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ABSTRACT 

Phosphorus (P) is a limiting nutrient in freshwater ecosystems and excess P from anthropogenic 

sources impairs water quality. Strategies to manage P pollution depend on abiotic and well as 

biotic mechanisms. For example, no till farming practices physically reduce transport of 

sediment-bound P into nearby waterbodies and specialized wastewater treatment plants 

(WWTPs) utilize biological (i.e., microbial) mechanisms to remove P from influent waters. With 

respect to the latter, the main actors of these specialized WWTPs are a group of organisms 

known as polyphosphate accumulating organisms (PAOs). PAOs are well studied in the context 

of WWTPs and a limited number of studies have identified them in the natural environment. 

However, very little is known about their ecological role as well as their influence on P cycling 

and transport in natural systems. Therefore, the overall goal of this work was to expand our 

understanding of PAOs in soils and streams. 

 

We started this exploration with a review of PAOs in engineered and natural systems—we 

discussed knowledge gaps and ways studies from these distinct contexts may build on one 

another. This review also included a discussion of the potential role of PAOs in agricultural 

systems. We proposed studies to explore the impacts of PAOs in terms of major agricultural 
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challenges and discussed how these studies may inform our understanding of PAOs in 

engineered and natural systems. Next, we conducted a laboratory experiment to explore the role 

of PAO-mediated P cycling in stream biofilms under alternating aerobic and anaerobic 

conditions. We demonstrated cyclical patterns of P uptake under aerobic conditions and release 

during anaerobic conditions, which is consistent with the known behavior of PAOs in WWTPs. 

We also verified larger percentages of cells with stored intracellular polyphosphate granules 

under aerobic conditions compared to anaerobic conditions, which we expected given our 

understanding of the PAO phenotype in WWTPs. However, we observed concurrent patterns in 

cation uptake and release, which may indicate abiotic precipitation/dissolution of P with these 

cations and/or biotic uptake/release of these cations to balance the negative charge of 

intracellular polyP. Next, we explored whether the soil wetness index (SWI), a static index used 

to predict landscape scale soil moisture patterns, can predict the occurrence of mobile forms of P 

as well as PAO associated functional genes (i.e., ppk1, ppk2, and ppx). We showed that SWI 

predicted mobile P (i.e., dilute CaCl2 extractable P) and there was a depletion of mobile P from 

wetter parts of the landscape. This is consistent with our expectations of PAO behavior; PAOs 

release mobile forms of P under saturated conditions that are transported off-site. More 

specifically related to PAOs, we found that SWI was not a good predictor of the relative 

abundance of polyP functional genes. We observed a general decrease in the relative abundance 

polyP functional genes versus mobile P concentrations in NY, was consistent with our 

hypothesis, but this trend was only statistically significant in the case of ppk2. In PA, the 

relationship between the relative abundance of polyP functional genes was not significant and 

general trends were inconsistent with our hypothesis. Therefore, these results suggest the limited 

role of PAO-mediated P cycling along the SWI gradients identified and the potential masking of 



 

5 

PAOs by other P controls (e.g. landscape position and management). Future research may 

consider how the role of biotic and abiotic processes masks the role of PAOs in soil P cycling. 

These includes the impact of iron reducing bacteria or chemical iron reduction/dissolution with P 

along a SWI gradient. Despite this limited support for PAOs, we identified contigs harboring 

both ppk1 and ppx genes that were within the same phyla as known PAOs as well as many 

unstudied, putative PAOs. Last, we studied whether PAOs played a discernable role in P cycling 

associated with the decomposition of leaf litter in the stream and on the forest floor. We 

observed an increase in leaf P concentrations in the stream and a decrease in leaf P 

concentrations on the forest floor over time. Unexpectedly, we did not observe a concurrent 

increase in the relative abundance of PAO-associated functional genes over time in the stream. 

Rather these genes remained constant. ppk1 and ppx relative abundances also remained constant 

in the forest floor but the relative abundance of ppk2 genes increased over time. While these 

trends did not provide support for PAOs control on P cycling in leaf litter decomposition, we 

identified contigs harboring both ppk1 and ppx genes that were within the same phyla as known 

PAOs as well as many unstudied, putative PAOs just as we observed in the soil study. In the case 

of both soil and leaf litter experiments, future studies may consider using microscopy and 

molecular biology tools to verify whether putative PAOs exhibit the phenotype of PAO 

established in engineered systems. 

 

Overall, we found support for PAO-mediated P cycling in stream biofilms but only limited 

support for their impact on P cycling in soils along a SWI gradient as well as on decomposing 

leaf P patterns over time. We provided additional thoughts at the end of the review paper and in 

chapter five on how these studies can be modified to test for the potential role of PAOs in 
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agricultural P management as well as the influence of hydrology and nutrient 

demand/availability on PAO-mediated P cycling.  
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CHAPTER 1  

LINKING WASTEWATER ENGINEERING AND THE NATURAL SCIENCES TO 

IMPROVE OUR UNDERSTANDING OF POLYPHOSPHATE ACCUMULATING 

ORGANISM (PAO)-MEDIATED PHOSHPHORUS CYCLING: A REVIEW 

 

ABSTRACT 

Excessive anthropogenic inputs of phosphorus (P) to the landscape continue to have negative 

consequences on water resources. The influence of abiotic controls on P cycling has been widely 

studied and applied to water quality management strategies, but less attention has been paid to 

understand and apply biotic (here, microbial) controls on P cycling. Concurrent research in 

engineered systems such as wastewater treatments plants and the natural environment (i.e., 

streams, lakes, soils, estuaries, and oceans) have made considerable progress when it comes to 

understanding the role of microbial controls on P cycling. However, there has been very little 

synthesis of this research across these diverse disciplines and application of it to manage water 

quality. In this review, we present the current knowledge of microbial-mediated P cycling in 

engineered systems—focusing on polyphosphate accumulating organisms (PAOs). Next, we 

discuss research in natural systems and outline potential roles of PAOs in the environment. For 

both systems, we highlight knowledge gaps and suggest tools for addressing them. Finally, we 

discuss how a broader view of microbial controls on P cycling may benefit agricultural systems. 

Overall, the goal of this review is to draw attention to microbial mechanisms influencing P 

cycling for the purpose of promoting discussion between disciplines, identifying PAOs in new 

environments, informing sustainable P management, and ultimately, improving water resources. 
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INTRODUCTION 

Compared to biotic (here, microbial) controls on phosphorus (P) cycling, abiotic controls are 

more widely studied and applied to water quality management strategies. However, researchers 

of engineered systems such as wastewater treatments plants have made considerable progress 

when it comes to understanding and managing microbial controls on P cycling. Meanwhile, 

numerous studies in the natural environment have also contributed to a deeper understanding of 

biotic controls on P but this understanding has not yet been applied across the landscape to 

manage water quality. With the exception of three reviews on the role of microbial-mediated 

controls on P cycling in aquatic systems (Davelaar 1993; Hupfer et al. 2007; McMahon and Read 

2013), there have been no studies synthesizing this research across engineered and broader 

natural systems. As anthropogenic P sources on landscapes continue to impact water quality of 

lakes, rivers, and streams (Carpenter et al. 1998; Carpenter 2005; Dodds et al. 2009; Dubrovsky 

et al. 2010; Hudnell 2010; Kleinman et al. 2011a; Kleinman et al. 2011b; Obersteiner et al. 2013; 

Jarvie et al. 2015; Garcia et al. 2016; Jarvie et al. 2017), collaborative research across diverse 

disciplines may be an important step in developing more holistic strategies for improving water 

quality. 
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Key elements of this review are highlighted in Figure 1.1. First, we discuss advancements made 

in the field of wastewater engineering (i.e., engineered systems); we focus on the role of 

polyphosphate accumulating organisms (PAOs) in wastewater treatment plants that specialize in 

microbially-based P removal. We then review concurrent advances in natural systems such as 

streams, lakes, estuaries, oceans, and soils with respect to evidence for similar biotic controls on 

P. We synthesize knowledge gaps in both these systems and suggest tools that may push each 

forward while promoting feedback between one another. Finally, we suggest ways to extend our 

knowledge of biotic controls on P cycling to manage P in agricultural systems. Agricultural 

systems are a unique combination of engineered (i.e., managed) and natural systems; therefore, 

further studies of microbially-mediated P cycling in this environment may be informative to both 

engineered and natural systems (Figure 1.1). 

 

 

Figure 1.１Schematic of research flows between engineered, natural, and agricultural systems 

disciplines with respect to biotic controls on P cycling. Arrows between each system represent 

limited (grey) and potential (white, dashed outline) opportunities for information sharing.  
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BIOTIC CONTROLS ON PHOSPHORUS CYCLING IN ENGINEERED SYSTEMS 

Urban areas are the second largest source of P to streams after agriculture (Carpenter et al. 1998; 

Easton et al. 2007; Alexander et al. 2008; Dubrovsky et al. 2010), and engineered systems such 

as wastewater treatment plants (WWTPs) play an important role in removing urban point P 

sources. Prior to the 1970s, WWTPs focused on removing urban point sources of carbon (C) and 

nitrogen (N). However, in the 1970s, researchers discovered a WWTP configuration that greatly 

improved P removal rates in addition to removing N and C (see review in Seviour et al. 2003). 

This configuration, referred to as enhanced biological P removal (EBPR), favors the growth of 

bacteria that store P intracellularly and thereby transfer P from solution to the waste solids 

(Barnard 1975; Barnard 1976; Seviour et al. 2003). For example, the P content (dry weight) of 

EBPR sludge is typically about 5-7%, as compared to 1.2% in conventional sludge (Yuan et al. 

2012). This is accomplished in EBPR without the addition of liming salts such as Ca, Al, or Fe 

used by conventional WWTPs to chemically precipitate out P. Therefore, despite strict 

operational requirements, EBPR is a more economical means of removing P from effluent waters 

compared to conventional approaches (Barnard 1975; Oehmen et al. 2007). 

 

Key Factors for Effective Enhanced Biological Phosphorus Removal 

EBPR processes are unique because of their configuration as well as the organisms purposefully 

enriched by this configuration. A typically EBPR WWTP includes a few key operating 

conditions: (1) an upstream anaerobic zone with an electron donor (e.g., a form of C such as 

acetate) that is kept strictly anaerobic, (2) an aerobic zone, (3) recycling of a fraction of the 

suspended biomass back to the anaerobic zone after aerobic conditions, and (4) wasting of the 

remaining suspended biomass (Seviour et al. 2003). While optimal operating conditions were 
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originally developed empirically rather than based on an understanding of microbially processes, 

it is now commonly accepted that alternating between anaerobic and aerobic conditions selects 

for microbes that take up inorganic P (i.e., phosphate) in excess of normal cellular levels 

(Seviour et al. 2003)—coined ‘luxury uptake’ (Yall et al. 1972). Phosphate can make up 15-20% 

(dry weight) of microbial biomass during the aerobic stage (Crocetti et al. 2000; Ohtake et al. 

2001). The key microorganisms enriched by this configuration, referred to as polyphosphate 

accumulating organisms (PAOs), have been intensively studied because of their major role in 

removing P from influent waters of EBPR WWTPs around the world (Hesselmann et al. 1999; 

Crocetti et al. 2000; García Martín et al. 2006; He et al. 2007; Kunin et al. 2008; Albertsen et al. 

2012; Skennerton et al. 2014; Mao et al. 2014; Mao et al. 2015). PAOs made up approximately 

33% of the bacterial community in a full-scale Danish EBPR WWTP (Albertsen et al. 2012) and 

other studies in the USA and Denmark have estimated PAOs make up from < 1 to 36% of the 

bacterial community in full-scale EBPR WWTPs (Zilles et al. 2002a; Kong et al. 2005; He et al. 

2007). This stands in contrast to laboratory-scale SBRs that can achieve enrichments of up to 75-

90% CAP (McMahon et al. 2002; Lu et al. 2006). The most commonly studied PAO is known by 

the provisional scientific name Candidatus Accumulibacter phosphatis (CAP; Hesselmann et al. 

1999) and is a relative of Rhodocyclus (Betaproteobacteria). However, since the late 1990's, 

other non-CAP PAOs have been found in engineered and natural systems using microscopy and 

molecular biology methods (Table 1.1). To date, CAP has not been isolated in pure culture 

(Gebremariam et al. 2011; McMahon et al. 2013). Tetrasphaera PAOs with the ability to 

accumulate polyP have been isolated in pure culture, but these organisms did not store PHA 

(Maszenan et al. 2000). 
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Table 1.１ A summary of PAOs found in the literature. Abbreviations: laboratory-scale sequencing batch reactor (SBR), full-scale 

wastewater treatment plant (WWTP), uncharacterized wastewater (Mixed). 

Class/Phylum Genus Carbon Source Reactor Type 

/Environment 

Reference 

Alphaproteobacteria -- Mixed WWTP Zilles et al. 2002a 

Alphaproteobacteria -- Mixed SBR Kawaharasaki et al. 1999 

Alphaproteobacteria Defluviicoccus* Acetate SBR Nobu et al. 2014 

Betaproteobacteria -- Mixed WWTP Zilles et al. 2002a 

Betaproteobacteria -- Acetate SBR Stante et al. 1997 

Betaproteobacteria Accumulibacter Mixed WWTP Beer et al. 2006; Albertsen et al. 2012; Nguyen et al. 2012; Mao et al. 

2015 

Betaproteobacteria Accumulibacter Mixed SBR Liu et al. 2001; Günther et al. 2009; Mao et al. 2014; Skennerton et al. 

2014 

Betaproteobacteria Accumulibacter Acetate SBR Hesselmann et al. 1999; Crocetti et al. 2000; McMahon et al. 2002; 

Garcia-Martin et al. 2006; Kim et al. 2010 

Betaproteobacteria Accumulibacter Propionate SBR Garcia-Martin et al. 2006 

Betaproteobacteria Accumulibacter Mixed Estuary Kunin et al. 2008; Peterson et al. 2008 

Betaproteobacteria Accumulibacter Mixed Freshwater Kunin et al. 2008; Peterson et al. 2008 

Betaproteobacteria Accumulibacter Mixed Soil Kunin et al. 2008 

Betaproteobacteria Accumulibacter Mixed Sediment Kunin et al. 2008 

Betaproteobacteria Dechloromonas Mixed WWTP Zilles et al. 2002b; Kong et al. 2007 

Betaproteobacteria Propinoibacter Acetate SBR Crocetti et al. 2000 

Betaproteobacteria Rhodocyclus Mixed WWTP Zilles et al. 2002a; 2002b; Kong et al. 2004; 2005 

Betaproteobacteria Rhodocyclus Acetate SBR Hesselmann et al. 1999; Crocetti et al. 2000; McMahon et al. 2002 

Gammaproteobacteria -- Mixed WWTP Zilles et al. 2002a 

Gammaproteobacteria -- Mixed SBR Liu et al. 2001 

Gammaproteobacteria Acinetobacter Mixed WWTP Wagner et al. 1994; Streichan et al. 1990 

Gammaproteobacteria Halomonas Mixed WWTP Nguyen et al. 2012 

Gammaproteobacteria Pseudomonas Mixed WWTP Nguyen et al. 2012 

Gammaproteobacteria Pseudomonas Mixed SBR Günther et al. 2009 

Gammaproteobacteria Thiomargarita Mixed Sediment 

pore water 

Schulz and Schulz 2005 

Gammaproteobacteria Beggiatoa Acetate Pure culture Brock and Schulz-Vogt 2011 

Gammaproteobacteria Thiothrix Acetate SBR Rubio-Ricón et al. 2017 

*This organism was described as a competitor to PAOs, a glycogen accumulating organism (GAO), but had genes coding for intracellular polyphosphate storage 

unlike most Defluviicoccus-related GAOs 
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Table 1.1 (continued) 

Class/Phylum Genus Carbon Source Reactor Type 

/Environment 

Reference 

Actinobacteria -- Mixed WWTP Auling et al. 1991; Beer et al. 2006 

Actinobacteria -- Mixed SBR Bark et al. 1993 

Actinobacteria Arthrobacter Mixed Plant 

rhizosphere 

Li et al. 2013 

Actinobacteria Gordonia Mixed WWTP Beer et al. 2006 

Actinobacteria Microlunatus Mixed Pure culture Kawakoshi et al. 2012 

Actinobacteria Microlunatus Mixed SBR Nakamura et al. 1991; 1995a; 1995b; Kawaharasaki et al. 1998 

Actinobacteria Microlunatus Mixed WWTP Beer et al. 2006 

Actinobacteria Tetrasphaera Mixed WWTP Maszenan et al. 2000; Nguyen et al. 2011; Kong et al. 2005; Albertsen et 

al. 2012; Kristiansen et al. 2013 

Actinobacteria Tetrasphaera Mixed SBR Günther et al. 2009 

Bacilli Bacillus Mixed Plant 

rhizosphere 

DebRoy et al. 2013 

Gemmatimonadetes Gemmatimonas Mixed SBR Zhang et al. 2003 

Cyanobacteria Leptolyngbya -- Marine, SBR Zhang et al. 2015, Oyserman et al. 2017 

Melainabacteria  Mixed WWTP Soo et al. 2014 
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Polyphosphate Accumulating Organism Metabolism  

Since the EBPR process was first introduced, we have a better—but not complete—

understanding of PAO metabolism. In this context, model PAOs like CAP display the phenotype 

of utilizing polyphosphate (polyP) and poly-β-hydroxyalkanoate (PHA) polymers under 

alternating anaerobic/aerobic conditions (Seviour et al. 2003; Seviour and McIlroy 2008). PolyP 

is an important molecule to many diverse organisms including bacteria, archaea, fungi, plants, 

and animals (Kornberg 1995; Zhang et al. 2002; Hupfer et al. 2007; Rao et al. 2009; Seviour and 

Nielsen 2010; Achbergerová and Nahálka 2011) as it serves as an energy source and a P 

reservoir, is needed for growth and biofilm formation, is a strong ion chelator, can buffer against 

alkali conditions, regulates gene expression in organisms under stress, and regulates virulence 

factors (Kornberg 1995; Brown and Kornberg 2008; Rao et al. 2009; Seviour and Nielsen 2010; 

Achbergerová and Nahálka 2011; Kulakovskaya et al. 2012). However, while many organisms 

are capable of accumulating polyP, it is commonly understood that their ability to synthesize 

large amounts of polyP under aerobic conditions and use this as an energy source under 

anaerobic conditions enables PAOs to outcompete other EBPR heterotrophs with more limited 

fermentative processes (Gebremariam et al. 2011). 

 

While metabolic mechanisms separating PAOs from non-PAOs are still being debated and 

discovered (e.g., Gebremariam et al. 2011; Rubio-Rincón et al. 2017), researchers explain the 

metabolism of CAP (the model PAO) in effective EBPR WWTPs as follows. During anaerobic 

conditions (Figure 1.2A), PAOs take up short chain volatile fatty acids (VFAs) and store them as 

PHAs (Seviour et al. 2003; Seviour and Nielsen 2010; He and McMahon 2011b). For example, 

CAP stores acetate as the PHA known as poly-β-hydroxybutyrate (PHB). This ability to take up 
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C and store it as PHB under anaerobic conditions gives CAP an advantage over other organisms 

that cannot store C anaerobically (Yuan et al. 2012). Also during anaerobic periods, intracellular 

polyP and glycogen concentrations decrease because these polymers are used as a source of 

energy and electrons to convert VFA to PHB (Seviour et al. 2003; Seviour and McIlroy 2008; 

Seviour and Nielsen 2010). This decrease in intracellular polyP is accompanied by an increase in 

extracellular phosphate as phosphoanhydride bonds between phosphate molecules of the polyP 

chain are broken and unbound phosphate is transported out of the cell into the bulk water of the 

WWTP (Seviour et al. 2003; García Martín et al. 2006; Seviour and Nielsen 2010; Skennerton et 

al. 2014; Oyserman et al. 2016). During aerobic periods (Figure 1.2B), CAP uses the energy 

released from the respiration of PHB to replace polyP and glycogen stores (Seviour et al. 2003; 

Seviour and McIlroy 2008; Seviour and Nielsen 2010). The increase in intracellular polyP is 

accompanied by a decrease in extracellular phosphate as CAP transport phosphate into the cell—

removing it from the bulk water before exiting the WWTP—to build polyP chains (Seviour et al. 

2003; Seviour and Nielsen 2010).  
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Figure 1.２ (A) Anaerobic and (B) aerobic metabolism of model EBPR PAO, Candidatus 

Accumulibacter phosphatis (adapted from Seviour et al. 2003, Seviour and Nielsen 2010, and 

Skennerton et al. 2014). M+ represents metal cations and Pi represents phosphate. 

 

Debates concerning the specifics of CAP metabolism focus on processes occurring under 

anaerobic conditions (He and McMahon 2011b; Skennerton et al. 2014): (1) the source of ATP 

for PHA synthesis, (2) the source of reducing power for PHA synthesis, and (3) the pathway for 

degrading glycogen (called glycolysis). Many metabolic models have been proposed to address 

the first two points (Seviour et al. 2003; Oehmen et al. 2007; Seviour and McIlroy 2008; Seviour 
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and Nielsen 2010) but the two most commonly discussed are the Comeau-Wentzel model 

(Comeau et al. 1986; Wentzel et al. 1986) and the Mino model (Mino et al. 1987). The Comeau-

Wentzel model recognizes only polyP as providing energy to convert ADP to ATP for making 

PHAs under anaerobic conditions, whereas, both polyP and glycogen can be used as a source of 

energy in the Mino model (Seviour and Nielsen 2010). These two models also differ in how the 

anaerobic reducing power, in the form of NADH, is generated to convert acetate or another C 

source to PHA. In the Comeau-Wentzel model, NADH can only be generated by the 

tricarboxylic acid cycle (TCA; Seviour and Nielsen 2010). However, in the Mino model, 

glycolysis as well as the TCA cycle can be used to generate NADH (Seviour and Nielsen 2010). 

It has also been suggested that reducing power may come from either a glyoxylate shunt or split 

TCA cycle (Oehmen et al. 2007; He and McMahon 2011b; Skennerton et al. 2014). The use of 

the anaerobic TCA cycle may be more likely in full-scale WWTPs where VFAs are more limited 

compared to laboratory-scale SBRs (Lanham et al. 2013; Lanham et al. 2014). In addition to 

substrate availability, the type of organism and its length of aerobic cycle may influence the 

pathway for generating reducing power (Flowers et al. 2013; Lanham et al. 2014). In terms of 

glycolysis pathways, PAOs utilize either the Entner-Douderoff (ED) or Embden-Meyerholf-

Parnas (EMP) pathway (Oehmen et al. 2007; Seviour and McIlroy 2008; He and McMahon 

2011a; Skennerton et al. 2014). CAP strains were shown to only harbor EMP pathway genes 

(García Martín et al. 2006) but this may not always be the case of non-CAP PAOs (Skennerton et 

al. 2014). 

 

Genetic and phenotypic diversity may explain the ongoing debates concerning the specifics of 

PAO metabolism beyond that of CAP; rather than a single metabolic model, many markedly 
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different metabolic models may exist (Mino et al. 1998; Crocetti et al. 2000; Seviour et al. 2003; 

Seviour and McIlroy 2008; Kawakoshi et al. 2012; Kristiansen et al. 2013; Mao et al. 2014; 

Skennerton et al. 2014; Rubio-Rincón et al. 2017). For example, Tetrasphaera-related PAOs, 

which can accumulate intracellular glycogen and polyP as well as denitrify and ferment, are still 

considered PAOs even though they do not accumulate PHAs under anaerobic conditions 

(Kristiansen et al. 2013). The PAO Microlunatus phosphovorus released phosphate under 

anaerobic conditions, stored polyP under aerobic conditions (Nakamura et al. 1995a) and was 

able to take up a wide range of C substrates under anaerobic conditions (Nakamura et al. 1995b). 

In a SBR initially dominated by CAP, researchers demonstrated the emergence of Thiothrix 

caldifontis after exposing the SBR to sulfide (Rubio-Rincón et al. 2017). Thiothrix caldifontis 

took up P during aerobic conditions and released it during anaerobic conditions, removed P more 

effectively than CAP, and used both PHA and intracellular polysulfide as energy sources for 

growth (Rubio-Rincón et al. 2017). As we learn more about the diversity of PAOs, we must 

strive to better define what distinguishes a PAOs from a non-PAOs as well as how EBPR 

WWTP microbial communities (PAOs and non-PAOs) contribute to effective P removal in 

engineered systems. 

 

Polyphosphate Accumulating Organism-Related Functional Genes  

In addition to details concerning PAO metabolism, studies have uncovered key functional genes 

linked to biotic uptake and release of P (Table 1.3). The ppk gene codes for a polyphosphate 

kinase (PPK) that catalyzes the reversible reaction of ATP to ADP to form intracellular polyP 

(Ahn and Kornberg 1990; Akiyama et al. 1992). There are two main ppk genes: ppk1 and ppk2 

(Zhang et al. 2002; Rao et al. 2009; Kawakoshi et al. 2012). While not recognized as a PAO, the 
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nucleotide sequence for ppk1 was first isolated from E. coli (Akiyama et al. 1992) and since then 

other studies have identified PPKs in a wide range of bacterial, archaeal, and eukaryotic 

organisms (Trelstad et al. 1999; Zhang et al. 2002; Rao et al. 2009; Kawakoshi et al. 2012). ppk 

has been shown to be an ideal marker for bacterial strain diversity because it is highly conserved 

(Tzeng and Kornberg 1998). With respect to PAOs, CAP genomes have a single copy of ppk and 

ppk has been shown to evolve faster than CAP 16S rRNA genes (Kunin et al. 2008; He and 

McMahon 2011a). PPK1 is likely a membrane-bound protein with four domains concentrated in 

regions where the inner and outer cell membranes come together (Ahn and Kornberg 1990). 

PPK2 is another major PPK enzyme, which differs from PPK1 in its ability to catalyze the 

making of polyP from both GTP and ATP as well as enzyme cofactors; PPK1 has an affinity for 

Mg2+ while PPK2 has an affinity for Mn2+ (Zhang et al. 2002; Rao et al. 2009). The nucleotide 

sequence of ppk2 was first isolated from Pseudomonas aeruginosa (Zhang et al. 2002). Some 

organisms have both ppk1 and ppk2 while others have only one or the other (Zhang et al. 2002; 

Rao et al. 2009). Overall, CAP ppk genes have been found in full-scale Canadian, United States, 

British, Danish, Chinese, Singaporean, Japanese and Australian EBPR WWTPs indicating their 

ubiquity worldwide (Kunin et al. 2008; Albertsen et al. 2012; Mao et al. 2015). However, we 

found no studies quantifying the abundance and diversity of non-CAP PAO ppk genes in EBPR 

WWTPs. Therefore, given that it is a conserved gene and is found in many diverse organisms, 

understanding the abundance and diversity of the ppk gene in both CAP and non-CAP PAOs 

may prove important to understanding and monitoring P cycling in engineered systems like 

EBPR WWTPs as well as in natural systems. 
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Table 1.２ Proteins associated with PAO-related phosphorus cycling functional genes.  

Abbreviation Protein Function and Key Traits References 

PPK1 polyphosphate (polyP) kinase Catalyzes the de-phosphorylation of ATP to 

make polyP. Has an affinity for Mg2+.  

Ahn and Kornberg 1990, Akiyama et al. 1992, Trelstad et 

al. 1999, Zhang et al. 2002, Zhu et al. 2005, Rao et al. 

2009, Kawakoshi et al. 2012 

PPK2 polyphosphate kinase Catalyzes the de-phosphorylation of ATP 

and GTP to make polyP. Has an affinity for 

Mn2+. 

Ishige et al. 1998, 2002, Zhang et al. 2002, Nocek et al. 

2008, Rao et al. 2009, Kawakoshi et al. 2012 

PPX1 exopolyphosphatase Liberates the terminal phosphate molecule in 

a polyP chain. Requires Mg2+ and KCl. 

Reizer et al. 1992, Akiyama et al. 1993, Wurst and 

Kornberg 1994, Kornberg 1995, Zago et al. 1999, Ohtake 

et al. 2001, Rangarajan et al. 2006, Lichko et al. 2006, Rao 

et al. 2009, Kawakoshi et al. 2012 

PPX2/GPPA exopolyphosphatase/ 

pentaphosphate 

phosphohydrolase 

Liberates the terminal phosphate in a polyP 

chain and important in cellular stress 

response by hydrolyzing pppGpp to ppGpp. 

Keasling et al. 1993, Reizer et al. 1993, Zago et al. 1999, 

Rao et al. 2009, Kawakoshi et al. 2012, Alcántara et al. 

2014 

PPN endopolyphosphatase 

 

 

Cleaves phosphate from polyP chains (not 

selective to terminal phosphate). Has only 

been found in archaea, fungi, and mammals. 

Kumble and Kornberg 1996, Shi and Kornberg 2005, 

Lichko et al. 2006, Rao et al. 2009 

PAP AMP phosphotransferase 

 

Catalyzes reaction of AMP to ADP using 

energy from breakdown of polyP. 

Rao et al. 2009, Mao et al. 2014, Skennerton et al. 2014 

PIT low-affinity phosphate 

transporter 

Binds phosphate and brings it into the cell. Seviour and McIlroy 2008; Mao et al. 2014 

PST high-affinity phosphate 

transporter 

Binds phosphate and brings it into the cell. Seviour and McIlroy 2008; Mao et al. 2014 
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The ppx gene codes for an exopolyphosphatase (PPX) responsible for breaking off the terminal 

phosphate molecules of a polyP chain under conditions of excess phosphate (Akiyama et al. 

1993; Kornberg 1995; Zago et al. 1999; Ohtake et al. 2001). There are two main ppx genes: ppx1 

and ppx2/gppA (Rao et al. 2009). Some organisms have both ppx genes (e.g., Lactobacillus; 

Alcántara et al. 2014, E. coli; Akiyama et al. 1993; Keasling et al. 1993; Reizer et al. 1993), but 

this trend may vary by organism and has not been well characterized for PAOs in the literature. 

PPX1 is a dimer protein with four domains that requires both Mg2+ and K+ (Akiyama et al. 1993; 

Rangarajan et al. 2006; Rao et al. 2009). PPX1 preferentially acts on longer chains of polyP (i.e., 

500 phosphate molecules or longer), does not act on ATP, and cannot be inhibited by ADP or 

ATP (Akiyama et al. 1993). The ppx2/gppA gene codes for exopolyphosphatase enzyme known 

as pentaphosphate phosphohydrolase (PPX2/GPPA) that inhibits polyP accumulation at the 

enzymatic level through stress response nucleotides ppGpp and pppGpp (Reizer et al. 1993; 

Zago et al. 1999; Rao et al. 2009). While not recognized as a PAO, PPX2/GPPA was first 

purified in a mutant strain of E. coli, is regulated by the ppx/gppA gene, and can cause the 

release of phosphate by breaking polyP chains or by hydrolyzing pppGpp to ppGpp (Keasling et 

al. 1993). PPX2/GPPA is thought to be less active than PPX1, prefers longer polyP chains (i.e., 

1000 residues or longer), and is inhibited by the presence of short- and medium-length polyP 

chains (Keasling et al. 1993). We found only a few studies on ppx1 and ppx2/gppA genes, none 

of which assess their abundance and diversity in the EBPR systems. Some studies have found 

that P starvation induces transcription of ppk and ppx genes but whether this can be applied to 

PAOs is unknown (Seviour et al. 2003). Due to their role in polyP breakdown under anaerobic 

conditions—an important defining metabolic characteristic of putative PAOs—further study of 
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ppx genes is important for improving our understanding of microbial controls on P cycling in 

engineered systems. 

 

Other P cycling genes of interest include pap, pit, pst, and ppn. Associated protein functionality 

and key traits are summarized in Table 1.3. As we mentioned previously for ppk and ppx, more 

work needs to be done to characterize the abundance, diversity, and role of these genes in P 

cycling with respect to engineered systems. While we only focus on P-related genes here, little is 

known about functional genes regulating other important PAO polymers: PHA and glycogen 

(Seviour et al. 2003). 

 

Research Methods and Opportunities in Engineered Systems 

Researchers have used a combination of microscopy and molecular biology tools to study the (1) 

metabolism, (2) functional genes, and (3) communities (diversity, structure, and function) of 

PAOs in EBPR WWTPs. Here, we outline some of the more popular tools used as well as how 

they may be extended to further our understanding of these three focus areas. 

 

Microscopy can be used to formally confirm PAO phenotype of EBPR PAOs (e.g., Hung et al. 

2001) as well as track membership and function of PAO communities in time and space (e.g., 

Mao et al. 2014; Lawson et al. 2015). Transmission electron microscopy (TEM) with energy 

dispersive x-ray analysis has been used to verify the presence of polyP granules in EBPR 

systems (Streichan et al. 1990). Besides electron microscopy, non-fluorescent stains such as 
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Neisser's blue and toluidine blue (Crocetti et al. 2000; Schulz and Schulz 2005) as well as 

fluorescent stains including 4',6-diamidino-2-phenylindole (DAPI), calcium indicator Fura-2, 

Nile Blue A, and tetracycline (Hesselmann et al. 1999; Crocetti et al. 2000; Hung et al. 2002; 

Hupfer et al. 2008; Aschar-Sobbi et al. 2008; Günther et al. 2009; Diaz and Ingall 2010) have 

been used to verify the presence of intracellular polyP granules. We focus on DAPI, which is 

commonly used to identify DNA for cell and bacterial counts, but has also been used to visualize 

and quantify polyP granules in PAOs (e.g., Hung et al. 2002). DAPI-polyP visualization is 

possible because the emission spectrum for DAPI-polyP is shifted from DAPI-DNA; the 

maximum emission of DAPI-DNA is at approximately 490 nm, while the maximum emission of 

DAPI-polyP is at 550 nm (Hung et al. 2002; Aschar-Sobbi et al. 2008; Diaz and Ingall 2010). By 

adjusting the excitation wavelength from 360 nm to 415 nm, users can detect DAPI-polyP 

concentrations down to the ng/ml range (Aschar-Sobbi et al. 2008). DAPI also stains lipids but 

the fluorescence is weak and fades quickly (Streichan et al. 1990). Potential negative controls for 

DAPI-polyP analysis include E. coli BL21 and potential positive controls for DAPI polyP 

analysis include Pseudomonas putida KT2440 and Acinetobacter calcoaceticus (Kulakova et al. 

2011). The direct count ratio of DAPI-polyP stained cells to DAPI-DNA stained cells can serve 

as a simple method of quantifying total PAOs, including those that have not been 

phylogenetically identified (e.g., Saia et al. 2017). Several researchers have used a fluorescent 

plate reader to quantify relative DAPI-polyP fluorescence between samples (Kulakova et al. 

2011; Martin and Van Mooy 2013; Rier et al. 2016) but care should be taken to rule out 

interference of calcium or other salts in samples because this approach lacks single-cell 

resolution (Aschar-Sobbi et al. 2008; Diaz and Ingall 2010; Kulakova et al. 2011; Martin and 

Van Mooy 2013). 
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Fluorescent in-situ hybridization (FISH) can be used to identify PAOs via the hybridization of 

fluorescent oligonucleotide probes to 16S rRNA or 23S rRNA sequences of interest (Seviour et 

al. 2003; Seviour and Nielsen 2010). FISH probes have been designed for many known EBPR 

PAOs (Table 1.4). However, additional research is needed to develop FISH probes for less 

common PAOs. Researchers have also used quantitative FISH (qFISH) measurements to 

compare the number of directly counted probed PAOs to probed total bacteria (Kong et al. 2007; 

Albertsen et al. 2012; Lanham et al. 2014) or to understand which PAOs are more dominant in 

EBPR communities (e.g., Beer et al. 2006). Lastly, FISH can be used in conjunction with other 

assays to verify the PAO phenotype. Researchers have used FISH and DAPI to identify PAOs 

and verify whether they store polyP under aerobic conditions in EBPR WWTPs (e.g., Crocetti et 

al. 2000). Other studies used microautoradiography-FISH (MAR-FISH) to simultaneously verify 

intracellular P in PAOs from an EBPR laboratory-scale reactor (Kim et al. 2010). Catalyzed 

reporter deposition-FISH (CARD-FISH) or helper probes (Fuchs et al. 2000; Amann et al. 2001) 

can improve probe visibility (Hupfer et al. 2008; Seviour and Nielsen 2010). The pros and cons 

of using FISH have been reviewed by others (Seviour et al. 2003; Seviour and Nielsen 2010). 

 

Researchers have used DAPI in combination with flow cytometry to sort out and characterize 

CAP PAOs as well as new EBPR organisms that store polyP (Zilles et al. 2002a; Zilles et al. 

2002b; Günther et al. 2009; Kim et al. 2010). However, opportunities exist to apply DAPI and 

flow cytometry more broadly as well as to combine them with next generation sequencing 

technologies (discussed below) to design PCR primers and FISH probes for the purpose of 

identifying non-CAP PAOs.
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Table 1.３ Fluorescence in-situ hybridization (FISH) probes utilized in the literature for identification of PAO-related organisms 

(adapted from Seviour et al. 2010). Abbreviations: polyphosphate accumulating organisms (PAO), not determined (ND). 

Probe Name Sequence (5'-3') Formamide 

(%) 

Target Reference 

ALF1b GCTGCCTCCCGTAGGAGT 20 Alphaproteobacteria Manz et al. 1992  

BET42a GCCTTCCCACTTCGTTT 35 Betaproteobacteria Manz et al. 1992 

GAM42a GCCTTCCCACATCGTTT 35 Gammaproteobacteria Manz et al. 1992 

RHC175 TGCTCACAGAATATGCGG 30 Rhodocyclus/Accumulibacter Hesselmann et al. 1999 

RHC439 CNATTTCTTCCCCGCCGA 30 Most Rhodocyclaceae Hesselmann et al. 1999 

Rc988 AGGATTCCTGACATGTCAAGGG ND Rhodocyclus group Crocetti et al. 2000 

PAO462c CCGTCATCTACWCAGGGTATTAAC 35 Most Accumulibacter Crocetti et al. 2000 

PAO651c CCCTCTGCCAAACTCCAG 35 Most Accumulibacter Crocetti et al. 2000 

PAO846c GTTAGCTACGGCACTAAAAGG 35 Most Accumulibacter Crocetti et al. 2000 

Acc-I-444 CCCAAGCAATTTCTTCCCC 35 PAO clade IA and other Type I clades Flowers et al. 2009 

Acc-II-444 CCCGTGCAATTTCTTCCCC 35 PAO clade IIA, IIC, and IID Flowers et al. 2009 

Actino-1011 TTGCGGGGCACCCATCTCT 30 Tetrasphaera-relatives Liu et al. 2001 

Actino-221a CGCAGGTCCATCCCAGAC 30 Tetrasphaera-relatives Kong et al. 2005 

Actino-658a TCCGGTCTCCCCTACCAT 40 Tetrasphaera-relatives Kong et al. 2005 

Tet1-266 CCCGTCGTCGCCTGTAGC 25 Tetrasphaera-relatives Nguyen et al. 2011 

Tet2-892 TAGTTAGCCTTGCGGCCG 5 Tetrasphaera-relatives Nguyen et al. 2011 

Tet2-174 GCTCCGTCTCGTATCCGG 20 Tetrasphaera-relatives Nguyen et al. 2011 

Tet3-654 GGTCTCCCCTACCATACT 35 Tetrasphaera-relatives Nguyen et al. 2011 

Tet3-19 CAGCGTTCGTCCTACACA 0 Tetrasphaera-relatives Nguyen et al. 2011 

BET135 ACGTTATCCCCCACTCAATGG 45 Dechloromonas-relatives Kong et al. 2007 

MIC179 GAGCAAGCTCTTCTGAAACCG 10 Microlunatus phosphovorus Kawaharasaki et al. 1998 

G123T CCTTCCGATCTCTATGCA 40 Thiothrix-relatives Kanagawa et al. 2000, Rubio-Rincón et al. 

2017 

EUB338 GCTGCCTCCCGTAGGAGT 60 Most Bacteriab Amann et al. 1990 

EUB338-II GCAGCCACCCGTAGGTGT 60 Most Bacteriab Daims et al. 1999 

EUB338-III GCTGCCACCCGTAGGTGT 60 Most Bacteriab Daims et al. 1999 
aCompetitor probes required.  bUse EUB338, EUB338-II, and EUB338-III together to obtain an estimate of total bacteria. cUse PAO462, PAO651, PAO846 

together to obtain an estimate of total PAOs. 
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Molecular biology tools such as polymerase chain reaction (PCR) primers (Table 1.5) can be 

used to identify known PAOs, measure PAO functional gene abundances (via quantitative PCR; 

qPCR), and determine strain diversity (Flowers et al. 2013; Mao et al. 2014; Mao et al. 2015; 

Mao et al. 2016; Zhang et al. 2016). One study used 16S rRNA gene and ppk1 qPCR primers in 

conjunction with other molecular biology techniques to estimate the abundance of various CAP 

clades in WWTPs as well as how they were genetically related to one another (Mao et al. 2015). 

Another study used qPCR in combination with FISH to monitor CAP groups over time in a 

laboratory reactor (Oyserman et al. 2016). qPCR is culture-independent, has a low detection limit 

compared to other methods, and users can test for and potentially control biases due to poor cell 

lysis (Seviour and Nielsen 2010). The pros and cons of using qPCR are reviewed by others 

(Seviour and Nielsen 2010). There is only one PCR ppk primers available for non-CAP PAOs 

and very few studies using these non-CAP primers in engineered systems (Table 1.1). 

Additionally, we could find no studies assessing the abundance and diversity of ppx genes in 

EBPR WWTPs. This may be due to, as their name suggests, a focus on P accumulation rather 

than P breakdown. However, as we seek out new non-CAP PAOs, a shift in focus to both P 

accumulation and breakdown may be necessary. Overall, more work is needed to design and 

apply a wider range of qPCR primers for non-CAP PAOs to study functional gene abundance, 

lineage, and diversity. 
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Table 1.４ PAO PCR primer sequences identified in the literature. 

Primer Pair Sequence (5’-3’) Gene Target Reference 

NLDE-0199F CGTATGAATTTTCTTGGTATTTATTGTACTAATCTngaygarttyt Most ppk1 McMahon et al. 2002, 2007 

TGNY-1435R GTCGAGCAGTTTTTGCATGAwarttnccngt 
  

    

ACCppk1-254F TCACCACCGACGGCAAGAC CAP ppk1 McMahon et al. 2002, 2007,  

ACCppk1-1376R ACGATCATCAGCATCTTGGC 
 

Kunin et al. 2008     

ppk274f ACCGACGGCAAGACSG CAP ppk1 Kunin et al. 2008 

ppk1156r CGGTAGACGGTCATCTTGAT 
  

    

ppk734f CTCGGCTGCTACCAGTTCCG CAP ppk1 Kunin et al. 2008 

ppk1601r GATSCCGGCGACGACGTT 
  

    

Acc-ppk1-763f GACGAAGAAGCGGTCAAG CAP Clade 1A ppk1 He et al. 2007, He and McMahon 2011a 

Acc-ppk1-1170r AACGGTCATCTTGATGGC 
  

    

Acc-ppk1-974f TGATGCGCGACAATCTCAAATTCAA CAP Clade 1A ppk1 Zhang et al. 2016 

Acc-ppk1-1113r AATGATCGGATTGAAGCTCTGGTAG 
  

    

Acc-ppk1-372f TGAAGGCATTCGCTTCCT CAP Clade 1B ppk1 Zhang et al. 2016 

Acc-ppk1-653r  AAGCAGTATTCGCTGTC 
  

    

Acc-ppk1-362f  AGCTGGCGAGTGAAGGCATTCG CAP Clade 1C ppk1 Zhang et al. 2016 

Acc-ppk1-758r  AACAGGTTGCTGTTGCGCGTGA 
  

    

Acc-ppk1-634f  TGCGACAGCGAATACAG CAP Clade 1D ppk1 Zhang et al. 2016 

Acc-ppk1-848r  ACTTCGAGGCGGACG 
  

 

 

Table 1.4 (continued) 

Primer Pair Sequence (5’-3’) Gene Target Reference 
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Acc-ppk1-893f AGTTCAATCTCACCGACAGC CAP Clade 2A ppk1 He et al. 2007, He and McMahon 2011a 

Acc-ppk1-997r GGAACTTCAGGTCGTTGC 
  

    

Acc-ppk1-870f GATGACCCAGTTCCTGCTCG CAP Clade 2B ppk1 He et al. 2007 

Acc-ppk1-1002r CGGCACGAACTTCAGATCG 
  

    

Acc-ppk1-254f TCACCACCGACGGCAAGAC CAP Clade 2C ppk1 He et al. 2007 

Acc-ppk1-460r CCGGCATGACTTCGCGGAAG 
  

    

Acc-ppk1-375f GGGTATCCGTTTCCTCAAGCG CAP Clade 2D ppk1 He et al. 2007 

Acc-ppk1-522r GAGGCTCTTGTTGAGTACACGC 
  

    

Acc-ppk1-757f  TTCGTGGACGAGGAAGA CAP Clade 2E ppk1 Zhang et al. 2016 

Acc-ppk1-1129r  ATTGTTCGAGCAACTCGATG 
  

    

Acc-ppk1-410f  CCGAGCAACGCGAATGG CAP Clade 2G ppk1 Zhang et al. 2016 

Acc-ppk1-514r  TGTTGAGTACGCGCGGGA 
  

    

Acc-ppk1-701f  ACTCCTTCGTATTCCTCTCT CAP Clade 2H ppk1 Zhang et al. 2016 

Acc-ppk1-928r  TCATCGCTTCGGAGCA 
  

    

Acc-ppk1-688f  AGTGATTATGCTTTCGTCTTTC CAP Clade 2I ppk1 Zhang et al. 2016 

Acc-ppk1-946r  TGAACTGTCCGAGCAGGA 
  

    

CAP438f GGTTAATACCCTGWGTAGAT CAP 16S Kunin et al. 2008 

CAP846r GTTAGCTACGGCACTAAAAGG 
  

 

 

Table 1.4 (continued) 

Primer Pair Sequence (5’-3’) Gene Target Reference 
518f CCAGCAGCCGCGGTAAT CAP 16S He et al. 2007, He and McMahon 2011a 

PAO-846r GTTAGCTACGGCACTAAAAGG 
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16S-Acc-1Af TTGCTTGGGTTAATACCCTGA CAP Clade 1A 16S He et al. 2010 

16S-Acc-1Ar CTGCCAAACTCCAGTCTTGC 
  

    

16S-Acc-2Af TTGCACGGGTTAATACCCTGT CAP Clade 2A 16S He et al. 2010 

16S-Acc-2Ar CTCTGCCAAACTCCAGCCTG 
  

    

Pse136f TAGTAGTGGGGGATAACGTC Halomona-related 16S Nguyen et al. 2012 

1492r GCYTACCTTGTTACGACTT 
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An alternative molecular biology tool that can be used to expand our knowledge of functional 

genes in both CAP and non-CAP PAOs is shotgun metagenomic sequencing. This next 

generation sequencing approach is contrasted to amplicon sequencing, which is commonly used 

to carry out targeted sequencing of genes such as 16S rRNA, 18S rRNA, and internal transcribed 

spacer (ITS) regions between rRNA genes for bacterial, eukaryotic, and fungal community 

analysis, respectively (Zimmerman et al. 2014). In the case of studying PAOs in EBPR WWTPs, 

our limited understanding of functional genes (discussed above) necessitates approaches that do 

not rely on complete apriori knowledge of the DNA sequence for a gene of interest. Otherwise 

put, we can use shotgun metagenomic approaches to identify, quantify relative abundances, and 

compare previously unknown DNA sequences for a functional gene of interest. Shotgun 

metagenomic techniques are generally classified into either read- or assembly-based approaches. 

Assembly-based approaches have benefits over read-based approaches, which compare short 

(<300 bp) reads generated in sequencing directly to reference databases for the purpose of 

annotation (i.e., assigning them to a known functional gene and/or organism). The processes of 

assembling short reads into longer ones (1) can remove errors incorporated during sequencing, 

(2) results in more annotations, (3) decreases the rate of false positives, and may (4) overcome 

some of the issues of primer bias or chimeras associated with amplicon sequencing (Wommack 

et al. 2008; Howe et al. 2014; Freitas et al. 2015; Gao et al. 2016). Assembly-based approaches 

also have their challenges, which include (1) high computational requirements and costs as well 

as (2) an emphasis on dominant community members (Howe et al. 2014). However, recently 

published tools help implement shotgun metagenomic assembly (Howe and Chain 2015) and run 

targeted assembly with specific functional genes in mind (Wang et al. 2015). It is likely that the 

number of tools to aid in shotgun metagenomic assembly will increase over time as more 
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researchers adopt these technologies (Howe et al. 2014). Several EBPR studies have used 

shotgun metagenomics to assemble genomes of PAOs, verify known metabolic pathways, and 

highlight potential metabolic capabilities (Kristiansen et al. 2013; Skennerton et al. 2014; Soo et 

al. 2014; Mao et al. 2016). Shotgun metagenomics has been used to explore the genetic traits of 

PAO metagenomes (García Martín et al. 2006; Albertsen et al. 2012) and compare genomes of 

different organisms within EBPR systems (Flowers et al. 2013). Next steps may include using 

assembled shotgun metagenomes to develop new FISH probes or qPCR primers for non-CAP 

PAOs. More specifically, researchers may focus on characterizing and quantifying the relative 

abundance of non-CAP ppk and ppx genes since both are required for polyP synthesis and 

degradation, respectively. New computational tools like Kaiju (Menzel et al. 2016) allow users to 

assign taxonomies to assembled shotgun metagenomic sequencing reads but have not yet been 

applied to EBPR communities. Overall, there are many opportunities to apply this sequencing 

approach along with other tools discussed previously to study the abundance and diversity of 

various P-associated functional genes in EBPR WWTPs. 

 

Amplicon sequencing-based studies have primarily focused on exploring the relatedness of 

bacterial communities in EBPR settings (Zhang et al. 2003) but more research is needed to study 

non-CAP PAOs (Gebremariam et al. 2011). Also, work on PAOs beyond the bacterial domain is 

needed to ensure characterization of eukaryotic and archaeal PAOs (as well as PAO symbionts 

and competitors) in engineered systems. In this vein, one study demonstrated the relationship 

between PAO bacteria and non-PAO eukaryotes over time in a laboratory photosynthetic reactor 

(Oyserman et al. 2017). Another documented the lineages of bacterial glycogen accumulating 

organism (GAO)–competitors to PAOs—in a laboratory EBPR reactor (Nobu et al. 2014). In 
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summary, many studies have focused on CAP community diversity, structure, and function in 

EBPR systems. However, more research is needed to utilize the tools we discussed above (or a 

combination of them) to study non-CAP bacterial, eukaryotic, and archaeal communities in 

EBPR WWTPs—including both PAOs and non-PAOs. 

 

Support for Polyphosphate Accumulating Organisms in Natural Systems 

In addition to advancing our understanding of key biotic mechanisms controlling P cycling in 

engineered systems, studies of EBPR bacterial communities have uncovered potential traits that 

may prove important for PAO survival in the natural settings. Using a combination of laboratory 

studies and molecular biology approaches, researchers have found that PAOs can use many 

different C sources—not just acetate. For example, specific CAP groups have the capacity to use 

ethanol, rather than acetate (Skennerton et al. 2014). Non-CAP PAOs can use C substrates such 

as glucose (Nakamura et al. 1995b; Nguyen et al. 2011; Kristiansen et al. 2013), sugar alcohols 

(Nakamura et al. 1995b), amino acids (Nakamura et al. 1995b; Nguyen et al. 2011), and 

propionate (Lemos et al. 2003). Molecular biology approaches have revealed that certain CAP 

clades have N and C fixation genes (García Martín et al. 2006; Skennerton et al. 2014), 

denitrification genes (Kristiansen et al. 2013; Skennerton et al. 2014), genes for low (pit) and 

high (pst) affinity phosphate transporters (García Martín et al. 2006; Mao et al. 2014; Skennerton 

et al. 2014), and genes coding for flagella (García Martín et al. 2006). Beyond gene presence, 

one EBPR study demonstrated that a specific CAP group was capable of coupled nitrate 

reduction and phosphate uptake (Flowers et al. 2009). Thiothrix caldifontis use PHA and 

polysulfide as an energy source during anaerobic conditions (Rubio-Rincón et al. 2017). There is 

also evidence supporting symbiotic relationships between CAP and phototrophic eukaryotes in 
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an SBR exposed to alternating light/dark periods; Cyanobacteria supplies O2 to drive polyP 

storage by CAP (Oyserman et al. 2017). When combined, these findings provide support for the 

idea that EBPR PAO may have originated from or may be well suited for mobility and survival 

in oligotrophic, natural systems (García Martín et al. 2006; Skennerton et al. 2014). These 

findings further highlight the need for (1) additional research on PAO metabolism, functional 

genes, and communities as well as (2) discussions and collaborations between researchers in 

engineered and natural systems as depicted in Figure 1.1. 

 

BIOTIC CONTROLS ON PHOSPHORUS CYCLING IN NATURAL SYSTEMS 

Concurrently to studies in EBPR WWTPs, researchers in the natural sciences documented the 

impacts of excess anthropogenic P on freshwater systems (e.g., Schindler 1977) and came to the 

understanding that P is typically a limiting nutrient in these environments (Schindler 1977; 

Carpenter et al. 1998; Elser et al. 2007; Schindler 2012; Dodds and Smith 2016). Like 

researchers who studied EBPR systems, natural scientists were motivated to uncover 

mechanisms helped reduce excess P as well as the negative impacts of subsequent eutrophication 

caused by P additions. From an environmental perspective, the negative impacts of 

eutrophication include decreased water transparency, potential growth of toxin producing 

cyanobacteria, hypoxic (i.e. low O2) or anoxic (i.e. no O2) conditions, and fish die-offs 

(Carpenter et al. 1998; Seviour et al. 2003; Carpenter 2005; Dodds et al. 2009; Hudnell 2010). 

Others have also documented the negative economic impacts of eutrophication. These include 

increased spending on drinking water treatment, recreational space closures, loss of waterfront 

real-estate, increased spending to manage threatened and endangered species, and decreased fish 
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and wildlife production (Seviour et al. 2003; Carpenter 2005; Dodds et al. 2009; MacDonald et 

al. 2016). 

 

Early-on, researchers highlighted the influence of biotic (here microbial) controls on P cycling in 

natural systems (e.g., Fleischer 1978) and drew on research in engineering and medical fields to 

suggest a potential microbial mechanism for observed P patterns (e.g., Barnard 1976; Kornberg 

1995). When specific biological mechanisms were addressed, they centered on the ability of 

microorganisms to make and break stored intracellular polyP. In the specific case of EBPR 

PAOs, researchers proposed that alternating anaerobic/aerobic conditions in the upper layers of 

soils and sediments as well as near the hypolimnion/redoxcline of lakes lead to polyP 

degradation/synthesis, respectively, by EBPR-like PAOs (Gächter et al. 1988; Davelaar 1993; 

Reddy et al. 1999; Schulz and Schulz 2005; Pett-Ridge and Firestone 2005; Hupfer et al. 2007; 

Hupfer et al. 2008; Hupfer and Lewandowski 2008; Peterson et al. 2008; Diaz et al. 2012; 

McMahon and Read 2013; McParland et al. 2015). Otherwise put, they suggested that naturally 

occurring PAOs, like their EBPR counterparts, outcompete other organisms because of their 

ability to break down intracellular polyP (i.e., release phosphate) during anaerobic conditions 

and store intracellular polyP (i.e., uptake phosphate) during aerobic conditions. This hypothesis 

assumes that PAOs like the ones found in EBPR WWTPs are (1) present in the natural 

environment and (2) influence P cycling under fluctuating environmental conditions. Therefore, 

we synthesize evidence from freshwater, marine, and soil systems that supports the presence and 

impact of PAOs in natural settings. We also highlight knowledge gaps, tools to overcome these 

gaps, and how new information uncovered by these tools may be beneficial to the co-

advancement of research and water quality management in engineered and natural systems. 
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Freshwater Systems  

Freshwater systems discussed here include the water column and sediments of streams and lakes. 

In streams, wetlands, and shallow regions of lakes, alternating anaerobic and aerobic periods are 

primarily driven by diel cycles of primary production; O2 levels in the water column and upper 

sediment layers increase during the day due to photosynthesis, while during the night, the 

cessation of photosynthesis combined with continued respiration decreases O2 levels (Dodds 

2003; Cohen et al. 2013). In the rare case of freshwater tidal wetlands, alternating 

anaerobic/aerobic periods are also driven by the tide; the tide supplies O2 rich water and recedes 

with water that has a lower concentration of O2 due to respiration within the wetland (Findlay 

and Fischer 2013). In deeper parts of lakes, alternating anaerobic/aerobic periods are primarily 

driven by changes in the depths of the oxic epilimnion and anoxic hypolimnion due to wind and 

waves (McMahon and Read 2013).  

 

Many studies have noted the inverse relationship between O2 and phosphate concentrations in 

the water column and near the water column-sediment boundary (Carlton and Wetzel 1988; 

Gächter et al. 1988; Cohen et al. 2013; Read et al. 2014; Sherson et al. 2015; Saia et al. 2017) 

and have connected these patterns of diel P uptake and release with biotic processes. For 

example, a study of diel P cycling in the Ichetucknee River, Florida, USA determined that 

biological processes made up 66% of P uptake and release with the remaining being attributed to 

Ca-P precipitation and dilution (Cohen et al. 2013). Earlier laboratory studies subjecting the 

upper layers of sediment to alternating anaerobic/aerobic conditions demonstrated microbially-

mediated P release into the water column during anaerobic conditions and microbially-mediated 

P uptake into the water column during aerobic conditions (Fleischer 1978; Carlton and Wetzel 
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1988; Gächter et al. 1988). However, specific microbial mechanisms were not identified in these 

studies. 

 

Later studies focused on PAO-mediated control of P cycling in freshwater systems by 

highlighting the ability for organisms to store polyP (e.g., Rier et al. 2016) and/or the 

identification of known EBPR PAOs (Kunin et al. 2008; Peterson et al. 2008; Graham et al. 

2017). Microscopy-based approaches have been used to identify intracellular polyP granules in 

sediment bacteria using (Uhlmann and Bauer 1988; Hupfer and Gächter 1995; Hupfer et al. 

2004) and stream biofilms (Locke 2015; Rier et al. 2016; Saia et al. 2017). Other studies have 

used 31P nuclear magnetic resonance (31P-NMR) spectroscopy (Hupfer and Gächter 1995; Read 

et al. 2014) or other extractions (Eixler et al. 2005; Martin and Van Mooy 2013; Price and 

Carrick 2013; Price and Carrick 2014) to measure intracellular polyP in freshwater systems. One 

31P-NMR study demonstrated that polyP concentrations in a eutrophic lake taken over time were 

not significantly linked to O2 availability but were highly variable in the anoxic hypolimnion 

compared to the oxic epilimnion (Read et al. 2014). CAP genes were identified in sediment and 

water samples in Wisconsin, USA and California, USA (Kunin et al. 2008; Peterson et al. 2008; 

Martins et al. 2011) and a study of Portuguese lake sediments found CAP made up < 0.3% of the 

bacterial community (Martins et al. 2011). A very small number of studies in freshwater systems 

document the PAO phenotype of phosphate storage as polyP under aerobic conditions and 

phosphate release from the breakdown of polyP during anaerobic conditions (Martins et al. 2011; 

Amirbahman et al. 2013; Saia et al. 2017). Of these, one identified known EBPR PAOs (Martins 

et al. 2011). These studies support suggestions that polyP accumulation and breakdown is 

ubiquitous (Kornberg 1995; Hupfer et al. 2007; Rao et al. 2009; Seviour and Nielsen 2010) and 
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highlight (1) the presence of known EBPR PAOs as well as unknown PAOs, (2) support of the 

EBPR PAO phenotype in natural systems, and (3) the potential impact of PAOs on P cycling in 

freshwater environments. 

 

Marine Systems 

Marine systems discussed here include estuaries, coastal waters, and the open ocean. In near-

shore areas such as estuaries and the coast, alterations between anaerobic and aerobic conditions 

are greatly influenced by a combination of anthropogenic nutrient inputs—including their 

acceleration of primary production (Diaz and Rosenberg 2008)—and the mixing of stratified 

layers of the water column (Helm et al. 2011). In the open ocean, much like the deeper regions of 

lakes, alterations in anaerobic/aerobic conditions are driven by the mixing of stratified 

chemoclines caused by waves and wind (Helm et al. 2011). 

 

Compared to freshwater systems, the characterization of microbially-mediated P cycling in 

marine environments as related to PAOs is just beginning (Bjorkman 2014; Karl 2014). A 

number of studies have identified intracellular polyP granules in microorganisms found in 

marine waters and sediments (Schulz and Schulz 2005; Brock and Schulz-Vogt 2011; Diaz et al. 

2012; Martin et al. 2014; Zhang et al. 2015; Diaz et al. 2016). Researchers observed polyP 

accumulation by filamentous cyanobacteria (Leptolyngbya sp.) symbionts within marine sponges 

(Zhang et al. 2015). This same study verified the presence of ppk genes in these filamentous 

using degenerate PCR primers that were originally developed for EBPR PAOs. Another study 

found that phytoplankton accumulated more polyP in P-depleted regions of the Sargasso Sea 
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compared to regions that were more P-rich (Martin et al. 2014). Only a few researchers have 

linked O2 availability in the water column and sediments with some of the advancements learned 

from PAO-mediated P cycling in engineered systems. Namely, one study found that phosphate 

concentrations were ~3x greater in the redoxcline of a coastal basin compared to the surface 

(McParland et al. 2015). Another found that a decline in polyP in water samples from a coastal 

inlet was correlated with the emergence of hypoxia (Diaz et al. 2012). One study observed that 

the giant sulfur bacteria—identified as Thiomargarita namibiensis—accumulated polyP under 

oxic sediment conditions and released phosphate under anoxic sediment conditions similar to 

known EBPR PAOs (Schulz and Schulz 2005). While not focusing specifically on PAOs, 

researchers collected water column samples along an urban estuary transect (i.e., from inland to 

the open ocean) and verified the presence of known EBPR PAO bacterial classes as well as 

observed higher abundances of P metabolism-associated genes in the open ocean using, 

respectively, amplicon and shotgun metagenomic sequencing approaches (Jeffries et al. 2016). 

By applying shotgun metagenomic sequencing techniques on samples taken globally from the 

open ocean, researchers found that the abundances of ppk, ppx, and pst genes were inversely 

proportional to P availability in marine environments (Temperton et al. 2011). 

 

While not as numerous, studies of P cycling in marine systems expand our view of the many 

diverse microorganisms participating in P uptake and release as well as how changing 

environmental conditions (here, O2 and P availability) influence these biotic controls. 

Specifically, several studies noted the inverse relationship between P availability and polyP 

accumulation as well as P availability and P functional gene abundance, which supports the 
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hypothesis that polyP storage provides organisms with the ability to conserve energy and 

nutrients for future use. 

 

Soils 

It is fairly well understood that soil water saturation is proportional to O2 limitation because the 

soil pores restrict gas movement such that O2 demand is larger than O2 diffusion (Smith and 

Tiedje 1979; Silver et al. 1999; Chacon et al. 2008). Therefore, hydrological processes that alter 

soil wetting/drying events lead to subsequent alterations in anaerobic and aerobic conditions 

(Silver et al. 1999; Pett-Ridge and Firestone 2005; Chacon et al. 2008; Burgin and Groffman 

2012; Peralta et al. 2014). Besides O2 availability, scientists have suggested that hydrological 

processes may also influence PAO-facilitated P cycling and PAO survival in soils (Davelaar 

1993; Pett-Ridge and Firestone 2005). Specifically, as soils become saturated by rainfall, O2 

diffusion is reduced, soils become anaerobic, and PAOs release phosphate that was previously 

stored as intracellular polyP. The converse may occur in drying soils; soils dry out, become 

aerobic, PAOs take up phosphate, and store it as intracellular polyP. 

 

In terms of studies supporting the presence and role of PAO-mediated P cycling in soils, there 

are fewer examples as compared to all other natural systems. Three studies found evidence of 

CAP in soil (Kunin et al. 2008; Valdivia 2009; Archibald 2010) and two studies identified new 

PAOs in plant rhizosphere soil (DebRoy et al. 2013; Li et al. 2013). Bacteria occupying similar 

phylogenetic classes as known PAOs have been identified in soil (Pett-Ridge and Firestone 

2005; DeAngelis et al. 2010). With respect to the role of O2 availability and PAO-mediated P 
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cycling, soil mesocosms undergoing four hour alternating anaerobic/aerobic conditions had more 

Betaproteobacteria phylogenic assignments compared to the control (Pett-Ridge and Firestone 

2005). The model EBPR PAO, CAP, is a member of this class and while this association does 

not require these soil Betaproteobacteria assignments to be CAP, this finding highlights the 

potential to discover new PAOs in soil. 

 

Research Methods and Opportunities in Natural Systems 

Like engineered systems, more work is needed to expand our knowledge of PAO metabolism, 

functional genes, as well as community diversity, structure, and function in natural systems. 

Specific research areas include the study of (1) non-CAP PAOs (including bacteria, eukaryotes, 

and archaea), (2) uncommonly studied functional genes (e.g., ppx), and (3) microbial responses 

to changing environmental conditions (i.e., O2 and P availability). These microbial responses 

include anything from changes microbially-mediated P uptake and release, to changes in 

functional gene abundance, to changes in PAO community diversity, structure, and function. 

Many, if not all, of the tools discussed previously with respect to engineered systems can be 

applied to fill in these knowledge gaps. There are two additional tools—not discussed 

previously—that may be useful in verifying the PAO phenotype and test hypotheses related to 

the impact of O2 availability on their role in P cycling in natural systems. 

 

First, nanometer-scale secondary ion mass spectrometry (NanoSIMS) connects high resolution 

microscopy methods with elemental analysis and can be used to study environmental samples  

(Herrmann et al. 2007; Mueller et al. 2013; Kruse et al. 2015). For a review of NanoSIMS and 
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comparison to other microscopy techniques, including TEM and MAR-FISH, see (Gao et al. 

2016). NanoSIMS has been used to verify the presence of intracellular P stored as polyP (Sulu-

Gambari et al. 2016) and has been used to precisely investigate the 2D and 3D spatial 

distribution of P in soil (Kruse et al. 2015). It cannot be used to discern specific P molecules 

(Kruse et al. 2015) but can be used to study the spatial correlation between P and metals such as 

Fe, Al, Ca, and Mg (Hoppe et al. 2013; Kruse et al. 2015). Therefore, in addition to verifying the 

presence of intracellular polyP granules, TEM and NanoSIMS technique may help expand our 

understanding of the role these metals play in stabilizing the negative charge of intracellular 

polyP. It may also help us understand the role of these metals in protein function; PPK1, which 

synthesizes intracellular polyP chains, requires Mg (Table 1.3). 

 

Second, to assess knowledge gaps concerning the variation of P cycling in time and space, 

researchers may look toward recent advances in continuously logging water quality sensors (e.g., 

Cohen et al. 2013; Abell et al. 2013). In addition to being used to separate out abiotic and biotic 

controls on P, water quality sensors can be used to identify sources and pathways of nutrients in 

watersheds, quanitfy coupling between different nutrient cycles (e.g. between C and P) and 

measure water quality parameters across multiple scales including those that are more 

approapirate for microbial processes (Pellerin et al. 2016; Rode et al. 2016). However, it is 

important to calibrate sensors properly and be aware of potential barriers to their use (Fares et al. 

2016; Rode et al. 2016). 
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With respect PAO responses to changing environmental conditions and how this may influence 

water quality, opportunities exist to demonstrate whether and how PAOs play a role in the P 

cycling of natural systems. In addressing the ecological role of PAOs, we can learn from 

previous studies exploring the role of microbes in N and C cycling. Specifically, a central 

question to the field of environmental microbial ecology is whether understanding the diversity, 

structure, and function of microbial communities will enable us to predict ecosystem scale 

processes (Wallenstein and Hall 2012; Graham et al. 2014; Bier et al. 2015; Graham et al. 2016; 

Shade 2017). Several researchers have proposed general frameworks for linking microbial- and 

ecosystem- scale processes (e.g., Schimel and Gulledge 1998; Wallenstein and Hall 2012; 

Prosser 2013; Nemergut et al. 2014; Bier et al. 2015; Martiny et al. 2015). Microbes were 

originally left out of traditional theories of community ecology (Poisot et al. 2013). However, 

ways to integrate them have been proposed (Prosser et al. 2007) and may benefit our 

understanding of PAO community structure and survival in natural systems. In terms of 

experimental design, steps must be taken to ensure that microbial and environmental 

measurement timescales are compatible (Bier et al. 2015; Battin et al. 2016), that measurement 

bias for/against active microbial community members is understood (Schimel and Gulledge 

1998; Jones and Lennon 2010; Lennon and Jones 2011; Carini et al. 2016), and environmental 

variables (e.g., pH and temperature) that may influence microbial community diversity, structure, 

and function are accounted for in the experimental design (Schimel and Gulledge 1998; Fierer 

and Jackson 2006; Lauber et al. 2009; Rousk et al. 2011; Bier et al. 2015; Battin et al. 2016; 

Dinh et al. 2016; Oliverio et al. 2016). Given the goal of the experiment, it may also be necessary 

to consider microbial P cycling in the context of C and N cycling (Burgin et al. 2011; Bernhardt 

et al. 2017; Iho et al. 2017) as well as the impact of minerals (e.g., Fe- and Al-oxides), cations 
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(e.g., Mg2+ and Ca2+), and organic matter (OM) on P availability under alternating anaerobic and 

aerobic conditions (Hem 1963; Fleischer 1978; Bloom 1981; Carlton and Wetzel 1988; Dillon 

and Molot 1997; Hongve 1997; Lyons et al. 1998; Guppy et al. 2005; Hupfer and Lewandowski 

2008; White et al. 2008; Withers and Jarvie 2008; Gerke 2010a; Bird et al. 2011; Tye et al. 

2016). 

 

When designing an experiment, researchers may also benefit from asking: Is the goal of the 

study to describe a microbial community/trait or will the study test a hypothesis? Discovery-

based approaches, which help describe microbial communities and their function, can improve 

current methods of P gene quantification and extend our general understanding of the diversity 

and abundance of organisms and their P cycling genes in soils. They can also be used to develop 

PCR primers or FISH probes for new PAOs since current primers and probes mainly target only 

CAP PAOs (Table 1.4 and Table 1.5). Hypothesis-based approaches enable us to test for the 

influence of microbes on P availability given changes in environmental conditions like redox/O2 

availability by defining hypotheses (Prosser 2013; Poisot et al. 2013), using statistical techniques 

to test for significant linkages between microbial- and ecosystem-scale processes (Schimel and 

Gulledge 1998; Rocca et al. 2015; Bier et al. 2015; Bernhardt et al. 2017), and avoiding type II 

errors (Bier et al. 2015). A meta-analysis of over 400 studies found very few that used statistical 

approaches to test for a link between gene abundance determined via qPCR and C and N cycling 

rates (Rocca et al. 2014). Determining whether PAO-facilitated P cycling impacts water quality 

necessitates approaches that quantitatively test for this impact. Researchers are also encouraged 

to think about the specific statistical analysis methods they use. Correlation analysis is common 

but multivariate statistics and structural equation modeling may assist interpretations (Bier et al. 
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2015). The GUide to STatistical Analysis in Microbial Ecology (GUSTA ME; Buttigieg and 

Ramette 2014) is a useful resource for microbial ecologists with questions about statistical 

analysis. 

 

If researchers decide to use next generation sequencing techniques, they may look to previous 

studies for guidance on methods (Riesenfeld et al. 2004; Kozich et al. 2013; Ekblom and Wolf 

2014; Zimmerman et al. 2014; Pallen 2016), bioinformatics (Cock et al. 2009; Loman and 

Watson 2013; Howe et al. 2014; Shade and Teal 2015), and reproducible research (da Veiga 

Leprovost et al. 2014; Howe and Chain 2015; Shade and Teal 2015; Perez-Riverol et al. 2016). 

For soil studies, the RefSoil database can be used to annotate assembled shotgun soil 

metagenomes (Choi et al. 2016), which may prove important for studying PAO phyla and 

functional genes. As mentioned previously, there is only one study quantifying a wide range (i.e., 

not just CAP-related genes) of ppk and ppx genes in the environment (Temperton et al. 2011). 

Additionally, both amplicon and shotgun metagenomic sequencing approaches may improve our 

understanding of eukaryotic and archaeal PAOs. Finally, given the overwhelming amounts of 

data generated using next generation sequencing techniques, determining the ecological role of 

PAOs may necessitate testable hypotheses focusing on microbial traits such as the frameworks 

discussed by others (Wallenstein and Hall 2012; Fierer et al. 2014; Martiny et al. 2015).  

 

Mechanistic modeling may also prove helpful in extending the impact of PAOs to larger scales. 

We can learn a great deal from the approaches of studies such as those incorporating microbial 

processes into global C and N models (Todd-Brown et al. 2012; Wieder et al. 2013; Graham et 
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al. 2014; Manzoni et al. 2014; Reed et al. 2014; Powell et al. 2015; Graham et al. 2016). 

Commonly used watershed P transport models such as the Soil and Water Assessment Tool 

(SWAT; Gassman et al. 2007) do not explicitly incorporate microbial processes but doing so 

may prove helpful in evaluating the connection between microbial processes, ecosystem P 

processes, and water quality. 

 

Overall, there has been some feedback between natural and engineered systems with respect to 

the hypothesis that EBPR-like PAOs are present in the natural environment and are influencing P 

cycling; however, there are many opportunities to study PAO-mediated P cycling in natural 

systems. For example, soil microbial communities are considered some of the most complex 

(Dunbar et al. 2002; Gans et al. 2005; Tringe et al. 2005; Fierer and Jackson 2006; Schloss and 

Handelsman 2006; Howe et al. 2014; Hug et al. 2016; Nesme et al. 2016) and, when included, 

soil organisms greatly expanded the tree of life (Hug et al. 2016). Microbial soil habitats are also 

some of the most nutrient limited (Young and Crawford 2004) so the ability to store P and C at 

times of need, might be beneficial for PAOs. Therefore, research targeting PAO communities in 

the environment will broaden our overall understanding of PAO metabolism, functional genes, 

communities, and potentially enable us to apply this knowledge to (1) improve the functionality 

of EBPR WWTP and (2) reduce the impact of environmental P pollution. 

 

CONSIDERING BIOTIC CONTROLS IN AGRICULTURAL SYSTEMS 

Agricultural systems integrate traits of engineered and natural systems; conventional agriculture 

takes place within the context of natural systems and is ‘managed’ to achieve a specific goal 
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(e.g., maximum crop yield per acre) much like WWTPs are managed to ensure treatment of 

water to a predetermined standard. Therefore, we propose that agricultural systems represent an 

ideal setting to apply new knowledge of biotic controls on P cycling to improve and protect 

water quality (Figure 1.1). In addition, most P making its way to water bodies originates from 

terrestrial anthropogenic sources (Carpenter et al. 1998; Smil 2000; Bennett et al. 2001; Dodds et 

al. 2009; Dubrovsky et al. 2010; Maavara et al. 2015; Metson and Bennett 2015). Globally, P has 

accumulated in upland soils and river sediments at 3x the rate of pre-industrial times for both 

developing and developed nations (Bennett et al. 2001) and anthropogenic sources can account 

for over 50% of the average total P flux in rivers (Maavara et al. 2015). Of all anthropogenic 

sources, agriculture contributes a substantial—and often the largest—fraction of P loading to 

water bodies due to applications of inorganic fertilizer and manure to farmland (Bennett et al. 

2001; Alexander et al. 2008; Dubrovsky et al. 2010). For example, croplands, pasturelands, and 

rangelands cumulatively delivered approximately 80% of P to the Gulf of Mexico compared to 

all other land uses (Alexander et al. 2008).  

 

Current Agricultural Strategies for Reducing Phosphorus Pollution 

Agricultural water quality management strategies typically focus on reducing P transport by 

behavioral and abiotic means (i.e., chemically- and physically-based controls). The behavioral 

approach encourages farmers to use the “4R’s”: right source (i.e. balance nutrient inputs with 

crop needs), right timing, right placement, and right (application) rate (Good and Beatty 2011). It 

is recommended that P forms (e.g. inorganic fertilizer and manure) are applied at a time and 

place in the landscape where the probability of runoff generation is low (i.e. rainfall probability 

is low) and where the application rate of P balances what the crop needs with what the soil 
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provides. Chemically-based management strategies utilize soil amendments rich in Ca, Fe, and 

Al to adsorb P (Moore and Miller 1994; Stout et al. 1998; Callahan et al. 2002; Bryant et al. 

2012; Buda et al. 2012). Bioreactors with biochar, which has a high surface that immobilizes 

phosphate, may also provide some chemically-based P retention for surface and subsurface flows 

(Bock et al. 2015; Sharrer et al. 2016). Because most of the soil P pool is bound to OM, clay, and 

minerals, physically-based P management strategies focus primarily on reducing soil and 

sediment transport (Sharpley and Menzel 1987; Carpenter et al. 1998; Bennett et al. 2001; 

Gregory et al. 2007; Brady and Weil 2008; Prestigiacomo et al. 2016). Specific physically-based 

strategies for reducing erosion and/or promoting the settling of sediments include: the installation 

of constructed wetlands (Bergström et al. 2015), vegetated buffer strips (Tomer et al. 2014; 

Rittenburg et al. 2015), vegetated drainage ditches (Moore et al. 2010), incorporating manure 

applications (Kleinman et al. 2009; Kovar et al. 2011; Bergström et al. 2015), aerating soils to 

improve water infiltration (Johnson et al. 2011), and planting cover crops to halt sediment 

transport during the non-growing season (Kleinman et al. 2005; Kovar et al. 2011; Bergström et 

al. 2015). Chemical and physical controls have also been combined to reduce P losses. For 

example, adding gypsum to a vegetated buffer improved P retention (Watts and Torbert 2009). 

 

However, chemically- and physically- based management strategies do not always reduce P 

transport. At low application rates soil carbon (C) amendments reduce P losses in runoff because 

they improve soil aggregate stability; however, over application can cause soil to become a P 

source (McDowell and Sharpley 2003). Cover crops can lead to P accumulation at the surface if 

crops are left on the field (Jarvie et al. 2015; Jarvie et al. 2017). This leaves the surface soils at 

risk for becoming a P source during large storm events. No-tillage can enhance P transport due to 



 

62 

 

preferential flow through macropores unless soils are well drained (Kleinman et al. 2009; 

Verbree et al. 2010; Smith et al. 2015) and tile drains, used to improve infiltration rates, can 

increase soluble P losses if the trade-offs of coupled management strategies are not considered 

(Kleinman et al. 2015; Jarvie et al. 2015; Jarvie et al. 2017). Despite their application for long-

term P removal, woodchips may leach P during the start-up phase of agricultural bioreactors 

(Sharrer et al. 2016). Vegetated buffers and riparian soils can become sources of P (Lyons et al. 

1998; Young and Briggs 2008; Walter et al. 2009; Vidon et al. 2010; Young and Ross 2016) as 

can wetlands that are overwhelmed with high flows (Mitsch et al. 1995) or have accumulated a 

lot of sediment-bound P (Hill and Robinson 2012). Other studies have shown that arresting soil 

erosion is not enough to reduce P pollution because soluble P forms continue to be an issue 

(Jarvie et al. 2015; Smith et al. 2015; Garcia et al. 2016; Williams et al. 2016; Iho et al. 2017; 

Jarvie et al. 2017). 

 

Biological management strategies of P in agricultural settings typically rely on the crop to reduce 

P transport from the field to downstream water bodies. As mentioned previously, the 4R 

approach balances P supply to the crop (i.e., amount of P fertilizer applied) with the P demand of 

the crop (i.e., amount of P the crop requires for growth) so very little P is left over to be 

transported to downstream water bodies (Good and Beatty 2011). Another strategy utilizes 

fungal and bacterial amendments, which excrete compounds that mobilize soil-bound P, to 

increase P availability to crops (Rodríguez and Fraga 1999; Jeffries et al. 2003; Javot et al. 2007; 

Hayat et al. 2010; Baas et al. 2016; Tapia-Torres et al. 2016). In addition to physically halting 

the transport of sediment as discussed previously, wetland vegetation serves as a P sink—

although assimilation likely only lasts until vegetation decomposes (Richardson 1985; Reddy et 
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al. 1999). Wetland soils research also addresses the short-term role of microorganisms in P 

retention (Richardson 1985; Kellogg and Bridgham 2003; Noe et al. 2003; Scinto and Reddy 

2003). In a similar vein, researchers have noted this limited bio-accumulation of P in streams; 

biofilms accumulating P are sloughed off under high flows (Dodds 2003). As discussed in detail 

above, researchers have studied the impact of biological controls on P retention natural systems 

but there are still many open questions concerning specific organisms, their metabolic pathways 

for retaining P, and whether/how these biological processes may aid water quality management.  

 

The Role of Hydrology and Hydrologic Theory 

As previously discussed, hydrological processes supply water, and thus, alter O2 availability in 

soils and other natural settings. Hydrology may also supply limiting nutrients that 

microorganisms require (Hill et al. 2000; Groffman et al. 2009; Vidon et al. 2010; Bernhardt et 

al. 2017) and shape the diversity, structure, and function of microbial communities (Pett-Ridge 

and Firestone 2005; DeAngelis et al. 2010; Peralta et al. 2014). This is the guiding principle 

behind biogeochemical “hot spots”, which were first described by McClain et al. (2003) as 

regions of the landscape with proportionally higher biogeochemical reaction rates compared to 

the surrounding landscape mainly, but not exclusively, due to their hydrologic connectivity in 

space. Additionally, a wealth of research has been done to characterize the location and timing of 

areas in the landscape that undergo seasonal wetting/drying cycles (Beven and Kirkby 1979; 

Frankenberger et al. 1999; Easton et al. 2008b; Easton et al. 2008a; Buchanan et al. 2014)—

termed variable source areas (VSAs) by hydrologists (Hewlett and Hibbert 1967; Beven and 

Kirkby 1979; Dunne and Black 1970; Walter et al. 2000). VSAs commonly form in humid, well 

vegetated regions with steep slopes and shallow soils and may increase or decrease in size over 
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time and in space. VSAs are the main source of runoff in humid, hilly, regions such as the 

northeastern United States (Dunne and Black 1970; Walter et al. 2000).  

 

There is a great deal of evidence suggesting the overlap of P sources with frequently saturating 

areas of the landscape (Walter et al. 2000; Hooda et al. 2000; Macrae et al. 2005; Gburek et al. 

2002; Vidon et al. 2010; Franklin et al. 2013; Buchanan et al. 2013; Wilson et al. 2016) but 

specific mechanisms controlling P mobility in these areas of the landscape are poorly understood 

(Walter et al. 2009; Vidon et al. 2010; Bernhardt et al. 2017). This includes short-term 

mechanisms related to the wetting/drying of soils (including frequency thereof) as well as long-

term, seasonal mechanisms. In terms of microbial controls on nutrient cycling, the majority of 

“hot spot” and VSA research has focused on how microbes influence C and N cycling (e.g., Hill 

et al. 2000; Pett-Ridge and Firestone 2005; DeAngelis et al. 2010; Ouyang and Li 2013; Peralta 

et al. 2014). More research on P cycling is needed as well as the interactions between P, C, N, 

and other micronutrients (Vidon et al. 2010). While not focusing on specific metabolic 

mechanisms, several studies have looked at the role of microbes on P cycling in soils undergoing 

alternating periods of saturation/redox (Grierson et al. 1998; Silver et al. 1999; Turner and 

Haygarth 2001; Olander and Vitousek 2000; Chacon et al. 2008; Blackwell et al. 2010; 

Yevdokimov et al. 2016) but more work must be done to determine the extent of PAO 

representation in soil microbial communities and how they influence P cycling as it applies to 

water quality management. 
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Given the important role of hydrology in influencing microbial processes and the transport of P, 

the strength of current hydrologic theory to consider abiotic and biotic controls on nutrient 

cycling (i.e., hot spot and VSA theory), and the limitations of current hydrologic theories with 

respect to P cycling, we suggest that early hypotheses and experimental designs addressing the 

role of PAOs in agricultural systems may wish to consider the various tools discussed above 

(e.g., microscopy, qPCR, metagenomic sequencing) in the context of already established 

hydrological theories. For example, researchers may wish to consider how the impact of PAO-

mediated P cycling varies in time and space (1) across O2 availability/soil moisture gradients, (2) 

across co-nutrient (e.g., C) gradients, (3) alongside other microbial process (e.g., denitrification), 

and (4) alongside abiotic controls on P. 

 

Example Research Focus Areas and Questions for Agricultural Systems 

1. Legacy Soil P - Legacy soil P is an ongoing issue in historically cultivated landscapes and 

necessitates more aggressive P management strategies because the continuous re-release of P to 

nearby water bodies can last for > 10 years even after fertilizer application has been completely 

stopped (Sharpley and Rekolainen 1997; Carpenter 2005; Gregory et al. 2007; Kleinman et al. 

2011a; Sharpley et al. 2011; Sharpley et al. 2013; Jarvie et al. 2013; Haygarth et al. 2014; 

Powers et al. 2016; Cassidy et al. 2017). Questions - What role do PAOs play in liberating P 

from soils rich in legacy P? How do PAOs interact with phosphate solubilizing microbes to 

determine P availability? How do the roles of these microorganisms in P cycling compare to 

abiotic processes? Can PAOs be cultivated in existing management structures (e.g., bioreactors) 

to ‘catch’ legacy P before it is transported to water bodies? What is the role of PAOs in natural P 

barriers (e.g., stream biofilms) to legacy P loads? How do storm events impact this storage? How 
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can we incorporate this storage into management strategies and downstream algal bloom 

predictions? 

 

2. Rhizosphere Ecosystems and Irrigation - Two studies documented the presence of PAOs in 

rhizosphere soil (DebRoy et al. 2013; Li et al. 2013). Questions - What percentage of rhizosphere 

soil microbial communities are made up of PAOs and what role (if any) do they play in crop 

growth? How does this vary with different crops or combinations of crops? How does their role 

compare to abiotic controls on P? Do crop irrigation strategies influence the abundance and 

function of PAO communities? What is the impact of PAOs on water quality under different 

irrigation regimes? How does this impact compare to abiotic controls on P? 

 

3. P Recycling – Global mineral P stores are geographically limited (Jarvie et al. 2015) and many 

locations are beginning to consider P recycling programs for agricultural (Withers et al. 2014; 

Jarvie et al. 2015) as well as urban (Metson and Bennett 2015) systems. Questions - Can PAOs 

play a role in P recycling within an agricultural field? How do we optimize this role while also 

considering abiotic controls on P cycling? 

 

SUMMARY 

Anthropogenic P sources continue to impact the water quality of lakes, rivers, and streams 

(Carpenter et al. 1998; Carpenter 2005; Dodds et al. 2009; Dubrovsky et al. 2010; Hudnell 2010; 

Kleinman et al. 2011a; Sharpley et al. 2013; Obersteiner et al. 2013; Jarvie et al. 2013; Jarvie et 

al. 2015; Garcia et al. 2016; Jarvie et al. 2017) and it is plausible that effective management of 



 

67 

 

non-point source anthropogenic P has been difficult to achieve due to our limited understanding 

of the role microbial controls on P cycling in soils. In this review, we synthesize current evidence 

of PAO-mediated P cycling in engineered and natural systems (i.e., streams, lakes, soils, 

estuaries, and oceans), highlight knowledge gaps, and suggest tools as well as approaches to 

overcome these gaps. There is a great deal of opportunity to explore the presence and ecological 

role of PAOs in natural systems. Further, the integration of these findings with existing 

knowledge of engineered and agricultural systems may provide a more holistic approach for 

reducing P pollution and improving water quality in the environment.  
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CHAPTER 2  

EVIDENCE FOR POLYPHOSPHATE ACCUMULATING ORGANISMS (PAO)-MEDIATED 

PHOSHPHORUS CYCLING IN STREAM BIOFILMS UNDER ALTERNATING 

AEROBIC/ANAEROBIC CONDITIONS1 

 

Sheila M. Saia, Patrick J. Sullivan, John M. Regan, Hunter J. Carrick, Anthony R. Buda, 

Nicholas A. Locke, M. Todd Walter 

 

ABSTRACT 

Phosphorus (P) availability often limits primary production in freshwater ecosystems and 

excessive P inputs promote accelerated eutrophication. Microbial mechanisms may control O2-

dependent uptake/release of P in stream sediments and biofilms, but specific organisms 

responsible for these cycles have not been identified. Polyphosphate accumulating organisms 

(PAOs) are purposely enriched in treatment plants to remove P from wastewater. PAOs release P 

under anaerobic conditions and take it up under aerobic conditions. We hypothesized that 

alternating aerobic/anaerobic conditions promote patterns of P uptake/release like PAOs in 

wastewater treatment. We collected intact, native stream biofilms and subjected them to 

laboratory treatments to impose conditions similar to what may occur because of diel oxygenic 

and respiratory cycles: 1) continuous sparging with air and 2) alternate sparging with air or 

anaerobic gas (20:80% by volume CO2:N2). We monitored phosphate (PO4
3–), Ca, Mg, total Mn, 

K, Fe2+, and total S concentrations in the water during the experiment and total P (TP) and 

                                                 
1 Published in: Freshwater Science. 2017, DOI: 10.1086/691439. 



 

90 

 

polyphosphate (polyP) concentrations in the biofilms at the start and end of the experiment. We 

used microscopy and polymerase chain reaction (PCR) to quantify the percentage of cells with 

stored intracellular polyP and to test for known PAO genes, respectively. The water had 

significantly greater dissolved PO4
3– concentrations during anaerobic than during aerobic 

conditions. Ca, K, Mg, and total Mn concentrations mimicked PO4
3– concentrations over time, 

but Fe2+ and total S concentrations did not. Precipitation of Ca and Mg and reductive dissolution 

of Mn may have influenced P cycling. Percent microbially stored intracellular polyP was nearly 

3× greater in aerobic than anaerobic conditions. We did not find previously reported PAO genes 

in our biofilms, indicating the presence of novel polyP accumulators. Combined biotic and 

abiotic processes may be important in controlling short-term P cycling in stream biofilms. 

 

INTRODUCTION 

Eutrophication of streams resulting from excess P has been an issue of world-wide importance 

for the past 50 y (Dubrovsky et al. 2010, Jarvie et al. 2013). P dynamics in streams are controlled 

by a combination of chemical, physical, and biological processes (Reddy et al. 1999, Dodds 

2003, Withers and Jarvie 2008, Cohen et al. 2013), but discrepancies remain between upstream 

nutrient reductions and downstream responses. Thus, further description and quantification of 

key mechanisms governing P dynamics is needed (Davelaar 1993). In most stream environments, 

biotic processes constitute a larger percentage of P uptake—from 66% to 91% of the total—than 

do abiotic processes (Reddy et al. 1999, Cohen et al. 2013). When P is taken up, from 10 to 

>50% of the P in stream biofilms can be stored as intracellular polyphosphate (polyP; Taylor 

2016, Rier et al. 2016). Stream biofilm assemblages also alter pH and dissolved O2 (DO) 

concentrations, which influence the chemical reactivity of P with Ca, Fe, clays, and other metal 
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oxides (Carlton and Wetzel 1988, Hongve 1997, Dodds 2003, Withers and Jarvie 2008, Tye et al. 

2016). 

 

However, explanations and modeling of P dynamics in streams have largely (if not solely) drawn 

on chemical and physical controls (Davelaar 1993, Hupfer and Lewandowski 2008). Previous 

investigators hypothesized that alternating redox conditions in sediments may favor organisms 

capable of storing polyP and these organisms may affect water-column P concentrations 

(Davelaar 1993, Reddy et al. 1999, Hupfer et al. 2007, 2008, Hupfer and Lewandowski 2008, 

Diaz et al. 2012, McMahon and Reed 2013). Observations from wastewater treatment may offer 

important insight into the influence of biofilms on P cycling in streams (Davelaar 1993, Reddy et 

al. 1999, Hupfer et al. 2007, McMahon and Reed 2013) because polyphosphate accumulating 

organisms (PAOs) have been used as a key element of enhanced biological P removal (EBPR) to 

treat wastewater (Seviour et al. 2003). In EBPR wastewater treatment, condensation of 

intracellular polyP leads to removal of PO4
3– by PAOs in the water column (Hesselmann et al. 

1999, Seviour et al. 2003). Hesselmann et al. (1999) were the first to identify the model PAO 

species Candidatus Accumulibacter phosphatis (CAP), from a sequencing batch reactor seeded 

with EBPR sludge. The metabolism of CAP and of PAOs in general depends on the alternating 

aerobic/anaerobic conditions of the EBPR process (Hesselmann et al. 1999). 

 

During anaerobic conditions, PAOs, such as CAP, use energy derived from hydrolysis of stored 

polyP to take up energy-rich volatile fatty acids, like acetate, and store them as polymers, such as 

polyhydroxyalkanoates (Hesselmann et al. 1999, Seviour et al. 2003). Hydrolysis of polyP leads 
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to release of PO4
3– from the cell into the water column. During aerobic conditions, PAOs use 

energy from polyhydroxyalkanoate oxidation to replenish polyP stores, resulting in luxury 

uptake of PO4
3– from the surrounding water. Their ability to store electron donors intracellularly 

during anaerobic periods enables PAOs to thrive over other microorganisms (Seviour et al. 

2003). Diverse assemblages of PAOs have been found in EBPR sludges (Nakamura et al. 1995, 

Liu et al. 2001, Zilles et al. 2002, Kong et al. 2005, 2007, Nguyen et al. 2011, 2012, Albertsen et 

al. 2012, Kristiansen et al. 2013), indicating this P uptake/release metabolism may be used by 

diverse microorganisms. 

 

EBPR PAOs have been identified in stream and lake sediments (Kunin et al. 2008, Peterson et al. 

2008, Martins et al. 2011), and polyP has been identified in sediment-dwelling organisms 

(Uhlmann and Bauer 1988, Hupfer et al. 1995, 2004, Schulz and Schulz 2005, Sulu-Gambari et 

al. 2016) and in stream biofilms (Rier et al. 2016). Several investigators have shown the effect of 

changing environmental conditions on P uptake and release in the water column. Stream P 

concentrations decreased in the daytime and increased at night (Cohen et al. 2013, Sherson et al. 

2015). Furthermore, water-column P concentrations overlying epipelic algae and sediments 

under aerobic conditions were lower than water-column P concentrations under anaerobic 

conditions (Carlton and Wetzel 1988, Gächter et al. 1988). 

 

A number of investigators have used polyP detection techniques to study P storage dynamics on 

long time scales. PolyP was found in surface sediment extracts taken monthly and was associated 

with intracellular polyP granules but was not found at depth (Hupfer et al. 1995). In a survey of 
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22 European lakes, polyP was found in surface sediment extracts but not at depth (Hupfer et al. 

2004). In another lake, a shift from aerobic to anaerobic conditions at the sediment water 

interface was accompanied by a decrease in polyP concentrations from monthly sediment 

extracts (Amirbahman et al. 2013). Water-column samples from a coastal inlet showed a 

correlation between polyP disappearance and the emergence of hypoxia (Diaz et al. 2012). In 

streams, biofilm sampled 1 d after P pulses associated with storm runoff had more stored polyP 

than biofilms sampled before the pulse (Rier et al. 2016). To our knowledge, no study of stream 

biofilms has linked water-column P patterns with polyP storage during short-term (i.e., hourly) 

alternating aerobic/anaerobic conditions. 

 

Stream biofilms are an interesting system in which to study how coupled biological, chemical, 

and physical processes—including the potential role of PAOs—influence stream P cycling under 

changing environmental conditions. Our objective was to assess whether alternating 

aerobic/anaerobic periods were coupled with water-column PO4
3– concentration and intracellular 

polyP storage in stream biofilms. We hypothesized that alternating aerobic/anaerobic conditions 

in stream biofilms lead to patterns in P uptake/release, respectively, from organisms in the 

biofilm. We tested our hypothesis by monitoring the concentration of PO4
3– and other analytes in 

water samples taken from sealed tubs over time in the laboratory under alternating 

aerobic/anaerobic conditions. We also took biofilm samples at the start and end of the 

experiment and analyzed them for the percentage of intracellular polyP granules, presence of 

model PAO genes, and TP and polyP concentrations. 
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METHODS 

Site Description 

Our study site was a 2nd-order stream, Cascadilla Creek, near Ithaca, New York (Figure 2.1A). 

The stream is underlain by Upper Devonian shale (King and Beikman 1974), and bed material 

consists of primarily medium- to large-sized cobbles. The Cascadilla Creek Watershed (CCW) is 

a subwatershed of the Cayuga Lake Watershed and larger Owasco River Basin. The watershed 

has a drainage area of 3400 ha, and the predominant land cover upstream of the sample site is 

deciduous/mixed forest and agricultural land (Jin et al. 2013). Other than a baseline sample taken 

at the start of our experiment (i.e., 0 h), nutrient concentrations have not been characterized for 

this ungauged watershed. However, information is available for larger surrounding watersheds 

with similar land-cover distributions—the Fall Creek and Six Mile Creek Watersheds (Table 

2.1). For context, from late 2002 to early 2015 Fall Creek and Six Mile Creek had average 

sample TP concentrations of 0.18 and 0.06 mg L-1, respectively (USGS 2012, CSI 2015). 

Average sample total Kjeldahl N (TKN) concentrations for Fall Creek and Six Mile Creek during 

the same period were 0.80 and 0.34 mg L-1, respectively (USGS 2012, CSI 2015). 
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Figure 2.１ A. Location of the study site in the Cascadilla Creek Watershed in Tompkins 

County, New York. B. Photograph of Cascadilla Creek. C.—Stream cobbles in sealed containers 

with native stream water used in the experiment. 

 

Table 2.１ Land cover (LC) percentages for the ungauged study watershed, Cascadilla Creek, 

and nearby gauged watersheds, Six Mile Creek and Fall Creek. 

Description 

Cascadilla Creek LC 

(%) 

Six Mile Creek LC 

(%) Fall Creek LC (%) 

Developed 8.5 6.2 6.6 

Forest 54.5 57.7 33.3 

Agriculture 22.1 21.2 44.3 

Wetlands 8.6 6.7 7.2 

Open Water 0.1 0.3 0.4 

Grassland/Shrubs 6.2 7.9 8.2 
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Biofilm Collection and Experimental Design 

We collected 7 cobbles from the stream. We kept 3 of them unsubmerged. Upon returning to the 

laboratory, we immediately processed unsubmerged biofilms for polyP and TP extractions, 

microscopy, and PCR. We kept the remaining 4 cobbles (average exposed benthic biofilm 

surface area excluding the bottom ≈ 40 cm2) submerged in 2 sealed tubs with stream water in the 

laboratory (Figures 2.1B and 2.1C). We stirred the water in the tubs continuously with a stir bar 

and sparged the water with air to establish baseline conditions before the start of the experiment. 

 

The emphasis of this experiment was to evaluate short-term P dynamics over time under varying 

O2 levels in a controlled laboratory environment rather than a more global (i.e., spatial) 

assessment of P dynamics in streams. Measuring all parameters at each sampling point was time 

consuming. Therefore, we used only 1 tub per treatment. To offset this limitation, we increased 

the number of samples taken and duration of the experiment to include 2 aerobic/anaerobic 

cycles, which served as a replication in time. We did not include a negative control tub with bare 

cobbles in this experiment. 

 

Water in the treatment 1 (T1) tub was sparged alternately with air for 12 h (aerobic period: 

0900–2100 h) with a mixed anaerobic gas (20:80% by volume CO2:N2) for 12 h (anaerobic 

period: 2100–0900 h). This cycle was repeated twice. Thus, the total experimental duration was 

~48 h. Water in the treatment 2 (T2) tub was continuously sparged with air for the entire 

experiment. We illuminated both tubs with a 12 W light-emitting diode (LED) growing light 

(BloomBoss Spot, Framingham, Massachusetts) from 0900-2100 h and covered them from 2100-
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0900 h to mimic day and night conditions, respectively, and maintain algal growth. The average 

photosynthetically active radiation (PAR) emitted by the growing light was within the 0.3 to 50 

mol m–2 d–1 range reported by other investigators (Mulholland et al. 2001, Julian et al. 2011). 

We added a C source composed of 20 mg acetate L-1 (sodium acetate salt) to both tubs at 2100 h 

each evening of the experiment. We used acetate because it is considered to be the preferred C 

source of bacteria in the wastewater treatment process. The acetate concentration we used was 

within the range observed in streams (~2–22 mg acetate L-1; Johnson et al. 2009). The 

experiment ended at 0900 h when T1 had completed the 2nd anaerobic period and T2 was 

aerobic (see Figure 2.2 for a schematic of the experimental design). 

 

 

Figure 2.２ Experimental design schematic for treatment 1 (T1) and treatment 2 (T2). 

Environmental measurements and water samples collection times are shown as vertical lines. See 

the methods section for further description. 
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Water Sampling and Analysis 

We measured environmental variables including pH (AR50; Fisher Scientific Accumet Research, 

Waltham, Massachusetts), DO (YSI 550A; Yellow Springs Instruments, Yellow Springs, Ohio), 

temperature (AR50, YSI 550A), and light intensity (Hobo Pendant Temperature/Light Data 

Logger UA-002-XX; Onset Corporation, Bourne, Massachusetts) in both tubs over the duration 

of the experiment. We took water samples from each tub at regular intervals (i.e., at 30 min, 1, 

2.5, 5, 7, 11, and 12 h) over the duration of the experiment (vertical lines in Figure 2.2). We 

collected each water sample with a 10-mL syringe and filtered the sample through a 0.45-μm 

filter (Supor Membrane Disc Filter, 25-mm diameter; Pall Life Sciences, Port Washington, New 

York). Immediately after filtration, we used a 23-gauge needle (BD 305165; Becton–Dickinson, 

Franklin Lakes, New Jersey) to transfer 1 mL of the filtered sample to an evacuated 10-mL glass 

vial, filled the vial with N2 gas, and stored the sample for future Fe2+ analysis. To halt potential 

microbial cycling of nutrients, we added 10 μL of 30% H2SO4 to the remaining 9 mL of filtered 

sample before storing it at 4°C until analysis (within 1 wk). We maintained the water level in the 

tubs at 1 L by adding 10 mL of distilled water after each sampling event. We had replaced ~25% 

of the water by the end of the experiment. 

 

We analyzed water samples in duplicate (i.e., n = 2 laboratory replicates/sample) for dissolved 

PO4
3– (as PO4

3–-P) with the Mb-blue method (USEPA 1978) on an automated wet-chemistry 

analyzer (FS3000; Xylem Analytics O.I. Analytical, Beverly, Massachusetts). We averaged 

laboratory replicates and used these averages for all statistical analyses. The standard deviations 

of these laboratory replicates were <0.001 mg PO4
3–-P L-1 (nonnormalized concentration) for all 

samples. We also analyzed water samples for dissolved concentrations of Ca, K, Mg, total Mn, 
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and total S using an Inductively Coupled Plasma-Mass Spectrometer (ICP-MS; Thermo Jarrell 

Ash, Franklin Massachusetts) and corrected them for S added during acidification. We analyzed 

evacuated samples for dissolved Fe2+ with the ferrozine assay (Lovley and Phillips 1986) 

adapted for a plate reader. We added 4 μL of filtered sample and 196 μL of 2 mM ferrozine (pH 

7.0) made up in 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer 

solution to each well of a 96-well plate (Corning 3595; Corning, Corning, New York) and 

analyzed with a plate reader (Tecan Infinite M200 Pro, Tecan, Männedorf, Switzerland) at 562 

nm. All analyte concentrations discussed henceforth refer to the dissolved form. 

 

Biofilm Extractions and Microbial Preservation 

We scraped biofilms from cobbles at the start and end of the experiment and saved them for 

analyses including polyP and TP extractions, cell counts, and PCR (Figure 2.2). We normalized 

water-quality variables against the mass of wet biofilm scraped from each tub and biofilm 

extractions by total surface area of cobbles in each tub. Normalization was necessary because 

cobbles were not exactly the same size and stream biofilm cover was not always uniform. We 

measured cobble surface area with the aid of ImageJ software (version 1.48; Rasband 2014). 

PolyP and TP extracts were restricted to n = 2 replicates/treatment because of the limited 

quantity of biofilm scraped from the cobbles. We used 1 g (n = 2 replicates/treatment) of wet 

scrapings to estimate biofilm polyP concentration according to the hot-water extraction method 

presented by Eixler et al. (2005) and 2 g (n = 2 replicates/treatment) of wet scrapings/tub to 

estimate biofilm TP using the standard ammonium persulfate digestion (USEPA 1978). After 

digestion, we filtered biofilm polyP and TP extractions through a 0.45-μm filter and analyzed the 
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PO4
3– (as PO4

3–-P) concentration of each with standard Mb-blue methods (USEPA 1978) on with 

an automated wet-chemistry analyzer (FS3000). 

 

We fixed 2 portions per treatment of ~0.5 mL of wet biofilm immediately after scraping. To do 

this, we incubated the 0.5 mL of biofilm with 1.5 mL of freshly prepared 4% paraformaldehyde 

in a 1× phosphate-buffered saline (PBS) solution for 1.5 h, washed the sample twice with 1× 

PBS by spinning the sample at 9000 g for 2 min and removing supernatant, and stored it in 1:1 

1× PBS–95% ethanol at –20°C until cell counts were made. We stored the remaining biofilm 

unfixed at –20°C for DNA extraction and PCR analysis. 

 

Cell Counts 

We homogenized preserved biofilm samples (n = 2 replicates/treatment) further by repeatedly 

flushing the sample through a 26-gauge needle (30×/sample). We added 50 μL of 10-μg/mL 

4’,6-diamindino-2-phenylindole (DAPI) to 50 μL of homogenized sample to obtain a final DAPI 

concentration of 5 μg mL-1 as suggested by Hung et al. (2002) for polychromatic polyP staining. 

We stored stained samples in the dark at 4°C for 3 h. After the staining period, we centrifuged 

samples at 9,000 g for 2 min and replaced the supernatant with 1× PBS. We diluted samples 

400× with 1× PBS, vortexed them briefly, and filtered 1 mL of each dispersed, diluted sample 

onto a 0.2–μm black filter (GTBP02500 Isopore Membrane Filter, 25 mm diameter; EMD 

Millipore, Darmstadt, Germany). We placed the black filter on a glass microscope slide with 15 

μL of 0.1% p-phenylenediamine solution (anti-fade) in 1:1 PBS–glycerol under the filter and 

between the filter and the coverslip. We stored slides in the dark at 4°C until cell counts could be 
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made on an epifluorescence microscope (BX53F; Olympus, Tokyo, Japan) at 100× 

magnification with immersion oil. We counted DAPI-DNA stained cells on 10 randomly chosen 

fields/sample with a standard DAPI filter set (excitation 387/11, dichroic 409, emission 447/60) 

and counted DAPI–polyP stained cells on the same 10 fields with a modified DAPI filter set as 

described by Hung et al. (2002) but adapted for a color camera (excitation 360/70, dichroic 400, 

emission 420 long pass). Cells with stored polyP granules appeared light blue on the DAPI–

DNA filter set and yellow under the DAPI–polyP filter set. We used cell counts to obtain 

measurements of the percentage of cells with stored polyP granules. We used 10 views/sample 

and 2 samples/treatment, resulting in 20 views/treatment. 

 

Polymerase Chain Reaction (PCR) Analysis 

We extracted DNA from each unfixed biofilm sample (n = 2 replicates/treatment) with a MoBio 

PowerSoil DNA Isolation Kit (12888, Qiagen MoBio, Germantown, Maryland) and tested 

samples for known PAO genes with PCR primers. We used the 518f/846f and 763f/1170r primer 

pairs and PCR conditions suggested by He et al. (2007) to test for the presence of CAP 16S 

rRNA and CAP type I ppk1 genes, respectively. We obtained positive controls from the anoxic 

zone of the University Area Joint Authority wastewater treatment plant in State College, 

Pennsylvania, which uses the EBPR process. 

 

Statistical Analysis 

We conducted all statistical analyses in R (version 3.0.2; R Project for Statistical Computing, 

Vienna, Austria). We used a generalized additive model (GAM) to test whether the experimental 
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treatment had an effect on PO4
3– concentration as a function of time. We applied the GAM using 

the mgcv package (Wood 2006, 2015, Zuur 2009). The general form of the model is given as: 

Y ~ s(t, by T1) + s(t, by T2) + ε    (Equation 2.1) 

where Y represents the response variable, t represents time, the function s( ) represents the 

additive response smoothed over time conditioned on treatment 1 (T1; alternating 

anaerobic/aerobic conditions) and treatment 2 (T2; aerobic conditions only), and ε is the mean 

zero Gaussian random error. We used time as the main GAM predictor. Our analysis focused on 

changes in PO4
3– concentration, but the response of other inorganic molecules also was of 

interest. Thus, we used the GAM to assess whether the treatment affected Ca, K, Mg, total Mn, 

Fe2+, and total S concentrations over time. We used linear models to quantify correlations of 

PO4
3– concentrations with other inorganic molecules. We compared the quality of these linear 

models using the Akaike information criteria (AIC). A lower AIC value indicates a better model 

fit. We used a 1-way analysis of variance (ANOVA) accompanied by Tukey pairwise 

comparison tests to identify statistically significant treatment groups (start, end of T1, end of T2) 

for both polyP and TP biofilm extracts. We used a 2-sample t-test to compare the percentage of 

cells with polyP granules at the end of T1 to the percentage at the end of T2. 

 

RESULTS 

Phosphate (PO4
3–) Cycling 

We induced cyclic redox conditions in T1 that produced a pattern of PO4
3– release and uptake 

that was not seen in T2. The pattern in T1 differed significantly from the null model (p < 0.001; 

Figure 2.3, Table 2.2). During anaerobic conditions, PO4
3– concentrations in T1 peaked at 0.009 
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and 0.005 mg PO4
3–-P L–1 g–1 wet biofilm for cycles 1 and 2, respectively. During aerobic 

conditions, PO4
3– concentrations in T1 decreased to ~0.002 mg PO4

3–-P L–1 g–1 wet biofilm and 

converged with PO4
3– concentrations in T2 (Figure 2.3). In the continuously aerobic control (T2), 

PO4
3– concentration was ~0.002 mg PO4

3–-P L–1 g–1 wet biofilm for the duration of the 

experiment (Figure 2.3). This pattern did not differ from the null model (p = 0.28; Table 2.2). 

 

 

Figure 2.３ Observed (points) and modeled (lines) PO4
3–-P concentrations in the surrounding 

water normalized by mass of wet biofilm in the tub as a function of time for treatment 1 (T1; 

alternating anaerobic/aerobic conditions) and treatment 2 (T2; aerobic conditions only). Black 

bar indicates periods when T1 was anaerobic. Unmarked periods for T1 were aerobic. Samples at 

0 h were taken in the stream and the remaining samples were taken in the laboratory. 
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Table 2.２Generalized additive model results for treatment 1 (T1; alternating anaerobic/aerobic conditions) and treatment 2 (T2; 

aerobic conditions only). SE = standard error, TS = total S, TMn = total Mn. 

  PO4
3–-P ~ time Ca ~ time K ~ time Mg ~ time TMn ~ time Fe2+ ~ time TS ~ time pH ~ time 

Comparison to null model      
 

   Estimate (intercept) 2.19 × 10–3 3.2 0.35 0.86 –0.14 0.11 18.52 4.66 

   SE 8.67 × 10-5 0.16 0.04 0.08 0.03 0.02 0.85 0.59 

   t 25.23 20.11 9.37 10.15 –5.43 4.63 21.88 7.85 

   p <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

T1 smooth term        

   F 77.41 116.76 29.23 7.84 148.22 2.84 3.78 9 

   p <0.001 <0.001 <0.001 <0.001 <0.001 0.08 0.03 <0.001 

T2 smooth term        

   F 1.21 10.96 4.7 34.22 14.76 4.79 0.58 17.4 

   p 0.28 <0.001 0.002 <0.001 <0.001 0.04 0.45 <0.001 

Deviance explained (%) 95 98.1 97.3 94.3 97.5 38 14.5 76.6 
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Biogeochemical Feedbacks 

We assessed the uptake and release of other inorganic analytes over time to examine alternative 

controls on PO4
3– cycling (Table 2.2, Figures 2.4A–F). In T1, among the analytes studied, only 

Fe2+ and total S concentrations (alternating anaerobic/aerobic conditions) did not exhibit 

discernable cycles of uptake and release (Figures 2.4A and 2.4B). The GAM confidence intervals 

for the 2 treatments overlapped for both Fe2+ and total S, and the model explained only 14.5 and 

38.0% of the deviance for Fe2+ and total S, respectively (Table 2.2). Total Mn concentrations 

mimicked PO4
3– concentrations in T1 (Figure 2.4C), and patterns in both treatments were 

significantly different from the null model (Table 2.2). In T1, peak total Mn concentrations 

during the 1st and 2nd anaerobic cycles increased from 0.05 to 0.15 mg total Mn L–1 g–1 wet 

biofilm, respectively (Figure 2.4C). In T1, Ca, K, and—to a lesser extent—Mg concentrations 

showed clear patterns of uptake/release under aerobic/anaerobic conditions, respectively (Figures 

2.4D–F). In both treatments, patterns for Ca, K, and Mg differed significantly from the null 

model (Table 2.2). During anaerobic periods in T1, peak concentrations of Ca and K were 

consistent in time and equal to ~8.5 and ~0.55 mg L–1 g–1 wet biofilm, respectively, (Figures 

2.4D and 2.4E). During aerobic conditions, Ca concentrations in T1 converged with 

concentrations in T2 (~4 mg L–1 g–1 wet biofilm) and K concentrations in T1 approached 

concentrations in T2 (~0.3 mg L–1 g–1 wet biofilm). Similar to PO4
3– the peak Mg concentration 

in T1 during the 1st and 2nd anaerobic cycles decreased from 1.4 to 1.2 mg L–1 g–1 wet biofilm, 

respectively (Figure 2.4F). However, in contrast to PO4
3–, the Mg concentration decreased 

consistently over time in T2. This decrease suggests that the lower Mg peak during the 2nd 

anaerobic period of T1 may be a result of dilution effects, whereas the lower PO4
3– peak during 

T1 is not (Figures 2.3 and 2.4F). We used linear models to further explore the importance of 
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measured inorganic compounds in relation to PO4
3– cycling (Table 2.3). According to linear 

model results, concentrations of Ca, K, and Mg were significantly related to PO4
3– concentration 

(Table 2.3). The PO4
3– vs Ca model had the most explanatory power (lowest AIC = –271.69; 

Table 2.3), followed by the PO4
3– vs K, total Mn, and Mg models in order of decreasing 

explanatory power. 

 

Table 2.３ Linear model results for PO4
3–-P vs concentrations of Ca, K, Mg, total Mn (TMn), 

Fe2+, and total S (TS) measured in the surrounding water for treatment 1 (T1; alternating 

anaerobic/aerobic conditions). SE = standard error, AIC = Akaike Information Criterion. 

  Estimate SE t p AIC 

PO4
3–-P ~ Ca model 

    
–271.69 

   Intercept –5.98 × 10–4 8.52 x 10–4 –0.70 0.49 
 

   Slope 7.82 × 10–4 1.27 x 10–4 6.18 <0.001 
 

PO4
3–-P ~ K model 

   
–267.41 

   Intercept –5.32 × 10–3 1.84 × 10–3 –2.89 0.008 
 

   Slope 2.03 × 10–2 3.79 × 10–3 5.36 <0.001 
 

PO4
3–-P ~ Mg model 

  
–251.34 

   Intercept –5.16 × 10–3 4.60 × 10–3 –1.12 0.27 
 

   Slope 7.73 × 10–3 3.68 × 10–3 2.1 0.05 
 

PO4
3–-P ~ TMn model 

  
–256.88 

   Intercept 3.80 × 10–3 3.71 × 10–4 10.25 <0.001 
 

   Slope 2.67 × 10–2 8.01 × 10–3 3.34 2.73 x 10–3 

PO4
3–-P ~ Fe2+ model 

  
–75.16 

   Intercept 5.54 × 10–4 8.21 × 10–4 6.75 <0.001 
 

   Slope –5.53 × 10–2 3.13 × 10–2 –1.77 0.13 
 

PO4
3–-P ~ TS model 

   
–250.43 

   Intercept 9.32 × 10–4 1.93 × 10–3 0.48 0.63 
 

   Slope 1.63 × 10–4 8.80 × 10–5 1.85 0.07   
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Figure 2.４ Observed (points) and modeled (lines) concentrations of Fe2+ (A), total S (B), total 

Mn (C), Ca (D), K (E), and Mg (F) in the surrounding water normalized by mass of wet biofilm 

in the tub as a function of time for treatment 1 (T1; alternating anaerobic/aerobic conditions) and 

treatment 2 (T2; aerobic conditions only). Black bar indicates periods when T1 was anaerobic. 

Unmarked periods for T1 were aerobic. Samples at 0 h were taken in the stream and the 

remaining samples were taken in the laboratory. 
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The Role of PolyP Storage in Stream Biofilms 

At the end of the experiment, the percentage of biofilm cells with stored polyP visualized with 

epifluorescence microscopy was significantly higher for aerobic (T2) than anaerobic (T1) 

treatments (p = 0.004; Figure 2.5A). The average percentages of cells with stored polyP were 6.4 

and 18.9% for T1 and T2, respectively. A sample microscopy image taken of the T2 biofilm 

sample shows a typical cell (white arrow in Figure 2.5B) with stored polyP (white arrow in 

Figure 2.5C) similar to cells identified in other studies (Hung et al. 2002, Eixler et al. 2005) 

based on this technique. TP and polyP extraction findings did not agree with microscopy results. 

We observed no statistically significant differences between TP and polyP extractions from T1 

and T2 at the end of the experiment (p > 0.05, Table 2.4). Last, we did not detect the presence of 

commonly targeted CAP genes (16S rRNA and type I ppk1 genes) in biofilm samples with PCR, 

but we did detect these genes in our positive control EBPR sludge sample. 
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Figure 2.５ Percentage of biofilm cells (n = 20 fields/treatment) with stored polyphosphate 

(polyP) at the end of the experiment in treatment 1 (anaerobic) and treatment 2 (aerobic). B.—

Microscope image from a T2 biofilm sample at the end of the experiment and visualized with a 

4’,6-diamindino-2-phenylindole (DAPI)–DNA filter where light blue indicates the presence of 

DNA. C.—Microscope image taken a T2 biofilm sample at the end of the experiment and 

visualized with a DAPI–polyP filter where yellow indicates the presence of polyP. Arrow 

indicates an example cell with stored polyP granules. 

 

Table 2.４ Mean (standard error, n = 2) concentration of polyphosphate (polyP) and total P (TP) 

per unit mean biofilm surface area at the start and end of the experiment for treatment 1 (T1; 

alternating anaerobic/aerobic conditions) and treatment 2 (T2; aerobic conditions only). 

Form of P Start T1 end (anaerobic) T2 end (aerobic) 

polyP (mg P/m2) 1.77 (0.043) 1.42 (0.193) 1.27 (0.540) 

TP (mg P/m2) 19.43 (0.466) 11.03 (1.005) 15.63 (4.95) 
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DISCUSSION  

Phosphate (PO4
3–) Cycling 

P patterns—higher PO4
3- concentrations under anaerobic conditions than during aerobic 

conditions—support our hypothesis and provide evidence for PAO-mediated P cycling in stream 

biofilms. However, we cannot discount the impact of metal precipitation and reductive 

dissolution with P and discuss this in further detail below. 

 

The reduced PO4
3– peak in the 2nd anaerobic cycle in T1 (35–48 h; Figure 2.3) may have been 

caused by: 1) stresses on the biofilm ecosystem resulting in reduced abundance of metabolically 

active bacteria over time, 2) reduced availability of PO4
3– as tub water was diluted with distilled 

water, or 3) differences in O2 availability at the biofilm–water column interface that could not be 

detected based on water-column DO concentrations. Similar reductions in P flux over time were 

observed in biofilms taken from 8 Pennsylvania streams (Price and Carrick 2014). 

 

Light should not have affected PO4
3– concentration because light availability and timing were 

controlled variables during this study. Indeed, Carlton and Wetzel (1988) tested both short-term 

indirect (light) and direct (O2) controls on PO4
3– and found similar results. We discuss the role of 

precipitation and reductive dissolution of other analytes with PO4
3– in further detail below, but 

PO4
3– results tended to support our hypothesis and are consistent with the findings of other 

investigators (Carlton and Wetzel 1988, Drake et al. 2012, Matheson et al. 2012, Cohen et al. 

2013). 
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Biogeochemical Feedbacks 

The increase in Fe2+ indicated by the GAM during the 2nd half of the experiment (25–35 h; 

Figure 2.4A) was unexpected and does not follow known Fe redox patterns (i.e., a decrease in 

Fe2+ concentration under aerobic conditions). We suggest the increasing slope of the regression 

from T1 may be an artifact of sample variability combined with the high Fe2+ concentration 

observed at ~35 h (0.04 mg Fe2+ L–1 g–1 wet biofilm; Figure 2.4A). To test this hypothesis, we 

ran a GAM where Fe2+ concentration over time was described using a model with the slope = 0 

and intercept = mean normalized Fe2+ concentration = 0.077 and found this null model to be 

statistically significant (data not shown, p = 0.002). Thus, the Fe2+ concentration can be 

represented by a constant value (= mean normalized Fe2+ concentration = 0.077) over time. We 

found no significant linear relationship between PO4
3– and Fe2+ or TS, which further supports the 

disconnect between these analytes and PO4
3– cycling (Table 2.3). Last, reductive dissolution of 

Fe may be important in stream or terrestrial systems where sediments or soils have high Fe 

concentrations (Dillon and Molot 1997, Dodds 2003, Chacon et al. 2006). However, the 

concentrations of Fe2+ were low in this experiment compared to other studies (e.g., Chacon et al. 

2006) and further indicates the limited role of reductive dissolution of Fe. Thus, we suspect the 

reductive dissolution of Fe and S did not influence PO4
3– -P patterns over time in our experiment. 

 

In contrast to the lower peaks of PO4
3– and Mg during the 2nd anaerobic cycle of T1 (Figure 2.3, 

Figure 2.4F), the higher 2nd peak of total Mn (40–48 h; Figure 2.4C) was unexpected, especially 

given the comparable pH (Figure 2.6) and DO concentrations (data not shown) between the 1st 

and 2nd anaerobic cycles. Thus, we hypothesize this increase was caused by release of Mn not 

previously exchanged with the water column; i.e., abiotic liberation of Mn from an anion (e.g., 
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NO3–) other than PO4
3– or biotic release of Mn. We also observed a significant linear 

relationship between PO4
3– and total Mn concentrations (p < 0.001; Table 2.3). PO4

3– 

precipitation with Mn is not thought to be as common as PO4
3– precipitation with Fe, but the 

former can influence P cycling in sediments (White et al. 2008, Tye et al. 2016, Sulu-Gambari et 

al. 2016). Therefore, changes in PO4
3– concentration over time may have been the result of PO4

3– 

precipitation with Mn as MnHPO4 or complexation with Mn-oxyhydroxides under aerobic 

conditions. 

 

 

Figure 2.６ Observed (points) and modeled (lines) pH of the surrounding water as a function of 

time for treatment 1 (T1; alternating anaerobic/aerobic conditions) and treatment 2 (T2; aerobic 

conditions only). 



 

113 

 

Addressing the role of Fe, S, and Mn interactions with PO4
3– under changing redox conditions is 

important because reductive dissolution of these elements can mask PO4
3– uptake and release 

attributed to PAOs present in the resident biofilms. For example, when DO concentrations are 

low, Fe3+ is reduced to Fe2+ and the PO4
3– bound to Fe3+ is released into solution (Carlton and 

Wetzel 1988, Hupfer and Lewandowski 2008, Withers and Jarvie 2008). The process of 

reductive dissolution of Fe is mediated abiotically and biotically (Doong and Schink 2002). S 

can serve as an ultimate control on metal availability as well. When Fe2+ is bound to sulfide 

(S2–) under reduced conditions, it cannot precipitate with PO4
3– (Dodds 2003). The reductive 

dissolution of Mn with PO4
3– may also occur under changing redox conditions (Hongve 1997, 

White et al. 2008, Tye et al. 2016). When DO concentrations are low, dissolved forms of Mn 

such as Mn2+, Mn3+, or Mn(HCO3)– dominate (Hem 1963). When DO concentrations are high, 

reduced Mn is oxidized to Mn4+ and forms precipitates, such as MnCO3, MnHPO4, and MnO2 

(Hem 1963, Hongve 1997). Researchers have hypothesized the coupling of Fe, S, Mn, and P 

cycling by bacteria under changing redox conditions (Davelaar 1993, Diaz et al. 2012). In a 

study testing this hypothesis, cable bacteria were more abundant in oxic compared to anoxic 

sediments and stored polyP in oxic conditions (Sulu-Gambari et al. 2016). These authors also 

linked P dynamics to Fe, S, and Mn cycling. Specifically, Sulu-Gambari et al. (2016) suggested 

that the presence of oxic conditions at the sediment–water interface allows cable bacteria to use 

O2 at the surface to oxidize S (originally FeS) in deeper sediments, which leads to the upward 

diffusion of Fe2+. As it moves upward, Fe2+ is oxidized by Mn oxides at the surface to form Fe 

oxides that ultimately bind PO4
3– (Sulu-Gambari et al. 2016). Thus, a combination of biotic and 

abiotic processes may control P cycling in environments undergoing changes in O2 availability. 
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Our findings suggest a couple main points concerning abiotic controls on P cycling. First, the 

strong relationship between Ca and PO4
3– may be important in this particular study system. 

Cohen et al. (2013) better explained diel patterns in water-column P concentrations when they 

accounted for Ca– PO4 precipitation. They further demonstrated that 66 and 34% of P cycling in 

the Ichetucknee River were the results of biological and geochemical processes, respectively. 

The potential chemical controls on Ca– PO4 precipitation include changes in pH because at high 

pH, Ca precipitates with PO4
3– (Dodds 2003). In our experiment, pH was higher during aerobic 

and anaerobic conditions (Figure 2.6), which may have led to the precipitation of PO4
3– with Ca. 

In addition to Ca, the precipitation of PO4
3– with Mg may have occurred during aerobic 

conditions because of the associated pH increase. We did not measure Al, but we hypothesize 

that it behaves similarly to Ca and may have precipitated with PO4
3– at higher pH as has been 

show in soils (Bloom 1981, Gerke 2010). 

 

Second, these findings suggest the importance of biotic controls on PO4
3– cycling. We observed 

patterns of uptake and release of K in T1 (Figure 2.4E) that mimicked patterns of PO4
3– uptake 

and release. The precipitation of K with PO4
3– was unlikely due to the tendency for K to stay 

dissolved in water, so the patterns of K uptake and release observed in T1 may be attributed to 

microbial cellular processes within the stream biofilm. Furthermore, it is not uncommon for K, 

Ca, Mn, and Mg to be chelators of stored polyP in microorganisms in wastewater sludge and 

elsewhere (Kornberg 1995, Pattarkine and Randall 1999, Schönborn et al. 2001). Therefore, the 

patterns of various analytes over time indicate that a combination of abiotic and biotic processes 

may have influenced stream biofilm P cycling in our experiment.  

 



 

115 

 

Besides the presence of metals, pH may also influence P cycling. For example, 

photosynthetically active stream biofilms can increase pH up to 1 unit (Dodds 2003). Carlton and 

Wetzel (1988) observed pH values at the sediment–water interface that increased from 7 to as 

high as 9 when they exposed sediments to light, whereas pH ranged from 7 to 8 during dark 

conditions (Carlton and Wetzel 1988). We did not test the effect of light but manipulated O2 

levels by sparging alternately with air and a mixed anaerobic gas composed of 20:80% by 

volume CO2:N2 (commonly used in anaerobic culturing experiments; e.g., Ingvorsen et al. 1984). 

This gas forced the tubs to pH of ~6 during anaerobic and 8 during aerobic periods (Figure 2.6) 

and may have affected the relative importance of abiotic and biotic controls on PO4
3– cycling. 

We found a positive linear relationship between DO and pH (p < 0.001; data not shown). To test 

the effect of pH on PO4
3– uptake and release, we added a linear pH term to the existing PO4

3– 

GAM. Adding a term for pH improved the ability of the GAM to predict PO4
3– concentrations 

over time (p < 0.001), but a change in pH from 6 to 8 decreased PO4
3– concentration by only a 

small amount (0.0004 mg L–1 g–1 wet biofilm). In summary, the mixed anaerobic gas influenced 

pH, and thus, the relative importance of abiotic and biotic controls on PO4
3– cycling in our 

experiment. However, PO4
3– patterns over time probably were not controlled by abiotic 

processes alone. 

 

The Role of Polyphosphate Storage in Stream Biofilms 

Based on previous studies of EBPR wastewater treatment plant sludges (Hesselmann et al. 1999) 

and sediments (Carlton and Wetzel 1988), we anticipated higher polyP storage in biofilm 

organisms exposed to continuous aeration, such as those in T2. Our microscopy techniques 

yielded data that supported this expectation, but more traditional TP and polyP extraction 
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findings did not agree with microscopy results. The ratio of polyP to TP concentration measured 

by extraction (Table 2.4) agreed with ratios of polyP and TP biofilm extractions from other 

studies where polyP can make up anywhere from 10 to 50% of TP (Eixler et al. 2005, Rier et al. 

2016, Taylor 2016). polyP estimates >10% may indicate biological processes (Hupfer and 

Lewandowski 2008). We suggest the difference in findings between extraction- and microscopy-

based polyP measurements may have been an artifact of the limited number of samples and the 

spatio-temporal resolution targeted by these techniques. Microscopy-based polyP measurements 

represent intracellular polyP storage by microorganisms at the instant the stream biofilm sample 

is collected and fixed (Hung et al. 2002, Eixler et al. 2005, Aschar-Sobbi et al. 2008). In contrast, 

extraction-based polyP measurement does not distinguish between intracellular and extracellular 

polyP. Thus, it probably represents a more integrated polyP response in space and time. 

Moreover, microscopy-based polyP methods may capture the short-term polyP dynamics, such 

those targeted in this experiment, more accurately than extraction because stream biofilms can 

take up P on the order of minutes to hours (Carlton and Wetzel 1988, Cohen et al. 2013, Price 

and Carrick 2014). 

 

We did not detect the presence of commonly targeted CAP genes (16S rRNA and type I ppk1 

genes) in biofilm samples with PCR, but we did detect these genes in our positive control EBPR 

sludge sample. Our findings suggest that microorganisms other than CAP were present in the 

stream biofilm samples and exhibited PAO-like behavior similar to what has been observed in 

EBPR. Findings by Locke (2015) support our suggestion that CAP genes, while abundant in 

EBPR, are less common in stream biofilms. Locke (2015) found that <10% of bacteria 

accumulating polyP in Pennsylvania stream biofilms were members of the order Rhodocyclales, 
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which includes CAP. Accumulated polyP is used by diverse organisms (i.e., eukaryotes, archaea, 

and bacteria) as an energy source, P reservoir, and for many other functions (Kornberg 1995, 

Rao et al. 2009, Seviour et al. 2003). To the best of our knowledge, no degenerate ppk primers 

are available that could detect ppk genes in non-CAP PAOs. Despite not finding CAP-specific 

genes, our microscopy results support our hypothesis by providing in situ evidence of polyP 

storage by biofilm microorganisms under aerobic conditions. The emphasis of our experiment 

was to evaluate short-term temporal changes in P dynamics given varying O2 levels rather than a 

spatial assessment of P dynamics in streams. Moreover, abiotic processes, such as precipitation 

and reductive dissolution of PO4
3– with analytes, such as Ca, Mg, and Mn may have influenced 

patterns of PO4
3– uptake and release in the stream biofilms over time in our experiment. 

 

CONCLUSIONS 

We tested the hypothesis that alternating aerobic/anaerobic water-column conditions produce 

patterns of dissolved PO4
3– uptake/release from stream biofilms, respectively, that are similar to 

those attributed to PAOs in wastewater treatment. Dissolved PO4
3– concentrations over time 

under alternating aerobic/anaerobic conditions support this hypothesis. In addition, significantly 

higher percentage of cells with intracellular polyP granules during aerobic conditions support the 

biotic mechanisms we proposed. However, results of other analyte concentrations over time 

point to complexities in coupled controls on P cycling in stream biofilms. Dissolved Ca, K, Mg, 

and total Mn uptake and release mimicked PO4
3– cycling, which could be a result of cation 

accumulation by PAOs or precipitation of Ca-PO4 and Mg-PO4 and reductive dissolution of Mn-

PO4. The presence of intracellular polyP granules despite an absence of CAP genes points to our 

limited understanding of PAO diversity in the natural environment. Our results suggest that PAO 
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metabolism may be an important, but overlooked, component of in-stream P cycling and provide 

a biotic mechanism for short-term variation in water-quality patterns observed in stream 

ecosystems. 
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CHAPTER 3  

THE IMPACT OF HYDROLOGY AND SOIL PHOSPHORUS CONCENTRATIONS ON THE 

RELATIVE ABUNDANCE OF POLYPHOSPHATE CYCLING GENES 

 

ABSTRACT 

Hydrology influence phosphorus (P) transport and cycling and shapes microbial processes. 

Researchers have suggested that hydrologically driven soil wetting/drying cycles may promote 

the growth of polyphosphate accumulating organisms (PAOs) and that PAOs may influence P 

cycling. Model PAOs have been identified in soils and a few studies have explored their 

ecological role in other environments (e.g., lake sediments). However, no studies have 

characterized PAO polyphosphate cycling genes (i.e., ppk1, ppk2, and ppx) and their correlation 

with soil P pools along a soil wetness index (SWI) gradient. We hypothesized (1) mobile forms 

of soil P would be low and (2) polyP functional genes would be more abundant in wetter sites 

(i.e., a high SWI). To test these hypotheses, we collected soil samples along a SWI gradient over 

time from sites in New York (NY) and Pennsylvania (PA) and analyzed each for three soil P 

pools (from most to least mobile): CaCl2 extracted P (CaCl2-P), oxalate extracted P (Ox-P), and 

total P. We carried out shotgun metagenomics sequencing on DNA extracted from soil samples, 

characterized dominant microbial taxa harboring ppk1, ppk2, and ppx genes, and determined the 

relative abundance of these genes along SWI and associated P gradients. SWI was a significant 

negative predictor of soil moisture and CaCl2-P concentrations but not a significant predictor of 

ppk1, ppk2, or ppx relative abundances in NY and PA. Consistent with our hypothesis, we 

observed an overall negative trend between the relative abundance of all three functional genes 

versus CaCl2-P concentration in NY. However, this negative trend was only statistically 
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significant in the case of ppk2-harboring contigs indicating that our results only weakly support 

the role of putative PAOs (i.e., contigs with either ppk1 and ppx or ppk2 and ppx) in P cycling in 

NY. In PA, we unexpectedly observed no significant relationship between the relative abundance 

of all three polyP functional genes and CaCl2-P concentration. It is possible other P controls 

(e.g., landscape management) may have masked the role of PAO-mediated P cycling along SWI 

gradients included in NY and PA. We identified contigs harboring both ppk1 and ppx from 

similar bacterial classes as known PAOs (e.g., Betaproteobacteria) as well as many understudied 

phyla (e.g., Alphaproteobacteria and Melainabacteria). These contigs may represent putative 

PAOs but additional research is needed to verify the PAO phenotype. While evidence for PAO-

mediated P cycling in soils along a SWI gradient is limited in this study, these results indicate 

that SWI is a useful management tool for predicting soil CaCl2-P pools. Our results also 

highlight the ubiquity of polyP functional genes in soils as well as the need for more research on 

the relative importance of abiotic and biotic controls on P transport and cycling in the 

environment. 

 

KEYWORDS 

topographic index, soil moisture, soil, phosphorus, polyphosphate accumulating organisms, 

polyphosphate, microbial processes, polyphosphate kinase, exopolyphosphatase 

 

INTRODUCTION 

Hydrological processes are an important driver of various controls on phosphorus (P) transport 

and cycling in the environment. Overland flow transports particle bound P (Hart et al. 2004; 
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Rittenburg et al. 2015) and has been a key motivation for the adoption of agriculture 

management strategies such as no tillage (Schelde et al. 2006; Kleinman et al. 2011a), cover 

crops (Kleinman et al. 2005; Kovar et al. 2011; Bergström et al. 2015), and other erosion control 

measures (Rittenburg et al. 2015; Bergström et al. 2015). Subsurface flows are also an important 

P transport mechanism. Therefore, management practices that only focused on reducing particle 

bound P may promote the transport of unbound P forms such as phosphate (Geohring et al. 2001; 

Kleinman et al. 2009; Verbree et al. 2010; Kleinman et al. 2011b; King et al. 2015; Christianson 

et al. 2016; Jarvie et al. 2017). Additionally, hydrological processes influence chemical controls 

on P through changes in soil redox conditions; soil saturation leads to reduced/anaerobic 

conditions while soil drying leads to oxidized/aerobic conditions (Silver et al. 1999; Pett-Ridge 

and Firestone 2005; Chacon et al. 2008; Burgin and Groffman 2012; Peralta et al. 2014). These 

redox changes—also referred to as wetting/drying cycles—control the precipitation and 

dissolution of P from soil organic matter (Guppy et al. 2005; Gerke 2010b) and soil minerals 

such as Ca, Fe-oxides, and Al-oxides (Chacon et al. 2006; Chacon et al. 2008; Gerke 2010b). 

Finally, hydrologically mediated wetting/drying cycles shape the structure and function of 

microbial communities (Pett-Ridge and Firestone 2005; DeAngelis et al. 2010; Ouyang and Li 

2013; Peralta et al. 2014). For example, bacterial communities originating from wetland soils 

undergoing frequent wetting/drying cycles were more diverse and capable of greater community 

composition changes compared to bacterial communities with stable soil moisture patterns 

(Peralta et al. 2014). With respect to P, wetting/drying cycles impact soil microbial P pools 

(Grierson et al. 1998; Turner and Haygarth 2001; Turner et al. 2003; Blackwell et al. 2010; Dinh 

et al. 2016). Specifically, the difference in water-extractable P before and after drying was 

proportional to microbial P (Turner and Haygarth 2001). Mechanistically, wetting/drying cycles 
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serve as an environmental stress for soil microbes (Schimel et al. 1999; Ouyang and Li 2013). 

Drought leads to water-deficit stress in microbes and soil rewetting has been shown to lead to 

cell lysis and a subsequent release of P (Turner et al. 2003). 

 

Another potential microbial mechanism controlling P availability that has received far less 

attention is the impact of changes in soil moisture on a group of organisms known as 

polyphosphate accumulating organisms (PAOs). PAOs remove P in specialized waste water 

treatments plants (WWTPs) and are phenotypically characterized by their ability to (1) take up 

and store phosphate as polyphosphate (polyP) during aerobic conditions and (2) release 

phosphate by breaking down stored polyP during anaerobic conditions (Seviour et al. 2003; 

Oehmen et al. 2007; Seviour and McIlroy 2008; Seviour and Nielsen 2010). PolyP is a polymer 

composed of three or more phosphate molecules (Kornberg 1995). Many diverse organisms 

including bacteria, fungi, plants, animals utilize polyP (Kornberg 1995; Zhang et al. 2002; 

Schulz and Schulz 2005; Rao et al. 2009) but their ability to use the energy from polyP 

hydrolysis to take up C (e.g., acetate) during anaerobic periods enables PAOs to outcompete 

other organisms that cannot take up C under anaerobic conditions (Gebremariam et al. 2011; 

Yuan et al. 2012). 

 

PolyP synthesis and degradation in PAOs is thought to be regulated by ppk and ppx genes, 

respectively (Seviour et al. 2003; Skennerton et al. 2014). ppk encodes the polyphosphate kinase 

(PPK) enzyme that uses the energy released from converting ATP to ADP to form an 

intracellular polyP chain from phosphate molecules (Ahn and Kornberg 1990; Akiyama et al. 
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1992; Zhang et al. 2002; Rao et al. 2009; Kawakoshi et al. 2012). There are two known ppk’s: 

ppk1 and ppk2. They have similar functions albeit the protein coded by ppk2 (PPK2) catalyzes 

the making of polyP using both GTP and ATP and has a higher affinity for Mn2+; whereas PPK1 

has a higher affinity for Mg2+(Zhang et al. 2002; Rao et al. 2009). A number of organisms have 

both ppk’s while some only have one (Zhang et al. 2002; Rao et al. 2009). Since the nucleotide 

sequences were first discovered, ppk1 and ppk2 homologs have been found in a variety of 

organisms (Zhang et al. 2002; Rao et al. 2009; Alcántara et al. 2014). ppk is especially well 

studied in the context of model PAOs in specialized WWTPs (e.g., He et al. 2007; Zhang et al. 

2016) and is thought to be a good marker for bacterial strain diversity (Tzeng and Kornberg 

1998). Additionally, it is thought to be more conserved than 16S rRNA for the model PAO, 

known by the provisional name as Candidatus Accumulibacter phosphatis (CAP; Kunin et al. 

2008). ppx encodes the exopolyphosphatase (PPX) enzyme that preferentially removes 

phosphate from the terminal ends of a polyP chain (Akiyama et al. 1993; Keasling et al. 1993; 

Zago et al. 1999; Rangarajan et al. 2006; Rao et al. 2009). Another ppx, known as ppx/gppA 

codes for the specific PPX enzyme known as guanosine pentaphosphate phosphohydrolase 

(PPX/GppA). PPX/GppA has a similar function to PPX and can also hydrolyze the stress 

response protein pppGpp to ppGpp (Keasling et al. 1993; Reizer et al. 1993; Zago et al. 1999; 

Rao et al. 2009). ppx has been mainly studied in pure-culture (e.g., Zago et al. 1999; Alcántara et 

al. 2014) with the exception of one marine metagenome study (Temperton et al. 2011). 

 

Given the diversity of organisms utilizing polyP metabolism and harboring ppk and ppx genes, it 

is possible that PAO-like metabolism may be widespread in the natural environment. 

Additionally, given the low nutrient density of soil (Young and Crawford 2004), it is possible 
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that organisms with ability to make and break polyP, would be better suited for P poor soil 

environments compared to those that cannot. Thus, researchers have hypothesized that PAOs are 

present in the environment (e.g., soils, sediments, and waterbodies) and influence P cycling 

under naturally occurring alternating anaerobic/aerobic conditions (Gächter et al. 1988; Davelaar 

1993; Reddy et al. 1999; Schulz and Schulz 2005; Pett-Ridge and Firestone 2005; Hupfer et al. 

2007; Hupfer et al. 2008; Hupfer and Lewandowski 2008; Peterson et al. 2008; Diaz et al. 2012; 

McMahon and Read 2013; McParland et al. 2015). In terms of the application of this hypothesis 

to soils, wetting and drying events may lead to subsequent anaerobic and aerobic pore space 

conditions, respectively, that select for and drive PAO-mediated P cycling (Pett-Ridge and 

Firestone 2005). Only a few studies have explicitly attempted to explore the presence of PAOs in 

soils (Kunin et al. 2008; Peterson et al. 2008; DebRoy et al. 2013; Li et al. 2013) and we know of 

none exploring their role in P cycling or looking for evidence of PAOs beyond the model PAO, 

CAP. 

 

Exploring the role of PAO-mediated P cycling in soils begins with identification of soil moisture 

gradients across the landscape. In the field of hydrology, topographic wetness indexes have been 

used to integrate soil moisture over time; they are temporally static and provide a means to 

determine what parts of the landscape are more or less likely to be saturated (Beven and Kirkby 

1979; Walter et al. 2002; Lyon et al. 2004). For example, the soil wetness index (SWI) 

incorporates both topography and soil properties and is a good predictor of soil moisture patterns 

that vary in space and time (Buchanan et al. 2014; Hofmeister et al. 2016). Topographic indexes 

have also been used to predict soil P availability (Marjerison et al. 2011; Thomas et al. 2016; 
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Wilson et al. 2016) but no studies have looked at their ability to predict microbial mechanisms 

controlling P cycling and transport in the landscape (Vidon et al. 2010; Bernhardt et al. 2017). 

 

Therefore, the main objectives of this study were to (1) determine whether SWI could be used to 

predict various P pools, (2) characterize the taxa of soil microorganisms harboring P cycling 

functional genes, and (3) test whether the relative abundance of P cycling functional genes varied 

along SWI and associated P availability gradients. We hypothesized that SWI was a good 

predictor of mobile forms of P (i.e., phosphate) and the concentrations of these mobile P forms 

was inversely related to SWI. Put another way, we expected wetter parts of the landscape (i.e., 

large SWI) to experience flushing/loss of abiotically and biotically sourced P while drier parts of 

the landscape (i.e., small SWI) accumulate P. We expected to see taxa of well-studied PAOs 

(e.g., CAP) as well as unstudied, putative PAOs (i.e., contigs with either ppk1 and ppx or ppk2 

and ppx). Finally, we hypothesized that the relative abundance of all three P cycling functional 

genes would be higher in wetter parts of the landscape because these environments would select 

for microorganisms capable of intracellular polyP synthesis and degradation. We expected the 

same trends between all three genes because putative PAOs require pairs of these genes—either 

ppk1 and ppx or ppk2 and ppx—to carry out polyP synthesis and degradation. From a P 

availability perspective, since we expected wetter parts of the landscape to have less P, it 

followed that the relative abundance of P cycling genes would be higher where P was low. To 

test these hypotheses, we collected soil samples along a SWI gradient over the course of six 

months and analyzed each sample for three different P pools (in order of most to least mobile P): 

dilute salt extractable P (CaCl2-P), oxalate extractable P (Ox-P), and total extractable P (Total-P). 

We extracted DNA from each soil sample and sequenced DNA using shotgun metagenomic 
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analysis techniques. We then assembled sequences, determined relative abundances of ppk1, 

ppk2, and ppx, and assigned taxonomic identities to assembled reads harboring these same genes. 

 

METHODS 

Soil Wetness Index Calculations 

We selected sample sites along a SWI gradient, which incorporates topography and soil 

properties (Beven and Kirkby 1979; Lyon et al. 2004), to ensure each sampling event included a 

full range of soil moisture conditions. We determined SWI values for New York (NY) and 

Pennsylvania (PA) study sites using methods described previously by Hofmeister et al. (2016). 

Briefly, we calculated the SWI according to Equation 1 (Walter et al. 2002; Lyon et al. 2004): 

𝑆𝑊𝐼 = ln(
𝐴

𝑘𝑠𝐷𝑡𝑎𝑛(𝐵)
)  (Equation 1) 

where A is the upslope area per unit contour (m), B is the local slope angle (rad), ks is the mean 

saturated hydraulic conductivity (m day-1), and D is the depth to the restrictive layer (m). We 

determined upslope area and local slope angle by LiDAR-based digital elevation maps (DEM) 

for NY and PA sites. We obtained measurements of ks and D from US Department of Agriculture 

(USDA) SURRGO soil data (USDA 2006). We used SAGA-GIS and the RSAGA packages in R 

(version 3.0.1) to generate the SWIs (Brenning, 2007; R Core Team, 2015). We used ArcGIS 10 

(ESRI, Redlands, CA) to calculate the final SWI for each sample site; the area weighted average 

SWI within a 3 m buffer around the GPS coordinate of the site. Here, we used SWI to select 

sample sites along a soil moisture gradient, where low SWI values indicate sites that are less 

likely to saturate/be dry and high SWI values indicate sites that are more likely to saturate/be 

wet. 
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New York Study Sites 

New York (NY) study sites (Table 1) were located in pasture/hay fields at the Cornell University 

Cornell University Teaching and Research Center in Harford, NY. We sampled sites once per 

month from May to October 2015. Based on rainfall data collected within a mile of the study site 

from 1981-2010, the 30-year average annual precipitation near the study region is 103.6 cm 

(Arguez et al. 2010). The average annual precipitation for 2015 was 96.9 cm (Menne et al. 

2012); slightly less (by 6.4%) than the 30-year average (Figure 3.1). NY study sites were 

managed as pasture/hay and have not been cultivated since available records end in 2003. Dairy 

manure is spread in the spring at an average rate of 113 kg ha -1 P (as P2O5) just upslope of site 

NY55. However, no manure is applied near any other NY sites. Soils are moderately well 

drained Lobdell (fine-loamy, mixed, active, mesic Fluvaquenic Eutrudepts), well drained Bath 

(coarse-loamy, mixed, active, mesic Typic Fragiudepts), well drained Valois (coarse-loamy, 

mixed, superactive, mesic Typic Dystrudepts), somewhat excessively drained to well drained 

Howard (loamy-skeletal, mixed, active, mesic, Glossic Hapludalfs), and somewhat excessively 

drained to well drained Palymyra (fine-loamy over sandy or sandy-skeletal, mixed, active, mesic, 

Glossic Hapludalfs) series (USDA 2006; USDA 2016). The dominant soil series of this region 

(i.e., Bath, Howard, and Palymyra) have a clay layer from as shallow as 28 cm to as deep as 114 

cm from the surface (USDA 2006; USDA 2016), which often results in a perched water table 

(Hofmeister et al. 2016). 
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Figure 3.１ Monthly precipitation at New York (NY) and Pennsylvania (PA) field sites for (A) 

2015—the year of this study—and (B) 30-year normals. 

 

Pennsylvania Study Sites 

Pennsylvania (PA) study sites (Table 3.1) were located at the USDA Agricultural Research 

Service (ARS) Mattern Experimental Watershed near Klingerstown, PA. The Mattern watershed 

(11 ha) is part of the larger Mahantango Creek Watershed (7.3 km2), which drains to the 

Chesapeake Bay. Both of these watersheds have been described previously (Buda et al. 2009; 

Bryant et al. 2011; Buda et al. 2013; Collick et al. 2015; Collick et al. 2016). We sampled sites 

once per month in May, July, and October. All sample sites were managed as a part of the USDA 

Conservation Reserve Program (CRP) and have not been farmed since 2008. However, sites are 

downslope of cropped corn-soybean fields that received an average 13.5 kg ha-1 P (as P2O5) from 
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beef and dairy manure in the fall and an average of 72.5 kg ha-1 of P (as P2O5) from 10-20-20:N-

P-K chemical fertilizer in the spring from 2006 to 2010. Based on rainfall data collected within a 

mile of the PA study sites from 1981-2010, the average annual precipitation in the study region 

is 109.6 cm. The average annual precipitation for 2015 was 97.6 cm; slightly less (by 11.0%) 

than the 30-year average. Upper parts of the watershed are composed of well drained Berks 

(loamy-skeletal, mixed, active, mesic Typic Dystrudepts) series with an argillic (clay <30%) 

horizon (Buda et al. 2009). Lower parts of the watershed are composed of well drained Leck Kill 

(fine-loamy, mixed, semiactive, mesic Typic Hapludults) and somewhat poorly drained 

Albrights (fine-loamy, mixed, semiactive, mesic Aquic Fragiudalfs) series, the latter of which, is 

underlain by a fragipan at 60 cm (Buda et al. 2009). 

 

Table 3.１ Description of New York (NY) and Pennsylvania (PA) study sites. Abbreviations: 

soil wetness index (SWI). 

Site ID SWI Soil Series Name Soil Texture 

NY Sites 

NY17 11.02 Erie silt loam 

NY24 4.95 Bath/Valois channery silt loam/gravelly loam 

NY25 6.90 Howard/Valois gravelly loam 

NY28 3.16 Howard/Palmyra gravelly loam 

NY29 9.42 Howard/Palmyra gravelly loam 

NY55 13.40 Lobdell silt loam     

PA Sites 

PA09 8.21 Leck Kill channery silt loam 

PA16 8.29 Leck Kill channery silt loam 

PA26 6.16 Berks channery loam 

PA45 5.82 Berks channery loam 

PA50 12.99 Albrights silt loam 

PA51 4.47 Berks channery loam 

PA54 11.17 Leck Kill channery silt loam 
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Soil Sample Collection and Initial Processing 

For each sample event, we collected the upper 5 cm of soil using a using a 2 cm diameter t-corer 

(Model HA, Oakfield Apparatus, Fond du Lac, Wisconsin). We wore nitrile gloves to avoid 

contamination while sampling and discarded the first core to ‘rinse’ our gloves and the corer. We 

collected an average of six cores per sample event in a 3 m radius around the sample GPS 

coordinate because 3 m is the average rated accuracy of our GPS unit (eTrex 20x 010-01508-00, 

Garmin, Olathe, Kansas). We pooled soil cores in a zip-lock bag, removed as much air as 

possible to prevent sample oxidation, and placed samples on ice until they could be stored in the 

fridge (4°C) for further processing (minimum 24 and 48 hours for NY and PA sites, 

respectively). 

 

We processed samples by homogenizing the zip-lock bag by hand for approximately two 

minutes or until visually well mixed. We removed visibly large sticks, rocks, and leaves after 

pouring soil into aluminum tin wiped down with 95% ethanol. We filled sterile 15 ml centrifuge 

tubes with fresh soil for DNA extractions and placed them in the freezer (-20°C) until we could 

carry out this analysis. We covered the remaining soil and left it to air-dry. Once dry, we sieved 

the soil through a 2 mm sieve for subsequent analyses of three different P extractions as 

discussed in further detail below. 

 

In-situ Measurements 

For each soil sample, we measured soil moisture in the field using a total domain reflectometry 

(TDR) probe (Campbell Scientific Hydrosense II, CS658). We measured and then calibrated 

TDR measurements for NY and PA to gravimetric soil moisture measurements as described by 
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Hofmeister et al. (2016). We averaged all soil moisture readings for each site on a specific 

sample date and used this number henceforth for all analyses. 

 

Phosphorus Extractions and Other Analysis 

We carried out three P extractions for each soil sample (n=2): dilute-salt-extractable P (CaCl2-P), 

oxalate-extractable P (Ox-P), and total extractable P (Total-P). In this order, these three pools 

represent soil P that is loosely- to strongly-bound. Specifically, the CaCl2-P extraction provides a 

measure of soluble reactive phosphorus (SRP) that could potentially be mobilized from soil 

during an overland flow runoff event (Self-Davis et al. 2009). The Ox-P extraction serves as a 

measurement of P bound to amorphous Al/Fe-oxides in the soil (McKeague and Day 1966) and 

Total-P extraction provides a measure of the total soil P concentration. Therefore, of the three 

extractions, CaCl2-P is likely more readily available to microorganisms. 

 

To measure CaCl2-P, we followed the method of Self-Davis et al. (2009). We weighed 1 g of air-

dried, sieved soil, added 25 mL of 0.01M CaCl2, shook samples for one hour on an end-over-end 

mixer, centrifuged for 10 min at 2100 g, and filtered soil extractions through a 0.45 μm filter 

(66191; 47 mm diameter, Pall Life Sciences, Port Washington, New York). We stored filtered 

extractions in the fridge (4°C) up to one week until analyzing for SRP (as P) concentration using 

the molybdenum blue method (USEPA, 1978) with an automated wet-chemistry analyzer 

(FS3000; Xylem Analytics O.I. Analytical, Beverly, Massachusetts). The quantification limit of 

the FS3000 machine is 0.01 mg l-1
 and all calibration curves had an R2 value of 0.999 or higher. 
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To measure Ox-P, we followed the method of McKeague and Day (1966). We weighed 0.5 g of 

air-dried, sieved soil, added 20 mL of oxalate solution (mixture of 0.2 M ammonium oxalate and 

0.2 M oxalic acid adjusted to a pH of 3.0), shook each sample for two hours on an end-over-end 

mixer, centrifuged for 5 min at 2100 g, and filtered soil extractions through a 0.45 μm filter 

(66191; 47 mm, Pall Life Sciences, Port Washington, New York). We stored soil extractions in 

the dark at room temperature for up to one month until they could be analyzed for Ox-P, oxalate-

extractable Fe (Ox-Fe), and oxalate-extractable Al (Ox-Al) concentrations using an Inductively 

Coupled Plasma-Mass Spectrometer (ICP-MS; Thermo Jarrell Ash, Franklin Massachusetts).  

 

We followed standard protocols for analyzing the total amount of P (Total-P) in soil using 

concentrated HNO3 and H2O2 (USEPA 3050B). We weighed out 1 g of air-dried, sieved soil, and 

placed soil samples in an automatic digester (Environmental Express AutoBlock, Charleston, 

South Carolina) set to run the USEPA 3050B method. We did not add concentrated HCl at the 

end of the digestion because these extractions were to be analyzed by ICP-MS (not ICP-AES). 

After digestion, we topped samples off to 50 mL using deionized water and filtered 20 mL into 

plastic scintillation vials using a 11 μm filter (1001-125; 125 mm diameter, Whatman, 

Maidstone, United Kingdom). We stored the capped scintillation vials at room temperature for 

up to one month until they could be analyzed for Total-P concentrations using an ICP-MS as 

discussed previously. 

 

DNA Extractions and Sequencing Preparation 

We extracted DNA in triplicate from pooled soil samples using a MoBio PowerSoil DNA 

Isolation Kit (12888, Qiagen MoBio, Germantown, Maryland). We pooled samples because we 
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wanted to focus on average site microbially-mediated P cycling patterns. Slight modifications to 

the MoBio DNA extraction protocol included: (1) two, 30 s homogenizations with the bead 

beater (10 s rest in between each homogenization), (2) elution with 50 μL (rather than 100 μL), 

and (3) pooling of all three elutions into one tube. We quantified DNA on an Invitrogen Qubit 

spectrofluorometer using a Qubit dsDNA broad range assay kit (Q32850, Thermo Fisher 

Scientific, Waltham, Massachusetts). We sheered DNA to an average insert size of 550 bp using 

a Covaris S2 adaptive focused acoustic disruptor (Covaris, Woburn, Massachusetts). We 

prepared libraries using an Illumina TruSeq Nano DNA HT Sample Prep Kit (FC-121-4003, 

Illumina, San Diego, California). We carried out shotgun metagenomic sequencing with one 

pooled, indexed sample on two lanes at the Cornell University Institute for Biotechnology 

Genomics Facility using an Illumina HiSeq2500 instrument 2x150 bp paired-end reads on Rapid 

Run mode. 

 

Metagenomics Analysis 

We used the workflow described in Figure 3.1 to process shotgun metagenomic sequencing data. 

Briefly, we quality controlled and trimmed raw reads using BBMap/BBTools (JGI 2017), 

assembled reads for samples from NY and PA sites separately with MEGAHIT using default 

settings (Li et al. 2015), called genes and translated gene sequences using Prodigal (Hyatt et al. 

2010), annotated PPK1, PPK2, and PPX protein sequences using Pfam models and a HMMER 

reciprocal search using default settings (Finn et al. 2011), assigned taxonomy to contigs with 

genes of interest using Kaiju’s protein-level NCBI RefSeq reference database classifier (Menzel 

et al. 2016), and mapped raw reads to determine relative gene abundances using bwa-mem (Li 

2017). Relative gene abundances are given as the number of fragments (i.e., paired-end reads) 
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with a gene of interest per kilobase (kb) per million reads mapped (FPKM). Protein family 

models from the Pfam database (Finn et al. 2016) used in this study to identify ppk and ppx 

genes are shown in Table 3.2. For contigs with unique combinations of genes, we used pBLAST 

(NCBI 2017) to compare contig protein sequences to previously studied organisms. We selected 

the top three contigs by maximum relative abundance for each sample as well as the top seven 

contigs by mean relative abundance overall and display the z-score of these data in heatmaps. 

We also categorized each contig for whether it contained various combinations of ppk1, ppk2, 

and ppx/gppA (referred to henceforth as ppx). The data and scripts pertaining to this workflow 

are available on GitHub at https://github.com/sheilasaia/paper-p-cycling-in-soils.  

  

https://github.com/sheilasaia/paper-p-cycling-in-soils
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Figure 3.２ Description of shotgun metagenomic sequencing data workflow used in this study. 

Final output tables used in subsequent analyses are bolded/shaded green.  



 

142 

 

Table 3.２ Protein family (Pfam) database models used in this study. 

Pfam ID Protein Pfam Description 

PF02503.16 PPK1 polyphosphate kinase middle domain (PPK1) 

PF13089.5 PPK1 polyphosphate kinase N-terminal domain (PPK1) 

PF13090.5 PPK1 polyphosphate kinase C-terminal domain (PPK1) 

PF03976.13 PPK2 polyphosphate kinase (PPK2) 

PF02541.15 PPX exopolyphosphatase (PPX/GppA) 

 

Statistical Analysis 

We conducted all statistical analysis in R (R Core Team 2015). Due to repeated sampling in 

time, we used a linear mixed effects model to test whether (1) SWI was a significant predictor of 

soil moisture and (2) SWI was a significant predictor of each of the three P pools (i.e., CaCl2-P, 

Ox-P, and Total-P), and (3) SWI was a significant predictor of ppk1, ppk2, and ppx relative 

abundance. We applied the LMEM using the nlme package (Pinheiro et al. 2017). The general 

form of the model is given in Equation 1 as:  

Y ~ β0 + β1X + bZ + ε (Equation 1) 

where Y represents the response variable, X represents the fixed predictor variable, Z represents 

the random effect variable, β0 and, β1 represent the intercept and slope, respectively, of the fixed 

predictor variable, b represents the mean zero Gaussian random effects parameter, and ε 

represents the mean zero Gaussian random error. In this study site ID was treated as a random 

effect. When necessary, we log transformed the response variable to ensure it was normally 

distributed. Tukey pairwise comparisons were made using the multcomp package (Hothorn et al. 

2008). For all statistical tests, we used α = 0.05 to determine statistical significance and 

compared the quality of LMEMs using the Akaike information criteria (AIC; Akaike 1974). A 

lower AIC value indicates a better model fit and AIC scores greater than two units apart are 

statistically different. 
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RESULTS & DISCUSSION 

Soil Moisture and the Soil Wetness Index 

When simply compared by location (i.e., NY versus PA), soil moisture measurements were not 

statistically significant (p=0.061; Figure 3.3A). However, aggregating soil moisture by location 

as well as sample month resulted in better predictability of soil moisture patterns; Model 3.3 has 

the lowest AIC score of all the models tested (Table 3.3) and model summary results show that 

PA trends are statistically different from NY when compared over time (p=0.0073; Table 3.4). 

PA soil moisture measurements were highest in July (Figure 3.3B) and are statistically different 

from measurements taken in May and October (p<1.0E-5). NY soil moisture trends over the 

course of this experiment show a wet May followed by two wet-up periods: one from June to 

July/August and a second from September to October (Figure 3.3B). Pairwise comparisons of 

NY data show that soil moisture measurements in May, June, and July were statistically the 

same, August measurements were most similar to June, September measurements were lower 

(i.e., dryer) than any other month, and October measurements were similar to June and August 

(Figure 3.3). 
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Figure 3.３(A) Soil moisture, measured as percent volumetric moisture content (% VMC), 

aggregated for all sample months versus location. (B) Soil moisture versus sample month for 

New York (NY) and Pennsylvania (PA). 

 

Table 3.３ Linear mixed effects model comparisons for soil moisture, measured as percent 

volumetric moisture content (% VMC). ‘Location’ indicates whether samples were collected in 

New York (NY) or Pennsylvania (PA) and ‘Month’ indicates the sample month. Best fit models 

are bolded. Abbreviations: degrees of freedom (df), Aikaike information criteria (AIC). 

Model Number Model df AIC 

3.1 % VMC ~ Location 4 39.53 

3.2 % VMC ~ Month 8 -70.08 

3.3 % VMC ~ Location + Month 9 -73.75 
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Table 3.４ Linear mixed effects model outputs for best fit model (Model 3.3 in Table 3.3) for 

percent volumetric moisture content (% VMC). ‘Location’ indicates whether samples were from 

New York (NY) or Pennsylvania (PA). We ln-transformed the Value column has but kept SE in 

untransformed units. Abbreviations: standard error (SE), degrees of freedom (df). 

Model Term Value SE df t-value p-value 

Intercept* 39.51 0.09 94 43.1587 < 1.00E-05 

Location (PA) 0.69 0.11 11 -3.2831 0.0073 

Month (June) 1.04 0.05 94 0.72862 0.468 

Month (July) 1.34 0.03 94 8.79711 < 1.00E-05 

Month (August) 0.92 0.04 94 -1.845 0.068 

Month (September) 0.62 0.04 94 -10.727 < 1.00E-05 

Month (October) 0.96 0.03 94 -1.3184 0.1906 

* Base model represents NY data in May. 
   

 

SWI was a significant predictor of soil moisture in all the models tested (Table 3.5). However, 

the best fit model (Model 5.4 in Table 3.5) indicates the statistically significant importance of 

also including the location and month (Table 3.6). Comparison of observations to Model 5.4 

results are shown in Figure 3.4 and indicate a positive relationship with a consistent slope. In 

general, this finding is consistent with previous research validating the predictability of soil 

moisture using SWIs (Agnew et al. 2006; Buchanan et al. 2014; Hofmeister et al. 2016). It also 

highlights that (1) larger SWI values correspond to wetter parts of the landscape and (2) the 

temporally static SWI integrates soil moisture patterns over time.  
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Table 3.５ Linear mixed effects model comparisons soil moisture, measured as percent 

volumetric moisture content (% VMC), versus soil wetness index (SWI). ‘Location’ indicates 

whether samples were from New York (NY) or Pennsylvania (PA) and ‘Month’ indicates the 

sample month. Best fit models for each soil extraction are bolded. Abbreviations: degrees of 

freedom (df), Aikaike information criteria (AIC). 

Model 

Number 

Model df AIC 

5.1 % VMC ~ SWI 4 39.103

2 5.2 % VMC ~ SWI + Location 5 35.275

7 5.3 % VMC ~ SWI + Month 9 -67.482 

5.4 % VMC ~ SWI + Location + Month 1

0 

-78.543 

5.5 % VMC ~ SWI + Month + SWI:Month 1

4 

-28.535 

5.6 % VMC ~ SWI + Location + SWI:Location 6 42.086

1 5.7 % VMC ~ SWI + Location + Month + SWI:Month 1

5 

-40.027 

5.8 % VMC ~ SWI + Location + Month + SWI:Location 1

1 

-71.838 

5.9 % VMC ~ SWI + Location + Month + SWI:Month + 

SWI:State 

1

6 

-32.752 

 

Table 3.６ Linear mixed effects model outputs for best fit model (Model 5.4 in Table 3.5) for 

percent volumetric moisture content (% VMC) versus soil wetness index (SWI). ‘Location’ 

indicates whether samples were from New York (NY) or Pennsylvania (PA). We ln-transformed 

the Value column has but kept SE in untransformed units. Abbreviations: standard error (SE), 

degrees of freedom (df). 

Model Term Value SE df t-value p-value 

Intercept* 26.22 0.09 94 34.7432 < 1.00E-05 

SWI 1.05 0.01 10 5.16515 0.0004 

Location 0.69 0.06 10 -5.8615 0.0002 

Month (June) 1.03 0.05 94 0.72124 0.4726 

Month (July) 1.34 0.03 94 8.80565 < 1.00E-05 

Month (August) 0.92 0.04 94 -1.8468 0.0679 

Month (September) 0.62 0.04 94 -10.738 < 1.00E-05 

Month (October) 0.96 0.03 94 -1.3197 0.190 

* Base model represents NY data in May. 
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Figure 3.４ Soil moisture, measured as percent volumetric moisture content (% VMC), versus 

soil wetness index for New York (NY) and Pennsylvania (PA) locations taken during each 

sample month. Best fit linear mixed effects model (LMEM) results (Model 5.4 in Table 3.5) 

shown as a black line.  
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These results highlight the application of SWI under very wet conditions as well as the 

limitations of using the SWI to predict soil moisture under dry conditions, as other studies have 

found (Western et al. 1999). Specifically, the April prior to the start of our study was very wet—

58.1% wetter than the 30-year normal for April (Arguez et al. 2010; Menne et al. 2012). The R-

squared value for data presented in Figure 3.4A for May was 0.55—indicating moderate 

variation in the relationship between soil moisture and SWI—but SWI was still capable of 

predicting the overall patterns. Variation in May soil moisture measurements from NY is also 

visible when looking at the spread of these same data in Figure 3.3B. When possible, we tried to 

avoid sampling until at least two days after a rainfall event to ensure that the water in the soil 

profile had a chance to redistribute. However, it is possible that soil water from rainfall events in 

April were still being redistributed throughout the landscape when May samples were collected 

in NY. With respect to dry conditions, the cumulative rainfall in August during the year of this 

study was 13.7% less than the 30-year normal; it is likely there was very little water in the soil 

profile throughout the landscape (Menne et al. 2012). While there was more variation in the 

relationship between soil moisture and SWI for August (R-squared value = 0.40) compared to 

May as mentioned above, the overall pattern of soil moisture was captured. 

 

Soil Phosphorus and the Soil Wetness Index 

Model comparisons show that aggregating CaCl2-P based on location (i.e., NY versus PA) as 

well as location and sample month were both equality powerful; the AIC score of Model 7.1 is 

within two units of the AIC score of Model 7.3 (Table 3.7). However, because Model 7.1 is more 

parsimonious, we prefer it. Therefore, when aggregated by location, CaCl2-P concentrations 

were significantly lower in NY compared to PA (p=0.0012; Table 3.8, Figure 3.5). Because the 
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AIC of Model 7.3 was within two units of Model 7.1, we also include CaCl2-P results plotted by 

location as well as sample month in Figure 3.6. The smaller CaCl2-P concentration in NY is 

evident but changes little over time (Figure 3.6B). Pairwise comparisons indicate significant 

differences between May and September, July and August, August and September, and 

September and October. The larger CaCl2-P concentration in PA is evident and, similarly to NY, 

changes little over time (Figure 3.6B). Pairwise comparisons indicate that October CaCl2-P 

concentrations measurements in PA are significantly different than May and July measurements. 

Model comparisons for Ox-P and Total-P also indicate that location is the most important 

predictor of these P pool trends (Table 3.7). Ox-P was statistically higher in NY compared to PA 

(p=0.0013; Table 3.8, Figure 3.5). Total-P was not statistically different between NY and PA 

(p=0.5247; Table 3.8, Figure 3.5).  
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Table 3.７ Linear mixed effects model comparisons for soil extractions (CaCl2-P, Ox-P, and 

Total-P). ‘Location’ indicates whether samples were collected in New York (NY) or 

Pennsylvania (PA) and ‘Month’ indicates the sample month. Best fit models for each soil 

extraction are bolded. Abbreviations: degrees of freedom (df), Aikaike information criteria 

(AIC). 

Model Number Model df AIC 

CaCl2-P Models       

7.1 CaCl2-P ~ Location* 4 43.40 

7.2 CaCl2-P ~ Month 8 50.81 

7.3 CaCl3-P ~ Location + Month 9 42.45     

Ox-P Models       

7.4 Ox-P ~ Location 4 -96.38 

7.5 Ox-P ~ Month 8 -78.47 

7.6 Ox-P ~ Location + Month 9 -81.63     

Total-P Models       

7.7 Total-P ~ Location 4 -91.57 

7.8 Total-P ~ Month 8 -76.39 

7.9 Total-P ~ Location + Month 9 -72.23 
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Table 3.８ Best fit linear mixed effects model (LMEM) outputs (Models 7.1, 7.3, 7.4, and 7.7 in 

Table 3.7) for soil extractions (CaCl2-P, Ox-P, and Total-P). ‘Location’ indicates whether 

samples were from New York (NY) or Pennsylvania (PA). We ln-transformed the Value column 

has but kept SE in untransformed units. Abbreviations: standard error (SE), degrees of freedom 

(df). 

Model Term Value SE df t-value p-value 

CaCl2-P ~ Location         

Intercept 1.66 0.16 99 3.22 0.0017 

Location (PA) 2.54 0.22 11 4.35 0.0012       

CaCl2-P ~ Location + Month*         

Intercept 1.62 0.16 94 2.97 0.004 

Location (PA) 2.53 0.22 11 4.29 0.0013 

Month (July) 1.02 0.08 94 0.23 0.8151 

Month (June) 0.95 0.06 94 -0.83 0.4104 

Month (May) 1.25 0.08 94 2.88 0.0049 

Month (October) 0.83 0.08 94 -2.41 0.0179 

Month (September) 1.14 0.06 94 2.24 0.0277       

Ox-P ~ Location           

Intercept 149.61 0.13 99 37.67 < 1.00E-05 

Location (PA) 0.61 0.18 11 -2.73 0.0195       

Total-P ~ Location           

Intercept 304.90 0.01 99 66.77 < 1.00E-05 

Location (PA) 0.93 0.12 11 -0.66 0.5247 

*Note the CaCl2-P ~ Location model is preferable because it is simpler and within two AIC units 

(Table 3.7). 
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Figure 3.５ Phosphorus concentration (mg/kg) versus extraction type for New York (NY) and 

Pennsylvania (PA). In-set (top left-hand corner) shows a zoomed-in view of CaCl2-P extraction 

results. 
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Figure 3.６ CaCl2-P concentration (mg/kg) versus sample month for (A) New York (NY) and 

(B) Pennsylvania (PA). Note difference in y-axis scale. 

 

We tested several different models for each P extraction and found that both SWI and location 

(i.e., NY versus PA) were important predictors of CaCl2-P and resulted in the model with the 

lowest AIC score (Model 9.2, Table 3.9). Model 9.4, which included SWI, location, as well as 

sample month, also had a low AIC score that was within two units of Model 9.2. However, 

because Model 9.2 is more parsimonious it is preferred and is used for additional analysis (i.e., 

Table 3.10 and Figure 3.7). Model 9.2 summaries show that SWI is a significant predictor of 

CaCl2-P (p=0.0349; Table 3.10). Comparisons between Model 9.2 and observations are shown in 
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Figures 3.7A and 3.7B and indicate a negative slope between CaCl2-P and SWI; the slope being 

more negative in PA compared to NY. This finding is consistent with our hypothesis that CaCl2-

P is more likely to be flushed out of areas with a higher SWI because these areas are more likely 

to generate runoff that transports mobile P forms further downslope. As noted earlier, PA sites 

tend to have larger CaCl2-P concentrations compared to NY; thus, this larger supply may provide 

a reason for the difference in slope between PA and NY.  
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Table 3.９ Linear mixed effects model comparisons for soil extractions (CaCl2-P, Ox-P, and 

Total-P) versus soil wetness index (SWI). ‘Location’ indicates whether samples were from New 

York (NY) or Pennsylvania (PA) and ‘Month’ indicates the sample month. Best fit models for 

each soil extraction are bolded. Abbreviations: degrees of freedom (df), Aikaike information 

criteria (AIC). 

Model Number Model df AIC 

CaCl2-P Models       

9.1 CaCl2-P ~ SWI 4 56.43 

9.2 CaCl2-P ~ SWI + Location* 5 45.60 

9.3 CaCl2-P ~ SWI + Month 9 55.14 

9.4 CaCl2-P ~ SWI + Location + Month 10 44.43 

9.5 CaCl2-P ~ SWI + Month + SWI:Month 6 49.55 

9.6 CaCl2-P ~ SWI + Location + SWI:Location 14 83.63 

9.7 CaCl2-P ~ SWI + Location + Month + SWI:Month 11 48.39 

9.8 CaCl2-P ~ SWI + Location + Month + SWI:Location 11 48.39     

Ox-P Models       

9.90 Ox-P ~ SWI 4 -87.07 

9.10 Ox-P ~ SWI + Location 5 -89.31 

9.11 Ox-P ~ SWI + Month 9 -71.82 

9.12 Ox-P ~ SWI + Location + Month 10 -74.56 

9.13 Ox-P ~ SWI + Month + SWI:Month 6 -36.60 

9.14 Ox-P ~ SWI + Location + SWI:Location 14 -84.47 

9.15 Ox-P ~ SWI + Location + Month + SWI:Month 11 -39.39 

9.16 Ox-P ~ SWI + Location + Month + SWI:Location 11 -69.73     

Total-P Models       

9.17 Total-P ~ SWI 4 -87.46 

9.18 Total-P ~ SWI + Location 5 -83.49 

9.19 Total-P ~ SWI + Month 9 -68.24 

9.20 Total-P ~ SWI + Location + Month 10 -64.14 

9.21 Total-P ~ SWI + Month + SWI:Month 6 -26.5 

9.22 Total-P ~ SWI + Location + SWI:Location 14 -79.25 

9.23 Total-P ~ SWI + Location + Month + SWI:Month 11 -22.38 

9.24 Total-P ~ SWI + Location + Month + SWI:Location 11 -59.98 

*AIC units for models 2 and 4 were not statistically significant (greater than two AIC units apart) 

so we select the simpler model for subsequent analyses.  
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Table 3.１０ Best fit linear mixed effects model (LMEM) outputs (Models 9.2, 9.4, 9.10, and 

9.17 in Table 3.9) for soil extractions (CaCl2-P, Ox-P, and Total-P) versus soil wetness index 

(SWI). ‘Location’ indicates whether samples were from New York (NY) or Pennsylvania (PA). 

We ln-transformed the Value column has but kept SE in untransformed units. Abbreviations: 

standard error (SE), degrees of freedom (df). 

Model Term Value SE df t-value p-value 

CaCl2-P ~ SWI + Location         

Intercept 2.89 0.26 99 4.04 0.0001 

SWI 0.93 0.03 10 -2.44 0.0349 

Location (PA) 2.54 0.18 10 5.23 0.0004       

CaCl2-P ~ SWI + Location + Month*       

Intercept 3.54 0.27 94 4.69 < 1.00E-05 

SWI 0.93 0.03 10 -2.44 0.0347 

Location (PA) 2.53 0.18 10 5.16 0.0004 

Month (July) 0.76 0.08 94 -3.50 0.0007 

Month (June) 0.82 0.09 94 -2.26 0.0259 

Month (May) 0.80 0.08 94 -2.88 0.0049 

Month (October) 0.91 0.08 94 -1.21 0.2306 

Month (September) 0.67 0.08 94 -4.8 < 1.00E-05       

Ox-P ~ SWI + Location         

Intercept 136.87 0.28 99 17.39 < 1.00E-05 

SWI 1.01 0.03 10 0.36 0.7261 

Location (PA) 0.61 0.19 10 -2.62 0.0255       

Total-P ~ SWI           

Intercept 290.03 0.17 99 34.32 < 1.00E-05 

SWI 1.00 0.02 11 0.06 0.9564 

*Note that the CaCl2-P ~ SWI + Location model is preferable because it is simpler and within 

two AIC units (Table 3.9). 
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Figure 3.７ Phosphorus concentration of CaCl2-P (A and B), Ox-P (C and D), Total-P (E and F) 

versus soil wetness index for New York (NY; A, C, E) and Pennsylvania (PA; B, D, F). Best fit 

linear mixed effects model (LMEM) results (Model 9.2, Table 3.9) shown as a black line. 
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Our results are consistent with another study finding higher concentrations of water extractable P 

in upslope areas compared to wetter toeslopes (Macrae et al. 2005). This same study attributes 

this pattern to groundwater induced desorption processes in the toeslopes. However, our results 

are inconsistent with studies demonstrating higher concentrations of mobile P pools in wetter 

parts of the landscape (Smeck 1973; Honeycutt et al. 1990; Litaor et al. 2005; Flores-López et al. 

2013; Wilson et al. 2016) likely due to the impact of sediment transport processes. We suggest 

these differences in finding are largely due to local landscape properties (e.g., soil and slope), 

land management (e.g., tillage intensity), and climate (e.g., storm size and frequency). 

 

We also tested whether SWI could be used to predict Ox-P and Total-P pools. Comparisons of 

these various models demonstrate that SWI and location were the best predictors of Ox-P (Model 

9.10, Table 3.9) and SWI alone is the best predictor of Total-P (Model 9.17, Table 3.9). 

However, closer inspection of these models indicates that SWI is not a statistically significant 

term for either of these P extractions. Specifically, the SWI term has a p-value equal to 0.7261 

and 0.9564 for the Ox-P and Total-P models, respectively (Table 3.10). This lack of relationship 

between Ox-P versus SWI and Total-P versus SWI is displayed in the relatively flat slope of 

Figures 3.7C – 3.7F. Given that these two extractions are meant to characterize less mobile P 

pools, these results are not surprising; hydrological processes do not have as strong an impact on 

them unless the materials (e.g. organic matter or minerals) these P forms are adsorbed to are 

transported downslope. Especially evident in NY, there is a peak in Ox-P and Total-P 

concentrations at an approximate SWI value of 7 (Figures 3.7C and 3.7E) that is attributed to 

sample site NY25 (Table 3.1). This result was unexpected and likely due to unknown P sources. 
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As mentioned previously, Total-P pools were not different between PA and NY yet there were 

significant differences in CaCl2-P and Ox-P pools between PA and NY. These findings point to 

either differences in (1) environmental/soil properties or (2) land management between the two 

locations. While dominant soils at both sites are classified as channery/gravelly silt loams, they 

may differ in their amount of Fe-/Al-oxides which provide a means to adsorb mobile forms of P 

(like CaCl2-P) and contribute to higher Ox-P concentrations (McKeague and Day 1966; 

Kleinman and Sharpley 2002). In this study, Ox-Al and Ox-Fe concentrations were significantly 

higher in NY compared to PA (p=0.0002 and p=0.0001 for Ox-Al and Ox-Fe, respectively, data 

not shown). Thus, more Fe-/Al-oxide surfaces were available in NY to bind mobile forms of P. 

Nearby land management may also have contributed to some of the patterns we observed. In PA, 

chemical fertilizer and manure was applied upslope of the sample sites included in this study. 

This source of P may explain why CaCl2-P concentrations are higher in PA (Figure 3.5) and 

there is a more negative slope between CaCl2-P and SWI (Figure 3.7B) but is counter to previous 

research showing that topographic indexes are capable of more accurately predicting soil P under 

less intensive management (i.e., low nutrient input and no-tillage; Wilson et al. 2016). The 

higher concentrations of Total-P at the lower SWI range (Figure 3.7F) in PA also provides 

evidence for our assertion that sample sites in the upslope parts of the landscape, closest to the 

fertilized fields, may have a higher P concentrations compared to samples taken downslope. 

However, making this conclusion necessitates the assumption that NY sites have a history of P 

application prior to their status as pasture/hay (i.e., before available records end in 2003) and that 

historically applied P has since become bound up in the soil. 
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Our hypothesis assumed an inverse linear relationship between different P pools and SWI. 

However, our results demonstrated a non-linear (i.e., parabolic) pattern with peak P 

concentrations around SWI=7 (Figures 3.7A, 3.7C, and 3.7E) and trough P concentrations 

around SWI=8 (Figures 3.7D and 3.7F) for NY and PA, respectively. Both occur around 

moderate SWI values and suggest potential limitations when using the SWI to predict soil P 

concentrations. By definition, sites with low SWI values promote the drainage of soil water, sites 

with high SWI collect water from upslope areas, and sites with moderate SWI values are a 

combination of these two ends of the spectrum. Sites with moderate SWI values have the 

capacity to drain and collect water. This inherent landscape classification when using the SWI 

combined with its temporally static nature, appeared to limit our ability to accurately predict 

mid-SWI range dynamic P cycling processes in NY and PA. 

 

Shotgun Metagenomics Assembly 

For NY, we assembled a total of 5,924,925 contigs, the longest of which was 184.8 kb. There 

were 67 contigs greater than 50 kb in NY and they made up 0.13% of the main genome. For PA, 

we assembled a total of 2,398,609 contigs, the longest of which was 98.6 kb. There were 9 

contigs greater than 50 kb in NY and they made up 0.04% of the main genome. A summary of 

the total assembly length for contigs above a certain length is shown in Table 3.11 for NY and 

PA samples. 
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Table 3.１１Shotgun metagenome assembly results for samples taken in New York (NY) and 

Pennsylvania (PA). 

Location Minimum Contig Length Number of Contigs 

NY      
500 2,288,892  
1,000 563,371  
10,000 2,531 

PA      
500 905,477  
1,000 186,473 

  10,000 968 

 

 

Microorganisms Harboring Phosphorus Functional Genes 

We annotated a total of 6,493 and 2, 701 genes for NY and PA, respectively (Table 3.12). 

Because some contigs had more than one gene, they represented a total of 6,419 and 2,657 

unique contigs for NY and PA, respectively (summation of all bars by location, Figure 3.8). As 

mentioned previously, we assembled sequencing data from NY and PA separately and the 

number of samples sequenced for NY was double the number in PA; both of these points likely 

explain this difference as well as the doubling effect when comparing Figure 3.8A to Figure 

3.8B. However, even when taking the doubling effect into account, NY has more unique contigs 

(Figure 3.8).  
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Table 3.１２Number of ppk1, ppk2, and ppx genes annotated in this study for soil samples taken 

from locations in New York (NY) and Pennsylvania (PA). 

Location Gene Count 

NY 
  

 
ppk1 2,635  
ppk2 2,449  
ppx 1,409     

Total     6,493 

PA      
ppk1 1,252  
ppk2 847  
ppx 602    

  Total   2,701 

 

 

 

Figure 3.８ Number of unique contigs with various gene combinations in samples from (A) New 

York (NY) and (B) Pennsylvania (PA). Note: the total number of samples sequenced in NY 

(n=30) was double the total number of samples sequenced in PA (n=15).   
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For both locations, unique contigs only harboring ppk1 were most frequent followed by contigs 

harboring only ppk2 and only ppx (Figure 3.8). The presence of contigs harboring only one gene 

was unexpected given that microorganisms would theoretically require either ppk1 or ppk2 to 

store intracellular polyP and ppx to degrade polyP. The length distribution of contigs harboring 

only one polyP functional gene did not appear to be especially shorter than any of the other gene 

combinations for NY or PA (Figure 3.9) but we cannot know for sure since the genomes for 

these contigs are not complete. When combined these findings indicate that either deep 

sequencing is required to annotate both ppk and ppx or ppk may have a genetic function 

independent of ppx. We suspect ppx genes were less frequently annotated than ppk genes due to 

either incomplete genomes, a limited focus on ppx in the literature/existing protein databases, or 

microorganism having fewer copies of ppx genes compared to ppk genes. It is understood that 

CAP has one copy of ppk1 (Kunin et al. 2008) but it is possible that non-CAP PAOs have more 

than one copy of this gene. Only rarely did we observe contigs with both ppk1 and ppk2 genes as 

well as all three genes (Figure 3.8; Table 3.13). 
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Figure 3.９Length distributions of contigs harboring various gene combinations from samples taken in New York (NY; A and C) and 

Pennsylvania (PA; B and D). Note the difference in scale between A and B. The shaded regions in plots A and B refer to the zoomed-

in (0-5,000 bp) plots shown in C and D. 
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Table 3.１３ Contigs with unique combinations of ppk and ppx genes as determined by shotgun metagenome analysis and subsequent 

comparison of protein sequence to existing sequences in the pBLAST database. 

Contig ID Gen

e 

Location Top pBLAST Hit 

Protein Name 

Top pBLAST Hit Organism Accession Number Identity 

(%) 

Environmen

t 

Reference 

k141_1087762                 

 

ppk1 NY hypothetical protein 

A2V87_04225 

Gammaproteobacteria 

bacterium RBG_16_58_17 

MGQV01000063.

1 

85 Aquifer Anantharaman et 

al. 2016 
 

ppk2 NY hypothetical protein 

DUF344 

Chthoniobacter flavus 

Ellin428 (Verrucomicrobia) 

ABVL01000022.1 79 Soil Kant et al. 2011 

         

k141_1683664                 

 

ppk1 PA polyphosphate 

kinase 

Betaproteobacteria 

bacterium SG8_40 

LJTS01000251.1 73 Estuary 

sediment 

Baker et al. 2015 

 
ppk2 PA Polyphosphate 

AMP 

phosphotransferase 

Syntrophaceae bacterium 

CG2_30_58_14 

MNZQ01000047.1 66 Aquifer Probst et al. 

2017  
ppx PA exopolyphosphatase Betaproteobacteria 

bacterium 

RIFCSPLOWO2_2_FULL_

62_13 

MERG01000201.1 69 Aquifer Anantharaman et 

al. 2016 

         

k141_975119                 

 

ppk2 PA phosphate--

nucleotide 

phosphotransferase 

Alphaproteobacteria 

bacterium 64-11 

MKRH01000042.1 73 Bioreactor Kant et al. 

(unpublished) 

  ppx PA hypothetical protein 

AUH79_01695 

Betaproteobacteria 

bacterium 

13_1_40CM_4_64_4 

MNFQ01000026.1 75 Soil Butterfield et al. 

2016 
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Regardless of whether samples were collected in NY or PA, contigs classified as putative PAOs 

(i.e., harboring either ppk1 and ppx or ppk2 and ppx) more frequently harbored a combination of 

ppk1 and ppx genes compared to a combination of ppk2 and ppx genes (Figure 3.8). The length 

distribution of putative PAOs does not indicate a bias toward longer contigs. This is true with the 

exception for a contig harboring all three polyP functional genes in PA, which was ~20 kb long 

(Figure 3.9B; Table 3.13). Besides assembly bias, it is possible that ppk does not always reside 

near ppx in a particular genome. While both organisms are not recognized as PAOs, ppx was 

found downstream of ppk in the E. coli genome—forming the ppk operon—but upstream of ppk 

in the P. aeruginosa genome (Brown and Kornberg 2008). The polyP functional gene 

arrangement in P. aeruginosa does not form an operon but co-regulation has not been ruled out 

(Brown and Kornberg 2008). Given our limited understanding and subsequent ability to resolve 

these issues, we suggest that further research is needed to (1) determine whether deeper 

sequencing influences the number of putative PAOs identified in soil samples, (2) improve our 

understanding of the organization of these genes in the genomes of different organisms, and (3) 

verify the phenotype of putative PAOs identified here. 

 

In terms of overall taxonomy, the distribution of contigs harboring polyP functional genes from 

both locations was similar (Figure 3.10). Specifically, Proteobacteria (i.e., Alphaproteobacteria) 

and Actinobacteria were the top two most represented bacterial phyla in NY and PA (Figure 

3.10). We also observed many contig assignments to the Betaproteobacteria class, which 

includes CAP—a model PAO (Hesselmann et al. 1999). Besides the top three bacterial phyla, 

taxonomic classifications of contigs vary slightly more for contigs harboring only one of either 

ppk1, ppk2, or ppx (Figure 3.11). For example, the Cyanobacteria/Melainabacteria group, which 
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was previously identified in full-scale EBPR reactor (Soo et al. 2014), shifts up and down in 

order of most abundant depending on the polyP functional gene of interest. There are generally 

more unclassified contigs for both NY and PA ppx (Figures 3.10F and 3.11C), which is not 

surprising given our more limited understanding of this gene compared to ppk. Many contigs in 

NY and PA were assigned to the phyla Verrucomicrobia, which is abundant in soil (Bergmann et 

al. 2011) and positively correlated with total P concentrations in sediments (Jin et al. 2017). 

Some contigs were also assigned to archaeal lineages (Methanomicrobia). 
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Figure 3.１０ Number of unique contigs classified into major bacterial and archaeal phyla/classes for (A) New York (NY) and (B) 

Pennsylvania (PA). 
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Figure 3.１１ Number of unique contigs classified into major bacterial and archaeal phyla/classes for New York (NY; A-C) and 

Pennsylvania (PA; D-E) harboring only one of either ppk1 (A and D), ppk2 (B and E), and ppx (C and F) genes. 



 

170 

 

Contigs that harbored both ppk1 and ppx genes—and may represent putative PAOs—were 

classified as members of the Proteobacteria (i.e., Alphaproteobacteria, Betaproteobacteria, and 

Gammaproteobacteria) phylum (Figure 3.12). Given the caveats discussed earlier associated 

with contig length and ability to predict putative PAOs, these findings are notable because CAP 

is a member of the Betaproteobacteria and other studies of WWTP systems have identified 

PAOs in the Alphaproteobacteria and Gammaproteobacteria classes (e.g., Zilles et al. 2002; 

Nguyen et al. 2012). We recognize these are diverse classes and suggest the need for further 

research to verify whether the putative PAOs identified here fit the phenotype of known PAOs. 

Many of the Betaproteobacteria with both ppk1 and ppx genes were assigned to the genus 

Burkholderia, which has been found to store intracellular polyP granules and solubilize P in the 

environment (Locke 2015; Purahong et al. 2016). Only one contig in PA (k141_975119, Table 

3.13) harbored both ppk2 and ppx genes. It also appears as though it is less common to have ppk2 

and ppx genes than ppk1 and ppx genes. We found no contigs containing all three polyP 

functional genes in NY but one in PA (k141_1683664, Table 3.13) that had PPK1 and PPX 

protein sequences that were similar to proteins belonging to Betaproteobacteria found in estuary 

sediment and aquifer environments (Baker et al. 2015; Anantharaman et al. 2016). This same 

contig had a PPK2 protein sequence that was related to a Syntrophaceae bacterium protein found 

in an aquifer environment (Probst et al. 2017). The length of this contig was large compared to 

other contigs (~20 kb; Figure 3.7B); therefore, it is possible that deeper sequencing may prove 

beneficial for identifying organisms with similar combinations of polyP functional genes. We 

found one contig in NY (k141_1087762, Table 3.13) with both ppk1 and ppk2 genes and none in 

PA. We note that the protein sequences of contigs that we identified with unique combinations of 

polyP functional genes were only recently characterized in the environment; that is, from 2011 to 
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2017 (Table 3.13). Therefore, these results indicate the potential for many newly discovered 

organisms with the capacity to influence P cycling in diverse environments from soils, to estuary 

sediments, to aquifers (and perhaps beyond). 
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Figure 3.１２ Number of unique contigs harboring both ppk1 and ppx genes classified into major bacterial and archaeal phyla/classes 

for (A) New York (NY) and (B) Pennsylvania (PA). 
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Hydrology, and Phosphorus Pools, and Functional Gene Relative Abundance 

LMEMs relating relative abundance of ppk1, ppk2, and ppx to SWI, location, and the three P 

pools are shown in Table 3.14. Looking first at SWI, LMEM AIC summaries indicate that SWI 

alone had a relatively low predictive power compared to other models and was not a significant 

predictor of relative abundance for any of the polyP functional genes included in this study 

(p>0.05, Table 3.15). We found no observable trend when plotting relative abundance of the 

three polyP functional genes versus sample event ordered from lowest to highest SWI (Figure 

3.13) or versus SWI when repeated measurements in time were plotted together (Figure 3.14). 

These results do not support our hypothesis that the relative abundance of polyP functional genes 

will increase for regions of the landscape with larger SWIs. They may indicate that (1) DNA is a 

poor indicator of PAO-mediated P cycling along the SWI gradients studied here, (2) microbially-

mediated P processes may be masked by land management or other controls on P, (3) SWI 

characterizes soil moisture patterns at a time scale that is too large for it to be applicable to finer 

scale, microbial processes, or (4) ppk1, ppk2, and ppx are uniformly spread out in time and space 

(e.g., Figure 3.13F). Researchers have noted the importance of measuring environmental factors 

at timescales that are meaningful to biological processes (Pellerin et al. 2016; Rode et al. 2016).  
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Table 3.１４ Relative gene abundance (RA; in units of FPKM) linear mixed effects model 

(LMEM) comparisons versus variables of interest for ppk1, ppk2, and ppx. ‘Location’ indicates 

whether samples were collected in New York (NY) or Pennsylvania (PA). Best fit models for 

each soil extraction are bolded. Abbreviations: soil wetness index (SWI), degrees of freedom 

(df), Aikaike information criteria (AIC). 

Model Number Model df AIC 
ppk1       
11.1 RA ~ SWI 4 552.35 
11.2 RA ~ Location 4 539.54 
11.3 RA ~ CaCl2-P 4 544.08 
11.4 RA ~ CaCl2-P + Location 5 532.55 
11.5 RA ~ CaCl2-P + Location + CaCl2-P:Location 6 518.50 
11.6 RA ~ Ox-P 4 555.01 
11.7 RA ~ Ox-P + Location 5 540.78 
11.8 RA ~ Ox-P + Location + Ox-P:Location 6 540.00 
11.9 RA ~ Total-P 4 558.91 
11.10 RA ~ Total-P + Location 5 542.05 
11.11 RA ~ Total-P + Location + Total-P:Location 6 538.97 
        
ppk2       
11.12 RA ~ SWI 4 528.77 
11.13 RA ~ Location 4 525.32 
11.14 RA ~ CaCl2-P 4 528.60 
11.15 RA ~ CaCl2-P + Location 5 519.58 
11.16 RA ~ CaCl2-P + Location + CaCl2-P:Location 6 506.91 
11.17 RA ~ Ox-P 4 532.71 
11.18 RA ~ Ox-P + Location 5 524.75 
11.19 RA ~ Ox-P + Location + Ox-P:Location 6 524.07 
11.20 RA ~ Total-P 4 533.36 
11.21 RA ~ Total-P + Location 5 525.76 
11.22 RA ~ Total-P + Location + Total-P:Location 6 525.60 

    
ppx       
11.23 RA ~ SWI 4 472.85 
11.24 RA ~ Location 4 460.47 
11.25 RA ~ CaCl2-P 4 471.85 
11.26 RA ~ CaCl2-P + Location 5 467.69 
11.27 RA ~ CaCl2-P + Location + CaCl2-P:Location 6 448.65 
11.28 RA ~ Ox-P 4 476.43 
11.29 RA ~ Ox-P + Location 5 463.83 
11.30 RA ~ Ox-P + Location + Ox-P:Location 6 464.86 
11.31 RA ~ Total-P 4 479.92 
11.32 RA ~ Total-P + Location 5 464.78 
11.33 RA ~ Total-P + Location + Total-P:Location 6 466.96 
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Table 3.１５ Linear mixed effects model summaries for single predictor models of relative gene 

abundance (RA; in units of FPKM) presented in Table 3.13 for ppk1, ppk2, and ppx. 

Abbreviations: soil wetness index (SWI), standard error (SE), and degrees of freedom (df). 

Model Model Term Value SE df t-value p-value 

ppk1             

RA ~ SWI Intercept 621.68 106.91 34 5.82 < 1.00E-05 

 SWI 2.65 12.78 8 0.21 0.8411  

 
      

RA ~ CaCl2-P Intercept 512.97 44.44 33 11.54 < 1.00E-05 

 CaCl2-P 38.80 11.59 33 3.35 0.002         

RA ~ Ox-P Intercept 783.59 79.23 33 9.89 < 1.00E-05  
Ox-P -1.11 0.55 33 -2.00 0.0536         

RA ~ Total-P Intercept 603.95 147.00 33 4.11 0.0002  
 Total-P 0.13 0.47 33 0.27 0.7887  

ppk2           
 

RA ~ SWI Intercept 519.82 67.60 34 7.69 < 1.00E-05 

 SWI 5.43 8.12 8 0.67 0.5224  

 
      

RA ~ CaCl2-P Intercept 572.83 41.86 33 13.68 < 1.00E-05 

 CaCl2-P -3.44 10.51 33 -0.33 0.7451         

RA ~ Ox-P Intercept 645.24 54.93 33 11.75 < 1.00E-05  
Ox-P -0.64 0.38 33 -1.67 0.1046         

RA ~ Total-P Intercept 705.73 91.00 33 7.76 < 1.00E-05 
 Total-P -0.48 0.29 33 -1.64 0.1112  

ppx           
 

RA ~ SWI Intercept 317.05 39.31 34 8.06 < 1.00E-05 

 SWI 3.74 4.70 8 0.80 0.4494  

 
      

RA ~ CaCl2-P Intercept 323.03 21.07 33 15.33 < 1.00E-05 

 CaCl2-P 6.88 5.31 33 1.30 0.2038         

RA ~ Ox-P Intercept 397.98 31.28 33 12.72 < 1.00E-05  
Ox-P -0.40 0.22 33 -1.85 0.0737         

RA ~ Total-P Intercept 363.32 55.60 33 6.53 < 1.00E-05 

  Total-P -0.06 0.18 33 -0.32 0.7494 
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Figure 3.１３ Relative gene abundance (FPKM) of ppk1 (A and B), ppk2 (C and D), and ppx (E 

and F) versus sample event ordered from lowest to highest SWI and from May to October. New 

York (NY) results shown in (A), (C), and (E). Pennsylvania (PA) results shown in (B), (D), and 

(F). 
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Figure 3.１４Observed relative abundance (FPKM) colored by sample site versus soil wetness 

index for in New York (NY; A, C, and E) and Pennsylvania (PA; B, D, and F) for ppk1 (A and 

B), ppk2 (C and D), and ppx (E and F) genes. 
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Despite the lack of trend between the relative abundance of the three polyP functional genes and 

SWI, we observed a high variation in relative abundance at moderate SWI values in NY but not 

in PA (Figure 3.14). This spread is especially evident for ppk1 and ppx in NY (Figures 3.14A 

and 3.14E). As mentioned previously, we observed peak P concentrations at moderate SWI 

values in NY (Figure 3.7) that may indicate the limitations of assuming a linear relationship 

between soil P concentrations and SWI, as discussed previously. Future studies may focus on 

whether regions of the landscape with moderate SWI values, rather than those with high SWI 

values, are more likely to select for PAOs. 

 

Compared to SWI, location alone was a significantly better predictor (i.e., lower AIC) of relative 

abundance for all three polyP functional genes (Table 3.14). When data were aggregated by 

location, we observed significantly higher relative abundance of ppk1 in PA compared to NY 

(p=0.0037; Model 11.2 in Table 3.14, Figure 3.15A). Similarly, the relative abundance of ppx 

was significantly higher in PA compared to NY (p=0.0034; Model 11.13 in Table 3.14, Figure 

3.15C). However, there was no significant difference between the relative abundance of ppk2 in 

NY and PA (p=0.6351; Model 11.24 in Table 3.14, Figure 3.15B). It is interesting to note that 

despite annotating fewer unique contigs in PA (Figure 3.8), the relative abundances of functional 

genes are similar in magnitude to NY (Figure 3.15). 
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Figure 3.１５ Relative gene abundance (FPKM) of (A) ppk1, (B) ppk2, and (C) ppx aggregated 

by location; whether samples were taken in New York (NY) or Pennsylvania (PA).  
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LMEM comparisons indicate that including location and soil P pool information improve our 

ability to predict the relative abundances of ppk1, ppk2, and ppx (Table 3.14). In the case of all 

three genes, we found that LMEMs incorporating CaCl2-P concentrations alone were more 

predictive (i.e., lower AIC) than SWI alone, Ox-P alone, or Total-P alone (Table 3.14). However, 

incorporating CaCl2-P alone was only a significant predictor of ppk1 relative gene abundance 

(p=0.002, Table 3.15). Beyond these single-term response models, the best fit LMEM for all 

three genes included CaCl2-P concentration, location, and the interaction of CaCl2-P 

concentration and location (Models 11.5, 11.16, and 11.27 in Table 3.14). Furthermore, the 

interaction terms of these best fit models indicate significantly different trends between samples 

taken in NY and PA for ppk1 and ppk2 (p<0.05, Table 3.16), which was likely due to differences 

in CaCl2-P concentrations between the two sites as noted previously (Figure 3.5). Overall in NY, 

we observed a negative relationship between the relative abundance of all three polyP functional 

genes and CaCl2-P concentration (Figure 3.16) but the only significant negative trend was for 

ppk2 (p=0.0106; Table 3.16, Figure 3.16B). In PA, we observed no significant relationship for 

either of the three polyP functional genes (p=0.2000, Table 3.16, Figure 3.16B). In the case of 

ppx, the interaction term as well as CaCl2-P concentration term were not significant predictors of 

relative abundance (p>0.05, Table 3.16).  
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Table 3.１６ Best fit linear mixed effects model (LMEM) summaries (Models 11.5, 11.16, and 

11.27 in Table 3.14) for predicting relative abundance (RA; in units of FPKM) of ppk1, ppk2, 

and ppx genes. ‘Location’ indicates whether samples were from New York (NY) or Pennsylvania 

(PA). Abbreviations: standard error (SE) and degrees of freedom (df). 

Model Term Value SE df t-value p-value 
ppk1: RA ~ CaCl2-P + Location + CaCl2-P:Location       

Intercept 671.06 65.33 32 10.27 < 1.00E-05 

CaCl2-P -62.32 32.66 32 -1.91 0.0654 

Location (PA) -105.43 101.95 8 -1.03 0.3313 

CaCl2-P:Location (PA) 98.18 35.76 32 2.75 0.0098       

ppk2: RA ~ CaCl2-P + Location + CaCl2-P:Location       

Intercept 702.28 62.33 32 11.27 < 1.00E-05 

CaCl2-P -82.72 30.47 32 -2.71 0.0106 

Location (PA) -134.32 96.16 8 -1.40 0.2000 

CaCl2-P:Location (PA) 84.34 33.31 32 2.53 0.0165       

ppx: RA ~ CaCl2-P + Location + CaCl2-P:Location       

Intercept 361.13 28.78 32 12.55 < 1.00E-05 

CaCl2-P -26.04 14.24 32 -1.83 0.0769 

Location (PA) 24.23 44.55 8 0.54 0.6013 

CaCl2-P:Location (PA) 25.93 15.57 32 1.67 0.1057 
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Figure 3.１６ Observations and best fit linear mixed effects model (LMEMs, Table 3.16) of 

relative abundance (FPKM) versus CaCl2-P concentration for (A) ppk1, (B) ppk2, and (C) ppx 

genes. Note that the only significant (p<0.05) trend is for ppk2 gene results taken from NY.  
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Overall, we observed that the CaCl2-P pool was better, but not consistently significant, predictor 

of P functional gene abundance compared to SWI. We also observed that the CaCl2-P pool was 

the best of all three P pools at predicting the relative abundance for all three genes in this study. 

We suggest this is because the CaCl2-P pool represents the most mobile P pool compared to the 

Ox-P and Total-P pools and is likely more readily available to and sourced from 

microorganisms. The observation of a significant negative relationship between NY ppk2 relative 

abundance and CaCl2-P concentrations partially—we also expected SWI to influence P 

functional gene relative abundance—supports our hypothesis as well as the idea that P limitation 

might select for organisms that are more likely to store polyP. The findings of this study are 

consistent with another in the marine environment that showed a negative (albeit, not significant) 

trend in ppk2 abundance with increasing phosphate concentrations (Temperton et al. 2011). 

Conversely to our findings, this same study found a significant negative trend in ppk1 and ppx 

gene abundance with phosphate concentration. The negative relationship we expected was not 

significant for all cases and on some occasions indicated the opposite trend; a positive 

relationship between relative abundance and CaCl2-P concentrations in PA (Figures 3.16A and 

3.17B). The reason for this trend is unclear as it indicates the growth of opportunistic organisms 

that accumulate P but is not consistent with ppx trends in PA (Figures 3.16C and 3.17F). Given 

the assumption that both ppk1 and ppx must be harbored to define a putative PAO, we would 

expect to see similar trends in relative abundance between pairs (i.e., ppk1/ppx and ppk2/ppx). 

We also observe a great deal of within site variation in relative abundance over time. For 

example, while the CaCl2-P concentration of site PA50 did not vary much over the period of this 

study, the relative abundance of ppk1, ppk2, and ppx genes did (Figures 3.17B, 3.17D, and 

3.17F). 
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Figure 3.１７ Observed relative abundance (FPKM) colored by sample site versus CaCl2-P 

concentration for in New York (NY; A, C, and E) and Pennsylvania (PA; B, D, and F) for ppk1 

(A and B), ppk2 (C and D), and ppx (E and F) genes. 

 

In addition to using LMEMs to test the impact of environmental variables such as SWI and soil P 

concentrations on relative abundance of polyP functional genes, we also observed some common 

descriptive patterns across sampling events. Specifically, we observed higher than average 
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relative abundances of a handful of contigs at a given sampling site that were not necessarily 

consistently present from one month to the next (e.g., Figures 3.18 and 3.19). There are several 

exceptions to this with the most notable being site NY17, which has several contigs harboring 

ppk1 that remain abundant throughout the duration of this study (Figure 3.18). NY17 was 

consistently the wettest site in NY throughout the study period, had obvious iron redox 

influences (i.e., mottling), had consistently low CaCl2-P concentrations (Figures 3.17A, 3.17B, 

and 3.17C), and had some of the highest gene abundances of samples from NY (Figures 3.13A, 

3.13C, and 3.13E). Therefore, these conditions may have selected for unique organisms capable 

of tolerating these nutrient limited, iron-rich, continuously saturated conditions. We observed 

similar clustering of NY17 over time for ppk2 and ppx genes as well (Figures 3.20 and 3.22). 

Also, specific to NY17, we observed an overwhelming abundance of one contig harboring ppk2 

(k141_4822451, top of Figure 3.20) at this site that increased from May to June, went away from 

July to August, re-emerged in September, and went away again in October (Figure 3.20). We 

suggest that this pattern may depend on soil moisture as the end of July as well as months of 

August and October were dry (Figure 3.1). pBLAST of the PPK2 protein sequence from this 

contig matched with 69% identity to a hypothetical protein from Bosea sp. BIWAKO-01 

(Alphaproteobacteria). With regard to the potential for concurrent impacts of iron redox and 

PAOs on patterns at site NY17, we note that it is possible for abiotic iron redox chemistry to 

mask the role of PAOs; Fe reduction under anaerobic conditions leads to the release of phosphate 

while aerobic conditions leads to the precipitation of oxidized Fe with phosphate (Dodds 2003). 

However, one study demonstrated that microbes can mediate iron-phosphate dynamics in 

sediments (Sulu-Gambari et al. 2016) and another revealed the potential for Fe to stabilize 

intracellular polyP in estuarine diatoms (Nuester et al. 2012). To summarize, our findings 
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indicate the need for additional study on the coupled role of iron redox chemistry and P cycling 

genes in soils under alternating wetting/drying cycles. 

 

With respect to general patterns in PA, we observed a higher than average relative abundance of 

a few contigs harboring ppk2 that were consistently abundant across all samples in PA (e.g., top 

of grid in Figure 3.21) as well as the same for contigs harboring ppx in NY (Figure 3.22). 

Compared to NY, we observed more instances in PA where contigs harboring ppk1, ppk2, and 

ppx were up to two standard deviations below the mean (e.g., Figure 3.23).  
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Figure 3.１８ Heatmap of relative abundance z-scores for ppk1 genes found in NY samples 

clustered by similar relative abundance profiles between sample ID and contig ID. Includes the 

non-redundant top 3 contigs by maximum abundance for each sample as well as the top 7 contigs 

by mean abundance overall. Sample ID month abbreviations: May (M), June (Jn), July (Jy), 

August (A), September (S), and October (O).  



 

188 

 

 

 

Figure 3.１９ Heatmap of relative abundance z-scores for ppk1 genes found in PA samples 

clustered by similar relative abundance profiles between sample ID and contig ID. Includes the 

non-redundant top 3 contigs by maximum abundance for each sample as well as the top 7 contigs 

by mean abundance overall. Sample ID month abbreviations: May (M), June (Jn), July (Jy), 

August (A), September (S), and October (O).  
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Figure 3.２０ Heatmap of relative abundance z-score for ppk2 genes found in NY samples 

clustered by similar relative abundance profiles between sample ID and contig ID. Includes the 

non-redundant top 3 contigs by maximum abundance for each sample as well as the top 7 contigs 

by mean abundance overall. Sample ID month abbreviations: May (M), June (Jn), July (Jy), 

August (A), September (S), and October (O).  
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Figure 3.２１ Heatmap of relative abundance z-scores for ppk2 genes found in PA samples 

clustered by similar relative abundance profiles between sample ID and contig ID. Includes the 

non-redundant top 3 contigs by maximum abundance for each sample as well as the top 7 contigs 

by mean abundance overall. Sample ID month abbreviations: May (M), June (Jn), July (Jy), 

August (A), September (S), and October (O).  
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Figure 3.２２ Heatmap of relative abundance z-scores for ppx genes found in NY samples 

clustered by similar relative abundance profiles between sample ID and contig ID. Includes the 

non-redundant top 3 contigs by maximum abundance for each sample as well as the top 7 contigs 

by mean abundance overall. Sample ID month abbreviations: May (M), June (Jn), July (Jy), 

August (A), September (S), and October (O).  
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Figure 3.２３ Heatmap of relative abundance z-scores for ppx genes found in PA samples 

clustered by similar relative abundance profiles between sample ID and contig ID. Includes the 

non-redundant top 3 contigs by maximum abundance for each sample as well as the top 7 contigs 

by mean abundance overall. Sample ID month abbreviations: May (M), June (Jn), July (Jy), 

August (A), September (S), and October (O).  
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CONCLUSIONS 

SWIs are currently used to predict soil moisture patterns and may also provide a means to predict 

the spatial extent of P losses as well as microbially-mediated P cycling to mitigate those losses. 

We found that SWI is inversely related to mobile forms of P over time—such as those obtained 

using CaCl2-P extractions. However, despite the significant relationship between SWI and soil 

CaCl2-P concentrations, SWI cannot be applied directly to predict the relative abundances of 

polyP functional genes associated. We suggest the reason for this lies in the temporally static 

nature of the SWI as well as landscape management and other undocumented abiotic and biotic 

controls. Rather, relative abundance is best predicted from CaCl2-P concentrations but the 

inverse relationship we observed is only significant in some instances and may depend on overall 

P availability and location specific characteristics. Because of the lack of relationship between 

the SWI and PAO associated gene relative abundances as well as the limited number or contigs 

harboring a combination of ppk1 and ppx genes, PAO-mediated P cycling does not likely play a 

large role in soils sampled here. Future research may focus on (1) addressing potential 

limitations of using the SWI as a predictor soil P at sites with moderate SWI values, (2) focusing 

on how P availability influences PAO-mediated P cycling in soils, and (3) addressing the relative 

importance of abiotic and biotic controls on P cycling in soil along soil moisture and P 

availability gradients. Additionally, more work is needed to verify the phenotypes of putative 

PAOs identified in this study (i.e., those harboring both ppk1 and ppx genes). 
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CHAPTER 4  

TEMPORAL TRENDS OF DECOMPOSING LEAF LITTER PHOSPHORUS 

CONCENTRATIONS AND THE RELATIVE ABUNDANCE OF POLYPHOSPHATE 

CYCLING GENES 

 

ABSTRACT 

Leaf litter is an important source of phosphorus (P) in forests ecosystems and a few studies 

suggest that microbially-mediated processes may influence P retention and cycling in these 

environments. One potential microbial P retention mechanism that has received very little 

attention involves polyphosphate accumulating organisms (PAOs), which have been shown to 

accumulate and liberate intracellular P as polyphosphate (polyP), depending on environmental 

conditions. The abundance and characterization of microorganisms harboring key genes involved 

in polyP metabolism of PAOs—ppk and ppx—are not well studied in the environment and may 

provide a new perspective for microbial controls on P cycling in forest ecosystems. We 

hypothesized the relative abundance of polyP functional genes (i.e., ppk1, ppk2, and ppx) on leaf 

litter increases concurrently over time with increases in leaf-associated P (leaf P). We also 

expected to see taxa of known and unknown PAOs inhabiting the leaf litter surface. To test these 

hypotheses, we placed leaf litter bags in the stream and on the forest floor, collected them over 

several months, and analyzed them for decomposition rates and leaf P concentration. We also 

extracted DNA from leaf litter samples and assembled shotgun metagenomes to characterize the 

microbial species harboring ppk1, ppk2, and ppx and determined the relative abundance of these 

genes. Stream leaf P concentrations increased significantly over time but relative abundances of 

ppk1, ppk2, and ppx remained constant indicating an alternative (likely non-PAO related) 
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mechanism explained the increases in leaf P over time. We suggest one possible explaination 

could be due to the buildup of sediment-bound P on the leaf litter over time. In forest floor, leaf 

P concentrations decreased significantly over time while the relative abundance varied. 

Specifically, of ppk2 increased significantly and ppk1 and ppx remained constant. We found 

contigs harboring both ppk1 and ppx genes that belonged to similar taxa as known PAOs (e.g., 

Betaproteobacteria) as well as many understudied taxa (e.g., Burkholderia). These contigs may 

represent putative PAOs but additional work is required to verify this suggestion. While we 

identified putative PAOs, non-significant patterns in relative abundance over time indicate 

limited support for PAO-mediated P cycling associated with leaf litter. Additionally, these results 

demonstrate the commonality of polyP functional genes on leaf litter in streams as well as on the 

forest floor and provide a stepping stone for future work addressing the ecological role of PAOs 

in nutrient limited forest environments. 

 

KEYWORDS  

phosphorus, polyphosphate, polyphosphate accumulating organisms, leaf litter decomposition, 

polyphosphate kinase, exopolyphosphatase, microbial processes 

 

INTRODUCTION 

Leaf litter provides energy and nutrients, such as phosphorus (P), to forest ecosystems (Fisher 

and Likens 1973; Mehring et al. 2015). Leaf litter in streams can retain P via a combination of 

abiotic and biotic mechanisms including (1) microbial accumulation of water column P, (2) 

entrapment of sediment bound P in the leaf litter biofilm, (3) chemical binding of water column 
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P with the leaf organic matter, and (4) entrapped sediment minerals (Gregory 1978; Meyer 1980; 

Dodds 2003; Mehring et al. 2015). Several studies have observed accumulations of P on leaf 

litter in streams over time due to the combination of these processes (Gregory 1978; Meyer 

1980; Mehring et al. 2015). Leaf litter also provides a source of P to organisms living on the 

forest floor; studies have documented the decline in leaf P concentrations on the forest floor over 

time (Moore et al. 2006; Ball et al. 2009; Schmidt et al. 2016; Smyth et al. 2016). The decline 

occurs faster when the soil below is P limited (Moore et al. 2006). 

 

Regardless of whether leaf litter falls in the stream or on the forest floor, many studies document 

the role of microorganisms in leaf litter decomposition and associated P cycling (for a full review 

see Lladó et al. 2017). Microorganisms are thought to colonize the surface of the leaf where they 

can accumulate P from water as it flows past (Gregory 1978) or release acid phosphatase to 

increase the availability of P from leaf litter on the forest floor (Purahong et al. 2016). While 

there is still some debate concerning the timing and role of bacterial versus fungal communities 

on leaf litter decomposition, it is clear that these populations are dynamic and driven by nutrient 

availability and nutrient demand (Gregory 1978; Elwood et al. 1981; Webster and Benfield 1986; 

Gulis and Suberkropp 2003; Cheever et al. 2012; Xu et al. 2013; Fanin et al. 2016; Martínez et 

al. 2016; Purahong et al. 2016). Researchers have measured the bulk influence of 

microorganisms on decomposing leaf litter and associated P cycling via respiration experiments 

(Elwood et al. 1981; Martínez et al. 2016), molecular biology and microscopy based methods to 

determine of microbial biomass (Gulis and Suberkropp 2003; Mehring et al. 2015), radioactive P 

isotopes (Gregory 1978; Newbold et al. 1983), and enzyme assays (Purahong et al. 2016). For 

example, one study found that the bacterial richness of leaf litter colonizers was positively 
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correlated with acid phosphatase activity (Purahong et al. 2016). This same study also used DNA 

sequencing techniques to track the dynamics of bacterial and fungal communities over time. We 

found studies testing specific metabolic mechanisms controlling leaf litter decomposition and 

associated P cycling. 

 

One potential metabolic mechanism that may enable microorganisms to thrive in P limited 

environments such as forest ecosystems depends on the molecule polyphosphate (polyP). PolyP 

is a polymer composed of three or more phosphate molecules bound together via a 

phosphoanhydride bond (Kornberg 1995). The ability to store polyP intracellularly has been 

identified in many diverse organisms including bacteria, fungi, plants, animals utilize polyP 

(Kornberg 1995; Zhang et al. 2002; Schulz and Schulz 2005; Rao et al. 2009). There are a 

handful of studies that have either identified intracellular polyP granules or characterized the role 

of intracellular polyP storage in freshwater sediments and biofilms (Uhlmann and Bauer 1988; 

Hupfer and Gächter 1995; Hupfer et al. 2004; Locke 2015; Rier et al. 2016; Saia et al. 2017) but 

we know of no studies that have identified intracellular polyP granules in soils or other terrestrial 

ecosystems (e.g., leaf litter). A few studies of soils and sediments have identified genes 

associated with microorganisms that are known to accumulate P as polyP (Kunin et al. 2008; 

Peterson et al. 2008; Martins et al. 2011). More specifically, these microorganisms—referred to 

as polyphosphate accumulating organisms (PAOs)—are well studied in the context of 

specialized wastewater treatments plants (WWTP) for their ability to accumulate phosphate and 

store it as intracellular polyP under aerobic conditions and to break down polyP (releasing 

phosphate) to fuel C uptake under anaerobic conditions (Seviour et al. 2003; Seviour and Nielsen 

2010). Since the discovery of the model PAO (i.e., Candidatus Accumulibacter phosphatis; 
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Hesselmann et al. 1999), many diverse PAOs have been identified and studied in WWTPs 

(Nakamura et al. 1995b; Kong et al. 2007; Günther et al. 2009; Nguyen et al. 2011; Kristiansen 

et al. 2013) and a couple have been identified in soils (Li et al. 2013; DebRoy et al. 2013). 

 

PolyP synthesis and degradation in PAOs is thought to be controlled by ppk and ppx genes, 

respectively (Seviour et al. 2003; Skennerton et al. 2014). ppk encodes the polyphosphate kinase 

(PPK) enzyme that catalyzes the formation of intracellular polyP chains from phosphate 

molecules (Ahn and Kornberg 1990; Akiyama et al. 1992; Zhang et al. 2002; Rao et al. 2009; 

Kawakoshi et al. 2012). There are two known ppk genes: ppk1 and ppk2. They have similar 

functions albeit the protein coded by ppk2 (PPK2) catalyzes the making of polyP using both GTP 

and ATP and has a higher affinity for Mn2+, whereas PPK1 has a higher affinity for Mg2+ (Zhang 

et al. 2002; Rao et al. 2009). Organisms may have either both or one ppk (Zhang et al. 2002; Rao 

et al. 2009). ppx regulates the exopolyphosphatase (PPX) enzyme that preferentially removes 

phosphate from the terminal ends of a polyP chain (Akiyama et al. 1993; Keasling et al. 1993; 

Zago et al. 1999; Rangarajan et al. 2006; Rao et al. 2009). A second ppx, known as ppx/gppA 

regulates the PPX enzyme known as guanosine pentaphosphate phosphohydrolase (PPX/GppA). 

PPX/GppA has a similar function to PPX and can also hydrolyze the stress response protein 

pppGpp to ppGpp (Keasling et al. 1993; Reizer et al. 1993; Zago et al. 1999; Rao et al. 2009).  

 

Since the nucleotide sequences of ppk and ppx were first discovered, they have both been found 

in a variety of organisms (Rao et al. 2009; Alcántara et al. 2014). However, it is commonly 

understood that the ability of PAOs to synthesize large amounts of polyP under aerobic 
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conditions and use the energy from breaking down this stored polyP under anaerobic conditions 

allows PAOs to outcompete other heterotrophic organisms in specialized WWTPs (Gebremariam 

et al. 2011). ppk is especially well studied in model PAOs (e.g., He et al. 2007; Zhang et al. 

2016) and is thought to be a good marker for strain diversity since it better conserved than 16S 

rRNA (Kunin et al. 2008). However, ppx has only been studied in a few cultured organisms (e.g., 

Zago et al. 1999; Alcántara et al. 2014) with the exception of one marine metagenome study 

(Temperton et al. 2011). Therefore, given the importance of these genes in polyP cycling, more 

research is needed to characterize both in environmental systems where our knowledge of 

microbially-mediated controls on P cycling is limited. 

 

The goals of this experiment were to compare decomposition rates, P accumulation and loss 

rates, and the abundance of polyP functional genes (i.e., ppk and ppx) of stream and forest floor 

leaf litter samples over time. We hypothesized decomposition rates would be faster in the stream 

than on the forest floor and leaf P would increase over time on the stream litter and decrease on 

the forest floor. With respect to biotic mechanisms, which were the main focus of this study, we 

expected that the abundance of polyP functional genes would increase concurrently with leaf P 

over time because microorganisms with the ability to store P as polyP (i.e., PAO-like 

microorganisms) may colonize the leaves and increase leaf P over time. This is true especially in 

the stream where leaf surfaces provide an anchor and the stream itself proves a continuous 

supply of nutrients. We expected the same trends between all three genes because putative PAOs 

require pairs of these genes—either ppk1 and ppx or ppk2 and ppx—to carry out polyP synthesis 

and degradation. We also hypothesized that we would find microorganisms related to known as 

well as putative PAOs. To test these hypotheses, we monitored the decomposition rate and leaf P 
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concentrations of leaf litter samples placed in one of two treatments: (1) on the forest floor or (2) 

in the stream. We collected bags over a period of seven months and analyzed each for 

decomposition rate and leaf P concentration. We also extracted DNA from leaf samples and 

sequenced DNA using shotgun metagenomic analysis techniques. We then assembled sequences, 

determined relative abundances of ppk1, ppk2, and ppx genes, and assigned taxonomic identities 

to contigs with these same genes. 

 

METHODS 

Experimental Design and Leaf Litter Collection 

The study site was located at the 303 ha Mianus River Gorge Preserve (MRGP) in Bedford, NY. 

The main portion of this property runs north to south along the Mianus River. The Mianus River 

Watershed has an area of 55 km2 and drains to the Long Island Sound (Figure 4.1). The northern 

portion of the watershed, where the study site is located, is primarily forested with some 

development while the land is mostly developed in the south (Figure 4.1). Seasonal water quality 

samples taken from 2011 to 2013 at a site 25 m upstream from the study site had an average 

soluble reactive phosphorus (SRP-P) concentration of 0.034 ppm (n=9).  
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Figure 4.１ Map of the Mianus River Watershed. 

 

In preparation for this experiment, we cut sugar maple (Acer saccharum), black birch (Betula 

lenta), and American beech (Fagus grandifolia) leaves directly from the canopy to avoid 

contamination with soil microbes. We selected these tree species because they were found to be 

dominant riparian species in the MRGP (O’Brien et al. 2011). We brought the leaves back to the 

laboratory, air-dried them until dry to the touch, and dried them overnight in an oven at 60°C to 

ensure all moisture was removed before weighing. We weighed out approximately 1 g of each 
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leaf litter type and placed them in sealed plastic bags (total composite was about 3 g) until they 

were placed in the field on September 22, 2013. Upon placement in the field, we removed leaf 

litter from the plastic bags and put it into 7 x 8 inch, 500 μm pore-size, nylon mesh bags. We 

used fine mesh to focus mainly on microbial controls on leaf litter decomposition rather than the 

impact of macroinvertebrates (i.e., shredders); most adult macroinvertebrates are larger than 1 

mm in size (Hauer and Lamberti 2006; Methot et al. 2012). We secured the mesh bags at a (1) 

forest floor site and (2) stream site. We placed the forest floor mesh bags on top of existing leaf 

litter and anchored stream mesh bags in a Mianus River run about 25 m downslope from the 

forest floor site. In this experiment, the forest floor site was meant as a control to the stream site, 

which would likely experience changes in oxygen availability over time. We randomly removed 

leaf litter bags (n=5 total replicates; n=3 for decomposition/leaf P and n=2 for DNA analysis) 

from both sites at approximately 0, 1, 3, 5, 7, 11, 26, and 30 weeks. We placed collected samples 

immediately placed in large air tight plastic bags and stored them in a 4°C and -20°C freezer until 

processing for decomposition/leaf P and DNA analyses, respectively. Throughout sample 

preparation, collection, and analysis we wore nitrile gloves to prevent microbial contamination 

and wiped down all equipment discussed henceforth between samples with 95% ethanol. 

 

Leaf Litter Decomposition Analysis 

We thawed stored samples at room temperature and processed them according to Meyer (1980) 

and Hauer and Lamberti (2006). Briefly, we removed leaf litter from the mesh bag over an 850 

mm sieve and rinsed gently with distilled water to remove excess sediment. We then transferred 

leaves to aluminum tins and dried them in the oven for 24 hours at 105°C. We crushed dry leaves 
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in a food processor for approximately 30 seconds and weighted out 0.5 g into a pre-weighed 

aluminum tins. We put the tins into the muffle furnace at 550°C for 20 minutes, stirred them, and 

put them back into the muffle furnace at 550°C for 20 minutes. We allowed samples to cool and 

sprayed them down with distilled water to prevent loss of ash. We oven dried the ash at 60°C for 

24 hours. After cooling, we weighed the ashed samples and used the difference in weight before 

and after combustion to calculate ash free dry mass (AFDM)—the mass of organic matter 

remaining—according to Hauer and Lamberti (2006). 

 

Leaf Phosphorus Analysis 

We weighed out 0.5 g of dry, crushed leaves into glass test tubes for ammonium persulfate 

digestion (USEPA, 1978). Briefly, 25 ml of distilled water was added to the leaf samples, 

followed by 1 ml of ammonium persulfate solution (0.2 g/ml concentration) and 0.5 ml of 30% 

H2SO4. Glass test tubes were autoclaved for 30 minutes at 121°C (15-20 psi). Extractions were 

left to cool, filtered through a 0.45um filter, and analyzed for SRP (as P) using the molybdenum 

blue method (USEPA, 1978) and auto-sampler (O.I. Analytical FS3000). The quantification limit 

of the FS3000 machine is 0.01 mg l-1
 and all calibration curves had an R2 value of 0.999 or 

higher. 

 

DNA Extractions and Sequencing Preparation 

We extracted DNA in triplicate from leaf litter samples using a MoBio PowerSoil DNA Isolation 

Kit (12888, Qiagen MoBio, Germantown, Maryland). Slight modifications to the protocol 
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included: (1) two, 30 s homogenizations with the bead beater (10 s rest in between each 

homogenization), (2) elution with 50 μL (rather than 100 μL), and (3) pooling of all three 

elutions into one tube. We quantified DNA on an Invitrogen Qubit spectrofluorometer using a 

Qubit dsDNA broad range assay kit (Q32850, Thermo Fisher Scientific, Waltham, 

Massachusetts). We sheered DNA to an average insert size of 550 bp using a Covaris S2 

adaptive focused acoustic disruptor (Covaris, Woburn, Massachusetts). We prepared libraries 

using an Illumina TruSeq Nano DNA HT Sample Prep Kit (FC-121-4003, Illumina, San Diego, 

California). We carried out shotgun metagenomic sequencing with 1 pooled, indexed sample on 

two lanes at the Cornell University Institute for Biotechnology Genomics Facility using an 

Illumina HiSeq2500 instrument 2x150 bp paired-end reads on Rapid Run mode. 

 

Metagenomics Analysis 

We used the workflow described in Figure 3.1 to process shotgun metagenomic sequencing data. 

Briefly, we quality controlled and trimmed raw reads using BBMap/BBTools (JGI 2017), 

assembled reads for all samples in both treatments together with MEGAHIT using default 

settings (Li et al. 2015), called genes and translated gene sequences using Prodigal (Hyatt et al. 

2010), annotated PPK1, PPK2, and PPX protein sequences using Pfam models with a HMMER 

reciprocal search using default settings (Finn et al. 2011), assigned taxonomy to contigs with 

genes of interest using Kaiju’s protein-level NCBI RefSeq reference database classifier (Menzel 

et al. 2016), and mapped raw reads to determine relative gene abundances using bwa-mem (Li 

2017). Relative gene abundances are given as the number of fragments (i.e., paired-end reads) 

with a gene of interest per kb per million reads mapped (FPKM). Protein family models from the 

Pfam database (Finn et al. 2016) used in this study to identify ppk and ppx genes are shown in 
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Table 3.2. For contigs with unique combinations of genes, we used pBLAST (NCBI 2017) to 

compare contig protein sequences to previously studied organisms. We selected the top three 

contigs by maximum relative abundance for each sample as well as the top seven contigs by 

mean relative abundance overall and display the z-score of these data in heatmaps. We also 

categorized each contig for whether it contained various combinations of ppk1, ppk2, and 

ppx/gppA (referred to henceforth as ppx). The data and scripts pertaining to this workflow are 

available on GitHub at https://github.com/sheilasaia/paper-p-leaf-litter. 

 

 

Figure 4.２ Description of shotgun metagenomic sequencing data workflow used in this study. 

Final output tables used in subsequent analyses are bolded/shaded green. 

https://github.com/sheilasaia/paper-p-leaf-litter
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Table 4.１ Protein family (Pfam) database models used in this study. 

Pfam ID Protein Pfam Description 

PF02503.16 PPK1 polyphosphate kinase middle domain (PPK1) 

PF13089.5 PPK1 polyphosphate kinase N-terminal domain (PPK1) 

PF13090.5 PPK1 polyphosphate kinase C-terminal domain (PPK1) 

PF03976.13 PPK2 polyphosphate kinase (PPK2) 

PF02541.15 PPX exopolyphosphatase (PPX/GppA) 

 

Statistical Analysis 

We conducted all statistical analysis in R (R Core Team 2015). We used a linear model (LM) as 

well as a generalized additive model (GAM) to test whether AFDM as well as leaf P 

concentrations for the two treatments differed over time. We applied the GAM using the mgcv 

package (Wood 2006, 2015, Zuur 2009). The general form of the GAM is given in Equation 1 

as: 

Y ~ s(t, by stream) + s(t, by forest floor) + ε  (Equation 1) 

where Y represents the response variable (i.e., AFDM or leaf P), t represents time, the function 

s( ) represents the additive response smoothed over time conditioned on either leaf litter placed 

in the stream or leaf litter placed on the forest floor, and ε is the mean zero Gaussian random 

error. For all statistical tests, we used α = 0.05 to determine statistical significance and compared 

the quality of LMs and GAMs using the Akaike information criteria (AIC; Akaike 1974). A 

lower AIC value equates to a better model fit and AIC scores greater than two units apart are 

statistically different. 
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RESULTS & DISCUSSION 

Leaf Litter Decomposition 

We used LMs and GAMs to test for a relationship between leaf litter decomposition (i.e., 

decreasing AFDM) over time for the forest floor and stream treatments (Table 4.2). AIC scores 

indicate that Model 2.3 and Model 2.5 both describe the data best and are not significantly 

different from one another because they have equal AIC scores (Table 4.2). Therefore, we 

proceed in our analysis using the simpler LM (Model 2.3). Summary statistics of Model 2.3 are 

shown in Table 4.3 and plotted in Figure 4.3. LM results indicate a significant interaction term 

between the two treatments (Table 4.2), which provides support for their divergent 

decomposition rates (i.e., the slope of the LM between AFDM and time in Figure 4.3). The slope 

of the stream treatment is more negative than the slope of the forest floor treatment (Figure 4.3). 

When plotted, Model 2.5 (i.e., the GAM) results are similar to those of Model 2.3 (data not 

shown). The Model 2.5 smooth term for the forest floor leaf litter samples over time is not 

significantly different from a null model with zero slope (p=0.8410) but the smooth for the 

stream leaf litter samples is significant and negative (p=< 1.00E-05; Table 4.4). Model 2.5 

explains 85.5% of the deviance in observations (Table 4.4). Therefore, we see significant 

decomposition rates in leaf litter left in the stream but not on the forest floor. 
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Table 4.２ Linear model (LM) and generalized additive model (GAM) comparisons for ash free 

dry mass (AFDM) versus time and treatment (i.e., leaf litter placed either on the forest floor or in 

the stream). Abbreviations: degrees of freedom (df), Aikaike information criteria (AIC). 

Model 

Number 

Model 

Type 

Model df AIC 

2.1 LM AFDM ~ Time 3 -154.4 

2.2 LM AFDM ~ Time + Treatment 4 -174.0 

2.3 LM AFDM ~ Time + Treatment + Time: Treatment 5 -231.9 

2.4 GAM AFDM ~ s(Time) 3 -154.4 

2.5 GAM AFDM ~ s(Time, by Forest Floor) + s(Time, by 

Stream) 

5 -231.9 

 

Table 4.３ Best fit linear model (LM) outputs (Model 2.3 in Table 4.2) for ash free dry mass 

(AFDM) versus time and treatment (i.e., leaf litter placed either on the forest floor or in the 

stream). Abbreviations: standard error (SE). 

Model Term Value SE t-value p-value 

Intercept* 4.71E-01 7.15E-03 68.85 < 1.00E-05 

Time -1.45E-05 7.20E-05 -0.20 0.8410 

Treatment (Stream) 3.30E-03 1.01E-02 0.33 0.7440 

Time:Treatment (Stream) -9.90E-04 9.87E-05 -10.03 < 1.00E-05 

* Base model represents forest floor treatment. 

 

Table 4.４ Best fit general additive model (GAM) outputs (Model 2.5 in Table 4.2) for ash free 

dry mass (AFDM) versus time and treatment (i.e., leaf litter placed either on the forest floor or in 

the stream). Abbreviations: standard error (SE). The percent deviance explained by this GAM 

was 85.5%. 

Model Term Value SE t-value p-value F 

Intercept 0.47 0.007 65.85 < 1.00E-05 
 

      

Forest Floor smooth term 
   

0.841 0.04 

Stream smooth term       < 1.00E-05 139.62 
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Figure 4.３ Observations and linear model (LM) results of ash free dry mass (AFDM) versus 

days from start of experiment for leaf litter bags placed on the forest floor (F) and in the stream 

(S) treatments. 

 

Stream site decomposition rates in this study are within the range cited in other works using 

similar types of leaf litter (Meyer 1980; Gulis and Suberkropp 2003). The decomposition of 

forest floor leaf litter in this study is much less than other studies (e.g., Cotrufo et al. 1995). 

There are several reasons why our results may have differed from previous studies. Focusing 
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first on leaf litter decomposition in streams, research conducted by Meyer (1980) took place in 

the undeveloped, forested Bear Brook Watershed. Bear Brook is a sub-watershed of the Hubbard 

Brook Watershed in New Hampshire (Fisher and Likens 1973) and studies around the same time 

determined that SRP concentrations in Bear Brook ranged from 0.0001 to 0.001 ppm in the 

summer and winter (Meyer and Likens 1979). Seasonal water quality samples collected from the 

Mianus River, 25 m upstream of our study site, indicate stream SRP concentrations ranged from 

0.018 to 0.080 ppm (average 0.034 ppm for n=9 replicates). Therefore, P availability is higher in 

the Mianus River compared to Bear Brook. This is not surprising because, despite being mostly 

forested, the watershed just upstream of our study site is somewhat developed and may provide a 

source of P to the stream. Other studies support our assertion that increases in nutrient 

availability lead to higher rates of leaf litter decomposition in streams (Elwood et al. 1981; Gulis 

and Suberkropp 2003; Martínez et al. 2014). Like streams, differences in nutrient availability 

have been shown to influence leaf litter decomposition rates of leaf litter in forest soils (Cotrufo 

et al. 1995). 

 

Second, we used a smaller leaf litter bag mesh size compared to other leaf litter studies (Meyer 

1980; Cotrufo et al. 1995; Sponseller and Benfield 2001; Martínez et al. 2016) because the focus 

of this work was on microorganisms. This may have (1) decreased the impact of erosive 

processes (Meyer 1980) and (2) excluded stream invertebrates (Hauer and Lamberti 2006). 

Excluding these larger (>500 x 500 um) soil organisms (e.g. nematodes, anthropoids, and 

mollusks) likely reduced the rate of further leaf litter break down after initial microbial 

colonization (Webster and Benfield 1986). Finally, other environmental factors such as stream 

temperature and pH, litter quality, and flow velocity may have led to differences between our 
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findings and the findings of other studies (Cummins 1974; Federle et al. 1982; Chamier 1987; 

Friberg et al. 2009; Martínez et al. 2014; Martínez et al. 2016). With respect to the forest floor 

treatment, differences in climate (i.e., temperature and moisture) have been shown to influence 

leaf litter decomposition rates in soils (Gholz et al. 2000; Gonzalez and Seastedt 2001). 

 

These results generally support our hypothesis that decomposition of leaf litter occurs faster in 

the stream than on the forest floor and we suggest a combination of abiotic and biotic 

mechanisms influenced these differences. Specifically, the consistent mechanical stress of water 

flowing past the leaves placed in the stream accelerated leaf litter decomposition. Precipitation 

through-fall or overland flow events may provide similar mechanical stress and nutrient supplies 

but both are likely limited due to the dense cover of primarily deciduous trees at this study site. 

Additionally, stream water—compared to likely intermittent overland flow—may have provided 

a consistent nutrient supply to microorganisms colonizing and decomposing the stream leaf litter. 

 

Leaf Phosphorus 

Model comparisons (Table 4.5) indicate the GAM—Model 5.5—had the lowest AIC score, and 

therefore, could better predict leaf P concentrations over time for both treatments compared to 

the other LMs and GAMs tested. Model 5.5 summaries indicate that both smooth terms were 

significant (p<0.05) and the percent deviance explained was 70.2% (Table 4.6). Overlap in 95% 

confidence intervals at ~50 days from the start of the experiment indicates that the two 

treatments were not significantly different during this period (Figure 4.4). However, the lack of 
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overlap in 95% confidence intervals during the rest of the experiment demonstrates the overall 

significant difference between forest floor and stream leaf litter bag treatments (Figure 4.4).  

 

Table 4.５ Linear model (LM) and generalized additive model (GAM) comparisons for leaf 

phosphorus (leaf P; ppm P/g of AFDM) versus time and treatment (i.e., leaf litter placed either 

on the forest floor or in the stream). Abbreviations: degrees of freedom (df), Aikaike information 

criteria (AIC). 

Model 

Number 

Model 

Type 

Model df AIC 

5.1 LM Leaf P ~ Time 3 92.0 

5.2 LM Leaf P ~ Time + Treatment 4 93.4 

5.3 LM Leaf P ~ Time + Treatment + Time: Treatment 5 60.6 

5.4 GAM Leaf P ~ s(Time) 4 91.9 

5.5 GAM Leaf P ~ s(Time, by Forest Floor) + s(Time, by 

Stream) 

10 43.3 

 

Table 4.６ Best fit general additive model (GAM) output (Model 5.5 in Table 4.5) for leaf 

phosphorus (leaf P; ppm P/g AFDM) versus time and treatment (i.e., leaf litter placed either on 

the forest floor or in the stream). Abbreviations: standard error (SE). The percent deviance 

explained by this GAM was 70.2%. 

Model Term Value SE t-value p-value F 

Intercept 1.65 0.08 19.99 < 1.00E-05 
 

      

Forest Floor smooth term 
   

2.65E-04 9.32 

Stream smooth term       < 1.00E-05 13.13 



 

223 

 

 

Figure 4.４ Observations and generalized additive model (GAM) results of leaf P concentration 

(ppm/g AFDM) versus days from start of experiment for leaf litter bags placed on the forest floor 

and in the stream treatments. 

 

Model results demonstrate the consistent wash-off/leaching of leaf P from leaf litter collected 

from the forest floor over the entire experiment. In contrast, leaf litter collected from the stream 

shows a more dynamic pattern in leaf P that can be summarized into two main stages: (1) initial 
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wash-off/leaching of P followed by an (2) accumulation of leaf P (Figure 4.4). The initial loss of 

leaf P has been previously documented (Meyer 1980) and may be due to the washing off of 

various salts that may have condensed on the leaf surface (Burkhardt et al. 1999) and/or 

atmospheric sources of P (Tamatamah et al. 2005; Camarero and Catalan 2012; Tipping et al. 

2014) accumulated on the surface of the leaves. This flush may have also been due to lysis of 

bacteria cells upon rewetting with distilled water (Turner et al. 2003), the composition of the 

leaf; leaf litter chemistry has been shown to influence decomposition (Soong et al. 2015) and 

impact subsequent P loss (Martínez et al. 2016). 

 

To test our assertion concerning the rapid wash-off/leaching of P from leaf litter, we placed an 

equal mass (air-dried) of each of the three leaf species from this experiment in air-tight plastic 

bags, soaked these leaves in equal volumes of distilled water for ~1 minute, 8 hours, and 24 

hours, and analyzed the rinse water soluble reactive phosphorus (SRP) and leaf P concentrations 

as described in the methods section. Results of this laboratory study support our assertion; we see 

a rapid loss of P into the rinse water from the leaves that eventually levels out (Figure 4.5A). We 

also see a concurrent rapid decline in leaf P (Figure 4.5B). We compared the leaf P results of 

these three soaking periods and using ANOVA and post-hoc Tukey pair-wise comparisons and 

found that the ~1 minute soaking treatment was significantly different from the other treatments 

(p<0.05) and the 8 hour soaking treatment was not significantly different from the 24 hour 

treatment (p=0.2565). We were surprised that the concentration of SRP was ~ 1ppm after only 

~1 minute of rinsing the leaf litter. This finding provides support for our wash-off assertion made 

previously. These laboratory results are consistent with research showing a rapid release of 

soluble nutrients from the leaves within 1-2 days of immersion in the stream as well as evidence 
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that the remaining soluble nutrients continue to leach out slowly after this initial period (Hauer 

and Lamberti 2006; Ball et al. 2009). 

 

 

Figure 4.５(A) Rinse water soluble reactive phosphorus (SRP) concentration and (B) leaf P 

concentration versus soaking time for laboratory wash-off experiment. Samples at ~ 1 min (~0 

hours) were rinsed with water and immediately drained. 

 

With regard to the second stage in stream leaf P dynamics, the accumulation of P on leaves in 

streams over time has been observed by other researchers (Meyer 1980; Mehring et al. 2015). 

Sediment was present on the leaf litter overtime and gently washing leaves before leaf P analysis 

should have removed excess sediment. However, given the methods used in this study, we 

cannot discount the accumulation of sediment on stream leaf litter over time. Future studies may 
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consider using epi-fluorescence microscopy to determine microbial abundances over time (Gulis 

and Suberkropp 2003) and the percentage of cells on the leaf litter with intracellular polyP 

granules (Rier et al. 2016; Saia et al. 2017). 

 

Shotgun Metagenomics Assembly 

For the leaf litter dataset, we assembled a total of 3,090,663 contigs, the longest of which was 

521.4 kb. There were 160 contigs greater than 50 kb in NY and they made up 0.6% of the main 

genome. A summary of the total assembly length for contigs above a certain length is shown in 

Table 4.7. 

 

Table 4.７Shotgun metagenome assembly results for leaf litter samples included in this study 

(both forest floor and stream treatments were assembled together). 

Minimum Contig Length Number of Contigs 

500 1,423,206 

1,000 460,352 

10,000 6,522 

 

 

Microorganisms Harboring Phosphorus Functional Genes 

We annotated a total of 2,484 and 2,919 genes for leaf litter samples collected from the forest 

floor and stream, respectively (Table 4.8). Because some contigs had more than one gene, they 

represented a total of 2,384 and 2,819 unique contigs for stream and forest floor treatments, 

respectively (summation of all bars by location, Figure 4.6). We suspect that the reason for 
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slightly more unique genes in the stream treatment is the potential for stream water to transport 

new organisms along with it. However, it is surprising that despite the physical (albeit 

hydrological connected) differences between a stream and an upslope forest floor, we assembled 

metagenomes with matching contigs.  

 

Table 4.８Number of ppk1, ppk2, and ppx genes annotated in this study for leaf litter samples 

taken from on the forest floor and in the stream. 

Location Gene Count 

Forest Floor      
ppk1 1,076  
ppk2 675  
ppx 733     

Total   2,484 

Stream      
ppk1 1,272  
ppk2 823  
ppx 824    

  Total   2,919 
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Figure 4.６ Number of unique contigs with various gene combinations in samples from (A) 

forest floor and (B) stream. Note: the total number of samples sequenced is the same for both 

treatments (n=16). 

 

For both locations, ppk1 genes were most frequently harbored by contigs followed by ppk2 and 

then ppx genes annotated (Figure 4.6). We also saw the same number of contigs that harbored 

both ppk1 and ppx genes (Figure 4.6). Rarely, did contigs harbor both ppk2 and ppx and we 

found no contigs in both treatments that harbored all three genes (Figure 4.6). The observation of 

contigs harboring only one polyP functional gene was unexpected because microorganisms 

would theoretically need either ppk1 or ppk2 to synthesize polyP as well as ppx to break down 

polyP. By comparing the length distribution of contigs harboring only one polyP functional gene 

to those harboring ppk1 and ppx appears to be unbiased towards longer contigs below 7,500 bp 
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but there are several contigs harboring both ppk1 and ppx that are longer than 7,500 bp (Figures 

4.7C and 4.7D) This indicates that deeper sequencing may be necessary to ensure thorough 

classification of putative PAOs from non-PAOs. Because these genomes are incomplete, it is 

difficult for us to say that contigs harboring only one polyP functional gene are not putative 

PAOs. Another possible explanation for contigs with only one polyP functional gene is that ppk 

and ppx genes do not always reside near each other in a genome. While not recognized as PAOs, 

E. coli have been shown to have a ppk operon where ppk was located upstream of ppx (Brown 

and Kornberg 2008). Conversely, another study of P. aeruginosa does not have a ppk operon as 

ppx is upstream of ppk (Brown and Kornberg 2008). Therefore, further research is needed to 

determine the organization of these genes in putative PAO genomes. 
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Figure 4.７Length distributions of contigs harboring various gene combinations from samples collected from the stream (A and C) 

and on the forest floor (B and D). Note the difference in scale between A and B. The shaded regions in plots A and B refer to the 

zoomed-in (0-25,000 bp) plots shown in C and D. 
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In terms of taxonomy, the distribution of contigs from both locations is similar with only 

differences in magnitude (Figure 4.8). Proteobacteria (Alphaproteobacteria and 

Gammaproteobacteria) are the top two most represented bacterial phyla represented in leaf litter 

from both treatments (Figure 4.8). We also see many contig assignments to the 

Betaproteobacteria class and the phyla of Actinobacteria, which are associated with known 

PAOs (Hesselmann et al. 1999; Nakamura et al. 1995a; Nakamura et al. 1995b; Nguyen et al. 

2011). Some contigs for leaf litter samples here were assigned to the genus Burkholderia 

(Betaproteobacteria), which is known to solubilize phosphate and dominated the first stages of 

decomposition of forest floor leaf litter bacterial communities (Purahong et al. 2016). 

Burkholderia has also been found to accumulate intracellular polyP in stream biofilms (Locke 

2015). 
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Figure 4.８ Number of unique contigs classified into major bacterial and archaeal phyla/classes for leaf litter samples collected from 

the (A) forest floor and (B) stream.



 

233 

 

Contigs that harbor either ppk1, ppk2, or ppx were consistently and most frequently assigned to 

the Alphaproteobacteria class (Figure 4.9). Other frequent assignments to contigs with only one 

of the three genes include Bacteroidetes/Chlorobi, Gammaproteobacteria, Actinobacteria, and 

Betaproteobacteria (Figure 4.9). More contigs are assigned to the Betaproteobacteria class in the 

stream treatment compared to the forest floor (Figure 4.9). Compared to the stream, forest floor 

samples have more contigs harboring only ppk1 that were assigned to Gammaproteobacteria 

(Figures 4.9A and 4.9D). We observed contigs assigned to the phyla Verrucomicrobia, which are 

abundant in soil (Bergmann et al. 2011) and positively correlated with total P concentrations in 

sediments (Jin et al. 2017), contigs assigned to archaeal lineages (Methanomicrobia), and contigs 

assigned to the Cyanobacteria/Melainabacteria group, the latter of which was identified in full-

scale EBPR reactor (Soo et al. 2014). Contigs that may potentially represent known and new 

PAOs because they harbor both ppk1 and ppx genes are very similar between treatments (Figure 

4.10), except for those classified as Bacteroidetes/Chlorobi, represent classes/phyla of known 

PAOs as mentioned previously. We found no contigs that harbored all three genes, one 

(k141_1220833) that harbored both ppk1 and ppk2, and one (k141_1114903) that harbored both 

ppk2 and ppx (Table 4.9). k141_1220833 and k141_1114903 were found in both treatments. 

Both protein sequences from contig k141_1114903 were assigned to Sphingomonas sp. KC8 

(Table 4.9). 
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Figure 4.９ Number of unique contigs classified into major bacterial and archaeal phyla/classes for leaf litter samples collected on the 

(A) forest floor (A-C) and in the stream (D-E) harboring only one of either ppk1 (A and D), ppk2 (B and E), and ppx (C and F) genes. 
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Figure 4.１０ Number of unique contigs harboring both ppk1 and ppx genes classified into major bacterial and archaeal phyla/classes 

for leaf litter samples collected from the (A) forest floor and (B) stream. Number of unique contigs per phylum/class are shown to the 

right of each bar.  
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Table 4.９ Contigs with unique combinations of ppk and ppx genes from leaf litter samples collected from the forest floor and in the 

stream as determined by shotgun metagenome analysis and subsequent comparison of protein sequence to existing sequences in the 

pBLAST database. Abbreviations: not given (NG). 

Contig ID Gene Top pBLAST Hit Protein 

Name 

Top pBLAST Hit Organism Accession Number Identity (%) Environment Reference 

k141_1220833 
       

 
ppk1 polyphosphate kinase Ohtaekwangia koreensis SKC82618.1 90 NG NG 

 
ppk2 polyphosphate-nucleotide 

phosphotransferase 

Bacterium 336/3 KOY85390.1 74 NG NG 

        

k141_1114903 
       

 
ppk2 hypothetical protein Sphingomonas sp, KC8 WP_010125262.1 77 NG NG 

  ppx exopolphosphatase Sphingomonas sp. KC8 WP_010125257.1 69 NG NG 
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Overall, these results demonstrate broader similarities between the two treatments in terms of the 

number of ppk1, ppk2, and ppx annotated as well as the type of microorganisms classified. Of the 

major classes and phyla represented in this dataset, many overlap with known PAOs (e.g., 

Betaproteobacteria) while others require further study (e.g., Burkholderia and 

Verrucomicrobia). We recognize these are diverse classes and recommend the need for further 

research verifying the phenotype of putative PAOs identified here. Unexpectedly, leaf litter 

collected from the stream had similar unique contigs harboring both ppk1 and ppx compared to 

leaf litter collected on the forest floor, which was hydrologically up-gradient of the stream site. 

This is counter to a study demonstrating limited dispersal of hydrologically connected 

environments (Graham et al. 2017). However, hydrology and nutrient availability are important 

controls on microbial community structure and function (Pett-Ridge and Firestone 2005; 

DeAngelis et al. 2010; Ouyang and Li 2013; Peralta et al. 2014; Graham et al. 2017). 

 

Temporal Patterns in Functional Gene Relative Abundance 

Using GAMs, we found that adding in treatment (i.e., whether samples were collected from the 

forest floor or the stream) improved our ability to predict the relative abundance of ppk2 and ppx 

(Table 4.10). In the case of the relative abundance of ppk1, Models 10.1 and 10.2 (Table 4.10) 

were not statistically different but we precede using Model 10.2 to further demonstrate the lack 

of difference between the two treatments. Namely, Model 10.2 summary results indicate that 

both the forest floor and stream smooth terms are not significantly different from the null model 

(i.e., a model with no trend) of ppk1 relative abundance versus time (p>0.05; Table 4.11). 

Further, there is a nearly complete overlap of confidence intervals for both treatments throughout 

the duration of this experiment; meaning, treatments are not statistically different (Figure 4.11A). 
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When modeling ppk2 relative abundance, the forest floor smooth term of Model 10.4 is 

significantly different from the null model of ppk2 relative abundance versus time (p< 1.00E-05; 

Table 4.11) but the stream smooth term is not (p=0.084). Last, the best fit model of ppx relative 

abundance over time (Model 10.6 in Table 4.10) demonstrates a trend that is statistically 

different from the null model for leaf litter samples collected from the forest floor (p=0.008; 

Table 4.11) and not statistically different from a null model for samples from the stream 

(p=0.676; Table 4.11). However, the confidence intervals of the two treatments are similar 

except for periods at the start of this experiment and around ~50 days. Therefore, with respect to 

ppx, treatment only has a weak influence. 
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Table 4.１０ Relative abundance (RA; in units of FPKM) generalized additive model (GAM) 

comparisons versus time and treatment (i.e., whether leaf litter was place in the stream or on the 

forest floor) for ppk1, ppk2, and ppx genes. fit models for each soil extraction are bolded. 

Abbreviations: degrees of freedom (df) and Aikaike information criteria (AIC). 

Model Number Model df AIC 

ppk1       

10.1 RA ~ Time 4 434.8 

10.2 RA ~ Time + Treatment* 6 436.3     

ppk2       

10.3 RA ~ Time 3 412.0 

10.4 RA ~ Time + Treatment 5 379.4     

ppx       

10.5 RA ~ Time 5 387.6 

10.6 RA ~ Time + Treatment 8 379.4 

* This model is not statistical different from Model 10.1 was demonstrate the treatments. 

 

Table 4.１１ Best fit generalized additive model (GAM) summaries (Models 10.2, 10.4, and 

10.8 in Table 4.10) for predicting relative abundance (RA; in units of FPKM) of ppk1, ppk2, and 

ppx genes. Abbreviations: standard error (SE). 

 

Model Term Value SE t-value p-value F 

ppk1           

Intercept 503.80 73.00 6.90 < 1.00E-05 
 

      

Forest Floor smooth term 
   

0.133 2.06 

Stream smooth term 
   

0.654 0.21 

ppk2           

Intercept 395.73 30.34 13.04 < 1.00E-05 
 

      

Forest Floor smooth term 
   

< 1.00E-05 23.18 

Stream smooth term 
   

0.084 3.22 

ppx           

Intercept 361.90 29.12 12.43 < 1.00E-05 
 

      

Forest Floor smooth term 
   

0.008 3.91 

Stream smooth term       0.676 0.18 
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Figure 4.１１ Observations and generalized additive model (GAM) results (Models 8.2, 8.4, and 8.6 in Tables 4.8 and 4.9) of relative 

abundance (FPKM) of (A) ppk1, (B) ppk2, and (C) ppx genes over time for leaf litter bags collected from the forest floor and stream.
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These results are not consistent with our hypothesis that the relative abundance of polyP 

functional genes increases proportionally with increases in leaf P. We observed an increase in 

stream leaf P concentrations over the course of this experiment (Figure 4.4) but the relative 

abundances of ppk1, ppk2, and ppx in this treatment stayed the same (Figure 4.11). Therefore, we 

suggest that the build-up of leaf P in the stream was largely sourced from sediment-bound P 

remained attached to the leaves, or potentially trapped in a biofilm on the leaf surface, even after 

being rinsed in the laboratory. In terms of the forest floor treatment, we saw a notable increase in 

ppk2 over time (Figure 4.11B). This pattern of increasing ppk2 relative abundance with 

decreasing P availability was noted once before (Temperton et al. 2011). Therefore, 

microorganisms with ppk2 may tend to thrive in more nutrient limited environments like the 

forest floor as compared to the stream in this study. While the smooth term was significantly 

different from a null model and indicates an increase in the relative abundance of ppx associated 

with forest floor leaf litter over time, the overlap in confidence intervals between the two 

treatments suggests this difference was weak (Figure 4.11C). There is no consistent and 

significant trend in ppk1 and ppx relative abundance versus time—the most likely polyP 

functional gene combination representing putative PAOs. Therefore, when taken in combination 

with the leaf P data presented earlier, these results indicate a limited role of PAOs in leaf litter 

associated P cycling. 

 

It is interesting to note that the dynamics of relative abundance patterns over time are very 

different for forest floor samples harboring ppk2 compared to those harboring ppk1 or ppx. 

Specifically, we observed a consistent increase in ppk2 relative abundance over time (Figure 
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4.11B) but a relatively flat trend in ppk1 and ppx relative abundance with time (Figures 4.11A 

and 4.11C). We have no explanation for the oscillation in ppx relative abundance (Figure 4.11C) 

other than (1) the trend is being driven by an outlier at ~50 days from the start of the experiment 

or (2) the organisms with this gene are more sensitive to low temperatures—the start of 

December occurred at ~80 days from the start of the experiment. 

 

Heatmaps of pp1, ppk2, and ppx relative abundance of different contigs across all samples 

collected highlight the impact of treatment on the leaf litter microbial community (Figures 4.12-

4.14). Specifically, when clustered by similar relative abundance profiles, we see that samples 

are clearly grouped by treatment (see blue and green labels for forest floor and stream samples at 

top of grid, respectively; Figures 4.12-4.14) except for one sample from the stream (LL85) that 

groups with forest floor samples for all three genes in this study. Additionally, groups of 

anywhere from 4-7 contigs dominate the profile and are observed consistently in time. One 

potential reason for the switch in contigs from the start of the experiment to the end may be due 

to the impact of winter conditions from ~80-180 days. This switch is especially evident in the 

ppk1 and ppx heatmaps (Figures 4.12 and 4.13). 

 



 

243 

 

 

 

Figure 4.１２ Heatmap of the relative abundance z-score for ppk1 genes clustered by similar 

relative abundance profiles between sample ID and contig ID. Key on top shows treatment type 

and collection time for each sample. Includes the non-redundant top 3 contigs by maximum 

abundance for each sample as well as the top 7 contigs by mean abundance overall. 
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Figure 4.１３ Heatmap of the relative abundance z-score for ppk2 genes clustered by similar 

relative abundance profiles between sample ID and contig ID. Key on top shows treatment type 

and collection time for each sample. Includes the non-redundant top 3 contigs by maximum 

abundance for each sample as well as the top 7 contigs by mean abundance overall. 
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Figure 4.１４ Heatmap of the relative abundance z-score for ppx genes clustered by similar 

relative abundance profiles between sample ID and contig ID. Key on top shows treatment type 

and collection time for each sample. Includes the non-redundant top 3 contigs by maximum 

abundance for each sample as well as the top 7 contigs by mean abundance overall. 
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CONCLUSIONS 

Leaf litter is an important nutrient source to terrestrial ecosystems and may influence 

microbially-mediated P cycling. However, with respect to the influence of PAO-mediated 

processes, these results suggest PAOs have a limited role in leaf litter associated P cycling. More 

specifically, we observed no trend in ppk1 and a limited trend in ppx gene abundance—the most 

common gene combination for putative PAOs in this study—over time in both treatments despite 

changes in leaf P for both treatments. As a result, P bound to sediment may have been an 

important driver of the increases in leaf P observed in the stream treatment. Interestingly, we 

observed an increase in the relative abundance of ppk2 in the forest floor treatment, which lost 

leaf P over the course of the experiment. While these results do not support our hypotheses as 

they relate to PAO-mediated controls on P cycling, they do highlight the need for more research 

(1) characterizing putative PAOs found in environmental samples as well as (2) addressing the 

impact of P limitation on organisms with ppk and ppx genes. 
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CHAPTER 5  

 

CONCLUSIONS 

The goal of this work was to investigate the role of polyphosphate accumulating organisms 

(PAOs) on P cycling in the environment. After a synthesis of existing work, it was clear that only 

a few studies explicitly addressed the control of PAOs on P cycling outside specialized 

wastewater treatment plants (WWTPs). Of these, we found none that explicitly set out to test the 

impact of PAO-mediated P cycling under fluctuating oxygen conditions in streams and soils. 

Therefore, we set out to fill this knowledge gap by studying PAOs in stream biofilms and soils. 

 

Stream biofilms took up P under aerobic conditions and released P under anaerobic conditions 

similarly to PAOs in WWTPs. We also observed more cells with intracellular polyphosphate 

(polyP) under aerobic conditions compared to anaerobic conditions, which is also consistent with 

the PAO phenotype. However, we were unable to determine the relative importance of PAO-

mediated P cycling compared to abiotic controls on P. In our soil experiment, we saw 

relationships between the soil wetness index (SWI), which integrates soil moisture patterns in 

space and time, and mobile P pools but the predictability of these patterns did not transfer to an 

ability to predict the relative abundance of P cycling functional genes (i.e., ppk and ppx). Soils 

are complex biological environments (Dunbar et al. 2002; Gans et al. 2005; Tringe et al. 2005; 

Fierer and Jackson 2006; Schloss and Handelsman 2006; Hug et al. 2016; Nesme et al. 2016), 

and therefore, PAOs may have a limited role on P cycling considering all the other 
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microorganisms competing for this limited resource as well as the potential abiotic factors 

controlling P (e.g., land management and iron redox). 

 

In addition to our limited understanding of PAO-mediated P cycling under changing 

environmental conditions, we found only one study (in marine systems) that related the 

abundance of ppk and ppx functional genes to environmental P concentrations. Additionally, 

there many studies in WWTPs have determined ppk relative abundance but not ppx. This is 

surprising given that a combination of both these genes is thought to be required for 

microorganism to be considered PAOs. More specifically, PAOs must be able to (1) store P as 

intracellular polyP under aerobic conditions and then (2) beak it down during anaerobic 

conditions; this metabolism is regulated by ppk and ppx, respectively. Furthermore, most WWTP 

studies that quantify ppk have only focused on Candidatus Accumulibacter phosphatis (CAP). 

Given the evidence that polyP functional genes were widespread in the environment, broader 

techniques (e.g., next generation-sequencing) are needed to characterize the diversity of PAOs as 

well as the relative abundance of ppk and ppx in natural systems.  

 

By employing some of these broader techniques in this study, we identified many organisms in 

soil and leaf litter samples that were related to phyla/classes of known PAOs as well as new 

putative PAOs. We recognize these phyla/classes are very diverse but this information could be 

used to develop new tools such as quantitative polymerase change reaction (qPCR) primers and 

fluorescence in-situ hybridization (FISH) probes to verify the phenotypes and quantify the 
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presence of these putative PAOs in the laboratory or field. Specifically, we encourage future 

studies to focus on the genus Burkholderia, which was identified in our soil and leaf litter 

experiments as well as other leaf litter and stream biofilm studies (Locke 2013; Purahong et al. 

2016). Burkholderia, was shown to store intracellular polyP granules (Locke 2013) and is also 

known for its ability to solubilize P (Purahong et al. 2016). These data may also be helpful in 

identifying putative PAOs, like Burkholderia, that are already studied in pure culture and may be 

helpful in exploring the role of PAOs in the environment, and thus, may provide a more 

controlled setting to test (1) the influence of environmental conditions and (2) the relative 

importance of PAOs versus abiotic processes on P cycling. 

 

Last, the consistent finding by other researchers that leaf P concentrations increased in the stream 

over time and that these may be due to microbial accumulation, motivated us to explore the role 

of PAOs in this setting. We observed leaf P trends that were consistent with previous studies but 

found no trend in the relative abundance of ppk and ppx genes over time. This finding was 

unexpected and leads us to believe that PAOs were likely playing a limited role in P cycling 

associated with leaf litter decomposition. However, one exception emerged in the forest floor 

leaf litter treatments where ppk2 genes significantly increased over time despite decreased leaf P 

concentrations over time. We suggest this finding signals the need for more research exploring 

the relative contributions of abiotic and biotic controls on P cycling in various environments as 

well as along environmental gradients (e.g., P availability gradients). 
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FUTURE DIRECTIONS 

This research uncovered many additional research questions and experimental considerations 

with regards to PAO-mediated P cycling in natural systems. We summarize future directions for 

each major study (i.e. stream biofilms, soils, and leaf litter). 

 

Stream Biofilms 

• Rather than forcing treatment 1 (T1) to be anaerobic an aerobic using a gas (i.e., N2 or mixed 

N2:CO2), repeat experiment using alternating dark and light cycles to indirectly control O2 

availability over time. See Carlton and Wetzel (1988) for details on this experimental design. 

• Consider continuously recording (i.e., every 5 minutes) dissolved oxygen (DO), pH, and 

phosphate sensors close to the biofilm and within the water column. The purpose of this is to 

test whether a thin O2 rich layer develops around the surface of the biofilm and how this O2 

rich layer alters local pH and phosphate concentrations as the treatment transitions from dark 

to light conditions. 

• Include more tub replicates and collect biofilms from streams with different P loads to study 

the impact of historical P availability on PAO communities and polyP accumulation 

efficiency within the stream biofilm. 

• Compare laboratory results to field measurements of DO and phosphate concentration in the 

water column and near the water column-biofilm interface over 24-hour period. 

• Consider repeating this experiment with alternative controls including (1) a bare rock 

treatment to make sure the stream substrate does not influence P cycling and (2) an abiotic 
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only treatment—where an antibiotic or other biocide is used to kill living organisms in the 

biofilm—to study the magnitude of abiotic and biotic processes on P cycling. 

• Harvest the biofilm over the course of the experiment and analyze each sample using DAPI-

polyP staining as well as PAO targeting FISH probes. This may also include sorting out cells 

that have polyP using flow cytometry and sequencing microbial communities before and 

after sorting like Locke (2015). Additionally, extract DNA from cells and use shotgun 

metagenomics to analyze for the abundance of functional genes (e.g., ppk and ppx) over time. 

• Ceramic tiles offer a homogeneous surface size to grow biofilms in the stream and can be 

used to quantify how quickly stream biofilms grown in the stream and how they accumulate 

polyP over time. Also of interest is how much stream biofilm is scoured off in storm events 

of various sizes and what is the magnitude of P transport downstream. 

• Use NanoSIMS to co-locate the presence of intracellular polyP and metals that are known to 

stabilize the negative charge of polyP (e.g., Ca and Mg). Estimate the impact of biotic versus 

abiotic processes on the uptake and release of these cations. 

• Characterize non-bacterial microorganisms within the stream biofilm using traditional 

classification techniques (e.g., Price and Carrick 2013), amplicon sequencing, or other 

strategies discussed in chapter 1. 

• Consider the role of other nutrients (e.g., N or Fe) in the stream biofilm ecosystem as well 

specific microbially-mediated processes that go along with them (e.g., denitrification and 

iron reduction). Use some of the approaches summarized in chapter 1 to study the 

microorganisms involved in the co-cycling of these nutrients and compare findings to that of 

PAOs to look for potential competitors and symbionts. 
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• Develop qPCR primers and qFISH probes from existing shotgun metagenomes for the 

quantification of functional genes (e.g., ppk and ppx) and PAOs, respectively. Especially for 

Alphaproteobacteria putative PAOs, which dominated metagenome hits. 

 

Soils 

• Consider gathering samples along a more detailed soil moisture/SWI gradient (i.e., gridded 

sample design) as well as a more detailed P limitation gradient for each of the different land 

cover types and consider controlling for OM and pH gradients. Consider collecting samples 

up to 20 cm to study whether we see similar results. 

• Samples have been saved in the freezer for FISH and DAPI staining of PAOs. Analyze these 

to test the hypothesis that more polyP is stored under aerobic (unsaturated) conditions 

compared to anaerobic (saturated) conditions. Sequencing data from this experiment can be 

used to design FISH probes as well as qPCR probes for known EBPR PAOs and functional 

genes, respectively. 

• There are many other types of soil P extractions that could have been carried out in this study. 

Carry out full Hedley consideration on select soil samples to understand impact of abiotic 

processes on P cycling. 18O-phosphate measurements from various P pools can also be 

compared to determine whether P originated from biotic or abiotic processes. See Joshi et al. 

(2016) and Tamburini et al. (2012) as examples of this method. Additionally, measurements 

of microbial P pools and microbial activity (respiration) can be measured along the soil 

moisture gradient.  



 

260 

 

 

• Sequence non-grassland samples using shotgun metagenomics approaches and compare the 

abundance and diversity of functional genes as well as community members between 

managed (e.g., cropped land) and un-managed land (e.g., forest) along soil moisture/SWI 

gradients. 

• Look for co-dependences between P, C, N, and other micro-nutrients (e.g., Fe, Mg) with 

changes in soil moisture/SWI. 

• Carry out laboratory methods experiments to establish that CaCl2-P is a better approximation 

of runoff P compared to water extractable P or oxalate extractable P (Ox-P) for the soils 

included in this study. 

• Analyze microbial and fungal biomass so it may be correlated with polyP functional genes 

and soil P. 

• Use NanoSIMS to identify the presence of metals that are known to be associated with PPK1 

and PPK2 (i.e., Mg and Mn, respectively). 

 

Leaf Litter 

• Rather than mixing all leaves together in one bag, separate out different leaf types and 

measure P accumulation in the stream over time. Test for patterns in P accumulation with leaf 

litter properties (e.g., leaf litter C:N ratio). Study how the microbial communities as well as 

diversity and abundance of functional genes vary with different types of leaves. Also 

consider putting the same types of leaves in streams along a P load gradient to look at how P 

supply impacts litter decomposition and P accumulation on leaves in the stream. 
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• Use DAPI and FISH techniques to verify the presence of PAOs on the leaves over time. 

Develop new FISH probes as well as qPCR probes for known EBPR PAOs and functional 

genes, respectively 

• Use a laboratory flume set-up to study the impact of flow, velocity, temperature, P 

availability, and O2 availability on leaf P accumulation over time. 

• Draw out forest floor study to test whether P accumulation ever begins. 

• Look for co-dependences between P, C, N, and other micro-nutrients (e.g., Fe, Mg) with as P 

accumulates on the leaves over time. 

• Calculate mass balance of P that enters and cycles through the forest/stream ecosystem as 

result of leaf litter additions. 

• Analyze microbial and fungal biomass so it may be correlated with polyP functional genes 

and leaf P. 

• Use NanoSIMS to identify the presence of metals that are known to be associated with PPK1 

and PPK2 (i.e., Mg and Mn, respectively). 
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