al., 2012). Using a transgenic sweet potato overex-

pressing a DNA-binding one zinc finger (Dof) protein encoded by a SRF1 gene

(a member of the mini zinc finger family of plant specific transcription factors

(Takatsuji, 1998; Takatsuji, 1999)), Tanaka et al. (2009) showed that transgenic

roots had significantly higher storage root dry matter content, increased starch

content per fresh weight of storage root and a drastic decrease in glucose and

fructose levels (Tanaka et al., 2009). SRF1 was shown to modulate carbohydrate

metabolism in sweet potato storage roots via negative regulation of vacuolar

invertase (Tanaka et al., 2009). Several enzymes, including pectinases, pectin es-

terases, cellulase synthase and galacturonosyltransferases (GAUT), found in the

RHM significant regions in white and yellow cassava may be involved in plant

cell wall loosening and degradation which may be linked to carbon partitioning

in cassava. In fact GAUT, a member of the CAZy (Cantarel et al., 2009) GT8

family of glycosyltransferases, is involved in pectin and hemicellulose biosyn-

thesis (Cantarel et al., 2009; Atmodjo et al., 2011; de Godoy et al., 2013). GAUT-
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silenced tomato fruits showed altered pectin composition and decreased starch

accumulation (de Godoy et al., 2013). Cassava GAUTs may interfere with car-

bon metabolism, partitioning and allocation as seen in tomato (de Godoy et al.,

2013). In their expression profile study using samples from different stages of

cassava root development, Yang et al. (2011) found a significant up-regulation

of these enzymes involved in plant cell wall loosening and degradation. The

beta helix-loop-helix (bHLH) family of transcription factors is a large family in

plants involved in flavonoid, carotenoid pathway and anthocyanin pigmenta-

tion of tuber skin and flesh (from yellow to white and purple) in potato (De

Jong et al., 2004; Zhang et al., 2009; Tai et al., 2013) and may interact with su-

crose transporter to perform this function (Krgel et al., 2012). Phytochrome-

interacting factors (PIFs) form a subfamily of bHLH transcription factors and

PIF1 (a member of this subfamily) have been shown to directly regulate the ex-

pression of phytoene synthase (PSY) (Toledo-Ortiz et al., 2010), a major driver

of carotenoid production in plants and the first and main rate-determining en-

zyme of the carotenoid pathway (Toledo-Ortiz et al., 2010; Maass et al., 2009). It

is not clear how bHLH may link with sugar biosynthesis and transport or play

a role in starch accumulation in yellow cassava clones, but this may translate to

the frequently observed negative correlation between DM and yellow root flesh

color in African cassava (Esuma et al., 2016; Akinwale et al., 2010). Interestingly,

cassava breeders in Colombia have not found any negative correlation between

carotenoids and DM in their germplasm and in fact have made gains in both

traits using a rapid cycling recurrent selection scheme (Ceballos et al., 2013).
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3.7.3 Some experimental studies that reflect possible roles of

candidate genes in the cassava tuber:

Using the RHM analysis, we identified (Figure 3.4) a number of cassava genes in

the heterotrophic plant cell starch/sucrose metabolism pathway (Junker, 2004).

We describe a few steps in this pathway, concentrating mostly on where we have

identified candidate genes (candidate genes are in braces henceforth with phy-

tozome gene identifiers). After sucrose is imported into the cytosol by a sucrose

transporter (Manes.05G099000, Manes.18G054200), it is converted into hexose

sugars via two paths involving the enzymes sucrose synthase (shown in the cen-

ter of Fig. 3.4) and invertase (shown to the left in Figure 3.4) (Manes.04G006900,

Manes.01G076500) (Junker, 2004; Ap Rees, 1992; Appeldoorn et al., 1997; Renz

et al., 1993). Sucrose transport is much more pronounced in the sink tissues

that switch to storage mode (Weschke et al., 2000; Weschke et al., 2003). A

transgenic study using sucrose transporter 4-RNAi potato plants showed an

increase in tuber yield and starch accumulation, and also induced early tuber-

ization (Chincinska et al., 2008). It is worth noting that the cytosolic neutral

invertase tends to play a larger role in sink organs than does the vacuolar acid

invertase. Studies on maize null mutants of the cytosolic invertase (Mn1) had

miniature seeds due to arrested endosperm development (Miller and Chourey,

1992), while overexpression of Mn1 increased grain yield and starch content (Li

et al., 2013). Similar studies in rice, tomato and cotton have also found con-

sistent phenotypes with cytosolic neutral invertase (Wang et al., 2008; Zanor et

al., 2009; Wang and Ruan, 2012). Other studies on vacuolar invertase inhibitors

showed a significant reduction of cold-induced sweetening in potato tubers (via

a reduction in sucrose accumulation in tubers) by restricting the activities of
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vacuolar acid invertase (McKenzie et al., 2013; Brummell et al., 2011). These

studies suggest the importance of sucrose unloading to sink organs and hence

vacuolar acid and cytosolic invertases are targets for post-translational regula-

tion towards starch storage and dry matter accumulation (Tang et al., 2016).

The hexoses cleaved from sucrose are rapidly phosphorylated into hexose

monophosphates by hexokinase and fructokinase (Junker, 2004; Ap Rees, 1992;

Appeldoorn et al., 1997; Renz et al., 1993) and they proceed to starch biosynthe-

sis or glycolytic pathways. As shown in the central pathway in Figure 3.4, the

resulting hexose monophosphates (including glucose-1-phosphate, glucose-6-

phosphate and fructose-6-phosphate) are interconverted by the enzymes phos-

phoglucose mutase and phosphoglucose isomerase (Manes.18G060600) (Junker,

2004). Phosphoglucose isomerase connects the Calvin Cycle pathway with the

starch biosynthetic pathway in illuminated plant leaves (Bahaji et al., 2015).

It also plays a key role in the glycolytic pathway and in the regeneration of

glucose-6-phosphate in the oxidative pentose pathway in heterotrophic organs

and non-illuminated plant leaves (Bahaji et al., 2015). It is strongly inhibited

by light (Heuer et al., 1982) and by an intermediate Calvin Cycle molecule 3-

phosphoglycerate (3PGA) (Dietz, 1985), which accumulates in the chloroplast

during illumination and allosterically activates AGPase (Kleczkowski, 1999;

Kleczkowski, 2000). The second phosphorylation step in the glycolytic pathway

is the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate

by phosphofructokinase (Manes.09G077800). Interestingly, transgenic studies

overexpressing 6-phosphofructokinase in potato found no changes in the trans-

genic tuber phenotype compared to the controls but had an increased flux of

cytosolic 3PGA that did not affect the amount of starch that accumulated in the

tubers (Sweetlove et al., 2001; Burrell et al., 1994). It is noteworthy that our RHM
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results identified a signal on chromosome 9 in both yellow and white cassava

that corresponds to the position of a phosphofructokinase in cassava.

Fructose-bisphosphate aldolase (FDA), a candidate from the Calvin Cy-

cle pathway (Manes.04G007900), is known to play a key role in carbohydrate

biosynthesis. Changes in FDA activity have marked consequences for photo-

synthesis, carbon partitioning, growth, yield and improved uniformity of solids

in potato and other plants (Haake et al., 1998; Barry et al., 2002). Transgenic

plants (including potato, corn, rice, canola and other crops) that expressed the

E. coli FDA gene in their chloroplasts had significantly higher root mass, leaf

phenotypes with significantly higher starch accumulation, and lower leaf su-

crose compared to control plants expressing the null vector (Barry et al., 2002).

3.7.4 Result implications for the breeding of high DM white

cassava varieties or high DM, high beta carotene yellow

cassava varieties:

The RHM results presented in this study suggest that DM content is under com-

plex genetic control, particularly in the white cassava population. A network

of genes and transcriptional regulons that are at the heart of sugar and starch

biosynthesis were positionally associated with significant RHM regions in white

and yellow cassava populations. Spurious associations due to linkage may have

been avoided in the RHM analysis even when large segments were involved

(Figures 3.2 and 3.3). Given the genetic complexity of the cassava DM trait, we

suggest that candidate genes, including invertases (neutral and acid) and FDA,
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may be targeted for gene editing or transgenic techniques to substantiate the

role of these genes in DM and starch accumulation in cassava and to provide a

clear path for their utilization in cassava breeding programs.

DM content must work together with fresh root yield (FYLD) to make cas-

sava production profitable and provide value for farmers and processors. To

investigate whether some of the genes and gene families identified in the RHM

analysis are also involved in the biological processes that lead to cassava FYLD,

we validated their effects on FYLD using the same validation procedures and

populations as above. The results showed prediction accuracies for SnRKs on

FYLD as 0.03 (0.02), 53 likely candidates as 0.02 (0.02), 53 unlikely candidates

as 0.006 (0.03), RHM-region genes as 0.03 (0.02), and cassava starch pathway

genes as -0.009 (0.02). These results suggest no single biological pathway con-

trols DM and FYLD. This is not surprising since there is little genetic correlation

between DM and FYLD (Kawano et al., 1987). It appears from the negative cor-

relation between carotenoid content in roots and DM content in African cassava

germplasm (Esuma et al., 2016; Akinwale et al., 2010) and from the link be-

tween bHLH and sugar biosynthesis (Krgel et al., 2012), that yellow flesh color

is associated with the accumulation of reducing sugars in edible roots (Eleazu

and Eleazu, 2012). This poses a more complex challenge for improving DM in

African yellow cassava and shifts attention towards finding recombinant yellow

cassava progenies that have high DM. Ceballos et al. (2015) states that the search

for the appropriate recombinant is difficult in cassava breeding and advocates

for the use of inbred progenitors while breeding for hybrid cassava.
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In this paper, we have utilized candidate gene analysis attempting to under-

stand the function of the genes or gene families positionally associated with the

RHM hits. We do not make the claim that these candidates are causal genes

detected by the RHM hits but rather we have shown using prediction accura-

cies that these RHM hit loci were positionally associated with the DM trait in

cassava (Figures 3.1, 3.5 and 3.6) thus resulting in better predictability than ran-

dom genes used as controls. To validate the hypotheses presented in this paper

regarding candidate genes underlying DM accumulation in cassava, and to elu-

cidate the physiological mechanisms involved in the expression of the DM trait

in both yellow and white cassava, we recommend the use of genome editing

and/or transgenic technology, and in-depth analysis of sugars and carbohy-

drates in cassava roots, stems and leaves. Similar studies in potato have bene-

fited and informed potato breeding, and the same will be true of cassava as new

insights become available.

3.7.5 Conclusion:

Using RHM analysis, we demonstrate the complex genetic architecture of DM

content in high DM white African cassava. Candidate gene analysis revealed

possible roles of SnRKs, vacuolar and neutral invertases, phosphoglucose iso-

merase and FDA in the regulation of sugar and starch biosynthesis in cassava.

The RHM analysis indicated that inheritance of DM content in the white cassava

is polygenic. We examined the utility of models based on genome-wide candi-

date genes found in this study using prediction accuracies in a different but

related population and found appreciable predictive ability compared to what

is obtained when whole genome markers were used. Transcriptional regulators
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such as bHLH may be involved in flesh root color and sugar biosynthesis in cas-

sava, as shown in potato. We recommend further studies using genome editing

or transgenic technology to better understand these mechanisms and to inform

and accelerate breeding efforts for cassava.
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3.9 Future directions:

A particularly interesting gene family which was positionally associated with

RHM significant regions in this study was SnRKs. SnRKs are regulatory genes

well distributed in the cassava genome. Cassava SnRKS might not be causal but

just distributed similarly to causal polymorphisms. It would be an interesting

study to understand why there are so much SnRKs (1250) in the cassava genome

and why they are distributed across all chromosomes. In addition to this, are

these SnRKs tagging causal polymorphisms? If we take genes located within

10-50 Kb around each SnRK in the genome, anchor them to SNPs and use them

in the RHM for cassava DM, will these have a prediction accuracy close to what

was obtained for SnRKs? On the other hand, how will the RHM perform if

segments were chosen based on the LD structure of cassava? Can we still detect

these same significant regions using LD informed segments? How will these

segments be deployed for DM improvement? Can we use the LD-informed

RHM procedure to understand quantitative inheritance for cassava CMD and

CBSD?

These questions require careful investigations and may lead to better under-

standing of both the RHM procedure and also cassava DM inheritance.
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CHAPTER 4

REGIONAL CO-HERITABILITY MAPPING (RCHM) PROVIDES

INSIGHTS INTO THE CO-INHERITANCE PATTERNS OF DRY MATTER

(DM) CONTENT, ROOT COLOR AND FRESH ROOT YIELD (FYLD) IN

DIFFERENT SUBPOPULATIONS OF AFRICAN CASSAVA.

4.1 Abstract:

We attempted to gain insights into the co-inheritance of pairs of traits; dry mat-

ter (DM) content and fresh yield (FYLD), or DM and root yellowness (B). These

are core cassava traits representing two specialized products, high starch white

and provitamin-A yellow cassava respectively. Consequently, we developed

the Regional co-heritability mapping (RcHM) procedure. The RcHM started by

estimating SNP effects from a bivariate mixed model. Then the genome was

fragmented into 54 segments of approx. 18Mb. SNP effects were then summed

per segment to obtain genomic segment values (GSVs) of clones for each trait.

Subsequently, genomic segment correlations (GSCs) signifying co-inheritance

were estimated as pairwise correlations between trait GSVs. The GSC signifi-

cance was assessed via resampled residual bootstrapping. White cassava GSCs

were mostly (34/54) favorable (positive) for DM and B with 15% significant.

Yellow cassava GSCs were mostly (45/54) unfavorable (30% significant). The

yellow-plus-white had mostly (34/54) unfavorable GSCs (39% significant). For

specialized starch trials harvested at 12 months after planting (MAP) - HS1

and 14 MAP (HS2); HS1 GSCs for DM and FYLD were mostly (43/54) favor-

able (52% significant). HS2 had fewer favorable (38/54) GSCs than HS1 (20%

significant). Genomic correlations were 0.14, -0.30 and -0.08 for white, yellow
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and yellow-plus-white respectively; those for HS1 and HS2 were 0.09 and 0.12.

These demonstrate good potential for developing high starch white cassava and

a limited prospect for yellow cassava development. RcHM was useful for map-

ping the co-inheritance of complex traits in cassava.

4.2 Background:

Breeding for the micronutrient biofortification of world staples has been rec-

ognized as a practical technique to combat hidden hunger (Tanumihardjo et al.,

2008; Bouis et al., 2010; Bouis et al., 2011). The HarvestPlus program of the Inter-

national Institute of Tropical Agriculture (IITA) for cassava breeding in Nigeria

targets fortifying cassava with provitamin A (a vitamin A precursor) to provide

consumers in Africa with a daily requirement of vitamin A in their diet (Sayre et

al., 2011; Bouis, 2014). To meet this target, African cassava breeders develop so

called yellow cassava varieties (Bouis, 2014). The yellowness of the cassava root

is an indication of the total carotenoid content of which beta-carotene (provita-

min A) is a member (Iglesias et al., 1997; Maziya-Dixon et al., 2010; Ceballos et

al., 2013). Therefore the fast and easy to measure yellow flesh coloration of the

cassava root is an indicator trait for beta-carotene (Iglesias et al., 1997; Ceballos

et al., 2013). However, the value of cassava is the percentage of dry matter (DM)

content in the total fresh root yield (FYLD) per hectare of this crop (Kawano et

al., 1987). This percentage includes mainly carbohydrates (90%) which provide

calories (Kawano et al., 1987). It is vital for the HarvestPlus program to develop

yellow cassava varieties with high DM content (Bouis, 2014).
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African cassava breeders have previously identified a negative correlation

between DM and root yellowness in the African cassava germplasm which has

posed a challenge to this biofortification target (Akinwale et al., 2010; Esuma et

al., 2016). The consequence of this is that most of the yellow cassava varieties

have low DM content making them economically unattractive for farmers and

processors even though consumer adoption is promising (Bouis, 2014; Oparinde

et al., 2016). However this negative correlation has not been an issue in South

American cassava germplasm. Breeders at the International Center for Tropical

Agriculture (CIAT) in Colombia have reported concurrent improvement of both

traits via rapid recurrent selection (Ceballos et al., 2013). Therefore it is useful

to understand the genetic basis for this observed genetic correlation between

DM and root yellowness in the African cassava germplasm in order to develop

varieties that carry both traits.

One way to understand the basis for this observed negative genetic correla-

tion between DM and root flesh yellowness is by mapping the genetic correla-

tion of genomic segments across the cassava genome. In this map, a favourable

genomic segment will be defined as a segment on the chromosome that has

correlation between two traits in a desired direction. In our case with DM

and root yellowness, a segment with a positive genetic correlation is favorable.

This genome-wide map showing the distribution of favourable and unfavor-

able genomic segments will reveal the co-inheritance profile of these traits. Ge-

nomic segments may be useful for designing a breeding strategy that selects

on favourable segments (Daetwyler et al., 2015). Selection based on genomic

estimated breeding values (GEBVs) gives the highest response for the next gen-

eration (Cole and VanRaden, 2011; Kemper et al., 2012). However, antagonistic

relationships among loci that affect multiple traits under selection may limit the
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GEBV of a trait (Cole and VanRaden, 2011). These antagonistic relationships

may be based on biological mechanisms underlying these traits for instance an-

tagonistic pleiotropic loci or the occurrence of favourable and unfavourable al-

leles on the same haplotype due to linkage thereby yielding a negative correla-

tion between two traits (Cole and VanRaden, 2011; Carter and Nguyen, 2011).

To use information from genomic segments, selection may proceed by making

the effects of antagonistic genomic segments neutral in the selection index.

To understand the co-inheritance of DM and root flesh yellowness using a

genome-wide correlation map of genomic segments, we developed a method

termed the Regional co-Heritability Mapping (RcHM). The RcHM is based on

a bivariate mixed model and captures the genetic correlation of traits of inter-

est when estimating the marker effects for these traits. These marker effects are

subsequently used to obtain genomic segment values (GSVs) which are used for

developing genome-wide segment correlation maps. Genomic segments may

harbour adjacent polymorphisms in a block that are all associated with traits

of interest (Kemper et al., 2014). We presume that if the combined function

of these polymorphisms are favourable for a combination of traits, then this

genomic segment may be of interest to a breeder. In order to understand the

value of a group of adjacent polymorphisms in the genome for a combination of

traits and how these influence the co-inheritance of these traits, a genome-wide

segment correlation map may be useful. These correlation maps reveal the rela-

tionship between two traits of interest at specific genomic segments and provide

information to the breeder useful for managing traits that are unfavourably as-

sociated in a breeding program, as in the case of DM and root yellowness in the

African cassava germplasm. Such decisions may involve the use of gene edit-

ing strategies like CRISPR (Ma et al., 2016) or the use of a random mating pro-
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gram without selections using donor germplasms to breakup favourable and

unfavourable loci which are in repulsion phase.

The objectives of this paper are:

1. To understand the genetic basis of the negative correlation between the

DM and root yellowness in the African cassava germplasm using genomic

segment correlation maps and how this influences development of high

DM yellow varieties.

2. To understand the co-inheritance patterns of DM and FYLD in specialized

high starch trials of high DM white clones and how these influence devel-

opment of high DM white cassava varieties.

3. To understand the sensitivity of genomic segment correlations to changes

in whole genome correlations between DM and root yellowness.

4.3 Materials and Methods:

4.3.1 Cassava data:

Phenotypic data used in our analysis were from Genetic Gain (GG) trials con-

ducted by the cassava breeding program at the Institute of Tropical Agriculture

(IITA), Ibadan, Nigeria from 2013 to 2015. The GG population is a breeding pop-

ulation developed from the 1970s to 2007 at the IITA (Maziya-Dixon et al., 2007;

Okechukwu and Dixon, 2008; Ly et al., 2013). For the analysis in this study,

we used GG trials planted in an augmented design. The design consisted of

a layout of between 18 to 30 blocks with 22 accessions and two checks in each
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block. Accession plots were a single row (1m x 1m spacing) of five-plant stands

without borders which were mostly unreplicated. These trials were conducted

in three locations in Nigeria including Ibadan (7.40 N, 3.90 E), Mokwa (9.3 N,

5.0 E), and Ubiaja (6.66 N, 6.38 E). Some core agronomic traits were measured

for these trials but we concentrate here on percentage dry matter (DM) of stor-

age roots, which measures root dry weight as the percentage of the root fresh

weight, fresh weight of harvested roots expressed in tons per hectare (FYLD),

pulp color (PLPCOL) a binary trait rated on a scale of 1 indicating white to light

cream flesh root, or 2 indicating deep cream to yellow flesh root, and root flesh

color measured using a KONICA MINOLTA CR-400 series chromameter which

captures the RGB color space in L, A and B units (Leon et al., 2006). Our fo-

cus was on B which captures blue as negative values and yellow as positive

values (Broadbent, 2004; Leon et al., 2006). The oven method was used for DM:

100g grated root sample (with thorough mixing of 10-15 randomly selected roots

from a plot) were collected per accession, oven dried, and DM is expressed as

the residual weight. We further divided the GG population (713 clones) into

two subpopulations of white (451 clones) and yellow (262 clones) cassava using

the PLPCOL score or 1 and 2 for the white and yellow populations, respectively.

The genotypic data used in this study was described in Okeke et al. 2017.

4.3.2 Specialized starch trials data:

Specialized trials were conducted in collaboration between the IITA and the

National Root Crops Research Institute (NRCRI), Umudike, Nigeria from 2012

to 2014. The aim of these trials was to select high yielding and high starch

cassava clones for the starch industry. These trials consisted of 52 clones planted
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in a randomized complete block (RCB) design with 3 to 4 replications. Plots

were six rows (1m x 0.8m spacing) of 8 plant stands without borders. These

trials were conducted in 15 locations in Nigeria including Abuja (9.06 N, 7.40

E), Akure (7.26 N, 5.19 E), Ikenne (6.88 N, 3.70 E), Ilorin (8.48 N, 4.55 E), Mokwa

(9.30 N, 5.0 E), Ubiaja (6.66 N, 6.38 E), Onne (4.74 N, 7.04 E), Warri (5.56 N,

5.79 E), Zaria (11.30 N, 7.69 E), Akwa-Ibom (5.07 N, 7.89 E), Benue (7.58 N, 8.69

E), Calabar (4.98 N, 8.34 E), Imo (5.52 N, 7.11 E), Taraba (8.71 N, 10.97 E) and

Umudike (5.47 N, 7.54 E). As before, some core agronomic traits were measured

for these trials but we concentrate here on the traits DM and FYLD. These trials

were planted on September 2012 and 2013 but in order to understand the effect

of time of harvest on DM and FYLD, they were harvested in two sets of 16

plants per plot each at 12 months after planting (referred to as HS1) and 14

months after planting (HS2). Most of these 52 clones were members of the GG

population. The harvests had 2,113 records for HS1 and 1,797 for HS2.

4.3.3 Data analysis:

Regional co-heritability mapping (RcHM):

RcHM was carried out as follows:

1. The following bivariate linear mixed model was fit using whole genome

SNP markers:

y = Xβ + Zu + e

y = (y
′

DM, y
′

B)
′

u = (u
′

DM,u
′

B)
′
; e = (e

′

DM, e
′

B)
′

(4.1)

where y is a concatenated vector for traits DM and B recorded for n clones,
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X and Z are block diagonal design matrices represented as diag(XDM,XB)

and diag(ZDM,ZB), respectively allowing for missing clones and observa-

tions. X is the design matrix for fixed effects β (with components for the

grand mean, Location-Year-Trial nested effects, a Rep effect for the special-

ized trials and 10 principal component vectors from decomposition of the

K matrix) and Z is the design matrix for random genomic effects u. The

marginal density of y is multivariate normal (Nm):

(y | β,R,G) ∼ Nm(Xβ,V)

V = Z(G ⊗K)ZT + R ⊗ I); û = (G ⊗K)ZT V−1(y − Xβ)
(4.2)

where G and R are 2 × 2 symmetric genomic and error covariance matri-

ces respectively, K is an additive genomic relationship matrix for n clones

generated from SNP markers the first method in VanRaden, (2008), I is

an identity matrix and u is a vector of clonal genomic estimated breeding

values (GEBVs) and for the DM and B traits. Estimation of the parameters

in model (5.1) were performed using the REML procedure implemented

in the airemlf90 program (Masuda et al., 2015) from which BLUEs of fixed

effects and BLUPs of random effects were obtained by solving the mixed

model equations (MME; Henderson, 1973).

2. Following procedure (1), SNP effects were then calculated for both DM

and B as:

ĝt = λDMT K−1ût (4.3)

where ĝt is a vector of SNP effects for trait t (DM or B), M is a SNP matrix

first coded -1, 0, 1 for reference homozygote, heterozygote, and alternate

homozygote, then column centered, K is the same as in (1) above and ût

is a vector of clonal genomic effect for the trait t. λ is a ratio of variances
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or normalizing constant according to VanRaden (2008) and D is a diag-

onal matrix of weights of SNP variances. For this study the weights of

SNP were not used, so D = I (identity matrix). These SNP effects were

generated using the postGSf90 program (Aguilar et al., 2014).

3. Each chromosome was then divided into three windows containing equal

numbers of SNPs. These windows are what we refer to as genomic seg-

ments. Windows ranged from 1,577 SNPs on chromosome 7 to 3,242 SNPs

on chromosome 1. The average size of segments across chromosomes was

18Mb with a total of 54 segments genome-wide.

4. Subsequently, genomic segment values were calculated as (Koivula et al.,

2012):

ˆGSVt =MT
segĝt (4.4)

for all segments in the genome where t can be either DM or B, Mseg was

a centered marker matrix for the SNPs in a segment and ĝt were the SNP

effects of these segment SNPs. Matrix computations were done in R (R

Core Team, 2017).

5. Genomic correlation for DM and B at each segment were then calculated

as the pearson correlation across cassava clones between the GSVDM and

GSVB.

We carried out the RcHM analysis for white and yellow subpopulations and

for yellow-plus-white combined. In the case of the specialized starch trials, we

carried out RcHM analysis for the two harvest sets HS1 and HS2 replacing B

with FYLD. For reasons due to population structure, 10 principal component
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vectors were added to the fixed effects. We discuss the rationale behind this

later in the discussion section.

4.3.4 Resampled residual bootstrap analysis for assessing sig-

nificance:

In order to assess the significance of genomic segment correlations in the

genome-wide correlation map, we carried out a bootstrap analysis based on

residual resampling (Douc and Capp, 2005) using the following procedure:

1. Fit the bivariate model as in (1) from the RcHM procedure above. Extract

residuals. Then new phenotypes (y*) for DM and B (or FYLD as appropri-

ate) were obtained by adding resampled residuals to the original pheno-

types: y∗ = y + ê.

2. RcHM analysis as outlined above was carried out using new phenotypes

y∗ 500 times to obtain sampling distributions for genetic (co)variance pa-

rameters from the bivariate model as well as distributions for genomic

segment correlations.

3. Significance threshold for genomic segment correlations were set at 5%

corresponding to the 2.5% and 97.5% quantiles of the sampling distri-

butions for each of the genomic segment correlations from procedure (2)

above. These thresholds were also the 95% confidence intervals.

4. Significance was determined by a genomic segment correlation confidence

interval that did not overlap with zero.
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4.3.5 Sensitivity analysis:

To understand the impact of changing genomic correlations on segment corre-

lations, we carried out the RcHM analysis for DM and B as described above by

fixing genetic covariances corresponding to genetic correlations of 0.5, 0 and -0.5

while genetic variances, error variances and covariances remained unchanged.

Sensitivity analysis commenced as follows:

1. Recall that generating GEBVs from Model (4.2) is as follows:

û = (G ⊗K)ZT V−1(y − Xβ)

G =

 σ
2
DM XσDMσB

XσDMσB σ2
B


(4.5)

2. We fixed X in XσDMσB to -0.5, 0 and 0.5 to generate ût for estimating SNP

effects in Equation (4.3) in the RcHM analysis while σ2
DM and σ2

B remained

same as in the original analysis.

3. Subsequently, procedures 2− 5 were carried out as described in the RcHM

analysis above.

4.4 Results:

4.4.1 Co-inheritance of DM and B based on RcHM analysis for

cassava subpopulations:

The estimated whole genome variances and correlations (Table 4.2) for DM and

B in the white, yellow and combined cassava subpopulations provide context
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to the segment correlations (Figures 5.1, 5.2, and 5.3 for white, yellow, and com-

bined, respectively). For the white cassava subpopulation, we observed that 38

out of 54 genomic segments showed a moderate to strong positive genetic cor-

relation between DM and B with 15% (8/54) of these significantly differing from

0 (Figure 4.1). Genomic segment correlations ranged from -0.74 to 0.96. For the

yellow cassava subpopulation, we observed that segments in the genome over-

whelmingly showed a moderate to strong negative genetic correlation between

DM and B with 30% (16/54) of these segments having correlations significantly

differing from 0 (Figure 4.2). Genomic segment correlations ranged from -0.93

to 0.62. Lastly, in the combined white and yellow cassava subpopulation, we ob-

served that segments had moderately negative or positive genetic correlations

with 65% of these segments being negatively correlated (Figure 4.3). Genomic

segment correlations ranged from -0.90 to 0.91. However, 39% (21/54) of these

genomic segments had correlations that differed significantly from 0.

4.4.2 Co-inheritance of DM and FYLD based on RcHM analysis

and effects of the time of harvest:

For the specialized starch trials involving white clones harvested at different

ages, we also observed varied genome-wide correlation patterns for the traits

DM and FYLD. For HS1 harvested at 12 months after planting (MAP), we ob-

served that genomic segments had both moderate to strongly negative and pos-

itive genetic correlations with 79% of the segments correlations being positive

(Figure 4.4). Genomic segment correlations ranged from -0.82 to 0.94, of which

52% (28/54) were significantly different from 0 (Figure 4.4). For HS2 harvested
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14 MAP, we also observed moderate to strong segment genetic correlations with

69% of these segments being positively correlated (Figure 4.5). Also 20% (11/54)

of these segment correlations were significantly different from 0. Genomic seg-

ment correlations ranged from -0.94 to 0.94. HS1 had more favourable segment

associations with 25 significant positively correlated segments compared to HS2

with 10. These indicate benefits for harvesting at 12 MAP.

4.4.3 Sensitivity analysis:

We observed that segment correlations were sensitive to changes in the genomic

correlation between DM and B. Genomic segment correlations were markedly

different for all populations when the genomic correlations changed from -0.5

to 0 or from 0 to 0.5. For the analysis with 0.5 genomic correlation, we observed

94% positive segment correlations for white cassava; a mix of segment correla-

tions for yellow with 56% positive and 31% negative (Figures 5.6 and 5.7). The

yellow-plus-white also had a mix of segment correlations with 67% positive

and 28% negative (Figure 4.8). For the analysis with zero genomic correlation,

we observed a mix of segment correlations for white cassava with 57% being

positive and 37% negative. Segment correlations were mostly (63%) negative

for the yellow, while 35% were positive for the yellow-plus-white population

with 54% being negative. Segment correlations were moderate to high for all

populations. For the analysis with -0.5 genomic correlation, 7% segment corre-

lations were positive and 93% negative for white cassava; 6% segment correla-

tions were positive for the yellow and 90% being negative while 19% segment

correlations were positive for the yellow-plus-white population with 76% neg-

ative (Figures 5.6, 5.7 and 5.8). Again, segment correlations were moderate to
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high for all populations.
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Figure 4.1: Genomic segment correlation map between DM and B for
white cassava.

The (*) indicate significance of correlations at 5% level.
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Figure 4.2: Genomic segment correlation map between DM and B for
yellow cassava.

The (*) characters are as in Figure 4.1.
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Figure 4.3: Genomic segment correlation map between DM and B for
yellow-plus-white cassava.

The (*) characters are as in Figure 4.1.
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Figure 4.4: Genomic segments correlation map between DM and FYLD
for white cassava harvested 12 MAP.

The (*) indicate significance at 5% level.
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Figure 4.5: Genomic segment correlation map between DM and FYLD
for white cassava harvested 14 MAP.

The (*) indicate significance at 5% level.
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4.5 Discussion:

We have attempted to gain insights into the co-inheritance of pairs of traits DM

and B, or DM and FYLD (core and valuable traits in cassava breeding) using

the RcHM analysis. The RcHM is primarily based on a random SNP effects

bivariate model that captures both strong and moderate SNP-trait associations

(Frszczak and Szyda, 2016) and also accounts for genetic correlation between

traits thus obtaining more accurate SNP effects for both traits (Ferreira et al.,

2009; Galesloot et al., 2014). To understand the impact of co-inherited genomic

blocks (that may harbour linked or pleiotropic variants) on traits, the RcHM es-

timates the genomic correlations from GSVs of both traits which are a reflection

of the effect of these segments on these traits. If a segment has a moderate to

strong correlation in the direction that is of interest to the breeder, then it is a

favourable segment and may be exploited for improvement of both traits. This

exploitation may proceed first by estimating combined segment values (CSVs)

for a trait as: CS V = Σn
i=1GS Viαi where i goes from 1 to n, the total number of

segments in the genome and αi is the weight given to the ith GS V . If αi = 1 for all

segments in the genome, then the CS V equals the GEBV. αi represents impor-

tance of a segment based on whether the segment is favourable or not. CSVs can

be used in place of GEBVs in a selection index. Segment correlations can also be

visualized in a plot (termed correlation maps) to understand the co-inheritance

pattern of two traits and to help inform the breeder when making decisions in a

breeding program. In this study, we used these genome-wide correlation maps

to understand the differences in DM and B co-inheritance in 3 subpopulations of

the African cassava and for DM and FYLD for two harvest times in specialized

starch trials for high DM white cassava.
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4.5.1 Developing high DM white cassava varieties:

The genome-wide correlation maps from the RcHM analysis for the white cas-

sava subpopulation show good prospects for developing white clones with high

DM content (Figure 4.1). We observed that most (70%) of the genomic seg-

ments were favourable with positive genomic correlations. An index based on

multitrait breeding values will be beneficial for making gains on these traits

(Bauer and Lon, 2008). The overwhelming agreement on the positive direction

for DM and B by genomic segment correlations in white cassava shows that

rapid progress can be achieved on these traits based on multitrait genomic se-

lection (GS). The genomic correlation for DM and B from the bivariate GBLUP

model for white cassava was moderate (0.14) further supporting that gains can

be made on selection due to correlated response. However, we recall that more

value is achieved for high DM white clones with higher FYLD (Kawano et

al., 1987). We tried to understand the plausibility of developing high yield-

ing and high DM white clones using genome-wide correlation maps from the

RcHM analysis based on data from specialized starch trials conducted at dif-

ferent agroecological zones in Nigeria. We know (Hammer et al., 1987; Ebah-

Djedji et al., 2012) that the time of harvest influences the DM content in cassava

roots with more DM content observed when harvest is delayed till the onset of

the dry season. However, the genome-wide correlation maps showed complex

co-inheritance patterns for DM and FYLD for the different harvest times HS1

(Figure 4.4), HS2 (Figure 4.5). We observed mostly (79%) favourable genomic

segments in HS1 while HS2 had less (69%) favourable segments. These results

suggest that harvesting 12 MAP may be beneficial for high DM and high yield-

ing cassava production. Also, the development of high yielding and high DM

white clones is plausible using an index with multitrait genomic breeding val-
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ues. Such an index has been shown to produce more gains in self pollinating

crops (Bauer and Lon, 2008). Based on the HS1 map, 20% of genomic segment

correlations for DM and FYLD at 12 months harvest were antagonistic. This

leads to a situation where the FYLD CSVs may be explored for use in this mul-

titrait index. However more studies are required to understand how CSVs may

be utilized in a breeding program. Another interesting view of segment corre-

lations between HS1 and HS2 (Figure 4.11) is the consistently in the number of

favourable (50%) or unfavourable segments (22%). However, the differences are

due to favourable segments in HS1 from chromosomes 4, 5, 8, 10, 12, 15 and 16

or those in HS2 from chromosomes 1, 2, and 17 (Figure 4.11). These may repre-

sent opposite biological processes that affect DM and yield due to age of plants

or time of harvest. Interestingly, we observed 31% (17/54) consistent favourable

segments between HS1 and white cassava (Figures 5.12). These represent ge-

nomic links between DM, B and FYLD in white cassava and may also point to

biological processes associated with these traits. These 17 favourable segments

further reveal good prospects for developing high DM and high yielding white

cassava. Further investigation is required to unravel these.

We further suggest that the white cassava germplasm be maintained as a

separate breeding program tasked for developing white varieties. This is be-

cause maintaining both white and yellow germplasms as a unit may not be ben-

eficial as seen in Figure 4.3 that shows complicated co-inheritance patterns for

DM and B. Mixing these may not encourage defined market products for white

and yellow cassava.
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4.5.2 Developing high DM yellow cassava varieties:

The genome-wide correlation map for the yellow cassava showed an un-

favourable genome-wide co-inheritance profile (Figure 4.2) for the development

of yellow clones with high DM content. We observed overwhelmingly (81%)

moderate to strong negative segment correlations for which 30% were signifi-

cant. This may indicate moderate to strong genome-wide antagonistic effects

for DM and B for yellow cassava clones. The genomic correlation for DM and

B from the bivariate GBLUP model was moderately strong (-0.3) further reflect-

ing a complex challenge for yellow cassava breeding. We argue that in this case,

the genome-wide correlation map showed to a large extent how challenging

the task of developing high DM yellow varieties can be thus helping to move

towards decisions based on innovative strategies to tackle this challenge. It is

interesting to recall that this negative genetic correlation between DM and yel-

lowness is not observed in the South American cassava germplasm hence CIAT

has been developing high DM yellow cassava over the years via a recurrent se-

lection approach (Ceballos et al., 2013). Also several projects over the years have

been hybridizing CIAT germplasms to their African counterparts but this prob-

lem persists after years of this introgression (Akinwale et al., 2010, Bouis, 2014).

It is difficult to point to either pleiotropy or linkage (in repulsion phase) as the

culprit here but an antagonistic genetic correlation resulting from pleiotropic

effects is a more challenging situation which can be overcome when an outlier

genotype that harbours an alternative biochemical pathway(s) or physiological

processes controlled by other genes is found (Luby and Shaw, 2009). In the case

of repulsion phase linkage, a recombinant that breaks this correlation is sought

after (Esch et al., 2007). However other technologies involving transgenics and

gene editing can be pursued when genes involved in the biochemical processes
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of DM and B are clearly understood. We also recommend that yellow cassava

germplasm be maintained as a separate breeding program and not mixed with

the white. This will facilitate the search for recombinants and further lead to

the accumulation of valuable data for further analysis. We also encourage ran-

dom mating of yellow cassava germplasm from IITA and CIAT for multiple

generations without selection in a neutral location (outside Africa) to encour-

age recombination and to remove the influence of the cassava mosaic disease

(CMD) which has been posing challenges to exotic yellow clones brought into

Africa (Personal communication, Dr. Peter Kulakow and Teddy Hanmakyugh).

Choice of 10PCs for the RcHM analysis:

The 10 principal component (PCs) vectors in the RcHM analysis served to

control for population structure across the genome. Population structure may

drive genetic correlation between traits in a population like ours (white and

yellow cassava) that has diverged in recent past due to drift and selection. Con-

sequently, allele frequencies of loci not related to our traits of interest (DM, B

and FYLD) may have also diverged. When this structure is not accounted for,

this divergence-induced differences in allele frequencies will result in spurious

associations in the RcHM analyses leading to a false positive genetic correla-

tion between the analyzed traits. Fixing PCs in the RcHM analysis served to

absorb these population structure effects (Patterson et al., 2006) thus helping in

the identification of signals unique to each genomic segment.

The decision for using 10 PCs as fixed effects in the RcHM analysis to correct

for population structure were made after performing regression analyses using

10, 15 and 50 PCs onto DM on the white and yellow cassava germplasms (Table

4.1). We found that 10 PCs explained 9% and 24% of the total DM variation in
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White Yellow

(Intercept) 30.61∗∗∗ 25.11∗∗∗

(0.14) (0.23)
Zpc1 0.30 −20.45∗∗∗

(2.67) (3.36)
Zpc2 17.07∗∗∗ −32.75∗∗∗

(2.86) (3.34)
Zpc3 17.49∗∗∗ 9.17∗∗

(2.88) (3.34)
Zpc4 7.60∗∗ 21.20∗∗∗

(2.88) (3.35)
Zpc5 1.44 −6.00

(2.87) (3.39)
Zpc6 20.38∗∗∗ −0.63

(2.90) (3.33)
Zpc7 3.26 7.45∗

(2.87) (3.33)
Zpc8 1.50 9.72∗∗

(2.94) (3.34)
Zpc9 8.08∗∗ −5.28

(2.84) (3.32)
Zpc10 −3.05 11.21∗∗∗

(2.88) (3.34)
Zpc11 3.99 1.60

(2.91) (3.39)
Zpc12 0.46 2.78

(2.99) (3.45)
Zpc13 −0.55 14.34∗∗∗

(2.89) (3.38)
Zpc14 0.95 5.37

(2.83) (3.35)
Zpc15 3.52 9.34∗∗

(2.82) (3.34)

R2 0.11 0.28
Adj. R2 0.10 0.27
Num. obs. 1202 619
RMSE 4.89 5.70
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 4.1: Regression of 15 principal component vectors to DM on White
and Yellow cassava.
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white and yellow respectively; 15 PCs explained 10% and 27% of the total DM

variation in white and yellow respectively (Table 4.1) while 50 PCs explained

20% and 31% of the total DM variation in white and yellow respectively. Ideally,

significant PCs from these analyses should be the PC vectors used in the RcHM

analysis.

4.5.3 Sensitivity analysis:

The observed differences between segment correlations for the RcHM analysis

with -0.5, 0 and 0.5 genomic correlations (Figures 5.6, 5.7 and 5.8) show their

sensitivity to changes in these genomic correlations. These changes in segment

correlations for the three subpopulations reflect sensitivities of segment correla-

tions to changes in whole genome correlations.
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Figure 4.6: Sensitivity of segment correlations at fixed genome-wide ge-
netic correlation values of 0.5 and -0.5 for white cassava. Top
and bottom plots show segment correlations (bars) between
DM and B for fixed genomic correlations 0.5 and -0.5 respec-
tively.
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Figure 4.7: Sensitivity of segment correlations at fixed genome-wide ge-
netic correlation values of 0.5 and -0.5 for yellow cassava. Top
and bottom plots show segment correlations (bars) between
DM and B for fixed genomic correlations 0.5 and -0.5 respec-
tively.
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Figure 4.8: Sensitivity of segment correlations at fixed genome-wide ge-
netic correlation values of 0.5 and -0.5 for yellow-plus-white
cassava. Top and bottom plots show segment correlations
(bars) between DM and B for fixed genomic correlations 0.5
and -0.5 respectively.
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ter plot is as described in Figure 4.9 but for yellow cassava.

156



−0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

HS1 segment correlations

H
S

2 
se

gm
en

t c
or

re
la

tio
ns

1/2

2/1

4/1

4/2

5/1

5/2

8/310/3

12/1

14/1

14/3

15/2

16/2

17/3

Figure 4.11: Relationship between segment correlations and time of har-
vest for white cassava. Scatter plot shows consistencies and
differences between segment correlations when harvest time
changes from 12 MAP to 14 MAP for DM and FYLD in white
high starch cassava. Bold circles represent favorable segments
in HS1 and bold diamonds for favorable segments in HS2.
Segment locations were as described in Figure 4.9.

157



−0.5 0.0 0.5 1.0

−
0.

5
0.

0
0.

5
1.

0

HS1 segment correlations

W
hi

te
 c

as
sa

va
 s

eg
m

en
t c

or
re

la
tio

ns

1/1

2/2

2/3

3/1

3/2

3/3

4/3

5/2

7/2

7/3

8/1

8/2

11/111/3

12/2

15/1

15/3

16/1

16/3

18/1

18/3

Figure 4.12: Relationship between DM, B and FYLD in white cassava.
Scatter plot shows consistencies and differences between seg-
ment correlations for DM, B and FYLD in white cassava. Bold
circles represent consistent favorable (positive) segments and
bold diamonds for consistent unfavorable segments. Segment
locations were as described in Figure 4.9.

158



We also observed that some segments were consistently favourable or unfa-

vorable in the white germplasm even when genomic correlations between DM

and B changed from -0.5 to 0.5 (Figure 4A). These include favourable segments

on Chromosomes 4, 5 and 10 and unfavourable segments in chromosomes 1, 6,

16 and 18. Significant segments associated with DM on white cassava were pre-

viously identified on chromosomes 1, 4, 5, 10 and 18 by Okeke et al., 2017. These

further reflect the impact of genomic segments on these chromosomes for DM

accumulation in white cassava germplasm. However for yellow cassava, we

observed that 39% of genomic segments in yellow were consistently negative

(unfavourable) even when genomic correlations between DM and B changed

from -0.5 to 0.5 (Figure 4B). These include segments from all chromosomes in

the cassava genome excluding chromosomes 11, 12 and 17. This further reflects

the complexity of improving DM in yellow cassava germplasm.

The RcHM procedure described herein is a multi-stage procedure but may

be beneficial for mapping co-inheritance in complex traits as we have showed

for some cassava traits. However, the ideal bivariate mixed model for the RcHM

would be a multikernel model with the kernels as genomic relationship matrices

calculated from (a) SNPs in the target segment and (b) from remaining whole

genome SNPs. We tried this model but without success mainly due to conver-

gence issues which may have arisen from our limited data.
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4.6 Conclusion:

We have shown herein that the RcHM is a powerful approach that can be used

to identify genomic segments that strongly affect the co-inheritance of two com-

plex traits. The RcHM procedure produces a genome-wide correlation map of

genomic segments. These segments represent large blocks of the genome that

may be inherited as a unit (haplotypes) and which harbor QTL variants impli-

cated in complex traits. Bivariate SNP effects were used to obtain GSVs which

may provide better estimates of inheritance units. Correlation estimates of GSVs

from two traits harbour combined associations of segments to both traits reveal-

ing the magnitude and direction of the segments association to both traits. If this

correlation is favourable, then the segment might be of interest to the breeder

and CSVs may be used in a multitrait index for selection. However, an inter-

esting flip side is that genomic segment correlation maps can give insights into

the co-inheritance profile of two traits and as a result provide a better under-

standing of how the traits should be improved. In this study, genomic segment

correlation maps showed a favourable path for the development of high DM

white cassava varieties while a limited prospect was shown for development of

high DM yellow cassava. We advocate for more research into the use of CSVs in

multitrait merit indices and conclude that RcHM is beneficial for understanding

the co-inheritance of complex traits.
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CHAPTER 5

CONCLUSION:

The overall aim of this study was towards the genetic improvement of African

cassava using GS. GS promises to accelerate gains for crops like cassava and

this is critical for food security in areas of the world where cassava is a staple.

Conclusions from this study is structured as recommendations below:

5.1 Cassava Genetic evaluation:

We advocate that the models used in this work (Chapter 1) be evaluated using

predicted selection gains in addition to the usual prediction accuracies used in

literature. The genetic correlations from the ME model can help the breeder to

understand the expected correlated responses to selection when clones selected

at the central breeding station Ibadan are deployed in other cassava production

regions. The uE model in this study was equivalent to a model with compound

symmetry covariance structure which leads to a more parsimonious approach

than the ME model. However, the differences between the ME and uE models

will be seen more clearly when predicted selection gains are estimated. We

recommend multivariate models for genetic evaluation in cassava. A model

that combines the benefit of the MT and ME models may be beneficial.

We further believe that GS is very useful for cassava breeding especially at

the critical stage of CETs. In the NextGen project, clones from same families

were evaluated at different locations as a form of replication. This was a very

good approach and will help in capturing GxE as early as in CETs. Captur-
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ing GxE in this stage is facilitated by the GRM which helps to better connect

phenotypic data from families. This means that with uE and ME models, more

accurate parental selections could be made because GxE information has been

accounted for.

During the course of preparing this thesis, the author understood that at

the early stages of setting up the cassava breeding program at the IITA, the

emphasis were on disease resistance for CMD and CBB [1-3]. Consequently,

a resistant clone from the successful interspecific hybridization of cassava and

Manihot glaziovii was utilized heavily and influenced the development of what

is now the Genetic gain population. Several discussions has led to thinking that

genomic segments that conferred resistance to these diseases may also be plac-

ing some constraints on other traits that are now of interest to the breeding pro-

gram. Cassava genetic evaluation systems should account for this and further

investigations using independent germplasm like the local landraces should be

a valuable resource to understand the impact of these segments.

5.2 Lessons from the mapping of complex traits:

In this study, we found that the RHM and RcHM were powerful approaches for

understanding the genetic basis for inheritance or co-inheritance respectively

for complex traits in cassava. The RcHM showed that concurrent improvement

of DM and FYLD can be made in white cassava using an index based on multi-

variate breeding values. However a limited prospect was shown for improving

DM content in yellow cassava. This presents both a challenge and an oppor-

tunity to re-organize the yellow cassava breeding program. We advocate that
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as early as in the seedling nursery, an index based on the EGVs from an MT

model should be used for selection for DM and tuber yellowness using contin-

uous phenotypes from the near infra-red spectroscopy (NIR). This means that

NIR calibrations for DM and beta-carotene should be pursued at the seedling

nursery stage. This will complement hybridization with exotic germplasm from

CIAT at a location with low CMD influence.

Genomic segments can be deployed in breeding using optimization proce-

dures [4]. However, this needs further investigation.

5.3 Hybrid cassava breeding:

I advocate for a pilot scale program geared towards development of cassava

hybrids. These imply development of selfing procedures and heterotic groups.

Again, the selection criteria for selfed lines should be based on an index from

multivariate breeding values. I believe that this will facilitate the development

of different product profiles including varieties for different types of cassava

starch which is now in high demand in the international market.

5.4 Lessons for fellow young scientists:

This study has deeply exposed the author to the world of quantitative genetics

and genetic evaluation. The power and efficiency of linear mixed models for

gleaning information from phenotypic and genotypic data can not be overem-

phasized. For young scientists seeking to delve into the field of quantitative
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genetics, a very good understanding of matrix algebra, mathematical statistics

and technical computing is absolutely required. The expertise on data analysis

is one that will continue to be in much demand especially in this era of big data

in agriculture. I will continue the work on the development of EMMREML [5]

and also developing models using the BLUPf90 family of programs [6].
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