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Despite recent technological advances, drug development has remained a 

challenging and inefficient process. Machine learning methods have the 

potential to accelerate this process by using information from past drug 

successes and failures to decipher the mechanisms and activities of new 

compounds. This will become even more crucial in the age of “precision 

medicine” where thorough mechanistic knowledge will be needed to properly 

position compounds. The purpose of this dissertation is to address this 

through the development of methods for drug target identification, biomarker 

identification, indication selection, and adverse event prediction. 

First we introduce BANDIT to accelerate the process of drug target 

identification/deconvolution. BANDIT integrates multiple different data types 

within a Bayesian network to predict the targets for both new and approved 

small molecules. We found that BANDIT was able to accurately recover a 

large number of known drug-target interactions, identify new drugs for a 

common cancer target, and identify DRD2 as the target for ONC201 – a first-

in-class molecule in clinical development. Our work on ONC201 led us to ask 

how we could integrate known information on DRD2 with gene expression 

profiling and BANDIT to better select analogs and indications for ONC201. We 

found that we could accurately rank analogs based on measured efficacy, 



	

select new cancer types where ONC201 was likely to be efficacious, and 

identified DRD5 and cancer stem cell genes as biomarkers for ONC201 

activity. Following our work on ONC201 and drug target identification, we 

asked whether these methods could be applied to predict specific adverse 

events for a specific drug. Building off previous work published by our lab, we 

developed MAESTER, a data-driven machine learning approach that 

integrates properties on a compound’s structure and targets, with tissue wide 

gene expression profiling and known biological networks to calculate the 

probability of a compound presenting with a set of tissue specific adverse 

events in the clinic. We found that MAESTER could accurately identify known 

side effects of approved drugs and could even pinpoint the adverse events of 

drugs that were approved and later withdrawn for tissue specific toxicities.   

Altogether this work demonstrates how challenging problems in drug 

development could be addressed through the integration of diverse datasets. 

These approaches have the potential to transform the current drug 

development pipeline by focusing experimental efforts, and identifying new 

compounds with therapeutic potential, and choosing optimal indication and 

patient populations – all which could have a direct impact on patient care.  
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CHAPTER ONE 

INTRODUCTION 

Over the past 20 years there has been an emergence of technologies and 

databases that facilitate that facilitate the application of “Big-Data” and 

machine learning technologies to healthcare. Already we’ve seen these 

technologies being applied to diverse areas such as the interpretation of 

electronic medical records or image analysis [1,2]. However, drug 

development has remained relatively unchanged over the past decade despite 

these new advancements. In fact, R&D productivity in most major 

pharmaceutical corporations has actually fallen in the past few years with drug 

costs continuing to rise [3]. This is often attributed to the length of the drug 

development process (with most drugs taking an average of 12 years and $2.6 

billion to reach approval stages) and the fact that most steps are driven by 

costly, tedious, and case-specific experimentation [4]. With this in mind, there 

are many opportunities for machine learning methodologies to accelerate the 

process such as during target deconvolution, biomarker identification, analog 

selection, toxicity profiling, and repurposing.  

The majority of candidate identification efforts for further development fall into 

one of two main categories: 1) target-based screening where compounds are 

designed with a specific protein target in mind and 2) phenotypic screening, 

where a large number of compounds are screened to determine which can 

induce a phenotype of interest [5]. Recent reports have shown how phenotypic 

screening based methods are actually more efficient in terms of generating 

novel small molecule compounds, however one major challenge for 
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compounds identified this way is target deconvolution – identification of the 

binding targets of a given compound that cause a certain phenotypic effect 

[6,7]. Current experimental efforts are often trial-and-error based without any 

efficient ways to broadly survey the massive number of potential targets. This 

becomes even more complicated once we consider that, on average, a drug 

binds to six different targets, shattering the traditional “one drug, one target” 

reasoning [8]. Current computational approaches to target deconvolution have 

great utility, however one limiting factor is that they often require prior 

information on known binding targets for a given drug, a complex 3D structure 

of all target proteins, or demand extensive computational resources [9-11]. 

Additionally, most published methods only integrate one or two of the available 

data types for a given compound, yet as more data becomes publically 

available, it now more tractable than ever for in silico target deconvolution 

methods to integrate a number of diverse and orthogonal data types into a 

single prediction.  

In the age of precision medicine, the emphasis has shifted from designing a 

drug that will be effective for all patients in all indications to instead identifying 

the optimal indications and patients for a given compound. Even once a target 

has been identified for a compound, this can be a challenging endeavor as 

often multiple factors can contribute to efficacy of a compound in a given 

patient, such as tissue specific gene expression profiles and complex 

biological networks. In oncology, indication selection has traditionally 

consisted of screening a compound against hundreds of different cell lines to 

determine which class best responds, or by running multiple, costly clinical 

trials to approximate the best responding patients [12]. A number of studies 
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have shown how integrating target information with large scale sequencing 

efforts (such as TCGA) and known protein-protein or pathway interactions can 

pinpoint indications and biomarkers to focus experiment or clinical efforts 

toward [13,14]. Additionally retrospective analyses of efficacy screening 

results with cell line genomic information can help identify predictive 

biomarkers of response that could be used to direct future experiments.  

Moving past pre-clinical development into clinical trials, one of the largest, and 

most costly, causes of drug failure is unexpected toxicities or adverse events 

[15,12]. Currently drug likeness methods are used to filter out compounds with 

undesirable features that are correlated with toxicity issues, such as poor 

bioavailability, however we had previously found that drug likeness measures 

were insufficient to flag toxic compounds [16,17]. Additionally, these methods 

are designed to detect broad toxicities, whereas for clinical development it is 

crucial to understand which specific adverse event or tissue-specific toxicities 

to expect. In vitro screens and animal studies are another tool used to identify 

specific adverse events prior to entering human trials, however these are slow 

and costly, and many results may not translate to effects in humans [18]. 

Integrative computational methods have the potential to not only expediete 

this process, but could also help us understand the specific features that 

contribute to adverse events. This information could then be used to ensure 

better drug design in the future.  

In this these I hope to address a subset of these challenges in the drug 

development pipeline. I shall being with a review of current approaches to 

predict drug efficacy and indications. From there I will describe different 

approaches to address drug target deconvolution, analog optimization, 
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indication selection, biomarker identification, and the prediction of specific 

adverse events. The first method is a machine learning approach that can 

integrate multiple diverse data types to predict targets for novel compound and 

identify new compounds targeting a specific protein. From there I will describe 

how I used the aforementioned method and genomic analyses to identify 

optimal analogs, indications, and pathway-specific biomarkers for a novel 

class of anti-cancer small molecules. The last method discussed is a machine 

that integrates features on a compound’s structure and targets with tissue 

wide expression profiles and known biological networks to predict whether a 

compound is likely to cause specific adverse events (such as neutropenia or 

heart attacks).  
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CHAPTER TWO 

BIOINFORMATICS APPROACHES TO PREDICT DRUG RESPONSES 

FROM GENOMIC SEQUENCING* 

PREAMBLE 

This chapter is an edited version of review chapter that is in press at Cancer 

Systems Biology. The idea for the chapter was conceived in partnership with 

Dr. Olivier Elemento. All writing was done myself with input from Dr. Elemento.  

INTRODUCTION 

One of the greatest challenges in the current paradigm of medicine is how to 

deal with patient heterogeneity – both across different diseases and even 

within patients diagnosed with the same disease. Over the past 50 years there 

have been many studies showing that patients with the same disease have 

completely different responses when treated with the same drug [19-22]. The 

prevailing hypothesis to explain the heterogeneous response is each patient’s 

specific genetic profile. Precision medicine involves using this patient-specific 

genomic information to guide drug treatment, with the expectation that this will 

ultimately improve clinical outcomes [23]. With the decrease in sequencing 

costs over the past decade, it is now possible to obtain genomic information 

for patients prior to determining a specific treatment regimen. In addition, there 

has been an emergence of bioinformatics methods to interpret this sequencing 

data and come up with actionable strategies for precise drug choices. These 

methods not only allow for the identification of specific genetic traits that confer 

																																																								
* Madhukar NS and Elemento OE. “Bioinformatics Approaches To Predict 
Drug Responses From Genomic Sequencing.” Cancer Systems Biology. 2017 
(In Press) 
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susceptibility or resistance to drug treatment, but can also combine genetic 

markers with gene ontologies and biological networks to predict precise 

response levels. In this chapter we provide an overview of these bioinformatics 

methods, review the basic premises for each type of method, and discuss 

some of the current problems and future challenges that need to be solved. 

While we tend to focus on cancer, the databases and methods we described 

are often applicable to other diseases, as well. 

DATABASES 

In recent years there have been a number of community efforts to generate 

and publicly release datasets that could be used to improve drug response 

prediction (Table 3.1). In this review we will cover what we believe to currently 

be the best-suited and most popular public resources for aiding drug response 

prediction: 

NCI60 Drug Sensitivity Database 

The National Cancer Institute’s (NCI) 60 cell line drug screen is a database of 

in vitro drug efficacies (either in terms of GI50, LD50, or TGI) for over 50,000 

compounds screened against the NCI60 panel of cancer cell lines [24]. With 

60 cancer cell lines from 9 distinct tumor types – leukemia, colon, lung, central 

nervous system, renal, melanoma, ovarian, breast, and prostate – the NCI60 

collection aims to provide information on a broad set of genetic conditions and 

tumor types. The NCI60 panel has itself been profiled using a variety of 

assays from genomic to gene expression and proteomics [25-28]. The profiling 

data can be used in conjunction with the Developmental Therapeutics 
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Program’s (DTP) drug screening database to identify genetic signatures 

indicative of a certain response pattern. 

 Table 2.1 – List of abbreviations and websites referenced  
Abbreviation Full Description Website 
GI50 Concentration of a 

compound that leads to a 
50% inhibition of cell 
proliferation 

 

IC50 Concentration of a 
compound that leads to a 
50% decrease in the 
desired activity 

 

LD50   Concentration of a 
compound that leads to 
50% cell death 

 

TGI Total growth inhibition  
GWAS Genome Wide Association 

Study 
 

SNP Single Nucleotide 
Polymorphism 

 

DREAM Dialogue on Reverse 
Engineering Assessment 
and Methods 

 

NCI60-DTP Drug screen of 60 cancer 
cell lines by the National 
Cancer Institute’s (NCI) 
Developmental 
Therapeutics Program 

https://dtp.cancer.gov 

CCLE Cancer Cell Line 
Encyclopedia 

http://www.broadinstitute.org/cc
le/home 

CMap Connectivity Map http://www.broadinstitute.org/c
map 

GDSC Genomics of Drug 
Sensitivity in Cancer 

http://www.cancerrxgene.org 

TCGA The Cancer Genome Atlas http://cancergenome.nih.gov 
GTEx Genotype-Tissue 

Expression 
http://www.gtexportal.org/home
/ 
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Cancer Cell Line Encyclopedia 

The Cancer Cell Line Encyclopedia (CCLE) [29,30] is a database of 947 

different human cancer cell lines encompassing 36 different tumor types that 

have been genetically profiled – gene expression, copy number, mutations, 

etc. Furthermore, 24 known anticancer drugs were profiled against 

approximately 500 of these cell lines. Though the number of compounds 

profiled is smaller than the NCI60 drug screen, the greater number of cell lines 

tested allows for more precise identification of genetic predictors of sensitivity 

for the drugs measured.  

Genomics of Drug Sensitivity in Cancer 

Hosted by the Wellcome Trust Sanger Institute, the Genomics of Drug 

Sensitivity in Cancer (GDSC) database is a massive drug screen project 

similar to the NCI60 and CCLE. In their initial release, investigators screened a 

set of 138 known anti-cancer compounds against over 1000 different cancer 

cell lines (on average 525 cell lines tested per compound). Each cell line also 

was subjected to thorough expression and copy number profiling along with 

targeted mutation data for a set of 75 cancer genes. This dataset constitutes 

another great resource for the identification of genomic markers of drug 

responses.  

Connectivity Map/LINCS 

Released by the Broad Institute, the Connectivity Map (CMap) seeks to find 

connections between small molecules, physiological processes, and disease 

states [31]. Using mRNA expression (measured by DNA microarrays) as the 

“language” of cellular response, the CMap measures how a panel of cancer 
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cell lines responds transcriptionally to a variety of different drug treatments. 

This approach had previously been successful in identifying drug mechanisms 

in yeast but had never been applied to cancer cells [32]. The investigators 

profiled 4 different cancer cell lines before and after treatment with a panel of 

more than 1000 small molecules. The LINCS database is an updated version 

of this profiling system with a much larger number of drugs and cell lines. This 

database makes use of the LINC1000 expression profiling system where the 

expression of 1000 key genes is measured and used to infer the global gene 

expression profile. From these transcriptional changes it is possible to explore 

a drug’s mechanisms of action. These could be used to successfully 

repurpose drugs for specific diseases or genetic states [33,34]. 

IDENTIFICATION OF GENOMIC MARKERS OF DRUG RESPONSE 

A key first step to any drug response prediction effort involves the identification 

of genomic markers that can impact efficacy. Identifying those markers makes 

response prediction a much simpler task. Once a polymorphism, gene 

expression pattern, or pathway has been identified, all new samples can 

simply be screened for that marker and, using known correlations with drug 

response, a prediction of drug susceptibility can be made. Here we focus on a 

variety of approaches that can be used to identify genomic markers indicative 

of drug response.  

Using Genome Wide Associate Studies to Identify Polymorphisms 

related to Drug Response 

Genome Wide Associate Studies (GWAS) have classically been used to 

detect genetic variations associated with specific disease phenotypes. 
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However, in recent years, the use of GWAS has proved to be a powerful 

method to identify polymorphisms that can affect drug efficacy and toxicity 

[35]. Unlike approaches focusing on known drug targets or candidate gene 

lists, GWAS provides a hypothesis-free method that can systematically test a 

large number of variants [36,37]. In order to run a GWAS one must provide a 

measure of response or toxicity for a large number of samples, as well as a 

thorough genotyping of each sample.  

GWA studies typically fall into two main categories depending on whether the 

provided response measure is categorical (such as case/control, 

responder/non-responder, adverse reaction/no reactions, etc.) or quantitative 

(such as IC50 or a measure of side effect severity). Recently there have been 

a series of developments improving the traditional GWAS, such as taking into 

account a gene’s functional information [38], epistasis [39], or missing data 

[40]. Here we review the basic premise of the categorical and quantitative 

GWA studies: 

1. Categorical – The goal of a categorical GWAS is to identify SNPs that are 

highly predictive of which category a given sample will be assigned to. To 

begin, samples are assigned to one of the two categories based on either 

their response to a given drug or the observation of a given adverse 

effect. For each observed SNP, we count the number of samples where 

that SNP is present (or absent). This data is then used to populate what is 

known as a contingency table. For instance, if in a dataset with 100 

responders and 500 non-responders we observe 90 responders with a 

certain SNP and 15 non-responders with that same SNP (Table 2.2). A 

statistical test is then run on each contingency table to measure the 
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deviation from the null-hypothesis, which assumes that there is no 

association between the SNP and categorical classes. The most common 

test used is either the chi-squared test (or the related Fishers exact test). 

This approach has successfully identified variants related to interferon 

beta [41] and anti-TNF treatment efficacy [42] as well as variants 

predictive of statin-induced myopathy [43]. 

Table 2.2 – Sample contingency table showing how we can use the number of 
responders with a certain SNP to test whether it is related to drug efficacy. 

 Responders Non-Responders 
SNP 
Present 90 15 

SNP 
Absent 10 485 

 

2. Quantitative – Instead of using a contingency table test to detect 

significantly associated SNPs, a quantitative GWAS traditionally uses a 

generalized linear model (GLM), such as an Analysis of Variance 

(ANOVA) – a variant of a linear regression analysis – to identify SNPs that 

are highly correlated to the variable of interest (such as drug IC50)[44]. 

Though more complicated than the categorical case, there exist a number 

of public bioinformatics software packages such as PLINK[45] or 

SNPTEST[46] that can run quantitative GWAS and output a p-value for 

each polymorphism. While these analyses are less common for drug 

response prediction because of the difficulty in measuring quantitative 

response values, various groups have successfully used them to identify 

SNPs associated with susceptibility to chemotherapeutic drugs[47] or ACE 

inhibitors[48]. 
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Regardless of the type of GWAS used, the output is a set of p-values, one for 

each polymorphism tested. One important caveat is that all p-values must be 

corrected for multiple hypothesis testing (MHT) to account for the large 

number of statistical tests being performed. The most commonly used 

methods for MHT are the Bonferroni or Benjamini-Hochberg corrections. 

Adjusted P-values are then visualized using a Manhattan plot where the 

genomic position of each SNP is plotted against the negative log of its p-value 

(Figure 2.1). Using the Manhattan plot one can visually identify genomic 

regions or particular SNPs that are significantly associated with the given 

response feature.  

Using Gene Expression To Find Response Signatures and Predict 

Response 

While GWA studies aim to find a set of mutations or polymorphisms that are 

predictive of how a patient will respond to a drug, another popular approach is 

using gene expression data to find an expression signature associated with a 

positive (or negative) response. Different transcriptional profiles can often lead 

to different levels of drug efficacy, and differential expression analyses can 

help pinpoint the specific genes or pathways that drive the heterogeneous 

drug response and can be used to predict response levels. 

The classic approach involves treating a cohort of mice or patients, or patient 

samples or cell lines with a given drug and measuring the degree of response 

in each sample. Similar to a GWAS, the response rate can be measured either  
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Figure 2.1 – Sample Manhattan plot showcasing how one can use the output 
of GWAS calculation to find SNPs related to drug efficacy. Boxed hits 
represent those that pass the significant p value cutoff and thus may be 
relevant to treatment response. 
  

Significantly Associated Hits

Sample Manhattan Plot

Figure 1
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categorically (responder/non-responder) or as a continuous variable. Using 

either sequencing data from before treatment or differential gene expression 

(comparing pre and post-treatment samples) one can search for gene 

expression patterns that seems more prevalent in the samples that are 

susceptible (or resistant) to treatment (Figure 2.2). For instance, one would 

expect to see genes that confer drug resistance to be more highly expressed 

in samples where drug treatment shows limited effect.  

A number of methods exist for detecting differential expression across a set of 

samples. For microarray data oftentimes statistical tests such as an ANOVA 

would suffice, but packages such as limma [49] use linear models that can 

help deal with more complicated experimental designs. For RNA-seq data the 

most popular methods include a limma-voom [50], DESeq2 [51], edgeR [52], 

and cufflinks (cuffdiff) [53]. DESeq2 and edgeR are currently considered the 

standard for differential expression analysis and both use similar underlying 

models (however with different dispersion estimates). However, in our 

experience we have found DESeq2 to be more conservative. One key 

difference between DESeq2/edgeR and limma-voom is that voom doesn’t 

employ a negative binomial distribution and instead estimates the mean 

variance relationship. Therefore voom may be a better choice if the input data 

differs strongly from a negative binomial distribution. Finally, one major 

difference between the cuffdiff pipeline and DESeq2 is that cuffdiff acts on the 

level of transcripts while DESeq2 uses gene counts as inputs. Additionally, 

Wright et al [54] used a Bayesian predictor to automatically separate samples 

into subtypes based on their respective gene expression profiles, and used the 

output p-values to find the set of genes most predictive of subtype. This type  
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Figure 2.2 – Diagram on how gene expression patterns from responders and 
non-responders can be used to identify signatures related to response and 
how these can be used to better select new patients likely to respond.  
  

Figure 2
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of approach is useful for pooled sets of samples without knowledge of their 

subtype – for instance when one would like to determine if well-responding 

patients all fall into a certain disease subtype [55]. While initially tested on 

microarray data, this approach can be easily adapted to RNA-seq data and 

could generally be adapted to all types of predictive models.  

Using Pathway Annotations and GSEA to Identify Differential Biological 

States 

Often a differential gene expression analysis will have a set of genes as 

output, which has no obvious pattern or relevance to the type of drug being 

investigated. Additionally, it is quite common for a set of genes to be marked 

as significant in a differential gene expression analysis, but when experiments 

are done to perturb individual genes they seem to have little to no effect on 

drug response. In cases like these it is often helpful to translate the 

differentially expressed genes into a set of enriched biological pathways or 

gene sets. These can provide a broader explanation of a drug’s mechanism of 

action and a clearer understanding on how to predict efficacy. This approach 

has previously been successful not only in drug response prediction, but also 

in the development of highly effective drugs. Overexpression of the mTOR 

pathway in lymphoma led to the development of inhibitors to specifically target 

genes in that pathway [56], and global activation of the epidermal growth 

factor receptor pathway was found to be predictive of erlotinib susceptibility in 

pancreatic cancer xenografts[57].  

The basic technique to finding enriched pathways or canonical gene sets is to 

first annotate each gene based on the pathways/sets it falls into. A few popular 

resources for pathway and gene set annotation include: the Molecular 
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Signatures Database (MSigDB)[58], Reactome[59,60],  the Kyoto 

Encyclopedia of Genes and Genomes (KEGG)[61], Gene Ontologies[62], and 

InnateDB[63,64]. Reactome, KEGG, and InnateDB group genes based on 

their biochemical pathways (with InnateDB focusing on pathways relating to 

immunity), Gene Ontologies group genes based on their biological/molecular 

function or cellular localization, and MSigDB is a combination of all the 

aforementioned databases with custom sets of “hallmark” gene sets, or 

important genes involved in certain processes. Following annotation, a 

statistical test (such as the Fishers exact test) can be used to test whether a 

certain pathway is enriched for up (or down) regulated genes compared to 

what would be expected by random chance.  

Another popular method for testing pathway enrichment is Gene Set 

Enrichment Analysis (GSEA)[65]. GSEA tests whether genes of a certain 

pathway/set are differentially expressed between the cases. It does this by 

computing an enrichment score for each gene set – increase in score if genes 

in set are differentially expressed, decrease in score if not – and using a 

number of permutations (number can be set by the user) it tests whether that 

enrichment score is significantly different than what would be expected by 

chance. Packaged with the MSigDB gene sets, GSEA has demonstrated 

success at identifying common biological pathways in independent lung 

cancer datasets while single-gene differential analyses could not [66]. 
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IDENTIFYING DRUG TARGETS AND MECHANISMS AND USING THEM 

TO IMPROVING RESPONSE  

Computational Techniques to Identify Drug Targets and Mechanisms 

For a small molecule in development the mechanisms of action and binding 

targets are often not fully understood. A number of computational methods 

exist that seek to predict targets for these orphan small molecules, based 

either on chemical structure or its down-stream effects. These methods can 

broadly be divided into three categories:  

1. Molecular Dynamics: Using intricate mathematical models, molecular 

dynamics methods computationally simulate a drug’s interaction with a 

given protein. To predict targets, an orphan small molecule is tested 

against a series of proteins to identify any with favorable binding results 

[10,67]. However, this approach requires significant computation power, 

complex mathematical models, and full 3D structures for each queried 

protein – data that is often unavailable.  

2. Ligand-Based [68,69]: Using a set of known protein binding partners for a 

given small molecule, ligand-based approaches apply machine learning 

techniques to find other proteins with high enough similarity to the known 

targets. The proteins with high degrees of similarity are predicted to be 

novel binding targets. However ligand-based methods often require a 

large number of known binding partners for each tested small molecule, 

and thus can mostly be used on drugs far enough in the drug 

development phase.  

3. Downstream Effect Based: Recently, a number of methods emerged, 

which use the downstream effects of a small molecule (such as induced 
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gene expression change [70] or side-effects [71]) to predict targets for 

orphan small molecules. The basic premise of these methods is to 

compare the effects of an orphan small molecule to the effects of drugs 

with known targets. If the orphan molecule has an effect very similar to a 

drug with a known target, one would predict this known target to also be a 

target of the orphan small molecule. However, most current methods only 

utilize a small number of the available data sources and are thus not 

broadly applicable to all drug types. Our lab recently developed BANDIT 

(See Chapter 3), a novel computational method that integrates multiple 

different pieces of data on small molecules to predict specific binding 

targets and mechanisms [72]. When tested on a set of diverse drugs, 

BANDIT achieved an accuracy of approximately 90% at identifying known 

targets (validated using a standard cross validation setup), much higher 

than expected from other target prediction methods.  

Another popular option is to focus on a drug’s broad mechanism of action 

rather than its specific binding targets. One way to accomplish this is to 

observe how a given drug changes the transcriptional profile in a sample. For 

example, using gene expression data following cisplatin treatment, this type of 

analysis identified the p53 response and other pathways to be involved in 

cisplatin response [73]. This approach has become more practical with the 

emergence of public databases such as the Connectivity Map (CMap)[74]. 

From the CMap database, one can calculate fold change values for each gene 

after drug treatment. Using GSEA or other pathway enrichment methods, the 

fold change values can be converted into a set of pathway scores that reveal 

which pathways were enriched or mobilized. Though far less precise than 
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specific target identification, this information is easier to obtain and could 

provide additional information on the context in which a given drug could be 

used.  

Using Known Drug Targets To Predict Response  

Assuming one can determine the mechanisms of action of a drug – either in 

terms of specific binding targets or broad knowledge on the biological 

pathways mobilized – the task of predicting efficacies is often much simpler. 

For example, if a drug’s main mechanism of action is to target Protein A, then 

one would expect different efficacies in samples based on whether there is an 

amplification or deletion of Protein A. This type of reasoning also applies when 

there are mutations in a known drug target. Examples of this are treatments 

involving Gefitinib or Herceptin. Gefitinib is an anti-cancer small molecule 

known to target the EGFR kinase, and mutations in EGFR were found to 

predict sensitivity of samples to gefitinib treatment [75]. Herceptin, an antibody 

which targets HER2, was found to improve the outcomes of cancer patients 

with HER2 amplifications or activating mutations [76,77]. Another example of 

this concept is vemurafenib – a small molecule that targets V600E BRAF 

mutation – that has been found to be selectively effective in cancer patients 

with this exact mutation, while having no beneficial effect on normal BRAF 

samples [78-80]. These are just a few of the many examples showing how 

combining known drug targets with targeted sequencing can help detect 

instances of differential response.  

However, it is also important to note that while the alterations of a drug’s target 

are often predictive of efficacy, this is not always the case, even if the target 

itself serves as biomarker [81]. Moreover, there are often cases where the 
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predictive biomarker for a given drug is not the actual target, but rather 

another gene or set of genes involved in the same pathway or biological 

processes as drug’s target. In cases like these sequencing could still prove to 

be a valuable tool, and we advise utilizing some of the other methods 

mentioned in this chapter. Drug target information could be used in 

combination with these methods to refine predictions and gain greater 

biological insights.  

Sequencing-based approaches also can be very successful in positioning 

drugs for specific disease conditions – especially different cancer types. Using 

resources like the Cancer Genome Atlas (TCGA)[13] and Genotype-Tissue 

Expression (GTEx) project [82], one can find genes or pathways that are 

significantly upregulated in certain cancers or cancer types compared to either 

normal tissue samples or other cancer subtypes. Identifying such cancer-

subtype-specific, upregulated signatures could highlight drugs known to target 

these signatures as particularly viable candidates for treatment. For instance, 

it was recently discovered that dopamine receptors were selectively 

upregulated in neoplastic stem cells in breast cancer. It was observed that 

thioridazine (a compound known to target dopamine receptors) was 

particularly effective against these cell populations [83].  

4.3 Exploiting Genetic Interactions (SL/SDL)  

One approach that has become increasingly popular is exploiting networks of 

synthetic lethality (SL) and synthetic dosage lethality (SDL) to predict drug 

efficacy. SL describes a specific type of genetic interactions involving two or 

more genes, where the loss of either gene individually is non-fatal, but the 

combined loss of all SL partner genes leads to a severe decrease in fitness or 



	22	

cell death. SDL describes a related genetic interaction where lethality is 

observed when one gene is lost while its SDL partner is overexpressed 

[84,85]. Both SL and SDL interactions are highly relevant to cancer biology, as 

most cancers have both widespread losses and gains of certain genes. 

Exploiting these could drastically improve patient prognosis. For instance, if  

Gene A and Gene B are in an SL pair and Gene A is lost in a given cancer 

sample, then one would expect compounds targeting Gene B to have better 

responses in this sample (Figure 2.3).  

To this end there have recently been many efforts to uncover underlying SL 

and SDL networks in cancer. Among the most successful efforts was the data 

mining synthetic lethality identification pipeline DAISY[86]. DAISY uses three 

distinct hypotheses to detect SL pairs (with the inverse hypotheses being used 

for SDL pair detection):  

1. Genes in an SL pair will have significantly lower raters of co-mutation or 
co-loss 

2. Knockout/knockdown of a given gene will be more fatal in samples with 
under-expression or loss of its SL partner 

3. Genes in an SL pair are more likely to be co-expressed 

 

Figure 2.3 – A) Diagram highlighting the concept of synthetic lethality and how 
known synthetic lethal relationships can be combined with genomic 
information to better predict drug response. B) Using synthetic lethality to 
predict differential response 

A. B.

Figure 3
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By scanning for gene pairs that fulfill all three hypotheses, DAISY predicted 

networks of SL and SDL interactions. It achieved an accuracy level of 

approximately 77% (measured by Area Under the Receiver Operating Curve) 

when compared to known SL interactions, demonstrating that DAISY could 

accurately infer SL and SDL genetic interactions. To translate this into 

predicting drug responses, the authors identified sample-specific exploitable 

interactions, or SDL interactions where one gene was overexpressed and SL 

interactions where one gene was lost. DAISY then identified drugs known to 

target the other gene in each exploitable interaction. For each drug DAISY 

ranked the most sensitive samples based on the number of exploitable 

interactions being targeted by each drug. They found that specific drugs were 

significantly more effective in cell lines predicted to be sensitive than those 

predicted to be resistant. Furthermore, the authors used a similar approach to 

predict the exact IC50 value for each drug across a set of cancer cell lines and 

observed a strong correlation between the predicted and observed values (R = 

0.721). Taken together these results show how known genetic interactions 

(particularly SL and SDL interactions) can be combined with sequencing data 

to better predict drug sensitivities and inform treatment.  

MACHINE LEARNING APPROACHES 

In cases where identification of response biomarkers is too complex or the 

identified biomarkers do not reveal any underlying biological insight, machine 

learning approaches, which can combine sequencing data with information 

such as biological networks, are very powerful. The idea for employing 

machine learning approaches for drug response prediction is for the 

computational algorithm to learn how to combine a set of distinct features into 
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a prediction of sensitivity. Most machine learning methods for drug sensitivity 

prediction are classified as supervised methods. Those supervised methods 

use a set of sequenced samples with known drug sensitivities to “train” the 

algorithm and determine how to combine features based on their predictive 

power (Figure 2.4). While the linear regression model discussed earlier can 

be considered the oldest form of machine learning, most popular methods 

currently utilize more advanced modeling to account for the complexity in 

genetic sequencing data. In fact, machine learning methods can often detect 

higher order genomic markers of drug response that other methods may have 

missed. One example is the use of machine learning to identify the EWS-FL11 

translocation in Ewing’s sarcoma as a marker of sensitivity to PARP inhibitors 

[87].  

Many methods seek to improve their performance by including additional 

information on known biological networks, genetic interactions, or drug 

chemical properties. For instance, Menden et al [88] found that including drug 

chemical information (such as weight and lipophilicity) with sequencing data 

improved the performance of both a neural network and random forest for 

sensitivity prediction. In collaboration with the NCI, the Dialogue on Reverse 

Engineering Assessment and methods (DREAM) project led a community 

effort to improve drug sensitivity predictions [89]. Through this effort, the NCI-

DREAM consortium publically released drug sensitivity data for a set of breast 

cancer cell lines along with thorough genetic, epigenetic, and proteomic 

sequencing data. Individual groups each submitted different sensitivity 

prediction methods and the NCI-DREAM consortium analyzed each method to 

identify any particular method features that led to higher accuracies. I 
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Figure 2.4 – Overview of how common machine-learning methods combine 
multiple data types to train a specific model that can be applied to new 
samples to predict sensitivity.  

Interestingly, they found that the inclusion of annotated biological pathways 

was one of the two variables that significantly boosted performance [89]. 

Additionally, the consortium found that the top performing methods all utilized 

nonlinear modeling, indicating that in many cases the connections between 

individual genetic features and drug response are too complex to be 

understood using a strictly linear approach. Finally they observed that though 

sensitivity to proteasome inhibitors tended to be predicted with the most 

accuracy, there was a predictive signal for most of the drugs in their test set. 

This further indicated that machine-learning methods have the potential to 

significantly improve sequencing based drug response prediction. 

 

Figure 4
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Conclusion and outlook 

In the past two decades, there have been significant advances in using 

genomic data and bioinformatics to better understand the heterogeneous 

nature of drug response. By combining data on genomic alterations and drug 

response with thorough statistical methods we can identify specific predictive 

markers. Moreover, through post-treatment genomic profiling we can gain a 

better understanding of the mechanism and effect of a given drug. This 

knowledge can then be used to better select patients or diseases where that 

mechanism will provide the most therapeutic benefit. Additionally, there has 

recently been an emergence of computational methods to identify drug targets 

when conventional approaches fail. However, as the amount of data 

generated continues to increase and drugs targeting new pathways are 

developed, we imagine that no single approach or method will provide high 

enough accuracy. Therefore we expect the field to move towards using 

machine learning strategies that are able to integrate a variety of different 

data-types into a single predictive output. We are already seeing the creation 

of sophisticated methods for this purpose and we anticipate this to only 

improve over the coming years. All together though we believe that the 

adoption of the methodology described in this chapter not only has the power 

to expand our understanding of pharmacology but can also significantly 

improve the current schema of patient treatment.  
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CHAPTER THREE 

A NEW BIG-DATA PARADIGM FOR TARGET IDENTIFICATION AND DRUG 

DISCOVERY* 

PREAMBLE 

This chapter consists of a paper that has been submitted and is currently under 

review. The method (BANDIT) was conceived in partnership with Dr. Olivier 

Elemento. I implemented the method and subsequent computational analyses. 

Linda Huang and Katie Gayvert contributed to model deployment and follow-up 

analyses. The experimental follow-up for ONC201 was done by Oncoceutics 

Inc. (M.S. and J.A) and all microtubule experiments were done by the 

Giannakakou lab (PK, GG, PG). I primarily wrote the manuscript with input 

from PK, JA, PG, and OE.  

INTRODUCTION 

It typically takes 15 years and 2.6 billion dollars to go from a small molecule in 

the lab to an approved drug [90-92], and for natural products and phenotypic 

screen derived small molecules, one of the greatest bottlenecks is identifying 

the targets of any candidate molecules[91,93]. Proper understanding of binding 

targets can position drugs for ideal indications and patients, allow for better 

analog design, and explain observed adverse events. There exist a number of 

experimental approaches for target identification ranging from affinity pull-

downs to genome-wide knockdown screens [93,94], but these approaches are 
																																																								
* Madhukar NSa, Khade PKa, Huang L, et al. A New Big-Data Paradigm For 
Target Identification And Drug Discovery. 2017 (Submitted/Under Review) (a = 
co first authors) 
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labor, resource, and time intensive, not to mention failure prone. Computational 

target prediction has the potential to substantially reduce the work and 

resources needed for drug target identification. Existing computational methods 

traditionally fall into three major categories: ligand-based, molecular docking, 

and data driven. Ligand-based approaches take known binding targets for a 

given drug and attempt to find other proteins that are sufficiently similar to the 

known targets [9,95]. These similar proteins are then predicted as novel 

targets. However, to achieve high predictive power they require a large input of 

known binding partners for each tested drug, and therefore can only be used 

on drugs that have prior comprehensive target information [9,95]. Because of 

this, these methods are often not broadly applicable, especially to orphan 

molecules – molecules with no known binding targets. On the other hand, 

molecular docking uses simulations of small molecules interacting with proteins 

to model if and how a drug may bind a given protein [96,11]. However, this 

approach requires significant computational power and complex 3D structures 

for each queried protein – data that is often unavailable.  

Traditionally, data-driven methods have focused on a single aspect out of a 

small molecule’s activity in a biological system. Wang et al. [97] used post-

treatment gene expression changes to predict drugs with shared targets 

[74,98]. Another method relied on side-effect similarity between drugs with 

known targets to predict new drug-protein interactions [99]. However, this 

method was restricted to the small subset of small molecules that had been 

clinically tested and had thorough side effect annotation. Though each of these 

methods represents a significant advancement in the field, they all suffer from 

either lack of accuracy or broad utility – evidenced either by an inability to 

reliably validate target predictions, or by their limited applicability to a small 
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subset of all small molecules. This is not surprising though, as past research 

has demonstrated that these individual datasets are noisy, thus, it is expected 

that reliance on any single data type will lead to low predictive power [100-102].  

Additionally, other groups have shown how the combination of multiple types of 

data can improve the calculation of drug-drug similarities[103] and adverse 

event prediction[104], yet, this type of combinatorial approach has not been 

fully explored for drug-target prediction. The few reported studies using 

combinatorial approaches for drug-target prediction, suffer from significant 

limitations that minimize their impact in the field. These limitations include the 

use of gene-based similarity features, a method inherently biased against the 

discovery of diverse types of targets (favoring instead, the discovery of genes 

of the same class as the known drug-targets), the small number of drugs used 

in the study (<500), or lack of experimental target validation[105-107]. To 

overcome these limitations, we introduce BANDIT, a novel drug-target 

prediction platform. BANDIT achieves unprecedented target-identification 

accuracy, without any reliance on gene-based similarities (making it broadly 

applicable to newly discovered compounds), uncovers novel targets for the 

treatment of cancer, and can be used to quickly pinpoint potential therapeutics 

with novel mechanisms of action to accelerate drug development.   

RESULTS 

A novel combinatorial Big-Data Approach leads to a large increase in 

predictive power  

In the age of “Big Data” there has been an explosion of techniques that permit 

genomic, chemical, clinical, and pharmacological measurements to 

characterize a small molecule’s mechanism. Many such measurements are 
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either already published or are reasonably straightforward to perform. We 

hypothesized that integrating the multiple, independent pieces of evidence 

provided by each data type into a cohesive prediction framework would 

dramatically improve target predictions. To test this hypothesis, we developed 

BANDIT: a Bayesian ANalysis to determine Drug Interaction Targets. BANDIT 

integrates over 20,000,000 data points from six distinct data types – drug 

efficacies[108], post-treatment transcriptional responses [74,98], drug 

structures [109,110], reported adverse effects [111], bioassay results 

[109,110], and known targets [112,113] – to predict drug-target interactions. 

This underlying database contains information on approximately 2,000 different 

drugs with 1,670 different known targets and over 50,000 unique orphan 

compounds (compounds with no known targets).  

For each data type we calculate a similarity score for all drug pairs with known 

targets. Since each dataset uses a distinct reporting metric, the similarity 

calculation was specific to the data type being considered (Figure 3.1). 

Previous approaches have argued that high similarity in one feature indicates 

high similarity in others, implying that only one or two data types are sufficient 

for target prediction since others can be inferred [114]. However, using our 

vastly expanded dataset, we found little overall correlation across different 

similarity scores (Figure 3.2A). These results suggest that each data type is 

measuring a distinct aspect of a molecule’s activity and that individual features 

for a given drug cannot be extrapolated based on other data types. This 

shortcoming further supported our hypothesis that a novel approach that 

integrates independent data types could significantly improve target prediction 

accuracy.   



	31	

 
Figure 3.1 – Examples of similarity score calculations for growth inhibition data 
and chemical structures 
Figure S1
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Figure 3.2 – BANDIT exploits both the independence and individual predictive 
powers of each data type – A) Density plots showing how various different 
similarity scores correlate with one another, with darker area corresponding to 
a higher density of values. R2 and P value were calculated using a pearson 
correlation. B) Distributions of similarity scores across two sets – drug pairs 
known to share a target and those with no known shared targets. P values and 
D statistics were calculated using the Kolmogorov-Smirnov test. C) Schematic 
of BANDIT’s method of integrating multiple data types to predict shared target 
drug pairs.  
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We next separated drug pairs into those that shared at least one known target 

(>34,000 pairs) and pairs with no known shared targets (>1,250,000 pairs). We 

applied a Kolmogorov-Smirnov test to each similarity score and used the 

associated D statistic to calculate the degree a given data type could separate 

out drug pairs that shared targets (Figure 3.2B). We found that all features 

were able to significantly separate the two classes (P < 2e-16), and structural 

similarity was found to be the most discriminative among all features evaluated 

(DStructure = 0.39). Additionally, we discovered that similarity across an unbiased 

set of bioassays and the relatively simple NCI-60 growth inhibition screen could 

strongly differentiate shared target drug pairs (DBioassay = 0.327 & DGI50 = 331), 

while, surprisingly [115,97,99], transcriptional responses (DTResponse = 0.1) and 

reported adverse effects (DSideEffect = 0.14) were much weaker differentiators. 

This information not only identifies the strengths of each data type, but will also 

allow researchers to efficiently prioritize experiments when faced with limited 

resources. 

For every drug pair, BANDIT converts each individual similarity score into a 

distinct likelihood ratio. These individual likelihood ratios are then combined 

within a Naïve Bayes framework to obtain a total likelihood ratio (TLR) that is 

proportional to the odds of two drugs sharing a target given all available 

evidence (Figure 3.2C). We calculated TLRs for all possible drug pairs with 

known targets and the output was evaluated using 5-fold cross validation. We 

observed an Area Under the Receiver Operating Curve (AUROC) of 0.89 –

higher than any competing approach [99,114]– demonstrating that BANDIT’s 

integrative approach can accurately identify drugs that share targets. We 

recomputed the AUROC while varying the number of included data types and 

observed an overall increase in predictive power as we added new data types 
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(Figure 3.3A). Furthermore we observed a steady increase in predictive power 

regardless of the addition order. This result verified the power of BANDIT’s “Big 

Data” approach and demonstrated how separate information sources can be 

combined to yield predictions more powerful than those obtained from any 

individual source. This was confirmed using the KS test where we saw that the 

TLR output could better separate shared target drug pairs than any individual 

similarity score with a drastic increase in performance when focusing on drug 

pairs with all 5 data types (DTLR = .69). Furthermore, we observed that 

BANDIT’s ratio of true to false positives continually increased as we raised the 

cutoff value, indicating that BANDIT’s TLR output is a dynamic value that 

estimates the strength and confidence level of a specific prediction and can 

effectively pick out high quality shared-target predictions (Figure 3.3B).  

BANDIT can replicate the results of experimental screens and predict 

specific target interactions 

We next investigated how we could use BANDIT to replicate results from 

published experimental screens. Peterson et al. [116] tested 178 known protein 

kinase inhibitors against a panel of 300 different kinases and measured the 

level of inhibition (in terms of percent remaining kinase activity) for each 

inhibitor-kinase pair. We examined all orphan molecules – molecules with no 

known targets – in both the Peterson kinase database and BANDIT’s, and, 

used BANDIT to predict potential kinases targets for each orphan molecule. 

We observed that the kinase targets BANDIT predicted for each orphan 

molecule had higher levels of reported inhibition in the Peterson dataset than 

non-predictions (p<1e-5; Figure 3.4). This result supports using BANDIT to 

guide experimental screens while minimizing operational costs. 
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Figure 3.3 – BANDIT can accurately predict shared targets and specific target 
interactions – A) Area under the receiver-operating curve for different sets of 
data types. SE = Side effects; C = CMap; N = NCI60; B = Bioassays; S = 
Structure. B) Ratio of true positives to false positives at different likelihood ratio 
cutoffs. C) Schematic of the BANDIT voting schematic for predicting specific 
target interactions. D) Accuracy level of BANDIT’s voting algorithm at various 
likelihood ratio cutoffs E) Schematic of two proposed operating scenarios for 
BANDIT 
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Figure 3.4 – BANDIT can replicate results from an experimental kinase screen 
– Boxplot showing the distributions of “% inhibition” across BANDIT predictions 
and non-predictions. P value was calculated using a Mann Whitney test.  
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Moving forward from shared-target predictions, we examined whether for a 

given drug BANDIT could be used to predict a specific binding target from our 

database of over 1,600 unique proteins. We hypothesized that if a protein 

appeared as a known target in a large number of shared target predictions, 

then it is likely a target for the tested orphan molecule. To test this hypothesis, 

we developed a “voting” algorithm to predict specific targets for each orphan 

small molecule by identifying any recurring targets (Figure 3.3C). We applied 

our voting method to all drugs in our database with known targets and 

demonstrated that as we required more stringent TLR values for a pair of drugs 

to be predicted to share a target, the accuracy level – measured by whether 

BANDIT correctly identified a known drug target – steadily increased (Figure 

3.3D). The accuracy level eventually reached ~90%, demonstrating that 

BANDIT could be used to accurately identify specific targets for a diverse set of 

small molecules.  

We then used BANDIT to predict novel targets for 14,168 small molecules with 

no known targets or mechanisms of action in our database. We confidently 

predicted targets for 4,167 unique small molecules (30% of our original set), 

with predictions spanning over 560 distinct protein targets. By setting a higher 

TLR cutoff for predictions and requiring a higher number of “votes” for any 

predicted targets, we further narrowed this list to 720 high confidence target 

predictions. To date, this is the largest database of novel drug-target 

predictions (nearly double the number of drugs in DrugBank’s drug-target 

database) and this list can be interrogated further to discover novel 

therapeutics and small molecules for a target of interest. Based on this 

success, we envisioned two main operating scenarios for BANDIT: 1) Using 

BANDIT in combination with the library of orphan small molecules to identify 
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new small molecules targeting a specific protein and 2) to integrate BANDIT 

directly into the drug development pipeline to predict targets and guide 

experiments for drugs currently in development (Figure 3.3E).  

Discovery of Novel Microtubule-Targeting Compounds Capable of 

Overcoming Drug Resistance 

Beginning with the first operating scenario, we used BANDIT to identify novel 

ways to target microtubules. Anti-microtubule drugs make up one of the largest 

and most widely used classes of cancer chemotherapeutics, with tubulin being 

one of the most validated anticancer targets to date [117-120]. Interestingly, 

and unlike most classes of cancer chemotherapy drugs or targeted-therapies in 

oncology, microtubule inhibitors are further sub-categorized as microtubule-

stabilizing (e.g. taxanes) and microtubule-depolymerizing drugs (e.g. vinca 

alkaloids). Each class shifts the cellular equilibrium that normally exists 

between soluble tubulin dimers and microtubule polymers, towards 

microtubules (taxanes) or soluble tubulin (vinca alkaloids). Despite the clinical 

success of the entire class of microtubule inhibitors, the development of drug 

resistance – which is the number one cause of cancer mortality in metastatic 

patients – along with the presence of toxic side effects limits their clinical 

applicability [121]. Hence, the discovery of novel microtubule-targeting small 

molecules could significantly improve cancer therapy by identifying compounds 

with activity on refractory tumors or compounds with less toxic side effects. To 

this aim, we further focused our list of high confidence orphan-target 

predictions to small molecules predicted to target microtubules. To see how our 

novel predictions related to known microtubule-targeting therapeutics, we 

created a network of all known and predicted anti-microtubule small molecules 
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with edges representing a predicted shared target interaction (Figure 3.5). 

Interestingly we found that the 14 known microtubule-targeting agents tended 

to cluster together based on their distinct mechanism of action. For instance, 

we observe Paclitaxel clustering with Cabazitaxel and Docetaxel – all known 

microtubule-stabilizing drugs – while Colchicine clustered with other known 

microtubule-destabilizing drugs such as Podophyllotoxin. This is especially 

exciting since it demonstrates the potential for BANDIT to be used not only to 

identify a specific target for an orphan molecule but also to differentiate 

between different modes of action on the same target. 

From our list of top anti-microtubule drug predictions we obtained a set of 24 

compounds with varying structures for experimental testing. We chose the 

human breast cancer MDA-MB-231 cells for the validation experiments as 

microtubule-inhibitors (both stabilizing and destabilizing) are commonly used in 

the treatment of breast cancer patients. Cells were treated for 6 hours with 1 

and 10 μM of each small molecule, and the integrity of the microtubule 

cytoskeleton (assessed by confocal microscopy following tubulin 

immunofluorescence), was used as the bio-assay endpoint. Our results 

showed that 16 of the 24 orphan small molecules exhibited significant effects 

on microtubules (Figure 3.6A-F), a much higher success rate (67%) than one 

would expect by chance (p < 2e-16). To more accurately quantify the extent of 

drug-target engagement, we employed a second biochemical assay quantifying 

the effect that each small molecule exerted on the equilibrium between 

microtubule polymers and soluble tubulin, following 6 hours of treatment. Our 

results confirmed and corroborated the microscopy results, further revealing 

that while several small molecules had maximal microtubule-inhibitory activity 
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Figure 3.5 – Using BANDIT known microtubule inhibitors cluster based on 
mechanism of action – Network of known microtubules inhibitors and orphan 
molecules predicted to target molecules. Named boxes represent known 
inhibitors, blue circles represent predicted inhibitors, and purple circles 
represent predicted inhibitors that were validated experimentally.  
  

Figure S7
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Figure 3.6 – Microtubules are a correct target of the newly identified small 
molecules – Effect of various compounds (1μM) on the microtubule integrity of 
MDA-MB-231 cells after 6 hours of treatment. A) Control with DMSO (Scale 
bar: 5 μm), B) Vinblastine as a positive control, C) Compound #16, D) 
Compound #15, E) Compound #24 F) Compound #2. G) Dose dependent 
effect of Compound #12 and H) Compound #13. I) Bar graph showing the % 
tubulin in the pellet compared to the supernatant (averaged over three 
independent replicates) for depolymerizing drugs at 1 and 10 μM.   
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at the lowest dose (1µM) (Figure 3.6C-F), others exhibited a dose-dependent 

effect on microtubule depolymerization (e.g. compounds #12, #13), further 

establishing microtubules as their bona-fide target (Figure 3.6G-I). Taken 

together, these experiments confirmed the predicted targets and mechanism of 

action for the majority of the newly identified microtubule inhibitors. While 

further testing will be needed before these small molecules can be used 

clinically, these results do demonstrate BANDIT’s target prediction accuracy 

and how it can be used on compound libraries to identify small molecules 

acting with a specific mode of action on specific targets, for further 

investigation.  

To inform future clinical development for these newly identified microtubule 

inhibitors, we next tested their activity against drug resistant models. Drug 

resistance remains one of the most challenging areas in clinical oncology, 

affecting both broad chemotherapy drugs and targeted-therapies. In the case 

of microtubule inhibitors, overcoming drug resistance is even more challenging 

as the mechanisms are often multifactorial. As previously demonstrated, 

BANDIT can accurately identify a set of structurally diverse small molecules 

that all bind a common target (in this case microtubules), therefore we next 

investigated whether any of our newly identified microtubule-depolymerizing 

small molecules could successfully act on tumors resistant to other known anti-

microtubule drugs. Using the 1A9 human ovarian carcinoma cell line – which 

has previously been used successfully in selecting microtubule-inhibitor 

resistant clones and for high throughput small molecule screening,  [122-126] – 

we created clones resistant to Eribulin mesylate, a microtubule depolymerizing 

drug that is FDA approved for the treatment of docetaxel-refractory breast 

cancer patients [127,128] (Figure 3.7A). Interestingly, recent clinical data 
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demonstrated that fewer than 50% of breast cancer patients showed any 

detectable response after treatment with Eribulin, further highlighting the 

importance of finding new molecules that share the same validated target but 

are active against the large population of refractory patients [129]. Our results, 

using 72-hr cytotoxicity assays showed that the Eribulin-resistant 1A9 cells 

(1A9-ERB) were more than 7,000 –fold more resistant to Eribulin than the 

parental cells and exhibited cross-resistance to all classes of clinically used 

microtubule-depolymerizing drugs (Table 3.1). To test whether the drug-

resistance phenotype was due to impaired drug-target engagement, we treated 

parental and resistant cells for 6 hr only with 1uM of Eribulin or each of the 

FDA-approved depolymerizing drugs. Consistent with their drug resistance 

phenotypes, our results showed lack of drug-induced microtubule 

depolymerization in 1A9-ERB cells in contrast to the complete 

depolymerization observed in the microtubule network of drug-sensitive 1A9 

parental cells (Figure 3.7B-C). These on-target drug efficacy results are in 

agreement with the lack of antitumor activity revealed by the cytotoxicity data 

further highlighting the importance of discovering novel small molecules that 

could act on these refractory tumors. We tested the top 4 performing small 

molecules (#15, 16, 24, and 2) on the 1A9-ERB cells and found that 3 out of 4 

compounds tested, were active against the 1A9-ERB cells and effectively 

depolymerized microtubules, as evidenced by the diffuse soluble tubulin 

staining following drug treatment (Figures 2.7E-F), in contrast to the fine and 

intricate microtubule network observed in untreated cells (Figures 2.7A). 
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Figure 3.7 – A set of the BANDIT predicted small molecules can act on cells 
resistant to Eribulin and other microtubule depolymerizing drugs – Effect of 
various compounds on the microtubule integrity of 1A9-ERB cells after 6 hours 
of treatment: A) Control with DMSO (Scale bar: 5 μm), 100nM of B) Eribulin 
and C) Vinblastine, and 1μM of D) Compound #15, E) Compound #16 and F) 
Compound #24.   



	45	

Table 3.1 – Newly identified compound can reverse resistance in cytotoxic 
assays – Cytotoxic activity of drugs tested in a 72-hr anti-proliferative assay 
against parental 1A9 and eribulin resistant (1A9-ERB) cells. IC50 (nM) values 
for each drug indicate the concentration that kills 50% of the cells in 72 hr 
 

Drug 1A9 (nM) 1A9-ERB (nM) Fold 
Resistancea 

Eribulin 0.34 2397 7050 
Vinblastin 0.08 208 2600 
Colchicine 11 560 51 

Drug No. 15 20 86 4.3 
a=Ratio of IC50 values of resistant/parental cells (1A9-ERB/1A9) 
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Compound No 15, which was the most active of the 4 compounds, was tested 

using cytotoxicity assays and was found to almost completely reverse drug-

resistance from 7050-fold observed with Eribulin down to 4-fold (Table 3.1). 

While further in vitro and in vivo studies are required for the clinical 

development of these compounds, these results clearly demonstrate BANDIT’s 

utility in identifying lead small molecules with potential activity against drug 

resistance tumor models without the labor-and cost-intensive physical 

screening of thousands of small molecules. Even though BANDIT is “trained” 

using a database of drugs with known targets and mechanisms, our results 

show that it can accurately identify small molecules with distinct modes of 

action from any known drugs in the training set. This also highlights how 

BANDIT can pinpoint small molecules from large compound libraries with 

unique mechanisms that could potentially act on drug resistant cells. 

Compounds such as these could represent the next generation of clinically 

developed drugs reducing the need for extensive medicinal chemistry and 

structure-activity studies, therefore, expediting drug development.  

BANDIT Uncovers Selective Antagonism of DRD2 by Anti-Cancer Small 

Molecule ONC201  

Given BANDIT’s demonstrated capability to accurately identify specific targets 

for orphan small molecules, we next investigated how we could integrate 

BANDIT directly into the drug development pipeline and test its ability to predict 

targets for small molecules with promising clinical activity but without a specific 

target. Therefore we applied BANDIT to ONC201– a small molecule 

discovered in a phenotypic screen for p53-independent inducers of TRAIL-

mediated apoptosis – currently in multiple phase II clinical trials for select 
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advanced cancers. Despite its promising preclinical and early clinical 

anticancer activity and its reported effects on a few signaling pathways, 

including Akt/ERK pathway [130-132], a bona-fide target for this compound 

remains elusive. 

To identify direct binding targets for ONC201, we used BANDIT to compute 

likelihood ratios between ONC201 and all drugs with known targets in 

BANDIT’s database.  BANDIT’s top shared target prediction were between 

ONC201 and Oxiperomide and Thioridazine, both a dopaminergic antagonists 

previously used the treatment of dyskinesias and schizophrenia respectively 

[133-136]. Interestingly, our voting analysis indicated that the most likely 

targets of ONC201 were dopamine receptors – specifically DRD2 – and 

adrenergic receptor alpha (Figure 3.8A), both of which are members of the G-

protein coupled receptor (GPCR) superfamily.  

To test these predicted targets we performed in vitro profiling of GPCR activity 

using a hetereologous reporter assay for arrestin recruitment, which is a 

hallmark of GPCR activation[137]. Our results indicated that ONC201 

selectively antagonized the D2-like (DRD2/3/4L), but not D1-like (DRD1/5L), 

subfamily of dopamine receptors (Figure 3.8B, Figure 3.9A), with no observed 

antagonism of other GPCRs under the evaluated conditions. Among the DRD2 

family, ONC201 antagonized both short and long isoforms of DRD2 and DRD3, 

with weaker potency for DRD4. Further characterization of ONC201-mediated 

antagonism of arrestin recruitment to DRD2L was assessed by a 

Gaddam/Schild EC50 shift analysis, which determined a dissociation constant 

of 2.9 uM for ONC201 that is equivalent to its effective dose in many human 

cancer cells (Figure 3.8C). 
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Figure 3.8 – ONC201 is a selective DRD2 antagonist – (A) BANDIT target 
predictions for ONC201. Connections between ONC201 and known drugs are 
weighted based on the likelihood ratio and predicted targets are sized based 
on the prediction strength. (B) Antagonism of ligand-stimulated dopamine 
receptors by ONC201. C) Schild analysis of DRD2L antagonism by ONC201 
using arrestin recruitment or (D) cAMP modulation reporters. 
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Figure 3.9 – The antagonism of DRD2 by ONC201 is highly specific across 
GPCRs and other cancer drug targets – A) Antagonism of GPCRs using an 
arrestin recruitment reporter assay (10μM). B) Competition of ONC201-
mediated antagonism of DRD2L by dopamine in arrestin recruitment or (C) 
cAMP modulation reporters. D) Antagonism or agonism of nuclear hormone 
receptors by ONC201 (2 or 20uM) using a nuclear translocation reporter assay. 
(E) Inhibition of in vitro kinase enzymatic activity by ONC201 (1 uM). F) DRD2L 
antagonistic activity of ONC201 or a linear constitutional isomer of ONC201 
that has no biological activity using an arrestin recruitment reporter assay. 
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Confirmatory results were obtained for cAMP modulation in response to 

ONC201, which is another measure of DRD2L activation (Figure 3.8D). The 

ability of dopamine to completely reverse the dose-dependent antagonism of 

up to 100uM ONC201 suggests direct, competitive antagonism of DRD2L 

(Figure 3.9B-C). In agreement with the specificity of ONC201 for the target 

predicted by BANDIT, no significant interactions were identified between 

ONC201 and nuclear hormone receptors, the kinome, or other drug targets of 

FDA-approved cancer therapies (Figure 3.9D-E). Interestingly, a biologically 

inactive constitutional isomer of ONC201 [138]) did not inhibit DRD2L, 

suggesting that antagonism of this receptor could be linked to its biological 

activity (Figure 3.9F). In summary, these studies establish that ONC201 

selectively antagonizes the D2-like subfamily of dopamine receptors, which is 

an “unconventional” target for oncology drugs and further demonstrate 

BANDIT’s ability to act as a tool to advance drug development.  

This unexpected discovery on DRD2L being a direct-binding target for 

ONC201, has also led to the design and launch of a clinical trial of ONC201 in 

pheochromocytomas, owing to high levels of DRD2L expression in this rare 

tumor type. Taken together, these results demonstrate the potential of BANDIT 

to expedite drug development by using drug-target engagement predictions in 

combination with gene expression to enable the identification of select patient 

and indications groups more likely to benefit from a particular drug treatment. 

BANDIT can determine drug mechanisms and can help understand the 

drug “universe” 

Following validation that BANDIT could accurately determine the specific 

targets for small molecules, we then examined how it could also be used to 
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understand the target binding mechanism, otherwise known as its mechanism 

of action (MoA). First we used BANDIT to test all known microtubule-targeting 

drugs, and created a hierarchical cluster based on their TLR outputs. We 

observed a clean separation between drugs known to destabilize microtubule 

depolymerizing and polymerizing agents (Figure 3.10A). A similar MoA-based 

clustering was observed when we tested all known protein kinase inhibitors, 

which showed a clear separation between receptor tyrosine kinase inhibitors, 

serine/threonine kinase inhibitors, and nucleoside analogs (Figure 3.10B). 

Overall these results demonstrate that BANDIT can be used to differentiate 

small molecules based on their specific MoA without additional model training. 

Combined with the earlier voting algorithm, this demonstrates an efficient 

pipeline for small molecule target and mechanism identification: first using 

BANDIT to predict targets for an orphan small molecule, followed by clustering 

with other drugs known to act on the same target to discern MoA.  

We next used BANDIT to get an overview of how different classes of drugs, 

spanning the entire clinical landscape, may be related to one another. Based 

on the TLR between each drug pair, we constructed a network representative 

of the drug “universe,” or all known drugs with at least one predicted shared 

target interaction (Figure 3.10C). Each drug was classified according to its 1st 

order Anatomical Therapeutic Chemical (ATC) classification – characteristic of 

the type and intended use of each drug. As expected, drugs of a similar ATC 

code cluster together, however we also observed many “unexpected” clusters 

indicative of drug mechanisms or effect. Interestingly, among all classes of 

cancer chemotherapeutics, microtubule inhibitors clustered together with 
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Figure 3.10 – BANDIT can predict specific mechanisms of action and 
connections between drug classes – A) Hierarchical clustering of drugs known 
to target microtubules and B) drugs known to target protein kinases. C) 
Network of drugs based on shared target interactions. Drugs are colored based 
on their most prevalent ATC code. Three specific clusters corresponding to 
beta-blockers and Parkinson’s medications, anti-retrovirals and statins, and 
opioids and anti-microtubule drugs are highlighted.   
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camptothecin analogues, for which a dual role as topoisomerase I and tubulin 

polymerization inhibitors has been previously reported [139], but which is not 

widely acknowledged in clinical oncology. Conversely, we unexpectedly found 

opioids closely interconnected with microtubule targeting agents; this 

unanticipated observation is in line with previous reports showing how 

exposure to microtubule targeting drugs can increase the levels of the opioid 

receptor in rat cerebellums and that treatment of cardiac myocytes with opioids 

induces microtubule alterations [140,141]. This unexploited finding could reveal 

novel biology linking the opioid receptor-signaling pathway with the microtubule 

cytoskeleton, as well as potentially represent an example of drug repurposing, 

suggesting novel clinical indications for drugs already FDA-approved. As 

further proof of the clinical value of the broad universe clustering information 

revealed by BANDIT, we detected close clustering of known beta-blockers with 

many Parkinson’s medications, which was especially interesting given that one 

of the most controversial clinical applications of beta-blockers was to reduce 

tremors in Parkinson’s patients [142]. Drug clustering was also strongly 

indicative of potential side effects, as suggested by the link between 

antiretroviral medications, which often cause metabolic side effects like 

hypercholesterolemia, and statins, FDA-approved cholesterol lowering drugs 

[143]. Overall we believe this broad universe clustering approach could greatly 

advance future drug development by “indicating” novel synergistic drug 

combinations, cumulative side effects, and by assisting in drug repositioning.  

Discussion 

One of the strengths of the Bayesian framework is that it can easily 

accommodate new features, and, as we have observed, we expect that the 
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addition of new data to only improve the overall performance. In addition, as 

more information becomes available there are many aspects of the current 

implementation that can be improved. For instance, we can better understand 

the dependencies between distinct data types and model those within our 

Bayesian network, and as more information on binding kinetics becomes 

available, BANDIT could be adapted to better predict on versus off-target 

effects. As drug development often stops in early clinical studies due to 

“unanticipated” toxic side effects, BANDIT could help overcome these 

roadblocks by identifying side effects due to unknown off-target bindings.  

In summary, we have developed BANDIT, an integrative Big-Data approach 

that combines a set of individually weak features into a single reliable and 

robust predictor of shared-target drug relationships. Not dependent on complex 

3D models or large known target cohorts, BANDIT can be used to predict 

shared target drugs and mechanisms of action for any drug or small molecule 

(over 50,000 in our database) which differentiates it from other target prediction 

approaches. By using the top shared-target predictions we can further predict 

with high accuracy specific targets for a given small molecule and demonstrate 

how BANDIT can be used to both efficiently discover new drugs with novel 

mechanisms for specific targets and identify targets for small molecules in the 

development pipeline – all without tedious, labor-intense and inaccurate drug 

screening approaches.  

Our BANDIT predictions replicated shared-target relationships, individual drug-

target relationships, and known mechanisms of action within our test set and 

replicated results of large-scale experimental screens. Moreover, we 

experimentally confirmed several of our novel predictions using different 
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bioassays and model systems and demonstrated BANDIT’s capability to 

efficiently discover novel small molecules, which could be used in refractory 

tumors. As the development of drug resistance is inevitable in oncology and 

applicable to both chemotherapy and targeted therapies, BANDIT has the 

potential to quickly and accurately identify drugs that can potentially overcome 

resistance and improve patient outcomes. Finally, BANDIT can be used on a 

broader scale to discern mechanisms of approved drugs, characterize the 

global drug universe landscape, and explain existing, yet puzzling, clinical 

phenotypes. That function alone holds tremendous potential for drug 

repurposing, identification of novel drug combinations, and side effect 

predictions.   

We show herein the potential of BANDIT in expediting drug development, as it 

spans the entire space ranging from new target-identification and validation to 

clinical drug development and beyond, by informing repurposing efforts. We 

expect that BANDIT will help reduce failure rates in the clinic and shorten the 

time required for drug approval by identifying the right patient population most 

likely to benefit from a given therapeutic. By allowing researchers to quickly 

obtain target predictions it could streamline all subsequent drug development 

efforts and save both time and resources. Furthermore BANDIT could be used 

to rapidly screen a large database of compounds and efficiently identify any 

promising therapeutics that could be further evaluated. Overall our results 

demonstrate that BANDIT is a novel and effective screening and target-

prediction platform for drug development and is poised to positively impact 

current efforts. 
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CHAPTER FOUR 

GENOMIC AND MACHINE LEARNING APPROACHES TO ADVANCING 

THE DEVELOPMENT OF IMIPRIDONE FAMILY COMPOUNDS*  

PREAMBLE 

This chapter consists of analyses that are included in a number of different 

papers that are either published, submitted, or in preparation. I performed all 

computational and genomic analyses. Selected experiments were designed in 

partnerships with Drs. Allen and El-Deiry. The El-Deiry lab and Oncoceutcs Inc 

performed all experimental validation and clinical profiling.  

INTRODUCTION 

ONC201 is the founding member of the imipridone family of compounds, first 

identified as an anti-cancer candidate in a screen for p53-independent 

inducers of TNF-related apoptosis-inducing ligand (TRAIL) gene transcription 

in (TRAIL-resistant) bax- null HCT116 human colorectal cancer (CRC) cells 

[144,145]. Based on our finding that DRD2 was the specific binding target of 

ONC201 (See Chapter 2) we investigated how this information could be 

combined with genomic and other computational analyses to advance 

development of this unique compound family. Traditional analog selection and 

lead optimization processes are time–consuming and require precise chemical 

																																																								
*	 Allen JE, Kline CLB, Prabhu VV, et al. Discovery and clinical introduction of 
first-in-class imipridone ONC201. Oncotarget. 2016;7(45):74380-74392. 
doi:10.18632/oncotarget.11814.	
* Prabhu, VV, Madhukar NS, Kline LB, et al. Dopamine receptor dysregulation 
in cancer and its role in tumor response to the anti-cancer DRD2 antagonist, 
ONC201 (In Preparation) 
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experiments, large-scale screenings, and often resource-intensive 

computational simulations [146]. Furthermore, in this age of “precision-

medicine” it has become crucial to design clinical trials and approval strategies 

for the indications and patients most likely to see a large improvement 

[147,148]. In this chapter I will discuss how, starting from a validated target, 

we have been able to use BANDIT and pathway-based genomic analyses to 

accelerate analog optimization, identify responsive cancer types, and select 

genomic biomarkers predictive of efficacy. Together these results the clinical 

applicability of imipridone compounds and ultimately improve chances of FDA 

approval at a later stage.  

RESULTS 

Computational Selection of Imipridone Analogs Based on DRD2 

Selectivity 

To rank analogs of ONC201 based on their ability to selectively bind DRD2 vs. 

other dopamine receptors we calculated the structural similarity between each 

of the 9 ONC201 analogs and all drugs with known targets in BANDIT’s 

database. Since the only available data type for all analogs was the chemical 

structure, we used BANDIT to compute total likelihood value for each analog-

known drug pair based on the calculated structural similarity score. For each 

analog we calculated a BANDIT-DRD2 rank based on whether D2 receptors 

(DRD2, DRD3) were predicted as targets and not D1 receptors (DRD1, DRD4, 

DRD5). We then tested each analog against HCT116 cancer cells and 

observed a significant correlation between each analog’s effect on cell viability 

and its calculated BANDIT-DRD2 rank (Figure 4.1). This result highlights how  
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Figure 4.1 – Imipridone analog ranking correlates to measured efficacy. 
Ranking of each analog based on predicted DRD2-specificity by BANDIT 
against growth inhibition efficacy measured in HCT116 lines.   
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BANDIT along with focused target information can be used to expedite analog 

selection and optimization.  

We next focused in on two particular analogs – ONC206 and ONC212 – 

orphan compounds that had both previously shown efficacies in multiple 

cancer types. We ran both compounds through BANDIT and predicted 

ONC206 to be a more potent DRD2 binder than ONC201, whereas ONC212 

was not predicted to bind to any previously targeted GPCRs. To further 

investigate the potential for these analogs to bind to DRD2, we calculated the 

total likelihood value for each shared target prediction between 

ONC206/ONC212 and drugs known to target DRD2. Looking at the top 

scoring pairs as well as all known DRD2 binders, BANDIT consistently 

predicted ONC206 to be stronger binder to DRD2 than ONC212 (Figure 4.2A-

B). Testing both against a panel of GPCRs we confirmed this results, 

revealing that ONC206 was a strong and selective binder to DRD2 (in fact 

stronger than ONC201) whereas ONC212 actually bound to a GPR132 – an 

orphan GPCR (Figure 4.3A-B). This result further highlighted the potential of 

BANDIT and other computational approaches to advance analog selection 

efforts.  
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Figure 4.2 – Ranking of ONC206 and ONC212. A) Structural likelihood of 
each of the top 10 predictions in BANDIT–DRD2 for ONC206 and ONC212. 
We observe that ONC206 consistently has a higher likelihood value for each 
prediction. B) Structural likelihood values for ONC206 and ONC212 for shared 
target predictions with known drugs that only target DRD2 and no other 
dopamine receptors. P value was calculated using a paired t-test to measure 
whether ONC206 values were significantly higher than ONC212’s.   
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Figure 4.3 – GPCR Profiling of ONC201 Analogs. A) GPCR Engagement 
Assays for ONC206 and B) ONC212 highlighting binding to DRD2/3 and 
GPR132 respectively  
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Target Based Indication Selection for ONC201 

Examining pan-cancer expression data in The Cancer Genome Atlas (TCGA) 

we found that DRD2 is broadly expressed in many different cancer types 

compared to the respective normal tissues (Figure 4.4A). This identified 

pheochromacytomas/paragangliomas (PCPG) and glioblastomas (GBM) as 

the cancer types with the highest expression of DRD2 and these results were 

confirmed on the protein level (Figure 4.4B). Based on these findings, we 

hypothesized that ONC201 would be effective at treating these cancer types 

and these results were confirmed with in vitro cell line studies (Figure 4.5A-B). 

To further evaluate efficacy in these indications two clinical trials for 

glioblastoma (NCT02525692) and pheochromacytoma (NCT03034200) have 

been started. To further evaluate imipridone efficacy we tested ONC206 (a 

more potent binder of DRD2) on GBM and PCPG cell lines. We observed a 

better overall efficacy for ONC206 compared to ONC201, providing additional 

evidence that ONC201/ONC206’s anti-cancer efficacy is due to DRD2 

antagonism (Figure 4.5C-D).  

DRD5 as a Potential Biomarker of ONC201 Response and Resistance 

To gain more insight into the mechanism of ONC201 susceptibility, we 

generated RKO cells with acquired and stable resistance to ONC201 from the 

ONC201-sensitive parental cells. Analysis of exome sequencing of resistant 

and parental cells revealed a heterozygous Q366R mutation in the DRD5 

gene only in both resistant clones. DRD5 is a member of the D1 class of 

dopamine receptors whose activation opposes the activity of D2 class of 

dopamine receptors (which includes DRD2) and is known to dimerize with 

DRD2 via electrostatic interactions between intracellular residues [149,150].  
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Figure 4.4 – Overexpression of DRD2 in select cancers. A) Comparison of 
tumor and normal tissue expression across various cancers according to 
TCGA data. B) Immunohistochemical staining for DRD2 in patient-derived 
tissue microarrays   
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Figure 4.5 – ONC201 and ONC206 efficacy in select cancers. A) Efficacy 
testing for ONC201 in MC-IXC neuroblastoma and B) PC12 
pheochromacytoma cell lines. C) Efficacy testing for ONC201 and ONC206 in 
MC-IXC neuroblastoma and D) PC12 pheochromacytoma cell lines.  
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Interestingly the Q366R mutation imparts an electrostatic change from a net 

neutral to a positive charge at an intracellular amino acid; thus we 

hypothesized that the Q366R mutation could enhance dimerization and 

antagonize downstream DRD2 signaling. Further supporting that the Q366R 

mutation could confer resistance to ONC201, we found that overexpression of 

the Q366R DRD5, but not the wild type, induced tumor cell death and could 

reconstitute resistance in parental ONC201-sensitive cells.  

Based on these findings we investigated the role of DRD5 expression as a 

predictive biomarker for ONC201. Previous studies had reported on the 

efficacy of ONC201 on a set of well-characterized cancer cell lines [151,152]. 

We found that across all cell lines, high expression of DRD5 correlated with 

lower overall ONC201 efficacy (Figure 4.6A). This result was also confirmed 

with clinical results as all 3 GBM patients treated with ONC201 who had 

progression free survival scores of greater than 5 months did not have 

detectable levels of DRD5 expression (Figure 4.6B). Further examining how 

low levels of DRD5 could be used as a predictive biomarker, we overlaid 

expression of DRD2 and observed that ONC201 had the best overall efficacy 

when both DRD5 was lowly expressed and DRD2 was highly expressed 

(Figure 4.6C). This finding opens the door for using DRD2+/DRD5- as a 

biomarker for patient and indication selection.  
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Figure 4.6 – DRD5 as a predictive biomarker. A) ONC201 GI50 of NCI60 cells 
categorized by DRD2 mRNA expression using z-score. P value was calculated 
using a KS test B) DRD5 expression in archival tumor samples categorized by 
PFS>5 months (n=3) or PFS<5 months (n=12). C) IC50 of ONC201 in GDSC 
cells based on expression of DRD2 and DRD5. P value calculated using a KS 
test.   
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CHAPTER FIVE 

CANCER STEM CELL-RELATED GENE EXPRESSION AS A POTENTIAL 

BIOMARKER OF RESPONSE FOR FIRST-IN-CLASS IMIPRIDONE ONC201 

IN SOLID TUMORS* 

PREAMBLE 

This chapter is derived from a paper that has been submitted and is currently 

under review at PLoS One (as of July 2017). Experiments were designed in 

partnership with VVP, ARL, MDB, JA, and WSED. I performed all 

computational and genomic analyses (determining expression changes and 

identifying potential biomarkers). In vitro validation experiments were done by 

the El-Deiry Lab (ARL, MDB, and WSED). Clinical testing and prior screening 

results were provided by Oncoceutics Inc (VVP and JA).   

INTRODUCTION 

Several clinical studies have demonstrated the relevance of cancer stem cells 

(CSCs) that clearly correlate with recurrence, metastasis and poor survival in 

solid tumors [153-155]. Recent objective responses observed in Phase I/II 

clinical trials of various CSC-targeted agents in a number of advanced 

refractory solid tumors have further established the importance of CSCs as a 

therapeutic target [156-158]. 

																																																								
*Prabhu VVa, Lulla ARa, Madhukar NSa, Baumeister MDa, Zhao D, et al. 
“Cancer stem cell-related gene expression as a potential biomarker of 
response for first-in-class imipridone ONC201 in solid tumors.” 2017. 
(Submitted) (a = co first authors) 
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The first-in-class small molecule imipridone ONC201 is currently in Phase I/II 

clinical trials for advanced cancer [159]. The first-in-human Phase I study in 

advanced solid tumors demonstrated ONC201 to be safe, and exhibit 

predicted pharmacokinetics, sustained pharmacodynamics and tumor 

shrinkage [160]. The anti-CSC efficacy of ONC201 has been previously 

demonstrated in vitro and in vivo in colorectal cancer and acute myeloid 

leukemia (AML) [161,162]. ONC201-mediated depletion of chemotherapy-

resistant colorectal CSCs involves dual inactivation of Akt and ERK signaling 

that results in transcription factor Foxo3 activation that leads to DR5/TRAIL-

dependent inhibition of self-renewal [144,161]. In the current study, we 

evaluated whether the anti-CSC effects of ONC201 involve early changes in 

stem-cell related gene expression prior to tumor cell death. We examined if 

ONC201-mediated inhibition of CSCs extends to other solid tumors. 

Additionally, we tested whether CSC expression can serve as a potential 

biomarker of ONC201 response.  

RESULTS 

ONC201 modulates stem cell-related gene expression 

A targeted network analysis of gene expression profiles of HCT116 p53-null 

human colon cancer cells treated with ONC201 (18 h and 48 h) revealed that 

several stem cell-related genes, transcription factors and signaling pathways 

are significantly modulated by the compound (Figure 5.1A). Specifically, 

mRNA levels of ID1 (colon/glioblastoma CSC-regulation [163], 2.5-fold), ID2 

(glioma stem cell regulation [163], 3.2-fold), ID3 (colon/glioma CSC-regulation 

[163], 2.9-fold), ALDH7A1 (prostate CSC marker/metastasis [164], 2-fold) 

were significantly downregulated and KLF9 (glioblastoma stem cell inhibitor 



	69	

[165], 1.5-fold) was significantly upregulated in HCT116 p53-null cells upon 48 

hour ONC201 treatment (Table 5.1), indicative of potential anti-CSC effects in 

these solid tumors. Also, mRNA levels of Wnt pathway-related genes such as 

ligand WNT16 (hematopoietic stem cell [166]/prostate cancer resistance-

related [167], 13.5-fold), receptors FZD2 (regulator of epithelial-mesenchymal 

transition (EMT)/colon cancer metastasis [168], 2.98-fold), FZD4  

 
Figure 5.1 – ONC201 modulates stem cell-related gene expression. (A) 
Summary of targeted network analysis of stem cell-related changes in 
ONC201-treated (10 µM) HCT116 p53-null cells by Ingenuity Pathway 
Analysis. The –log(p-value) is indicated for each group of genes. Ratio 
indicates the relative number of genes that were significantly changed upon 
ONC201 treatment compared to total number of genes in the group. (B) qRT-
PCR for indicated stem cell-related genes in DMSO/ONC201-treated (5 µM, 
18 h/48 h, n = 3) HCT116 p53-null cells. * indicates p < 0.02 relative to DMSO. 
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Table 5.1 – ONC201-mediated CSC- and Wnt-pathway-related changes in 
gene expression. CSC- and Wnt pathway-related drug-induced changes 
identified with Ingenuity Pathway Analysis for gene expression profiles of 
HCT116 p53-null cells treated with ONC201 (10 µM) for 48 h. Fold change 
relative to DMSO treated cells. 
 
Gene Fold 

change 
mRNA 
Level 

P value CSC function 

ALDH7A1 2.003 down 3.16E-03 Prostate CSC marker 
ID1 2.519 down 5.85E-04 Colorectal/glioblastoma 

CSC-related protein 
ID2 3.236 down 8.49E-05 Glioma stem cell-related 

protein 
ID3 2.884 down 1.05E-03 Colorectal/glioma CSC-

related protein 
KLF9 1.542 up 4.88E-03 Glioblastoma stem cell-

related protein 
WNT16 13.496 down 1.98E-03 Prostate Cancer Resistance, 

HSC regulation 
Gene Fold 

change 
mRNA 
Level 

P value Wnt pathway function 

WNT16 13.496 down 1.98E-03 Ligand 
FZD2 2.990 down 8.61E-04 Receptor 
FZD4 3.932 down 1.38E-03 Receptor 
TCF7L2 3.550 down 5.11E-03 Transcription factor 
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(glioma stemness [169], 3.9-fold) and transcription factor TCF7L2 (stem cell 

differentiation [170], 3.55-fold) were significantly downregulated (Table 5.1). 

Genes involved in Wnt signaling, Hedgehog signaling and stem cell 

pluripotency were significantly modulated as early as 18 h upon ONC201 

treatment. Modulation of stem cell-related transcription was further confirmed 

in RKO colorectal cancer cells upon ONC201-treament (48 h). Validation with 

qRT-PCR indicated that ID2, ID3, TCF7L2, WNT16 mRNA levels were 

significantly downregulated while KLF9 mRNA was significantly upregulated in 

response to ONC201 treatment (18 h) in HCT116 p53-null cells (Figure 5.1B). 

Clearly, ONC201 specifically impacts stem cell-related transcription at time 

points (18 and 48 h) that precede cell death, which occur beyond 48 h in solid 

tumor cells [144]. These early effects on stem-cell related transcription are 

followed by inhibition of CSC markers and self-renewal by ONC201 at 48-72 h 

[161].  

ONC201 targets cancer stem cells in prostate and glioblastoma tumors 

Based on the relevance of the CSC-related genes modulated by ONC201 in 

prostate cancer and glioblastoma, we tested the effects of ONC201 on CSC-

related gene expression and self-renewal in these tumor types. ONC201 was 

tested in CSC-enriched 3-dimensional neurosphere culture models of primary 

glioblastoma samples, including newly diagnosed (GBM8, GBM18) and 

recurrent (GBM67R and GBM152) samples. ONC201 potently inhibited in vitro 

cell proliferation of all 4 lines, with IC50 values of 433 nM (GBM18), 1.09 µM 

(GBM8), 3.97 µM (GBM67R) and 688 nM (GBM152) (Figure 5.2A). We have 

previously demonstrated that ONC201 downregulated CSC markers CD133,  
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Figure 5.2 – ONC201 targets cancer stem cells in prostate and glioblastoma 
tumors. (A) Effect of indicated concentrations of ONC201 (72 h) on viability of 
newly diagnosed (GBM8, GBM18) and recurrent (GBM67R, GBM 152) 
glioblastoma cells in 3D neurosphere culture. (B) qRT-PCR for indicated stem 
cell-related genes in DMSO/ONC201-treated (5 µM, 24 h/48 h, n = 3) SNB19 
cells. * indicates p < 0.0002 relative to DMSO. (C) Effect of DMSO/ONC201 (5 
µM, 72 h, n = 3) on tumor sphere formation of indicated prostate cancer cell 
lines. * indicates p < 0.025 relative to DMSO. (D) qRT-PCR for indicated stem 
cell-related genes in DMSO/ONC201-treated (5 µM, 24 h/48 h, n = 3) DU145 
cells. * indicates p < 0.04 relative to DMSO. 
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ALDH1A1 and CD44 in colorectal cancer cells in vitro and in vivo [161]. 

Consistent with these findings, ONC201 significantly downregulated CSC-

related genes ABCB5, ALDH1A1, CD133 and NANOG in SNB19, T98G and 

U251 glioblastoma cells (Figure 5.2B, 5.3A and 5.3B). Western blotting 

showed that CD133, ALDH1, NANOG, ID1 and ID3 were downregulated in 

U251 and T98G glioblastoma cells upon ONC201 treatment at 72 h (Figure 

5.3C-D). ID1 protein is upregulated at 24 h, however, mRNA levels decrease 

at 48 h (Table 5.1) and protein levels decrease by 72 h post ONC201 

treatment (S1C and S1D Figs). ONC201 significantly reduced tumorsphere 

formation of 22Rv1, DU145 and PC3 human prostate cancer cells (Figure 

5.2C). ONC201 significantly downregulated CSC-related genes ABCB5, 

ALDH1A1, ALDH7A1, WNT16, CD133 and NANOG in DU145 prostate cancer 

cells (Figure 5.2D). Western blotting revealed that WNT16 was downregulated 

in LNCaP and 22Rv1 while CSC marker CD44 was downregulated in 22Rv1 

cells upon ONC201 treatment at 72 h (Figure 5.3E-F). Thus, changes in stem 

cell-related transcription and anti-CSC effects of ONC201 observed in 

colorectal cancer extend to prostate cancer and glioblastoma.   

Inhibition of cancer stem cells does not occur in tumor cells with 

acquired resistance to ONC201 

We explored the correlation of ONC201-mediated changes in stem cell-related 

gene transcription with anti-tumor efficacy. ONC201 inhibited sphere formation 

of parental RKO wild-type (wt) cells but not RKO cells with acquired resistance 

to ONC201 (Figure 5.4A-B). Accordingly, ONC201 significantly 

downregulated mRNA levels of the stem cell-related genes ID1 (2.1-fold), 

FZD4 (1.6-fold), HES7 (2.5-fold), CCNB1 (3.7-fold) and TCF3 (1.8-fold) in  
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Figure 5.3 – ONC201 targets cancer stem cells in prostate and glioblastoma 
tumors. qRT-PCR for indicated stem cell-related genes in DMSO/ONC201-
treated (5 µM, 24h/48h, n = 3) (A) T98G and (B) U251 cells. * indicates p < 
0.02 relative to DMSO. (C) and (D) Western blot for indicated stem cell-related 
proteins in glioblastoma cells treated with indicated doses of DMSO/ONC201 
for indicated time. (E) Western blot for indicated proteins in DMSO/5 µM 
ONC201-treated 22Rv1 cells for indicated time. (F) Western blot for indicated 
proteins in DMSO/ONC201-treated LNCaP cells for 72 h.   
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Figure 5.4. Inhibition of cancer stem cells does not occur in tumor cells with 
acquired resistance to ONC201. (A) Effect of DMSO/ONC201 (5 µM, 72 h, n = 
3) on tumor sphere formation of RKO wild-type (wt) and ONC201-resistant 
(resist) cells. Representative image (10X magnification) of spheres (> 60 µm) 
(B) Quantification of spheres in (A). (C) qRT-PCR for indicated stem cell-
related genes in DMSO/ONC201-treated (5 µM, 48 h, n = 3) RKO wild-type 
(wt) and ONC201-resistant (resist) cells. # indicates p < 0.003 relative to wt 
DMSO. * indicates p < 0.05 relative to wt ONC201. (D) Western blot for 
indicated stem cell-related proteins in DMSO/ONC201-treated (5 µM, 72 h) 
RKO wild-type (wt) and ONC201-resistant (resist) cells.  
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RKO wt cells but not in ONC201-resistant RKO cells, indicating that CSC-

inhibition could serve as a biomarker of ONC201 response. Validation with 

qRT-PCR indicated that ONC201-mediated inhibition of CSC-related genes 

ABCB5, CD133, ID1, ID2, ID3 and NANOG in RKO wt cells was significantly 

reduced in ONC201-resistant RKO cells (Figure 5.4C). Western blot 

confirmed that ONC201-mediated downregulation of CD44, CD133, ALDH1 

and ID1 occurred in RKO wt cells, but not in ONC201-resistant RKO cells 

(Figure 5.4D). Thus, CSC depletion is a critical component of ONC201’s anti-

cancer efficacy and can serve as a potential pharmacodynamic biomarker of 

ONC201 response. 

Cancer stem cell expression in solid tumors as a potential biomarker of 

response for ONC201 

Finally, we used the GDSC panel of approximately 1,000 unique cancer cell 

lines [159] to determine whether ONC201 in vitro efficacy correlates with the 

expression of CSC-related genes in the treatment-naïve setting. All genes 

identified in the earlier studies were tested and a significant correlation with 

ID1 (D stat = 0.18), CD44 (D stat = 0.173), TCF3 (D stat = 0.253) and HES7 

(D stat = 0.254) expression was observed. Interestingly we found that high 

expression of TCF3 and HES7 significantly predicted sensitivity to ONC201 

(Figure 5.5A-B), suggesting that ONC201 may be efficacious in tumors with 

high basal Wnt signaling. Also, low expression of ID1 and CD44 significantly 

predicted sensitivity to ONC201. These data are consistent with the 

heterogeneity observed within CSC populations with various combinations of 

markers representing different cell populations [171]. Furthermore, when we 

tested ONC201 efficacy in cell lines that fulfilled at least two of the expression  
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Figure 5.5 –Cancer stem cell expression in solid tumors as a potential 
biomarker of response for ONC201. Distribution of ONC201 efficacy (IC50) in 
>1000 GDSC cell lines based on basal RNA expression of (A) TCF3, (B) 
HES7. (C) Distribution of ONC201 efficacy (IC50) in >1000 GDSC cell lines 
based on fulfillment of at least two expression based criteria (low expression of 
ID1/CD44 and high expression of TCF3/HES7) against cell lines that fulfilled 
none. P value and D statistic are indicated. 
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based criteria (low expression of ID1/CD44 and high expression of 

TCF3/HES7) against cell lines that fulfilled none, there was a greater degree 

of separation (D stat = 0.2749, P-value = 8.02e-07) (Figure 5.5C). These 

results indicate that pre-treatment expression of certain CSC genes can serve 

as predictive biomarkers for ONC201 response and that combining the 

expression of multiple CSC genes results in a stronger overall prediction. 

Discussion 

We have previously demonstrated the anti-CSC efficacy of ONC201 in vitro 

using established CSC markers, sphere cultures and in vivo using limiting 

dilution studies in colorectal cancer [161]. Additionally, ONC201-mediated 

inhibition of leukemic stem cells has been confirmed in vivo [162]. Depletion of 

chemotherapy-resistant colorectal CSCs by ONC201 involves an Akt-ERK-

Foxo3-DR5-TRAIL-dependent mechanism of inhibition of self-renewal and cell 

death induction [144,161]. However, it was unclear whether ONC201 depletion 

of CSCs is a consequence of cell death or involves specific effects on stem-

cell related genes that precede inhibition of self-renewal and cell death. In this 

study, we show that ONC201 specifically impacts stem cell-related 

transcription at time points (18 and 48 h) that precede cell death which occurs 

60-72h post treatment in solid tumor cells (11). These early effects on stem-

cell related transcription are followed by inhibition of CSC markers and self-

renewal by ONC201 at 60-72 h (9).  

ONC201 attenuates diverse CSC markers such as CD44, CD133, ABCB5, 

ALDH1A1, ALDH7A1, NANOG, ID1, ID2, ID3 [155,154] and self-renewal 

signaling pathways such as Wnt, Notch and Hedgehog [166,169,165] that 

drive tumor-initiation [163,171], therapy resistance [167] and metastasis 
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[168,164] across various tumor types providing an opportunity for broad-

spectrum anti-CSC and anti-cancer effects. Gene expression profiles in 

colorectal cancer cells revealed ONC201 targets CSC genes involved in 

prostate cancer and glioblastoma. Accordingly, ONC201 mediated inhibition of 

self-renewal in solid tumors was confirmed in prostate cancer cell lines and 

glioblastoma patient derived cells. This study provides further evidence of the 

broad spectrum anti-cancer efficacy of ONC201 and serves as a rationale for 

the ongoing single agent Phase I/II trials of ONC201 in advanced refractory 

solid tumors including prostate cancer and glioblastoma [159]. Drugs targeting 

differentiated bulk tumor cells alone are typically associated with early clinical 

responses that may or may not be durable. In contrast, CSC-targeting agents 

are likely to achieve delayed but durable responses [172]. ONC201’s ability to 

target CSCs provides an opportunity to potentially achieve durable responses 

in patients with advanced therapy resistant disease, especially in high unmet 

need indications such as recurrent glioblastoma. Additionally, approved 

chemotherapies or targeted agents with anti-proliferative effects that do not 

target CSCs could be combined with ONC201 to provide rapid de-bulking and 

durable clinical benefit. These results also indicate that ONC201 could be 

used in the adjuvant/preventative setting for cancer recurrence and metastasis 

prevention. 

Our results also demonstrate that CSC-related gene expression can serve as 

a potential predictive and pharmacodynamic biomarker of ONC201 response. 

ONC201 mediated CSC inhibition occurs in sensitive but not in resistant 

cancer cells confirmed by sphere formation, gene expression and protein 

levels of established CSC markers. Interestingly, baseline expression of CSC-
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related genes predicted ONC201 anti-cancer efficacy in >1000 cancer cell 

lines. Thus, correlative studies testing CSC expression at the RNA and protein 

level using circulating tumor cells and biopsies from ongoing ONC201 clinical 

studies are warranted. 
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CHAPTER SIX 

A MACHINE LEARNING APPROACH TO PREDICTING TISSUE SPECIFIC 

ADVERSE EVENTS* 

PREAMBLE 

This chapter consists of a paper that will soon be submitted for publication 

(as of July 2017). The method (MAESTER) was conceived in partnership 

with Drs. Kaitlyn Gayvert and Olivier Elemento. Method development and 

subsequent analyses were done together with KG. CG assisted with 

generation of some model features. I primarily wrote the manuscript with 

input from KG and OE.  

INTRODUCTION 

Adverse events are currently one of the main causes of failure in drug 

development and are one of the top 10 causes of death in the developed 

world[173,174]. Toxicity issues remain a leading cause for the rising clinical 

trial attrition rates[12,15]. Even after a drug has been approved, adverse 

drug reactions remain a large burden on the medical system with the costs 

amounting to as much as $30 billion dollars annually in the USA[175]. 

Furthermore the identification of the serious adverse events associated with 

drugs frequently does not occur until after FDA approval, with as many as 

50% of adverse events going undetected during human trials[176] . Due to 

the prevalence and impact of this problem, the U.S. Food and Drug 

																																																								
*Madhukar NSa, Gayvert Ka, Gilvary,C, and Elemento O. “A Machine 
Learning Approach to Predicting Tissue Specific Adverse Events.” 2017 (In 
preparation) (a = co first authors) 
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Administration (FDA) has established the US FDA Adverse Event Reporting 

System (FAERS).   

Most adverse event detection experiments are carried out in pre-clinical 

phases based on animal results or during early clinical trials. However not all 

adverse events are detected, due to several factors including limited 

relevance of animal models to human physiology, limited sample sizes 

during trials, and patient populations that may not be representative of the 

overall population[175]. Further complications may include the low 

frequency or late onset of some adverse events[175]. As a result, 

retrospective studies are currently an important method for further 

characterization of the side effects associated with drugs. However this 

requires a large number of patients to be treated first and is dependent on 

voluntary reporting, which is especially problematic as only 10% of all 

adverse events are reported post-approval[177].  

Ideally possible adverse events would be detected during the pre-clinical 

phases of drug development, even before animal studies. Cell lines and 

reporter assays may help detect unwanted side effects early. Computational 

screening methods are also critical components of current drug 

development pipelines for evaluating pre-clinical toxicity. In particular, drug-

likeness measures, which use molecular features to estimate oral 

bioavailability as a proxy for drug toxicity, have been widely adopted. 

Examples of drug-likeness methods include Lipinski’s Rule of Five[178] and 

the Quantitative Estimate for Drug Likeness[179]. More recently machine 

learning based methods have been proposed for predicting drug toxicity, 

including previous work from our group (PrOCTOR) which integrates 
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established molecular properties with target-based features to directly 

predict broad clinical trial toxicity[17]. However these types of approaches 

have not be systematically applied to predicting specific adverse events, 

such as liver or heart toxicity. Better methods for predicting such toxicities 

could improve fast-fail procedures and facilitate better trial design. To 

address this problem, we introduce MAESTER, a new machine-learning 

platform for the prediction of tissue-specific adverse events. We show that 

for a set of 6 serious adverse events MAESTER achieves unprecedented 

accuracy while maintaining high specificity and sensitivity. Additionally we 

demonstrate how MAESTER could have identified drug adverse events that 

were missed by traditional screening methodologies.  

RESULTS 

Target based features connects drugs to specific adverse events 

Previous work by our group (PrOCTOR) has demonstrated the importance 

of considering drug targets and the genomic heterogeneity of different tissue 

systems when predicting general toxicity. Given this association, we 

hypothesized that we could better predict specific adverse events (AEs) if 

we included information on drug targets in the most relevant tissue to the 

given AE. We first focused on a set of six tissues whose corresponding AEs 

are correlated with clinical trial failures: liver, kidney, blood, heart, lung, and 

pancreas. We used the SIDER database of drug side effects to identify 

subsets of drugs (~150 drugs) that are associated with these tissue-specific 

adverse events (TSAEs) (Table 6.1)[111]. For each tissue, we also 

established a “safe” set of drugs for comparisons by filtering out any drugs 

correlated with those TSAEs or other AEs highly correlated with fatalities in  
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Table 6.1  – Table of the 6 major adverse event categories. In addition to 
the given adverse event, certain synonymous adverse events were also 
included and any drugs with containing an adverse event in the “other 
removed terms” category were removed excluded from the safe set. 

Adverse Event Synonyms Tissue Other Removed 
Terms 

DILI Liver Disease, Liver 
Injury, Liver Damage 

Liver "Nephro" 

Heart Attack Myocardial Infarction Heart "Immun" 
Renal Failure Kidney Failure Kidney  
Neutropenia - Blood  

Pleural 
Effusion 

- Lung - 

Pancreatitis - Pancreas - 
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Figure 6.1 – A) Schematic describing the process by which we selected our 
toxic and safe drugs for each specific tissue. B) Similarities of across all 
toxic drugs pairs, safe drug pairs, and all combinations of toxic and safe 
drugs for drug structures, C) gene expression changes, D) growth efficacies, 
and E) bioassays. P values were calculated using a Wilcoxon Rank Sum 
test.   
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openFDA (https://open.fda.gov/) (Figure 6.1A). For each drug, we compiled 

structural representations in the format of SMILES from DrugBank, 

differential gene expression profiles from the Broad Institute’s Connectivity 

Map (CMAP)[98], growth inhibition patterns across the NCI60 cell lines 

(NCI60) from the NCI’s Developmental Therapeutics Program[108], and 

bioassay data from PubChem[110].  

For each tissue we then investigated how these safe and toxic drugs 

compare to each other. For each pair of drugs, we calculated a similarity 

score for each of the considered data types. We found that in all tissues, 

tissue-specific toxic drugs were most structurally similar to each other 

(Figure 6.1B).  Additionally, toxic drugs tended to also be most similar to 

other toxic drugs in terms of differential gene expression profiles (Figure 

6.1C), growth inhibition screens (Figure 6.1D) and bioassays (Figure 6.1E). 

Interestingly we found distinct patterns across the different tissue types – for 

instance, growth inhibition was best able to separate out drugs with heart 

specific adverse events, whereas gene expression changes had the 

greatest utility in the liver. These patterns could be incredibly valuable for 

adverse event prediction as they highlight how we can model the diversity 

across drugs with a given side effect.  

We next examined how expression of a drug’s targets could be used to 

predict TSAEs. To test this we integrated tissue-specific expression data 

measured by the GTEX database. For each of the six tissues, we 

determined all related adverse events and identified sets of safe and toxic 

drugs for each tissue following the same procedure outlined in Figure 6.1A.  

For each toxic or safe drug in a given tissue set, we measured the 
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expression of all of that drug’s targets in the specific tissue (Figure 6.2A-E). 

Overall drugs with TSAEs tended to have higher target expression in the	

tissue corresponding to their toxicity than their safe drug counterparts. This 

information helps illustrate how its important to consider target based 

features and tissue-specific expression when predicting adverse events. 

Distinct Patterns of Tissue-Specific Toxic and Safe Target Sets 

Due to the significant relationship between drug target expression and 

related tissue adverse events, we next sought to define a set of tissue-

specific “toxic targets”– proteins that are only targeted by drugs with known 

toxicity in that tissue – and “safe targets” – proteins only targeted by drugs 

with no related tissue toxicities. To do this, we begin by taking the safe and 

toxic drug sets described in Figure 6.1A and identifying any targets 

exclusive to each drug subset (Figure 6.2F). Interestingly we found that 

though there was a significant degree of overlap between the toxic and safe 

gene sets across multiple tissues, there were a number of proteins identified 

that were specifically associated with toxicity or non-toxicity in a single tissue 

(Figure 6.2G-H). For instance, ABL1 was flagged as a toxic target in all six 

tissues, whereas KCNJ3 and KCNJ6 – proteins involved in voltage gated 

potassium channels and the regulation of heartbeats – were only marked as 

toxic targets in the heart.  

To further investigate TSAEs, we expanded the procedure described in 

Figure 6.2F to generate toxic and safe targets for 30 different tissue types – 

including the 6 prior tested tissues. For each target, we then extracted a set 

of features to identify any patterns that were consistent across all tested 

tissues. For each gene, we computed a number of features, including tissue- 
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Figure 6.2 – A–E) Distribution of target expression in a specific tissue for 
drugs with and without any tissue specific adverse events (in that given 
tissue). F) Schematic for the selection of toxic and safe targets. G)Venn 
diagram across multiple tissues showing the overlap of toxic and H) safe 
targets.    
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specific expression, network properties (betweenness and degree), loss of 

function mutation frequency, and essentiality status. We found that toxic 

gene sets tend to be more connected in an aggregated gene-gene 

interaction network (Figure 6.3A-B), be more intolerant for LoF mutations 

(Figure 6.3C), and be enriched for essential genes (Figure 6.3D). Finally, 

we used the ConsensusPathDB framework[180] to measure for GO term 

enrichment and observed that for toxic gene sets the most commonly 

enriched terms to had to due with cell death, receptor signaling, and 

apoptotic processes (Figure 6.3E) – pathways one would expect to be 

related to toxicity – whereas safe targets did not appear to be related to any 

toxicity related processes (Figure 6.3F) – likely due to the diverse nature 

and function of safe targets.  

Computational approach predicts likelihood of specific adverse events 

To utilize these findings and more directly address the problem of adverse 

event prediction, we developed MAESTER (a Moneyball Approach for 

Estimating Specific Tissue adverse Events using Random forests) to 

compute the probability of a compound presenting with a specific adverse 

event (Figure 6.4A). To do this, we expanded upon the framework of our 

previous work on predicting broad clinical trial toxicities, PrOCTOR, and 

narrowed down the classification task to a set of specific adverse events that 

are correlated with clinical toxicity and have high reported frequencies of 

fatality in openFDA: drug-induced liver injury (DILI), nephrotoxicity, 

neutropenia, heart attack, pleural effusion, and pancreatitis. We began by 

using the framework described in Fig 6.1A to define a training set of safe 

and toxic drugs for each adverse event and its corresponding tissue. For the  
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Figure 6.3 – A-D) Distribution of features across multiple tissues for their 
individual toxic and safe targets. E) Number of tissues whose respective 
toxic or F) safe targets are enriched for a specific Gene Ontology category.   
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Figure 6.4 – A) Schematic of MAESTER’s method of integrating multiple 
feature types to predict tissue specific adverse events. B) Performance 
metrics for multiple MAESTER prediction classes. C) Area under the 
receiver operating curve for MAESTER’s Neutropenia model. D) Distribution 
of MAESTER DILI probabilities for drugs marked as “DILI Concern” or “Safe” 
by the FDA Liver Toxicity Knowledge base. E) MAESTER Predictions for 
drugs with FDA warning labels for heart attacks, neutropenia, or pleural 
effusion.  
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toxic drugs, we directly queried the database for drugs that are linked to 

each adverse event or its synonyms. We then took drugs that are not 

associated with any adverse event in the related tissue or any other severe 

adverse events (fatality frequency > 13%) to be the set of safe drugs. The 

set of keywords used to construct these training sets are fully described in 

Table 6.1.  

Building upon the framework of PrOCTOR, MAESTER integrates 13 

structural features, 35 target and tissue features, and 8 drug similarity 

properties to produce a suite of classifiers that are able to predict the 

likelihood of each adverse event (Figure 6.4A). Given the established 

validity of drug-likeness measures in capturing toxicity, we also included 

properties considered by the Lipinski[178], Veber[181], and Ghose[182] 

rules, and the Quantitative estimate for Drug-Likeness (Q.E.D.)[179] as well 

as the measures themselves. For tissue-based features, we considered the 

number of known drug targets that fall in the associated tissue-specific safe 

and toxic gene sets we created earlier. We also included the above 

described tissue expression features from GTEx[183], network properties 

(connectivity and degree), and loss of function mutation frequency[184]. 

Finally we integrated the different similarity scores (structural, CMAP, 

NCI60, and bioassay) through two different measures. The first similarity 

metric represents whether the drug is more similar to known safe or toxic 

molecules by using a signed Kolmogorov-Smirnov D-statistic. The second 

similarity metric is a count of the number of highly similar drugs with known 

TSAEs. 
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The classifiers were then evaluated using 10-fold cross validation. All 

adverse events achieved significant predictive performances with an 

average accuracy of 72% and area-under-the-receiver-operator curve (AUC) 

of .81 (Fig 6.4B). Focusing specifically on neutropenia – a major cause of 

clinical trial failure and mortality in cancer and immunocompromised 

patients[185]– MAESTER achieved an AUC, accuracy, specificity and 

sensitivity of 0.8843, 0.7839, 0.7778 and 0.7891 respectively – the highest 

reported results for the computational prediction of neutropenia(Figure 

6.4C).  

We further assessed MAESTER’s performance using an independent 

validation test set. For liver toxicity, the FDA has curated the Liver Toxicity 

Knowledge Base (LTKB) that classifies a number of compounds based on 

their risk of causing liver toxicity. We found that MAESTER can significantly 

distinguish drugs that are of DILI-concern from those classified as no 

concern using this independent database (Figure 6.4D) (p <	 2.2e-16, Mann-

Whitney U test). For heart attacks, pleural effusion, and neutropenia we 

turned to FDA drug label warnings as reported in openFDA (Figure 6.4E). 

We found that MAESTER correctly identified	 76.3% of drugs with heart 

attack risk (p=0.04589, Binomial test), 75.0% with pleural effusion risk 

(p=0.01474, Binomial test), and 87.5% with neutropenia risk (p=0.0782, 

Binomial test) (Figure 6.4E). None of these tested compounds were in our 

original training set, further highlighting MAESTER’s potential to predict 

adverse event on new compounds. 
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A feature importance analysis revealed that there is a subset of features that 

were consistently predictive across all of MAESTER’s adverse event 

models. The toxic and safe gene sets, structural and bioassay similarity 

features, polar surface area, and expression of the drug target in mature B 

cells (centroblasts) are important in a majority of models. We also identified 

a subset of features that are uniquely predictive in specific models. For 

example, digestive organs (eg. colon, small intestine, stomach) were highly 

important in the prediction of DILI, immune-related features (centroblasts, T 

cells, spleen) were important for neutropenia prediction, and the network 

degree of the drug target was the most important feature in prediction of 

pleural effusion.  

In order to test MAESTER’s ability to detect adverse events that may have 

been missed by traditional approaches, we examined 7 drugs that had 

received FDA approval, but were later withdrawn due to previously unknown 

serious adverse events: Amineptine, Astemizole, Bromfenac, 

Chlormezanone, Cisapride, Dexfenfluramine, Lumiracoxib. Each of these 

drugs was run through MAESTER to determine if they were predicted to 

have the adverse event that eventually led to their withdrawal. We found that 

MAESTER accurately identified the specific adverse event for each drug 

(Table 6.2). Focusing in on two infamous cases of drug withdrawal – Vioxx 

and Avandia withdrawn for cardiac toxicity– we found that MAESTER scored 

each as highly likely to cause cardiac toxicity (Figure 6.5A-B). In fact, 

comparing Avandia to a less toxic analog (Pioglitazone) we observed that 

difference in reported toxicities corresponded to the difference in their 

MAESTER scores. Additionally compared to drugs of similar indications that 
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were never withdrawn and were not known to have the reported adverse 

event, we found that MAESTER produced significantly higher toxicity scores 

for drugs pulled for cardio or hepatotoxicities (Figure 6.5C-F), highlighting 

its ability to specifically identify compounds with AEs that may be missed by 

traditional approaches.  

Table 6.2  – List of withdrawn drugs, their reason for withdrawal, and the 
corresponding MAESTER score. 

Drug Reason For 
Withdrawal 

Specific MAESTER 
Scorea 

Amineptine Hepatotoxicity 0.862 
Astemizole Cardiac Toxicity 0.53 
Bromfenac Hepatotoxicity 0.526 

Chlormezanone Hepatotoxicity 0.534 
Cisapride Cardiac Toxicity 0.772 

Dexfenfluramine Cardiac Toxicity 0.854 
Lumiracoxib Hepatotoxicity 0.646 

a = Score corresponds to either cardiac or hepatotoxicity model depending 
on the reason for withdrawal 
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Figure 6.5 – A) Distributions of MAESTER scores for all drugs known to 
cause heart attacks and those considered safe. MAESTER scores for Vioxx, 
B) Rosiglitazone, and Pioglitazone are indicated with arrows. C-D) 
MAESTER scores for drugs withdrawn for cardiac toxicity compared to 
approved drugs of the same class with no known cardiac toxicities. E-F) 
MAESTER scores for drugs withdrawn for liver toxicity compared to 
approved drugs of the same class with no known liver toxicities.   
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DISCUSSION 

Pre-clinical toxicity screening is one of the most important parts of drug 

development. However, prior computational methods have focused only on 

molecular properties and predicting broad clinical toxicities rather than 

specific adverse events. Additionally experimental methods are often 

cumbersome and often do not translate to clinical results. We have 

proposed MAESTER, a data-driven machine learning approach that 

integrates information on a compound’s structure, targets, and downstream 

effects to predict the probability of a compound presenting with different 

adverse events. When trained on drugs with known adverse events, 

MAESTER performs at high accuracy, sensitivity, and specificity across six 

different prediction tasks. Additionally MAESTER performs with high 

accuracy on external FDA test sets and drug warning labels, and could 

accurately flag side effects for approved drugs that may have been missed 

during traditional analyses.   

We have identified sets of toxic and safe drugs and genes that are 

associated with adverse events in specific tissues. We found that tissue-

specific toxic drugs tend to be more similar to each other than known safe 

drugs and that their associated targets are more highly expressed in 

corresponding tissues. We found tissue-specific toxic targets tend to be 

enriched for growth related biological processes, more connected in protein-

protein interaction networks, and are classified as more essential. 

Leveraging this data, we developed MAESTER to combine compound and 

target properties to predict the likelihood of specific adverse events. 

Because it is trained on drugs with known adverse events, MAESTER can 
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directly predict clinical effects compared to cell or animal screening methods 

whose toxicity predictions may not translate to the clinic. 

One of the strengths of our big data approach is that is able to consider a 

large number of features without prior bias. This will become especially 

powerful in the coming years as more large pharmacogenomics datasets 

become available to integrate. Analysis of these features can aid in future 

drug design by providing insight into what types of drugs are likely to be 

toxic and feeding this information back to the chemists. Additionally, while 

toxicity is often modeled as a broad feature, often times it is a patient 

specific effect. As more patient specific data becomes available MAESTER 

can be improved to predict patient specific adverse events. This could be 

used to guide clinical trial design by specifically selecting patients unlikely to 

present with toxic effects and radically change how people approach 

precision medicine.  
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APPENDIX 

MATERIALS AND METHODS – BANDIT (CHAPTER 3) 

Datasets:  

1. Growth inhibition data: We used publicly available growth inhibition 

data from the National Cancer Institutes Development Therapeutics 

Program (NCI-DTP). Each of the NCI60 cell lines were treated with a 

small molecule and the concentration that caused a 50% decrease in 

cells was measured. When there were multiple high quality 

experiments done for the same compound, we averaged the values 

to obtain a single GI50 value for each small molecule – cell line pair. 

Contains data on 20,000+ unique compounds. Version 1.6.2 was 

downloaded from cellminer.com.  

2. Gene expression data: All post-treatment gene expression data was 

downloaded from the Broad Connectivity Map (CMap) project. Fold 

change data across all cell lines were averaged to obtain a single 

gene expression signature for each compound. Contains data on 

1309 different compounds. Build 02 was downloaded from the Broad 

CMap Portal. 

3. Adverse effects: Side effects (mined from drug package inserts and 

public information) were downloaded from the SIDER database. Each 

side effect was classified using the MedDRA (version 16.1) 

dictionary.  
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4. Bioassays/Chemical structures: All bioassay results and chemical 

structures were downloaded from PubChem and organized based on 

each small molecule’s PubChem Compound Identification (CID). 

5. Known Drug Targets: All known drug targets were extracted from the 

DrugBank database (Version 4.1). 

Calculating similarity scores:   

1. Growth Inhibition Data: For each pair of drugs we calculated a 

pearson correlation value across the 60 data points (Figure 3.1). 

2. Gene expression and Chemogenomic Fitness Scores: A pearson 

correlation was used to measure the degree of similarity for the 

profiles of two drugs 

3. Bioassays: All bioassays were classified as either positive or negative 

based on the data available in Pubchem. A jaccard index was 

calculated based on the number of shared “positive” assays between 

two drugs. We required that each drug pair have been tested in at 

least one similar assay for a similarity score to be calculated. 

4. Chemical Structures: For each drug we extracted the isomeric 

SMILES and used the atom-pair method [186] to calculate the 

structural similarity between two compounds (Figure 3.1).  

5. Adverse Effects: Using the SIDER2 database [111] we extracted the 

“preferred term” side effects for each drug. A jaccard index was then 

calculated for the shared side effects for each drug pair.  
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Calculating correlations between similarity types: 

For each pair of similarity scores we separated out drug pairs where both 

similarity types were measured and plotted the different similarity scores 

against one another (Figure 3.2). We computed the Pearson correlation 

coefficient (PCC) and the coefficient of determination (R2) between each pair 

of similarity scores. Across all pairs, we observed a low correlation – 

measured by both the PCC and R2. This finding demonstrated that high 

similarity of one type does not necessarily implied high similarity in another. 

Furthermore this indicated that each similarity score could be modeled as an 

independent variable.  

Calculating the Total Likelihood Ratio: 

For each data type BANDIT calculates a “likelihood ratio” L(sn) is defined as 

the fraction of drug pairs with a shared target (ST pairs) having a given 

similarity score sn, divided by the fraction of the non-ST pairs with the same 

similarity score: 

Eq. 1: 

𝐿 𝑠# = 	
Pr	(𝑠#|𝑆𝑇)

Pr 𝑠# 𝑛𝑜𝑛 − 𝑆𝑇)
 

Our previous analysis highlighted the minimal correlation between the 

similarity types and how data types could be modeled independently under a 

Naïve Bayes framework. This assumption of independence implies that the 

joint probability of two drugs sharing a target given a set of similarity scores 

can be modeled as the product involving individual similarity scores. 
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Therefore the total likelihood ratio L(s) can be expressed as the product of 

the individual likelihood ratios:  

Eq. 2: 

𝑇𝐿𝑅 = 	𝐿 𝑠 = 	 𝐿(𝑠123)
3

= 	𝐿(𝑠1)𝐿(𝑠4)…𝐿(𝑠3) 

𝑛 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚	#	𝑜𝑓	𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑	𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠		 

The total likelihood ratio (TLR) is then proportional to the odds of two drugs 

sharing a given target n given sources of information  

Overall we decided to use this Bayesian framework for multiple reasons, 

such as the readily interpretable nature of a likelihood ratio compared to 

other more complicated machine learning scores and the ability to easily 

add in new data types as they become available.  

Testing Against Drugs with Known Targets: 

Drug targets were extracted from DrugBank and drug pairs were classified 

as a “shared-target” pair if they had at least 1 target in common. We used 5-

fold cross validation to split our set of drug pairs into a test and training set 

containing 20% and 80% of the drug pairs respectively. We sub-sampled the 

two classes (ST and non-ST drug pairs) and required the ratio of true 

positives (ST pairs) to true negatives (non-ST pairs) to remain the same as 

the total set. For each fold we computed TLRs for each drug pair in the test 

set based on the background probabilities within the training set. Each of the 

5 test folds combined at the end to produce an ROC Curve and calculate the 

AUROC value. We also calculated the AUROC value for each individual 

likelihood ratio from a single data type (Figure AX.1).   
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Figure AX.1 – Predictive power of individual data types– Area under the 
receiver-operating curve for different data type specific likelihood ratios. 
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We performed this analysis with the TLR output while varying the number of 

data types being considered and found a significant increase in the 

predictive power, measured by the AUROC, as we increased the number of 

included datasets (Figure 3.3A). We computed two sets of ROC curves   – 

one where we required drugs have available data in each included data type 

(our preferred method) and another where we imputed the data type median 

for each missing data type. We varied the order in which datasets were 

added and observed a positive relationship between AUROC value and the 

number of included data types regardless of the addition order. Furthermore 

we used a KS test to measure how our TLR value could separate out ST 

and non-ST pairs and saw that in each case our TLR value outperformed 

any individual variable (Figure AX.2). We repeated this analysis increasing 

the minimum number of data types we required a pair of compounds to have 

and saw the separation steadily improve (D = .44 to .69).  

Replicating Kinase Experimental Screen 

We first separated out the kinases in the Peterson et al. database that were 

classified as BANDIT orphan small molecules – molecules that were in at 

least two of the considered BANDIT databases and had no known targets. 

For each orphan kinase inhibitor we used BANDIT to predict shared target 

drugs. Each known kinase target of the shared target drugs was classified 

as a potential kinase target of the orphan inhibitor. We then observed that 

the “percent remaining kinase activity” was significantly lower between the 

orphan kinase inhibitors and the BANDIT predicted kinases than between 

the orphan inhibitors and any non-predicted kinases (Wilcoxon Rank Sum 

Test P = 3.62e−06) (Figure 3.4). 
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Figure AX.2 – BANDIT’s TLR output accurately separates drug pairs with 
shared targets– Distributions of TLR scores across two sets – drug pairs 
known to share a target and those with no known shared targets – with 
increasing requirements on the number of overlapping data types. P values 
and D statistics were calculated using the Kolmogorov-Smirnov test. Blue = 
Shared target drug pairs; Pink = No shared target pairs.  
  

Figure S4

D Statistic = 0.4444

P value = <2.2e−16

0.00

0.05

0.10

0.15

0.20

0 10 20 30
Log10(TLR) − 2 Datatypes

Pe
rc

en
ta

ge

D Statistic = 0.4531

P value = <2.2e−16

0.00

0.05

0.10

0.15

0.20

0 10 20 30
Log10(TLR) − 3 Datatypes

Pe
rc

en
ta

ge

D Statistic = 0.5029

P value = <2.2e−16

0.00

0.05

0.10

0.15

0.20

0 10 20 30
Log10(TLR) − 4 Datatypes

Pe
rc

en
ta

ge

D Statistic = 0.6895
P value = <2.2e−16

0.0

0.1

0.2

0 10 20 30
Log10(TLR) − 5 Datatypes

Pe
rc

en
ta

ge



	 106	

Specific Target Voting  

For each orphan small molecule we identified all shared target drug 

predictions, or any drugs with known targets that exceeded a given BANDIT 

likelihood ratio. For each shared target drug prediction, we compiled all 

known targets of that given drug and ranked specific protein targets based 

on how often it appeared as known target in shared drug target predictions. 

“Votes” for particular protein targets were weighted based on the likelihood 

ratio of the shared target prediction they originated from. The top voted 

target for each orphan small molecule that we tested was then predicted to 

be a novel specific target (Figure 3.3E).  

To test the accuracy, we used leave-one-out cross validation on our test set 

of drugs with known targets. For each drug we used BANDIT to compare it 

to all other drugs with known targets and identify the top ranked target for 

the tested drug. This was repeated for every drug in our test set and we 

calculated how often the top ranked target was a known target of the drug 

being tested. We recomputed these accuracies while varying the likelihood 

ratio cutoff for a drug pair to be considered a shared-target prediction. As 

expected we observed a steady rise in accuracy as we increased the cutoff 

value, with the accuracy plateauing at an accuracy level of approximately 

90% – revealing that BANDIT’s voting protocol could accurately identify 

specific targets (Figure 3.3F).  

Identification of Novel Anti-Microtubule Small Molecules 

For each orphan small molecule in BANDIT (defined as a molecule tested in 

any of the individual databases but without any known targets in DrugBank) 



	 107	

we used the BANDIT voting protocol to predict specific protein targets. We 

required that each orphan small molecule be in at least 3 of BANDIT’s 

databases, leaving us with a set of ~15,000 small molecules. To refine our 

initial list of predictions into a high confidence set, we required a TLR cutoff 

of 500, that each predicted target appear in the majority of shared target 

predictions, and that the highest ranked target appear in the top shared 

target prediction for each orphan molecule. From this list of high confidence 

predictions we identified a set of small molecules predicted to bind to 

microtubules.  

For each predicted microtubule inhibitor (MTI) we examined how it related to 

known MTIs using a network approach (Figure 3.5). We required that each 

predicted MTI have a TLR greater than 500 with at least two known MTIs. 

Each edge in our network represents a predicted shared target interaction 

with the length and width of each corresponding to the strength of the 

prediction (measured by the TLR value). We used the Fruchterman 

Reingold projection within the R igraph package. We observed a distinct 

clustering of known MTIs based on their mechanism of action.  

Most of the novel MTIs we predicted were not easily obtained, thus we 

specifically focused on the subset that we could obtain from the National 

Cancer Institutes Developmental Therapeutics Program.  

Microtubule Imaging/Testing 

Human breast MDA-MD-231 cells were cultured in DMEM (obtained from 

Corning Cellgro) with 10% fetal bovine serum and 1% penicillin and 

streptomycin. Cells were plated at the density of 90,000 Cells/ml onto 12mm 
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round cover slips in 48 well plates for 24 hours and then treated for 6 hours 

with small molecules at the given concentrations. Small molecules (obtained 

from the NCI Drug Bank) were dissolved in DMSO and stored at -20oC. 

Control experiments were done using DMSO and it was less than 0.5% of 

total media volume. After 6hrs drug treatment media was removed and cells 

were per-meabilized with 0.5% Triton X-100 and fixed with PHEMO Buffer 

(3.7% formaldehyde, 0.05% glutaraldehyde, 0.068M Pipes, 0.025M HEPES, 

0.015M EGTANa2, 0.003M MgCl26H2O and 10% DMSO and adjust pH=6.8) 

for 10minutes. Fixed cells were washed three times with PBS buffer. Cells 

were blocked with 10% goat serum at room temperature for 10 minutes. 

Cells were incubated with monoclonal α-tubulin antibody (clone YL 1/2, 

obtained from EMD Millipore), for 1hr and washed three times with PBS 

buffer before incubation with a secondary Alexa Fluor 488 goat anti-mouse 

antibody (obtained from Invitrogen). Cell chromatin was stained with DAPI 

for 5min and washed with water three times. Cover slips were mounted and 

photographed in a RSM 700 microscope for microtubule visualization. DNA 

was counterstained with DAPI. Images were acquired with Zeiss LSM 700 

confocal microscope under a 63×/1.4NA objective (Zeiss, Germany).  

A Fisher’s exact test was used to determine whether the number of 

observed successes – defined as a predicted microtubule inhibitor showing 

an effect against microtubules in imaging – was greater than what would be 

expected by random chance. To determine the background probability we 

used the number of drugs with known targets in our database that were 

known to target microtubules (~ 1%).  
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Microtubule Effect Quantification  

Following 6hrs treatment, cells (12 well plate) were washed once with warm 

phosphate-buffered saline. Each well was incubated with 150 μL either with 

low salts or high salt buffer at 37 oC for 10 minutes. Cell were then scraped 

and were either lysed in low salt buffer to test for the degree of tubulin 

polymerization (20 mM Tris–HCl pH 6.8, 1 mM MgCl2, 2 mM EGTA, 0.5% 

NP-40, 1X protease inhibitor cocktail and 0.5% NP-40) or high salt buffer to 

test for the degree of tubulin depolymerization (0.1M Pipes, 1mM EGTA, 

1mM MgSO4, 30% glycerol, 5% DMSO, 1mM DTT, 0.02% NAAzide, 

0.125% NP-40, 1mM DTT and 1X protease inhibitor cocktail). Samples were 

spun at max speed in a tabletop centrifuge for 30 min at room temperature. 

The supernatant (S) was separated from the pellet (P). The pellet was 

resuspended in 150 μL 1 × Laemmli buffer and sonicated. Equal volumes of 

supernatant and pellet samples were loaded onto a 12% gel for a western 

blot. Tubulin bands were visualized with a DM1a monoclonal antibody 

(obtained from Sigma-Aldrich). % Tubulin in pellet levels were calculated as 

the densitometric value of the pellet band divided by the total densitometric 

value of the pellet and supernatant bands times 100. Three biological 

repeats were performed (Figure AX.3). 

Imaging of Treatment Against Resistant Cell Lines 

1A9-ERB is a clone of the 1A9 human ovarian carcinoma cell line resistant 

to the effects of Eribulin mesylate. It was prepared by exposing 1A9 cells to 

1ng/ml Eribulin (obtained from Eisai pharmaceuticals) in the presence of 

10ug/ml verapamil (obtained from Acros Organics), a Pgp antagonist. The 

cells were maintained in the 0.5ng/ml eribulin and 10ug/ml verapamil  



	 110	

 
Figure AX.3 – Quantification experiments also backed up the activity of 
BANDIT predicted inhibitors on microtubules – Effect of drugs microtubule 
integrity of MDA-MB-231 cells after 6 hours of treatment. A) Western blots 
for supernatant (S) and sellet (P) fractions were examined by SDS-PAGE for 
MDA-MB-231 cells after 6 hours (1μM) of treatment for polymerizing drugs, 
B) Western blots for supernatant (S) and sellet (P) fractions were examined 
by SDS-PAGE for MDA-MB-231 cells after 6 hours (1μM) of treatment for 
depolymerizing drugs, C) Bar graph showing the % of tubulin in the pellet 
compared to the supernatant (averaged over three independent replicates) 
for depolymerizing drugs at 1 and 10 μM, and D) Bar graph showing the % 
of tubulin in the pellet compared to the supernatant (averaged over three 
independent replicates) for polymerizing drugs at 1 and 10 μM.  
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concentrations. Cells were removed from this drug solution 3 days prior to 

any future experimentation. Additional treatment and imaging was done 

using the same protocols as described earlier.  

Characterization of ONC201-DRD2 Interaction 

ONC201 dihydrochloride was obtained from Oncoceutics. Kinase inhibition 

assays for the kinome were performed as previously described [187]. GPCR 

arrestin recruitment and cAMP modulation reporter assays were performed 

as previously described [188]. PathHunterTM (DiscoveRx) beta-arrestin cells 

expressing one of several GPCR targets were plated onto 384-well white 

solid bottom assay plates (Corning 3570) at 5000 cells per well in a 20 µL 

volume in the appropriate cell plating reagent.  Cells were incubated at 37 

°C, 5% CO2 for 18-24 h. Samples were prepared in buffer containing 0.05% 

fatty-acid free BSA (Sigma).  For agonist mode tests, samples (5 µL) were 

added to pre-plated cells and incubated for 90 minutes at 37 °C, 5% CO2.  

For antagonist mode tests, samples (5 µL) were added to pre-plated cells 

and incubated for 30 minutes at 37 °C, 5% CO2 followed by addition of 

EC80 agonist (5 µL) for 90 minutes at 37 °C, 5% CO2.  For Schild analysis, 

samples (5 µL) were added to pre-plated cells and incubated for 30 minutes 

at 37 °C, 5% CO2 followed by addition of serially dliuted agonist (5 µL) for 90 

minutes at 37 °C, 5% CO2.  Control wells defining the maximal and minimal 

response for each assay mode were tested in parallel.  Arrestin recruitment 

was measured by addition of 15 µL PathHunter Detection reagent and 

incubated for 1-2 h at room temperature and read on a Perkin Elmer 

Envision Plate Reader.  For agonist and antagonist tests, data was 

normalized for percent efficacy using the appropriate controls and fitted to a 
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sigmoidal dose-response (variable slope), Y=Bottom + (Top-

Bottom)/(1+10^((LogEC50-X)*HillSlope)), where X is the log concentration 

of compound.  

For Schild analysis, data was normalized for percent efficacy using the 

appropriate controls and fitted to a Gaddum/Schild EC50 shift using global 

fitting, where Y=Bottom + (Top-Bottom)/(1+10^((LogEC-X)*HillSlope)), 

Antag=1+(B/(10^(-1*pA2)))^SchildSlope and LogEC=Log(EC50*Antag).  

EC50 / IC50 analysis was performed in CBIS data analysis suite 

(Cheminnovation) and Schild analysis performed in GraphPad Prism 6.0.5. 

The kinase assay and nuclear hormone receptor profiling (S16) were 

performed as previously described by Reaction Biology Corp and DiscoverX 

respectively [189-191].  

Drug Mechanism Clustering  

For each drug pair we converted the TLR between them into a distance 

metric used to estimate “closeness” between any two drugs: 

Eq. 3: 

𝐵𝐴𝑁𝐷𝐼𝑇	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	𝑆𝑐𝑜𝑟𝑒 =
1
𝑇𝐿𝑅 

We next separated all drugs know to target microtubules that were in at 

least 3 of BANDIT’s dataset. With the BANDIT distance metric as an input 

we created a hierarchical cluster of all known MTIs using the hclust R 

method with an “average” based clustering method. Known MTIs were 

labeled based on whether they were known to polymerize or depolymerize 

microtubules, and we observed a distinct separation based on the 
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mechanism of action (MoA). We repeated this clustering while removing 

drug structures from our likelihood calculations and continued to see a MoA-

based separation. This revealed that BANDIT’s clustering approach is not 

dependent on any single data type, and that observed results are due to 

BANDIT’s integrative approach. This analysis was then repeated using 

similar conditions for known protein kinases.   

Drug “Universe” Clustering  

Using the same protocol as was used to create the MTI network, we created 

a network of all drugs with known targets with each edge representing a 

predicted shared target interaction and the edge weight corresponding to the 

strength of the interaction. Using the KEGG drug database[192] and 

DrugBank[113] we annotated each drug based on its most prevalent ATC 

code and colored each drug accordingly. We specifically isolated out 3 

clusters representing: 1) beta-blockers with Parkinson’s medications, 2) 

antiretrovirals and statins and 3) opioids and microtubule inhbitors.  

To get a better understanding of how orphan small molecules fit into this 

drug “universe” we computed the distance between every pair of small 

molecules and used multi-dimensional scaling to visualize the overall 

structure. We used the same distance metric as described in the mechanism 

of action clustering section to create a distance matrix between all small 

molecules (known drugs and orphan) and used the R cmdscale package for 

the multi-dimensional scaling. We noticed a definite structure with known 

drugs tightly clustering around each other, while orphan molecules had a 

more diffuse organization. One explanation for this structure is that drugs 

with known targets are more likely to be used to treat patients and thus may 



	 114	

have similar effects due to safety precautions, whereas orphan molecules 

which have not gone through clinical trials and FDA approval are more likely 

to have a wide variety of effects and characteristics. 

MATERIALS AND METHODS – ONC201 CSC ANALYSIS (CHAPTER 5) 

Cell culture and reagents 

HCT116 p53-/- cells were kind gifts from Dr. Bert Vogelstein of Johns 

Hopkins University. ONC201 resistant RKO cells were generated previously 

in our lab in 2012-2013 [193]. All other cell lines were obtained from the 

American Type Culture Collection and cultured as previously described 

[193,144]. Cells were authenticated every month by growth and 

morphological observation. ONC201 was provided by Oncoceutics, Inc. 

Tumorsphere culture 

Tumorspheres were cultured as described previously [161] under non-

adherent growth conditions in Ultra Low attachment plates (Corning) using 

the MammoCult™ Human Medium (STEMCELL Technologies) as per the 

manufacturer’s protocol. Cells (1000-20,000 per well) were seeded medium 

containing DMSO or ONC201. Colonospheres of size > 60 µm were 

counted.  

Patient-derived glioblastoma cells 

Four lines were derived using neurosphere culture from untreated (GBM8, 

GBM18) and recurrent (GBM67R and GBM152) glioblastomas. Cell viability 

assays were performed using indicated concentrations of ONC201 and IC50 

values were calculated. 
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Gene expression profiling and network analysis 

Gene expression profiling of HCT116, RKO and ONC201-resistant RKO 

cells with DMSO or ONC201 treatment for indicated time points was 

performed in previous studies and data from these microarray studies are 

submitted to NCBI Gene Expression Omnibus [193,144]. For network 

analysis of stem cell-related transcriptional changes induced by ONC201, 

the dataset was analyzed with the Ingenuity Pathway Analysis software. 

Quantitative RT-PCR (qRT-PCR) 

Total RNA was isolated using the Quick-RNA™ MiniPrep kit (Zymo 

Research, Irvine, CA). 5µg of total RNA from each sample was subjected to 

cDNA synthesis using SuperScript® III Reverse Transcriptase kit (Life 

technologies, Grand Island, NY). The relative expression of the reported 

stem-cell markers was determined using real-time PCR performed on 

Applied Biosystems 7900HT Fast Real-Time PCR system. Each cDNA 

sample was amplified using Power SYBR Green (Applied Biosystems, CA). 

Briefly, the reaction conditions consisted of 0.4 µL of cDNA and 0.2 µM 

primers in a final volume of 10 µL of qPCR mix. Each cycle consisted of 

denaturation of 95oC for 15 s, annealing at 60oC for 15 s and extension at 

72oC for 1 min. Each cycle was followed by dissociation curves for every 

sample. GAPDH was used as an endogenous control to normalize each 

sample. At least two different independent experiments were performed for 

each result with triplicates per experiment. 
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Western blot 

Western blotting was performed as described previously [144,193,161]. The 

following antibodies were used: CD44 (Cell Signaling), ALDH (BD), ID1 

(Santa Cruz), ID2 (Santa Cruz), ID3 (Santa Cruz), CD133 (Santa Cruz 

Biotechnology), WNT16 (BD) and Ran (BD). Horseradish peroxidase 

labeled secondary antibodies were from Pierce. 

Analysis of gene expression data from genomic of drug sensitivity in 

cancer (GDSC) cell line screening  

Cell viability assays were performed with GDSC cell lines (1000 human 

cancer cell lines) at 72 hours post-ONC201 treatment to generate dose 

responses curves at concentrations from 78 nM up to 20 µM as described 

previously [159]. Gene expression data was downloaded from the COSMIC 

Cell Lines Project using an Affymetrix Human Genome U219 Array platform. 

GDSC cell lines were separated in low and high expression groups based 

on a Z-score cutoff of -1 and 1 respectively. Data were analyzed to generate 

IC50. A Kolmogorov–Smirnov test (using the ks.test method in the R 

statistical programming language) was used to test statistical significance 

with the accompanying D statistic used to measure the degree of separation 

between the two groups.  

Other statistical analysis 

Data are presented as the mean ± standard deviation or standard error of 

mean from at least three replicates. The Student’s two-tailed t-test was used 

for pairwise analysis. Statistically significant changes (*) are indicated in the 

figures with p-values. 
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MATERIALS AND METHODS – MAESTER (CHAPTER 6) 

Training Set: 

We downloaded the Side Effect Resource (SIDER) database from 

sideeffects.embl.de. The meddra_adverse_effects.txt table was used to 

extract reported adverse events and the MedDRA Preferred Term descriptor 

to group similar side effects. For each of the 30 major tissue types reported 

in the Genotype-Tissue Expression (GTEx) project, we identified the drugs 

that are associated with any adverse events by searching for keywords 

associated with the tissue name. We used the openFDA resource 

(https://open.fda.gov/) to identify drugs in SIDER that are associated with 

high fatality rates, which we defined to be greater than 13% of reported 

cases. We further extracted the names of the drugs associated with specific 

adverse events, including synonyms listed in Table 6.1. To define a set of 

drugs not associated with a given adverse event, we took the remaining 

drugs in SIDER and removed those that are associated with any other 

toxicity in the tissue, according to terms listed in Table 6.1, or high fatality 

rates, as defined using the openFDA resource above.  

Feature Derivation 

1. Chemical Features – The structures (sdf format) were downloaded for 

all of the drugs in DrugBank. The molecular weight, polar surface area, 

hydrogen bond donor and acceptor counts, formal charge and number 

of rotatable bounds were extracted from the sdf file for each of these 

compounds. When that information was missing, it was filled in using 

PubChem or by computationally estimating these values using 
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ChemmineR in R. Drug-likeness rule outcomes for the Lipinski, Veber, 

and Ghose rules were derived using these features. The QED values 

were computed using the author-released script. 

2. Network features – We constructed the aggregated biological network 

by taking the union across multiple databases of gene-gene 

interactions. [194-196]. The network degree of a gene was calculated as 

the number of gene neighbors that a particular gene has. The network 

betweenness for a particular gene (i.e. vertex) is defined as the number 

of shortest paths that travel through the vertex. For drug, we considered 

the maximum network degree and betweenness of its target genes. 

These measures were calculated using R’s igraph package[197]. 

3. Tissue features – The Genotype-Tissue Expression (GTEx) 

project[183] dataset of 2921 RPKM RNA-Seq samples were 

downloaded from http://www.gtexportal.org/home/.  

For each tissue, the median RPKM was calculated for each gene. For 

each drug, the maximum RPKM of its targets was considered. 

4. Target Loss Frequency – The Exome Aggregation Consortium 

database [184] was downloaded from www.exac.broadinstitute.org. The 

loss frequency was calculated to be percentage of deleterious mutations 

for each gene. 

Drug Similarities (See Chapter 3) 

1. Growth Inhibition Data: For each pair of drugs we calculated a 

pearson correlation value across the 60 data points (Figure 2.1). 
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2. Gene expression and Chemogenomic Fitness Scores: A pearson 

correlation was used to measure the degree of similarity for the 

profiles of two drugs. 

3. Bioassays: All bioassays were classified as either positive or negative 

based on the data available in Pubchem. A jaccard index was 

calculated based on the number of shared “positive” assays between 

two drugs. We required that each drug pair have been tested in at 

least one similar assay for a similarity score to be calculated. 

4. Chemical Structures: For each drug we extracted the isomeric 

SMILES and used the atom-pair method [186] to calculate the 

structural similarity between two compounds (Figure S1).  

The MAESTER Approach 

For each adverse event listed in Table 6.1, we trained a model using the 

training set and features described above. It was trained using the random 

forest model, an ensemble decision tree based approach, which constructs 

50 bootstrapped decision trees. A sub-sampling approach was used to 

account for any imbalance in the ratio of toxic drugs to safe drugs, by 

randomly down-sampling the larger class of samples. To reduce the odds of 

poor representatives being sampled, this was repeated 30 times. The labels 

were assigned by taking the consensus across the set of bootstrapped trees 

and replicates. This approach also yields a probability for each test sample. 

This probability was used to calculate an odds score = 

log4
L(MNNOPQMR)
L(SMTRUOV)

. 
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Independent Datasets 

The FDA annotated drug-induced liver toxicity (DILI) dataset was 

downloaded from the FDA website at: 

 

http://www.fda.gov/ScienceResearch/BioinformaticsTools/LiverToxicityKnow

ledgeBase/ucm226811.htm.  

The openFDA resource (https://open.fda.gov) was used to identify drugs 

that have warning labels for the relevant toxicity events. We extracted the 

set of drugs that have been withdrawn for known liver or cardiotoxicity 

reasons from DrugBank descriptions for withdrawn drugs and supplemented 

with information curated from: 

 https://en.wikipedia.org/wiki/List_of_withdrawn_drugs.  

These were compared to MAESTER predictions for all drugs of the same 

class that have not been previously annotated in SIDER for the given 

adverse event.  

Statistical Analyses 

We used area under the receiver operating characteristic (ROC) curve and 

10-fold cross validation to evaluate the predictive power of our approach. 

For the analysis of predictions for the FDA drug warning dataset, we tested 

for enrichment of predictions using the binomial test. We tested for 

differences in predictions in the FDA DILI dataset and between classes for 

the withdrawn drug datasets using the unpaired Student’s t-test.  
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