
EXACT AND APPROXIMATE ALGORITHMS
FOR SOME COMBINATORIAL PROBLEMS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Soroush Hosseini Alamdari

May 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eCommons@Cornell

https://core.ac.uk/display/195375009?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2018 Soroush Hosseini Alamdari

ALL RIGHTS RESERVED

EXACT AND APPROXIMATE ALGORITHMS

FOR SOME COMBINATORIAL PROBLEMS

Soroush Hosseini Alamdari, Ph.D.

Cornell University 2018

Three combinatorial problems are studied and efficient algorithms are pre-

sented for each of them. The first problem is concerned with lot-sizing, the

second one arises in exam-scheduling, and the third lies on the intersection of

the k-median and k-center clustering problems.

BIOGRAPHICAL SKETCH

Soroush Hosseini Alamdari was born in Malayer, a town in Hamedan province

of Iran right on the outskirts of Zagros mountains. After receiving a gold medal

in the Iranian National Olympiad in Informatics he went to Sharif University

of Technology in Tehran to study Computer Engineering. After completing his

BSc he went to the University of Waterloo and received his MMath in computer

science. Then after a short period of working in industry, he came back to com-

plete his PhD in computer science here at the Cornell University.

iii

ACKNOWLEDGEMENTS

First and foremost I would like to thank my Adviser Prof. David Shmoys who

accepted me as a student, taught me so many fascinating things, and supported

me in whatever endeavor I took on. Without his care and attention this docu-

ment would simply not be possible.

I would also like to thank all my friends, colleagues and co-authors. Regard-

ing this thesis I am particularly thankful to Chaoxu Tong with whom I closely

worked on some facility location problems that lead to an unpublished paper

with Chaitanya Swamy and David Shmoys, some of the results of which are

presented in Chapter 3 of this document.

I am also thankful to Carla Gomes and Jon Kleinberg for accepting to be on

my thesis committee, and to Bart Selman for following on my progress during

my PhD studies here at Cornell University.

Lastly, I would like to thank my wonderful wife Christina who never ceased

to trust in me. Most humbling, she bore me two precious daughters, Mana and

Aaliyah, for which I find myself unable to ever thank her justly.

iv

TABLE OF CONTENTS

Biographical Sketch . iii
Acknowledgements . iv
Table of Contents . v
List of Tables . vi
List of Figures . vii

1 Intro 1
1.1 Lot-sizing with hierarchical types 1
1.2 Exam scheduling . 2
1.3 Bi-criteria approximation for k-center and k-median 2

2 Introduction to Fundamentals 4
2.1 Graph Theory . 6
2.2 Linear Programming . 8
2.3 Warm-up problem . 9

3 A lot-sizing problem 11
3.1 Notation . 13
3.2 Lot-sizing with hierarchical types 15

3.2.1 A dynamic programming algorithm 15
3.2.2 An integrality gap example 17
3.2.3 Upperbound on Gap . 18

4 An exam-scheduling problem 21
4.1 Background . 21
4.2 Formulations . 23

4.2.1 Phase 1: The Coloring Problem 23
4.2.2 Phase 2: Scheduling Problem 25

4.3 Path cover problem . 27
4.4 the k-edge path-cover problem . 29

5 A clustering problem 31
5.1 Introduction . 31
5.2 A (4,8)-approximation algorithm for k-center & k-median 35
5.3 Incremental approximation for convex combination of

k-center and k-median . 42

Bibliography 45

v

LIST OF TABLES

4.1 The results of the coloring phase for the data regarding Spring of
2016. 24

vi

LIST OF FIGURES

5.1 An example showing that simultaneous approximation of k-
center and k-median within a factor o(

√
n) is impossible. Here

each of A and B represents a cluster of bn
2
c points that are lo-

cated at the same position. 34

vii

CHAPTER 1

INTRO

In this chapter we briefly review each of the three problems and outline our

contributions in each case.

1.1 Lot-sizing with hierarchical types

Suppose we are running an operation over a time horizon when certain pro-

cesses are scheduled, each demanding a set of resources. We are able to procure

resources at any time with varying prices and store them with a cost that is in-

creasing relative to the duration of storage. To satisfy the demand of a certain

process we would need to have the appropriate resources available at the time

that process is scheduled for. This problem is known as Lot-sizing.

Suppose that our resources have types and that some types can be used in

place of others without extra penalty. Particularly, we consider cases where the

structure of the replacement relationship between the types constitutes a rooted

tree (See Chapter 2 for definition,) in the sense that each resource type can be

used to satisfy a demand for a any of its descendants type.

For the problem of planning the acquisition of necessary resources over the

time horizon we present an efficient algorithm that finds an optimal schedule,

minimizing the total cost of purchases and storage. We also analyze some of the

theoretical aspects of the problem regarding its natural linear relaxation (See

Chapter 2 for definition.)

1

1.2 Exam scheduling

Suppose we are scheduling the final exams for a large school, given the data

regarding the exams each students must take. For example, in the case of Cor-

nell University we have about 20 thousand students taking about 700 different

exams at the end of each semester in a period of roughly one week. In each day

there are a number of disjoint time-slots where exams are taken. For example,

in the case of Cornell University, there are about 20 time-slots in total during the

exam period where exams can be scheduled, and the goal is to ensure that no

students end up with two overlapping exams, or too many back-to-back exams

consecutively.

For this problem we present mixed-integer formulations (See Chapter 2 for

definition) that are able to produce conflict-free schedules within reasonable

time constraints. More specifically, we present a two phase algorithm that first

colors the exams and then assigns each color to a time-slot in order to minimize

undesirable cases such as an student with 3 exams in a consecutive 24 hours.

1.3 Bi-criteria approximation for k-center and k-median

k-center and k-median are clustering techniques that are widely used and exten-

sively studied. Both problems require us to come up with k clusters to represent

a given set of n points, but while k-center is concerned with the largest radius

among the clusters, k-median is concerned with the total distance of the points

from the center of their clusters.

We study the intersection of the two problems and present an algorithm

2

that balances between the two objectives, producing solutions that are approxi-

mately optimal relative to a combination of the two objectives.

We generalize our approach to the online case where one has to select cluster

centers incrementally and k is only revealed after k centers are chosen.

3

CHAPTER 2

INTRODUCTION TO FUNDAMENTALS

Combinatorics is a sub-field of mathematics concerned with objects and rela-

tions between them. For example, sorting a set of objects based on a given

parameter is a combinatorial task. In this thesis we will consider some combi-

natorial optimization problems and provide approximate and exact algorithms

for them that run in polynomial time.

Polynomial algorithm: An algorithm runs in polynomial time if the number

of iterations it takes to produce its output is bounded by a polynomial relative to

the size of the input. For example, if our sorting algorithm finds the solution for

a set of n objects by considering all orderings, then we have a non-polynomial

sorting algorithm since the number of orderings of n objects is n! which cannot

be bounded by any polynomial in terms of n.

The O notation: To give a more precise bound on the run-time of an algo-

rithm we use the O notation. When the number of iterations that an algorithm

takes can be bounded by cf(n) for some constant c, we say that the algorithm

runs in O(f(n)). For example, the sorting algorithm that considers all orderings

and chooses one that is sorted would have a running time that can be bounded

by O(n × n!), because there are n! orderings and one can check if each of them

is sorted in cn iterations for some constant c.

Optimization problem: An optimization problem presents us with a set of

choices that come together as a decision profile and for each decision profile

there is a cost, and the objective is to make these choices in polynomial time

such that the cost is minimized. For example, we can formulate our sorting

4

example as optimization problem where the decision profile corresponds to an

ordering, and the cost of an ordering is 0 if it is sorted and 1 otherwise. Then

minimizing the cost would be equivalent to finding an ordering of the given

objects that is sorted.

NP-Hardness: In some cases it is impossible to find an algorithm that is able

to find an optimum solution in polynomial time. One notable such a class of

problems are the NP-complete problems that are widely believed to be impossi-

ble to solve efficiently, although there is no proof for this impossibility. NP-hard

problems are those problems that are at least as hard as the NP-complete ones,

and therefore for them there is no polynomial time solution as well.

Approximation algorithm: For NP-hard problems there is practically no

hope of devising polynomial algorithms that would produce optimum solu-

tions, but one can hope for devising algorithms that are approximately optimal.

More precisely, if an algorithm is guaranteed to produce solutions of cost αOPT

where OPT is the optimal cost, we refer to that algorithm as an α approximation

for the problem.

Bicriteria approximation: Consider a problem with two separate objective

functions f1 and f2, and suppose that OPT is an ideal solution with costs

f1(OPT) and f2(OPT). Suppose we have an algorithm that given f1(OPT)

is able to produce a solution X with objectives f1(X) and f2(X) such that

f1(X) ≤ αf1(OPT) and f2(X) ≤ βf2(OPT). Then this algorithm is a (α, β)-

bicriteria approximation for f1 and f2.

5

2.1 Graph Theory

A graph is a combinatorial object comprised of a set of vertices and a set of

edges, where each edge has two vertices as its ends and its function is to connect

them. We use G(V,E) to represent a graph G with vertex set V and edge set E.

An edge e with ends v ∈ V and u ∈ U may also be represented as (v, u). Degree

of a vertex is the number of edges incident to it, and N(v) represents the set of

neighbors of v, that is, the set of vertices with an edge connecting them to v.

Walk, path, and cycle: A walk in a graph is a sequence of edges in which

each edge shares an end with the next edge in the sequence. You can view this as

a movement that starts from a vertex and continues by taking edges and visiting

vertices on the way. A path is a walk that visits each vertex at most once. A cycle

is just like a path, except that it starts and ends in the same vertex. We say that a

graph G(V,E) is connected if for every v, u ∈ V there is a path connecting v and

u.

Forest and tree: A graphH(V ′, E ′) is a subgraph of a graphG(V,E) if V ′ ⊆ V

and E ′ ⊆ E. A connected component of a graph G is a maximal connected

subgraph of G. A forest is a graph that has no cycles. A tree is a connected

forest, and so any connected component of a forest is a tree. A useful property of

trees is that for each pair of vertices u and v there is a unique uv-path connecting

them.

Rooted tree: When we say a tree t is rooted at v, we are assigning depth 0

to v and depth i to any vertex of distance i from v. Since there is a unique path

from the root to each vertex, any vertex at depth 0 < i has exactly one edge to a

vertex in depth i−1, and the other end of that edge is referred to as the parent of

6

this vertex. The rest of the neighbors of this vertex are referred to as the children

of it, and they all lie at depth i + 1. Then ancestors of a vertex are defined as

its parent and the ancestors of the parent, and the desendants of a vertex are its

children and the desendants of its children. It should be noted that each edge in

a rooted tree connects a child to its parent.

Depth-first traversal: Suppose we have a rooted tree T and we wish to tra-

verse this tree starting from the root and by walking on its edges. One useful

way to do this is the depth-first search: When at a vertex v, traverse the edge

to a yet unvisited child of v, and if v has no unvisited children, return to the

parent of v. Induction immediately verifies that after a vertex v is visited, all of

its descendants are visited before returning to the parent of v. If v has no unvis-

ited children and no parent, then you are at the root and all vertices are visited,

therefore the traversal is terminated. We use depth-first ordering to refer to the

order in which vertices are visited in a depth-first traversal of the tree.

One nice property of the depth-first traversal is that each edge is only tra-

versed twice: once from parent to child and once from child back to parent. We

will use this fact in later chapters.

Weighted graph: The edges of a graph may have weights associated with

them. If ce is the weight of the edge e in G(V,E), then for a subgraph H we use

w(H) to refer to the total weight of the edges in H . In a graph G(V,E) if for any

u, v, w ∈ V we have cu,v + cv,w ≤ cu,w, then G is a metric graph. It is easy to see

that for any st-path P in a metric graph, it must be that c(s,t) ≤ w(P).

Bipartite graph: A graphG(V,E) is bipartite if V can be partitioned into two

sets X and Y such that there is no edge with both ends in one of X and Y .

7

2.2 Linear Programming

Suppose that a problem can be formulated by n non-negative variables and a

series of m linear constraints of the form
∑n

i=1 aijxi ≥ bj for each 1 ≤ j ≤

m where aij and bj are constants, and with an objective function of the form∑n
i=1 cixi. Such a formulation is referred to as a linear program (LP) and can the

optimal solution for it can be found in polynomial time.

Integer programming: In most combinatorial problems we are seeking dis-

crete solutions with integer or binary variables, and linear programs cannot nec-

essarily capture such a constraints. As such, solving a combinatorial problem

using linear programming usually consists of modeling the problem as a lin-

ear program but with the assumption that variables can be constrained to be

integers. This is referred to as an integer relaxation (or integer program) of the

problem. Then the integrality constraints are removed so that a solution to the

linear program can be found in polynomial time, yielding a solution that may

consist of fractional values for our variables. Then we would need to “round”

the fractional solution to a valid solution to our original discrete problem.

LP rounding Since removing the integrality constraint relaxes the problem,

the fractional solution produced by the linear program is of no worse quality

than the optimal solution for the problem, that is if our original integer relax-

ation was indeed a mathematical formulation of the problem. Therefore, we

can start from the fractional solution to the linear program and use its cost as

a lowerbound on the optimal cost. Then in the rounding procedure if the cost

increases by a factor of α, we can claim our algorithm is an α approximation for

the problem.

8

Integrality gap: If the best solution to the integer relaxation is large relative

to the fractional solution of the LP, then one cannot hope for an LP rounding al-

gorithm with small approximation guarantee. More precisely, if the ratio of the

best solution of the integer relaxation to the best solution of the corresponding

linear relaxation is β, then there can be no such a rounding algorithm based on

this relaxation with an approximation factor better than β. This ratio is known

as the integrality gap of the relaxation.

Primal-dual approach: The dual of a (primal) relaxation described above is

a formulation by m non-negative variables and a series of n linear constraints

of the form
∑m

j=1 aijyj ≥ ci for each 1 ≤ i ≤ n, and with a maximization ob-

jective function of the form
∑m

j=1 bjyj . A key property that ties the primal and

dual relaxations is that their objectives are equal for their respective optimum

solution. This implies that any solution for the dual has an smaller or equal ob-

jective than any solution to the primal. Therefore, one can use any solution of

the dual to establish a lowerbound on the objective value of the optimal solution

of the original integer relaxation. Such a lowerbound then can be used to prove

approximation guarantees. This technique is known as primal-dual.

2.3 Warm-up problem

The problems that we are concerned with in this thesis all can be placed under

the class of service-demand problems. In each such a problem, we have a set

D of demands and a set F of facilities and the goal is to assign to each demand

point i ∈ D a facility in order to minimize some cost function. Each problem

might have some other constraints, for example, in Chapter 3 the demands and

9

facilities have certain types that correspond to vertices of a given type tree, and

a demand of type x can be only satisfied with facilities that are either of type x

or of a type that is an ancestor of type x.

For now let us focus on a simple problem: a set D of demands and a set F

of facilities are given along with costs cij for each i ∈ D and j ∈ F where cif

represents the cost of matching i with f . The goal is to satisfy the demands with

the smallest cost, that is, to mach each demand point i ∈ D with one facility

such that the total cost of matched pairs is minimized. We can formulate this

as an integer program using a variable xij that is defined for each i ∈ D and

j ∈ F such that xij is 1 if i is matched with j and it is 0 otherwise. With this,

observer that Formulation Example IP is an integer relaxation of this simple

demand-satisfaction problem.

min
∑
i∈D

∑
f∈F

cifxif (Example IP)

s.t.
∑
f∈F

xif = 1 ∀i ∈ D

xif ∈ {0, 1} ∀i ∈ D, f ∈ F

To solve this problem exactly, for each demand i ∈ D we can find the facil-

ity f ∈ F with the smallest cif and assign i to f . This would satisfy all of the

demands while minimizing the total cost. For each i ∈ D, the facility f ∈ F

that minimizes cif can be found in O(|F|) iterations, and therefore the total run-

ning time for this algorithm is O(|D||F|) which happens to match the size of the

input.

10

CHAPTER 3

A LOT-SIZING PROBLEM

The facility location problem consists of a set of clients and a set facilities with

given distances between each facility and each client. There is a cost for opening

each facility, and the question is which facilities to open in order to serve the

clients most cost-efficiently. The cost of a solution is the sum of opening costs

for the facilities that are chosen to be opened plus the total cost of serving all of

the clients, where the cost of serving each client is equal to its distance from the

closest opened facility.

Although algorithm design for the facility location problem and its many

variants has been the focus of a significant body of research, there is an im-

portant class of generalizations that has received much attention, but only with

more limited success, that is, facility location with types.

Simplistic models of facility location problem place no restrictions on the

clients served by each facility, which is typically an unreasonable assumption,

and so a great deal of work has been done to address further constrained mod-

els. The simplest extension is to impose a capacity constraint, but for a wide

range of applications it is more appropriate to distinguish types of service pro-

vided and required, and in this chapter it is on this class of problems that we

shall focus. Facility location models are closely linked to a number of inven-

tory models, since one can view a facility as a point in time at which an order

is placed, and the assignment cost then corresponds to the cost of filling a par-

ticular demand from that order, where one can have fixed ordering costs, unit

ordering costs, and inventory holding costs easily incorporated into this setting.

Here we consider an inventory management problem that arises in the setting

11

with type constraints.

Since the facility location problem is NP-hard, much of the algorithmic

work in this domain has focused on the design of approximation algorithms,

and it has proved to be a fertile ground for the development of many of the

now-standard techniques in algorithm design: researchers have applied deter-

ministic and randomized rounding [30, 24, 10], primal-dual methods [17], lo-

cal search[18], and even greedy-type algorithms [16] to this problem. For the

classical facility location problem, the best approximation guarantee currently

known is a 1.488-approximation algorithm (where a ρ-approximation algorithm

is a polynomial-time algorithm that is guaranteed to find a feasible solution of

objective function value within a factor of ρ of the optimum), which was ob-

tained by randomized rounding [24]. For the k-median problem, in which there

are no facility costs but one is limited to opening only k facilities, strong re-

sults are known via a range of techniques as well [25, 17, 2], and analogous

results (though more limited) are known for the capacitated version of the facil-

ity location problem [11, 1, 28, 4]. One particularly notable open problem is to

derive good algorithms for the setting in which the opening/ordering costs are

submodular set functions of the set of demand points assigned (or for suitably

general special cases).

The research presented in this chapter aims to derive results in which each

facility may have a different serving capability, particularly, Facility Location with

Hierarchical Types. In this problem, the types form a rooted tree in which a facility

of a given type can serve any client that has a type that is a descendant of the

facility type in the tree (where a node is trivially a descendant of itself).

12

Analogous to the development of approximation algorithms for facility loca-

tion problems, there has been a corresponding thread of research investigating

results of a variety of inventory management problems, primarily the lot-sizing

and the joint replenishment problem[19, 20, 21, 6, 9, 23]. In some elements, these

problems are sometimes simpler than their facility location equivalents, since

the assignment costs, in addition to obeying the triangle inequality, often have

an even more refined structure due to the linear nature of ordering/demand

time periods. However, these problems have a harder element, since the met-

ric is definitely not symmetric - one cannot serve a demand point earlier in time

than the ordering period. Hence, it is natural to ask for the analogs of the two re-

sults discussed above. Surprisingly, for the lot-sizing problem with hierarchical

types, we show that the problem can be solved dynamic programming in poly-

nomial time, in a manner analogous to a recent result [9]. However, unlike for

the unconstrained lot-sizing problem for which the natural linear programming

relaxation is the basis for a primal-dual polynomial-time algorithm as well [21],

we give an example for which there is an integrality gap of 4/3 for the lot-sizing

problem with hierarchical types.

3.1 Notation

In this section, we introduce some definitions and notation to be used through-

out this Chapter. Let F be the set of potential facilities; opening facility i ∈ F

has associated non-negative cost fi. LetD be the set of demand points. We need

to assign each client j ∈ D to some open facility i and it costs cij . In addition,

there is set of types T , forming a partial ordering. Each facility i has a type t(i)

and each client j has type t(j). Facility i is capable of serving client j if and

13

only if t(j) ≤ t(i) in the partial ordering. Types indicate the serving capabilities.

Denote F(j) be all facilities that can serve client j.

Suppose we open the set of facilities S in the solution and assign client j to

σ(j). Then the total cost of this solution is
∑

i∈S fi +
∑

j∈D cσ(j)j , i.e., the sum of

total facility opening cost and total assignment cost. The goal is to find a feasible

solution with minimum total cost.

Our algorithm and analysis will rely on the following primal linear-

programming (LP) relaxation P and its dual D.

min
∑
i∈F

fiyi +
∑
j∈D

∑
i∈F(j)

cijxij (P)

s.t.
∑
i∈F(j)

xij ≥ 1 ∀j ∈ D

xij ≤ yi ∀j ∈ D, i ∈ F(j)

xij, yi ≥ 0 ∀i ∈ F , j ∈ D

max
∑
j∈D

vj (D)

s.t. vj ≤ cij + wij ∀j ∈ D, i ∈ F(j)∑
j:i∈F(j)

wij ≤ fi ∀i ∈ F

vj, wij ≥ 0 ∀j ∈ D, i ∈ F(j).

Any binary feasible solution to (P) corresponds to a feasible solution. yi = 1

indicates that facility i is open and xij = 1 indicates that client j is served by

facility i.

For the dual (D), we can intuitively think vj as budget of client j andwij as its

contribution towards opening facility i. The first set of constraints say that the

budget can cover both assignment cost and contribution toward opening cost.

The second set of constraints say that the total contribution toward one facility

cannot exceed its opening cost.

14

3.2 Lot-sizing with hierarchical types

In this section, we consider a related problem where facilities and clients are

embedded in time, and thus may correspond to orders and demands occurring

over time. Let order i occur at time τ(i) and demand j occur at time τ(j). We

still have the hierarchical type tree as in facility location with hierarchical types. For

a client j to be served by facility i, in addition to the type constraint t(j) ≤ t(i),

we also have the time constraint, τ(i) ≤ τ(j). For the assignment cost cij , we

have a non-decreasing property: for two facilities i, i′ and client j with τ(i) ≤

τ(i′) ≤ τ(j), we have cij ≥ ci′j . Also, cij =∞ if τ(i) > τ(j).

3.2.1 A dynamic programming algorithm

We now describe a polynomial-time dynamic programming (DP) formulation

to solve the lot-sizing problem with hierarchical types. For this, we need some

new notation. Considering a type tree T , we define T (t) to be the subtree of

T rooted at t if t ∈ T , and ∅ otherwise. We also use CT (t) to denote the set of

children of t in T . For convenience we add a dummy facility χ of the root type

occurring at τ(χ) = −∞ with opening cost fχ = 0 such that cχj = ∞ for any

client j.

Now, for any facility i, any type t satisfying t ≤ t(i), and any time τ > τ(i)

we define L(i, T (t), τ) to be the cost of the optimal solution for the subset of the

clients and facilities contained in the interval [τ(i), τ) that have types contained

in the subtree rooted at t, i.e., T (t), with the extra assumption that i has opening

cost fi = 0. Thus, the optimal overall cost of the lot-sizing problem isL(χ, T ,∞).

15

Note that there are at most |D| values for the third element that are of interest,

and therefore there are a total of O(|F||T ||D|) distinct sub-problems.

The base case of the DP is when the type tree has depth zero, and therefore

the optimal solution has cost 0. Let us calculate L using a recursive formula that

uses induction on the depth of the type tree, each time finding the latest facility

of the root type that is opened in the optimal solution. For this, we can establish

the following recurrence.

L(i, T (t), τ) = min
{ ∑
j:t(j)=t,τ(i)≤τ(j)<τ

cij +
∑

t′∈CT (t)

L(i, T (t′), τ),

min
i′:t(i′)=t,τ(i)<τ(i′)<τ

{fi′ + L(i, T (t), τ(i′)) +
∑

t′∈CT (t)

L(τ(i′), T (t′), τ)}
}

The first case of the outer min corresponds to the scenario when no facilities

of type t are opened in the optimal solution in the interval [τ(i), τ), other than

i. Here, all clients of type t will be served by i, and the rest of the solution can

be separately calculated for each of the type trees T (t′) for all t′ ∈ CT (t), and be

summed to get the total cost.

The second case considers the facility i′ that is the last facility of type t

opened after i and by time τ . Here, the optimal solution for the interval [τ(i′), τ)

is calculated as in the previous case, and the optimal solution for the interval

[τ(i), τ(i′)] is calculated by recursing on L(τ(i′), T (t′), τ).

Together, the two cases cover all possibilities for the latest facility of type

t that is opened in the time interval [τ(i), τ) and therefore at some point the

optimal solution is considered. Each update can be implemented in O(|F| +

|D|) given that the facilites and clients of each type are maintained sorted by

16

τ

f1 f2 c1 f3 c2 c3

Figure 3.1: The instance of the lot-sizing problem inducing integrality gap of
4/3 for LP and the corresponding support of x. All drawn arcs correspond to
half integral values.

occurence time, and therefore the total runtime is bounded by O(|F|2|T ||D| +

|F||T ||D|2).

Theorem 1. There exists a polynomial-time dynamic programming algorithm to solve

the hierarchical lot-sizing problem.

3.2.2 An integrality gap example

Interestingly, although this problem admits polynomial solution, we can pro-

vide an example where the natural linear program has an integrability gap of 3
4
.

We need only two types, say a and b, where a is the root type and b is the only

leaf type.

The instance consists of three facilities f1, f2, and f3 and three clients c1, c2,

and c3 such that τ(f1) < τ(f2) < τ(c1) < τ(f3) < τ(c2) < τ(c3). Also, facilities f1

and f3 and the client c3 are of type a and the rest of clients and facilities are of

type b. Let us say the opening cost for all facilities is a constant c and the holding

costs are 0, except for cf1c2 = ∞. It is easy to verify that these holding costs are

non-decreasing.

Any solution that opens two of the facilities will have a total cost of 2c and

would be optimal. However, in a fractional solution one can open each facility

17

halfway since each client can be served by two facilities without paying a hold-

ing cost, i.e., yf1 = yf2 = yf3 = 1/2. See Figure 3.1 for an illustration. Such a

fractional solution satisfies all constraints of LP and has a cost of 3 c
2
, inducing

an integrality gap of 4
3
.

Theorem 2. The natural LP for lot sizing has integrality gap ≥ 4
3
.

3.2.3 Upperbound on Gap

Here we provide a 2-approximation algorithm that bounds the integrality gap

of the LP for lot sizing with hierarchical types. Consider an instance I of the

problem and let us start with an optimal dual solution (v∗, w∗).

To obtain an integral solution we iterate over the types in T , starting from

the root type r and ending with leaves, each time focusing on a type t and open-

ing facilities in order to serve all clients of type t. We also need to maintain a

dual solution (v+, w+) for the set of clients that are not served yet. We initialize

(v+, w+) = (v∗, w∗), and modify the given instance by setting cij = ∞ for any

client j and facility i such that τ(j)− τ(i) > v∗j .

Since in for each type the algorithm at some iteration opens facilities to serve

all clients of that type, in the end all clients will be served by S. Next theorem

bounds the cost of the obtained solution.

Theorem 3. The cost of the solution produced by this algorithm is at most 2
∑

j v
∗
j .

Proof. Each time a facility i is opened serving a set Si of previously unserved

clients, a total cost of
∑

j∈Si
v+j is induced to the integral solution as

∑
j∈Si

v+j =∑
j∈Si

w+
ij +

∑
j∈Si

cij = fi + +
∑

j∈Si
cij . Since v+j freezes when j is served and

18

Algorithm 1 Finds an integral solution of cost at most twice the LP objective.
INPUT: An instance I on a type tree T and a maximum dual
solution (v∗, w∗). OUTPUT: A set S of facilities that will be
opened.
I ′ ← I
(v+, w+)← (v∗, w∗)
S ← ∅
for all types t ∈ T , starting from root and traversing towards leaves do
〈Facility opening phase〉:
while there are clients of type t in I ′ that are not yet served by St do

Consider the first unserved client i of type t.
Add to St the tentatively opened facilities that can potentially serve i and
appears last.

end while
〈Pruning phase〉:
for all clients j in I ′ that are served by St do

freeze v+j
remove j from I ′

end for
set the cost of facilities in St to 0
〈Dual update phase〉:
for all clients j of type t(j) ≤ t, starting from leaves and traversing towards
t do

increase v+j while dual remains feasible in I ′.
while exists a client j′ and ε > 0 where (j, j′, ε)-tradeoff is possible do
v+j′ ← v+j′ + ε

v+j ← v+j − ε
end while

end for
S ← S ∪ St

end for

each client contributes to at most one such facility, the final cost of the con-

structed solution would be at most
∑

j v
+
j . Next we show that

∑
j v

+
j ≤ 2

∑
j v
∗
j .

Consider the set St of facilities that are opened when the outer loop iterates

over type t, and let S ′t = {j ∈ St :} be the subset of St containing any clients that

satisfies v+j = v∗j . Then we claim that in the dual update phase of the algorithm

for type t the total increase in the objective function is at most
∑

S′t
v∗j . For this,

19

consider a client j of type t whose dual variable increases in dual update phase

of some type t′, that is, v+j > v∗j when the algorithm focuses on type t. Then

we claim that when j is removed, the objective function will not increase. The

reason is that when v+j is being increased, any client j′ of a lower type is already

bound by a tentatively opened facility i. Since we are able to increase v+j , it must

be that j cannot be served by i. Therefore, any increase in the dual objective

must stem from removal of a client that has not had its dual variable increased.

Also, since we started with an optimal dual solution, we know that for any

client j in S ′ there is at most one client whose dual variable can be increased

when the dual variable of j, v∗j , is decreased. This property is maintained during

the dual update phase, and therefore when we remove a client j, there will be

at most one client whose corresponding dual variable will be increased in the

dual update phase, and the increment is no more than v+j = v∗j .

By these arguments, we can say that the total increment in the dual objective

in the dual update phase is no more than the total dual value of any clients j

that were served in the facility opening phase with v+j = v∗j . Therefore we have∑
j v

+
j − v∗j ≤

∑
v∗j which concludes the lemma.

20

CHAPTER 4

AN EXAM-SCHEDULING PROBLEM

Here we review a problem arising when scheduling final exams for Cornell Uni-

versity. Many of the actual challenges are relaxed here for the sake of simplicity.

4.1 Background

Every semester at Cornell University about 20 thousand students take exams for

about 700 different courses at the end of each semester in a period of roughly

one week. Each day there are at most 3 different times where exams can be

scheduled (usually 9am, 2pm and 7pm), and in total during the exam period

there are about 21 available time-slots when exams are held. The task of assign-

ing each exam to a time-slots is a complex scheduling problem that has been

traditionally handled via a combination of a “natural hack” and computer as-

sistance.

The natural hack relies on the assumption that two courses with overlapping

meeting times do not share registered students. This means that if we color

courses based on their meeting times such that all courses of the same color

have overlapping meeting times, then assigning all exams corresponding to the

courses of the same color to one time-slot should not produce any conflicts.

A limitation of this “hacking” approach is that it cannot be applied to courses

that are offered with multiple meeting-time options but a single final exam. For

example, of the 689 exam-items that needed to be scheduled for Spring 2016, 69

corresponded to courses with multiple meeting times. This is were we entered

21

the scene: The registrar was able to color the rest of the 620 courses with 14

colors and we were asked to use computer assistance to color the remaining 69

courses with 6 colors. The objective was to do this with introducing the smallest

number of conflicts, that is, students with two exams of the same color. While

we were able to achieve 0-conflict coloring for our part, it turned out that the

coloring produced by the hack included 83 conflicts.

Motivated by the initial success of our algorithm for the smaller set of ex-

ams, we took on the task of coloring and scheduling all of the 689 exams using

computer assistance. Our approach is in two phases: first we focus on finding

a coloring of the courses that assigns to each course one of 20 colors such that

there are no students enrolled in two courses of the same color. Then in the

second phase we assign each of the 20 colors to one of the 20 time-slots while

minimizing undesirable instances such as back-to-back exams and cases where

a student has to take three exams in a period of 24 hours. Using this approach

we were able to produce a scheduling of exams within the given time frame

without any direct conflicts.

Upon further investigation and discussion with the client it became clear that

the true objective is the total number of instances of conflicts, plus the number

of instances of three exams in 24 hours. This new objective provided us with a

challenge since our two phase approach gives strict priority to minimizing the

number of conflicts, and treats the number of cases with three exams in 24 hours

as the secondary objective. In this chapter we discuss a way to go around this

issue by changing the two phase structure, and focus on a theoretical problem

that arises when so.

22

4.2 Formulations

Each of the two phases of our approach is handled via a mixed integer formu-

lation. Here we review each of these formulations in a simplified environment.

4.2.1 Phase 1: The Coloring Problem

The integer relaxation for phase 1 captures the graph coloring problem. Given a

graph G, can we color the vertices with k colors such that the ends of each edge

have different colors? The minimum number of colors required to color a graph

is known as the chromatic number of that graph. Theoretically, this problem is

extremely difficult: Even when the given graph is 3-colorable, although there

has been an extensive effort, no algorithm with a factor better than O(nε) is

known.

Let F be the set of colors available to us, and D be the set of exam items that

need to be colored. Also for each pair i, j ∈ D let cij be the number of students

that would need to take both exams i and j, which corresponds to the overhead

on the total number of conflicts if i and j are assigned the same color. Then

Coloring IP is an integer relaxation for the problem of finding a coloring of the

exams with |F| colors such that the number of conflicts is minimized.

23

18 colors 19 colors 20 colors
number of conflicts 7 3 0

Table 4.1: The results of the coloring phase for the data regarding Spring of 2016.

min
∑
i,j∈D

cijhij (Coloring IP)

s.t.
∑
f∈F

xif ≥ 1 ∀i ∈ D

xif + xjf ≤ 1 + hij ∀i, j ∈ D, f ∈ F

xif ∈ {0, 1} ∀f ∈ F , i ∈ D

hij ∈ {0, 1} ∀i, j ∈ F

xif in Coloring IP for an exam i and color f is a binary variable that indicates

that i is of the color f . If two exams i, j ∈ D are assigned the same color f ,

then hij has to be 1 which causes cij many conflicts to be counted towards the

objective. The first constraint ensures that each exam is assigned a color, and

therefore this relaxation captures the problem of minimizing the total number

of conflicts.

With this relaxation and for the case of Cornell University a conflict-free col-

oring with 20 colors can be produced using Gurobi as the mixed integer solver

in a matter of hours.

24

4.2.2 Phase 2: Scheduling Problem

In this phase, already having a conflict-free coloring, we focus on assigning each

color to a time-slot in order to minimize a cost function that is a combination of

the number of instances of 3 exams in 24 hours and number of beck-to-back exams

that the students have to take.

Suppose we only wish to minimize the number of instances of back-to-back

exams that the students take, and consider the graph where each vertex repre-

sents a color and the weight of edges represent shared students between colors.

The schedule starts from a vertex, and places all of the vertices in a total or-

der. For each pair of vertices u and v that are scheduled in two consecutive

time-slots, there are as many back-to-back cases as the weight of the (u, v) edge.

Therefore, we can see the schedule as a path through this graph that visits all

of the vertices, and the goal is to minimize the total weight of the edges of this

path. This problem is known as the Traveling Salesman Problem, and it is NP-

hard even for metric graphs.

Let F be the set of time-slots and D be the set of colors that are to be sched-

uled in these time-slots. For each pair i, j ∈ D let cij represent the number of

students that have an exam in both colors. For each time-slot f ∈ F we use

n(f) to refer to the next time-slot, and if f is the last time-slot let n(f) be the first

time-slot. For a time-slot f ∈ F let cijkf be the cost induced by the three exams

i, j, and k if they are scheduled at f, n(f), and n(n(f)), respectively.

25

min
∑
i,j,k∈D

∑
f∈F

cijkfxijkf

(Scheduling IP)

s.t.
∑
k∈D

xkijf =
∑
k∈D

xijkn(f) ∀i, j ∈ D, f ∈ F

∑
i,j,k∈D

xijkf = 1 ∀f ∈ F

∑
j,k∈D

∑
f∈F

xijkf = 1 ∀i ∈ D

xijkf ∈ {0, 1} ∀i, j, k ∈ D, f ∈ F

xijkf in Scheduling IP indicates that i is scheduled for time f while j and

k are scheduled for n(f) and n(n(f)), respectively. The first constraint guar-

antees consistence juxtaposition of exams i and j, while the second and third

constraints make sure that each color is assigned to one time-slot and each time-

slot has exactly one color assigned to it. Together, these constraints ensure that

x establishes a total order upon the colors in any feasible solution.

Although this formulation has n4 variables, since n is small we can use

Gurobi to find the optimal solution in less than an hour. Our cost function cijkf

captures a weighted combination of the number instances of three exams in 24

hours and back-to-back exams induced by having i, j and k scheduled consecu-

tively starting from time-slot f , along with some other undesirable instances.

26

4.3 Path cover problem

One problem with this approach is that the color of each course is fixed in the

first phase without any regard for the other part of the objective, that is, the

number of instances of three exams in 24 hours. Attempting to incorporate this

objective into the integer relaxation of phase 1 makes the solving of the problem

by Gurobi painstakingly slow and practically infeasible.

To remedy this we add a phase 1.5 that “prepares” the conflict-free coloring

for the scheduling. We do this by finding chains of colors that could be poten-

tially scheduled sequentially in the final schedule and focus on improving the

coloring relative to these chains while maintaining the coloring conflict-free.

In this chapter we are mainly concerned with an algorithm for finding these

chains. Consider the graph where each color is represented with a vertex and

the weight of an edge (u, v) is the number of students that are enrolled in a

course of color u and a course of color v. Notice that by the nature of our coloring

each student is enrolled in at most one course of each color, and therefore is only

counted once towards the weight of an edge. If vertices v and u are scheduled

consecutively in phase 2, then they would contribute to the total number of

instances back-to-back exams as much as is the weight of (u, v). The algorithm

in phase 2 attempts to also minimize the number of back-to-back exams, and

therefore if an edge has small weight it is more likely for the corresponding pair

of vertices to be scheduled consecuitively in phase 2.

Our algorithm in phase 1.5 takes such a graph as input along with a subset

of its edges and tries to modify the coloring in order to minimize the number

of students with exams on both ends of the given edges while maintaining the

27

conflict-freeness of the coloring. Now the problem is which edges should be

selected for the input of this phase. For this we wish to select a set of edges in

the given graph with minimum total weight such that these edges form a set

of disjoint paths in the graph. This way we can hope that each selected path

is likely to be scheduled in the same order in phase 2, therefore minimizing

the instances of students with exams on both ends of the edges of these paths

translates to a reduction of the number of instances of back-to-back exams that

students must take in the final schedule, which would also reduce the number

of instances of students with 3 exams in 24 hours.

One way to go about this is to find a path of n − 1 edges of minimum to-

tal length. This would be equivalent to the Traveling Salesman Path Problem

(TSPP) which is a well-studied problem. However, such a path is unlikely to

be scheduled in order in phase 2 as our main objective in phase 2 is to reduce

the number of instances of 3 exams in 24 hours and not the number of instances

of back-to-back exams. Therefore some of the optimization effort in phase 1.5

would be wasted on edges that will not be scheduled consecutively.

Instead of just focusing on a path of length n − 1, we consider all numbers

1 ≤ k ≤ n−1 and for each such k we seek to find a set of disjoint paths covering

a total of k edges with minimum total weight, and then each time we try the

optimization of phase 1.5 on resulting set of k edges, and for each produced

“modified” coloring we run the scheduling of phase 2. The best solution for all

k would be the output of our exam-scheduling algorithm. When k = n− 1, this

would be equivalent to solving the TSPP, and therefore, our problem here is a

generalization of TSPP. TSPP is inapproximable in general graphs, and therefore

we focus on metric graphs.

28

We define k-edge path-cover to be a set of disjoint paths covering exactly k-

edges, and in this chapter we present a 2-approximation for the problem of

finding the minimum weight k-edge path-cover in a given metric graph.

4.4 the k-edge path-cover problem

Our approach for the k-edge path-cover problem is relatively standard: First we

find a forest of k edges with minimum weight, and then we turn each tree into

a path by at most doubling its weight.

Algorithm 2 Finds a k-edge path cover with a total weight at most twice that of
the optimal solution.
INPUT: A metric graph G(V,E). OUTPUT: A set S of disjoint paths covering a
total of k edges.
T ← ∅
while |T | ≤ k do

consider the next (u, v) ∈ E in order of weight, from lightest to heaviest.
if u and v belong to different connected components of T then
T ← T ∪ (u, v)

end if
end while
S ← ∅
for all connected component t in T do

Let p be the path corresponding to the depth-first traversal order of t from
an arbitrary root.
S ← S ∪ p

end for

Theorem 4. Algorithm 2 is a 2-approximation algorithm for the k-edge path-cover

problem.

Proof. First we show that the cost of the forest T is no greater than w(OPT).

Note that OPT is also a forest, and we generalize the proof to show that T is

the cheapest forest among forests in G with k edges. Let OPT− be the forest

29

that results from removing the heaviest edge of OPT. Similarly, let T− be the

forest that results form removing the heaviest edge of T . By induction on k we

have w(T−) ≤ w(OPT−). Let eT and eOPT be the heaviest edge in T and OPT

respectively. If w(eT) ≤ w(eOPT) we are done. For the sake of contradiction

suppose w(eT) > w(eOPT), and notice that in this case all edges of OPT must be

lighter than w(eT). However, in such a case there must be some edge in OPT

with at least one end not spanned by T−, and that edge would have priority

over eT in construction of T in Algorithm 2, which is a contradiction.

In Chapter 2 we argued that in the depth-first traversal of a tree each edge

is traversed exactly twice. Therefore if we consider the depth-first ordering of

a metric tree t, then the weight of an edge that connects a consecutive pair of

vertices in this ordering is no more than the weight of the traversed path be-

tween the corresponding visits in the depth-first traversal. Since in the whole

process each edge is traversed twice, therefore, the total weight of the path cor-

responding to the dpeht-first ordering of the tree is at most twice the weight of

the whole tree.

Since each path weights at most twice its corresponding tree, the total cost

of all of the paths is at most twice the weight of the forest, therefore w(S) ≤

2w(T) ≤ w(OPT)

30

CHAPTER 5

A CLUSTERING PROBLEM

5.1 Introduction

Clustering problems have been studied from a range of algorithmic perspec-

tives, due to the breadth of application domains for which they serve as ap-

propriate optimization models. This is particularly true from the context of ap-

proximation algorithms, in which a wide variety of these optimization models

have been shown to have polynomial-time algorithms with strong performance

guarantees. In this chapter, we will consider an important generalization of

many of these problems for which no constant performance guarantee had been

known previously, and give the first constant performance guarantee for a cen-

tral special case that is a common generalization of two of the most well-studied

models, the k-center and k-median problems.

In the metric k-supplier problem, we are given a set D of n demand points

and a set F of m service points in a common metric space. The goal is to open

k of these service points in order to serve the demand in D, while minimizing a

connection cost. Typically, when there are no capacities on how many demand

points that each service point can serve, each demand point is served by its

closest opened service point. Although in this chapter we only focus on cases

where F = D, for the sake of readability we try to distinguish between the two

roles that any of the given points may play at any point.

We use cjj′ denote the distance between points j and j′. Similarly, for sets S

and D of points and a point j ∈ D, cjS refers to the distance between j and a

31

point in S that is closest to it, and cDS is the array of length |D| of non-decreasing

distances cjS for each j ∈ D. For a solution S with |S| ≤ k, the connection cost

of the k-supplier problem can be expressed as function of cDS .

In the ordered median problem, we are given a weight vector w, where w(i) for

i ∈ [n] is the weight on the ith longest connection, and the cost of a solution

S ⊂ F with |S| ≤ k is simply wT cDS . Very recently, Aouad and Segev [3] pre-

sented an O(log n) approximation algorithm for the case when weights in w are

non-decreasing. This result intensifies the question of finding conditions for w

under which the ordered median problem can be approximated with a constant

quality guarantee.

For example, again when F = D, the ordered median problem captures the

k-center problem, by setting the cost vector w to be 0s for each index, except for

the last index w(n) > 0. So the problem here is to select a set S ⊂ F of k centers

in order to minimize the maximum distance in cDS . The first approximation

algorithms for this problem were presented by Hochbaum & Shmoys [14] and

Gonzalez [12], with an approximation factor of 2. The latter algorithm starts

with S = {i} for some arbitrary i ∈ F , and in each iteration adds the point

i′ ∈ F that maximizes ci′S to S, provided |S| < k. Suppose j ∈ D is the furthest

demand point from S at the end of this algorithm. Then, if you consider the

balls of radius cjS/2 around each point in S, these balls must be disjoint, or else

j should have been added to S at some point by the algorithm. If we assume that

there is a set S∗ with max(cDS∗) < cjS/2, then the ball of radius cjS/2 centered

at each of i ∈ S ∪ {j} must intersect S∗, and since these k + 1 balls are disjoint,

it must be that |S∗| > k. Therefore, cjS is within a factor 2 of any solution with

size at most k. Hsu & Nemhauser [15] showed that, for any ε > 0, there is

32

no polynomial-time algorithm with a performance guarantee of 2 − ε for this

problem, unless P=NP.

Another example of a cost vector that is approximable within a constant fac-

tor would be that of the k-median problem. In this case, the cost vector w is 1

for each index, and therefore the cost is simply the sum of the distances between

each demand point and its closest open service point. Although the k-median

problem is arguably driven by the simplest cost vector, no constant approxima-

tion algorithms were known for it until Charikar et al. [8] presented an LP-based

algorithm with a factor of 62
3
. Indeed, our main result here extends their ap-

proach. Subsequent to [8], there has been a series of improvements leading to

the recent 1 +
√

3 + ε approximation algorithm by Li and Svensson [22].

In this chapter, we push the envelope a little further by showing that even

if the cost vector is a convex combination of the cost vectors of k-center and

k-median, one can still efficiently find solutions within a constant factor of the

optimal. More precisely, given an instance of k-supplier with an optimal so-

lution Sopt, our algorithm presented in Section 5.2 is able to find a solution S

such that sum(cDS) ≤ 8sum(cDSopt) and max(cDS) ≤ 4max(cDSopt). In the litera-

ture, this is referred to as a bicriteria approximation algorithm. Note that this result

implies that for the special case of the ordered median problem in which w is

obtained from a convex combination of the k-median and k-center problems,

we obtain a constant approximation algorithm.

A stronger notion than a bicriteria approximation would be a simultaneous

approximation; that is, an algorithm that produces one common solution S that

is simultaneously compared to an optimal solution S∗1 for its k-center objective

and to an optimal solution S∗2 for its k-median objective. However, we can show

33

A

B
1

√
n

√
n

Figure 5.1: An example showing that simultaneous approximation of k-center
and k-median within a factor o(

√
n) is impossible. Here each of A and B repre-

sents a cluster of bn
2
c points that are located at the same position.

that producing such a simultaneous approximation of factor o(
√
n) is not pos-

sible. For this, suppose n is odd and n − 1 of the points are divided equally

between two positions with distance 1 from each other. There is also a single

outlier that is of distance
√
n from everyone else. See Figure 5.1. Let k = 2 and

suppose S∗1 contains the outlier and one other point, whereas S∗2 contains one

point at each of the densely populated locations. Therefore, max(cDS∗1) = 1 and

sum(cDS∗2) =
√
n. In such a case, any solution S would have sum(cDS) ≥ bn

2
c if

it opens the outlier service point and max(cDS) ≥
√
n otherwise. In either case,

max(max(cDS)
max(cDS∗1

)
, sum(cDS)
sum(cDS∗2

)
) would be in Ω(

√
n).

We also extend our result to the incremental setting, when k is not known

a priori and one has to add service points one by one to the solution such that

when the size of the solution reaches k, the solution that is built is still within

a constant factor of the optimal. For example, the algorithm that we mentioned

for the k-center problem satisfies this constraint, since it opens service points

greedily and oblivious of k. For the k-median problem, Mettu and Plaxton

[27] presented the first constant-factor approximation in the incremental setting.

Later, Lin et al. [26] presented a general framework for incremental approxima-

tions that also applies to the k-median problem with an improved approxima-

tion factor. In Section 5.3, we use this framework to develop an incremental

approximation algorithm for any objective that is a convex combination of that

of k-center and k-median problems.

34

5.2 A (4,8)-approximation algorithm for k-center & k-median

Suppose we are given an instance of the k-supplier problem withD = F , and we

wish to find a good solution with respect to both the k-median and k-center ob-

jectives. Let Sopt be the “ideal” solution in this context, and consider max(cDSopt)

and sum(cDSopt), which are its k-center and k-median objectives, respectively.

As is the convention in bi-criteria approximations, we assume that max(cDSopt)

is given as an objective measure. Note that max(cDSopt) is equal to one of the(
n
2

)
possible distances between pairs of given points, and hence we can guess

max(cDSopt) with a multiplicative overhead of O(n2). This guess would allow us

to achieve the desired guarantees, however, we would not necessarily be able

to decide which guess corresponds to the true value of max(cDSopt) and would

need to choose among produced solutions based some other criteria.

Our algorithm works based on the k-supplier LP. In this formulation, for a

service point i ∈ F there is a variable yi that represents whether service point i

is opened or not, and a variable xij for each j ∈ D that represents the fraction of

j’s demand that is satisfied by i. Here we are assuming that each demand point

has one unit of demand that must be satisfied. However, the algorithm will

maintain a more general instance in which demand is concentrated at nodes in

D, and so we will let dj denote the total demand at node j.

Suppose that variables xij and yij are restricted to be integers and L is set

to infinity. Then the (k-supplier LP) formulation represents an linear relaxation

of the k-median problem: the objective is to minimize the sum of distances be-

tween each demand point and the service point that serves it. Constraint (c1)

ensures that a demand point j ∈ D relies on exactly one service point i ∈ F ,

35

constraint (c2) verifies that no demand point uses an unopened service point to

satisfy its demand, and constraint (c3) makes sure that k centers are opened.

min
∑
i,j∈D

djcijxij (k-supplier LP)

s.t.
∑
i∈F

xij = 1 ∀j ∈ D

(c1)

xij ≤ yi ∀i ∈ F , j ∈ D

(c2)∑
i∈F

yi = k (c3)

0 ≤ yi ≤ 1 ∀i ∈ F

0 ≤ xij ≤ 1 ∀i ∈ F , j ∈ D

xij = 0 ∀i ∈ F , j ∈ D : cij > L

(cc)

Now suppose we set L to max(cDSopt) and then solve for an optimal frac-

tional solution (x∗, y∗). Then constraint (cc) guarantees that xij is 0 for any pair

i ∈ F and j ∈ D that are further than max(cDSopt) from each other. Also, by

the optimality of (x∗, y∗) and since Sopt corresponds to a feasible solution for

(k-supplier LP), we have that
∑

i,j∈D djcijx
∗
ij ≤ sum(cDSopt). Thus, we can use

(x∗, y∗) to bound both the k-center and k-median objectives in the optimal solu-

tion.

36

Algorithm 3 Finds an integral solution S with sum(cDS) at most 8 times (k-
supplier LP) objective and max(cDS) at most 4L.
INPUT: An instance of the k-supplier problem along with L and a feasible solu-
tion (x, y) of the (k-supplier LP).
OUTPUT: A set S with |S| ≤ k of service points that will be
opened.

1: (x′, y′)← (x, y)
2: S ′ ← ∅
3: d′j ← dj ∀j ∈ D {total demand that j represents}
4: Cj ←

∑
i∈F xijcij ∀j ∈ D {cost of serving the demand of j}

5: for all demand points j ∈ D in increasing order of Cj do
6: if cjS′ > min(4Cj, 2L) then
7: S ′ ← S ′ ∪ {j}
8: else
9: let j′ be the closest point to j in S ′

10: d′j′ ← d′j′ + d′j , d′j ← 0 {moving the demand of j to j′}
11: end if
12: end for
13: for all i ∈ F\S ′ do
14: let i′ be the closest point to i in S ′

15: y′i′ ← y′i′ + y′i, y′i ← 0 {moving the y′ value of j to j′}
16: end for
17: while there is i, i′ ∈ S ′ s.t. y′i′ < 1, y′i > 1 do
18: δ ← min(y′i − 1, 1− y′i′)
19: y′i′ ← y′i′ + δ, y′i ← y′i − δ {redistributing the excess y′ of i}
20: end while
21: let sj be the closest point to j in S ′\{j} ∀j ∈ S ′
22: while there are i, i′ ∈ S ′ s.t. y′i′ < 1, 1

2
< y′i < 1, and d′icisi ≤ d′i′ci′si′ do

23: δ ← min(y′i − 1
2
, 1− y′i′)

24: y′i′ ← y′i′ + δ, y′i ← y′i − δ
25: end while
26: S ← {i ∈ S ′ : y′i = 1}
27: let T be a forest of arbitrarily rooted trees with a node for each j ∈ S ′ and an

edge between each j ∈ S ′ and sj
28: let E and O be the set of points j ∈ S ′ with y′j < 1 that are of even and odd

distance to their tree root in T , respectively
29: if |O| < |E| then
30: S ← S ∪O
31: else
32: S ← S ∪ E
33: end if
34:
35: return S

37

Algorithm 3 uses a solution (x∗, y∗) to construct an integral solution that is

within a constant factor of both the k-center and k-median objectives of Sopt.

First, a set S ′ of points is selected as candidates for being opened, and at the

same time, the demand of each point j ∈ D\S ′ is moved to a point j′ ∈ S ′

that is close enough to represent j (lines 5-12). Here, for each j ∈ S ′,d′j denotes

the total demand that point j represents. Then, another loop iterates over all

points i ∈ F\S ′ to create an updated solution y′; we move all of the weight y′i

to the closest point in S ′ so that y′i = 0 for each i ∈ F\S ′ , and then a while

loop redistributes among S ′ any excess of y′ that might have been gathered in

one i′ ∈ S ′ so that y′i′ ≤ 1 (lines 13-20). By this point in the algorithm, all of

the demand and (fractional) supply is concentrated in S ′. The following lemma

implies that the size of S ′ is at most 2k.

Lemma 5. After Line 20 of Algorithm 3 we have y′i >
1
2

for each i ∈ S ′.

Proof. By the order in which the points are considered in the loop at line 5 and

the condition at line 6, we have that the balls centered at any i ∈ S ′ with radius

min(2Ci,L) are disjoint. (Recall that Cj =
∑

i∈F xijcij given our input fractional

solution x.) By line 20 of the algorithm, all of the y value that is in any such a

ball centered at an i ∈ S ′ is moved to y′i, and some of it is possibly redistributed

to make sure y′i ≤ 1. If L < 2Ci and the radius of the ball is L, then by constraint

(cc), the total y value in such a ball must be at least 1. Otherwise, by constraint

(c2) and the definition of Ci, at least half of the y value that i uses to satisfy its

demand must be within distance 2Ci.

Next, in a while loop, the algorithm moves any weight specified by y′ from

any point of S ′ to a more effective point in S ′ as long as all y′ values remain in

range [1
2
, 1] for all points in S ′ (lines 22–25).

38

Lemma 6. By the time the while loop at line 22 of Algorithm 3 terminates, for any

point i ∈ S ′, we have y′i ∈ {12 , 1}.

Proof. Since constraint (c3) holds with equality and (x∗, y∗) is a feasible solution

to the (k-supplier LP), we have
∑

i∈F y
∗
i = k. Since y′ is initialized to y∗ and

the total value of y′ is conserved throughout (both when it is moved to S ′ and

also in each iteration of the while loop,) therefore, any time the condition of the

while loop at line 22 is being evaluated, we have

∑
i∈F

y′i =
∑
i∈S′

y′i = k.

So if the condition of the lemma is not satisfied, then there must be at least

two points i, i′ ∈ S ′ such that y′i, y′i′ ∈ (1
2
, 1). However, such a pair satisfies the

condition of the while loop and therefore the loop would not yet terminate.

After the while loop at line 22 terminates, all points i ∈ S ′ with y′i = 1
2

are

partitioned into two sets O and E, and the smaller of O and E along with all the

points i ∈ S ′ with y′i = 1 are returned as the set S of points that are to be opened

by the algorithm (lines 27–35). Since S is comprised of points i ∈ S ′ with y′i = 1

and at most half of the points i′ ∈ O∪E with y′i′ = 1
2
, therefore the size of S is no

larger than k. The following lemmas argue that this set S is indeed a bicriteria

approximate solution for k-center and k-median.

Lemma 7. Given an instance of k-supplier problem with D = F and a corresponding

optimal solution (x∗, y∗) of (k-supplier LP) with L = max(cDSopt), Algorithm 3 returns

a set S of at most k centers such that max(cDS) ≤ 4max(cDSopt).

Proof. First we argue that for each j ∈ D, the closest point to j that is added to

S ′ is at most of distance 2L from j. For this, note that when the for loop at line 5

39

of the algorithm iterates over j and the condition at line 6 is being evaluated, if

the distance from j to all points in S ′ is greater than 2L, then j itself would have

been added to S ′.

Suppose that j′ is the closest node in S ′ to j. Let j′′ be the closest node in S ′

to j′, other than j′ itself. If the distance between j′ and j′′ is greater than 2L, then

all of the y′ value in the ball of radius L around j′ must have been gathered at j′

in lines 13–16, since j′ is the closest point in S ′ to any point in this ball. Since the

solution (x∗, y∗) is feasible and by constraint (cc), the total amount of y′ value in

such a ball should at least be 1 in order to satisfy the demand of j′. Therefore, in

this case y′j′ ends up being 1 and hence j′ itself is opened by the algorithm.

Now suppose that the distance of j′ and j′′ is smaller than 2L. In this case,

we show that at least one of j′ and j′′ is opened by the algorithm. By the triangle

inequality, this would mean that there must be at least one opened service point

within distance 4L of j, concluding the proof of the lemma. By the construction

of the forest T in line 27, there is an edge between nodes representing j′ and j′′

in T . If none of j′ and j′′ are added to S at line 26, then they are either in O or E.

Since there is an edge between j′ and j′′ in T , the parity of their level in T must

be different, and hence exactly one of them should belong to O and the other

must be in E. One of O or E is added to S in lines 29–35, and hence one of j′ or

j′′ must be opened by the algorithm.

Lemma 8. Given an instance of k-supplier problem with D = F and a corresponding

optimal solution (x∗, y∗) of (k-supplier LP) with L = max(cDSopt), Algorithm 3 returns

a set S of at most k centers such that sum(cDS) ≤ 8sum(cDSopt).

Proof. To show this we can break down the cost of rounding the LP solution

into 3 parts. The first part (filtering phase at Lines 5–12) incurs an independent

40

additive factor of 4, while the second (Lines 13–20) and third (Line 27 onward)

parts each incur a multiplicative factors of 2, implying that sum(cDS) ≤ (4 + 2×

2)sum(cDSopt).

We claim that moving the demands in Lines 5–12 induces an additive

term of 4 to the approximation factor. To see this recall that sum(cDSopt) ≥∑
j∈D
∑

i∈F x
∗
ijcij =

∑
j∈D Cj , and notice that the demand of each point j is

moved a distance of at most 4Cj and by the triangle inequality, returning this

demand to its original position would incur at most a cost of 4Cj . Hence, the

total overhead of moving the demands is within a factor 4 of the cost of the LP

relaxation.

Moving the y′ values to nodes at S ′ at Lines 13–20 incurs a factor of 2 to the

approximation ratio. Suppose an ε amount of y is moved from i to i′ ∈ S ′ at

Line 15. Note that at this point of the algorithm only points in S ′ have positive

demand, and consider some j ∈ S ′ that used to rely on i for an ε fraction of

its demand, who now has to use i′ to satisfy that ε fraction of its demand. By

the choice of i′ we have cii′ ≤ cji; therefore, by triangle inequality we have

cji′ ≤ cji + cii′ ≤ 2cij .

The while loop at Line 22 chooses i and i′ and manipulates the y′ values such

that the objective
∑
d′jx

′
ijcij does not increase; thus the bound on the approxi-

mation ratio is unchanged.

Suppose we update x′ at this point in the algorithm (after termination of

the while loop at Line 22) to get a feasible solution to the (k-supplier LP) while

minimizing the objective
∑
d′jx

′
ijcij according to the new y′ values produced by

the algorithm. Then, by Lemma 6, at line 27 of the algorithm, each point j in S ′

41

with y′j < 1 has y′j = 1
2
, and therefore relies for exactly half of its demand on the

closest other point in S ′; that is, sj as defined in Line 21. By the same arguments

as in the proof of Lemma 7, at the end of the algorithm if j is not opened, then

sj must be opened, and since j already relies on sj for half of its demand, this

would at most double the cost of serving point j. With the additive factor of

4 that we reserved for moving back the demands to their original points, it all

adds up to a factor of 8.

The following theorem immediately follows from Lemmas 7 and 8:

Theorem 9. There is a polynomial-time bicriteria (4, 8)-approximation algorithm for

k-center and k-median problems.

5.3 Incremental approximation for convex combination of

k-center and k-median

In the incremental setting, the parameter k is not known a priori. In this case,

we open service points one by one, and the true value of k is revealed only

after the kth service point is opened. One can view this setting equivalently as

producing an ordering of all nodes in F , where each prefix of the first k nodes is

the designated solution corresponding to the number k, and all such prefixes for

all 1 ≤ k ≤ n must have the claimed performance guarantee. For this case, we

use the framework developed by Lin, Nagarajan, Rajaraman, and Williamson

[26] to derive our result. The following is a corollary of their main theorem as it

pertains to our problem.

Corollary 10. [26] If there is an efficient procedure that, given a set of centers S

42

and a number k′ < |S|, finds a set S ′ ⊂ S with |S ′| ≤ k′ such that max(cDS′) <

max(cDS) + α1max(cDSopt) and sum(cDS′) < sum(cDS) + α2sum(cDSopt) for any Sopt

with |Sopt| ≤ k′, then there is a randomized (emax(α1, α2))-approximation algorithm

and a deterministic (4 max(α1, α2))-approximation algorithm for the incremental ver-

sion of the problem where the objective is a convex combination of the objectives for the

k-center and k-median problems.

To get a sense of how this algorithm works, suppose we wish to construct

a chain S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ . . . ⊂ Sl with S0 = ∅ and Sl = F , such that

an incremental algorithm would only have to open the points in Si\Si−1 before

Si+1\Si for any i ∈ {1, 2, . . . , l−1} to be within the constant factor of the optimal

solution for any intermediate value of k. To find this chain, one can start with

Sl which is simply the set of all given points, and recursively use the procedure

described in Corollary 10 to find a subset of the current set that is of cost roughly

twice the current set. The following lemma describes such a procedure and

proves its properties.

Lemma 11. There is an efficient procedure that given a set of centers S and a number

k′ < |S| finds a set S ′ ⊂ S with |S ′| ≤ k′ such that max(cDS′) ≤ max(cDS) +

4max(cDSopt) and sum(cDS′) ≤ sum(cDS) + 16sum(cDSopt) for any Sopt with |Sopt| ≤

k′.

Proof. To find S ′, we first use Theorem 9 with k set to k′ and construct a solution

Ŝ with max(cDŜ) ≤ 4max(cDSopt) and sum(cDŜ) ≤ 8sum(cDSopt). For each point

j, let n(j) and n̂(j) be the closest point to j in S and Ŝ, respectively. Then we

define S ′ simply as the union of all points in S that are closest to some point

in Ŝ, that is, S ′ = {n(j) : j ∈ Ŝ}. Next we show that S ′ indeed satisfies the

properties claimed in the lemma.

43

First note that since n(n̂(j)) ∈ S ′ for each point j, we have that cjS′ ≤ cjn(n̂j),

and, by the triangle inequality, we have that cjn(n̂j) ≤ cjn̂(j) + cn̂(j)n(n̂j). Since

cjn̂(j) ≤ max(cDŜ) and cn̂(j)n(n̂j) ≤ max(cDS), therefore we have that

max(cDS′) ≤ max(cDS) + max(cDŜ) ≤ max(cDS) + 4max(cDSopt).

For the other side of the argument, note that since n(n̂j) is by definition the

closest point in S to n̂(j), we have that cn̂(j)n(n̂j) ≤ cn̂(j)n(j). Therefore, by the

triangle inequality, we have that

cjn(n̂(j)) ≤ cjn̂(j) + cn̂(j)n(n̂(j)) ≤ cjn̂(j) + cn̂(j)n(j) ≤ cjn̂(j) + cjn̂(j) + cjn(j).

Putting these together, we get that cjS′ ≤ cjn(n̂(j)) ≤ cjn(j) + 2cjn̂(j) for each j ∈ D.

Thus,

sum(cDS′) ≤ sum(cDS) + 2sum(cDŜ) ≤ sum(cDS) + 16sum(cDSopt).

The following theorem immediately follows from Corollary 10 and Lemma

11:

Theorem 12. The incremental approximation of the problem of minimizing a convex

combination of the objectives of the k-center and k-median problems admits a random-

ized 16e-approximation algorithm and a deterministic 64-approximation algorithm.

The k-center and k-median problems are, in many respects, antipodal ex-

tremes among possible weighting functions for the order median problem; since

we have shown that any convex combination of those two weighting functions

can be approximated within a constant factor of optimal, we believe that it is

natural to conjecture that such a result can be obtained for the general ordered

median problem as well.

44

BIBLIOGRAPHY

[1] An, H.C., Singh, M., Svensson, O.: LP-based algorithms for capacitated
facility location. In: Proc., 55th FOCS. pp. 256–265. (2014)

[2] Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.:
Local search heuristics for k-median and facility location problems. SIAM
Journal on Computing 33(3), 544–562 (2004)

[3] Aouad, A., Segev, D.: The ordered k-median problem: Surrogate models
and approximation algorithms. In submission.

[4] Bansal, M., Garg, N., Gupta, N.: A 5-approximation for capacitated facility
location. In: Proc., 20th ESA. pp. 133–144. (2012)

[5] Barman, S., Chawla, S.: Traffic-redundancy aware network design. In:
Proc., 23rd SODA. pp. 1487–198 (2011)

[6] Bienkowski, M., Byrka, J., Chrobak, M., Dobbs, N., Nowicki, T., Sviridenko,
M., wirszcz, G., Young, N.: Approximation algorithms for the joint re-
plenishment problem with deadlines. Journal of Scheduling 18(6), 545–560
(2015)

[7] Charikar, M., Guha, S.: Improved combinatorial algorithms for facility lo-
cation problems. SIAM J. Computing 34(4), 803–824 (2005)

[8] Charikar, M., Guha, S., Tardos, É., Shmoys, D.B.: A constant-factor ap-
proximation algorithm for the k-median problem. J. Comput. Syst. Sci.,
65(1):129–149 (2002)

[9] Cheung, M., Elmachtoub, A.N., Levi, R., Shmoys, D.B.: The submodular
joint replenishment problem. Math. Prog. (2014)

[10] Chudak, F.A., Shmoys, D.B.: Improved approximation algorithms for the
uncapacitated facility location problem. SIAM Journal on Computing 33(1),
1–25 (2003)

[11] Chudak, F.A., Williamson, D.P.: Improved approximation algorithms for
capacitated facility location problems. Mathematical programming 102(2),
207–222 (2005)

45

[12] Gonzalez, T.: Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, (1985)

[13] Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)

[14] Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center
problem. Math. Oper. Res., 10(2):180–184 (1985)

[15] Hsu, W., Nemhauser G.L.: Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1(3):209–215, (1979)

[16] Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy fa-
cility location algorithms analyzed using dual fitting with factor-revealing
LP. JACM 50(6), 795–824 (2003)

[17] Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility loca-
tion and k-median problems using the primal-dual schema and lagrangian
relaxation. JACM 48(2), 274–296 (2001)

[18] Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search
heuristic for facility location problems. Journal of algorithms 37(1), 146–
188 (2000)

[19] Levi, R., Lodi, A., Sviridenko, M.: Approximation algorithms for the ca-
pacitated multi-item lot-sizing problem via flow-cover inequalities. Math-
ematics of Operations Research 33(2), 461–474 (2008)

[20] Levi, R., Roundy, R., Shmoys, D., Sviridenko, M.: A constant approxima-
tion algorithm for the one-warehouse multiretailer problem. Management
Science 54(4), 763–776 (2008)

[21] Levi, R., Roundy, R.O., Shmoys, D.B.: Primal-dual algorithms for deter-
ministic inventory problems. Math. of OR. 31(2), 267–284 (2006)

[22] Li, S., Svensson, O.: Approximating k-median via pseudo-approximation.
SIAM J. Comput., 45(2):530–547 (2016)

[23] Li, S. : Constant Approximation Algorithm for Non-Uniform Capacitated
Multi-Item Lot-Sizing via Strong Covering Inequalities. In: Proc., 28th
SODA. pp. 2311–2325. (2017).

46

[24] Li, S.: A 1.488 approximation algorithm for the uncapacitated facility loca-
tion problem. Information and Computation 222, 45–58 (2013)

[25] Li, S., Svensson, O.: Approximating k-median via pseudo-approximation.
In: Proc., 45th STOC. pp. 901–910. (2013)

[26] Lin, G., Nagarajan, C., Rajaraman, R., Williamson, D.P.: A general ap-
proach for incremental approximation and hierarchical clustering. SIAM
J. Comput., 39(8):3633–3669, Nov. (2010)

[27] Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM J. Comput.,
32(3):816–832 (2003)

[28] Pal, M., Tardos, É., Wexler, T.: Facility location with nonuniform hard ca-
pacities. In: Proc. 42nd FOCS. pp. 329–338. (2001)

[29] Schrijver, A.: Combinatorial optimization: polyhedra and efficiency,
vol. 24. Springer Science & Business Media (2003)

[30] Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility
location problems. In: Proc. 29th STOC. pp. 265–274. (1997)

[31] Swamy, C.: Improved approximation algorithms for matroid and knapsack
median problems and applications. In Proc. 17th APPROX, pp. 403–418.
(2013)

[32] Williamson, D.P., Shmoys, D.B.: The design of approximation algorithms.
Cambridge University Press (2011)

47

