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Targeted therapies designed to specifically target molecules involved in 

carcinogenesis have achieved remarkable antitumor efficacy. However 

resistance inevitably develops and many cancer patients are not 

candidates for these targeted therapies. Furthermore the clinical attrition 

rate continues to rise, which remains a barrier in the development of novel 

targeted therapies. Integration of extensive genomics datasets with large 

drug databases allows us to begin to tackle questions about target 

discovery and drug toxicity with the ultimate goal of accelerating 

personalized anticancer drug discovery. The purpose of this dissertation 

was to address these problems through the development of drug 

repurposing, toxicity prediction, and drug synergy prediction models. 

First to target the role of transcription factors as drivers of oncogenic 

activity, we developed a computational drug repositioning approach 

(CRAFTT) that makes predictions about drugs that specifically disrupt 

transcription factor activity. To do this, CRAFTT integrates transcription 

factor binding site information with drug-induced expression profiling. We 

found that CRAFTT was able to recover a significant number of known 

drug-transcription factor interactions and identified a novel interaction that 

we subsequently validated. Our work in drug discovery led us to ask 



questions about what makes a drug safe. We developed a data-driven 

approach (PrOCTOR) that integrates the properties of a compound’s 

targets and its structure to directly predict the likelihood of toxicity in 

clinical trials and was able to accurately classify known safe and toxic 

drugs. Finally to address the problem of drug resistance, we developed a 

machine learning approach to identify synergistic and effective drug 

combinations based on single drug efficacy information and limited drug 

combination testing. When applied to mutant BRAF melanoma, this 

approach exhibited significant predictive power upon evaluation with 

cross-validation and further experimental testing of previously untested 

drug combinations in cell lines independent of the training set.  

Altogether this work demonstrates how the integration of orthogonal 

datasets gives us power to address difficult questions that are critical for 

precision medicine and drug discovery. Approaches such as these have 

the potential to make a direct impact on how patients are treated, as well 

as to help prioritize and guide additional focused studies. 
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CHAPTER ONE 

INTRODUCTION 

 

Over the past few decades, great strides have been made in the treatment of 

cancer through the adoption of precision medicine approaches. One major effort 

of precision medicine is the greater application of targeted therapies, which seek 

to selectively kill tumor cells. However there are many challenges associated with 

the development and application of these therapies, including identification of 

tractable targets(Gashaw et al., 2011), challenges with drug toxicity(Ledford, 

2011), and drug resistance(Fitzgerald et al., 2006; Komarova et al., 2013). 

Furthermore the rising clinical attrition rate due to biological activity and safety 

issues is a major hurdle for the development of new compounds(Ledford, 2011). 

Therefore approaches that rescue compounds that lack efficacy or identify toxic 

compounds before expensive preclinical and clinical studies have the potential to 

be highly impactful. 

Drug repositioning (or repurposing) is the process of finding new uses for existing 

drugs(Li et al., 2012). Drug repositioning is especially advantageous in terms of 

cost and time efficiency when applied to drugs that have passed human-safety 

and toxicity conditions(Hurle et al., 2013; Li et al., 2012). However, historically, 

drug repositioning has typically been done through a target-based discovery 

method based on a priori mechanistic data(Hurle et al., 2013). Computational 

repositioning methods have begun to emerge largely due to an expansion of 

available data resources(Hurle et al., 2013), e.g. Connectivity Map (CMaP)(Lamb 

et al., 2006) and ENCODE(Encode Project Consortium, 2011). Common 

computational drug repositioning methods include transcriptomic methods, which 

identify existing drugs whose transcriptional profile is inversely and unexpectedly 
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correlated to disease expression signatures(Campbell et al., 2012; Dudley et al., 

2011; Hurle et al., 2013) and methods based on drug side-effects, which seek to 

identify drugs that unexpectedly share side-effects with drugs used against a 

given disease and therefore likely share activity against the disease(Hurle et al., 

2013). There are also many efforts underway that aim to better elucidate the 

mechanisms, targets and effects of drugs. This requires the knowledge of 

protein-protein interactions and pathways, as a drug’s effect on one protein will 

often impact other interacting proteins. This information is then used to direct 

drug repositioning approaches. 

The identification of toxic drugs before they reach the clinic is another critical 

unmet need. Drug likeness measures are commonly used in early stages of drug 

development to weed out compounds with features that are likely to be 

associated with safety issues, such as poor bioavailability(Leeson et al., 2007). 

Additionally before drugs enter human trials, toxicology and efficacy are 

evaluated in animal models. Yet the majority of drugs that have good drug-

likeness characteristics and are safe in animal models still fail in human 

trials(Shanks et al., 2009). 

Another challenge that targeted therapies face is the seemingly inevitable 

development of drug resistance. However it has been proposed that combination 

therapies have the potential to prevent and overcome drug resistance(Fitzgerald 

et al., 2006; Komarova et al., 2013). Indeed there have been a number of 

instances in which drug combinations have been successfully approved and 

utilized to prevent resistance, most notably in the treatment of hypertension, 

asthma, and HIV(Foucquier et al., 2015). There is also great interest in utilizing 

combination therapies for the treatment of cancer and they are FDA approved for 

use in various cancer types(Foucquier et al., 2015). However combination 
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therapies are typically identified in highly focused studies based on detailed 

mechanistic knowledge about each drug. As a result, the large drug 

combinatorial space remains largely unexplored. 

The goal of this thesis is to address these diverse challenges that drug 

development pipelines currently face. Three methods are described which 

address drug repositioning, toxicity prediction, and synergy prediction. The first 

method is a drug repositioning approach that can be used to target drivers of 

oncogenic activity. The second method is machine learning method that directly 

predicts whether a compound is likely to have manageable toxicity in clinical 

trials. The third method is a generalizable machine learning method that can 

predict drug synergy based on limited combination testing.  
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CHAPTER TWO 

A COMPUTATIONAL DRUG REPOSITIONING APPROACH FOR TARGETING 

ONCOGENIC TRANSCRIPTION FACTORS* 

 

PREAMBLE 

This chapter consists of a paper that was published in Cell Reports in June 2016. 

The method (CRAFTT) was conceived in partnership with Dr. Olivier Elemento. I 

implemented the method and subsequent computational analyses. The 

experimental follow-up was done by the Rickman lab (D.R., C.C., E.D.) and the 

electronic medical record analysis by the Tatonetti lab (N.T., T.L., M.R.B.). 

INTRODUCTION 

Transcription factors (TFs) are frequently mutated in cancer. These include 

factors that function in a variety of ways, including nuclear hormone receptors, 

resident nuclear proteins, and latent cytoplasmic factors (Darnell, 2002). Classic 

examples of recurrently altered TFs include the tumor suppressor TF gene p53, 

which is mutated in up to 40% of human tumors (Libermann et al., 2006) and yet 

has remained a highly elusive target for reactivation(Mees et al., 2009). 

Examples also include c-Myc, which is also among the most commonly altered 

genes in cancer(Ablain et al., 2011), and ERG and other ETS-family factors, 

which are fused to the androgen-controlled promoters in over 50% of prostate 

cancer patients (Rickman et al., 2012).  

Inhibition of oncogenes and reactivation of tumor-suppressors have become well-

established goals in anticancer drug development(Darnell, 2002). Yet TFs are 

																																																								
*	Gayvert	KM,	Dardenne	E,	Cheung	C,	et	al.	A	Computational	Drug	Repositioning	
Approach	for	Targeting	Oncogenic	Transcription	Factors.	Cell	Rep.	2016;15(11):2348-56.	
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generally considered difficult to drug (Mees et al., 2009). If a strategy could be 

developed for safely and effectively modulating the activity of specific TFs, it 

would have a broad impact on the treatment of tumor types and subtypes driven 

by oncogenic TFs. In theory a similar strategy could be applied to reactivate the 

lost activity of tumor suppressive factors. Potential mechanisms for 

pharmacological activation or inhibition include disruption of direct DNA binding, 

perturbation or prevention of the interaction with cofactors and other interacting 

proteins(Libermann et al., 2006), as well as disruption or activation of upstream 

signaling mechanisms(Mees et al., 2009). Disrupting interactions with co-factors 

and other regulatory proteins is broadly viewed as one of the most promising 

approaches to altering the activity and function of TFs implicated in disease.  

One of the first and best-understood successes in disrupting TFs was the 

identification of the combination of retinoic acid and arsenic trioxide for inhibition 

of the PML/RARA fusion oncogene in acute promyelocytic leukemia (APL). The 

PML/RARA fusion results in the repression of many genes, which in turn blocks 

the differentiation phenotype that is characteristic of APL(Ablain et al., 2011). The 

retinoic acid-arsenic combination induces PML/RARA degradation which 

reactivates the silenced genes(Ablain et al., 2011). A small-molecule, JQ1, was 

recently discovered to inhibit c-Myc and n-Myc, both key regulators of cell 

proliferation, by inhibiting BET bromodomain proteins which function as 

regulatory factors for c-Myc and n-Myc(Delmore et al., 2011; Puissant et al., 

2013). While important, these studies are based on extremely detailed 

knowledge of the mechanisms and structures of the co-factors required for TF 

activity. Such knowledge is not always available and as a result there is no 

systematic way to identify small molecules that can specifically disrupt TF 

activity.  
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To address this unmet need, we developed CRAFTT, a broadly applicable 

Computational drug-Repositioning Approach For Targeting Transcription factors. 

Altogether, our method provides a broadly applicable strategy to identify drugs 

and small molecules that specifically target the activity of individual TFs. Since a 

significant number of tumors are driven by oncogenic TFs or have lost tumor 

suppressive TFs, our approach could potentially have an important impact on the 

development of new therapeutic strategies. For example, our method may be 

applicable to other therapeutically elusive factors with oncogenic activity, such as 

FOXA1 or for reactivating the expression program of tumor suppressive TFs 

such as p53. 

 

RESULTS  

Computational drug repositioning approach rediscovers JQ1 for MYC 

inhibition 

We first set out to quantify the prevalence of somatic mutations in TF genes. We 

found that 45.1% (p<0.001, Permutation test) of cancer samples in COSMIC 

reported a mutation in a TF. Furthermore TFs constitute a significant proportion 

(18.1%) of the genes in the Sanger caner gene census (Figure 2.1). This 

confirmed that the prevalence of genomic alterations in TF genes in cancer is 

indeed substantial and further indicates that TFs should constitute a major class 

of anticancer drug targets.  
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Figure 2.1 - Analysis of COSMIC and TCGA reveals high prevalence of transcription factor 
mutations in cancer, Related to Figure 1. Frequency of alterations in COSMIC for 
transcription factor and kinase genes. Statistical significance was assessed for each 
category for using a permutation test with 1000 random gene sets of the same size. 
Statistical significance for the comparison of transcription factor to kinase alteration 
frequency was assessed using the chi-squared test. (**p < 0.01, ***p < 0.001). 
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To address this need, we reasoned that if drugs could be identified that 

specifically disrupt the expression of the direct target genes of a given TF, then 

these drugs would represent good candidates for perturbing the driving role of 

that particular TF in cancer. We propose CRAFTT, a Computational drug-

Repositioning Approach For Targeting Transcription factor activity. CRAFTT 

consists of two major steps: (1) prediction and (2) prioritization using network 

analysis.  

For the prediction step, we compute a score that represents how the direct 

targets of a TF are modulated by a particular drug. Direct transcriptional target 

genes are identified using ChIP-seq binding data. The drug treatment-induced 

modulation profiles are obtained by analyzing expression profiles from drug 

perturbation experiments, such as those in the Broad Institute’s Connectivity Map 

(CMap)(Lamb et al., 2006), and generating ranked gene lists by sorting the 

genes from most down-regulated to most up-regulated upon treatment. For a 

given TF and drug pair, we implement the Broad Institute’s gene set enrichment 

analysis (GSEA)(Subramanian et al., 2005) approach using the drug-induced 

ranked gene list and the TF’s direct target gene set. Each GSEA analysis yields 

a normalized enrichment score (NES) and corresponding p-value indicating 

whether the TF target gene set is mobilized as a whole by the drug, either 

towards down-regulation (NES>0) or up-regulation (NES<0). p-values are 

corrected for multiple testing using family-wise error rate (FWER) controlling 

procedures. This multiple testing procedure is applied to each drug perturbation 

profile individually, correcting across all TF gene sets that we are testing. We 

consider a drug to be predicted to affect TF activity if the FWER adjusted p-value 

for the pair was less than 10% (FWER<0.1). 
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Next we use network analysis to prioritize the predictions made in the first step of 

CRAFTT. We reasoned that if many of our predictions are indeed true drug-TF 

modulatory interactions, the network path between drug and their predicted 

target TF should be relatively short. This is due to the presumed mechanisms 

underlying the interaction, which would involve signaling molecules immediately 

upstream of TFs in signaling pathways and transcriptional co-factors. More 

broadly, we expected that drug and target TFs would be functionally related and 

therefore be located in vicinity of each other in a global drug-protein network. We 

curated a biological network that contains 22,399 protein-coding genes, 6,679 

drugs and 170 TFs. The protein-protein interactions represent established 

interactions(Aksoy et al., 2013; Das et al., 2012; Khurana et al., 2013), which 

include both physical (protein-protein interactions) and non-physical 

(phosphorylation, metabolic, signaling, regulatory) interactions. The drug-protein 

interactions were curated from several drug target databases(Aksoy et al., 2013; 

Knox et al., 2011).  

For each drug-TF pair, we calculated the network path length (shortest path) 

between the TF and the drug. To account for the biases associated with TFs or 

drugs with large numbers of targets we calculated a normalized path length, 

which we defined to be the probability that the path length would be observed 

given randomized networks that conserved TF and drug degrees(Gobbi et al., 

2014). We then generate a final prediction score, which we term the modulation 

index (MI). The MI is a weighted score that scales the NES score for the drug-TF 

pair (NESd,TF) by the normalized network path length (NPLd,TF). We note that the 

proposed approach does not make any assumptions about the mechanisms by 

which a drug can disrupt the expression program of TFs (Figure 2.2A). Such  
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Figure 2.2 - Methodology overview. 

A. Alterations in transcription factors are frequently observed in tumors, leading to 
aberrant activity. Our method integrates transcriptional binding data and drug-
induced gene expression profiles to make predictions about drugs that may affect 
transcriptional activity. This disruption can occur through a variety of mechanisms, 
including the inhibition or reactivation of direct binding to DNA or disruption via 
cofactors.  

B. Application of our method to JQ1 expression profiles and MYC ChIP-seq. The (left) 
panel illustrates the results for the GSEA involving JQ1 and MYC. The lowest plot in 
the left panel shows the log2 differential expression profile for JQ1, with the locations 
of the MYC target genes marked directly above. Directly above that are the running 
enrichment score and a histogram of the MYC target gene frequency across the 
drug-induced ranked list, which illustrate whether the MYC target gene set is 
enriched in the under- or over-expression regions. In the (middle) panel, the shortest 
path between JQ1 and MYC is shown, with BET Bromodomain proteins lying 
between the two. On the (right), we illustrate that the application of JQ1 results in the 
downregulation of MYC target genes. 
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disruption can occur in a variety of ways, e.g., disruption of interaction with co-

factors and DNA binding disruption.  

As a first proof-of-principle, we applied this approach to JQ1-induced gene 

expression profiles derived from a recent study(Puissant et al., 2013), all CMap 

drug-induced expression profiles(Lamb et al., 2006), and to MYC direct target 

genes, which were derived from ENCODE ChIP-seq data(Encode Project 

Consortium, 2011). We found that JQ1 significantly down-regulated a substantial 

fraction (47%) of the 1,250 MYC direct target genes identified by ChIP-seq 

(FWER<0.001). Furthermore we found that JQ1 had the lowest FWER adjusted 

p-value, highest enrichment score (NES= 5.12) and the shortest possible network 

path length of 2 given the underlying mechanisms of the true interaction. This 

indicated that JQ1 is the best candidate (MIJQ1,MYC= 5120) out of the 1,310 drugs 

that we investigated. Thus, as predicted, our method correctly identified the 

inhibitory effect of JQ1 on MYC-induced transcription (Figure 2.2B).  

Systematic drug-TF analysis predicts that candidate small molecules can 

disrupt TFs 

We next applied our drug repositioning approach to 166 ChIP-seq experiments 

from ENCODE(Encode Project Consortium, 2011) and to the 1,309 drug 

perturbation experiments in CMap(Lamb et al., 2006). This approach identified 

37,638 candidate drug-TF pairs (out of 218,603 possible combinations) (Figure 

2.3A). These candidates included 21,495 predicted activating interactions (a drug 

induces activation of many direct TF targets) and 16,143 inhibiting interactions (a 

drug induces repression of many direct TF targets). In particular, there were 

1,673 selective predictions involving 49 TFs and 1308 drugs that we have greater 

confidence in due to the selectivity of the prediction. 
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Several predicted drug-TF interactions are consistent with the known activity of 

the drugs involved. For example, all four known HSP90 inhibitors that were both 

included in our biological network and in CMap were predicted to repress HSF1 

activity, which was expected given HSP90’s chaperone effect on HSF1(Conde et 

al., 2009). These four HSP90 inhibitors were radicicol (FWER=0.054), 17-AAG 

(FWER=0.031), 17-DMAG (FWER=0.085), and geldanamycin (FWER<0.001). 

Additionally novobiocin, whose antagonism of HSP90 is reported in literature but 

was not annotated in our network, was also recovered by CRAFTT for disruption 

of HSF1 (FWER=0.031). Novobiocin and geldamycin had been previously 

identified to disrupt HSF1 activity through inhibition of HSP90 chaperone activity, 

operating through the inhibition of HSP90 autophosphorylation for novobiocin 

and the binding to the HSP90 site in geldanamycin (Conde et al., 2009). We 

found experimental evidence for numerous other predicted drug-TF interactions 

for both inhibition and reactivation. 

Since experimental validations are not available for the majority of all drug-TF 

pairs, we turned to network analysis to further evaluate the prediction step of our 

approach. Within our curated biological network, there were 35 known drug-TF 

interactions that were also present in both the ENCODE and CMap datasets. The 

majority of these combinations involved a GR agonist (26 combinations) or a 
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Figure 2.3 - Systematic analysis of 166 TFs and 1309 drug perturbation experiments 
identifies approximately 38,000 candidate TF-drug pairs.  

A. Heatmap of the FWER p-values for all TF-drug pairs involving 168 TFs from 
ENCODE and the 1309 drugs from CMap. In the middle panels, we highlight a 
subset of non-predictions with high GSEA FWER scores (top) and predictions with 
low GSEA FWER scores (bottom). On the right, we illustrate that we would expect 
the candidate TF-drug pairs to have shorter network path lengths than non-
predictions. For example, the non-predicted pair ETS1-betazole (p=1, GSEA nominal 
p-value) has a path length of 4 while the predicted pair FOXA2-prochlorperazine 
(p<0.001, GSEA nominal p-value) has a path length of 2. 

B. Normalized network path lengths for the specific predictions (FWER<0.1) and non-
predictions (FWER=1). Statistical significance was evaluated using the Mann-
Whitney Test.  

C. Network visualization of HSF1, all three HSP90 inhibitors covered in CMap and our 
network (monorden, 17AAG, 17DMAG),and four other drugs not predicted to disrupt 
HSF1 disruption (clomifen, yohimbine, oxprenolol, cortisone 
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HDAC inhibitor (7 combinations). Out of the 35 known drug-TF combinations, 

CRAFTT was able to correctly predicted more than expected (n=21, p= 1.708e-

08, Binomial Test). In particular, CRAFTT predicted both the GR agonists 

(p=6.524e-08, Binomial Test) and HDAC inhibitors (p=0.01978, Binomial Test) 

well. Furthermore we observed that the drug perturbation profiles within these 

classes were quite distinct, thus this is not likely due to recovery of the same 

signal. Additionally, about 85% of these combinations were nominally significant 

(p=3.42e-08), which indicates that our approach was able to identify evidence of 

the targeting event. The drug-TF pairs that were not rediscovered generally 

involved drugs or TFs that targeted many genes or were predicted to interact with 

most other drugs or TFs (non-specific). In general, we found that CRAFTT had 

limited predictive ability for drugs with more than 25 targets and TFs with more 

than 2300 target genes. 

To further assess CRAFTT’s predictive ability, we performed a global network 

analysis by computing the network path lengths for all drug-TF pairs that were 

found to be significant (FWER<0.1) in the predictive GSEA step of our approach. 

As described above, we reasoned that true drug-TF interactions should be short 

given the underlying mechanisms of the interactions (Figure 2.3A). Network 

analysis indeed revealed that the network path lengths (normalized shortest 

path) of our predicted specific drug-TF pairs were significantly shorter than the 

path lengths of non-predictions (FWER=1.0) (p=0.00313, Mann-Whitney test) 

(Figure 2.3B). This is illustrated in Figure 2.3C where we show a subnetwork 

centered on HSF1 that includes drugs connected to HSF1 via one or more 

intervening proteins. Predicted HSF1 inhibitors by our transcriptomic approach 

are indeed closer to HSF1 in this subnetwork (red paths) compared to non-

predicted molecules (yellow paths). Altogether, this analysis indicates that our 
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predictions are not random and confirms that many drugs might disrupt TFs by 

targeting regulatory or interacting co-factors. The network analysis provided 

increased confidence in our approach’s predictive capacity. Moving forward, we 

used shorter drug-TF paths to further prioritize drug-TF predictions using our 

combined score (MI).  

 

Identification and validation of small molecules that inhibit the ERG TF 

We hypothesized that CRAFTT could be used to identify molecules that inhibit 

the activity of the pro-invasive, oncogenic TF ERG. This is of an interest due to 

ERG’s overexpression resultant of a tissue specific gene fusion event that occurs 

in as many as 50% of prostate cancer patients. This overexpression results in a 

pro-invasive phenotype in prostate cancer (Elemento et al., 2012; Rickman et al., 

2010; Tomlins et al., 2008). We had previously identified ERG target genes using 

ChIP-seq in RWPE1 benign prostate cells(Rickman et al., 2012). We therefore 

applied our approach to all Connectivity Map drug profiles to identify candidate 

drugs for inhibition of ERG. 

From the prediction step of CRAFTT, we identified eight candidate drugs that 

down-regulate ERG target genes: dexamethasone (FWER=0.086), naproxen 

(FWER=0.048), acemetacin (FWER=0.087), ondansetron (FWER=0.061), 

epitiostanol (FWER=0.069), diloxanide (FWER=0.003), methanthelinium bromide 

(FWER=0.046) and isoflupredone (FWER=0.088). Five of these candidate drugs 

were contained in our biological network: dexamethasone (MI=1015.85), 

naproxen (MI=530.90), acemetacin (MI= 2167.88), ondansetron (MI= 3.35), and 

epitiostanol (MI= 520.99) (Figure 2.4A). An initial network analysis suggested 
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that dexamethasone, naproxen, acemetacin and epitiostanol were the best 

candidates due to their large modulation indices. 

Next we performed an additional analysis to use with our CRAFTT methodology 

to further prioritize our drug candidate list. We used gene expression (RNAseq) 

from RWPE1 prostate cells to filter out genes that have low expression in the 

network, which we defined as RPKM<4. This analysis resulted in dexamethasone 

being identified as the drug with the shortest path length and highest modified 

modulation index (MI=9.26, Figure 2.4B). 

Since dexamethasone has not previously been linked to ERG, we next sought to 

experimentally test our hypothesis that dexamethasone would be able to reverse 

ERG-induced oncogenic phenotypes through disruption of ERG in ERG-

expressing prostate cancer cells. One of the top target genes that was reversed 

by dexamethasone in the CMap profile was the urokinase plasminogen activator 

(PLAU), which is a known ERG target gene that has been previously implicated 

in ERG-mediated cell invasion in multiple cancers and models (Tomlins et al., 

2008). We found experimentally that dexamethasone abrogated expression of 

the ERG target gene PLAU in both DU145 cells expressing ERG and in VCaP 

cells with high endogenous levels of ERG (Figure 2.4C). In comparison, 

dexamethasone was weakly active in the control GFP cells (Figure 2.4C).  
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Figure 2.4 - Identification of dexamethasone as a candidate drug for inhibition of ERG 
activity. 

A. Network visualization illustrating path lengths from ERG to five candidate drugs for 
ERG inhibition (dexamethasone, naproxen, acemetacin, ondansetron, epitiostanol). 
The node sizes correspond to the gene expression levels, with the larger size 
representing a higher expression level. If low expression genes are removed 
(RPKM<4), the path lengths for naproxen and acemetacin are increased while the 
paths from ondansetron and epitiostanol are completely disrupted. The 
corresponding table shows metrics that describe each of these drugs in relation to 
ERG: NES is the Normalized Enrichment Score obtained from GSEA, PL is the 
shortest network path length required to connect ERG to the drug, MI is the 
modulation index and MI * is modulation index respectively after low expression 
genes were removed (RPKM<4). 

B. Application of our method to dexamethasone expression profiles and ERG target 
genes. The (left) panel illustrates the results of the GSEA for ERG and 
dexamethasone. The lowest plot of the left panel shows the log2 differential 
expression profile for dexamethasone, with the ERG target genes marked directly 
above. Above are the running enrichment score and a histogram of the ERG target 
gene frequency, which illustrates whether the gene set is enriched in the under- or 
over-expression regions. The (middle) panel shows a subnetwork including all genes 
that were members of any shortest path between ERG and dexamethasone. The 
(right) panel illustrates our prediction that the application of dexamethasone would 
result in the downregulation of activity of ERG target genes. 

C. ERG target gene PLAU expression by RT-PCR in cell lines expressing ERG (DU145-
ERG, VCaP) and controls (DU145-GFP) after treatment with vehicle or 
dexamethasone. Data are shown as mean ± SEM. Asterisks indicate statistically 
significant differences by paired t test and n = 3 for each condition (∗p < 0.05,∗∗p < 
0.01, ***p < 0.001, ns - not significant). 

D. Cell invasion and migration in cell lines expressing ERG (DU145-ERG) and controls 
(DU145-GFP). The data are shown as mean ± SEM and at n=4 representation 10x 
field of view. Asterisks indicate statistically significant differences by paired t test and 
n = 3 for each condition (∗p < 0.05,∗∗p < 0.01, ***p < 0.001, ns - not significant). 

E. The binding of ERG and a control (IgG) by ChIP-PCR at the promoter of its target 
gene PLAU and at a negative control (ARHGEF) in cell lines expressing ERG 
(DU145-ERG, VCaP). Data are shown as mean ± SEM. Asterisks indicate 
statistically significant differences by paired t test and n = 3 for each condition (∗p < 
0.05,∗∗p < 0.01, ***p < 0.001, ns - not significant). 
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To further test the inhibitory effect of dexamethasone on ERG activity, we treated 

a newly derived ERG over-expressing cell line derived from PTEN-/-/ERGRosa26 

prostate tumors in transgenic mice (Chen et al., 2013). Consistent with the 

commercially available human prostate cancer cells, dexamethasone treatment 

resulted in a dose-dependent decrease in mouse PLAU mRNA expression 

(Figure 2.5A).  

Using cell invasion and migration assays, we then found that dexamethasone 

significantly decreased cell invasion and migration in DU145 prostate cancer 

cells over-expressing ERG, but not in isogenic control cells (Figure 2.4D, Figure 

2.5B). High-resolution microscopic images revealed that dexamethasone helps 

the cells partially regain polarity, which may be a potential mechanism for 

reduced cell invasion (Figure 2.5C). As expected from published literature on the 

mostly invasive oncogenic role of ERG, we found that ERG inhibition via 

dexamethasone treatment had no effect on cell viability in vitro (Figure 2.5D). 

Finally, we found using ChIP-PCR that dexamethasone substantially decreased 

binding of ERG at the PLAU promoter in both DU145-ERG and VCaP cells 

(Figure 2.4E). Altogether, these experimental results support CRAFTT’s 

computationally derived prediction that dexamethasone inhibits ERG activity. 

CRAFTT’s predicted Dexamethasone-ERG interaction is independent of AR 

and GR 

Dexamethasone is a glucocorticoid receptor (GR) agonist, which suggests that 

GR, encoded by NR3C1, may play a role in ERG-mediated gene expression. We 

found that siRNAs targeting NR3C1 mRNA lowered GR levels by 80% in the 

DU145-ERG cells (Figure 2.5E). Although GR seems to play a role in PLAU 

regulation in the absence of ERG, lowering GR levels did not significantly alter  
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Figure 2.5 - Experimental support of dexamethasone for modulation of ERG activity. 
A. PLAU expression by RT-PCR after treatment with dexamethasone in mouse ERG 

over-expressing cell lines derived from prostate cancer tumors in transgenic mice. 
Data are shown as mean ± SEM. Asterisks indicate statistically significant 
differences by paired t test for each dosage compared to 0nM (***p < 0.001). 

B. Cell invasion and in DU145 ERG-expressing cell lines and isogenic controls after 
treatment with vehicle or dexamethasone. 

C. Imaging in ERG/PTEN cells after treatment with vehicle or dexamethasone. 
D. Dose response curves following a 72 hr incubation at the indicated dose of 

dexamethasone for DU145 clones stably over-expressing ERG (orange) or GFP 
(blue) or VCaP (green) cells. 

E. DU145 cells were treated with siRNAs targeting NR3C1 mRNA that lowered GR 
levels by 80% in the DU145-ERG cells. Data are shown as mean ± SEM. Asterisks 
indicate statistically significant differences by two-tailed paired Student’s t test (∗p < 
0.05,∗∗p < 0.01, ***p < 0.001, ns – not significant). 

F. DU145 cells were treated with siRNAs targeting NR3C1 mRNA or controls. PLAU 
expression in DU145 cell lines expressing ERG and controls (GFP) was quantified 
using RT-PCR after treatment with vehicle or dexamethasone. Data are shown as 
mean ± SEM. Asterisks indicate statistically significant differences by paired t test (∗p 
< 0.05,∗∗p < 0.01, ***p < 0.001, ns - not significant). 

G. Quantification of AR, PSA, and TMPRSS2 expression in VCaP after treatment with 
dexamethasone. Data are shown as mean ± SEM. Asterisks indicate statistically 
significant differences by paired t test for each dosage compared to 0 nM (∗p < 
0.05,∗∗p < 0.01, ***p < 0.001, ns - not significant). 
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dexamethasone’s impact on PLAU expression in ERG positive cells (Figure 

2.5F). Additionally, we found that AR target genes were not substantially 

mobilized by dexamethasone and screening of VCaP cells showed that 

dexamethasone had little effect on AR signaling (Figure 2.5G). Altogether, these 

results indicate that dexamethasone-mediated ERG inhibition occurs 

independently of GR and AR signaling. 

We next looked to see what CRAFTT would predict for another 

glucocorticosteroid that is used in the treatment of prostate cancer, prednisone. 

We found that CRAFTT predicted that prednisone would not inhibit ERG activity 

and subsequent experiments involving the active form of prednisone, 

prednisolone, supported this finding. Recent clinical trials for castration refractory 

prostate cancer (CRPC), in the absence of ERG fusion status, have suggested 

that there is an advantage to using dexamethasone over prednisolone, the active 

form of prednisone, due to improved patient PSA response rates (37% on 

dexamethasone compared to 17% on prednisolone)(Venkitaraman et al., 2013).  

Electronic Health Record analyses support CRAFTT’s predictions 

To further investigate the correlation between dexamethasone treatment and 

prostate cancer, we performed a retrospective analysis of electronic health 

records (EHRs) at Columbia University Medical Center (CUMC). Kaplan-Meier 

survival analysis was performed using the time from first-prescription of drug to 

prostate cancer diagnosis (censor point) on an age-adjusted cohort of male 

patients. Significance was assessed using the Cox proportional hazards test. 

Dexamethasone patients had a statistically significant greater likelihood of not 

getting diagnosed with prostate cancer than patients on prednisone (p<0.001), 

patients on simvastatin (p<0.001), and patients on any of the top 100 prescribed 
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drugs (p<0.001) (Figure 2.6A). We next constructed a logistic regression model 

to assess the relationship of the dexamethasone and other control treatments 

and prostate cancer diagnosis independent of known prostate cancer 

confounders. The results of our regression model showed a protective effect for 

dexamethasone administration versus other control treatment groups that was 

independent of other known risk factors. Thus dexamethasone appears to both 

be protective against prostate cancer (perhaps through its inhibitory effect on 

ERG-rearranged tumors as predicted in this study) and more active than 

prednisolone both in its protective effect and in the treatment of CRPC. We note 

that these results are still largely correlative in the absence of ERG molecular 

status for EMR patients, which we could not obtain for this study. 

CRAFTT predicts candidate drugs for reactivating TF activity 

CRAFTT also made predictions about drugs for transcriptional reactivation. We 

found that there was an enrichment of histone deacetylase inhibitors (p<0.0001, 

Permutation test) amongst our reactivation predictions, indicating that CRAFTT is 

successful in identifying true drug-TF interactions. Thus we hypothesized that we 

could identify a drug that reactivates the tumor suppressor TF p53. The 

application of CRAFTT to p53 ChIP-seq (Kittler et al., 2013) and subsequent 

network analysis identified promethazine (FWER<0.001) as a therapeutic option 

for reactivation of p53 activity. Analysis of DTP-NCI60 drug sensitivity data 

(Reinhold et al., 2012) further supported this prediction, as we found that the 

mutant p53 cell lines were significantly more sensitive to promethazine than the 

wild-type p53 cell lines (p= 0.0376, Mann-Whitney test, Figure 2.6B). We next 

looked to see whether any predicted drugs for p53 activity reactivation targeted 

genes had been previously identified as necessary for growth in TP53 deficient 

cells (Xie et al., 2012). We found that seven of the drugs predicted by CRAFTT to 
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reactivate p53 activity target genes from that list: pentetrazol, naftopidil, oxedrine, 

capsaicin, ifenprodil, flumetasone, and dexpropranolol. Altogether this suggests 

that that our approach can be used to identify candidates for reactivation of TFs 

frequently lost in cancer. 

 

 

 

Figure 2.6 – Extended Analyses of CRAFTT Predictions. 

A. Kaplan-Meier survival analysis for time from first-prescription of drug to prostate 
cancer diagnosis (censor point) using an age-adjusted cohort of male patients was 
performed for patients treated with dexamethasone, prednisone, simvastatin and top-
100 prescribed drugs. Statistical significance was assessed using cox proportional 
hazards test for the comparison of dexamethasone to each other drug. 

B. The drug concentration required to inhibit 50% growth (GI50) in mutant p53 and wild-
type p53 cell lines in the NCI DTP. Statistical significance was assessed using the 
Mann-Whitney test. 
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DISCUSSION  

Traditionally, TFs have been considered difficult to drug and attempts at 

identifying drugs that affect TFs unfruitful. While recent breakthroughs have 

begun to experimentally identify molecules that indirectly modulate transcriptional 

activity, we propose a method (called CRAFTT) to do so computationally and 

systematically. Since cancer subtypes are frequently associated with aberrant TF 

activity often due to somatic mutations, our approach has the potential to broadly 

impact the development of new therapeutic strategies in these subtypes. 

We first looked to see if CRAFTT could rediscover known cases of drugs that 

affect TF activity. We found that when we applied our method to transcriptional 

binding site data and drug profiles from known cases, we could indeed 

rediscover these connections. We then used CRAFTT to identify dexamethasone 

as a candidate for inhibition of ERG activity and follow-up experiments supported 

this prediction. We also found that dexamethasone had a similar effect in recently 

isolated mouse cell lines as it did in the human cell lines. This suggests that 

mouse models could be used to further follow-up on the therapeutic use of 

dexamethasone in treatment of the ERG-overexpression cancer subtypes. 

While CRAFTT was successful in the identification of drugs for affecting 

transcriptional activity, there are areas that could further improve its predictive 

capacities. While the shortest path analysis provides support for our predictions 

and is only used in prediction prioritization, we cannot rule out that individual 

predictions may be affected by bad edges, especially in our protein-protein 

interaction network. However a network sensitivity analysis does suggest that our 

network is robust to missing network edges. This is likely due to the high 

interconnectivity of the netwo+rk, which has an average path length of 3.6. This 
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high interconnectivity also explains the bimodality in the normalized path lengths, 

with the first and second peaks corresponding to shorter and longer observed 

path lengths than average for a drug-TF pair with the same network degree 

respectively. 

Additionally, the ChIP-seq that we used to derive binding site data was obtained 

from wild-type TFs. However we note that our approach was able to capture true 

drug-TF interactions, at least in part due to these variants often causing 

constitutive expression and binding of the TF instead of dramatic disruption and 

changes to binding sites. However as more mutant TF binding data becomes 

available, we will be able to adapt and apply our approach in a more targeted 

and physiologically relevant manner. ChIP-seq peak calling procedures are also 

known to be error-prone. While we have taken steps to control for binding 

hotspots, our method will also benefit as improved peak calling methods become 

available.  

Finally, the Connectivity Map data that we analyzed was in a collapsed format, 

which limits the robustness of the predictions. The Broad Institute has recently 

released an updated version of the Connectivity Map, which includes a 1000-fold 

scale up and will better allow us to utilize the variability in replicates. We also 

intend to apply CRAFTT for the identification of candidate drugs for modulating 

the activity of other TFs that are historically elusive but desirable for targeting, 

such as FOXA1 and XBP1. 
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CHAPTER THREE 

A DATA DRIVEN APPROACH TO PREDICTING DRUG TOXICITY* 

 

PREAMBLE 

This chapter consists of a paper that was published in Cell Chemical Biology in 

October 2016. The method (PrOCTOR) was conceived in partnership with Dr. 

Olivier Elemento. I implemented the method and subsequent analyses. Neel 

Madhukar contributed to model interpretation and follow-up analyses. 

INTRODUCTION 

Failures in all phases of clinical trials have skyrocketed over the past three 

decades, with a substantial portion occurring for safety reasons (Hay et al., 2014; 

Ledford, 2011). This is occurring despite improvements in all stages of the drug 

development pipeline (Scannell et al., 2012). One of the key areas of 

improvement has been the screening for drugs likely to fail clinical trials.  

Drug-likeness measures have been widely accepted as a useful guide for filtering 

out toxic molecules in the early stages of drug discovery. Lipinski first proposed 

this concept over a decade ago with his Rule of 5 (Ro5), a set of four 

physicochemical features associated with orally active drugs that were derived 

from analyzing clinical drugs that reached Phase II trials or beyond(Lipinski et al., 

1997). This concept enhanced the drug discovery process by providing a set of 

practical filters that became widely adopted in drug development pipelines. 

However Lipinski noted that the Ro5 is a very conservative predictor and passing 

the rule does not guarantee drug-likeness (Lipinski, 2004). Modified rule sets 
																																																								
*	Gayvert	KM,	Madhukar	NS,	Elemento	O.	A	Data-Driven	Approach	to	Predicting	
Successes	and	Failures	of	Clinical	Trials.	Cell	Chem	Biol.	2016;23(10):1294-1301.	
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have since been proposed, such as Veber’s Rule(Veber et al., 2002) and 

Ghose’s Rule(Ghose et al., 1999), to include more properties associated with 

bioavailability, such as Polar Surface Area, and to improve upon the concept 

proposed by Lipinski. More recently, the Quantitative Estimate for Drug-likeness 

(QED) was proposed as an alternative to rule-based methods (Bickerton et al., 

2012). 

The adoption of drug-likeness concepts early in the drug discovery process has 

been shown to reduce attrition rates (Leeson et al., 2007). However despite 

these advances in identifying potentially toxic drugs, clinical trial attrition rates 

have continued to rise (Hay et al., 2014). While oral bioavailability is highly 

relevant to drug toxicity, there are other factors that also contribute to clinical trial 

toxicity events. To address this problem, we propose a new approach for 

predicting odds of clinical trial outcomes (PrOCTOR). 

 

RESULTS 

Analysis of clinical trials data reveals limitations of structural-based 

approaches 

Drug-likeness approaches have been important and informative in guiding the 

drug development process. However they cannot distinguish drugs with 

unmanageable toxicity profiles from safe ones (Bickerton et al., 2012; Leeson et 

al., 2007). We verified this quantitatively by comparing drugs that have failed 

clinical trials with FDA approved drugs. To this end, we downloaded data from 

The Database for Aggregate Analysis of ClinicalTrials.gov (AACT)  41 39 38 38 38 34 34 

34 34 34 34 34 at ClinicalTrials.gov and extracted the names of the drugs associated 

with 108 clinical trials of any phase that were annotated as having failed for 



 

 29 

toxicity reasons. The comparative list was developed from the 1013 FDA 

approved drugs that were annotated as FDA approved in the DrugBank 

database(Law et al., 2014).  

For the drugs in these lists, we tested existing methods for their ability to 

distinguish approved drugs from those that failed for toxicity in trials (FTT drugs). 

Most FDA approved drugs pass Lipinski’s Rule of Five(Lipinski et al., 1997) 

(80.6%) and Ghose’s(Ghose et al., 1999) (64.9%) rules, but so do most of the 

FTT drugs (73% Lipinski, 54% Ghose). In contrast, Veber’s rule(Veber et al., 

2002) appears to be a far too conservative measure, with 75.2% of approved and 

92% of FTT drugs being predicted to fail. Finally the QED approach, which 

calculates a continuous score(Bickerton et al., 2012), is also unable to 

significantly distinguish the two classes (p=0.1069, D=0.10703, Kolmogorov-

Smirnov Test). This analysis further highlights the unmet need to develop 

strategies for predicting the likelihood of toxicity in clinical trials. 

Computational approach accurately predicts likelihood of clinical trial 

failure 

Because all of the drug-likeness methods consider only the chemical properties 

of a molecule, we reasoned that a new approach that includes overlooked 

features related to the results of a drugs performance could prove to be highly 

impactful, similar to the effect that adopting sabermetrics had on the baseball 

scouting process as described in Michael Lewis’s Moneyball(Lewis, 2003). A 

specific example is the consideration of target-related properties, such as tissue 

selectivity (an ideal target would be found only in diseased tissue and sparsely 

anywhere else). We suggest that such considerations could be useful in 

determining potential toxic effects.  
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The inferences gained from the analysis of the various methods and the 

consideration of additional characteristics in the prediction of tolerable toxicity in 

clinical trials led to the development of our new approach for predicting odds of 

clinical trial outcomes using random-forest (PrOCTOR). PrOCTOR integrates 

established informative chemical features of the drugs with target-based features 

to produce a classifier that is able to distinguish FDA approved drugs from FTT 

drugs. Random forest(Breiman, 2001b), a decision tree based machine learning 

model, is used to address the classification problem of clinical trial drug toxicity 

(Figure 3.1). The random forest model builds a set of 50 decision trees with a 

subset of features (see below) within each tree and assigns the predicted 

outcome to be the consensus of the trees. 

The set of 48 features describing each drug contains 10 molecular properties, 34 

target-based properties and 4 drug-likeness rule features. Given their established 

validity, we chose to include the molecular properties considered by the Lipinski, 

Veber and Ghose rules. We found that, individually, some of these properties 

had slight but significant power to discriminate between FDA approved drugs and 

FTT drugs when applied to our lists of drugs in the two categories (Figure 3.2A). 

Additional features represent the compatibility of the compounds with the drug-

likeness approaches. Each drug’s known targets were annotated from the 

DrugBank dataset (Law et al., 2014) and used to derive an additional set of 

target-based properties. We considered the median expression of the gene 

targets in 30 different tissues, such as the liver and the brain, calculated from the 

Genotype-Tissue Expression (GTEx) project(Consortium, 2015). Other target- 
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Figure 3.1. Method Schematic. Our approach integrates chemical properties, drug-likeness 
measures and target-based properties of a molecule into a random forest model to predict 
whether the drug is likely to be a member to fail clinical trials for toxicity reasons.  

 
Figure 3.2. Distributions of select (a) chemical features, and (b) target-based model 
features. The Kolmogorov-Smirnov D statistic and p-value are shown for the comparison of 
failed toxic clinical trial (FTT) drugs (red) and FDA approved drugs (blue). 
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based features represent the network connectivity of the target, with gene degree 

and betweenness features, computed using an aggregated gene-gene 

interaction network (Aksoy et al., 2013; Das et al., 2012; Khurana et al., 2013), 

and a feature that represents the loss of function mutation frequency in the target 

gene, extracted from the Exome Aggregation Consortium 

(ExAC) database(Exome Aggregation Consortium (ExAC)). Like the chemical 

properties, we found that some of these target-based features also were able to 

weakly but significantly discriminate between FDA approved drugs and FTT 

drugs (Figure 3.2B). Not surprisingly, many of the features within the target-

based or the chemical category were highly correlated with each other. Since we 

found the target expression values to be highly correlated, principle component 

analysis was applied to all target expression values in order to reduce the feature 

dimensionality. In place of the raw expression values, the first three principle 

components were instead used. However there was little correlation between the 

two classes of features (maximum Pearson correlation of r=0.1942). Thus the 

target-based features add information independent of the chemical features into 

the model. 

The approach was tested by performing 10-fold cross validation on a set of 784 

FDA approved drugs with known targets and the drugs associated with 100 FTT 

that had at least one annotated target and known chemical structure. We found 

that PrOCTOR had significant predictive performance, with an area under the 

receiver operator curve (AUC) of 0.8263 (Figure 3.3A). At the optimal point of 

the curve the method achieved an accuracy (ACC) of 0.7529, with both high 

sensitivity (true positive rate (TPR) of 0.7544), and high specificity (true negative 

rate (TNR) of 0.7410). By comparison, on this same dataset the Ro5 and Ghose 

rules had a TPR of 0.8030 and 0.6468, respectively, and a TNR of 0.27 and 0.46 
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respectively. Application of the Veber method achieved a TPR of 0.2465, and a 

TNR of 0.92. (Figure 3.3A). The ROC curve of both the unweighted and 

weighted versions of the QED method fell significantly below that of PrOCTOR’s 

ROC curve (AUC=0.581, p<2.2e-16, Wilcoxon signed rank test), indicating that 

PrOCTOR is able to better distinguish the FTT and approved drug classes. 

Furthermore, PrOCTOR’s approval probability allows for the separation of the 

drugs of the FFT and FDA approved classes (D=0.5343, p< 2.2e-16, 

Kolmogorov-Smirnov test) (Figure 3.3B) on a continuous scale.  

We further assessed the approach by applying PrOCTOR to drugs that are 

approved in Europe (EMA-Approved) or in Japan (JP17) but not annotated as 

being FDA approved in our dataset. When compared to the FTT drugs in our 

training set, we found that EMA-Approved (p<2.2e-16, Mann–Whitney U Test) 

and JP17 drugs (p= 9.84e-14, Mann–Whitney U Test) were predicted to be 

significantly safer and had a similar distribution of PrOCTOR scores to the class 

of FDA Approved Drugs (Figure 3.3C). 

Next, we applied PrOCTOR to 3,236 drugs that were in DrugBank and not in our 

training set. We found that the predicted toxic drugs had significantly more 

frequent reports of serious adverse events, such as death and renal failure, than 

predicted safe drugs in the openFDA resource of drug adverse events 

(https://open.fda.gov) (Figure 3.3D). Furthermore, we found that safe predictions 

were enriched for classes of drugs that are known to be relatively safe, such as 

antidepressants, stimulants, and serotonin-related drugs. In comparison, toxic 

predictions were enriched for known toxic classes of drugs, such as 

immunosuppressive agents and antineoplastic agents. 

  



 

 34 

 

Figure 3. Benchmarking Model performance. (a) Receiver operating characteristic (ROC) 
curves for PrOCTOR, three drug-likeness rules (Ro5, Veber, Ghose) and both the weighted 
and unweighted QED metrics. (b) PrOCTOR scores and the Q.E.D. metric for approved and 
failed toxic clinical trial (FTT) drugs. (c) PrOCTOR scores for the FDA approved and FTT 
drugs in the training set, as well as EMA-Approved and Japanese-Approved (JP17) drugs 
after removal of FDA approved drugs. Statistical significance was assessed for FDA, EMA, 
and JP17 vs FTT drugs using the Mann-Whitney U Test. (d) Reported frequencies, 
normalized to the most frequently reported adverse event, in the openFDA database for 
predicted toxic (red, score<-1) and predicted safe drugs from the DrugBank dataset. (e) The 
top three molecules predicted by PrOCTOR as most likely to be FDA approved are 
phenindamine, carbinoxamine, and chlorcyclizine. (f) The three molecules predicted by 
PrOCTOR as most likely to fail clinical trials for toxicity reasons are docetaxel, bortezomib, 
and rosiglitazone. 



 

 35 

We also applied our approach to 137 drugs annotated as most-DILI-concern and 

65 drugs of no-DILI-concern by the FDA. We found that the most-DILI-concern 

drugs had 1.5-fold higher odds of being classified as toxic by PrOCTOR than the 

no-DILI-concern drugs. More generally, the most-DILI-concern drugs had higher 

PrOCTOR scores than the no-DILI-concern drugs (p= 0.0005, Mann–Whitney U 

Test). This suggests that our model is able to generalize beyond the training set. 

Identification of FDA drugs with increased likelihood of toxicity events 

Next we looked to evaluate the predictions of our approach by analyzing 

PrOCTOR’s predictions for FDA approved drugs. A PrOCTOR score expressing 

the log2(odds of approval) was calculated taking the log2 of the ratio of the 

PrOCTOR-predicted probability of approval to the probability of failure. 

The three molecules identified by PrOCTOR as most likely to receive FDA 

approval were phenindamine, carbinoxamine, and chlorcyclizine (Figure 3.3E). 

All three of these drugs are FDA approved antihistamines with highly tolerable 

side effects. Interestingly, all three of these drugs pass the Ro5 but have 

relatively low QED values (0.311, 0.242, and 0.499 respectively).  

The three molecules with the worst PrOCTOR score and thus predicted as most 

likely to fail clinical trials for toxicity reasons were docetaxel, bortezomib, and 

rosiglitazone (Figure 3.3F). Of note, all are FDA approved drugs that have been 

associated with serious toxicity events. Docetaxel is a chemotherapy agent used 

to treat a number of cancers(Massacesi et al., 2004; Puisset et al., 2007). The 

most frequent adverse event associated with docetaxel is neutropenia, a 

potentially life threatening event that often results in delay of treatment(Puisset et 

al., 2007). It also fails the Ro5 and has an extremely low QED of 0.147, 

suggesting that this prediction is consistent with other drug screening methods. 
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Bortezomib is a proteasome inhibitor used for treatment of relapse multiple 

myeloma that has a moderate QED value of 0.476 and passes the Ro5. While it 

was FDA approved due to its significant antitumor activity, it has been associated 

with frequent adverse events, such as peripheral neuropathy, that are thought to 

in part be due to nonproteasomal targets (Arastu-Kapur et al., 2011). 

Rosiglitazone is an antidiabetic drug that also passes the Ro5 and has a high 

QED value of 0.825. However it has been linked with an elevated risk of heart 

attack(Nissen et al., 2007) and consequently was withdrawn from the market in 

Europe in 2010(Blind et al., 2011). This suggests that existing methods were not 

necessarily able to foresee the adverse events associated with these latter two 

compounds.  

These compounds bring to attention the importance of context when considering 

toxicity events. In general, more frequent and serious side effects will be 

acceptable for drugs that are used to treat severe and otherwise untreatable 

conditions, such as cancer. This is an important consideration to keep in mind 

when determining acceptable score ranges in drug development. Additionally, it 

highlights the shortcomings of rule-based methods, which are unable to quantify 

the extent to which a drug may have undesirable characteristics since a molecule 

that just barely fails one requirement is equivalent to one that substantially fails 

all requirements. 

We further assessed what insights the predictions from PrOCTOR can offer 

regarding toxic effects using the SIDER side effect resource database (Kuhn et 

al., 2010). We hypothesized that drugs with better PrOCTOR scores would have 

less frequent severe side effects reported due to their more tolerable toxicity 

profiles. We first compared all drugs predicted to be approved by PrOCTOR (via 

cross-validation), including those misclassified, to those predicted to be of the 
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FTT class. We found that the predicted FTT drugs had significantly more 

frequent severe side effects, such as neutropenia (37.3% vs 14.3%, p=1.78x10-7, 

Fisher-Exact test) (Figure 3.4A). When comparing the drugs with the top 10% 

best PrOCTOR scores to those within the bottom 10%, this distinction was even 

greater with severe toxic events, such as neutropenia (54.8% vs 13.4%, 

p=1.72x10-6, Fisher-Exact test) and pleural effusion (47.6% vs 5.2%, p=2.59x10-

7, Fisher-Exact test), occurring far more frequently in the predicted FTT class.  

Furthermore, we found that these severe side effects were significantly 

negatively correlated with the PrOCTOR score. For example, the spearman’s 

correlation coefficient of the binned pleural effusion frequency against the 

PrOCTOR score was ρ=−0.9792 (Figure 3.4B) and for neutropenia was 

ρ=−0.9613 (Figure 3.4C). In comparison, the frequent side effect of dizziness 

still occurred more frequently in the predicted toxic drugs but had a much weaker 

correlation of ρ=−0.5070. Thus the predictions of PrOCTOR are consistent with 

reported adverse events, with the PrOCTOR score negatively correlating with the 

reported severe side effects that would ultimately contribute to a drug’s success 

in clinical trials. 
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Figure 3.4. Side Effects. (a) Adverse events that occur more frequently in predicted failed 
toxic clinical trial (FTT) drugs compared to predicted approved drugs. (b) Binned frequency 
of pleural effusion across PrOCTOR score bins. (c) Binned frequency of neutropenia across 
PrOCTOR score bins.	

 

Model reveals insights about how various properties can contribute to or 

help avert toxicity 

We evaluated what insights PrOCTOR can offer about successful drugs. A 

feature importance analysis showed that both the chemical and target-based 

features contribute significantly to the performance of the PrOCTOR algorithm. 

The first expression principle component, QED metric, polar surface area, and 

the drug target’s network connectivity emerged as the four most important 

features (Figure 3.5A-B), thus target-based features were identified as highly 
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important features for predicting toxicity. Using target-based features alone, 

PrOCTOR achieved a significant predictive performance (ACC=0.7115). Our 

approach relies on existent annotation of drug targets to calculate these features. 

However this information is often not available during the drug development 

stage. We found that our method is robust to removal of targets (Figure 3.5C) 

and additionally maintains a significant predictive performance (ACC= 0.6708) in 

absence of known target information. However PrOCTOR’s performance remains 

strongest when including both the chemical and target-based features 

(ACC=0.7529). 

We next investigated the relationships between the features in the model. We 

found that certain combinations of uncorrelated features provided greater 

discriminative power. For example, Bickerton et al. (Bickerton et al., 2012) 

reported that the QED approach outperformed other drug-likeness methods 

when the threshold was set at 0.35. We found that 75% of drugs with QED<0.35 

were approved. However when high testis expression (FPKM>10) was added 

into consideration, 88.5% of FTT drugs were accurately be classified. 

Additionally, tissue selectivity is a useful consideration in determining potential 

toxic effects. We hypothesize that this may be due to some tissue-specific toxicity 

events being associated with the drug target’s expression in normal tissue.  We 

found that 84% (38/45) of drugs with high molecular weight (MW>500) but low 

general tissue expression (PC1< -2) were FDA approved. Thus if a gene appears 

to be a promising target for mechanistic reasons while appearing ill-suited due to 

high global expression profiles, it still may remain a viable candidate given that 

certain molecular properties are satisfied. 
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Figure 3.5. Feature Importance and Model Robustness. Mean decrease Gini coefficient 

observed upon feature removal for the top 20 features (a) with all individual expression 

features and (b) with top 3 expression principle components instead of individual expression 

features. (c) Violin plots showing the range of AUC, accuracy, sensitivity and specificity for 0-

5 targets removed.  
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DISCUSSION 

Drug-likeness approaches, as first proposed by Lipinski almost two decades ago, 

have become a key tool for the pre-selection of compounds that are likely to have 

manageable toxicity in clinical studies. However all these methods consider only 

the molecular properties of the drug itself. We have proposed a data-driven 

approach (PrOCTOR) for predicting likelihood of toxic events in clinical trials that 

moves beyond existing drug likeness rules and measures by not only considering 

the chemical properties of a molecule, but also the properties of the drug’s target. 

When trained on failed clinical trials and FDA approved drugs, the PrOCTOR 

score performs at high accuracy, specificity and sensitivity. Furthermore, the 

PrOCTOR score strongly correlates with reported severe adverse events. 

While phase I trials are designed to investigate safety, drugs can fail at any stage 

for toxicity reasons and additionally can fail phase I trails for non-safety reasons. 

Lipinski’s Ro5 was derived using the set drugs that had succeeded to phase II 

trials, under the assumption that undesirable drugs would have been eliminated 

in Phase I (Lipinski et al., 1997). However it has been observed that a substantial 

number of drugs fail in Phase II trials and beyond for safety reasons (Ledford, 

2011). Additionally many of the drug-likeness measures were developed using 

larger representative datasets in place of clinical trial data(Bickerton et al., 2012). 

While these methods are important, they are focused on subtly different 

problems such as bioavailability. We have shown above that these approaches 

are not able to sufficiently capture clinical trial safety. There have been a number 

of other methods that have been developed to predict toxicity events as well. A 

recent DREAM Challenge focused on predicting cytotoxicity in lymphoblastoid 

cell lines, however primarily focused on environmental toxins(Eduati et al., 2015). 

Similarly, the EPA’s extensive ToxCast dataset is covered predominantly by non-
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therapeutic chemicals(USEPA, 2016). Other toxicity prediction methods, such as 

those in AMBIT, have been developed to address other toxicity-based questions, 

including model organism and tissue-specific toxicities(Jeliazkova et al., 2011). 

QSAR models are also frequently used for toxicity prediction. However they have 

generally been applied to the prediction of specific toxicity endpoints, such as 

drug LD50 values, tissue-specific toxicity events or for the estimation of maximum 

tolerated dose levels (Patlewicz et al., 2016). Finally, PK/PD models are highly 

valuable tools for identifying toxicological properties of drugs preclinically, but 

must be independently constructed for every drug and thus would benefit from 

more high-throughput methods for toxicity prediction(Sahota et al., 2016). 

Consequently, we selected the set of drugs that failed any phase of clinical trials 

for toxicity reasons to develop our approach.  

We have also only addressed the issue of general clinical trial toxicity. However 

some indications, such as cancers, have more critical needs and consequently 

allow for higher toxicity levels. As a result, our model may predict some 

promising anti-cancer drugs to have unmanageable toxicity levels. Since 

PrOCTOR outputs a score, instead of just a prediction, a different threshold for 

allowable toxicity may be considered for different indications. A preliminary 

testing of this idea on cancer-only drugs with cancer type added as a feature 

demonstrated improved predictive power on this subset of drugs (ACC=0.74, 

AUC=0.80). However given the small sample size of this training set (n=89), this 

cancer-specific model is not optimal at this time. Additionally many new therapies 

are currently being developed to target specific isoforms and mutations. While 

our model is not currently accounting for these specific targets, it can 

straightforwardly be adapted using publicly available or user-provided target-

based information. There are also areas in which PrOCTOR could be further 
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improved such that leads to better predictive capacities. The use of 3D 

fingerprinting methods may allow for the structural features to be better 

represented. Co-expression networks from the GTEx data may also be useful 

features, as they may provide a stronger biological signal. Biological interaction 

networks are generally incomplete and also vary between cellular contexts and 

populations, which may limit the power of the network metrics. Finally, our 

method is largely dependent on existing target annotation for drugs, which is 

generally incomplete. Thus we will likely benefit from advancements in drug 

target identification. 

Furthermore over two-thirds of clinical trials fail for other reasons, including 

efficacy, strategic and financial reasons (Ledford, 2011). The problem of efficacy 

is a highly complex issue, since each drug must demonstrate improvement over 

existing drugs in addition proving a context-specific efficacy. Thus while this 

problem remains important, it is not likely to be tractable using this style of 

approach. 

Our approach has the potential to impact the preclinical drug development 

pipeline by quantifying how likely a given compound is to have manageable 

toxicity in clinical trials. In order to facilitate interaction with and application of our 

model, we have developed an interactive tool that we have made available on 

github (https://github.com/kgayvert/PrOCTOR). PrOCTOR may also help flag 

drugs for increased post-approval surveillance of adverse effects and toxicity. 

Perhaps even more importantly, the model will help design better drugs by 

providing insights about how various chemical and target-based properties can 

contribute to or help avert toxicity. 
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CHAPTER FOUR 

A COMPUTATIONAL APPROACH FOR IDENTIFYING SYNERGISTIC DRUG 

COMBINATIONS* 

 

PREAMBLE 

This chapter consists of a paper that was published in PLoS Computational 

Biology in January 2017. The method was conceived in partnership with Dr. 

Olivier Elemento. I implemented the method and subsequent computational 

analyses. The experimental validation was performed by Omar Aly. The Stern 

and Bosenberg labs generated the data and contributed the expertise to results 

interpretation (D.F.S., M.W.B., J.P.). 

INTRODUCTION 

Targeted therapies designed to specifically target molecules involved in 

carcinogenesis have achieved remarkable antitumor efficacy. In melanoma, over 

half of patients are reported to harbor activating mutations in the BRAF oncogene 

(Curtin et al., 2005; Held et al., 2013). BRAF inhibitors, such as vemurafenib, 

have been developed to selectively kill mutant BRAF positive cells (Chapman et 

al., 2011). Patients initially exhibited significant responses to these drugs, with 

48% responding to vemurafenib in phase 1 and 2 clinical trials, however 

resistance developed within months (Chapman et al., 2011).  

Combination therapy has been proposed for preventing and overcoming 

resistance. This is thought to be a promising option because resistance to the 

																																																								
*	Gayvert	KM,	Aly	O,	Platt	J,	Bosenberg	MW,	Stern	DF,	Elemento	O.	A	Computational	
Approach	for	Identifying	Synergistic	Drug	Combinations.	PLoS	Comput	Biol.	
2017;13(1):e1005308.	
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combinatorial therapy would require either acquisition of multiple mutations 

rapidly (Fitzgerald et al., 2006) or an individual mutation that is able to bypass 

both drugs (Komarova et al., 2013), both of which are low probability events. 

Additional goals of combination therapy are to lower drug dosage levels in order 

to reduce the frequency and severity of adverse events and to achieve enhanced 

effectiveness through either drug additivity or synergy (Fitzgerald et al., 2006).  

Drug synergy can occur through a variety of mechanisms. These include 

enhancement of bioavailability, through inhibition of parallel pathways(Cokol et 

al., 2011), and chemosensitization, in which the first compound primes the cells 

to be sensitive to the second drug(Bansal et al., 2014). Synergy is generally 

quantified through either effect based or dose-effect based methodologies. 

Effect-based methods compare the independent effects of drugs, while dose-

effect based methods assume nonlinear individual dose–effect curves(Foucquier 

et al., 2015). The most popular effect based method is the Bliss Independence 

model, which assumes that drugs act independently and the expected additive 

effect is based on the common probabilistic independence formula(Foucquier et 

al., 2015). However limitations of this approach include that it does not account 

for nonlinearity in dose response curves (Yeh et al., 2009) and its independence 

assumption. Since the mechanism of action for many drugs remain unknown, the 

validity of the independence assumption is often not met (Foucquier et al., 2015). 

A popular dose-effect based method is the Chou-Talalay Combination Index (CI), 

which is a median-effect equation based on the “mass-action law”(Chou, 2010). 

A major limitation of the Chou-Talalay method is its dependence on accurate and 

well-defined dose-effect curves, which are not always available(Foucquier et al., 

2015). 
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Given the poor prognosis of BRAF melanoma and the rapid rate at which 

resistance develops and tumors progress, there is an urgent need to identify 

suitable combinations. The first drug combination for treatment of advanced 

melanoma was approved in January 2014 and involved the BRAF inhibitor, 

dabrafenib, and the MEK inhibitor trametinib. This combination was pursued due 

to the great response rates of the individual drugs with the goal of preventing 

drug resistance. Indeed, it has been observed that the combination delays the 

development of resistance and prolongs progression free and overall 

survival(Robert et al., 2015). However it is certain that many more combinations 

exist and are not yet known. Additionally, a subset of patients that were treated 

with the combination of dabrafenib and trametinib have developed resistance to 

this combination therapy(Robert et al., 2015). 

Existing methods that have been developed to predict synergistic combinations 

have generally relied on mechanistic insights. However they have been applied 

only in limited specific contexts, such as in B cells (Bansal et al., 2014). 

Furthermore numerous studies have shown that synergy is very dependent on 

context (Bansal et al., 2014; Cokol et al., 2011; Held et al., 2013). This makes it 

difficult to utilize any prior knowledge about synergistic drug combinations from 

other different cancers or genotypes. A systematic method for identifying optimal 

combinations would therefore be highly impactful. Here we propose a 

computational approach utilizing existing high-throughput drug screen data to 

help identify other combinations that are both synergistic and effective in the 

context of mutant BRAF melanomas. 
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RESULTS 

Single Dose Response Predictive of Combinatorial Synergy and 

Effectiveness 

We set out to determine whether combination efficacy and synergy could be 

predicted from single agent efficacies. Previous computational approaches to 

drug combinations have shown that the dose response curves of single agents 

exhibit predictive power for identifying synergistic combinations (Bansal et al., 

2014). To further investigate this, we utilized a high-throughput drug screen that 

was performed by Held et al. (Held et al., 2013). In this study, the response of 

150 single agents and a large combinatorial drug screen involving 40 drugs were 

experimentally tested across mutant BRAF, mutant RAS, and wild-type BRAF 

and RAS (WT) cell lines. For each drug pair, we derived a feature set that 

consisted of the mean and difference of the single agent dose response in each 

tested cell line. The single agent dose response was represented as the percent 

of concentration required to inhibit 50% of growth inhibition (GI50). Altogether, this 

resulted in a total of 54 total features representing the similarity of a drug pair’s 

efficacies in 27 melanoma cell lines (Figure 4.1).  

The results of the combinatorial drug screen were used to identify genotype-

selective and synergistic combinations. Genotype-selective combinations were 

defined to be those that yielded an average 15% or greater growth inhibition 

exclusively in the genotypic group and achieved at least 50% growth inhibition 

within the genotypic group. We further defined a general effective combination to 

be one that achieved at least 70% growth inhibition. Finally we computed 

synergy labels for each combination using the Chou-Talalay synergy combination 

index  (CI) metric. We decided to use the Chou-Talalay approach because the 

Chou- 



 

 48 

 

Figure 4.1 – Feature construction schematic. For each drug pair, we combined the drug 
pair’s efficacies by taking the mean (μ) and difference (Δ) in 27 mutant BRAF (red), mutant 
RAS (green) and WT (blue) melanoma cell lines. 

Table 1 - Model Performance 

 AUC Accuracy Sensitivity Specificity 

BRAF-specific effectiveness 0.8809 0.8230 0.6911 0.8894 

General BRAF-effectiveness 0.8630 0.7800 0.6818 0.8418 

BRAF synergy 0.8683 0.8213 0.4196 0.9494 
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Talalay CI was provided in the original dataset and furthermore the mechanism 

for many drugs in the training set is unknown. We defined a synergistic 

combination to be a pair of drugs that demonstrated CI < -1 at any concentration 

level. Overall, the combinatorial screen helped identify 248 BRAF-selective and 

161 synergistic combinations. 

We then trained random forest models (Breiman, 2001a) on 780 drug 

combinations for each of the outcomes described above in context of BRAF and 

RAS melanomas (Figure 4.2A). We evaluated our approach using 10-fold cross-

validation and found that our model exhibits significant power (Table 1) for 

predicting both synergy (AUC=0.8663, Accuracy=0.8213) and genotype-selective 

efficacy (AUC=0.8809, Accuracy=0.8230) in context of BRAF melanomas 

(Figure 4.2B). Importantly both models maintained high specificity rates (0.9494 

and 0.8894 for synergy and effectiveness respectively) which suggests that there 

would be few false leads. As a control to identify limitations of our approach, we 

evaluated our model by making predictions for “sham combinations”, which were 

cases in which a drug is combined with itself. We found that 98% (147/150) of 

the sham combinations were predicted to not be synergistic. We also found that 

both the effectiveness and synergy models exhibit significant robustness (Figure 

4.2C). At 25% of the original number of combinations used in the training set, the 

BRAF-specific effectiveness approach maintained 77.56% accuracy, 89.27% 

specificity, and 54.91% sensitivity. This suggests that fewer combination testing 

could be performed while maintaining strong confidence in the positive 

predictions, given that the specificity remains high. Since high-throughput 

screens require significant resources and time, this type of approach could prove 

to be valuable in screening the larger space of drug combinatorial pairs given 

that a suitable representative set is chosen for initial testing. 
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Figure 4.2 – Method schematic and Evaluation of individual model performance.  

A Our approach integrates a large single drug screen of 150 drugs with a combinatorial 
drug screen, which tested 780 combinations of 40 unique drugs. This was used to train a 
random forest model that predicts synergy and genotype-selective efficacy for untested 
drug combinations. 

B  Receiver operating characteristic (ROC) curves for 10-fold cross-validation of the BRAF-
specific effectiveness (top) and synergy (bottom) models. 

C The effect of randomly removing samples on model accuracy, sensitivity and specificity. 
At 25% of the original number of combinations was used to train the model, the approach 
maintained 77.56% accuracy, 89.27% specificity, and 54.91% sensitivity. 
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The single agent screens performed by Held et al (Held et al., 2013) included 

110 drugs that were not tested in the combinatorial screen, so we applied our 

approach to the 10,395 additional untested combinations. We predicted 842 

combinations to be synergistic, 890 to be effective, and 304 to be both effective 

and synergistic in context of mutant BRAF melanoma. We found that our 

predictions had noticeable patterns of synergy and effectiveness (Figure 4.3A). 

Predicted synergistic combinations involved drugs that had varying levels of 

efficacy across the different mutant BRAF cell lines, with synergistic 

combinations demonstrating a trend towards lower correlation of GI50 values 

across the mutant BRAF cell lines (p=0.07929, Kolmogorov-Smirnov Test). In 

contrast, combinations involving drugs with similar efficacy profiles across the 

different cell lines were generally predicted to be non-synergistic. Thus it appears 

that our approach drew its strength from the large number of tested cell lines.  

To further evaluate our approach, we compared these predictions to an 

independent high-throughput screen that tested 5,778 combinations involving 

108 drugs at two concentration levels, high and low(Friedman et al., 2015). Our 

prediction dataset contained 274 combinations that overlapped with this 

independent dataset. We found that our predicted effective combinations had a 

significantly higher growth inhibition levels than our predicted non-effective 

combinations (p=0.002602, Student’s t Test) (Figure 4.3B). 

Experimental Validation of Novel Synergistic and Effective Combinations 

for BRAF Melanoma  

We next identified a subset of 7 drugs with a diverse set of predictions (Figure 

4.3C). These drugs included a BRAF inhibitor (PLX4720), a statin (Simvastatin), 

two chemotherapies (Doxorubicin, Paclitaxel), and three drugs of other various 

mechanisms (Fak Inhibitor 14, Gefitinib, 17AAG). We tested each of these drugs  
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Figure 4.3 – Predictions for Previously Untested Combinations. (a) We applied our 
trained model to make predictions for 10,395 additional untested combinations. (b) 
Comparison of growth inhibition levels, as reported by Friedman et al., for 274 predicted 
effective or ineffective drug combinations. (c) We focused on a subset of 7 drugs to 
experimentally follow-up on our predictions for previously untested combinations. 
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Table 2 - Experimental Validation 

 Accuracy Sensitivity 

(TPR) 

Specificity 

(TNR) 

FDR 

BRAF effectiveness 0.73 0.71 0.75 0.125 

BRAF synergy 0.64 0.67 0.5 0.14 

 

both alone and in combination in the mutant BRAF melanoma cell line MALME-

3M at low, medium, and high concentrations, estimated from their GI10, GI25, and 

GI50 values respectively. 

We found that our method continued to demonstrate significant predictive power 

when tested on cell lines that were independent of the original training set 

(Figure 4.4A, Table 2). We validated 82% and 64% of the effectiveness (Figure 

4.4B) and synergy predictions (Figure 4.4C) respectively. Importantly, we also 

found that the false discovery rates (FDR) for both synergy and effectiveness 

predictions remained relatively low (14.3% for synergy, 12.5% for effectiveness) 

despite being tested in a different setting. 

BRAF inhibitors are of high interest for treating BRAF-mutant melanomas due to 

their selectivity and effectiveness. To further investigate the efficacy and synergy 

of combinations involving PLX4720, we performed more extensive experiments 

for predicted synergistic and non-synergistic drug partners. PLX4720 was 

predicted to be synergistic with FAK inhibitor 14 and non-synergistic with 17AAG, 

a Hsp90 inhibitor. Instead we found both combinations to be synergistic when 

tested across the 9 combinations of varying concentrations. Interestingly, we 

observed that while 17AAG appeared to be synergistic when combined with 

PLX4720 held at a constant rate, PLX4720 itself was not synergistic when 

17AAG was held constant (Figure 4.5A). However PLX4720 was very 
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synergistic when combined with a constant dosage of FAK Inhibitor 14 (Figure 

4.5B), consistent with the synergy prediction. Additionally we observed that 

PLX4720 was highly synergistic with paclitaxel. This combination represents a 

potentially impactful combination since paclitaxel and vemurafenib are both used 

in clinical trials for the treatment of melanoma (Chapman et al., 2011; Pflugfelder 

et al., 2011). Furthermore previous reports have suggested that the combination 

of BRAF inhibitors with paclitaxel represents a promising therapeutic approach 

for overcoming resistance in BRAF melanomas (Thang et al., 2015). 
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Figure 4.4 – Experimental Validation of Predicted BRAF Effective and Synergistic 

Combinations.  

A We selected a set of 11 combinations involving 7 drugs with a diverse set of predictions 
for experimental validation. These included traditional chemotherapeutic agents 
(doxorubicin, paclitaxel), targeted agents (PLX4720, gefitinib, FAK Inhibitor 14), a statin 
(simvastatin), and an antitumor antibiotic (17AAG). 

B  Each drug was tested in combination at medium, and high concentrations, estimated 
from their GI10, GI25, and GI50 values respectively. The observed growth inhibition levels 
for all dosage level combinations involving each tested drug combination are shown in 
violin plots. Violin plots that are colored navy blue are those whose third quantile values 
where 70% or greater. The predictions for each combination are shown below the plot, 
with dark blue representing an effective prediction and grey representing an ineffective 
prediction. 

C For each tested drug combination, the Chou-Talalay synergy scores were calculated. The 
observed synergy scores for all dosage level combinations involving each tested drug 
combination are shown in violin plots. The predictions for each combination are shown 
below the plot, with green representing a synergy prediction and red representing a non-
synergy prediction. 
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Figure 4.5 – Identification of Synergistic Combinations involving the BRAF Inhibitor 
PLX4720. 

A The observed growth inhibition levels for PLX4720 alone (blue) 17AAG alone (red), 
PLX4720 varying while 17AAG held constant at 1uM (navy blue), and 17AAG varying 
while PLX4720 held constant at 1 uM (dark red). 

B  The observed growth inhibition levels for PLX4720 alone (blue) FAK Inhibitor 14 alone 
(red), PLX4720 varying while FAK Inhibitor 14 held constant at 0.1uM (navy blue), and 
FAK Inhibitor 14 varying while PLX4720 held constant at 0.1 uM (dark red). 

 

 

DISCUSSION 

We found that drug synergy and combinatorial effectiveness can be predicted 

from a relatively small subset of combinations based only upon single drug 

efficacies. We experimentally validated novel predictions involving 7 drugs in a 

BRAF mutant cell line with FDR<0.15. This analysis included compounds that 

span a variety of drug classes, including targeted therapies and chemotherapies. 

Additionally, an analysis of the model robustness suggested that it is possible to 

confidently make these predictions with even smaller subsets, while maintaining 

significant confidence in the positive predictions. We note that while we propose 

that a smaller training set can be used to infer these combinations, it is critical to 

retain a distinctive and representative set of drug combinations in the training set. 
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The classification errors, particularly those involving synergy predictions, may be 

due in part to varying genetic conditions since the combinations were tested in a 

different cell line than the original training set. This is supported by one 

combination that was tested both in our experiments and in the larger 

combinatorial drug screen that had inconsistent synergy and effectiveness levels. 

The combination of Fak Inhibitor 14 and gefitinib was found to be synergistic in 

the combinatorial screen, however we found it to be non-synergistic in our 

experiments. Consequently we believe that our false discovery rate would have 

been even lower if we had tested the combinations in the same setting that was 

used to generate the training set. However the validation of the majority of our 

predictions across slightly variable contexts is highly relevant for the treatment of 

patient cancers, in which the treated patient populations involve different 

individuals and thus have slightly different genomic profiles than the population 

under which the therapy was conceived. Additionally we would like to emphasize 

that any effectiveness (or synergy) predictions that our model makes are in the 

context of mutant BRAF cell lines. While we hope that some of these findings 

may be translatable to human patients, many other factors must first be 

considered. 

It is important to note that we did not consider maximum tolerated doses (MTD) 

in our analysis. A retrospective analysis revealed that there were two drugs 

included in our analysis that were tested at levels above MTD for humans: 

Obatoclax and Tamoxifen. Additionally there are many drugs included in the 

study do not have known MTD. This is because these drugs are experimental 

and thus have not yet had this evaluated in clinical trials(Marshall, 2012). While 

we do not believe that this biases the model, it does highlight the importance of 

clear model interpretation. In particular, we observed in our experiments that 
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synergy generally did not occur at high dosage levels (Figure 4.5), which further 

suggests that the model would not be biased by including drugs that were tested 

above MTD. Importantly our approach allows subsequent experimental studies to 

be prioritized on promising combinations, which can be focused on more 

clinically relevant information such as MTD. 

The use of synergistic drug combinations has the potential to help prevent and 

overcome drug resistance. It is hypothesized that the application of drug 

combinations with initial treatment lower the odds of resistance occurring 

because it requires multiple mutations to bypass both drugs, which is a lower 

probability event than each drug individually(Fitzgerald et al., 2006; Komarova et 

al., 2013). This could be particularly impactful for combinations involving BRAF 

inhibitors, which individually have demonstrated remarkable responses in 

patients but suffer from the rapid development of resistance(Chapman et al., 

2011). To further explore how models could be used to identify drug 

combinations that overcome drug resistance, we used our training set to derive a 

set of 24 effective and 12 non-effective combinations involving vemurafenib in 

resistant cell lines. We applied the framework of our approach to this small 

dataset and found that there is an underlying signal for predicting combinations 

that overcome resistance (AUC=0.677, Accuracy=0.697). Thus approaches such 

as ours may be applicable both to directly predicting combinations that overcome 

resistance, as well as predicting combinations that may help prevent resistance 

from developing. 

Existing methods have previously found that the inclusion of features 

representing the biological mechanisms of the drug have been most 

successful(Bansal et al., 2014). However this information is often not available. 

Indeed only 50% (20/40) of the drugs in our training set have information about 
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the drug’s target. Thus our method would likely improve as this type of 

information becomes more widely available enough to include in the model. 

However our model was able to exhibit significant predictive power despite this 

information not being available. We hypothesize that this was due to the large 

number of cell lines that each single agent was tested in. We found that generally 

the predicted synergistic combinations involved drugs that had varied single 

agent efficacies across the different mutant BRAF cell lines. 

While we have trained and tested our approach in the context of BRAF mutant 

melanoma, the approach itself is applicable to other types of cancers. As 

additional large combinatorial screens become available, this methodology could 

prove to be impactful for the identification of drug synergy within the larger 

universe of possible drug combinations. 
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PERSPECTIVE 

 

In recent years, enormous amounts of biomedical data has been generated and 

collected. These span from genomics to drug to other healthcare-related 

datasets. In genomics, large consortiums have focused on establishing large 

collections of patient sequencing data (eg. TCGA, 1000 Genomes, GTEx) and 

have identified and analyzed patterns that emerge (eg. EXaC, COSMIC). Similar 

efforts have been put forward in collecting information about drugs, such as 

characterizing their targets (DrugBank), general structure and properties 

(PubChem, CHEMBL), and their biological effects (NCI-DTP, CMAP, LINCS). 

Additional relevant information exists in other healthcare records, such as 

Electronic Medical Records (EMR/EHR), adverse event reports (FAERS), and 

clinical trial results.  

The integration of these disparate datasets through machine learning and other 

quantitative methods remains largely unexplored, which creates an opportunity to 

answer interesting and important questions. Addressing inefficiencies in the drug 

development pipeline is one critical application with large potential. From drug 

repositioning to understanding drug mechanisms, there are many areas of the 

drug development process in which computational and data-driven methods 

could provide powerful insights. There is also potential in using these data to 

better understand disease and patient outcomes.  

However there also remain many important challenges to working with and 

integrating these different data types. Pipelines for generating and analyzing 

genomics datasets are constantly evolving and vary across the field, which limits 

the extent to which different genomics datasets can be combined to make more 

powerful conclusions. In the drug space, inconsistent annotation and naming 
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nomenclature presents a similar problem. Furthermore there is a lack of clear 

and consistent definitions of clinical outcomes across healthcare datasets. The 

system of medical ontology used in health records varies between hospitals. 

Reports of clinical trial outcomes are often incomplete, with only 13.4% and 

38.3% of trial results reported within 1 and 5 years respectively after trial 

completion (Anderson  et al., 2015). Finally patient privacy concerns add an 

additional barrier to acquiring and leveraging datasets. 

Addressing these challenges require large-scale efforts to be put into place. 

Fortunately many such efforts are already underway. In New York State and City, 

there is a public initiative to develop a comprehensive health information 

infrastructure with the goals of empowering better data-driven population health 

surveillance. In genomics, it is often mandated that data generated using grants 

or presented in publications be deposited in public repositories, including raw 

files, which will allow for better utilization of these datasets. However the problem 

of poor clinical trial reporting persists despite already existent federal mandates. 

This area of work, as well as many other federally funded projects, would benefit 

from both the mandate of data deposition and the follow-up of penalties for non-

compliance. Additionally, most compounds fail before they reach clinical trials 

and most data related to these compounds is not released outside the company 

in which it was developed. As a result, information that could be relevant for the 

purposes of repositioning and novel drug design is not utilized, further 

contributing to inefficiencies in the drug development process. 

Altogether there exists great promise for the integration of large, distinct 

biomedical datasets into machine learning and other quantitative models to 

answer important biological questions. 
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APPENDIX 

 

MATERIALS AND METHDOS - CRAFTT 

The CRAFTT approach 

CRAFTT requires two inputs for its predictions, ChIP-seq for a TF that is used to 

derive its target gene set and drug-induced expression profiles. The CRAFTT 

procedure (1) uses Gene Set Enrichment Analysis with the target gene set for a 

TF and drug-induced expression profiles as inputs to make predictions about 

what drugs modulate TF’s activity, and then (2) prioritizes predictions using 

network analysis. For the network analysis we compute a normalized path length 

score (NPL), in which we calculate the probability of observing the path length 

between the drug d and TF X (P(PL|d,X)) using 500 degree-preserving 

randomized networks(Gobbi et al., 2014). These steps are combined to generate 

a prediction score, which we term the modulation index (MI):  

MId,X =
NESd,X

P(PL | d,X)
 

where NPL = P(PL | d,X) =
PLdxi ,Xxi < PLdg ,Xgi=1

500
∑

500
 

Statistical Analysis 

The statistical significance for each of our predictions was estimated according to 

the GSEA procedure (Subramanian et al., 2005). For the analysis of Electronic 

Medical Records (EMR), Kaplan-Meier Survival Analysis was performed on an 

age-adjusted cohort, using time to first diagnosis of prostate cancer as the end-

point in our study and excluding all patients with any prior diagnosis of cancer 

and cox proportional hazards test was used to assess significance. Statistical 
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analysis of RT-PCR, ChIP-PCR, cell invasion, and cell migration experiments 

was done in Prism using paired t test and n = 3 for each condition. 

All other statistical significance values were calculated in R. The permutation test 

(using 1000 random permutations) was used to assess significance of the 

enrichment of TF alterations in COSMIC and the enrichment of drug categories 

(e.g. HDAC inhibitors) within our predictions. The chi-squared test was used to 

compare the transcription factor enrichment to that of kinases. The significance 

for the enrichment of known interactions was calculated using the exact binomial 

test, comparing the enrichment of known pairs to the total percentage of drug-

pairs that were predicted. The Mann-Whitney test was used to assign 

significance to the network analysis and to the difference between GI50 

(concentration required to inhibit 50% of growth) values in WT and MT p53 cell 

lines.  

Experimental validation 

RWPE1, VCaP and DU145 were obtained from ATCC and maintained according 

to manufacture’s protocol. Isgogenic DU145 or RWPE1 +/-ERG cell lines were 

generated to over-express either truncated ERG as previously 

described(Rickman et al., 2010; Rickman et al., 2012). The PTEN-/-/ERGRosa26 

prostate cancer cells were derived from PTEN-/-/ERGRosa26 prostate tumors as 

previously described(Chen et al., 2013). For treatments the cells PBS and 

incubated with the appropriate media at the indicated drug or vehicle dose for 24 

or 48 hours.  

Cells were then analyzed using ChIP-PCR, quantitative RT-PCR (QRT-PCR) or 

invasion/migration assay. Quantitative RT-PCR, ChIP-PCR, cell invasion and 

migration assays were performed as previously described(Rickman et al., 2010; 
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Rickman et al., 2012). Each sample was run in triplicate. The amounts of target 

genes were calculated relative to the reference gene HMBS.  

 

MATERIALS AND METHDOS - PrOCTOR 

Clinical Trials Training Set 

We downloaded data from ClinicalTrials.gov from The Database for Aggregate 

Analysis of ClinicalTrials.gov (AACT)  41 39 38 38 38 34 34 34 34 34 34 34  10 10. To extract 

the names of the drugs associated with clinical trials that failed toxicity reasons, 

we identified any clinical trials that were annotated as “Terminated”, “Suspended” 

or “Withdrawn” and described as failing for toxicity reasons. The list of FDA 

approved drugs was obtained from the drug annotations within the DrugBank 4.0 

database (Law et al., 2014).  

Model Feature Derivation 

Chemical Features 

The structures (sdf format) were downloaded for all of the drugs in DrugBank. 

The molecular weight, polar surface area, hydrogen bond donor and acceptor 

counts, formal charge and number of rotatable bounds were extracted from the 

sdf file for each of these compounds. When that information was missing, it was 

filled in by querying PubChem or by computationally estimating these values 

using ChemmineR in R. The rule outcomes were then derived from these 

features. The QED values were computed using the author-released script. 

Network features 

We constructed the aggregated biological network by taking the union across 

multiple databases of gene-gene interactions. (Aksoy et al., 2013; Das et al., 
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2012; Khurana et al., 2013). The network degree of a gene was calculated as the 

number of gene neighbors that a particular gene has. For drug’s with multiple 

genes, the maximum value was take. The network betweenness for a particular 

gene (i.e. vertex) is defined as the number of shortest paths that travel through 

the vertex. This was calculated using the betweenness function in R’s igraph 

package(Csardi et al., 2006). 

Tissue features 

The Gene RPKM RNA-Seq data from the Genotype-Tissue Expression (GTEx) 

project(Consortium, 2015) was downloaded from 

http://www.gtexportal.org/home/. This dataset has 2921 samples spanning 30 

tissues. For each tissue, the median RPKM was calculated for each gene. For 

drugs with more than one target gene, the maximum RPKM was used. 

Target Loss Frequency 

The Exome Aggregation Consortium (ExAC) database (Exome Aggregation 

Consortium (ExAC)) was downloaded from www.exac.broadinstitute.org. For 

each gene, we counted the deleterious and total number of mutations that was 

reported. We calculated the loss frequency to be percentage of mutations that 

were reported in the gene that were deleterious. 

The PrOCTOR Model 

We trained the PrOCTOR approach on the clinical trials dataset using the 

features described above. It was trained using the random forest model, an 

ensembl decision tree based approach, which constructs 50 bootstrapped 

decision trees. A sub-sampling approach was used to account for the imbalanced 

ratio of approved drugs to FTT drugs, by randomly sampling the FDA approved 

class of samples to the size of the FTT drugs. To reduce the odds of poor 
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representatives being sampled, this was repeated 30 times. The labels were 

assigned by taking the consensus across the set of bootstrapped trees and 

replicates. This approach also yields a probability for each test sample. This 

probability was used to calculate an odds score = !(#$$%&'#()
!(*#+(,%-)

. To better visualize 

the distribution of this score, the log2 of the odds score was used. 

Independent Datasets 

To further assess our approach, we applied PrOCTOR to European (EMA) and 

Japanese (JP17) approved drugs, as well as 3236 drugs in DrugBank (version 

4.2) (Law et al., 2014).  The list of EMA-approved drugs were downloaded from 

the EMA website (http://www.ema.europa.eu/ema) and the JP17 list was 

downloaded from KEGG(Anders et al., 2015). Drugs that were already annotated 

as FDA approved were removed from these lists and the trained PrOCTOR 

model was used to make predictions for the remaining drugs. The openFDA 

resource (https://open.fda.gov) was used to query adverse events of drugs in the 

DrugBank dataset but not in our training set. FDA annotated drug-induced liver 

toxicity (DILI). The DILI dataset was downloaded from the FDA website at 

http://www.fda.gov/ScienceResearch/BioinformaticsTools/LiverToxicityKnowledg

eBase/ucm226811.htm. The SIDER side effect resource database (Kuhn et al., 

2010) was used to annotate side effects of each drug in the clinical trials dataset. 

The meddra_adverse_effects.txt table was used to extract reported adverse 

events, using the MedDRA Preferred Term descriptor to group similar side 

effects.  
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Statistical Analyses 

We used area under the receiver operating characteristic (ROC) curve and 10-

fold cross validation to evaluate the predictive power of our approach. For the 

independent analysis of predictions in the DrugBank dataset, we tested for 

enrichment of drug classes using the binomial test. We tested for differences of 

serious adverse event frequency between predicted toxic (score<-1) and 

predicted safe (score>1) drugs in the DrugBank dataset and not in the training 

set using the unpaired Student’s t-test. For the EMA, JP17, and DILI datasets, 

we tested for differences in PrOCTOR scores between predictions using the 

Mann-Whitney U Test. For the side effects of drugs in the training set, we used 

the Fisher’s Exact Test to identify the side effects that occurred more frequently 

in predicted toxic drugs using a p-value cutoff of 0.01. 

 

MATERIALS AND METHODS – Drug Combination Predictions 

The Model 

150 Single agent and 780 combinatorial efficacies were obtained from the Held 

et al (Held et al., 2013) study. The single agent efficacies were collapsed to their 

GI50 values, which is the concentration of the drug required to inhibit 50% of cell 

growth. Features representing a drug pair were constructed by taking the mean 

and difference (Figure 4.1) of the GI50 values for each of 27 tested cell lines (15 

mutant BRAF, 6 mutant RAS, 6 wtBRAF/wtRAS). 

The combinatorial results in 19 cell lines (8 mutant BRAF, 6 mutant RAS, and 5 

WT) were then used to construct labels for each of the 780 drug pairs. Genotype-

selective combinations were defined to be those that yielded an average 15% or 

greater growth inhibition exclusively in the genotypic group and achieved at least 
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50% growth inhibition within the genotypic group and a general effective 

combination was defined to be one that achieved at least 70% growth inhibition. 

Synergy labels for each combination were determined using the Chou-Talalay 

synergy combination index (CI) metric. We defined a synergistic combination to 

be a pair of drugs that yielded a CI less than -1 at any concentration level. A 

random forest model was then trained on the above-described data and 

evaluated using 10-fold cross-validation. Predictions were made using the trained 

model for the 10,395 untested combinations that had single agent efficacy 

information in the dataset. 

Experimental validation 

Melanoma Cell Culture 

Malme-3m, SK-Mel-28, and SK-MEL-2 cell lines were generously donated by the 

Houvras lab at Weill Cornell Medicine. Cell lines were cultured in basal medium 

[DMEM (Gibco) supplanted with 10% FBS and 1% penicillin/streptomycin (P/S)] 

and maintained in a 37° incubator at 5% CO2. 

Agent Screening 

Cells were pipetted into 384-well plates at 750 cells per well using a multi-

channel pipette (Eppendorf) in 20 ul basal medium, and placed in an 37° 

incubator at 5% CO2 overnight prior to exposure to the agent. Drug stock plates 

for single therapy agents were created by serial dilution, generally 1:10 from 10 

mmol/L stock. Using a multi-channel pipette, 2.5 ul drug volume from drug stock 

plates were added to the 384-well cell plates. A total of 0.1% and 10% DMSO 

was used as negative and positive controls, respectively. 

For combinatorial, dual-agent screens, a 2.5 ul volume of Drug X was plated at 

GI-50 concentration (determined from single-agent screen), and 2.5 ul volume 
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from drug stock plate of Drug Y was added in a range of concentrations. Initial 

dual agent screening was carried out in 384-well plates at 750 cells per well in 20 

ul basal medium Further exploration screening were carried out in 96-well plates, 

in 100ul basal medium with 3500 cells per well. 

All experiments were carried out in triplicates at the Weill Cornell Medicine’s 

Meyer Cancer Center (WCMC MCC, New York, NY). Cells were exposed to 

drugs for 72 hours, followed by GI measurement by CellTiter-Glo ATP detection 

assay (Promega) following the manufacturer’s recommended. A 20 ul volume of 

basal medium served as a background for luminescence.  

Prediction Evaluation 

A combination was considered to be effective if the third quantile value of 

observed growth inhibition values was at least 70%. Synergistic combinations 

were those that achieved a Chou-Talalay synergy score of -1 in at least one 

dosage-level pair.  
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