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Genome-wide association studies (GWAS) have been a useful tool in 

identifying numerous genetic loci that associate with increased risk for numerous 

cancers.  However, as most of the identified risk variants are found in non-coding 

regions of the genome, the field has been slow in moving beyond identifying the risk 

variants to functionally determining the mechanism for cancer predisposition. The 

ultimate goal of genome-wide association studies is to identify and understand the role 

of these loci disease etiology to ultimately enable more effective screening and 

therapeutic treatments.  

Framed by better understanding GWAS results, my dissertation has 3 main 

aspects, where I: 1) developed a computational approach to characterize GWAS 

results using publically-available epigenomic databases, 2) identified novel germline 

susceptibility loci for myeloproliferative neoplasms, and 3) examined molecular 

mechanisms by which a prostate cancer single-nucleotide polymorphism may increase 

risk.  



 

 

The scientific community has invested great resources into discovering and 

cataloguing all the functional elements of the genome, through efforts such as 

ENCODE and Roadmap Epigenomics. First, we developed a computational method, 

“Understanding Enrichment through Simulation” (UES), which combines GWAS data 

with these consortia data in order to provide a better understanding of the role of risk-

SNPs in cancer predisposition. We validated the approach using a set of lymphoma 

SNPs and successfully determined that the risk-loci are preferentially found in 

regulatory elements in lymphoid tissues, suggesting a tissue-specific disruption of 

regulation may cause lymphomagenesis. 

Next we conducted a GWAS of myeloproliferative neoplasms (MPN), a 

collection of clonal, hematopoietic disorders. We combined multiple MPN GWAS 

into a larger dataset in order to increase the statistical power needed to identify novel 

risk-variants. We two risk loci for MPN; rediscovering the JAK2 locus and identifying 

a novel association at the TERT gene.  

Lastly, we studied the mechanism by which microseminoprotein-beta controls 

prostate cell growth. The risk allele of a prostate cancer risk SNP, rs10993994, had 

been shown to associate with lower levels of genic transcriptional activity and protein 

levels in humans. Levels of β-MSP have been shown to lead to decreased prostate cell 

viability, though our efforts were unable to determine the mechanism explaining this 

effect. 
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1 Introduction 

On April 14, 2003, after a decade of work and an estimated $2.7 billion, the 

successful completion of the Human Genome Project was announced to great fanfare.  

The field has since progressed from just determining the sequence of an individual’s 

genome to creating a complete catalogue the genetic variation among populations of 

people.  One outgrowth of having access to such genomic data are phenotypic-based 

genome-wide association studies (GWAS) which have successfully identified 

hundreds of genetic loci that contribute to a myriad of traits and diseases. Thus, the 

logical expansion of these studies is to next determine the underlying mechanism by 

which these variants lead to the phenotypic outcome. This thesis describes my efforts, 

both computationally and through bench experiments, to better understand and 

characterize risk-variants for various cancer types. The thesis work presented herein is 

divided into 3 distinct chapters and outlined below: 

1. Creating a novel algorithm, “Understanding Enrichment through 

Simulation (UES)”, to analyze GWAS results with publically available databases. 

Chapter 2 presents the novel method, UES, which employs a SNP-matching technique 

to determine statistical enrichment of previously-reported GWAS SNPs in various 

ENCODE and Roadmap Epigenomic tracks. The method was validated using a set of 

lymphoma SNPs and further expanded to look at different cancer types. 

2. Identifying germline variants associated with myeloproliferative 

neoplasm (MPN) risk. Chapter 3 describes our efforts to combine multiple, smaller 

MPN datasets with the goal of increasing our statistical power to identify novel 

associations.  

3. Functionally validating a prostate cancer risk SNP. Chapter 4 

describes the use of multiple molecular biology techniques in order to elucidate the 

mechanism by which a single SNP increases risk for prostate cancer. 
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Taken together, this work presents multiple techniques, both computational 

and molecular, that can be employed to better understand how common variants 

increase risk in various cancers. In the remainder of this chapter, I present a brief 

history of the field of human genetics and how this shaped the work and techniques in 

the present day.  Additionally, I introduce consortia data which was integral to 

providing the context in which the cancer risk-SNPs function. Lastly, I provide 

introductions to the various cancer types presented in this thesis. 

1.1 Genetics of Human Diseases 

The history of the of field of genetics began with the work of a friar, Gregor 

Johann Mendel, and his experiments with pea plants in the monastery’s garden, where 

he observed consistent, reproducible, and predictable ratios of phenotypic traits upon 

crossbreeding the plants. These observations, which are now called the laws of 

“Mendelian inheritance,” were published in “Experiments in Plant Hybridization” and 

are the first description of the rules of heredity: 1) traits are determined by discrete 

“units” or “factors” (now called genes), 2) individuals inherit a unit from each parent, 

and 3) even though a trait may not be seen in a generation, it can still be passed on to 

offspring.  These rules would become instrumental in allowing the mapping of 

individual traits to physical locations within a genome (Altshuler et al. 2008).  

The predictable, probabilistic outcomes from genetic crosses suggested that 

there was a physical mode for transmission of traits from parent to offspring, though it 

was not known whether the transmission of traits came via DNA or proteins.  

Following a deadly flu outbreak in the early 1900s, Frederick Griffith was studying 

two strains Streptococcus pneumoniae that differed in both appearance and virulence 

in mice and was able to identify that there was a heat-resistant “transforming 

principle” which was able to transform the less virulent “R cells” to the more virulent 
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“S cells” (Griffith 1928). Building on those results, Oswald Avery and colleagues at 

the Rockefeller University, treated the extract from the heat-killed, virulent “S” strain 

of S. pneumoniae with protease, RNAse, and/or DNAse and, through process of 

elimination, were able to identify DNA as the transforming agent (Avery et al. 1944). 

Subsequently, Alfred Hersey and Martha Chase, through experimentation with radio-

labeled T2 bacteriophages were able to exclude proteins as heredity material by 

showing that 32P-labeled DNA was found in infected cells while 35S-labeled proteins 

were not  (Hershey & Chase 1952). DNA was thus established as the physical vector 

by which genetic information was inherited. Numerous methods were later established 

to determine the map these phenotypic “units,” or genes, to a precise location of DNA. 

1.1.1 Genetic Mapping and Linkage Studies 

Linkage studies are the simplest form of performing genetic mapping, which 

take advantage of the tendency for genetic loci physically close to each other in the 

genome to be passed along with one another during meiosis. This method was first 

performed in Drosophila melanogaster, the common fruit fly, by setting up mating 

crosses between parent flies which varied at a Mendelian trait of interest and 

“markers” or known genetic variants. The resultant progeny were observed for 

evidence of whether or not the traits were “linked,” or showed correlated segregation, 

to any of the markers (Sturtevant 1913).  It would be years until the technique of 

positional cloning would be developed, first in Saccharomyces cerevisiae, allowing 

specific genes to be connected with particular traits based on genomic position (Clarke 

& Carbon 1980). This method proved to be quite powerful in numerous model 

systems and expanded in use beyond common baker’s yeast, as evidenced when 

Bender and colleagues used a similar approach back in D. melanogaster and 

developed a genetic map of the bithorax complex (Bender et al. 1983).  
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It was first proposed that naturally occurring polymorphisms in DNA which 

disrupted restriction fragment lengths (RFLPs) could be used as genetic markers in 

humans in order to create a genetic map (Botstein et al. 1980). The first successful 

example of mapping a to a specific chromosome was demonstrated when the gene 

causing Huntington disease was the mapped to the short arm of chromosome 4 

(Gusella et al. 1983).  Even though the study provided a broad locus for Huntington 

disease, the study showed that linkage analysis was indeed possible to perform in 

humans for Mendelian disease genes.  Since then, linkage studies have identified 

numerous genetic variants with large effect sizes in other Mendelian diseases, 

including cancers. One such example of the power of this approach is demonstrated by 

identifying the BRCA1 and BRCA2 familiar risk loci in breast cancer (Hall et al. 1990; 

Miki et al. 1994; Wooster et al. 1994).  

While linkage studies had proven to be quite powerful in model organisms, 

similar techniques proved to be both difficult and impractical to translate to human 

genetic research. Firstly, there were not nearly enough genetic markers that to make 

these types of studies possible, especially when looking at a genomic level. 

Furthermore, even if those markers were available, human family sizes are too small 

provide precise results and, more importantly, scientists would be impeded by the 

ethical issues of controlling the mating of human subjects to design the needed crosses 

(Altshuler et al. 2008). Nevertheless, while there have been successful linkage studies 

as previously mentioned, linkage studies are more useful in identifying highly 

penetrative, rare Mendelian disorders and are not practical to be applied towards 

studying more common, complex diseases. 

The disease risk variants identified by linkage studies were typically highly 

penetrant and rare within a population (<1% frequency within a population).  
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However, this framework that only rare-alleles are risk-alleles does not hold together 

logically for the entire spectrum of human disease. As most Mendelian disorders 

manifest as strongly damaging phenotypes, natural selection would, over time, cause 

these deleterious variants to be lost to purifying selection and thus removed from the 

population (Pritchard & Cox 2002). The exception to this would be in cases where 

balancing selection keeps the Mendelian risk variant in the population due to some 

beneficial phenotype, notably as seen in sickle-cell anemia and malaria resistance.  

One hypothesis about the common diseases is that they have a different genetic 

architecture than rare disorders. This hypothesis was supported by the multiple 

discoveries that risk variants for common diseases, for example Alzheimer’s and type 

II diabetes, had a rather high minor allele frequency (MAF), 13.7% for the APOE ε4 

risk allele (homozygous odds ratio (OR) = 14.8; 95% confidence interval (CI) = 10.8-

20.6) and 16% for the missense mutation in PPARG (Pro12Ala) (OR=0.78; 95% 

CI=0.59-1.05) (Corder et al. 1993; Farrer et al.; Altshuler et al. 2000). These studies 

eventually led to formulation of the “common disease-common variant” (CD-CV) 

hypothesis (Reich & Lander 2001), which simply stated, suggests that common 

diseases are likely affected by genetic variation which is more common in populations 

though they have much smaller effect than that of highly penetrant, rare variants. 

Thus, the resultant corollary states that these common variants associated with 

diseases are not highly penetrant and, since common diseases show heritability, these 

common variants play a role in susceptibility.  This model, particularly in cancer was 

supported by a meta-analysis of twin- and family-based cancer studies which showed 

that susceptibility to cancer was individual rare variants had a strong effect whereas 

multiple common variants showed a more modest effect (Risch 2001). This 

phenomenon, where allelic frequency is generally inversely proportional to its effect 
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size for a disease, is generally referred to as the allelic spectrum of disease (Figure 

1.1). 

1.1.2 Genome-wide association studies 

As linkage studies proved ineffective in discovering common variants with 

weaker effects, an alternative approach was proposed to test for the association of 

large numbers of variants across the genome for a particular phenotype or disease of 

interest (Risch & Merikangas 1996). This new paradigm assumes that the risk-variants 

had been genotyped and could be tested for association within a population, as 

opposed to looking at the smaller number of both affected and family members as 

done in linkage studies. 

These studies were enabled by the completion of the Human Genome Project 

and the International HapMap Project (Collins et al. 2003; Consortium 2003), 

Figure 1.1. Allelic spectrum of disease. Highly penetrant, rare variants 

are typically have a lower frequency within a population. Conversely, 

common variants usually show weaker effect (Bush & Moore 2012).  

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3531285_pcbi.1002822.g001.jpg
http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3531285_pcbi.1002822.g001.jpg
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specifically by the effort of the HapMap Consortium to catalogue the variation of 

single-nucleotide polymorphisms found within the human genome across multiple 

populations.  These single-nucleotide polymorphisms, or SNPs, are the most common 

type of variation and consist of the change of an individual nucleotide (A, G, C, or T) 

to another. The consortium studied 4 geographically-distinct populations: 1) 30 trios 

(consisting of two parents and a child) from Idaban, Nigeria (abbreviated YRI), 2) 30 

trios of Utah residents of northern and western European ancestry obtained from the 

Centre dEtude du Polymorphisme Humain (CEU), 3) 45 unrelated Han Chinese 

individuals from Bejing, China (CHB), and 4) 45 unrelated Japanese individuals from 

Tokyo, Japan (JPN).  In 2005, the consortium announce the findings of >1.3 million 

SNPs that have a minor-allele frequency (MAF) of >1% within a population (The 

International HapMap Consortium 2005). Since then, the 1000 Genomes Project has 

continued to expand the effort catalogue human genetic variation through sequencing 

(The 1000 Genomes Project Consortium et al. 2010; The 1000 Genomes Project 

Consortium et al. 2012). 

It had been observed that SNPs are subject to the phenomenon of linkage 

disequilibrium (LD), or the non-random association between two alleles of 

neighboring loci, and cause SNPs to be carried within haplotype blocks (Devlin & 

Risch 1995; Pritchard & Przeworski 2001). This occurs when two variants are 

physically located in close proximity to one another and are not typically separated 

from one another during meiotic recombination. Thus, when these alleles fail to 

disassociate from one other and tend to be inherited together, these loci are considered 

“linked.” One of the most common measurements of LD is r2, ranging from 0-1 (no 

correlation to perfect correlation, respectively). Linkage disequilibrium, in essence, 

allowed scientists allowed scientists indirectly study a larger swath of genetic variation 

of proxy, or “tag” SNPs across the genome by performing the association testing on 



8 

 

the “lead” SNPs. Combining this knowledge of LD structure with the advancements in 

SNP genotyping through deoxyribonucleic acid (DNA) microarrays allowed for an 

appropriate number of SNPs to cover the genome and subsequently usher in the era of 

genome-wide association studies (GWAS). 

A GWAS is a population-based study that typically consists of a two-stages: 

discovery and validation (Spencer et al. 2009; Klein 2007). For the discovery stage, a 

large cohort of individuals are chosen and categorized according to whether or not 

they have the particular phenotype/disease of interest (cases) and those without 

(controls).  All of the individuals from both cases and controls are then genotyped 

using SNP-arrays, typically using those available from Affymetrix or Illumina, and 

then, following stringent quality controls, the SNPs are tested for an association with 

the phenotype as seen by a difference in allelic frequency between cases and controls. 

Logistic regression is typically used to estimate the log-additive effect of each allele 

on the odds of disease, or the odds ratio (OR), and its statistical significance is 

reported by the p-value. However, since numerous tests are performed, a true 

association must overcome the burden of multiple testing. For example, if we set the 

significance threshold at p<0.05 and test 1 million SNPs in a GWAS, then we would 

expect to have 50,000 SNPs that met that significance threshold due to nothing more 

than random chance.  Thus, in order to reduce type-I errors, GWAS SNPs usually need 

to meet the stringent Bonferoni correction level (calculated by 0.05 divided by the 

number of tests) in order to be deemed a true association. The validation stage of the 

GWAS is then performed using a smaller subset of the significant SNPs and tested for 

association in an independent cohort. The first successful GWAS was published on 

age-related macular degeneration (Klein et al. 2005), and as of November 2015, this 

approach has been used in 2,305 different studies, ranging from non-disease 

phenotypes to cancer (Welter et al. 2014).  
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Most of the identified risk-variants identified from GWAS have a small effect 

size with ORs typically found in the range of 1.2-1.4, which is in line with the CV-CD 

hypothesis that these common alleles will have a relatively low effect size (Hindorff et 

al. 2009).  Albeit, these effect sizes are smaller than was hoped for at the beginning of 

the GWAS era, the use of genome-wide association studies is generally regarded as 

successful, especially in the field of cancer predisposition (Klein et al. 2010).  Though, 

there are criticisms of the field that remain to be addressed, specifically missing 

heritability and functional validation. A study 2009 study of height demonstrated that 

while the heritability of height is near 80%, only 5% of that heritability was explained 

by the 40 height-associate loci (Manolio et al. 2009). One such explanation of this 

phenomenon is that the aforementioned Bonferoni-correction method is too stringent 

and excludes true positive associations. Furthermore, some of this missing heritability 

could also be may also come from structural variation, synthetic associations, or gene-

gene interactions; rare variants unable to be discovered by GWAS may also have a 

role in this missing heritability, though the tools and platforms used in this technique 

may make it difficult to detect these risk loci. However, the more severe (and well 

warranted) critique of the field is the lack of functionally validating the identified 

variants and determining the mechanism by which they are involved in the etiology of 

diseases. Analysis by Hindorff et al. (2009) additionally revealed that 88% of the risk-

SNPs reported at the time were found in either intergenic or intronic and were not 

responsible for amino acid changes.  Intuitive mechanistic understanding of risk SNPs 

are further complicated since many are found in areas of the genome devoid of genes, 

or “gene deserts” (Freedman et al. 2011).  A majority of my thesis work focuses on 

addressing this latter critique of the GWAS field; chapter 2 of describes a computation 

approach to integrate GWAS results with epigenomic databases and chapter 4 presents 
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molecular-biology driven effort to understand how a particular prostate cancer risk-

SNP may be responsible for increased prostate cancer risk. 

1.2 Functional Genomic Databases 

Once the Human Genome Project was completed and scientist had access 

sequence, it became abundantly clear that the sequence alone did not fully explain the 

complexity of human biology, as evidenced by fact that only ~1.5% of the 3 billion 

nucleotides were responsible for coding the ~20,000 human proteins (Lander et al. 

2001). Thus, researchers expanded beyond the genome to study the “epigenome,” or 

how the in vivo packaging of DNA.  This epigenomic landscape includes a multitude 

of marks, including histone modifications and positioning, distal chromatin 

interactions, and DNA-binding proteins including transcription factors. There are two 

Figure 1.2. Generalized overview of datatypes for the ENCODE Project and 

Roadmap Epigenomics. This figure provides a visualization of the packaging of 

DNA, spanning from a broad view at the chromatin level in the upper left to a high-

resolution visualized down to the nucleosome. Genomic features and particular assays 

labeled (Ginsburg et al. 2013). 
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major consortia that are currently working in parallel to catalog with the goal of 

ultimately understanding how these differences affect human biology.  An overview of 

the data available from both consortia is visualized in Figure 1.2. 

1.2.1 The ENCODE Project  

Upon completion of the Human Genome Project in 2003, the National Human 

Genome Research Institute (NHGRI) launched the ENCODE Project Consortium 

(ENCODE Project Consortium et al. 2007). This consortium was initially charged 

identifying all of the functional elements within the human genome, though the pilot 

study would focus on only 30 megabases (Mb), or just 1%. Half of the loci included in 

the initial study were of well-characterized regions, such as the HOXA and CFTR loci, 

and the other 15 Mb consisted of other regions with varying amounts of gene density 

and conserved, non-coding regions (Ginsburg et al. 2013).  Initially, the ENCODE 

project focused on using numerous assays to deeply study 3 individual “Tier 1” cell 

lines: K562 (a erythroleukemia cell line), GM12878 (an Epstein Barr virus-

immortalized lymphoblastoid cell line), and H1-hESC (a human embryonic stem cell 

line). The effort has since expanded to provide data on >200 primary, stem cell, or 

cancer cell lines. 

1.2.2 The NIH Roadmap Epigenomics  

Soon afterwards, in 2008, the NIH started a similar effort called the Roadmap 

Epigenomics Mapping Consortium (referred to throughout as “Roadmap 

Epigenomics” or simply as “Roadmap”), whose goal was to generate reference 

epigenomes for normal human cell types, including both adult and fetal tissues. As 

such, the Roadmap Epigenomics Consortium does not use disease cell lines nor 

immortalized lines; the cell lines were either obtained as primary cells, generated from 

tissues, cultured embryonic stem cells (ESC), or differentiated from ESCs. 

Furthermore, as Roadmap’s goal is to create a reference epigenome for these cells, 
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consortium members focused on collecting the same multiple datasets form the same 

tissues, rather than performing deep assays in relatively few cell lines as done in 

ENCODE (Bernstein et al. 2010).  

1.2.3 Functional Epigenomic Data  

Both the ENCODE and Roadmap Consortium performed RNA-seq RNA 

paired-end tag sequencing (RNA-PET) (Z. Wang et al. 2009). ENCODE specifically 

has made an effort to fully catalog and annotate the all the genes which encode 

proteins, though this process has proven difficult to automate computationally 

(Harrow et al. 2006; Guigó et al. 2006). As such, manual curation constitutes a large 

amount of the work performed by ENCODE to curate genes. Interestingly, ~50% of 

transcripts found by ENCODE appear to be either non-coding or pseudogenes, 

including intronic transcripts and transcripts with opposite polarities (The ENCODE 

Project Consortium 2012; Park et al. 2012; Djebali et al. 2012). The consortium is also 

interested in annotating structure of the ribonucleic acid (RNA), such as transcription 

start and end sites as measured by analyzing the 5’ methyl caps of RNA (CAGE) and 

determining RNA length by sequencing the amplified 5’/3’ ends of RNA (RACE) 

(Shiraki et al. 2003; Frohman et al. 1988).   

Both consortia employed various sequencing-based assays to extensively 

catalogue the epigenomic landscape of DNA.  These assays included DNase1-seq 

which provides a comprehensive look at accessible loci and a mark of active 

regulatory DNA (Boyle et al. 2008; Thurman et al. 2012) and chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) for various DNA-binding 

proteins, such as transcription factors (TFs) and RNA Polymerase II, ChIP-seq was 

also used to catalogue the histone modifications within the cell lines (The ENCODE 

Project Consortium 2012).  ENCODE additionally performed “formaldehyde-assisted 

isolation of regulatory elements sequencing”, or FAIRE-seq, to identify loci with low 
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occupancy of nucleosomes (Giresi et al. 2007).  The true power of these type data can 

be seen when the TF occupancy data was combined with chromatin accessibility data: 

a plethora of histone modifications (H3K4me1, H3K4me2, H3K4me3, H3Ac, and 

H4Ac) were shown to associate with transcription start sites (TSS), both previously 

known and novel sites (Thurman et al. 2012). Deep-sequencing of these DNase-

hypersensitivity data have also allowed researchers to identify TF binding motifs 

within the data, providing both a validation of the ChIP-seq data and potentially 

identifying novel TF binding sites (Hesselberth et al. 2009; Neph et al. 2012). 

One of the largest differences between the datasets of the consortia is that 

ENCODE attempts to catalogue distal interaction that genetic loci has with different 

other areas of the genome whereas Roadmap does not address this question. It has 

been shown that DNA can interact with other genomic loci hundreds of Kb away or 

even located on entirely separate chromosomes (Lieberman-Aiden et al. 2009). The 

hypothesis is that these distant interactions indicate that one area of the genome act as 

a regulator of another locus. These interactions are primarily measured through 

sequencing carbon copy chromatin conformation capture (5C-seq) and chromatin 

interaction analysis by paired-end tag sequencing (ChIA-PET) (Dostie et al. 2006; 

Sanyal et al. 2012; Fullwood et al. 2009).  

 The real power of all these data when they can be combined to provide greater 

insight than when analyzed separately.  Two different segmentation algorithms have 

been developed by members of the ENCODE consortium which, using a combination 

of epigenomic marks, categorize the state of every locus of the genome (Hoffman et 

al. 2013).  The first such method was ChromHMM (Ernst & Kellis 2012) which 

employs a multivariate Hidden Markov Model to analyze combinations of chromatin 

marks in order to determine genomic state at 200 bp intervals. Using this technique, a 

15-state models were generated and applied to 9 different ENCODE and 127 
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Roadmap Epigenomics cell lines (Ernst et al. 2011). A few months later, Bill Noble’s 

group at the University of Washington released Segway, another segmentation 

algorithm (Hoffman et al. 2012). Segway employs a Dynamic Bayesian Network, 

rather than a Hidden Markov Model, to segment the genome.  Using a combination of 

ChIP-seq and chromatin accessibility data, Segway data tracks with 13 different states 

were provided for 6 different ENCODE cell types. While both algorithms perform 

similar analysis and there is high concordance between the outputs, the main 

difference between the algorithms is the resolution: ChromHMM operates at a 200 bp 

window whereas Segway segments data at the base pair level. However, this increased 

resolution also amplifies the output files and increases the time needed to analyze the 

data.  

1.3 Lymphoma and chronic lymphocytic leukemia 

Lymphoma is a broad categorization of cancers that develop in the lymphatic 

cells of the immune system and consists of two broad categories: Hodgkin’s 

lymphoma (HD), as distinguished by the presence of a Reed-Sternberg cell, and non-

Hodgkin’s lymphoma (NHL). Lymphoma including its various subtypes are the most 

common type of blood cancer in the United States, being projected to cause 80,900 

new cases and 20,940 deaths in 2015, though the new NHL cases (71,850) vastly 

outnumber the HD cases (9,050) (Siegel et al. 2015).  When looking at categories of 

lymphoma, the median age of onset is 65 years old, however, the median ages are 

quite disparate when comparing Hodgkin’s lymphoma to the non-Hodgkin’s subtype, 

38 vs 65, respectively. A similar, though smaller, gap is seen between the median ages 

of death caused by lymphoma when comparing HD and NHL (65 vs 76, respectively) 

with the median age of death from lymphoma collectively is 75 years old (Howlader et 

al. 2015).  
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 Patients with lymphoma typically present with lymphadenopathy which can 

co-occur with additional swelling of the spleen and/or liver as well as night sweats, 

fever, and weight loss (Pileri et al. 2002). Since the clinical presentation of 

lymphomas share some commonalities across the various subsets of the disease, a 

pathological approach is required for a more accurate diagnosis as treatment plans can 

vary among the different subtypes (Turner et al. 2010).  Hodgkin’s lymphoma, as 

previously mentioned, is marked by the presence of Reed-Sternberg cells which 

appear as bi-nucleated, CD30 positive/CD15 positive/CD45 that are thought to be 

defective germinal centers (Hartlapp et al. 2009). Advances in treatment have brought 

the mortality of HD down to the present-day level for 5-year survival to 86% 

(Howlader et al. 2015).  NHL has a slightly lower 5-year survival rate at 70%. 

1.3.1 Genetic predisposition to lymphomas 

Lymphoma, including the non-Hodgkin’s subtype chronic lymphocytic 

leukemia (CLL), has been shown to be highly heritable.  A population-based study of 

Scandinavian populations revealed that for individuals whom had relatives afflicted 

with HD, the relative risk increased 3.47-fold (95% CI = 1.77-6.8) in a Swedish 

population and 2.55-fold (95% CI = 1.01–6.45) in a Danish population (Goldin et al. 

2004).  A literature review revealed that familial relative risk of CLL was also 

elevated, ranging from a 1.5-7.5 fold increase (Sellick et al. 2006).  Since then, 

numerous genome-wide association studies have been performed across the subtypes 

of lymphoma, in order to better understand the mechanism lymphomagenesis (Berndt 

et al. 2013; Conde et al. 2010; Cozen et al. 2012; Crowther-Swanepoel et al. 2010; Di 

Bernardo et al. 2008; Enciso-Mora et al. 2010; Kumar et al. 2011; Skibola et al. 2009; 

Slager et al. 2011; Smedby et al. 2011; Urayama et al. 2012; Vijai et al. 2013; Wade et 

al. 2011).  
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Numerous SNPs at the human leukocyte antigen (HLA) region at 6p21 have 

been identified as associating with lymphoma-risk (Skibola et al. 2009; Conde et al. 

2010; Cozen et al. 2012; Smedby et al. 2011; Vijai et al. 2013). On explanation is that 

these variants may cause dysregulation of the HLA complex and ultimately disrupt B-

cell development.  Vijai et al. (2013) identified a neighboring, yet still novel risk-SNP, 

rs707824, at 6p23.  This SNPs is located upstream of the gene encoding Jumanji, 

JARID, which has been shown to play a role in the both the differentiation and self-

renewal of embryonic stem cells (Shen et al. 2009). Furthermore, this SNP is located 

downstream of CD83, a known B-cell activation protein (Cao et al. 2005).  However, 

the HLA locus is difficult to study due to the high amount of recombination and little 

functional evidence confirming the mechanism of increased risk is available for this 

region. 

1.4 Myeloproliferative Neoplasms 

Myeloproliferative neoplasms (MPN), officially defined in 2008 by the World 

Health Organization, are a collection of blood disorders of the myeloid lineage that 

manifest in the clonal expansion of hematopoietic cells (Ayalew Tefferi et al. 2009).  

Polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis 

(PMF) together make up the set of BCR-ABL negative MPNs (Tefferi 2010).  Patients 

afflicted with PV are marked by an increased proliferation of erythroid cells, leading 

to elevated erythroid cell mass, blood viscosity, hematocrit value, and hemoglobin 

concentration which, in turn, puts the patient at increased risk hemorrhages, 

thromboses, and stroke (Dameshek 1951; Ruggeri et al. 2003). Patients with ET are 

also at risk of thrombosis and excessive bleeding due to an over-proliferation of 

platelets and megakaryocytes (Tefferi & Murphy 2001). PMF is the most lethal of 

these three MPNs as evidenced by the high risk of transformation to leukemia (5%-
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30%) and is characterized by bone marrow fibrosis and a clinical course of 

splenomegaly and anemia (Varki et al. 1983; Tefferi 2000; Barosi 1999). 

1.4.1 Genetic Predisposition to MPN 

Myeloproliferative neoplasms have been observed in familial cluster, suggesting 

that there is heritable, germline component of the disease’s etiology. Studies have 

shown that between 5-10% of patients afflicted with MPN have a positive family 

history of the disease; furthermore first-degree relatives are at a higher disease-risk 

when compared to the normal population: PV (relative risk = 5.7, 95% CI = 3.5-9.1) 

and ET (relative risk = 7.4, 95% CI = 3.7-14.8). (Landgren et al. 2008).  Interestingly, 

these familial clusters of MPN are also characterized by both genetic and clinical 

heterogeneity, where individuals within the same cluster are diagnosed with different 

forms of MPN from one another (Rumi et al. 2007). 

Even though MPN is observed to be clustered familial, there have been no 

linkage studies that have identified the particular germline risk variant.  Several 

genome-wide association studies were conducted in order to identify the heritable 

component of MPN risk and have successfully identified the JAK2 locus (found at 

chromosome 9p) as associating with JAK2-V617F positive MPN and explain between 

28%-46% of the risk (Kilpivaara et al. 2009; Olcaydu et al. 2009; Jones et al. 2009). 

Somatic mutations at the JAK2 locus have been in all three types of BCR-ABL 

negative MPN, found in approximately 96% in PV cases, 55% in ET cases, and 65% 

in PMF cases (James et al. 2005).  This mutation causes JAK2 to become 

constitutively active, which in turn, causes a downstream activation of STAT proteins 

and both the PI3K-AKT and MAP kinase pathways (Ihle & Gilliland 2007; 

Delhommeau et al. 2007; Jamieson et al. 2006). When a more-mutated molecular 

haplotype of JAK2-V617F was shown to be in cis with the risk haplotype, one possible 

explanatory link was that the risk-variant caused a somatic hypermutability phenotype.  



18 

 

However, a resequencing effort from our group did not find a difference in the 

mutational load at the V617F locus when comparing 24 MPN cases, 12 homozygous 

for the G allele at the rs10974944 and 12 homozygous for the C allele, suggesting that 

neither haplotype gained mutations at a rate quicker than expected (Mukherjee 2011). 

In chapter 3 of this thesis, I describe a new GWAS that we performed by combining 

multiple, smaller MPN datasets into a larger set with the goal of increasing power to 

discover novel associations. 

1.5 Prostate Cancer 

Prostate cancer (PrCa) is the most common type of cancer among American 

males. In 2015 alone, there is projected to be 220,800 new cases and 27,540 prostate 

cancer related deaths, making it the second most deadly cancer in American males 

behind lung cancer (Siegel et al. 2015). Prostate cancer is typically a slow-growing 

cancer afflicting older males where the median age of diagnosis in the United states is 

66 (age 66 in white males and 63 in black males) and the median age of PrCa-related 

death is 80 (ages 81 and 77 for whites and blacks, respectively) (Howlader et al. 

2015). Joint analysis of the US Surveillance, Epidemiology, and End Results Program 

and Swedish Cancer Registry have indicated that men who were diagnosed  with PrCa 

were less likely to die from the cancer itself than other causes (Epstein et al. 2012) and 

further evidenced by the 98.6% five-year survival rate in American men (Howlader et 

al. 2015). However, highly aggressive PrCa can have a high mortality due to 

metastasis that preferentially moving beyond the prostate and into bones and lymph 

nodes and has a 5-year survival rate drops to 28% (Howlader et al. 2015).  

1.5.1 Genetic Predisposition to Prostate Cancer 

Prostate cancer, though common among men, also has been shown to have a 

high heritability when compared to other cancer types (Lichtenstein et al. 2000). One 

of the strongest risk factors for prostate is having a positive family history: if a man’s 
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father and brother(s) had a positive diagnosis, he has a 2.3-fold higher risk of 

developing the disease (95% CI = 1.76–3.12) (Chen et al. 2008).  Additionally, studies 

performed in Scandinavian monozygotic and dizygotic twins showed that increased 

risk of PrCa from heritable factors is 42% (95% CI = 29%-50%), noticeably higher 

than the heritable risk of 27% and 35% found for breast and colorectal cancers, 

respectively (Lichtenstein et al. 2000). 

Numerous linkage studies for PrCa had been attempted though, due to 

previously described technical difficulties of the assay, the results often failed to 

replicate and conflicted with similar studies.  That is not to say that there were no 

successes; a linkage study in 2003 identified a non-synonymous variant in the 

HOXB13 transcription factor (Lange et al. 2003).  This result was verified by fine-

mapping of the 17q21-22 locus and by sequencing experiments (Lange et al. 2007; 

Ewing et al. 2012).  

As of November 2015, 39 separate GWAS of PrCa have been reported in the 

NHGRI-EBI GWAS Catalog (Welter et al. 2014).  The first two PrCa GWAS were 

independently conducted in an Icelandic population and in the United States using 

cases and controls of European ancestry and simultaneously reported the association 

of 8q24 with increased risk for PrCa (Gudmundsson et al. 2007; Yeager et al. 2007).  

Numerous, additional PrCa GWAS in Europeans have been performed and have 

identified   

Returning to 8q24, this region had previously been associated with PrCa risk 

through admixture mapping (Freedman et al. 2006; Amundadottir et al. 2006).  

However, while this GWAS did further support the true association with PrCa, the 

mechanism of increased risk remains unclear. The risk loci at 8q24 lie within a gene 

desert, a 1 Mb tract of the genome that contains no known genes.  The closest gene to 
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the risk loci is the oncogenic transcription factor, MYC, and conformation capture 

assays have identified a long-range chromatin-looping interaction between the risk-

locus and the MYC gene in prostate cancer cell lines (Pomerantz et al. 2009). These 

results suggest that the risk-locus at 8q24 may ultimately regulate MYC expression 

through physical interaction and ultimately increase PrCa risk through a dysregulation 

of MYC, however precise details remain unclear. 

The SNP, rs10993994 at 10q11, was originally identified as a PrCa risk SNP in 

two simultaneous GWAS in 2008 (Eeles et al. 2008; Thomas et al. 2008). This SNP is 

posed as an intriguing candidate for functional validation as it is found in the promoter 

region, a mere 57 base pairs (bp) upstream of the transcription start site of the gene 

microseminoprotein-beta, MSMB, which encodes for one of the 3 major secretory 

products of the prostate. My efforts to understand better understand how this SNP 

affects PrCa etiology is described in Chapter 4 of this thesis.  
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2 Chapter 2. Enrichment of Cancer Risk SNPs in Functional Elements of DNA 

The results of this chapter have been published (Hayes et al. 2015). 

Hayes J, Trynka G, Vijai J, Offit K, Raychaudhuri S, Klein RJ. Tissue-Specific 

Enrichment of Lymphoma Risk Loci in Regulatory Elements. PLOS One. 2015. DOI: 

10.1371/journal.pone.0139360. 

2.1 Introduction 

2.1.1 Lymphoma and chronic lymphocytic leukemia 

Lymphoma, including the non-Hodgkin’s lymphoma subtype chronic 

lymphocytic leukemia (CLL), was responsible for more than 130,000 new cases of 

cancer and 44,000 deaths in 2014 (American Cancer Society 2014).  Both CLL and 

Hodgkin’s lymphoma are of B-cell origin and have been shown to have a high 

heritable component (Goldin et al. 2004; Sellick et al. 2006). In an effort to understand 

this effect and the overall etiology of these diseases, numerous genome-wide 

association studies (GWAS) have been performed and have identified common 

genetic variants associated with the risk of developing lymphoma (Berndt et al. 2013; 

Conde et al. 2010; Cozen et al. 2012; Crowther-Swanepoel et al. 2010; Di Bernardo et 

al. 2008; Enciso-Mora et al. 2010; Kumar et al. 2011; Skibola et al. 2009; Slager et al. 

2011; Smedby et al. 2011; Urayama et al. 2012; Vijai et al. 2013; Wade et al. 2011).  

Collectively, these studies have identified loci across more than half of the human 

autosomes that contain low-risk variants that associate with these diseases. Some of 

the reported risk alleles are found at loci that begin to suggest how this risk is 

conferred, for example being located in a region containing genes involved in 

apoptosis (Berndt et al. 2013), a member of the NFκB transcription factor family 

(Enciso-Mora et al. 2010), and the multi-cancer associated locus 8q24 (Crowther-

Swanepoel et al. 2010; Enciso-Mora et al. 2010). However, most of these reported 
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GWAS hits are non-coding and the direct mechanism by which these allele lead to an 

increase in risk is yet unresolved. 

Previous work from our lab observed that single nucleotide polymorphisms 

(SNPs) found in evolutionary conserved regions and in regions epigenetically marked 

for transcriptional regulation are more likely to be under negative selection in humans, 

suggesting biological function (Levenstien & Klein 2011).  Others have shown that 

risk variants are enriched in particular epigenomic marks of transcriptional regulatory 

regions (Maurano et al. 2012; Trynka et al. 2013) and that trait-associated SNPs, 

including GWAS-identified risk SNPs, are often found in expression quantitative trait 

loci (eQTL) that affect nearby gene expression (Nicolae et al. 2010).  Furthermore, 

recent studies have shown the etiologic nature of transcription factors themselves in 

some diseases (Shah et al. 2013). Taken together, these data suggest the hypothesis 

that for many GWAS-identified risk lock, the functional variant may modulate disease 

risk through alteration of gene regulation rather than coding sequence. 

To test the hypothesis that lymphoma risk SNPs, or their LD partners, tend to 

alter regulatory elements, we interrogated the functional genomics data from 

ENCODE (Encyclopedia of DNA Elements) (The ENCODE Consortium et al. 2011; 

The ENCODE Project Consortium 2012) and the Roadmap Epigenomics (Bernstein et 

al. 2010) consortia.  The large amount of data available for the lymphoblastoid cell 

line GM12878 and other hematologically derived cells allows integrative analysis to 

give more accurate representation of the segments of the genome that are active 

regulatory elements (Ernst et al. 2011; Hoffman et al. 2012).   To test our hypothesis, 

we developed a computational pipeline, UES (Uncovering Enrichment through 

Simulation), that uses a Monte Carlo approach to test whether a set of SNPs is 

significantly enriched for a particular functional genomic annotation of the genome, 

taking linkage disequilibrium (LD) patterns into account.  We demonstrate a 
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significant enrichment of these lymphoma risk SNPs in regulatory marks specific for 

lymphoid tissue. 

2.2 Materials & Methods 

2.2.1 Pipeline Construction & Workflow 

We developed a computational pipeline entitled “Uncovering Enrichment 

through Simulation” (UES) to test if GWAS-identified SNPs are enriched in particular 

functional annotations through use of Monte Carlo simulations.  The pipeline (Figure 

2.X) is written predominantly in Perl and accepts 3 parameters: a text file containing 

the input set of SNPs, the genotyping platform from which to choose the random sets, 

and the number of random sets to be constructed. SNPs that had been identified at the 

HLA region – defined as chr6:29570005-33377658 (build 37) – were removed due to 

the high amount of variability and linkage disequilibrium at that region. LD was 

calculated using European populations of the 1000 Genomes database, phase 3. We 

chose the European population specifically since most of the GWAS that were 

included in our study were of individuals of European descent. The number of LD 

partners for each SNP was calculated and recorded for various r2 thresholds: r2>0.2, 

r2>0.4, r2>0.6, r2>0.8, and r2=1. Furthermore, LD was calculated between both SNPs 

and indels in the 1000genomes database. We excluded 79364 SNPs or indels that had 

duplicate start positions, and all the remaining variants were used in the simulations. 

Each of the initial SNPs is then categorized by its distance from the nearest 

transcription start site (TSS) and its number of LD partners. Quartiles for both the TSS 

distance and LD partner count are calculated separately, and the initial SNPs are 

binned accordingly. The number of each of the initial SNPs contained in each bin 

(characterized by distance from TSS and LD partner count) is recorded and used for 

subsequent random SNP set selection. Upon completion of this step, all of the SNPs 



24 

 

from the appropriate genotyping platform are loaded (excluding the HLA region) and 

binned according to the initial SNP criteria. Since it has been shown that disease-

associated SNPs have a higher MAF than expected by chance[40], we filter the 

platform SNPs and keep only those with a MAF >= 5% keeping in concert with the 

common filter steps when performing GWAS.  Random SNP sets are chosen, 

matching the original bin frequencies, and LD partners are retrieved (r2>0.8). All the 

data have been pre-calculated and are retrieved using Tabix (Li 2011). The script 

executes an instance of BedTool’s intersectBed (Quinlan & Hall 2010) in order to 

determine which SNPs fall directly in a given track . Those resultant SNPs are then 

collapsed into loci that co-localize with marks based on LD structure. Finally, the 

empirical p-value for a specific track is calculated by the following formula: 

𝑝 =
𝑟𝑙𝑜𝑐𝑖
𝑛

 

 

where 𝑟𝑙𝑜𝑐𝑖 = the number of instances when the frequency of co-localization of the 

random SNP sets with the feature >= the number of loci that co-localize with the 

feature for the initial input set of SNPs, and 𝑛 = the number of random-SNP sets 

chosen. Using the Bonferoni method of multiple test correction, the p-value was 

considered significant if p < 0.05/(number of tracks tested for enrichment). The 

current pipeline and subsequent versions are available for download from the Klein 

lab’s website http://research.mssm.edu/kleinlab/ues/. 
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Figure 2.1 UES algorithm visualization. This represents the generalized workflow to 

determine the SNP enrichment in an ENCODE track. 

2.2.2 CLL & Lymphoma Risk SNPs 

First, we manually queried the NHGRI GWAS Catalog (Welter et al. 2014) 

and selected a master list of CLL/lymphoma SNPs that had been reported as having a 

significant association. To ensure independence, for any SNPs that were correlated (r2 

> 0.8), the SNP with the lower, more significant reported p-value was kept. Initially, 

56 CLL & lymphoma SNPs were entered into the pipeline, and once the HLA region 
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was excluded, there were 36 SNPs used for the remainder of the analysis (Table 2.1) 

(Berndt et al. 2013; Conde et al. 2010; Cozen et al. 2012; Crowther-Swanepoel et al. 

2010; Di Bernardo et al. 2008; Enciso-Mora et al. 2010; Kumar et al. 2011; Skibola et 

al. 2009; Slager et al. 2011; Smedby et al. 2011; Urayama et al. 2012; Vijai et al. 

2013; Wade et al. 2011). Next the LD partners were found, resulting in 591 SNPs used 

for analysis of the original lymphoma and CLL data. The enrichment pipeline 

produced 10,000 sets consisting of 36 matched random SNPs.  Once LD partners were 

included, the sets used for analysis range in size from 331 to 4028 SNPs.  

Table 2.1 Lymphoma and CLL SNPs used for enrichment analysis. 

SNP Position Study p-value Type of lymphoma 

rs3770745 2:37596088 Berndt S. (2013) 1.68x10-08 Chronic lymphocytic leukemia 

rs1432295 2:61066665 Enciso-Mora V. (2010) 2.00x10-08 Hodgkin's lymphoma 

rs13401811 2:111616103 Berndt S. (2013) 2.00x10-18 Chronic lymphocytic leukemia 

rs17483466 2:111797457 Di Bernardo MC. (2008) 2.00x10-10 Chronic lymphocytic leukemia 

rs3769825 2:202111379 Berndt S. (2013) 3.00x10-09 Chronic lymphocytic leukemia 

rs13397985 2:231091222 Di Bernardo MC. (2008) 6.00x10-10 Chronic lymphocytic leukemia 

rs757978 2:242371100 Slager SL 3.00x10-06 Chronic lymphocytic leukemia 

rs898518 4:109016823 Berndt S. (2013) 4.00x10-10 Chronic lymphocytic leukemia 

rs27524 5:96101943 Urayama KY. (2012) 7.00x10-06 Hodgkin's lymphoma 

rs20541 5:131995963 Urayama KY. (2012) 1.00x10-08 Hodgkin's lymphoma 

rs872071 6:411063 Di Bernardo MC. (2008) 6.00x10-20 Chronic lymphocytic leukemia 

rs707824 6:14636962 Vijai J. (2013) 6.00x10-07 Lymphoma/Non-Hodgkin's lymphoma 

rs2456449 8:128192980 Crowther-Swanepoel D 8.00x10-10 Chronic lymphocytic leukemia 

rs2608053 8:129075831 Enciso-Mora V. (2010) 1.00x10-07 Hodgkin's lymphoma 

rs2019960 8:129192270 Enciso-Mora V. (2010) 1.00x10-13 Hodgkin's lymphoma 

rs1679013 9:22206986 Berndt S. (2013) 1.00x10-08 Chronic lymphocytic leukemia 

rs501764 10:8093033 Enciso-Mora V. (2010) 7.00x10-08 Hodgkin's lymphoma 

rs4406737 10:90759723 Berndt S. (2013) 1.00x10-14 Chronic lymphocytic leukemia 

rs7944004 11:2311151 Berndt S. (2013) 2.00x10-10 Chronic lymphocytic leukemia 

rs12289961 11:58060191 Vijai J. (2013) 4.00x10-08 Lymphoma/Non-Hodgkin's lymphoma 

rs948562 11:58347764 Vijai J. (2013) 6.00x10-07 Lymphoma/Non-Hodgkin's lymphoma 

rs735665 11:123361396 Di Bernardo MC. (2008) 4.00x10-12 Chronic lymphocytic leukemia 

rs7097 13:28197435 Kumar V. (2011) 7.00x10-06 Large B-cell Lymphoma 

rs751837 14:103484824 Kumar V. (2011) 3.00x10-07 Large B-cell Lymphoma 

rs8024033 15:40403656 Berndt S. (2013) 2.71x10-10 Chronic lymphocytic leukemia 

rs7169431 15:56340895 Crowther-Swanepoel D 5.00x10-07 Chronic lymphocytic leukemia 

rs7176508 15:70018989 Di Bernardo MC. (2008) 5.00x10-12 Chronic lymphocytic leukemia 

rs783540 15:83254707 Crowther-Swanepoel D 3.67x10-06 Chronic lymphocytic leukemia 

rs391525 16:85944438 Slager SL 3.00x10-09 Chronic lymphocytic leukemia 

rs305061 16:85975658 Slager SL 9.00x10-08 Chronic lymphocytic leukemia 

rs1036935 18:47843533 Crowther-Swanepoel D 2.28x10-06 Chronic lymphocytic leukemia 

rs4368253 18:57622286 Berndt S. (2013) 3.00x10-08 Chronic lymphocytic leukemia 

rs4987855 18:60793548 Berndt S. (2013) 3.00x10-12 Chronic lymphocytic leukemia 

rs4987852 18:60793920 Berndt S. (2013) 8.00x10-11 Chronic lymphocytic leukemia 

rs11083846 19:47207653 Di Bernardo MC. (2008) 4.00x10-09 Chronic lymphocytic leukemia 

rs11668878 19:47268372 Crowther-Swanepoel D 8.25x10-05 Chronic lymphocytic leukemia 
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2.2.3 Location Pruning of CLL & Lymphoma Risk SNPs 

In order to ensure that the observed signal was not due to oversampling of a 

region, we pruned SNPs from the input set so that SNPs were separated by at least a 

megabase (mb).  For those SNPs in close proximity, we retained the SNP that had the 

lowest reported p-value, resulting in a set of 30 input SNPs.  

2.2.4 UES analysis parameters 

Since the analysis was run on a collection of SNPs from multiple studies, the 

parameter that chose the matched-random SNPs from a union set of both Illumina and 

Affymetrix genotyping chips was used for the random SNP set selection. The pipeline 

outputted 10,000 sets of feature-matched random SNPs. 

2.2.5 Regulatory Track Data 

The ENCODE datasets were obtained directly from the ENCODE 

Consortium’s website. The DNase hypersensitivity analysis was performed using the 

ENCODE Consortium’s “unified DNase hypersensitivity” tracks (http://hgdownload-

test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgDnaseUniform/). The 

ChromHMM track was also downloaded from ENCODE (http://hgdownload-

test.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgSegmentation/), after 

which a Perl script was used to extract the active promoter, strong enhancer, and weak 

enhancer regions, or combine the active promoter and strong enhancer regions into a 

combination track. The Segway segmentation was downloaded directly from the 

Noble lab’s website and was modified in the same way as described for the 

ChromHMM data (http://noble.gs.washington.edu/proj/segway/). 

The Roadmap Epigenomics data were downloaded from the consortium’s FTP 

website (ftp://ftp.ncbi.nlm.nih.gov/pub/geo/DATA/roadmapepigenomics/). The 

segmentation data was processed in the same manner as described for the ENCODE 

segmentation data. 
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2.2.6 Extracting cancer risk SNPs 

Lists of risk SNPs for 19 different cancer types were obtained by mining 

NHGRI GWAS (Welter et al. 2014). To ensure independence, LD was calculated 

using the 1000 Genomes EUR population for variants that were within 500 KB of 

each other. For variants that were found to be correlated with r2>0.8, the SNP with the 

more significant reported p-value was kept for use in the analysis. The UES 

enrichment pipeline was run separately for each cancer set identical to what was done 

for the lymphoma analysis. Enrichment scores were calculated for ENCODE DNase 

hypersensitivity data and all of the Roadmap Epigenomics ChromHMM 15-state 

model segmentation data. 

2.2.7 RegulomeDB Analysis 

 The 36 lymphoma and CLL SNPs were run through the RegulomeDB website 

(http://www.regulomedb.org) (Alan P Boyle et al. 2012). The SNPs were inputted into 

the web-form, 1 SNP per line. There are no additional parameters to adjust. 

2.2.8 HaploReg Analysis 

 The same list of 36 SNPs were analyzed using HaploReg 

(http://www.broadinstitute.org/mammals/haploreg/haploreg.php) (Ward & Kellis 

2012). They were uploaded as a comma-delimited list. The parameters were set as 

follows: LD threshold, r2 > 0.8, population = EUR, source for epigenomes = 

ChromHMM 15-state model, conservation = SiPhyh-omega, genes shown relative to 

GENCODE, condense lists longer than 3, and condense indels longer than 6.  

2.2.9 FunciSNP Analysis 

 FunciSNP was installed and the analysis was performed in accordance with the 

example vignette (Coetzee et al. 2012). The detailed code to run the FunciSNP 

analysis on the 326 lymphoma and CLL SNPs is provided in the Appendix.  
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2.2.10 GWAS-3D Analysis 

 GWAS-3D (Li et al. 2013) was executed directly from the Wang lab website 

(http://jjwanglab.org/gwas3d). The “input format” parameter was changed to “Single 

SNP ID,” the SNPs were subsequently pasted into the web-form containing 1 SNP per 

line, and the option p-value cutoff option was toggled to positive.  The analysis was 

performed using all the default parameters except for specific cell type, which was 

changed to specifically perform the analysis using the GM12878 data.  

2.2.11 GoShifter Analysis 

Using European samples from the 1000 Genomes dataset we first iterated over 

each of the 36 lymphoma and CLL loci to identify all the variants in tight LD (r2>0.8). 

Locus boundaries were defined by the most downstream and upstream LD SNP and 

extended by two times the median size of a tested annotation. The locus was 

circularized which allowed annotations to randomly shift in 10,000 iterations. For each 

of the shifting iterations we quantified the number of loci at which a variant 

overlapped with an annotation. The reported p-value corresponds to the number of 

iterations where enrichment exceeded the observed value(Trynka et al. 2015). 

2.3 Results 

2.3.1 Enrichment of CLL & Lymphoma Risk SNPs in GM12878 Regulatory 

Tracks 

We first asked if lymphoma risk SNPs are enriched in regions annotated as 

putatively regulatory in GM12878 using our novel method, Understanding Enrichment 

through Simulation (UES).  Using the NHGRI GWAS catalog (Welter et al. 2014), we 

identified 56 risk SNPs for lymphoma, including both the Hodgkin’s lymphoma (HD) 

and non-Hodgkin’s lymphoma (NHL) types.  Once the list was pruned to ensure the 

SNPs were independent and the HLA region was excluded, the resultant list contained 
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36 risk SNPs (Table 2.1).  The minor allele distribution of the random SNPs were 

confirmed to be similar to the original input (input SNPs MAF mean = 0.277; random 

SNP sets mean = 0.259, median = 0.259, min = 0.176, 1st qu. = 0.244, 3rd qu. = 

0.274, max = 0.347). I first looked at the Deoxyribonuclease I (DNase I) 

hypersensitivity sites (DHSs) for GM12878, since genomic regions open to DNase 

digestion have been shown to be accurate markers of regulatory DNA (Gross & 

Garrard 1988). We queried the ENCODE “unified DNase” track for GM12878, which 

identifies regions of open chromatin regardless of the particular factors that bind.  The 

lymphoma risk-SNPs were significantly enriched in GM12878 DNase hypersensitivity 

sites (p < 0.0001), with 16 distinct regions containing risk SNPs potentially 

explainable by a variant in a DNase hypersensitive site.  The 10,000 control sets of 

randomly selected SNPs with similar characteristics only showed an average of 4.5 

regions potentially explainable by variants overlapping a DNase hypersensitive site 

(Figure 2.2.A and Table 2.2). The lymphoma risk-SNPs showed equal enrichment 

(p<0.0001) in the Roadmap Epigenomics DNase data for GM12878 (Table 2.3). 

Figure 2.2 Overlap of lymphoma risk SNPs with regulatory regions in GM12878. The 

histograms represent the distribution of how many random loci overlap a specific 

annotation. The blue represents the mean of the empirical null distribution while the 

red line represents the real number of loci from the lymphoma and CLL GWAS that 

overlap the specific regulatory annotation. A, Overlap of SNPs with DNase 

hypersensitivity regions in GM12878. B, Overlap of SNPs with active promoters and 

strong enhancers as annotated by ChromHMM in GM12878. C, Overlap of SNPs with 

active promoters and strong enhancers as annotated by Segway in GM12878. 
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Table 2.2 Enrichment of lymphoma SNPs in ENCODE Unified DNase tracks. 

Enrichment analysis using the UES pipeline were performed for each of the 125 

DNase hypersensitivity tracks in the ENCODE database. Cell line information were 

obtained directed from ENCODE’s description of the cells used. The “OrigLoci” 

column gives the number of loci (once the SNPs are collapsed into loci based on LD 

partners) for the input lymphoma & CLL SNPs that overlapped with the specific mark. 

The “Rand>=Orig” column is the number of times a random SNP file had greater than 

or equal to the number of loci co-localizing with the particular mark. The 

“Random_Avg” column is the average of the 10,000 random generated SNP sets and 

the loci that overlap with the mark. The “p-value“ is calculated by taking the number 

of random SNP sets that were greater than or equal to the input SNPs divided by n, in 

this case, 10,000. The table is sorted according to p-value at the r2>0.8 threshold, as 

reported in the body of the paper. The “location pruned p-value” is the reported p-

value for the rerun of the analysis using the input data where SNPs were removed 

within one MB of one another.  

Cell Tissue OrigLoci Rand>= 

OrigLoci 

RandAvg p-value 

(r2>0.8) 

locationPruned 

p-value 

GM12878 blood 16 0 4.521 <0.0001 <0.0001 

GM19238 blood 16 0 4.066 <0.0001 <0.0001 

GM19240 blood 13 0 4.6825 <0.0001 0.0003 

Adult_CD4_Th0 blood 15 0 5.0657 <0.0001 0.0001 

CD20+ blood 13 0 3.1644 <0.0001 <0.0001 

GM06990 blood 13 0 2.7063 <0.0001 <0.0001 

GM12864 blood 15 0 3.7906 <0.0001 <0.0001 

GM12865 blood 16 0 3.8906 <0.0001 <0.0001 

GM19239 blood 11 2 3.5611 0.0002 <0.0001 

HRE epithelium 12 4 4.6192 0.0004 0.0017 

GM18507 blood 10 5 3.4146 0.0005 0.0024 

Jurkat blood 11 9 4.246 0.0009 0.0021 

GM12892 blood 11 10 4.0804 0.001 0.0007 

Monocytes-

CD14+_RO01746 

monocytes 10 15 3.7611 0.0015 0.0055 

Th1 blood 14 16 6.7864 0.0016 0.0003 

Th2 blood 8 26 2.7238 0.0026 0.0003 

CLL blood 8 42 2.9196 0.0042 0.0036 

GM12891 blood 9 65 3.8591 0.0065 0.0046 

CD34+_Mobilized blood 9 160 4.43 0.016 0.0126 

HMVEC-LLy blood vessel 8 242 3.9195 0.0242 0.0229 

AoSMC blood vessel 8 368 4.1836 0.0368 0.0318 

ProgFib skin 9 379 5.0479 0.0379 0.0088 

HPAEC blood vessel 7 399 3.4612 0.0399 0.0109 

PrEC prostate 8 430 4.3513 0.043 0.0403 

LNCaP prostate 11 438 6.7586 0.0438 0.0679 

HTR8svn blastula 7 457 3.5136 0.0457 0.0122 

NHEK skin 9 503 5.2339 0.0503 0.0374 

Urothelia urothelium 8 573 4.5203 0.0573 0.0156 

HMVEC-dNeo blood vessel 7 641 3.8388 0.0641 0.0179 

HUVEC blood vessel 8 697 4.6863 0.0697 0.0581 

HA-h brain 

hippocampus 

8 734 4.7287 0.0734 0.0683 

T-47D breast 7 768 3.9421 0.0768 0.0718 

BJ skin 7 774 3.9676 0.0774 0.0799 

HeLa-S3 cervix 8 796 4.8053 0.0796 0.0663 

WI-38 embryonic 

lung 

8 868 4.8793 0.0868 0.0723 
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(continued) Table 2.2 Enrichment of lymphoma SNPs in ENCODE Unified 

DNase tracks. 
Cell Tissue OrigLoci Rand>= 

OrigLoci 

RandAvg p-value 

(r2>0.8) 

locationPruned 

p-value 

HCT-116 colon 6 932 3.3267 0.0932 0.0359 

HL-60 blood 7 1072 4.2696 0.1072 0.0981 

RPTEC epithelium 7 1075 4.2601 0.1075 0.2474 

Caco-2 colon 6 1101 3.4641 0.1101 0.1201 

H9ES embryonic 

stem cell 

7 1102 4.2561 0.1102 0.0379 

HMVEC-dBl-Neo blood vessel 7 1102 4.2971 0.1102 0.1075 

HSMMtube muscle 10 1144 6.9029 0.1144 0.1612 

HEEpiC epithelium 8 1153 5.1812 0.1153 0.1041 

HRPEpiC epithelium 8 1176 5.1665 0.1176 0.1095 

A549 epithelium 7 1254 4.4241 0.1254 0.1172 

HMF mammary 7 1356 4.5156 0.1356 0.0528 

NH-A brain 7 1404 4.53 0.1404 0.1418 

HMEC breast 10 1449 7.1997 0.1449 0.2022 

Huh-7.5 liver 7 1499 4.5945 0.1499 0.0502 

HPIEpC placenta 7 1596 4.6784 0.1596 0.1573 

Fibrobl skin 11 1615 8.2515 0.1615 0.3414 

Ishikawa uterus 6 1652 3.8188 0.1652 0.0705 

HSMM muscle 9 1722 6.5322 0.1722 0.129 

AG09309 skin 7 1774 4.7821 0.1774 0.1628 

Urothelia urothelium 6 1803 3.9366 0.1803 0.0721 

HPF lung 6 1837 3.9532 0.1837 0.0769 

K562 blood 7 1900 4.8986 0.19 0.1673 

SAEC epithelium 7 1946 4.9392 0.1946 0.1921 

HAEpiC epithelium 7 1974 4.9174 0.1974 0.0787 

MCF-7 breast 7 2004 4.9388 0.2004 0.1908 

HCPEpiC epithelium 7 2053 4.9941 0.2053 0.0838 

HFF-Myc foreskin 7 2091 5.0037 0.2091 0.196 

iPS induced 

pluripotent 

stem cell 

7 2136 5.0113 0.2136 0.0794 

PanIsletD pancreas 7 2163 5.0524 0.2163 0.0846 

H1-hESC embryonic 

stem cell 

8 2191 5.9703 0.2191 0.1888 

Hepatocytes liver 6 2218 4.1906 0.2218 0.2214 

HMVEC-dBl-Ad blood vessel 6 2255 4.2143 0.2255 0.2317 

Gliobla brain 6 2405 4.2913 0.2405 0.1074 

HIPEpiC epithelium 7 2410 5.2268 0.241 0.2251 

SK-N-MC brain 5 2674 3.5553 0.2674 0.5724 

HSMM_emb muscle 5 2765 3.5835 0.2765 0.1312 

HMVEC-dLy-Ad blood vessel 5 2765 3.5694 0.2765 0.1307 

NHDF-neo skin 6 2776 4.4644 0.2776 0.1292 

HRGEC kidney 5 2945 3.6787 0.2945 0.1515 

HFF foreskin 6 3270 4.7305 0.327 0.3175 

HPDE6-E6E7 pancreatic duct 5 3278 3.8144 0.3278 0.3594 

HCM heart 6 3339 4.7802 0.3339 0.1546 

HBMEC blood vessel 6 3377 4.7843 0.3377 0.3525 

NHLF lung 6 3393 4.7947 0.3393 0.3468 

HepG2 liver 6 3588 4.9166 0.3588 0.1784 

HConF eye 5 3626 3.9757 0.3626 0.3951 

NB4 blood 5 3657 3.9842 0.3657 0.2017 

HMVEC-dLy-Neo blood vessel 5 3686 4.0125 0.3686 0.196 

Huh-7 liver 5 3765 4.0479 0.3765 0.1965 

RWPE1 prostate 5 3956 4.1185 0.3956 0.2145 

WI-38 embryonic 

lung 

5 4136 4.1762 0.4136 0.2295 



33 

 

(continued) Table 2.2 Enrichment of lymphoma SNPs in ENCODE Unified 

DNase tracks. 
Cell Tissue OrigLoci Rand>= 

OrigLoci 

RandAvg p-value 

(r2>0.8) 

locationPruned 

p-value 

HeLa-S3 cervix 4 4175 3.2753 0.4175 0.2522 

PANC-1 pancreas 4 4257 3.2881 0.4257 0.251 

Myometr myometrium 5 4268 4.2808 0.4268 0.2482 

NHDF-Ad skin 6 4270 5.2308 0.427 0.2332 

AG10803 skin 5 4285 4.2694 0.4285 0.4555 

AoAF blood vessel 5 4401 4.3201 0.4401 0.2478 

Medullo brain 6 4403 5.2745 0.4403 0.2401 

HMVEC-LBl blood vessel 5 4488 4.3529 0.4488 0.4707 

Melano skin 7 4584 6.3788 0.4584 0.4233 

HAc cerebellar 5 4606 4.4126 0.4606 0.2815 

HMVEC-dAd blood vessel 4 4728 3.4713 0.4728 0.2933 

SK-N-SH_RA brain 3 4888 2.5811 0.4888 0.3244 

HPAF blood vessel 5 5189 4.6668 0.5189 0.3146 

AG09319 gingival 4 5274 3.7063 0.5274 0.3358 

Osteobl bone 8 5292 7.7447 0.5292 0.4426 

8988T liver 5 5346 4.7396 0.5346 0.3156 

HGF gingiva 4 5367 3.7331 0.5367 0.3514 

CMK blood 4 5479 3.7863 0.5479 0.3336 

WERI-Rb-1 eye 5 5485 4.8081 0.5485 0.3439 

SKMC muscle 5 5514 4.8092 0.5514 0.3517 

AG04450 lung 4 5555 3.8283 0.5555 0.3667 

FibroP skin 6 5658 5.9075 0.5658 0.5432 

LNCaP prostate 4 5890 3.9884 0.589 0.6424 

MCF-7 breast 4 6019 4.0272 0.6019 0.3992 

pHTE epithelium 6 6192 6.1997 0.6192 0.5946 

HVMF connective 4 6275 4.1624 0.6275 0.4394 

HPdLF epithelium 4 6418 4.2177 0.6418 0.4546 

Stellate liver 4 6508 4.2528 0.6508 0.4373 

BE2_C brain 4 6621 4.3431 0.6621 0.4906 

HCF heart 4 6689 4.3449 0.6689 0.4697 

HCFaa heart 4 6947 4.4782 0.6947 0.5135 

PanIslets pancreas 4 6969 4.5415 0.6969 0.5016 

NT2-D1 testis 4 7369 4.7388 0.7369 0.5659 

H7-hESC blood 5 7739 6.0974 0.7739 0.5963 

Ishikawa uterus 3 7756 3.8754 0.7756 0.6264 

HNPCEpiC epithelium 4 7806 4.9796 0.7806 0.8161 

AG04449 skin 3 8195 4.1223 0.8195 0.6745 

Chorion fetal 

membrane 

3 8658 4.4445 0.8658 0.7182 

HA-sp spinal cord 2 9560 4.3911 0.956 0.9066 

 

 

Table 2.3 Enrichment scores calculated for Roadmap Epigenomics DNase 

hypersensitivity data, ascending. 

Cell Line pValue (r2>0.8) 

GM12878 Lymphoblastoid Cells <0.0001 

Primary B cells from peripheral blood <0.0001 

Primary T cells from cord blood <0.0001 

Primary Natural Killer cells from peripheral blood <0.0001 

Fetal Thymus 0.0012 

Primary T cells from peripheral blood 0.0028 

Primary hematopoietic stem cells G-CSF-mobilized Male 0.0036 
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(continued) Table 2.3 Enrichment scores calculated for Roadmap Epigenomics 

DNase hypersensitivity data, ascending. 

Cell Line pValue (r2>0.8) 

Monocytes-CD14+ RO01746 Primary Cells 0.0054 

Small Intestine 0.0294 

Placenta 0.0308 

Pancreas 0.0483 

Primary hematopoietic stem cells G-CSF-mobilized Female 0.068 

Primary monocytes from peripheral blood 0.0696 

HeLa-S3 Cervical Carcinoma Cell Line 0.0801 

Fetal Muscle Leg 0.0966 

H1 BMP4 Derived Trophoblast Cultured Cells 0.1259 

Breast variant Human Mammary Epithelial Cells (vHMEC) 0.1378 

Foreskin Melanocyte Primary Cells skin01 0.1419 

H1 Derived Neuronal Progenitor Cultured Cells 0.1465 

Fetal Lung 0.1503 

Fetal Kidney 0.1565 

NH-A Astrocytes Primary Cells 0.1579 

NHEK-Epidermal Keratinocyte Primary Cells 0.1887 

Psoas Muscle 0.2024 

Fetal Muscle Trunk 0.2362 

iPS DF 19.11 Cells 0.2589 

H1 Derived Mesenchymal Stem Cells 0.2755 

IMR90 fetal lung fibroblasts Cell Line 0.2954 

HUVEC Umbilical Vein Endothelial Primary Cells 0.3089 

Fetal Stomach 0.3222 

Foreskin Melanocyte Primary Cells skin03 0.326 

HSMM Skeletal Muscle Myoblasts Cells 0.3406 

K562 Leukemia Cells 0.3608 

HMEC Mammary Epithelial Primary Cells 0.3744 

H1 Cells 0.4654 

Foreskin Keratinocyte Primary Cells skin02 0.4683 

Fetal Intestine Small 0.4729 

A549 EtOH 0.02pct Lung Carcinoma Cell Line 0.4807 

Foreskin Fibroblast Primary Cells skin02 0.4883 

HepG2 Hepatocellular Carcinoma Cell Line 0.501 

HSMM cell derived Skeletal Muscle Myotubes Cells 0.5079 

Fetal Intestine Large 0.5268 

Gastric 0.5705 

Ovary 0.5895 

H9 Cells 0.6549 

H1 BMP4 Derived Mesendoderm Cultured Cells 0.671 

Foreskin Fibroblast Primary Cells skin01 0.6914 

NHDF-Ad Adult Dermal Fibroblast Primary Cells 0.6951 

NHLF Lung Fibroblast Primary Cells 0.7448 

Fetal Heart 0.7673 

iPS DF 6.9 Cells 0.8628 

Fetal Brain Female 0.9502 

Fetal Brain Male 0.9861 

As some physical regions of the genome harbor more than one independent 

risk SNP, we were concerned this could lead to oversampling of a given region and 

false positives.  To test this, we location-pruned the input SNPs, ensuring that none of 

the SNPs tested were within one MB of one another, reducing the input set from 36 
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initial SNPs down to 30 SNPs. The results were nearly identical between the location-

pruned dataset and the original dataset (Table 2.2) leading to the conclusion that those 

6 extra SNPs were not falsely inflating the observed statistical result. 

Next, we asked if enrichment could be observed in regulatory elements 

predicted by genome segmentation of integrated functional genomics data. Rather than 

querying individual histone modifications, we chose to examine the results from two 

different segmentation algorithms, ChromHMM (Ernst et al. 2011) and Segway 

(Hoffman et al. 2012), since both algorithms use a combination of multiple histone 

modification datasets to determine the segmentation calls. We asked if the lymphoma 

risk SNPs are enriched in regions identified as active promoters or strong enhancers 

for GM12878 and observed a significant enrichment of the lymphoma SNPs in 

regulatory regions as defined by both ChromHMM and Segway with p=0.0002 and 

p<0.0001, respectively (Figures 2.2.B and 2.2.C). Upon looking deeper at the 

ChromHMM data for GM12878, it was observed that the risk SNPs were enriched in 

each of the four classes of enhancers (2 strong enhancer classes and 2 weak enhancer 

classes) with p<=0.0002 when analyzed separately (Table 2.4).  When combined into 

a separate strong enhancer set and a weak enhancer set, there was a significant 

enrichment (p<0.0001) when compared to random controls for both.  Interestingly, the 

“Active Promoter” state, by itself showed no significant enrichment (p=0.3845).  

Similar results were observed when performing the enrichment analysis for the 

Segway segmentation track of GM12878: strong enhancers were the most enriched (p 

< 0.0001); weak enhancers and active promoters did not achieve significance at the 

Bonferoni threshold (p = 0.0031 and p=0.0419, respectively; Table 2.4).  
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Table 2.4 Enrichment in GM12878 segmentation data. 

ENCODE_Track OrigLoci Rand 

>=OrigLoci 

RandAvg pValue (r2>0.8) 

ChromHmm Tracks    

4_Strong_Enhancer.bed 11 0 2.6593 <0.0001 

4-7_Enhancers.bed 23 0 9.087 <0.0001 

6-7_Weak_Enhancer.bed 17 0 7.7791 <0.0001 

7_Weak_Enhancer.bed 15 0 6.051 <0.0001 

4-5_Strong_Enchancer.bed 12 2 4.0411 0.0002 

AP/SE narrowPeaks 14 2 5.6771 0.0002 

2_Weak_Promoter.bed 9 5 3.1866 0.0005 

6_Weak_Enhancer.bed 10 20 4.0949 0.002 

11_Weak_Txn.bed 18 34 10.2319 0.0034 

5_Strong_Enhancer.bed 7 102 2.6873 0.0102 

10_Txn_Elongation.bed 8 1662 5.6127 0.1662 

9_Txn_Transition.bed 4 1849 2.3141 0.1849 

1_Active_Promoter.bed 4 3845 3.1341 0.3845 

12_Repressed.bed 6 4424 5.3371 0.4424 

3_Poised_Promoter.bed 1 4632 0.6186 0.4632 

8_Insulator.bed 3 4818 2.5635 0.4818 

13_Heterochrom-lo.bed 17 10000 28.7431 1 

14_Repetitive-CNV.bed 0 10000 0.4004 1 

14-15_Repetitive-CNV.bed 0 10000 0.5791 1 

15_Repetitive-CNV.bed 0 10000 0.2312 1 

states12-15.bed 21 10000 29.8544 1 

Segway Tracks     

ActivePromoterStrongEnhancer.bed 20 0 7.1181 <0.0001 

StrongEnhancer.bed 17 0 5.5632 <0.0001 

WeakEnhancer.bed 13 31 6.5206 0.0031 

TranscriptionAssociated.bed 18 201 12.2778 0.0201 

ActivePromoter.bed 5 419 2.0627 0.0419 

PromoterFlanking.bed 6 2803 4.5202 0.2803 

Insulator.bed 4 5190 3.6909 0.519 

LowActivity.bed 25 8660 26.9396 0.866 

HeterochromatinRepetiveCNV.bed 7 9996 14.3001 0.9996 

PolycombRepressed.bed 16 9999 25.227 0.9999 

The analysis was originally performed with the LD threshold cutoff at r2 > 0.8 

since this was the threshold during the design of the GWAS chips. In order to test 

whether our cutoff was appropriate, the enrichment analysis was repeated using 

additional r2 thresholds of r2>0.2, r2>0.4, r2>0.6, and r2=1. The results showed nearly 
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identical enrichment of the same cell lines and tissue specificity for both DNase 

hypersensitivity marks and segmentation data for every LD threshold, except for r2=1. 

Similar levels of enrichment within specific segmentation datatypes of GM12878 are 

also observed at the other LD threshold levels.  

Next we examined whether or not functional SNPs may be those localized at 

transcription factor binding sites (TFBS). Using the same SNPs, we interrogated the 

set of ENCODE ChIP-Seq data for GM12878 (January 2011 data freeze).  A master 

dataset consisting of the union of 75 GM12878 transcription factor ChIP-Seq data was 

created and in which there was a significant enrichment of the lymphoma SNPs in the 

peaks when compared to the random controls (p < 0.0001). Additional sets containing 

the union of all of the transcription factor peaks with the Gm12878 DNase 

hypersensitivity and a union of all the LCL DNase hypersensitivity were generated 

and there was a similar enrichment in both (p < 0.0001). In order to identify specific 

transcription factors that colocalize with lymphoma risk SNPs or their LD partners, the 

enrichment analysis was performed for each factor in the ChIP-Seq dataset, 4 of which 

reached the significance threshold once corrected for multiple testing: NFIC, RUNX3, 

NFκB, and TBLR1 (p< 0.0001; p<0.0001; p=0.0002; p=0.0005). 

To test the validity of the findings and verify the  approach, we repeated the 

identical analysis with a set of breast cancer risk SNPs identified from the NHGRI 

GWAS catalogue as there were a similar number of SNPs in the database at the time 

(n=31).  Since the overall hypothesis states that since the diseases do not share a tissue 

of origin, there should be no enrichment of the breast cancer SNPs in the GM12878 

annotations. There was no observable statistical enrichment (random n=10,000) of the 

breast cancer risk loci in DNase hypersensitivity, ChromHMM enhancer, Segway 

enhancer data, or TF union data for GM12878 (Table 2.5).  Expanding the scope to 
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see whether or not these tissue-specific observations held true when analyzing a 

different disease, identical analysis was calculated for prostate cancer which had 

roughly double the number of input SNPs (n=62). As seen with the breast cancer 

SNPs, there was no statistical enrichment of the prostate cancer SNPs in any of the 

datasets for GM12878 after correcting for multiple testing (Table 2.6). These results 

suggest that the observed signal is specific to the lymphoma and are not generalizable 

to cancer risk as a whole. 

Table 2.5. Breast cancer SNPs analyzed with UES against GM12878 datasets. 

Annotation Track OrigLoci Rand>=OrigLoci RandAvg p-value 

DNase Hypersensitivity 

ENCODE 10 631 6.3462 0.0631 

Strong Enhancers 

ENCODE-SE 6 3939 5.063 0.3939 

Segway-SE 7 5983 7.0854 0.5983 

Weak Enhancers  

ENCODE-WE 11 3913 9.899 0.3913 

Segway-WE 13 522 8.8717 0.0522 

Union Sets         

gm12878tfUnion 10 7855 11.3192 0.7855 

lclDnaseUnion 14 3403 12.5424 0.3403 

gm12878dnase-
gm12878tfUnion.intersect.bed 

6 3481 4.8428 0.3481 

lclDnaseUnion-
gm12878tfUnion.intersect.bed 

8 5162 7.6387 0.5162 

 

Table 2.6. Prostate cancer SNPs analyzed with UES against GM12878 datasets. 

Annotation Track OrigLoci Rand>=OrigLoci RandAvg pValue 

DNase Hypersensitivity         

ENCODE 14 1268 10.4187 0.1268 

Strong Enhancers         

ENCODE-SE 11 2365 8.6987 0.2365 

Segway-SE 19 176 12.191 0.0176 

Weak Enhancers         

ENCODE-WE 22 945 17.2515 0.0945 

Segway-WE 20 1168 15.8539 0.1168 
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(continued) Table 2.6. Prostate cancer SNPs analyzed with UES against 

GM12878 datasets. 

Annotation Track OrigLoci Rand>=OrigLoci RandAvg pValue 

Union Sets         

gm12878tfUnion 22 3231 19.9967 0.3231 

lclDnaseUnion 30 103 21.5959 0.0103 

gm12878dnase-
gm12878tfUnion.intersect.bed 

8 5654 7.984 0.5654 

lclDnaseUnion-
gm12878tfUnion.intersect.bed 

16 1711 12.7851 0.1711 

2.3.2 Tissue Specificity of CLL & Lymphoma Risk SNPs 

Since it was shown that the lymphoma SNPs were enriched in the LCL, 

GM12878, the next logical step was to determine if the observed enrichments were 

seen in the same epigenomic marks of other cell types or whether they were indeed 

specific to cells of the lymphoid lineage. First, we interrogated the other 124 unified 

DNase tracks from ENCODE with the same GWAS and random SNP sets used for the 

GM12878 analysis and observed enrichment of 8 additional cell lines that achieved 

sub-Bonferoni significance with p<0.0004.  Interestingly, all of the lines that showed 

enrichment at that level were of the lymphoid lineage (Figures 2.3.A-E, J-K, Table 

2.2). When the stringency is relaxed and the scope is expanded to any cell lines with 

p<0.01, 15 out of the 18 cell lines which surpassed that threshold were of the 

lymphoid lineage. All of the LCLs in the ENCODE database were below this 

threshold and had a p<=0.0065 (Figure 2.3.F-I). There was only one cell line, HRE 

(renal epithelial cells), which was not from the lymphoid lineage that almost met the 

statistical threshold once corrected for multiple testing (p=0.0004). These data show 

that the previously reported lymphoma risk SNPs are enriched in DNase 

hypersensitivity regions in a tissue-specific manner (Figure 2.3.L).  Similar tissue-

specific enrichment results were seen in the Roadmap Epigenomics data (Table 2.3). 
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Similar to previous analysis, we next looked at the enhancer segmentation data 

available for other cell lines: 8 additional cell lines with ChromHMM data and 5 

additional lines with Segway data. For both the ChromHMM and Segway strong 

enhancer classifications, GM12878 was the only cell line that showed strong, 

significant enrichment with p=0.0002 and p<0.0001 for each dataset, respectively. 

When looking at the weak enhancer classifications, again, GM12878 was the only cell 

Figure 2.3. Enrichment of lymphoma and CLL risk SNPs in DNase-

hypersensitive sites of lymphoblastoid cell lines. (A-I) These histograms represent 

the distribution of how many random loci overlap a specific annotation. The blue 

represents the mean of the empirical null distribution while the red line represents the 

real number of loci from the lymphoma and CLL GWAS that overlap the DNase 

hypersensitive site in the specified cell line: (A) GM19238 (B) GM19240 (C) 

GM12864 (D) GM12865 (E) GM06990 (F) GM19239 (G) GM18507 (H) GM12892 

(I) GM12891. (J) Th0 (K) CD20+ (L) Summary of distribution of tissue of origin for 

cell lines in which lymphoma and CLL risk SNPs are either enriched (p<0.0004) in 

DNase hypersensitive sites or not enriched. 



41 

 

type to demonstrate any significance with p<0.0001 and p=0.0031 for the 

ChromHMM and Segway data, respectively. Similarly, tissue-specific enhancer 

enrichment were also observed in the Roadmap Epigenomics data (p<0.0001) while 

the enrichment calculations for the transcription start site segmentation failed to reach 

significance (p>0.0497). 

2.3.3 Lymphoma & CLL SNPs as eQTLs 

Another prediction of the hypothesis that lymphoma risk SNPs alter regulatory 

regions is that these SNPs will be associated with expression changes in nearby genes.  

To test this hypothesis, we asked how many of the published lymphoma risk SNPs are 

expression quantitative trait loci (eQTLs) using a recently published set of eQTLs in 

blood (Westra et al. 2013).  Of the original loci, 21 of them were shown to have at 

least 1 cis eQTL. Furthermore, most of these eQTLs are tissue specific when queried 

against the GTEx eQTL database. One example of the power of this overall approach 

is evidenced by rs7097.  This SNP was initially defined as a lymphoma risk 

SNP(Kumar et al. 2011) but did not intersect with any LCL DNase hypersensitivity 

sites, nor with promoter or enhancer regions of chromatin segmentation data. 

However, one of the SNPs it tags, rs694609 (r2=0.978, D’=0.996), was found in a 

DNase hypersensitivity site of GM12878, which was categorized as falling in an 

“Active Promoter” by ChromHMM or a “Transcription Start Site” by Segway. Even 

as both the original SNP, rs7097, and the tag, rs694609, showed evidence of being cis-

eQTLs for the same genes (POLR1D, LNX2, and GTF3A), our pipeline would 

suggest that the tagged SNP is the more likely candidate to be the functionally relevant 

SNP as it is found in open chromatin and in functional marks (Table 2.7). 
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Table 2.7 Combination of genomic marks and eQTL status for rs7097 & tag SNP. 
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2.3.4 Orthogonal approaches to analyze GWAS SNPs 

There has been an interest from the genomics community to develop methods 

and tools to utilize various publically-available genomic data to analyze SNPs. While 

these tools are similar in broad terms, each method asks a different question and 

returns different results. The same list of 36 lymphoma SNPs was run through the 

pipelines: RegulomeDB, HaploReg, GWAS-3D, FunciSNP, and GoShifter. 

2.3.4.1 RegulomeDB 

 RegulomeDB (Alan P. Boyle et al. 2012) is a web-based, SNP annotation tool. 

A user can input either a list of SNPs, genomic coordinates, or BED file and 

RegulomeDB will query its database and return a score value for each SNP. Every 

SNP in 1000 Genomes was given a RegulomeDB score ranging from 1-7, with lower 

scores equating to a greater amount of evidence that the SNP may be functional. For 

example any score that begins with a “1” is considered likely to affect binding in that 

it was found to an eQTL and to colocalize with a DNase hypersensitivity site or TF 

motif. Users can then click on any SNP to get a more complete view of the evidence 

for the score. Our list of 36 lymphoma SNPs was run through RegulomeDB; rs7097 
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was given a RegulomeDB score of “1f”, indicating that it this SNP is likely to be 

functional (Figure 2.4). 

Though both RegulomeDB and UES can be used to analyze GWAS SNPs, the 

algorithms are quite different and serve dissimilar functions. However, it fails to 

consider LD, providing only the information for the specific queried SNPs. While 

regions can be provided as input, without considering LD, the results will likely 

contain variants that are physically close though not correlated.  Additionally, the 

provided score only addresses whether or not a SNP colocalizes with genomic 

annotations, but in the absence of a statistical framework, those results could lead to 

false positives by just random chance. RegulomeDB’s strength lies in its ability to 

quickly query its database, annotate SNPs, and provide a score that succinctly 

encapsulates a breadth of information about the SNP and what types of marks it 

colocalizes with; it is quite different from UES, whose purpose is to provide a 

statistical enrichment of SNPs in particular genomic annotation tracks. 

Figure 2.4 Output from RegulomeDB for rs7097. 
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2.3.4.2 HaploReg 

 HaploReg (Ward & Kellis 2012) is another web-based, annotation tool that 

provides a wealth of information about both the queried SNPs and their respective LD 

partners. It is customizable in how it allows users to choose the r2 threshold for LD 

calculations and their choice of HapMap population before querying its database. The 

results are returned in haplotypes, providing the SNP information, alleles, population 

frequencies, and the tissues which colocalize with the SNP at promoters, enhancers, 

and DNase hypersensitivity sites. Additionally, the results indicate whether a SNP has 

been found to be an eQTL, or is found in a transcription factor motif or any genes. 

Users can then click on an individual SNPs to be shown more precise information 

regarding the specific tissues types that colocalize with that particular SNP. The 

visualization of the haplotype containing rs7097 (Figure 2.5) and the some of the 

specific results for the SNP (Figure 2.6) are provided.  

 

 

Figure 2.5 Visualization of the haplotype returned for rs7097 from 

HaploReg v4. 
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While UES is not a SNP annotation program, there is a functional overlap in 

that HaploReg similarly returns an enrichment score of the queried of SNPs. However 

there are major differences between how the enrichment is calculated.  As described in 

“2.4.1 Materials & Methods,” UES calculates the empirical enrichment score using a 

Monte Carlo simulation, choosing controlled sets of random SNPs. HaploReg v4 

calculates its enrichment score by taking all unique GWAS loci in the HapMap 

European population and all variants from 1000 Genomes with a frequency greater 

than 5% in any population. UES, alternatively, only chooses the random SNPs from 

the specified genotyping platform on which the study was done. Additionally, 

HaploReg v4 only returns the enrichment score from pre-calculated binomial tests, 

where the aforementioned SNP sets were used to calculate a background frequency of 

enhancer overlap in one of four datasets: ChromHMM 15-state model, ChromHmm 

25-state model using 12 imputed marks, H3K4me1/H3K4me3 peaks, and 

H3K27ac/H3K9ac peaks. While this is indeed quicker, UES provides a flexibility for 

the user to calculate the enrichment of their SNP sets in any genomic annotation track. 

The returned binomial p-values for GM12878 are p=0.000607 and p=0.005931 for all 

SNPs and only GWAS SNPs, respectively. 

Figure 2.6 Specific results for rs7097 returned from HaploReg v4. 
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2.3.4.3 FunciSNP 

 FunciSNP (Coetzee et al. 2012) is a Bioconductor package for R that runs 

locally and is used to identify putative regulatory SNPs and, unlike the aforementioned 

methods, is not a SNP annotator. To run FunciSNP, the user provides the SNPs of 

interest and the biofeature(s),or genomic peak files, of particular interest to the 

researcher. FunciSNP, similar to both UES and HaploReg, considers LD partners of 

the original SNPs when performing its functions.  For each SNP, the program defines 

a genomic window, extracts all the SNPs within that region from 1000 Genomes, 

determines which SNPs are found to be in the biofeatures, and then calculates the R2 

and D’ scores using those variants. The YAFSNPs, or “Yet Another Functional SNPs” 

are identified as they colocalize with numerous biofeature tracks.  

 We performed a basic FunciSNP run as outlined in the FunciSNP vignette 

(Coetzee et al. 2012) with the 36 lymphoma and CLL SNPs. As done with the UES 

analysis, the FunciSNP analysis was performed using the same GM12878 data: 

ENCODE DNase hypersensitivity, ChromHMM active promoters and strong 

enhancers, and Segway active promoters and strong enhancers. The identified 

YAFSNPs are identified in Figure 2.7. The FunciSNP analysis determined that the 

rs2456449 as the top potential functional SNP based on the number of SNPs that 

colocalized with biofeatures. The SNP, rs694609 as tagged by rs7097, which we 

identified based on colocalization with DNase hypersensitivity data, active promoter 

sites, and eQTL is identified as a YAFSNP, though not the top candidate.   

 FunciSNP and UES, though they provide complementary results, they 

fundamentally ask different questions of the data. One of the strengths of FunciSNP is 
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to identify individual SNPs as putatively functional elements while UES looks at the 

whole set of SNPs collectively. FunciSNP outputs YAFSNPs based on the biofeatures 

provided of particular cell types. The results, unlike UES, do not provide any 

statistical analysis on whether or not those biofeatures or cell types are the appropriate 

context in which the YAFSNP may function. Likewise, the goal of GWAS-3D is very 

similar to that of FunciSNP: to identify putatively functional SNPs based on a 

combination of genomic signals. As such, the similarities and differences are between 

GWAS-3D and UES are comparable to that of FunciSNP.  GWAS-3D also considers 

distal interactions when calculating an individual SNP’s functional potential. 

2.3.4.4 GWAS-3D 

 GWAS-3D (Li et al. 2013) is a web-based tool which utilizes numerous 

ENCODE datatypes to calculate the probability that variants affect regulatory 

pathways. The program uses curated ENCODE data of promoter marks, enhancer 

marks, insulators marks, chromatin interaction (Hi-C, 5C, and ChIA-PET), and 

Figure 2.7 Heatmap of the output from FunciSNP. 

Darker cells indicate a higher number of YFAPS for the 

lead SNP in the particular functional element. 
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ChromHMM segmentation peaks. Once GWAS-3D has annotated the input SNPs and 

LD partners, the variants are subsequently analyzed to gauge whether they affect the 

binding affinity for various ENCODE transcription binding factor motifs and whether 

or not they colocalized with evolutionary conserved genetic elements. 

 

 

Figure 2.8 Circos-style output from GWAS-3D. The outer axis 

contains the most significant variants with the highest regulatory 

potential and the distal interaction partners. The inner axis contains the 

genes and locations of the variants. Distal interactions are visualized by 

the lines across the center of the plot, with the width of the line 

indicating the intensity of the interaction. 

Figure 2.9 Detailed variant output from GWAS-3D 
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 The 36 lymphoma SNPs from our study were run through the GWAS-3D 

pipeline specifically querying the GM12878 datasets; results for 29 SNPs were 

returned. The most significant SNP from the GWAS-3D analysis was rs847 

(p=1.125x10-4) which was shown to be found in a ChromHMM strong enhancer, 

found in a conserved region, interact with a distal region, and significantly affect a 

TFBS (Figures 2.8 and 2.9). The SNP highlighted by our work, rs694609 was the 4th 

most significant SNP from the GWAS-3D analysis (p=8.07x10-4) and was shown to 

significantly affect a TFBS, map to a promoter of a gene, map to a putative enhancer 

site, and in a ChromHMM-defined promoter, though it does not have any distal 

interactions.  As seen in our analysis, rs694609 is more likely the functional SNP as 

opposed to the lead SNP rs7097.  

2.3.4.5 GoShifter 

It has been previously noted that, under some models in which the functional 

variants underlying GWAS are not regulatory, enrichment of GWAS-identified SNPs 

in regulatory regions could occur if proper controls are not used.  While our method 

controls for the major factors that need to be controlled for (LD patterns and distance 

from transcription start), we nevertheless asked if a similar enrichment could be 

observed with an alternative approach, GoShifter, that shifts annotations at the 

associated loci to test the significance of enrichment (Trynka et al. 2015). This 

approach identified 5 cell lines that showed enrichment for the risk SNPs. Notably, 4 

of these 5 lines that showed enrichment at p < 0.05– GM19238, Th0, Cd20, and 

GM06990 – are from the lymphoid lineage (Table 2.8). 
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Table 2.8. Significant DNase tracks from GoShifter analysis. 

ENCODE DNase Track p-value 

wgEncodeAwgDnaseDukeGm19238UniPk 0.0009 

wgEncodeAwgDnaseDukeTh0UniPk 0.0104 

wgEncodeAwgDnaseUwHreUniPk 0.0228 

wgEncodeAwgDnaseUwGm06990UniPk 0.032 

wgEncodeAwgDnaseDukeGm19239UniPk 0.0346 

wgEncodeAwgDnaseUwdukeGm12878UniPk 0.0354 

wgEncodeAwgDnaseUwCd20UniPk 0.0361 

Of all the methods GoShifter and UES attempt to answer the same question, 

albeit through orthogonal approaches. Trynka et al. (2015) demonstrated there is an 

over-inflation of the results of when failing to utilize proper controls; one of the 

largest contributors to this effect was due to the failure to consider LD when choosing 

matching SNPs. Trynka et al. chose to address this effect by developing their 

alternative approach of shifting the local annotations surrounding the regions of 

interest. UES was built to specifically address those concerns regarding the proper 

controls and the general concordance of the results between the two methods validates 

the work. 

2.3.5 “Pan-cancer” enrichment 

The NHGRI GWAS catalog (Welter et al. 2014) was mined to generate lists of 

risk SNPs for 19 different cancer types. The same UES analysis was performed in 

batch for each caner type separately and enrichment was calculated for ENDODE 

DNase hypersensitivity data and Roadmap Epigenomics 15-state ChromHMM 

datasets. Seeing as lymphoma risk showed a strong enrichment in a tissue-specific 

manner in enhancer sites, we interrogated whether this pattern was true across all these 

different cancers.  
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The greatest signal from the enrichment analysis of ENCODE DNase 

hypersensitivity sites were those signals which had been seen previously in the 

lymphoma analysis. There was only one other cancer type, breast cancer, that was 

enriched at a sub-Bonferoni level. This breast cancer enrichment was observed in 

MCF-7, a breast cancer cell line, showing a similar tissue-specific enrichment in the 

DNase hypersensitivity data (Figure 2.10). No other significant enrichment of cancer 

risk-SNPs were observed once corrected for multiple testing.  The Roadmap 

Epigenomics segmentation data was analyzed and patterns started to emerge. The 

enhancer enrichment (Figure 2.11) again visualized the tissue-specificity of 

enrichment for the lymphoma SNPs and enrichment across most cell types was 

observed in the breast cancer risk SNPs containing the newly identified loci from 

iCOGS, a large-scale study effort by the Collaborative Oncological Gene-environment 

Study to identify additional common variation in various cancers (Bojesen et al. 2013; 

French et al. 2013; Gaudet et al. 2013; Couch et al. 2013; Garcia-Closas et al. 2013; 

Michailidou et al. 2013). When the rick loci that were previously found in MCF-7 

peaks were removed and the enrichment analysis was repeated, a similar broad 

enrichment was observed, suggesting that these weaker-effect iCOGS SNPs are may 

not be specific to breast cancer.  Other patterns of enrichment were quite striking: 

melanoma and esophageal cancer showed strong enrichment in genic regions (Figure  

2.12) across most cell types while, conversely, no significant enrichment was observed 

in any cancer type when looking at active transcription start sites (Figure 2.13).  
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Figure 2.10. Pan-cancer UES enrichment analysis in ENCODE DNase 

hypersensitivity data. Each column represents a different cancer type. Each row 

is a separate ENCODE DNase hypersensitivity track.   The colors visualize the p-

value, with bright green being highly significant and red being insignificant. The 

tissue specific enrichment of lymphoma SNPs is clearly visualized. The only other 

statistically significant result is the lone enrichment of breast cancer SNPs in 

MCF-7, a breast cancer cell line. 
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Figure 2.11. UES Enrichment in Roadmap Epigenomics enhancers. Green 

is a more significant p-value. Red is less significant. 

Figure 2.12. UES Enrichment in Roadmap Epigenomics genic regions. 

Green is a more significant p-value. Red is less significant. 
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2.4 Discussion 

The UES algorithm is a novel, well-controlled method to determine the 

enrichment of GWAS SNPs in any genomic or epigenomic dataset. The pipeline was 

tested and validated using a set of lymphoma and CLL GWAS and has shown the set 

to be significant enrichment in the regulatory elements in lymphoblastoid cell lines. 

This suggests that there is a tissue-specific manner through which these genetic loci 

may confer increased risk for lymphomagenesis. Looking specifically at the analyses 

in GM12878, we observed this enrichment in DNase hypersensitivity loci as well as 

numerous enhancer sites; there was no observable enrichment when looking at risk 

loci for other cancer types. Our research also identified candidate functional SNPs that 

co-localize with these genomic marks and have also been shown to be eQTLs in 

published blood datasets. 

Figure 2.13. UES Enrichment in Roadmap Epigenomics Active 

TSS sites. Green is a more significant p-value. Red is less significant 
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These analyses were made possible due to the significant amounts of functional 

genomic data available for the cell line GM12878.  Taking a deeper look at those 

results, there are a similar number of loci for which a candidate functional SNP can be 

found in DNase regions, ChrommHMM-Strong Enhancers, and Segway-Strong 

Enhancers (n=16, 12, and 17, respectively).  While none of these 3 datasets were 

complete subsets of each other, there is significant overlap. However, as DNase 

hypersensitivity data can be obtained from a single assay as opposed to a combination 

of multiple assays for the segmentation data, in the case where data on relevant cell 

types do not yet exist, DNase data may be sufficient to identify putatively functional 

SNPs before investing the time and resources to generate all the assays needed for 

segmentation analysis.   

These enrichment studies can provide valuable insight into the potential etiology 

of the disease of interest. For example, looking at the enrichment of lymphoma SNPs 

in ChIP-Seq data, we see an enrichment of risk SNPs in RUNX3 binding sites 

(p<0.0001).   RUNX3 is a gene which is highly expressed in LCLs (Spender et al. 

2002) and has been shown, paradoxically, to act both in promoting and suppressing 

tumor growth (Ito et al. 2015). We also observed enrichment of risk SNPs in binding 

sites for NfκB and TNF (p<0.0001); variation within these two pathways have also 

been shown to associate with non-Hodgkin’s lymphoma risk (S. S. Wang et al. 2009).  

Lymphoma risk SNPs are also enriched at binding sites of TBLR1 (p=0.0005); 

disruptions at the TBLR1 locus in diffuse large B-cell lymphoma have been seen 

through a deletion of the locus (Pasqualucci et al. 2011) and the identification of a 

novel fusion between it and TP63, a paralogue of TP53 (Scott et al. 2012).  

It should be no surprise that we observed an enrichment of lymphoma risk-SNPs 

in the DNase hypersensitivity sites for multiple B-cells lines, as a majority of the 
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reported SNPs are from studies on CLL. However, we also see an enrichment in 

lymphoid but non-B cell types such as adult CD4+ Th0 cells (p < 0.0001). If we 

slightly relax the stringent definition of significance and look to those lines that just 

failed to meet statistical significance, such as p < 0.001, the vast majority of those 

cells are also T-cells.  These data makes sense since the B-cell and T-cells lines share 

a common lineage. This hypothesis is further supported as a hematopoietic progenitor 

cell line, CD34+ Mobilized cells, was approaching significance in the DNase 

hypersensitivity enrichment analysis (p=0.016).  This type of analysis could also 

reveal novel insight into how different cell-types work in concert to lead towards the 

progression of a disease.  For example, in our own results I saw an enrichment of 

lymphoma risk-SNPs in the DNase hypersensitivity track of human renal epithelial 

cells (DNase: p=0.0004). A literature search revealed that there is a known, rare 

disease – primary renal lymphoma – with 31 reported cases through 1991 (Harris & 

Lager 1991). Little is known beyond that is a non-Hodgkin’s lymphoma affecting 

large B-cells; our results suggest that this rare condition may share commonalities 

between itself and more familiar lymphomas. 

 There are many different tools developed by the community which, using the 

same datasets and input, answer vastly different questions and provide complementary 

results. A summary of the different analyses are provide in Table 2.9. In brief, some of 

the tools, like ReglomeDB and HaploReg work best as efficient genomic annotators, 

though since their speed is attained by retrieving pre-calculated data from databases, 

there is not the flexibility there to ask the same question of enrichment in particular 

tracks of interest as can be done with UES. FunciSNP, on the other hand, provides the 

ability to look for the colocalization of SNPs though it’s main purpose is to identify 

putatively functional SNPs based on these overlaps and doesn’t provide a statistical 

measure of enrichment. GWAS-3D is unique among the aforementioned approaches 
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as it considers distal interactions when determining whether a SNP is likely functional.  

Of all these methods, GoShifter is the most similar to UES in its aim and the questions 

it can answer though through an orthogonal approach and as such, it may be useful to 

use both methods when calculating enrichment in a genomic track file as a means of 

conformation. 

Table 2.9. Comparison of different genomic analysis tools for GWAS SNPs. 

 UES GoShifter RegulomeDB HaploReg FunciSNP GWAS-

3D 

Run locally       

Web-based       

Annotates individual SNPs       

Results for SNP list as a 

whole 

      

Accounts for LD        

Adjustable R2 threshold       

Choice of population       

Provides output for any user 

supplied track 

      

Motif alteration       

Considers distal interactions       

Calculates enrichment score       

Enrichment calculation for 

any tack 

      

Identifies relevant tissue type       

Identifies relevant genomic 

mark 

      

Enrichment through SNP 

matching 

   v3 -  

v4 -  

  

Enrichment by local shifting       

Speed        

 

 Interestingly, while the lymphoma risk-SNPs were highly enriched in a tissue-

specific manner in regulatory elements, analysis of the additional cancer types showed 

that this observation is not true across the cancer landscape. Breast cancer, for 

example is enriched solely in MCF-7, a breast cancer cell line, though they are not 

enriched in a tissue specific manner in other regulatory elements. Conversely, while 

the lymphoma risk-SNPs showed no enrichment in genic regions whereas there was 

significant enrichment in melanoma and esophageal cancer, however, as most of the 
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esophageal cancer GWAS were performed in Chinese populations and UES that could 

confound the current results. Taken together, pan-cancer enrichment analysis suggests 

that not all inherited risk of cancer work identically and thus broad generalizations of 

how predisposition confers risk should be avoided.  Furthermore, these results warrant 

more complete studies to better understand the etiology of these disease. 

 Overall, the data presented support the hypothesis that regulatory variants that 

influence transcription in cells of the lymphoid lineage contribute to inherited risk of 

lymphoma and chronic lymphocytic leukemia. However, based on enrichment of other 

cancer types, this hypothesis does not appear to hold true across different diseases. 

These results validate our computational approach that, moving forward, could 

provide novel insight into disease etiology when applied to other diseases.   
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3 Genome-wide association study of myeloproliferative neoplasms identifies 

TERT as a risk locus 

The work presented in this chapter was conducted in conjunction with the lab of Dr. 

Ross Levine at Memorial Sloan Kettering Cancer Center. The GWAS data used for 

the subsequent analysis was both produced in and graciously provided by his lab. 

3.1 Introduction 

Myeloproliferative neoplasms (MPN), including polycythemia vera (PV), 

essential thrombocythemia (ET), and primary myelofibrosis (PMF), are chronic 

myeloid disorders characterized by clonal expansion of hematopoietic stem cells, and 

overproduction of mature blood elements (Campbell & Green 2006). The genetic basis 

for PV, ET, and PMF remained unknown until multiple groups identified a somatic 

activating mutation in the JAK2 tyrosine kinase (JAK2V617F) in ~90% of PV and in 

50-60% of ET/PMF (Levine et al. 2006). Genetic instability may be induced also by 

mutations of genes involved in epigenetic regulation and chromatin remodeling such 

as TET2, ASXL1, and EZH2 (A Tefferi et al. 2009; Carbuccia et al. 2009; Ernst et al. 

2010). These latter somatic mutations might cause selective pressure for the 

acquisition of additional genomic lesions responsible for disease progression, such as 

TP53 lesions (Harutyunyan et al. 2011).  A close relationship was observed between 

aberrations of chromosome 9p (UPD and/or gain) and progression from PV to post-PV 

MF.  

Prior genome wide association studies have identified a germline variant in the 

JAK2 gene that predisposes to the development of JAK2-mutant MPN that are 

preferentially associated with specific MPN phenotypes (Kilpivaara et al. 2009; Jones 

et al. 2009; Olcaydu et al. 2009).  Under a dominant genetic model, the risk genotype 

at JAK2 rs10974944 contributes significantly to the excess familial risk of MPN 

(OR=3.1, population attributable risk=46.0%).  These effects are most evident in 
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JAK2-positive MPN (OR=4.0, population attributable risk=55.3%), suggesting that 

germline variation at JAK2 is a major determinant for the predisposition to develop 

JAK2-positive MPN.  Our group has also observed that somatic JAK2 mutations were 

most commonly acquired in cis with the JAK2 predisposition haplotype, suggesting a 

direct interaction between haplotype-specific genetic variation in the JAK2 locus and 

secondary acquisition of somatic mutations on the same strand (Kilpivaara et al. 

2009).  

However, since the study sample size of our previous MPN GWAS was small, 

we were unable to have complete coverage of the genome. Therefore, it was likely 

there are additional germline loci important in MPN predisposition and pathogenesis.  

  Here we report a larger genome wide association study to identify MPN risk 

variants.  We tested 217 cases from our studies and an additional 361 cases obtained 

from publicly available cohorts along with 7,787 controls at over nine million SNPs 

imputed using data from the 1000 Genomes Project. Besides the previously known 

MPN risk locus at JAK2 gene, we observed a statistically significant association signal 

at TERT (rs7717443; p-value=8.42x10-10 and OR=0.716, 95% CI=0.634-0.808).   

3.2 Materials & Methods 

3.2.1 SNP Array Analysis of MPN Samples 

MPN patients were recruited in Boston and New York City under IRB 

approved protocols in which all patients provided informed consent. DNA was 

extracted from granulocytes and buccal swabs as previously described (Kilpivaara et 

al. 2009).   217 granulocyte DNA samples, which included 113 PV patient samples 

and 68 ET patient samples, were chosen for SNP array analysis based on clonality 

studies and JAK2V617F mutational burden in order to limit analysis to samples with 
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>80% MPN cells (Levine et al. 2006).  DNA samples were genotyped using the 

Illumina Omni1-Quad genotyping array following the manufacturer’s instructions.  

 To increase the power of this study, additional SNP array data was taken from 

several data sources.  Additional data on 408 MPN cases was obtained from 

ArrayExpress (E-MTAB-608) from a genomic profiling study of MPN using the 

Affymetrix 6.0 SNP array3.  Control data was obtained from both dbGaP (phs000187, 

phs000209v7, phs000167v1, phs000091v1) and from a study of schizophrenia in the 

Ashkenazi Jewish population (Vijai et al. 2011).  For the Illumina data (phs000187 

and the Ashkenazi schizophrenia study), data was merged after genotyping calling by 

the standard Illumina software independently in each study.  For the Affymetrix data, 

genotypes were jointly called using the Birdseed algorithm using the Affymetrix 

Power Tools software from the raw CEL files.    

The Affymetrix and Illumina datasets were then processed separately for quality 

control.  SNPs were filtered on the following bases: call rate <98%, minor allele 

frequency <0.02 and Hardy–Weinberg exact test P< 1.0x10-7 in controls. Samples 

were filtered based on genotype quality control filtration (sample call rate <97%, 

gender mismatch).  In total, 9,034,812 SNPs markers were identified for analysis and 

used in the merged case and control dataset. 

3.2.2 Principal Component Analysis of MPN Patients/Controls 

For principal component analysis we used all of the genome-wide data for our 

samples in order to correct for any chip and/or batch effects and, thus, allow for us to 

join the multiple datasets for joint analysis.  Before analysis, we performed quality 

control filtering of both samples and SNP separately for cases and controls and then 

merged the dataset using the common set of SNPs present in the two cohorts. To do 

so, we first filtered out the ambiguous SNPs (A/T or G/C alleles) to ensure we 

unambiguously know strand when we merge the two datasets.  
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 To investigate potential population stratification biases that could be 

introduced by the shared controls we performed principal component analysis using 

EIGENSTRAT (Price et al. 2006). To reduce the linkage disequilibrium between 

markers, we first used PLINK (Purcell et al. 2007) to filter markers such that all 

remaining markers are in low LD (r2 < 0.1, calculated in sliding windows 50 SNPs 

wide, shifted and recalculated every five SNPs). We applied the EIGENSTRAT 

program with default parameters and no outlier removal to infer axes of variation in 

the combined dataset. The case and controls that cluster together on the eigenvector 

plot (with the first two axes of variation) were used for the association analysis.  

3.2.3 Imputation and association tests 

We performed imputation analysis to merge the two datasets and determine the 

full extent of the whole genome, and to test for any untyped variants than those 

available on the original GWAS platform. After pre-phasing of the original data using 

SHAPEIT (Delaneau et al. 2012), genome-wide imputation was performed using 

IMPUTE2 (Howie et al. 2009) using 1000 genomes reference panel. 

3.2.4 Association testing 

To test for association of each imputed SNP with MPN risk, we used SNPTEST 

v2.5 beta 4 (Marchini & Howie 2010).  Specifically, we used frequentist statistics to 

test for association under an additive model using the maximum likelihood (ml) fitting 

method in the program.  We adjusted for the top 5 principal components of ancestry as 

well as a binary variable representing which chip a sample was genotyped on 

(Affymetrix or Illumina).  Any SNP for which the information (“info” column in 

SNPTEST output) is < 0.4, a p-value was not computed, the minor allele frequency is 

<= 0.01, or the p-value for Hardy-Weinberg equilibrium in controls was <= 0.001 was 

removed.  As the controls in both cohorts were genotyped at separate sites than the 
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cases, we also removed any SNP whose frequency differed between the Illumina 

controls and the Affymetrix controls after adjusting for the top 5 principal components 

with p<1x10-09 (Mukherjee et al. 2011).  Finally, we computed the association 

separately in the Affymetrix and Illumina cohorts for each SNP with p<1x10-05.  

3.2.5 Pleiotropy analyses 

To investigate if SNPs associated with blood phenotypes, inflammatory bowel 

disease, or cancer, are also MPN risk SNPs, we used several different data sources.  

We manually extracted SNPs that had been reported to associate with blood-related 

phenotypes in the NHGRI GWAS Catalog (Welter et al. 2014), resulting in 113 SNPs 

used in the analysis. Those SNPs were then extracted for analysis from our genotyping 

data and the following quality control filters were applied to keep SNPs in the 

analysis: genotyping rate > 0.05, individual missingness  < 0.1, minor allele frequency 

> 0.05, and Hardy-Weinberg exact test of p<1.0x10-7. A list of 463 cancer-associated 

risk SNPs was generated from the same source (Welter et al. 2014) as the blood SNPs. 

Identical quality control was performed on the cancer SNPs. Additionally, 8 SNPs 

were shared between the blood and cancer lists. For each list, we asked if those SNPs 

were associated with MPN in our full, imputed data set.  

3.3 Results 

3.3.1 A larger genome-wide association study for MPN risk SNPs 

To identify additional genetic variants associated with the risk of developing 

MPN, we conducted a genome-wide association study using denser genotyping 

platforms than we had used previously.  Specifically, we genotyped 217 individuals 

with MPN and generated 2739 controls from studies of melanoma and schizophrenia; 

both sets were genotyped on the Illumina Omni1 Quad chip.  Additionally, we 

obtained genome-wide SNP chip data from the Affymetrix SNP6 platform on 408 

MPN cases and 5025 controls.  We performed individual and SNP level quality 
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control on the individual cohorts, jointly determined the principal components of 

genetic variation as a marker of genetic ancestry, and then imputed both datasets using 

data from the 1000 Genomes Project.  This resulted in 9,034,812 SNPs genotyped in 

578 cases and 7771 controls.  We tested each SNP for association with the risk of 

developing MPN, adjusting for the top 5 principal components and genotyping 

platform.  After removing SNPs that did not meet our stringent quality control criteria, 

we tested 8,010,302 SNPs for association.  Of these, 1162 were significant after 

correcting for multiple testing (p<6.2x10-09).  However, upon further analysis of the 

date, we noted that there were a multitude of imputed SNPs widely disparate ORs 

when comparing the original genotyping platform. We hypothesized that these 

differences may be confounding our results and inflating the number of true 

associations. To correct for this, we removed SNP for which the estimated odds ratio 

on one platform was outside the 95% confidence interval estimated on the other 

platform.  This resulted in 75 significant SNPs.  Of these, 74 were at the previously 

identified JAK2 locus, where a common risk haplotype greatly increases the risk of 

developing MPN.  The most significant SNP at this locus is chr9:5074466:D (p = 

5.06x10-60, OR = 3.17606, 95% CI = 2.81-3.58). The only significant SNP not at JAK2 

is rs7717443, at the TERT locus (p = 8.42x10-10; OR = 0.72, 95% CI = 0.63 - 0.81). 

 

Table 3.1. Significant MPN GWAS hits at a Bonferoni Level 

SNP CHR POS OR (95% CI) P 

chr9:5074466:D 9 5074466 3.17606 (2.81434 - 3.58426) 5.06E-60 

rs12348771 9 5083634 3.07135 (2.72164 - 3.46598) 2.17E-58 

rs12343065 9 5083533 3.08042 (2.72972 - 3.47617) 8.20E-58 

rs11788834 9 5092466 3.10975 (2.75568 - 3.50931) 1.98E-57 

chr9:5090966:D 9 5090966 3.07617 (2.72601 - 3.47132) 3.38E-57 

rs11788790 9 5092263 3.10058 (2.7476 - 3.4989) 4.62E-57 

rs1034072 9 5088903 3.06834 (2.71913 - 3.46239) 1.65E-56 

rs10283564 9 5075628 3.03685 (2.69125 - 3.42684) 2.31E-56 

rs12349785 9 5076613 2.98901 (2.64863 - 3.37315) 4.23E-56 
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(continued) Table 3.1. Significant MPN GWAS hits at a Bonferoni Level 

SNP CHR POS OR (95% CI) P 

chr9:5090970:D 9 5090970 3.00607 (2.66397 - 3.39211) 1.23E-55 

rs1159782 9 5078117 2.9886 (2.64843 - 3.37246) 2.91E-55 

chr9:5076945:I 9 5076945 2.97928 (2.64025 - 3.36184) 3.63E-55 

rs62543863 9 5085417 3.02019 (2.67637 - 3.40818) 4.64E-55 

rs10283563 9 5075603 3.05575 (2.70802 - 3.44814) 1.95E-54 

rs7038763 9 5076399 3.02286 (2.67892 - 3.41096) 8.28E-54 

rs10974952 9 5079828 2.8473 (2.52268 - 3.21369) 2.59E-52 

chr9:5137970:D 9 5137970 2.87064 (2.54204 - 3.24173) 9.13E-52 

rs2146041 9 5262911 2.93143 (2.5981 - 3.30752) 1.02E-49 

rs10975033 9 5262567 2.88817 (2.55979 - 3.25867) 4.20E-49 

rs1887428 9 4984530 0.397599 (0.352353 - 0.448655) 6.74E-48 

rs12350079 9 5259620 2.78915 (2.47202 - 3.14697) 9.45E-48 

rs72703608 9 5258127 2.74781 (2.43513 - 3.10064) 2.90E-47 

rs12351715 9 5262349 2.76196 (2.448 - 3.11617) 4.13E-47 

rs11506293 9 5257430 2.77481 (2.4593 - 3.1308) 4.76E-47 

rs11506292 9 5257048 2.76925 (2.45439 - 3.1245) 5.38E-47 

rs28872016 9 5253558 2.75402 (2.44087 - 3.10735) 8.37E-47 

rs12349113 9 5254224 2.72304 (2.41361 - 3.07214) 1.07E-46 

chr9:5252803:D 9 5252803 2.72041 (2.41079 - 3.06979) 1.11E-46 

rs12349508 9 5184222 2.89186 (2.56164 - 3.26466) 1.28E-46 

rs10118267 9 5243736 2.75717 (2.44352 - 3.11107) 1.33E-46 

rs7035456 9 5261440 2.74323 (2.43154 - 3.09489) 2.06E-46 

rs7025005 9 5261794 2.74136 (2.42988 - 3.09276) 2.57E-46 

rs60768043 9 5224676 2.75649 (2.44341 - 3.10968) 2.64E-46 

rs13440043 9 5268264 2.74183 (2.4303 - 3.0933) 3.07E-46 

rs11506668 9 5252789 2.70209 (2.39464 - 3.04902) 7.71E-46 

rs10283473 9 5244708 2.69721 (2.39017 - 3.04369) 2.00E-45 

rs7862042 9 5268139 2.72087 (2.4118 - 3.06955) 2.33E-45 

rs1575285 9 5267440 2.71457 (2.40621 - 3.06246) 6.76E-45 

chr9:5250918:D 9 5250918 2.65694 (2.3544 - 2.99836) 7.06E-45 

rs1853221 9 5249364 2.65558 (2.35309 - 2.99696) 9.59E-45 

rs36051895 9 4981866 2.42145 (2.14584 - 2.73245) 9.74E-45 

rs11790680 9 5248768 2.65417 (2.35188 - 2.99532) 1.10E-44 

rs10975028 9 5249020 2.64973 (2.34799 - 2.99025) 1.36E-44 

rs10975027 9 5248827 2.64997 (2.3482 - 2.99052) 1.36E-44 

rs2208685 9 5251758 2.64116 (2.34071 - 2.98016) 2.03E-44 

chr9:5076938:I 9 5076938 2.6432 (2.3375 - 2.98888) 6.59E-44 

rs11999802 9 5189773 2.8514 (2.52562 - 3.21922) 9.32E-44 

rs2381215 9 5262607 2.59387 (2.29879 - 2.92682) 1.17E-43 
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(continued) Table 3.1. Significant MPN GWAS hits at a Bonferoni Level 

SNP CHR POS OR (95% CI) P 

rs10975024 9 5246403 2.64395 (2.34293 - 2.98365) 3.82E-43 

chr9:4980929:I 9 4980929 2.32254 (2.05843 - 2.62053) 2.07E-42 

chr9:4980756:D 9 4980756 2.26775 (2.01031 - 2.55816) 5.54E-41 

rs10758669 9 4981602 0.461145 (0.408939 - 0.520016) 3.37E-39 

rs7865719 9 5082333 1.99205 (1.75641 - 2.25929) 1.95E-32 

rs1327497 9 4967539 0.538753 (0.470002 - 0.617561) 1.33E-28 

rs10815141 9 4962247 0.566688 (0.494494 - 0.649421) 9.80E-25 

rs113657238 9 5180065 2.43109 (2.09397 - 2.82249) 3.67E-23 

rs62554837 9 5266200 2.17184 (1.90159 - 2.4805) 8.29E-22 

rs9987451 9 5113452 1.63889 (1.45268 - 1.84896) 2.39E-21 

chr9:5269166:I 9 5269166 2.15366 (1.8782 - 2.46951) 5.09E-21 

rs72701691 9 5229419 2.40486 (2.06564 - 2.79979) 6.88E-21 

rs1322223 9 5264425 2.0827 (1.82419 - 2.37785) 1.40E-20 

rs1327500 9 4961260 0.583081 (0.513902 - 0.661573) 4.77E-16 

rs72701653 9 5156285 2.38029 (1.97127 - 2.87418) 1.38E-15 

chr9:5166295:D 9 5166295 2.36974 (1.96176 - 2.86256) 1.75E-15 

rs2381216 9 5270603 2.1579 (1.81748 - 2.56208) 5.09E-14 

rs59966455 9 5271028 1.88144 (1.61996 - 2.18512) 2.23E-10 

rs72701669 9 5186616 0.285054 (0.160362 - 0.5067) 3.55E-10 

rs72701644 9 5142495 0.282555 (0.158464 - 0.503819) 3.86E-10 

rs72701646 9 5148564 0.283061 (0.158827 - 0.504473) 4.05E-10 

rs143944808 9 5180144 0.346777 (0.216108 - 0.556454) 4.12E-10 

rs56385018 9 5178033 0.28778 (0.162375 - 0.510037) 4.54E-10 

rs72701648 9 5149890 0.345836 (0.214791 - 0.55683) 5.46E-10 

rs7717443 5 1283486 0.71576 (0.633926 - 0.808158) 8.42E-10 

rs62541542 9 5040876 0.527881 (0.395486 - 0.704596) 1.44E-09 

chr9:5272475:D 9 5272475 1.87456 (1.60589 - 2.18817) 2.61E-09 

 

 

3.3.2 Pleiotropy with inflammatory bowel disease 

We noted that rs10758669, an SNP at JAK2 previously associated with risk of 

inflammatory bowel disease (IBD) (Polgar et al. 2012), was also an MPN risk SNP 

(p=3.4x10-39, OR=0.46, 95% CI=0.41-0.52). We therefore wondered if there was a 

larger overlap between risk alleles for IBD and MPN.  To address this, we collected a 
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set of 164 IBD risk SNPs as enumerated in a recent paper (Jostins et al. 2012).  For 

each SNP, we asked if it was associated with MPN risk. Of 161 IBD risk SNPs 

considered, only rs10758669 (3.373x10-39, OR=0.461, 95% CI=0.409-0.520) is 

associated with MPN risk after correcting for multiple testing.  We next asked if a 

polygenic model built using the reported associations with IBD could predict MPN 

status in our data.  For models build using ulcerative colitis alone or Crohn’s disease 

alone, no association with MPN was observed (p=0.54 and 0.73, respectively).  For a 

model built using SNPs associated with IBD in general, a significant association with 

MPN was observed (p=0.03).  However, this association disappears when rs10758669 

is removed (p=0.88), suggesting that the association was mediated solely through the 

JAK2 locus. 

3.3.3 Pleiotropy with hematological traits  

We next chose to investigate whether any additional SNPs that had been 

reported to associate with various blood phenotypes were also associated with MPN 

risk.  Our working hypotheses was that by reducing the initial input set of SNPs, we 

would reduce the number of tests to correct for which would allow for the 

identification of true associations that may have failed to meet the most stringent 

Bonferoni threshold at a genome-wide level. Of the 113 blood-phenotype reported 

SNPs that passed QC, only one SNP, rs2736100, a SNP that had previously been 

identified as association with red blood-cell counts (Kamatani et al. 2010), showed a 

significant association with MPN once adjusted for multiple testing (p=7.65x10-13, 

adjusted p=0.01153 OR=0.628, 95% CI=0.555-0.710).  Notably, rs2736100 is found 

in the second intron of TERT, a gene which encodes a telomere reverse transcriptase 

and has been implicated with increasing risk for numerous cancer types and telomere 

length  (Rafnar et al. 2009; Haiman, Chen, Vachon, et al. 2011; Huang et al. 2013; 

Bojesen et al. 2013). 
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3.3.4 Pleiotropy with cancer 

Since numerous SNPs at TERT have been associated with the risk of developing 

cancer, we therefore asked if other known cancer risk SNPs may predispose to MPN.  

Of 389 identified cancer risk SNPs that met our quality control criteria, only 

rs10974944 at JAK2 (p=4.501x10-58, OR=3.297, 95% CI=2.921-3.721) and 

rs2736100 at TERT (p=7.650x10-13, OR=0.628, 95% CI=0.555-0.710) were 

significant after accounting for 389 tests.  Notably, these two SNPs showed 

differences in the odds ratios between the Affymetrix and Illumina samples that were 

outside of the respective 95% confidence intervals, which is why they were not 

reported in the initial GWAS described above.  However these associations are 

validated by the fact that the 76 significant SNPs reported in the initial GWAS 

identified the same two loci. Taken together, these results confirm the role of JAK2 in 

MPN predisposition and suggest an possible additional mechanism for increasing 

MPN risk, namely through modulating TERT activity and dysregulating telomere 

length. 

3.4 Discussion and future studies 

We have presented further analysis on the predisposition myeloproliferative 

neoplasm enabled by the combination of multiple datasets. By merging these multiple 

MPN GWAS, we were able to increase our statistical power and detect previously 

unreported variants as associating with increased risk of MPN. Our study identified 

two loci associated with MPN risk: the known JAK2-risk locus and the previously 

unknown TERT locus. 

The JAK2 locus at 9p24 as shown a strong association in both previous GWAS 

and is further confirmed by our expanded analysis. However the precise mechanism 

by which this locus increase risk remains unknown. One hypothesis stated that the risk 

haplotype, JAK2-V617F, predisposes one to MPN by creating a “hyper-mutable” 
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phenotype of JAK2 that ultimately leads to a dysregulation of STAT proteins and the 

PI3K-AKT and MAP-kinase pathways. However, previous work from our lab showed 

no difference in the amount of somatic mutations at JAK2 when comparing 

individuals homozygous for the risk haplotype to induvial homozygous for the 

protective haplotype (Mukherjee 2011). Additional, unpublished analysis from our lab 

also was unable to show a significant difference in the rate of single nucleotide 

variants present in the MPN cases relative to the ancestral sequence of the individuals 

of European ancestry in the 1000 Genomes Project Thus, the mechanism by which the 

JAK2-V617F haplotype predisposes to MPN remains elusive. 

Further research is required to determine the precise mechanism by which the 

JAK2 locus influences MPN risk. Since the risk V617F haplotype does not appear to 

act through hyper-mutability at the somatic level, nor is there a significant amount of 

variants in MPN patients when compared to the ancestral alleles, an alternative 

hypothesis states that there is some functional variant on the JAK2-V617F locus that 

cause an allele-specific expression or regulation of JAK2. Under such a hypothesis, the 

V617F somatic mutation may arise on all haplotypes at equal rates, but the risk 

haplotype may confer selective advantage to the V617F-positive clone.  This could be 

examined by performing eQTL analysis, and correlating the genotype with gene 

expression levels from patients. A difference in expression would suggest that there is 

potentially a change in the regulation of JAK2 between the haplotypes.  It should be 

noted that our previous work did not provide of evidence that the risk haplotype was 

associated with JAK2 expression levels and, as such, would argue against this 

hypothesis (Mukherjee 2011). However, there is the possibility that an effect that is 

either small in magnitude or that alters allelic ratios of expression without altering 

total expression levels may not have been detected previously.  Additionally, this 

question could be addressed by examining patients who are heterozygous for the risk 
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variants to determine if one of JAK2 that is preferentially expressed in the individuals 

who are heterozygotes.   

Conducting the pleiotropy analysis allowed us focus specifically on smaller sets 

of previously reported relevant SNPs and loci in order to reduce our multiple testing 

stringency threshold. As JAK2 had previously been identified as a risk locus for 

developing IBD (Jostins et al. 2012), we interrogated the other IBD-associated SNPs 

with the goal that they may provide additional insight into the etiology of MPN. 

However, the only significant IBD SNP, rs10758669, was at the JAK2 locus, thus 

reaffirming the previously observed association but failing to provide additional, novel 

insights about MPN predisposition. 

The cancer pleiotropy analysis further confirmed the association of increased 

MPN risk at the JAK2 locus with the identification of rs10974944. Additionally, the 

analysis of both cancer and blood-trait associated SNPs shared a single commonality: 

rs2736100. This SNP piqued our interest as it is located at 5p15 and is located in the 

second intron of TERT, a gene which has been implicated in numerous cancer types 

(Rafnar et al. 2009; Haiman, Chen, Vachon, et al. 2011; Huang et al. 2013; Bojesen et 

al. 2013). This result suggests that there may be mechanistic commonalities between 

MPN and the other cancer types. While this SNP has previously been shown to be 

associated with erythrocyte counts in a Japanese population (Kamatani et al. 2010), 

this is the first replication of this SNP in individuals of European descent. As 

rs2736100 is found in the intron of TERT, this suggest that the SNP may change the 

regulation and function of TERT.  Variants for this SNP have been shown to associate 

with the mean telomere length in the Han Chinese and replicated in Europeans, with 

the C-allele (the protective allele) associating with longer telomere length (Liu et al. 

2014).  Further analysis would be needed to see if this association hold true in a cohort 

of MPN patients, linking the genetic variant to both telomere length and disease. 
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3.5 Conclusion 

This chapter described the work done to follow up on previous studies of MPN 

in our lab and to better understand the etiology of MPN. Combining our MPN samples 

with an additional publically-available cohort, we were able to successfully conduct a 

GWAS that replicated the importance of the JAK2 locus in predisposition to MPN and 

additionally identified TERT as an additional risk locus of MPN.  Subsequently, using 

previously reported risk SNPs to inflammatory bowel disease, various blood 

phenotypes, and numerous cancers, we were able to identify additional SNPs at the 

JAK2 and TERT loci associating with MPN risk and, thus replicate our findings from 

the full GWAS. However, as the precise mechanism by which these loci confer risk 

remains unknown, further research is needed in order to answer the remaining 

questions.   
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4 Investigating the function of microseminoprotein-beta in prostate cancer 

4.1 Introduction 

In 2008, two groups published separate genome-wide association studies both 

identified the SNP rs10993994 as associating with prostate cancer risk (Eeles et al. 

2008; Thomas et al. 2008).  Since then, this association has been replicated in 

numerous studies in additional populations beyond Europeans (Chang et al. 2009; Lou 

et al. 2009; Takata et al. 2010; Haiman, Chen, Blot, et al. 2011; Lange et al. 2012; Xu 

et al. 2012). The concordance of the evidence across multiple studies from disparate 

populations suggests that this SNP or a highly-correlated variant is indeed a function 

SNP. 

This risk SNP, rs10993994, is a C/T polymorphism and is found at 10q11.  

Interestingly, this SNP is found just 57 base pairs (bp) upstream of the TSS for the 

gene MSMB, a gene that encodes one of the major secreted proteins of the prostate. 

This protein, microseminoprotein-beta (β-MSP), is a small protein consisting of only 

94 amino acids and, as such, was originally identified as “prostatic secretory protein of 

94 amino acids” or PSP94 (Seidah et al. 1984; Sheth et al. 1984; Akiyama et al. 1985). 

This 16 kiloDalton protein has 10 evolutionarily conserved cysteine residues between 

human and mouse (Xuan et al. 1999).  

The physiological role of β-MSP is not fully known, though as it is one of the 3 

major secreted proteins of the prostate, there is a body of work examining its role in 

prostate cancer and its ability to be used as a prognostic marker of prostate cancer. In 

one study, patients that had higher levels of β-MSP had a higher chance of survival 

after having a radical prostatectomy (Bjartell et al. 2007).  Additionally, staining for β-

MSP has shown that prostate cancer tissue has lower levels of β-MSP staining when 

compared to benign tissue (Whitaker et al. 2010).  Though the precise role of β-MSP 

is not yet know, it has been shown in numerous studies to inhibit cell growth.  A dose-
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dependent decrease in growth was observed when adding exogenous β-MSP to PC3 

cells in culture (Garde et al. 1999). This inhibitory effect has also been observed in 

prostate cancer xenograft models, leading to smaller tumor sizes in mice (Garde et al. 

1999; Shukeir et al. 2003) which led to the isolation and development of a synthetic 

15-mer which has been shown to have the same effect (Shukeir 2004).  Lastly, at the 

genetic level, knocking down MSMB in the LHS-AR prostate cell line allowed the 

cells to achieve anchorage-independent growth (Pomerantz et al. 2010). Additionally, 

that group also showed that the risk-SNP, rs10993994, acts as an eQTL for MSMB 

(Pomerantz et al. 2010).   

Our group has previously shown that rs10993994 is correlated with prostatic 

secretions of β-MSP in both the blood and semen of healthy, young men, with the 

protective C-allele associating with higher levels of β-MSP and the risk T-allele 

association with lower levels (Xu et al. 2010).  Following up on that work, our group 

attempted to elucidate the mechanism by which rs10993994 regulates MSMB.  The 

rs10993994-C allele is predicted to be at a CREB-binding site; we hypothesized that 

the T-allele would disrupt the binding affinity.  However, a siRNA-mediated 

knockdown of CREB1 did not alter the transcription activity between the two alleles. 

Additionally, ChIP experiments did not show an allele-specific preference sequence 

they pulled down (Xu 2014). The regulatory mechanism remains yet unknown. 

Simultaneously, our group also began to investigate the mechanism by which 

cell growth is reduced.  We also observed the dose-dependent decrease of prostate 

cancer cells when treated with exogenous β-MSP though the mechanism was still 

undetermined.  However, in contrast to a previously reported study (Garde et al. 

1999), we did not see the decrease in viability as a function of increased apoptosis 

when measured by caspase 3/7 activity (Figure 4.1). Thus, the mechanism of β-MSP’s 

tumor-suppressive properties also remains unknown. 
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We hypothesize that β-MSP has tumor-suppressor in the prostate. As such, the 

risk-SNP, rs10993994, disrupts regulation of MSMB which, in turn, leads to lower 

levels of β-MSP and eventually contributes to prostatic tumorigenesis. The goal of this 

chapter is describe the work performed to determine the mechanism by which β-MSP 

decreases viability in cells and thus contributes to prostate cancer. 

4.2 Materials & Methods  

4.2.1 Cell Lines 

The cell lines used for experimentation were mostly obtained from the 

American Type Culture Collection (ATCC) with the exceptions being noted. The cells 

were grown at standard cell-culture conditions (37°C, 5% CO2) in the appropriate 

media and supplemented with 10% FBS, 1% penicillin/streptomycin, and 0.2% 

fungizone. Particular growth conditions are given in Table 4.1. 

 

Figure 4.1. Apoptosis is not induced in PC3 cells by addition of β-MSP. 

Caspase 3/7 activity, a readout of apoptosis, remains unchanged between two 

treatments of exogenous β-MSP when compared to controls. Staurosporine, 

known to induce apoptosis, is included as a positive control. 
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Table 4.1. Cell lines used in experimental work. 

Cell Line (Citation) Description Cell culture notes 

AGS (Barranco et al. 1983) Gastric cancer cells F12K media 

BPH-1 (Hayward et al. 1995) Immortalized prostate 

epithelial cells 

Keratinocyte serum-free medium (KSFM); 50 µg/ml 

bovine pituitary extract; 5 ng/ml EGF. 

DU145 (Stone et al. 1978) Prostate cancer cells EMEM Media 

LHSR (Berger 2004) Immortalized prostate 

epithelial cells 

PREGM bullet kit; cells provided by William Hahn 

LNCaP (Horoszewicz et al. 1983) Androgen-dependent 

epithelial cells 

RPMI 1640 media 

Myc-CaP (Jiao et al. 2007) Murine, prostate cancer 

cell line 

DMEM media, high-glucose (4.5 g/L; cells provided 

by Charles Sawyer’s lab 

RWPE-1 (Bello et al. 1997) Immortalized prostate 

epithelia cells 

KSFM; 50 µg/ml bovine pituitary extract; 5 ng/ml 

EGF. 

PC3 (Kaighn et al. 1979) Prostate cancer cells F12K media 

VCaP (Korenchuk et al.) Immortalized prostate 

epithelial cells 

DMEM media; cells provided by Charles Sawyer’s lab 

4.2.2 Overexpression of MSMB-plasmids 

Cells were plated to achieve 90% confluency the night before the transfection. 

The following day, the MSMB-plasmids were transfected into the cells using 

Lipofectamine 2000 (ThermoFisher Scientific, 11668500).  For over-expression, 

functional assays performed in 24-well plates, 0.8 ng of total plasmid was diluted in 

50 µl of Opti-MEM Reduced Serum Media (ThermoFisher Scientific, 31985070) per 

well which was combined with 2 µl of Lipofectamine 2000 diluted in 50 µl of Opti-

MEM Reduced Serum Media according to the provided protocol. For transfections 

performed in 6-well plates, 4 µg of plasmid DNA and 10 µl were diluted in 250 µl of 

media, respectively. The transfection-media was removed and fresh media was re-

added after 4 hours. Depending on the subsequent assay, the cells were allowed to 

grow for 24, 48, or 72 hours before they were tested. 

4.2.3 Cell viability 

The viability of cells was measured by use of the cell health and viability 

indicator alamarBlue (ThermoFisher Scientific, DAL1100). The substrate of 

alamarBlue, resazurin, is reduced by living cells to resorufin, a fluorescent molecule. 

For experiments done in 96-well plates, 10 µl of alamarBlue was added to the 100 µl 

of media already in the wells of the plate. For experiments performed in 6-well plates, 
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200 µl of alamarBlue was added to the 2 ml of media in the plate wells.  Plates were 

incubated for 1 hour at 37C and read using a fluorescence spectrophotometer.  

4.2.4 Cell-cycle analysis 

PC-3 Cells were grown in a T-75 flask until they were 90% confluent, split 

1:2, and re-plated into 6-well plates. Once they had reached 60-70% confluence, they 

were transfected with the appropriate MSMB-overexpression plasmids or control 

treatment using the standard Lipofectamine 2000 procedure. Cells were collected at 

24, 48, and 72 hours. For collection, first they were washed with 3 mls of PBS and 

then treated with 1 ml of Trypsin (ThermoFisher Scientific, 25300-054) allowing for 

removal from. Once the digestion was complete, 3 mls of Trypsin was added to 

deactivate the trypsin.  The cells were colleted in 50 ml Falcon tubes and spun down 

for 5 minutes at 450 g at room temperature. The supernatant was removed and the 

cells were washed with PBS and spun down again. The cells were spun down again, 

and once the supernatant was removed, they were resuspended in 500 µl of 70% 

EtOH. 

The cells were transferred to round-bottomed 96-well plates for analysis on a 

Guava PCA-96 flow cytometer. The plate was spun down for 5 minutes at 450 g at 

room temperature after which the supernatant was removed. Cells were washed using 

200 µl of 1X PBS. After washing, the cells were stained with 200 µl of the Guava Cell 

Cycle Staining reagent, a propidium iodide solution, and analyzed on the Guava PCA-

96 system. 

4.2.5 Staining for senescence 

Cells used in the senescence assays were plated in 6-well plates containing 

microscope slide covers in each well and transfected in an identical manner as 

previously described. Cells were collected at five different timepoints: 24h, 36h, 48h, 

60h, and 72h.  Once sufficient time had passed since transfection, the slide covers 
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containing the cells were collected, washed with 2 mls of PBS 3 times for 2 minutes 

each on an orbital shaker.  The cells fixed using 1.5 ml of a fixing solution (6190.8 µl 

PBS, 356.4 µl formaldehyde, and 52.8 µl glutaraldehyde) and shaking for 5 minutes 

on an orbital shaker. The fixing solution was removed and the cells were immediately 

washed with 3 mls of PBS on the orbital shaker. The cells were stained with a staining 

solution (300 µl 1 mg/ml Xgal in DMF, 1.2 ml citric acid/sodium phosphate solution, 

300 µl 100 mM potassium ferrocyanide, 300 µl 100 mM potassium ferricyanide, 180 

µl 5M NaCl, and 12 µl 1M MgCl2) for 16 hours at 37C with no CO2 circulation. Slide 

covers were mounted and stored at 4°C until analysis. 

4.2.6 KI-67 immunohistochemistry staining 

PC3 cells were grown on microscope chamber slides and transfected for one of 

the following conditions: no treatment control, Lipofectamine 2000 only control, 

empty PCDNA3 vector and MSMB-PCDNA. Transfections were performed according 

to the standard protocol as previously given and cells were collected at 24 and 48 hour 

timepoints. The cells were fixed and passed along to the Immunohistochemistry Core 

facility at MSKCC for staining with a KI-67 antibody. 

4.2.7 Phospho-kinase analysis 

The Proteome Profiler Human Phospho-Kinase (R&Dsystems: ARY003B) 

was used to determine signaling changes for numerous pathways simultaneously. PC3 

cells were transfected with transfected with either the empty PCDNA3 plasmid or the 

MSMB-PCDNA3 construct as previously described. Transfections were done in 

duplicate.  The standard protocol for the proteome profiler assay provided with the kit 

was performed as directed. The intensities of the individual dots were extracted and 

analyzed using ImageJ v1.45 (Schneider et al. 2012) to calculate the ratio between the 

two transfection treatments. 
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4.2.8 Exogenous Microseminoprotein-beta 

Microseminoprotein-beta (β-MSP), the product of MSMB, was generously 

provided by Hans Lilja at MSKCC. It was dissolved in water to a concentration of 5 

mg/ml, aliquoted, and frozen until use. The cells were treated at a final concentration 

of 1 mg/ml. 

4.2.9 Western blotting 

Total cell protein extracts were prepared using a nonindet-P40 detergent lysis 

buffer along with a protease inhibitors. Once the protein concentration was measured 

with a standard BCA assay, it was run on an SDS-PAGE gel and transferred to a 

PVDF membrane using a BioRad semi-dry transfer module. Blotting was performed 

using an anti-beta-catenin antibody from OriGene. The Pierce ECL reagent from 

ThermoFisher Scientific was used to visualize the blots. 

4.3 Results 

Previous work from our group has confirmed that there is a cell-type specific 

growth-inhibitory effect on prostate cancer cells: there is a dose-dependent decrease in 

viability of PC3 and LNCaP with higher levels of β–MSP, while no effect was 

observed in DU145 or RWPE-1. This result was also observed when MSMB was 

transfected and overexpressed in PC3 cells.  However, there was no supporting 

evidence that this decreased viability was due to increased apoptosis as measured by 

Caspase 3/7 activity (Xu 2014).    

4.3.1 Cell Cycle Profiling 

One hypothesis was that β–MSP was causing prostate cancer cells to arrest in a 

particular stage of the cell cycle and causing decreased viability. The cell cycle 

profiles of PC3 were analyzed after transfection with a MSMB-overexpression 

plasmid.  There was no observable difference between the cell cycle profiles of the 

MSMB-overexpressing cells when compared to controls (Figure 4.2). 
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4.3.2 Proliferation analysis 

We next chose to examine whether or not β–MSP caused a change in the 

proliferation of prostate cancer cells as measured by Ki-67 staining. Low levels of Ki-

67 are observed in the nucleus of cells at the G1 phase and increase the levels of the 

protein increase with progression to the S and G2/M phases.  As done for the cell 

cycle assay, PC3 cells were transfected with either control or MSMB-overexpression 

vectors for 24 and 48 hours. There was no observable difference between the Ki-67 

staining at either time point at all treatments (Figure 4.3). 

A.      B. 

 

Figure 4.3 Cell cycle profiles of PC3 cells. 

Figure 4.3 Cell cycle profiles of PC3 cells. Cells were transfected with 

either an MSMB-overexpression or control vector. Profiles shown are for 

24 hours (A) and 36 hours (B). There is no observable difference among 

the G1, S, or G2/M stages. 
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4.3.3 Senescence analysis 

Since the decrease in cell viability was not due to cell cycle arrest, decrease in 

proliferation, or an increase in apoptosis, we proposed that β-MSP inhibited growth by 

causing the cells senesce, or an arrest of growth, rather than death. PC3 cells were 

subject to the same controls and overexpression transfections as previously reported. 

Cells were then stained for the presence of senescence-associated beta-galactosidase 

(SA-β-gal), a phenomenon by which senescing cells express beta-galactosidase 

activity (Dimri et al. 1995; Lee et al. 2006). As with previous functional assays, there 

was no observable difference among the SA-β-gal treatments between conditions 

(Figure 4.4).  

 

 
 

 
 

 
 

 
 

Figure 4.5 Ki-67 staining of PC3 cells at 24 hours. Cells positive for PC3 are 

stained dark brown. There is no difference between A) no treatment control, B) 

Lipofectamine only control, C) MSMB overexpression, or D) empty-vector 

control. 
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4.3.4 Cell Viability 

We next performed a series of experiments using both MSMB-overexpression 

plasmids and exogenous β-MSP obtained from human semen samples. We transfected 

both BPH-1 and PC3 cells as previously described and determined their viability after 

24 hours with alamarBlue. There was no difference among the treatments for the non-

cancerous prostate line BPH-1 (MSMB-O/E vs empty vector, p=0.25). While there 

was a significant difference between the “no treatment control” and “MSMB 

overexpression” (p=0.02), there was no significant difference between the 

overexpression vector and empty vector (p=0.45). Similar trends were also observed 

in PC3 when media from control and treated cells were transferred to untreated cells, 

indicating that we were observing a true effect (MSMB-O/E vs empty vector, p=0.58; 

Figure 4.5).  

B 

 

C 

 

D 

 

A 

 

Figure 4.7. SA-β-gal staining of PC3 cells. Cells positive for SA-β-gal are stained 

dark blue. There is no difference between A) no treatment control, B) Lipofectamine 

only control, C) MSMB overexpression, or D) empty-vector control.  
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One critique of overexpression vectors is that you cannot control the amount of 

protein that is overexpressed; it may not be in the normal range of physiological 

conditions. To test for this, we used exogenous β–MSP from the Lilja lab at MSKCC, 

dissolved in water, and directly applied to PC3 cells at both physiological 

concentration (1 mg/ml) and 1/10th of physiological. The viability of the cells was 

assayed after 24 hours. While there was a decrease in viability from the non-treated 

cells to 1/10th physiological, to physiological conditions (1, 0.995, 0.939, 

respectively), there was no significant difference between the physiological condition 

and the water control (0.979, p=0.41, Figure 4.6).  

4.3.5 Kinase signaling analysis 

Since the mechanism was not immediately clear on how the previously 

described growth inhibition was mediated, we utilized a human phospho-kinase 

Figure 4.10. Cell viability assays. Cells were transfected with control vectors or the 

MSMB overexpression vector and their viability was assayed 24-hours post 

transfection with alamarBlue. General patterns held true across BPH-1 (blue), PC3 

(orange), and PC3 where media from transfected cells was transferred (gray).  
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antibody array from R&D systems. This system contained antibodies blotted on 

membranes for 43 different human kinases, allowing us to quickly assay to determine 

the relative levels of kinase phosphorylation for all targets simultaneously. PC3 cells 

were transfeted with the MSMB-overexpression or empty vector control constructs in 

duplicate. After a 24-hour transfection, the antibody array indicated that there were 9 

different kinases that showed at least a 2-fold change between overexpression and 

control (Figure 4.7, Table 4.2). 

Figure 4.11. PC3 viability with exogenous β–MSP. Purified human 

β–MSP was added to PC3 cell cultures and cell viability was 

measured after 24 hours. While there appeared to be a dose dependent 

reduction in viability, it was not significantly significant. 

Figure 4.12. Human phosopho-kinase antibody array for PC3 cells. The kinases 

with the largest changes are outlined: ERK1/2 (red, 6.46), and beta-catenin (blue, 

undetected to detectable with MSMB overexpression). 
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Table 4.2. Largest changes in phosphorylated kinases on antibody array MSMB-

overexpression vs. control.  

Target Phosphorylation site Ratio (MSMB:Control) 

B-Catenin Presence or absence  Detectable in Treatment 

ERK1/2 T202/Y204, T185/Y187 6.46 

p27 T157 3.36 

Akt S473 2.767 

p38-alpha T180/Y182 2.53 

PLC-gamma-1 Y78 2.32 

Chk-2 T68 2.25 

Paxillin Y118 2.22 

p70 S6 Kinase T421/S424 2.08 

We next followed up by overexpressing MSMB in PC3, LNCaP, and RWPE-1 

cells and performed western blots for beta-catenin.  However, for the antibodies we 

used, we were able to detect the presence of beta-catenin in every cell line for every 

treatment (Figure 4.8) Additional work will be required to determine to validate this 

observation and to reconcile our western blot with the kinase array. 

PC3 

LNCaP 

RWPE-1 

1.  2. 3. 4. 5.  6.  
 

.  

Figure 4.13. Western blot for beta-catenin in various cell lines. The 

treatments are as follows: 1) no treatment, 2) PCDNA3 empty, 3) 

PCDNA3-MSMB, 4) PCDNA3-MSMB Δ2-20, 5) PCDNA3.1 empty, 

and 6)PCDNA3.1-MSMB. Beta-catenin was detected for each 

treatment in each cell line. 
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4.4 Discussion 

It has been well established that β–MSP reduces cell viability when added 

exogenously or overexpressed, however, the mechanism by which this happens has yet 

to be understood. Since previous work from our lab did not observe an increase in 

apoptosis (Xu 2014) although it had previously been reported based on microscopy 

alone (Garde et al. 1999), we chose to follow up and better understand this growth-

arrest process.   

We first examined whether or not cell viability was decreased due to cells 

becoming arrested in a particular stage of the cell cycle. Cells were transfected to 

overexpress MSMB or control vectors, fixed, and stained with propidium iodide for 

analysis by flow cytometry. However, there was no noticeable changes in the profiles 

of the controls compared to overexpression. Additionally, this analysis provided 

insight into whether or not apoptosis is responsible for the observed effect. If the 

overexpression construct caused a greater number of dead cells, there would be a 

larger fraction of cells in the sub-G1 phase causing the cell-cycle profiles to shift to 

the right. However, as this shift was not present in any of the cell cycle profiles, this 

indicates that there was not a marked increase in cell death.  

We have observed the same repeatable decrease in cell viability when cells are 

β–MSP is added exogenously or overexpressed.  However, we must consider the assay 

being used for our observations: alamarBlue.  Since alamarBlue’s reduction of 

resazurin to resorufin is a function of the number of live cells, this could also mean 

that our observed decrease in viability is not actually a decrease in viability but rather 

that cells proliferate slower in higher concentrations of not β–MSP grow slower. This 

slower growth would lead to fewer cells by the end of the assay growth period and 

thus provide a lower fluorescent readout.  We analyzed this by staining the cells for 

Ki-67, a marker of cellular proliferation. However, once again there was no 
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discernable difference between the β–MSP overexpressing cells and the controls 

(Figure 4.3). Similarly, we did not see an increase in senescencing cells, akin to the 

slowing of cell growth, when base treated with β–MSP.  Additionally, the other 

viability experiments, through both overexpression and the addition of exogenous β–

MSP once again confirm that the observed effect is quite subtle. Based on these results 

we can conclude that β–MSP does not decrease cell viability by causing cell-cycle 

arrest or senescence.  

The phosopho-kinase antibody array was an efficient way to assay a multitude 

of potential signaling pathways that could be affected by an increased level of β–MSP. 

However, the results do not make the mechanism abundantly clear. The most striking 

increase when comparing the two conditions was the observation of beta-catenin’s 

presence in the MSMB-overexpression when it was previously unexpressed in the 

controls. This is in conflict with the expected result as higher levels of β–MSP lead to 

a decrease in cellular proliferation whereas increased levels of beta-catenin has been 

shown to accompany increased cellular proliferation (Sellin et al. 2001). Additionally, 

we observed the presence of beta-catenin in multiple cell lines, both treated and 

untreated, by western blot. Further analysis is required to determine the difference 

between the antibodies used for both sets of experiments.  

The signals with the greatest fold-change on the phosopho-array ran counter to 

the expected direction. For example, we observed a nearly 6.5 fold increase in phosho-

ERK in the overexpression condition. Activation of ERK has been shown to increase 

as normal cells progress to cancer (Grubb et al. 2003). Again, we would have expected 

the inhibitory nature of overexpressing MSMB to lead to a decrease in ERK activation. 

Also, activated AKT was increased almost 3-fold in the overexpression compared to 

control even though activated AKT has been shown to protect LNCaP cells from 

TRAIL-induced apoptosis (Nesterov et al. 2001). AKT that is phosphorylated at S473, 
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the phosphorylation mark tested for on the antibody array, has previously been shown 

to phosphorylate androgen-receptor at S210 and lead to AR transcriptional activity 

(Ha et al. 2011; Facompre et al. 2010). 

Thankfully, not all of the activated kinases are in the wrong direction.  For 

example, we observed a 3.3-fold increase in p27 in the presence of increased MSMB.  

It has been reported that lower levels of p27 predict poor disease-free survival in 

prostate cancer patients (Yang et al. 1998). The results from the antibody array are not 

clear cut. Much more precise research will be required to fully understand the 

signaling pathways that are affected by β–MSP. 

The true function of β–MSP and the mechanism by which it acts has remained 

elusive even after 3 decades of research. These most recent experiments once again 

confirm that there is a true, though incredibly subtle effect that β–MSP has on cells. 

Nevertheless, this does make sense in the concept of the genome-wide association 

studies. The reported ORs for rs10993994 (1.11-1.27) show that the risk is only 

slightly increased when compared to the protective allele.  While this effect is most 

likely true, it does not appear that it is sufficient enough to lead to prostate cancer on 

its own, rather it will work in a systems context.  It is in this context that the work 

must be done if we want to understand the mechanism of this protein. 
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5 Conclusions 

While genome-wide association studies have been successful in identifying 

regions and variants that predispose to multiple cancers, the field has much more work 

to do in functionally describe these loci. The overall goal of my thesis was to both 

generate and employ various experimental methods to characterize the reported 

variants. 

We first created a computational approach to characterize previously reported 

GWAS using publically-available epigenomic datasets, such as those from ENCODE 

and Roadmap Epigenomics. Our method, entitled “Uncovering Enrichment through 

Simulation (UES),” employs a SNP matching technique to calculate the empirical 

enrichment of the input SNPs in various user-supplied genomic annotation tracks. 

During the construction of the pipeline, we took great care to properly control the 

random SNP selection process and ensure that the random sets were architecturally 

similar to the input set with regards to the presence on a genotyping platform, the 

number of LD-partners, and its distance to a TSS.  

We validated the pipeline using a set of lymphoma SNPs curated from the 

NHGRI-EBI GWAS catalog. Analysis of these SNPs using UES revealed a tissue-

specific enrichment of these risk SNPs in DNase hypersensitivity sites and enhancer 

loci. These SNPs were not enriched in similar tracks from additional cell lines, 

suggesting that this observed result is a true observation of the nature of lymphoma 

risk. Complementary analysis of both breast and prostate cancer risk SNPs, did not 

shown enrichment in the LCL tracks which had previously shown enrichment for the 

lymphoma SNPs, confirming validating the observation and excluding the possibility 

that the enrichment was observed strictly as a function of the tracks analyzed. 

Our analyses lay the groundwork for additional follow-up.  With lymphoma, 

our study suggests the dysregulation of regulatory elements is partially responsible for 
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lymphomagenesis, Additional wet-lab work, such as molecular cloning of high-

priority variants, will be required in order to more completely understand the context 

in which the SNPs function. Additionally, when we expanded our analysis to the 

enrichment of other cancer types, interestingly, the observed pattern of tissue-specific, 

regulatory enrichment did not hold true among the cancers. For example, esophageal 

cancer was found to be significantly enriched in both genic regions and active 

transcription start sites across multiple cell lines, thought, unlike lymphoma, it showed 

no enrichment in DNase hypersensitivity sites nor enhancer regions. This supports the 

notion that the generalized use of “cancer” is much too broad of a classifier; different 

cancers diseases develop and manifest by unique methods.  Each cancer type, and 

even subtype, would require a more detailed analysis to better understand the context 

of their representative risk SNPs. 

Next, we combined multiple GWAS for myeloproliferative neoplasm in order 

to increase statistical power and thus allow for the identification of novel associations. 

Our analysis revealed two risk loci at JAK2 (75 sub-Bonferoni SNPs) and TERT 

(rs7717443; p-value=8.42x10-10 and OR=0.716, 95% CI=0.634-0.808).  Subsequent 

pleiotropy analysis to IBD, various blood phenotypes, and numerous cancers, we were 

able to identify additional SNPs at the JAK2 and TERT loci associating with MPN risk 

and, thus replicate our findings from the full GWAS. While there have been multiple 

hypothesis suggesting how the JAK2V617F haplotype risk, such as through hyper-

mutability, though the precise mechanism by which these loci confer risk still 

unknown.  The TERT risk locus suggests a possible mechanism of increasing risk 

through a dysregulation of telomere-length, though further analysis is required to 

confirm the associations of SNP alleles at TERT with telomere length. 

Lastly, we spent great effort to understand the molecular mode of action by 

which MSMB is involved in PrCa etiology. Since the risk allele of rs10993994 
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associated with lower levels of both transcript and protein levels and β-MSP has been 

shown to reduce viability of prostate cancer cells, we had hypothesized that β-MSP 

has putative tumor-suppressive properties and controls proliferation of prostate cells in 

vivo. Previous work from members of our lab showed that the decreased viability of 

prostate cancer cells was not due to apoptosis.  Thus, we explored different means by 

which the cell growth may be decreased including: senescence, cell-cycle profiling, 

and staining for marks of proliferation.  However, none of these analyses provided any 

significant difference between treated and untreated, leaving the mode of action an 

open mystery.  We identified a few differentially expressed kinase pathways when 

comparing MSMB-overexpression transfected cell lines against controls.  This analysis 

too did not provide a definitive answer as some signaling cascades were modulated in 

the logically appropriate direction, such as p27, and others seemingly in the opposite 

of the expected direction, i.e. ERK and AKT.  

To concluded, as the speed and ease of performing GWAS continue to 

increase, efforts to functionally validate the reported variants must increase even more 

so. Validation efforts will provide valuable, concrete understandings of the genetic 

etiology of diseases, opening the door to better screening and treatment techniques, 

and ultimately reducing human mortality. 
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6 Appendix 

6.1 FunciSNP Analysis Code 

The following R code was executed to perform the FunciSNP analysis. This analysis 

follows the vignette provided in the FunciSNP documentation (Coetzee et al. 2012). 

#Load package. 

> library(FunciSNP) 

 

#Import SNPS 

> lymphoma.snp <- 

file.path("/Users/hayes/Documents/projects/funciAnalysis/lymphoma.s

np") 

> lsnp <- read.delim(file=lymphoma.snp,sep="\t",header=FALSE) 

> lymphoma.bio <- 

file.path("/Users/hayes/Documents/projects/funciAnalysis/gm12878Fil

es/") 

 

# Load Biofeatures 

> segwayprom.filename <- list.files(lymphoma.bio, pattern='.bed$')[1] 

> segwayStrongEnhancer.filename <- list.files(lymphoma.bio, 

pattern='.bed$')[2] 

> encodeDnase.filename <- list.files(lymphoma.bio, 

pattern='.bed$')[3] 

> encodeProm.filename <- list.files(lymphoma.bio, pattern='.bed$')[4] 

> encodeStrongEnhancer4.filename <- list.files(lymphoma.bio, 

pattern='.bed$')[5] 

> encodeStrongEnhancer5.filename <- list.files(lymphoma.bio, 

pattern='.bed$')[6] 

> SegwayProm <- read.delim(file=paste(lymphoma.bio, 

segwayprom.filename, sep="/"), sep="\t", header=FALSE) 

> SegwayStrongEnhancer <- read.delim(file=paste(lymphoma.bio, 

segwayStrongEnhancer.filename, sep="/"), sep="\t", header=FALSE) 

> EncodeDNase <- read.delim(file=paste(lymphoma.bio, 

encodeDnase.filename, sep="/"), sep="\t", header=FALSE) 

> EncodeProm <- read.delim(file=paste(lymphoma.bio, 

encodeProm.filename, sep="/"), sep="\t", header=FALSE) 

> EncodeStrongEnhancer4 <- read.delim(file=paste(lymphoma.bio, 

encodeStrongEnhancer4.filename, sep="/"), sep="\t", header=FALSE) 

> EncodeStrongEnhancer5 <- read.delim(file=paste(lymphoma.bio, 

encodeStrongEnhancer5.filename, sep="/"), sep="\t", header=FALSE) 

 

# Generate lymphoma SNP object. 

> lymphoma <- getFSNPs(snp.regions.file=lymphoma.snp, 

bio.features.loc=lymphoma.bio, built.in.biofeatures=FALSE) 

> lymphoma.anno <- FunciSNPAnnotateSummary(lymphoma) 

> ly.anno <- lymphoma.anno 

> rownames(ly.anno) <- c(1:length(rownames(ly.anno))) 

 

 


