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The depth of our knowledge about the molecular genetics of glioblastoma (GBM)
stands in stark contrast with our ability to treat it successfully. This work reports
research aimed at developing combination therapies to effectively inhibit cell
growth in GBM tumorspheres. In our first study, our goal was to identify syner-
gistic pairs of drugs across three tumorsphere lines bearing genomic alterations
representative of the established signaling subclasses of GBM tumors - the NF1
deleted (represented by the tumorsphere line TS565), PGDFRA amplified (repre-
sented by the tumorsphere line TS543) and EGFR activated (represented by the
tumorsphere line TS676) types. Using 12 targeted drug pairs, we identified drug
combinations whose effects were cell-line specific and reduced cell viability com-
pared to the single drugs. We quantified synergy using two measures, the well
known Combination Index, as well as a measure we defined as the Efficacy Index
that is able to detect synergies in instances where the Combination Index defined
at 50% is unable to capture synergy. Predominant among the synergistic drug
combinations we report are the combination of MEK and AKT1/2 inhibition in
the line TS543, that of the drugs gefitinib (EGFRi) and AG538 (IGFRi) in line
TS565 and of gefitinib and stattic (STAT3i) in line TS676.

In a second study, we sought to extend our findings from combination therapies
to a clinically distinct, frequently observed subset of treatment resistant EGFR-
driven GBM tumors. To improve the efficacy of EGFR inhibition, we rationally se-

lected drugs that that may synergize with lapatinib based on the action of their



respective targets on key oncogenic pathways, and explored the optimal se-
quence and timing of administration. In TS676 tumorspheres, which have an
EGFR amplification, express the EGFRvIII mutantation and have low PTEN ex-
pression, the combination of lapatinib and obatoclax was synergistic when obato-
clax was applied before lapatinib. The observed synergy correlated positively
with time delays from 3h to 24h. We then studied this combination in two other
tumorsphere lines TS600, with an EGFR gain, and GBM39, which is EGFR ampli-
fied with the vIII mutation but PTEN intact. Sequential administration was only
mildly beneficial in TS600 and not beneficial in GBM39. A time-course protein
array experiment designed to illuminate the network aspects of the effects of
lapatinib and obatoclax in TS676 and TS600 revealed that the most effective se-
quential combination in TS676 was obatoclax preceding lapatinib by 12h. This
was associated with higher cleaved caspase-3 activation than the less effective
co-treatment with lapatinib and obatoclax. We applied network based modeling
methodologies to help test hypotheses that may explain the increased vulnerabil-

ity of TS676 to lapatinib upon pretreatment with obatoclax.

This study presents encouraging results demonstrating the role of drug combina-
tion timing and order on the observed effect and synergy of therapies aimed at
treating EGFR driven GBM tumorspheres. We show that BCL2 inhibition by
obatoclax offers a potent and promising means of increasing cellular sensitivity
to lapatinib. However, further work in other EGFR driven GBM models that have
lost PTEN expression is a desirable next step towards revealing the relationship

of sequential synergy to this well studied co-occurrence of genetic alterations.
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CHAPTER 1
INTRODUCTION

Among the most thoroughly profiled cancers to date, primary glioblastoma
(GBM) is a tumor of the brain that is characterized by heterogeneity, invasiveness
and a profound lack of response to targeted treatment. Studies that began in the
early 2000s by the work of groups including The Cancer Genome Atlas (TCGA)
revealed the existence of transcriptomally defined subtypes within GBM desig-
nated as proneural, mesenchymal, neural, and classical [1-3] and recurrent muta-
tions in the canonical signaling pathways that drive these tumors [4]. The GBM
research community has made useful predictive and therapeutic recommenda-
tions in small subsets of patients [5, 6] and the molecular drivers of resistance
are actively being studied in preclinical and clinical settings [7-10]. However, the
majority of efforts to therapeutically target recurrent mutations in GBM have
failed to show survival benefit in patients. Consequently, two broad questions
pertaining to GBM therapy have been why drugs that target these known altera-
tions have been ineffective, and whether there exist molecular markers that can

reliably predict patient response to treatment.

Lack of treatment response in GBM is the result of many interacting phenomena,
some of which we have begun to understand. For one, GBM’s location in the brain
makes it challenging for any systemically administered therapeutic to cross the
blood brain barrier (BBB). Efflux transporters located at the BBB can rapidly
quench the tissue of drug, and many agents that enter clinical trials actually bind

to these efflux transporters with high affinity [11, 12]. Consequently, there is of-



ten not enough drug in the tissue, and when there is, it can be shunted out

quickly.

In addition, the considerable inter- and intratumoral heterogeneity of GBM com-
bined with its low incidence complicates the discovery of drugs that could benefit
a large subset of patients [8, 9]. Thus, for example, while EGFR and PDGFR acti-
vation via amplification, and deletion mutations of NF1 and CDKNZ2A are each
fairly common in GBM, different patients, and even different portions of tumor
within a patient can manifest various combinations of these alterations, leading

to differences in treatment response within and across tumors [13].

Thus the development of strategies that can thwart resistance amidst complex
and heterogeneous signaling mechanisms is of prime importance. We ap-
proached this through a series of experiments aimed broadly at systematically
quantifying the responses of GBM tumorsphere lines to targeted treatment com-
binations. Tumorsphere lines are derived from primary tumors using the neuro-
sphere method, detailed later on in this thesis. They represent a relatively homo-
geneous and treatment resistant fraction of the original tumor that retains the

genetic mutations of the parent tumor. Our goals in this study were
1) To identify synergistic pairs of drugs in three tumorsphere lines bearing
genomic alterations representative of the signaling subclasses [4] of GBM

tumors
a. By determining the single drug dose response behavior of each
drug in all three tumorsphere lines

b. Evaluating the effect of combinations of equivalently inhibitory

concentrations of each drug pair on the tumorsphere lines to calcu-



late two measures of synergy for each combination, defined later in
this thesis

c. Nominating drug combinations for further study when they are
both efficacious and synergistic

d. Relating the observations of combinatorial behavior made to
known instances of drug interaction and prior biological

knowledge in the realm of GBM and other related solid tumors

Predominant among the synergistic drug combinations we reported are the com-
bination of MEK and AKT1/2 inhibition in TS543, a tumorsphere line that har-
bors a PDGFRA amplification, that of gefitinib (EGFRi) and AG538 (IGFRi) in
TS565, which is NF1 deleted and of gefitinib and stattic (STAT3i) in TS676, a line

bearing amplified EGFR as well as the EGFRvIII mutation.

Our second project sought to extend these results to a clinically defined subset of
patients with GBM. We selected EGFR activated GBM as the subtype of choice for
several reasons. Nearly 50% of GBM tumors harbor EGFR amplifications, and
many of these tumors also have the EGFRvIII mutation, which is a deletion vari-
ant of the extracellular domain of EGFR that is constitutively active. However, the
majority of patients do not benefit from receiving EGFR inhibitors in treatment.
Further, the uses of high concentrations of EGFR targeted drugs in pre-clinical
and in-vivo studies has revealed that the EGFR signaling network in this subset of
GBMs may be sensitive to inhibition in the presence of sufficiently high concen-
trations of the drug [7]. In practice, such high concentrations of drug can be chal-

lenging to reach because of factors such as the BBB. One way to address this is by



combining EGFR inhibitors with other drugs that synergistically enhance cellular

sensitivity to EGFR inhibition.

Another strategy for maximizing the observed synergy between two drugs is se-
quential administration [14-16]. Proteins change dynamically in time, both via
post-translational modifications that can confer them with contextual functionali-
ty, such as by the phosphorylation of a receptor tyrosine kinase (RTK) on ligand
binding, and via their signaling interactions with other functional proteins, often
in different locations such as the mitochondria and nucleus. Thus the phenotypic
consequences of inhibiting a protein are likely dependent on the predominant
state/s of that protein at the time the inhibition is applied. In our second project,
we treat the effect of dynamic protein variations on combination effects as an ex-
plicit variable, investigating the effectiveness of combinations delivered both

simultaneously and sequentially. Specifically, our goals here were
2) To discover drugs that would cooperatively enhance the response of se-
lected EGFR driven tumorsphere lines to treatment with lapatinib, a dual

inhibitor of EGFR and HERZ. This involved
a. Identifying optimal “second hits” - targets whose inhibition might
synergize with the effects of an EGFR inhibitor. Towards this, we
explored the response of TS676 (EGFR++*) to a series of 7 single
drug perturbations over time, using the data obtained to identify
significant responders to treatment and time periods during which
these responses were observed.

b. Comparing the effects of simultaneous delivery of each combina-
tion with sequential administration in both orders and with differ-

ent time delays, the selection of which was informed by our single



drug response data. This was performed using a resazurin cell via-
bility assay.

c. Validating the observed sequence dependent synergy of lapatinib
with the BCL2 inhibitor obatoclax using two additional phenotypic
assays selected for their ability to measure features of drug effect
that could not be measured using the Resazurin assay.

d. Extending the survey of this combination to other EGFR altered cell
lines towards determining the dependence of these observations
on (a) EGFR copy number and (b) the EGFRvIII mutation.

e. Quantifying the protein correlates of the observed synergies by an-
alyzing the levels of 46 proteins in two EGFR altered GBM tu-
morsphere lines subjected to sequential and simultaneous inhibi-

tion by lapatinib and obatoclax.

This thesis is organized as follows. The remainder of this chapter introduces the
background relevant to our work, going over the biology of GBM, therapeutic
strategies and relevant clinical trials, and the methods we use to address our
goals. The second and third chapters detail the rationale, protocols and results
that constitute the two projects I described above. Finally, an appendix details a

method for Reverse Phase Protein Array data normalization I developed[17].

Glioblastoma - the disease and molecular profiling

Glioblastoma (GBM) is the most frequent brain tumor and is almost always lethal.
The median survival of patients with GBM is about 15 months [18], and disease
progression is accompanied by cognitive decline, personality changes, and sei-

zures, making the short survival period extremely challenging. Several groups



and consortia have dedicated their efforts towards cataloging the genetic varia-
tions represented across large groups of GBM tumors [1, 19]. We now know that
GBMs cluster into a number of subtypes based on their mRNA expression pat-
terns [20], and that these subtypes also show other aberrations that correspond
with the known subtypes, such as the amplification of specific Receptor Tyrosine
Kinases and mutations leading to the expression of such malfunctioning variants
as EGFRvIII, PDGFRA8-9 and the NF1 deletion [21] [22]. In this section, we will go
over the results of these studies and what we have learned from them about the
pathophysiology of GBM. We will then discuss preclinical studies and clinical tri-

als that have attempted to translate these findings to improvements in treatment.

In 2006, glioblastoma became the first tumor type to be studied exhaustively in a
pilot study by The Cancer Genome Atlas, an initiative launched by the National
Cancer Institute (NCI) and the National Human Genome Research Institute
(NHGRI). The study integrated results from platforms present in 18 participating
institutions, and included DNA sequencing, array CGH and mRNA expression data
to identify mutations, copy number changes and transcript levels respectively [1].
The focus in this study was to identify novel and recurrent genetic alterations in
untreated GBM tumors. The principal findings of this study were the identifica-
tion of a small set of genes that showed recurrent mutations - TP53 (42%), PTEN
(33%), NF1 (21%), EGFR (18%), RB1 (11%) and PI3K subunits (17%) [23]. Fre-
quent amplifications of PDGFRA, EGFR and MET were also identified, and it was

shown that they are largely mutually exclusive with one another.

Subsequent work on GBM by the TCGA led to the identification of transcriptional-

ly defined subclasses - the Proneural, Classical, Neural and Mesenchymal sub-



types - based on the presence of signature genes within each class belonging to
distinct developmental lineages of cells. While different transcriptomal signa-
tures have been derived across different studies depending on the data and tech-
nique used, some strong and consistent observations emerged from these stud-
ies. For example, the Proneural subclass was associated with PDGFRA amplifica-
tions and TP53 and IDH1 mutations. 95% of the Classical samples showed EGFR
amplifications and 95% showed a homozygous deletion of the Ink4a/Arf locus.
Similarly, the Mesenchymal subtype showed high expression of CHI3L1 and MET,
and a high frequency of NF1 mutations. The differences between the subtypes
also had consequences for response to standard treatment regimens. Aggressive
treatment most favorably affected survival in the Classical subtype but made no

difference to the Proneural subtype [3].

Several questions arose naturally as a consequence. Could the differences be-
tween the subtypes be used to tailor therapies that targeted mutations specific to
a subtype? Is there a single alteration or set of alterations that varies consistently
across patients in a tumor-subclass dependent manner - a biomarker or signa-
ture that can be measured in patient material to assist the diagnosis and subse-

quent treatment of a patient's disease specific to subclass?

Molecularly targeted treatment of GBM

Partly because GBM was the first comprehensive project initiated by the TCGA, it
is among the most thoroughly profiled cancers today. Careful studies of the re-
sults of the subtyping studies suggest that specific subclasses of patients (the
IDH1 mutant and H3F3A mutant K27 subclass) have better survival and benefit

less from aggressive chemotherapy [3, 22]. These patients comprise a very small



fraction of patients with GBM. Despite extensive study, therapeutic advances in
GBM have lagged behind those in other cancers such as breast, lung and colon
cancer [24]. What has hindered the translation of the findings from molecular

studies into effective therapies?

Two broad classes of mechanisms contribute to resistance to therapy. The first is
signaling network robustness, wherein proteins and genes that interact with the
mechanism being inhibited are able to adaptively counterbalance the effect of in-
hibition. Similar mechanisms of signaling robustness have been known to operate
across different types of cancer. One type of robustness is when a target is innate-
ly resistant to treatment because of modifications such as steric hindrance to in-
hibitor binding [25], alteration of ATP affinity [26] or altered active site structure
[27, 28]. In the context of GBM, such mechanisms could be involved in the pro-
cesses that maintain the activity of downstream markers of pathway activity even

when a targeted protein such as EGFR is successfully inhibited [10].

Alternatively, extrinsic resistance results from the recruitment of signaling pro-
teins removed from the target, such as by alternative RTKs that may be transcrip-
tionally activated upon targeting a mutated RTK [29] or by the relief of feedback
inhibition imposed by a protein downstream of the targeted drug [30]. An exam-
ple of extrinsic resistance is encountered in BRAF-V600E melanoma, where tu-
mors that are initially exquisitely sensitive to MEK inhibition [31] eventually ac-
quire resistance by the by-pass mediated activation of ERK, requiring ERK inhibi-
tors to maintain tumor suppression [32]. A similar mechanism of resistance is
observed in colorectal cancer bearing BRAF V600E, with the difference being that

these tumors are intrinsically resistant to the inhibition of the BRAF mutant via



rapid feedback mediated activation of EGFR. Tumors can also undergo clonal evo-
lution over the course of treatment to develop treatment resistant subclones with

newly acquired driver mutations [33].

The second class is comprised of pharmacological factors, such as the affinity of
drug-target binding being altered by mutations or the inability of sufficient drug
to reach the tumor site because of the blood brain barrier [7, 34]. Table 1 briefly

summarizes the results of some clinical trials of targeted agents for GBM.

Combination therapy as a strategy for overcoming drug resistance

One strategy for overcoming resistance to various inhibitors is the use of combi-
nations of inhibitors that together, may lead to long-term remission. Studies of
multiple drug effects in vivo, accompanied by efforts to understand the mecha-
nisms of these drugs began in the early 1950s. An early advocate of combinatorial

regimens, Howard Skipper wrote in 1954 [37]:

It is apparent that rather detailed knowledge of a series of biochemical events (as
well as alternative pathways) must be at hand before rational attempts at sequen-
tial blocking or concurrent blocking can be undertaken. Once adequate biochemical

knowledge is at hand the second requirement is the existence of proper antagonists.



Table 1. Targeted therapy agents alone (adapted from Olson et al, 2014 [35])

DRUG TARGET AUTHOR (YEAR) Outcome
Bevacizumab VEGFR Burkhardt (2012) Median PFS 10mo
Cilengitide a-Integrin Gilbert (2012) Median PFS 8
weeks (terminat-
ed; slow accrual)
Vorinostat HDAC Friday (2012) Median OS 3.2mo
TLN-4601 RAS-MAPK Mason (2012) Median OS 5mo
Trabedersen TGFB2 Bogdahn (2011) Median OS 10.9mo
Rilotomumab HGF/SF Wen (2011) Median PFS 4.1wk
Romidepsin HDAC Iwamoto (2011) Median PFS 8wk
Aflibercept VEGFR de Groot (2011) Median PFS 12wk
COL-3 MMP Rudek (2011) No response
Perillyl Alcohol RAS da Fonseca (2011) [36] | Median OS 5.9mo
Erlotinib EGFR Raizer (2010) Median PFS 2mo
Pazopanib Multiple RTKs Iwamoto (2010) Median PFS 12wk
Cintredekin IL13 Kunwar (2010) Median  survival
Besudotox 36.4wk
Bevacizumab VEGFR Chamberlain (2010) Median  survival
8.5mo
Vorinostat HDAC Galanis (2009) Median OS 5.7mo

Among the first studies of its kind to address the complexity of biological net-

works and its consequences for therapy, this study took place decades before the

human genome was sequenced. Sequential blocking referred to the inhibition of a

10




series of enzymatic reactions that took place in serial order, in relative temporal
proximity of each other, towards the activation or generation of a single product.
On the other hand, concurrent blocking meant inhibiting two enzymes that acti-

vated or generated a product by two different pathways.

| . | _ _ (Sequential
A : > B : >C >D Blocking)
Block | Block II
A—rT—>B >C
Block | \ (Concurrent
, D Blocking)
|
A >B »C~ ' Block Il

CHART 1. - DUAL BLOCKS PROVIDING SYNERGISTIC ACTIVITY
Reproduced exactly from H Skipper et al, Cancer Research 14(7), 1954

Figure 1. H. Skipper’s representation of sequential and concurrent path-
way blocking by drugs

In the years since this study, combination treatments have become extremely
common in cancer therapy [38-41]. We have also learned much about the genetic
drivers of cancer, and understanding the functional consequences of various mu-
tations has allowed us to design therapies that target very specific alterations in
cancer [42-44]. Yet, the benefit of combination chemo- and targeted therapies has
largely remained restricted to a few cancers, and the acquisition of resistance is

routine, even when drug combinations are used.
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One promising approach for the study of disease networks is perturbation, often
used in conjunction with data-intensive protein, metabolite and genomics

platforms.

Perturbation to explore network dynamics in complex systems

Perturbation is an extremely powerful method for establishing relationships be-
tween the variables in a system of interacting elements. A perturbation applied to
a gene or protein node in a cellular network can be used to model the effects of
that node on its downstream effectors [45]. Genetic perturbation techniques such
as the knockout and knockdown of genes are frequently used in molecular biolo-
gy to assess the effects of individual genes on a network. While these methods are
slow and laborious, more recent techniques such as high-throughput siRNA
screens and CRISPR-Cas9 have revolutionized experimental biology, enabling the

rapid and quantitative modeling of genetic events [46].

Another type of perturbation that can yield different types of information about
cellular systems is the use of small molecules. Small molecules may be used to
dynamically stimulate or inhibit selected nodes in a protein network and differ

from genetic methods of perturbation in the following ways:

1) The concentration and method of delivery (impulse versus sustained) may
be modulated to yield different degrees of inhibition or stimulation of a
node.

2) Small molecules and antibodies may be engineered to bind to and affect
specific sites in a protein, enabling the selective study of different aspects

of that protein’s function.

12



The phenotypic effect of perturbants on a network may also be of clinical interest.
In fact, many perturbation studies are conducted to help model and understand
disease physiology [47-50]. While single drug perturbation can be a very useful
means of studying individual nodes in a network and the degree to which they
affect cellular phenotype, most networks have evolved redundancy and robust-
ness through feedback and cross-talk that limit their responsiveness to single
perturbations. The use of multiple perturbations in this context may allow the
inference of complex interactions between the nodes in a biological network [51,
52]. Using combinations of inhibitors also increases the amount of data that biol-
ogists are able to train inference algorithms with, increasing the descriptive and

predictive power of the resulting models.

Tumorspheres as a model for GBM
One of the challenges of preclinical studies in GBM has been the identification of
good models of the disease. GBM is characterized by heterogeneity and aspects of
oncogenicity are maintained by interactions between cells bearing different mu-
tations or levels of expression of certain proteins [13]. Inasmuch as the ability of
a model to answer questions is limited by how closely it approximates the system
under study, highly immortalized cell lines that have been established from hu-
man and mouse gliomas such as U-87 and U-251 differ from human GBM in the
following ways:

1) Genetic drift with passaging leads to their losing many of the alterations

observed in patient tumors [53]
2) Immortalization can lead to the acquisition of genetic changes not present

in tumor [54, 55]
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One hypothesis explaining the presence and maintenance of heterogeneity in
GBM is the Cancer Stem Cell (CSC) hypothesis, according to which only a small
subpopulation of cells in a tumor retains the ability to self-renew, differentiate
and regenerate a tumor when transported to a favorable new environment. CSCs
grow more slowly than the tumor bulk and often reside in the perivascular niche
near the tumor periphery [56]. As a result, they are more resistant than the tu-
mor bulk to chemotherapeutic agents that target mitotically active cells and to

removal via surgery.

CSCs can be isolated using a protocol known as the neurosphere method [57, 58],
which involves the repeated passaging of tumor derived cells in medium contain-
ing EGF and FGF but no serum, which selects for the undifferentiated component
of the original population. CSCs in culture grow as spheroids also known as tu-
morspheres and are known to retain the alterations present in their parent tu-
mors better than adherent differentiated cell lines [59, 60]. Once transplanted in
vivo, they give rise to heterogeneity reminiscent of the parent tumor, enabling
their use in both in vitro and in vivo contexts. This makes them good models with

which to study drug resistance.

One disadvantage of using spheroid cell lines, like tumorsphere lines, is that cells
may access different amounts of perturbants and nutrients depending on their
depth within a neurosphere. This can introduce noise into the results that can
make the interpretation of the results of subtle perturbations especially challeng-
ing. Pollard et al. devised a way to overcome this by growing GBM-derived tu-

morsphere lines on an ECM-associated substrate such as laminin [61]. When the-
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se cells are grown in serum free medium, over a coating of laminin, they retain
their stem-like characteristics and grow as adherent monolayers, making many

experimental procedures less noisy and more convenient.

Phenotypic assays

Resazurin assay

The resazurin assay is a phenotypic assay used to provide a quantitative measure
of the degree of aerobic respiration in a population of cells. This quantity may be
used as a proxy for cell viability. It has been used to quantify bacterial content in
foods and ecosystems [62, 63], and is routinely used in biomedical research to
quantify the effects of various environmental stimuli and treatments [64]. Resaz-
urin is a blue, weakly fluorescent compound, which when oxidized by active mi-

tochondrial enzymes, fluoresces as the strongly red resosurfin.

We used resazurin to assess the effect of various drugs and drug combinations on
cellular viability. In the most frequently used format, cells seeded in 96-well
plates were subjected to various targeted drugs. Cellular activity was assessed
after 3 days of treatment. Cell viability in response to drug treatment was quanti-
fied as cellular activity in the sample compared to the activity of the untreated
control samples. For dose response measurements, a least-squares fit of the dose
response data to sigmoidal response curves was performed using GraphPad
PRISM version 6 for Mac and EC-50 values were obtained by interpolating the
drug concentration corresponding to 50% viability compared to control. In other
comparisons such as that of various combination treatments against each other,
each condition was compared with the same untreated control. In all cases, the

readings were background subtracted against a blank containing only growth
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medium and resazurin reagent.

Reverse Phase Protein Arrays

Reverse phase protein arrays (RPPA) are a sensitive, sample-sparing immunolog-
ical assay for the relative quantification of protein levels in a large number of
samples. We used two types of RPPA technology for the experiments in this the-

sis.

The first method, referred to generically as protein lysate arrays, allows the sim-
ultaneous measurement of proteins in ~1000 samples across nearly 200 antibod-
ies. The method was made available to us through a collaboration with the lab of
Dr. Gordon Mills at the M.D. Anderson Cancer center. Proteins from lysed cells are
spotted onto the surface of a nitrocellulose coated glass slide, which is then treat-
ed with primary antibody and a biotinylated secondary antibody. The primary
antibody binds to sample spots in proportion with the amount of the protein of
interest per spot. Each slide is washed gently with a biotinylated secondary anti-
body containing a recognition site for a Streptavadin-HRP (horseradish peroxi-
dase) conjugate enzyme. This catalyzes a colorimetric reaction and generates a

colored signal that can be converted to an intensity by imaging.

The detection system used ensures high sensitivity, and hence the protein from
as few as 3 cell equivalents per spot can be detected by antibody. However, the
dynamic range of the assay is inherently lower than that of methods like ELISA.
To work around this limitation, each sample to be analyzed is spotted as a series
of 5 dilutions. Further, RPPA technologies that utilize a colorimetric signal can
have greater background than fluorescent RPPA. The quality of the data obtained

are also limited by the quality of the image detection system used (in many cases

16



a tabletop scanner) and the uniformity with which the liquid handling systems in
use expose different parts of each slide to the reagents utilized. Many methods
exist for normalizing and improving the quality of data obtained via RPPA. We
developed one such method to reduce the spatial variability introduced across
the samples printed on a single slide and reported this method recently. Details
of the method along with instructions for use are provided as an appendix at the

end of this thesis.

The second method, which is lower in throughput but has higher sensitivity and
accuracy is called the Zeptosens (Bayer AG) protein array platform. In this meth-
od, 100-400pg of protein lysate is spotted onto the surface of glass chips in four
dilutions. The method uses planar waveguide technology [65] to reduce the scat-
tering of light leading to reduced background signal and greater sensitivity. We
performed these experiments in-house, using a robotic arrayer and chip reader

provided by the manufacturers.

RPPA has been successfully used in clinical diagnostics and biomarker identifica-
tion [66-69], and in projects similar to ours, for the identification of accurate mo-
lecular drug targets, as well as the examination of protein network theoretical

models [70-72].

ViCell assay

The ViCell Cell Viability analyzer uses microscopy to detect the number of cells in
a sample, and in conjunction with the trypan blue dye, allows for the accurate de-

tection of the number of living and dead cells in a sample provided to the ma-
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chine. Samples with the cells of interest are diluted in medium containing trypan
blue, a dye that penetrates dead cells but is unable to enter living cells. The ma-
chine is able to analyze 10 samples at a time, and can count as few as 2E4 cells at
a time, in 0.5ml of medium. This makes it best suited to measuring cells grown in

large flasks or petridishes, or to multiwell plates of up to 24 wells.

Incucyte Cell Growth

The Incucyte ZOOM™ live cell imager (Essen Biosciences, USA) is a robotic micro-
scope that can be housed within an incubator, enabling the continuous imaging of
live cells grown in various formats including 96-well plates. The microscope is
capable of capturing bright field as well as fluorescent images. In our application,
we use bright field measurement to quantify the percentage of each image cap-
tured that is occupied by cells. Measuring the change in this quantity over time
gives us a measure of the growth rate of the cells. Several groups have used this
technology to quantify the responses of glioma and other cancer cell lines to per-

turbations [61, 73].
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CHAPTER 2
CHARACTERIZING PHENOTYPIC RESPONSES TO TARGETED
THERAPY IN GENETICALLY DISTINCT GBM TUMORSPHERE
LINES

Introduction

The majority of targeted drugs used in clinical trials in GBM have shown little to
no benefit on patient survival. One of the main reasons for this is the considerable
inter- and intra-tumoral heterogeneity characteristic of the disease. Stratified
clinical trials in subsets of patients genetically determined to be more likely to
respond to a particular treatment are desirable but hard to conduct in practice
because of the low total incidence of GBM and hence of each observed subset
[74]. Additionally, retrospective analyses that attempt to correlate patients’ cata-
logued alterations with their treatment response have not lead to consistent ob-
servations, indicating that there may be variability between patients carrying
certain known driver mutations [75, 76]. In this context, the use of targeted
combinations of drugs against representative GBM cell lines could be a useful
strategy with which to identify effective treatments. The use of cell lines enables
a large number of drug treatments to be tested simultaneously, in replicate, po-

tentially increasing the efficiency and statistical significance of the results.

We investigated the effects of twelve targeted drugs and their combinations on
three GBM tumorsphere lines displaying the hallmark alterations observed in
each of the EGFR, PDGFR and NF1 signaling subtypes as defined by Brennan, C.
and others [4]. Our goals were to identify drugs or drug combinations that would

differentially inhibit specific cell lines, and to nominate successful drug combina-
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tions for further study via computational analyses, to expedite the path to animal

models and trials that might lead to their translation to clinical use.

Experimental design and methods

Resazurin assay

We used the resazurin assay, described in chapter 1, to evaluate the response of
each cell line to the 12 selected drugs and their combinations in a 96-well plate
format. Cell seeding densities and the duration of the experiment were optimized

so that the signal obtained would lie in the linear range of the assay (fig 2, below)

Linear correlation between cell number and OD5g, using resazurin dye

1500+
—e— TS543 (slope = 0.018) *
1000 TS676 (slope = 0.011) *
c —+=— TS565 (slope = 0.04) *
B 500-
a 500
(@]
0 ) ] L L]
2.0x1004 4.0x10%4 6.0x1094 8.0x1004
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Figure 2. Linearity of resazurin assay within the range of cell numbers used in our drug

treatment experiments

Tumorsphere model system

For our experiments, we used three tumorsphere lines derived from primary
GBMs obtained in surgery by Dr. Brennan. The tumor material obtained was sub-

jected to the progenitor cell selection using the methods previously described.
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Array comparative genomic hybridization of the lines in early passages was used
to determine the status of their driver copy number alterations such as EGFR,
PDGFR, MET and MDM2 /4. The copy number profiles of the tumorsphere lines
used in this project are listed in table 3, along with representative images of the

lines in their early passages.

Early passages of the lines were expanded into four passages without discarding
any cells. The population that resulted was aliquoted into ~40 stock vials each
that were cryogenically preserved for use in the remainder of this work. Analysis
of the cells grown from these vials using SNP arrays in their 5%, 10th and 15t pas-
sages revealed that they continued to retain the driver alterations. In subsequent
experiments, cells were only passaged 10 times after the thawing of a stock vial,

after which the cells were discarded and a new vial used.

Single drug IC-50 evaluation

We first determined the concentrations of single drugs that could inhibit cell via-
bility in the three cell lines. Our goal here was twofold. First, the nature of the
dose response curve is instructive about the sensitivity of the cell line to the inhi-
bition of that target. Further, we used the single drug dose response curves ob-
tained to evaluate IC-50 (or IC-X% values where appropriate, for example when
50% inhibition was not reached) for comparison with the equivalent IC value for
the combination. This enabled an evaluation of the synergy, additivity or antago-

nism of combinations. Methods for the evaluation of these are discussed in the
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Table 2. Comparison of the three glioblastoma derived tumorsphere lines use din the study of drug combination

responses.
TS565 TS676 TS543

Grow in suspension Grow in suspension

e e Form small spheres that can adhere to the plate Form bigger spheres

3-5 days after thawing
Optical microscopy (100x)

Doubling time ~2 days ~1.9 days ~1.7 days
~[CDKN2A,CDKN2C], with two NF1 mutations ++[EGFR*,MDM4], +[MET,CDK6], - "
Genomic Alterations (c2195G>T, c470G>T) &) [PTPRD,PTEN], ~COKN2A® ++[PDGFRA,CDK4], +[EGFR,MET,CDK6], ~PTEN
aCGH profile 15-20
passages after thawing

{using 44k Aglent arays)

Subtype assignment

Mesenchymal
NF1 subtype

Classical
EGFR subtype




next section. Cells seeded in 96-well plates were subjected to different concentra-
tions of various targeted drugs. Cellular activity was assessed after 3 days of
treatment. Cell viability in response to drug treatment was quantified as cellular
activity in the sample compared to the activity of the untreated control samples.
A least-squares fit of the dose response data to sigmoidal response curves was
performed using PRISM software. IC-50 values were obtained by interpolating
the drug concentration corresponding to 50% viability (w.r.t control). The results

obtained are summarized in table 2.
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Table 3. Comparison of the effects of various targeted single drugs on cell viability and protein activity in three glioblastoma

tumorsphere lines.

Gefitinib EGFR 17.28,13.1 3.2 No substantial pP70S6K, pP70S6K & No effect 0.37
inhibition pERK pERK rise with
GF up to 10uM
AGS53 IGF1R No significant effect on cellular activity observed | pAKT No effect 0.2 0.2
PDGF PDGFR 41 3 No effect pP70S6K 0.33 0.18 0.25
PD90 MEK1/2 No effect 35% inhibition | No effect pERK No effect 25x10* No effect
at 100nM
Su11 MET 6.18, 5.16 6.3 6.13 pP70S6K 3 3 TBD
RO45 PKC 34 5.5 29 pP70S6K No effect 1.25 2.4
SRCi SRC No effect 146 45 pAKT 44x10* 20x10* 15x10°
AKT-VIII AKT1/2 1.6 20% inhibition | 8.5 pAKT 0.2 No change in 0.4
at 15uM pAKT
ISTK4 PI3K 0.46,0.31 No effect 0.393 pAKT 14x10° No changein 60x10°
pAKT
Stattic STAT3 4.22 No effect 2.66 pSTAT3 No effect No effect No effect
Ryuvidine CDK4/6 15 1.26 08 pRB 1.5x10? 3x10* 1.5
Temsirolimus | mTORC1 0.07, 0.055 0.022 30% inhibition | pP70S6K 0.55x10° 0.4x10? 0.5x10?
at 7.5nM
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Combination effect determination

To evaluate the effects of drug combinations on the cell lines, we subjected them
to combinations of equivalently inhibitory concentrations of each drug obtained
using the single drug dose response in each cell line. In some cases the single
drugs did not reach equivalently inhibitory concentrations over the range of con-
centrations applied - this usually happened when one drug was very effective
and was able to reduce cellular activity to near zero values compared with the
untreated controls, whereas the other drug tested was relatively ineffective. In
these cases, we still tested these combinations. However, our selection of the
range of concentrations to apply in these cases were influenced by the literature,
and we selected eight 1:2 or 1:3 serial dilutions centered around the literature

derived IC-50 for these drugs.

Cells were seeded in 96 well plates and treated simultaneously with 8 combina-
tions of the drugs in a 1:1 inhibitory concentration ratio. Cellular activity was as-
sessed 3 days after treatment and the data obtained were fitted to sigmoidal dose

response curves as in the single drug treatments.

Evaluation of drug combination effects

We observed that when drugs are combined, observed non-additive effects mani-
fest either as changes in the effective dose required to cause a particular fraction-
al change in cell viability, or as changes in the effective killing at particular doses
applied. To identify cases of synergy and antagonism arising from both of these,
we use two measures - the Combination Index (CI) [77] and the Efficacy Index -

to quantify each drug combination.

25



The combination index (CI), uses Loewe Additivity [78] as its null model.

[Aly —xe [Blg ,—x«
CJ = Fy ag=X% + Fy a5=X%
[A]FHVA:X% [B]FHVB:X%

Here F,c indicates the fraction of cells affected by a condition c. Hence [A] P
indicates the concentration of A at which X% of the cells are affected under condi-
tion AB, i.e. when the drugs are combined. Each term in the sum is hence a ratio
of the dose of a drug required to cause an effect X when in combination with an-
other drug to the corresponding dose required when it is acting alone. The com-
bination index of an additive combination evaluates to 1. Synergistic combina-
tions have CI<1 and antagonistic combinations have CI>1. In the case where each
individual drug has no effect, the denominators of the equation become extreme-
ly large and CI becomes 0, its lower limit. The CI of antagonistic combinations is
positive but theoretically uncapped. The CI evaluated for a particular drug com-
bination depends on the percentage X chosen at which to compare the effects of
the single drugs with the combination. We follow convention and set X = 50%.
When we do this, we observe that in some instances, it is not possible to evaluate
CI, because even though the combination is effective at inhibiting cells, neither
individual drug reduces cell viability by 50% or more. In such instances, we eval-
uate the effectiveness of a drug combination based on the change in cell viability
that results from combining two drugs as compared to that caused by each drug

alone.

We term this the efficacy index, EI, the ratio of the sum of the maximum observed
fractions of cells affected by individual drugs to that observed when they are

added to each other.

E] — F;l,A + F:l,B
F

a,AB
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The efficacy index is only meaningful in those cases where the individual drugs
reduce cellular activity by 50% or less. If the numerator exceeds 1, then an evalu-
ation of the effect of the combination is impossible. In such cases, however, Cl is
sufficiently indicative of the degree of non-additivity. Within the allowed ranges
for Fa however, EI behaves in the same way as CI for synergistic and antagonistic
combinations, with EI=1 implying additivity, EI<1 implying synergy and EI>1 an-

tagonism. The results of these evaluations are summarized in Figure 3.

Results

Combinatorial therapy reveals tumorsphere-line dependent synergies

We used the Loewe additivity criteria discussed earlier to evaluate combination
indices, defined at 50% inhibition for all drug combinations. The combination in-
dices obtained are demonstrated in the heatmaps below, colored in a blue-red
scale mapping from synergy to antagonism. In cases where neither drug when
used alone was able to inhibit cell viability by 50% or more, we evaluated the
efficacy synergy instead. This enabled the identification of synergies such as that
of gefitinib and SRCi in TS676, whose CI defined at 20% inhibition is evaluable
but not high. However, as the combination has a much sharper effect on cell via-
bility than do either of the component drugs alone, the efficacy synergy evaluates

to < 1, revealing the synergy.
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The strategy of using an efficacy index in addition to a combination index evalu
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Figure 3. Heat map of combination and efficacy indices calculated in a 12
drug pair study

ated at 50% or greater inhibition is also relevant in the context of therapeutic use
because some drug combinations can appear highly synergistic if their Cl is eval-

uated at lower effect levels despite low efficacy.
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Other notable synergies observed were that of

(a) EGFRI (gefitinib) and STAT3i (stattic) in TS676. Subsequent studies have doc-
umented this synergy, not only in glioma [79] but also in ovarian and head and
neck cancer [80, 81], indicating the broad therapeutic potential of the combina-
tion. In cases such as this combination, where one of the component drugs effec-
tively reduced cellular activity by 50% or greater (in this case, STAT3), whereas
the other reached a steady state above 50%, a combination index was evaluated
by assigning an arbitrary extremely high value to the single drug IC-50 of this
drug (in our case 1E64uM). This procedure also enabled the detection of these

synergies that might otherwise have remained undetected.

Combination of Gefitinib and

Combination of Gefitinib with Stattic . ‘e *
150+ in TS676 (EGFR++%) Calbiochem SRCi in TS676 (EGFR++*)

50m
,_I_ /_i—l
> 100+ .
£ K.l N
©
< -o- EGFRI
°\c 50+ = B EGFR
STAT3i I % SRCiI
=+- Combination ‘I =+ Combination
0-
0.1 1 10 100 7 T 0
[GF] uM [GF] uM

Figure 4. Dose response curve of the combinations of gefitinib with static
(STATS3i) and gefitinib with PP1 (SRCi) in TS676

(b) MEKi (PD0325901) and PI3Ki (ZSTK474) in TS565, the NF1 deleted line.
This synergy has also been observed in treatment resistant pancreatic cancer cell
lines [82], colorectal cancer cell lines [83] and NRAS mutant melanoma cell lines

and in vivo [84]. It has also been effective in vivo in models of castration resistant
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prostate cancer [85], and malignant plural mesothelioma [86]. This drug combi-

nation was not synergistic in either of the other two lines.

TS543 (PDGFRA++) TS565 (NF1 del) TS676 (EGFR++)
1004 lﬁ\.\‘ 100 1001 .
- I\.\i\i-a—l—w
. " [ ]
504 = MEKi 50 50— MEKi

PI3Ki | = MEKi

% Activity

PI3Ki

-e- Combination PI3Ki
-e- Combination —o- Combination
04 o4 o
0.001 0.01 0.1 1 000 0.01 003 013 050 0.00 0.00 0.00 0.01 0.02 0.03 0.06 0.13 0.25
[MEKi] M [MEKi] uM [MEKi] uM

The combination of ZSTK474 with PD0325901 was synergistic in the NF1 deleted TS565 but
additive in EGFR amplified TS676 and PDGFR amplified TS543.

Figure 5. Differences between the effects of dual PI3K and MEK inhibition
across the three tumorsphere lines

In fact, all three lines displayed relative insensitivity to gefitinib and the MEK in-
hibitor when used alone, with gefitinib displaying a biphasic dose response rela-
tionship and potentiating cell viability at low concentrations. This behavior of

certain pharmacological agents, hormesis, is well documented in human cancer

cell lines [87].
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CHAPTER 3
SEQUENTIAL TREATMENT OF EGFR ACTIVATED
GLIOBLASTOMA CELL LINES

Introduction

Nearly 50% of GBMs have amplifications of the Epidermal Growth Factor Recep-
tor (EGFR) that frequently co-occurs with mutations of EGFR [88, 89]. The most
common of these mutations is EGFRvIII, a deletion mutant of exons 2-7 in the ex-
tracellular domain of the protein [88]. While the mutation renders the receptor
incapable of binding to ligand, the variant displays low-grade constitutive activi-
ty. The mutation also reduces the rate at which the receptor is internalized [90],
increasing its surface signaling to downstream receptors. Consequently, these
GBM tumors display a pathophysiology that is characterized by overactive and

aberrant EGFR signaling, inhibiting which could be a potent therapeutic strategy.

In reality, attempts to inhibit EGFR biochemically have shown little to no benefit
on survival in clinical trials of GBM [7, 91]. Several groups have attempted to un-
derstand the reasons for this and identify biomarkers of response. The early dis-
covery of PTEN activity as a marker of response to EGFR inhibition [6] was
among the first to implicate bypass mechanisms in the acquisition of resistance,
but reproducing these findings in subsequent work has been challenging [92, 93].
Since then, many other groups have investigated the mechanisms of resistance to
EGFR inhibition in GBM [94-96] but the findings remain to be translated

clinically.
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One approach for tackling resistance or lack of response to EGFR inhibitors in
GBM has been to learn from other cancers with similar drivers. EGFR is critically
important to oncogenic signaling in tumors such as lung adenocarcinoma and
colorectal cancer, and the use of EGFR-targeted small molecules and antibodies
has been relatively successful in these cancers [97-99], improving survival by up
to a year even though acquired resistance eventually emerges. On the other hand,
EGFR inhibitors in GBM have shown little survival benefit in the clinical setting.
What are the differences between these two types of EGFR driven cancers and

how do they impact how we address treatment resistance in GBM?

The majority of EGFR mutations observed in lung cancer occur in the intracellu-
lar kinase domain of the receptor, relieving the receptors of the autoinhibition
that normally limits activity subsequent to receptor dimerization and causing up
to 50-fold increases in activity [100]. Reversible small molecule inhibitors such as
Gefinitib and Erlotinib bind to the ATP binding domain of this receptor, thus in-

hibiting autophosphorylation and downstream signaling [101, 102].

On the other hand, EGFR mutations in GBM occur most frequently in the extracel-
lular domain, in the form of the deletion variant EGFRvIII. This mutation often co-
occurs with EGFR amplification, resulting in high levels of both EGFR WT and EG-
FRvII], and the two have been hypothesized to potentiate each other, resulting in
the activation of downstream signaling pathways. Thus, utilizing inhibitors that
are able to successfully reduce activity of the EGFRVIII variant could improve re-

sponse in this subset of patients [7].
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Another obstacle to the adequate inhibition of EGFR in GBM is the presence of the
blood brain barrier, which may prevent sufficiently high concentrations of inhibi-
tor from reaching the brain. In a study by Hegi et al., patients who had been treat-
ed with the EGFR inhibitor gefitinib preoperatively had their tumors examined
for the drug after its removal by surgery [10]. The concentration of drug ob-
served (4.1pg/g) while higher than that in plasma, was well below the concentra-
tion required to adequately inhibit EGFR phosphorylation in vitro, in representa-

tive cell lines [13].

Finally, one class of resistance mechanisms arises from signaling pathway ro-
bustness. These occur as a consequence of network features such as redundancy,
feedback control and cross-talk between proteins that evolved as a consequence
of their granting resilience to organisms in the face of environmental insults, but
that are co-opted by the evolutionary processes leading to cancer. One way to
disrupt these sorts of interactions is the use of drug combinations that alter the
protein activities contributing to a phenotype. In this context, it has been shown
taking the time at which each target is inhibited into explicit consideration can be
a useful strategy. Protein interactions are dynamic in nature and robustness is
often the result of compensatory processes that evolve over time in response to
perturbations [103]. Thus the sequential treatment of cancer with drug combina-

tions has been more effective than co-treatment in several tumors [14, 15, 104]

A therapeutic strategy is more likely to be effective if tailored to the constellation
of resistance mechanisms unique to EGFR activated GBM. One such approach is
the use of a second drug in combination with an EGFR inhibitor known to bind

effectively to both WT and vIII forms of EGFR. An appropriately selected drug
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could act synergistically with the EGFR inhibitor, lowering the amount of either
drug required to levels that are achievable within GBM tumors. Successful com-
binations in this context would also likely disrupt the protein interactions medi-

ating signaling robustness, as discussed earlier.
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Figure 6. Graphical representation of the experimental design of sequen-
tial synergy experiments

Several groups have investigated the potential therapeutic benefits of combining
EGFR inhibitors with other targeted and chemotherapeutic drugs. One such ef-
fort, in cell lines and a xenograft model from triple negative breast cancer,
showed not only that the effects of EGFR inhibitors such as gefitinib, erlotinib and
lapatinib could be improved bycombining them with the DNA alkylating doxoru-
bicin, but that the order and time of drug application affected the observed syn-

ergy. Pretreatment with erlotinib enhanced the effects of the chemotherapeutic
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drug in TNBC cell lines whereas the reverse order reduced the combination’s ef-
fect. Similarly, in two large studies performed in breast cancer, glioblastoma and
medulloblastoma cell lines, pretreating these lines with obatoclax enhanced the
effects of the EGFR and HERZ2 inhibitor lapatinib in PTEN deficient cell lines. This
work convincingly demonstrated the inhibition of processes downstream of the
targets of each drug. However, the interaction of their effects towards the effects

observed remains to be understood.

Using high throughput phenotypic screening of an EGFR amplified and EGFRVIII
bearing tumorsphere line to combinations of drugs that include lapatinib, we
showed that lapatinib was synergistic in combination with obatoclax and RO-31-
7549 and that these drug combinations were effective at inhibiting cell viability.
The observed efficacy of drug combinations is dependent not only on the se-
quence of drug administration but also on the time between drug perturbations.
Further exploration of the combination of lapatinib and obatoclax in other EGFR
altered cell lines (TS600 with a single EGFR gain and GBM39 with EGFRvIII and
amplification) showed that while the drug combination remained effective and
synergistic in all cell lines, its dependence on sequence and time delay was cell-
line specific. We performed a protein array experiment that measured the re-
sponses of 60 proteins and phosphoproteins to lapatinib and obatoclax adminis-
tered alone as well as in simultaneous and sequential combinations to explore

the protein correlates of our phenotypic observations.
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Experiments and results

L. Diversity of temporal dynamics after single drug perturbation of TS676

Rationale

Successfully perturbing a signaling network with sequentially administered
drugs is critically dependent on the selection of appropriate times at which to
perturb the selected targets [14]. We reasoned that observing the dynamics of
protein response to single drugs that we were interested in using in combination
with one another would assist the prospective selection of optimal time delays.
We began our analyses with the GBM tumorsphere line TS676, an EGFR amplified
cell line bearing the EGFRVIII variant in addition to an MDM4 amplification and a
CDKNZ2A deletion. We perturbed this cell line with 7 single drugs and the ligand
EGF at 10 time points spaced exponentially between 6 minutes and 2days. The
selection of time points was based on observations from prior work showing that
phosphoprotein responses to perturbants can manifest within minutes of treat-
ment [105, 106], whereas total protein level changes, modified by longer acting
phenomena such as transcription factor mediated gene regulation that occur over
a period of hours to days. Further, the concentrations of the drugs applied corre-
sponded closely to their IC-50 values, obtained from our evaluations in-house as
well as from the literature, reported in table 2. In many cases, our selected con-
centrations were below those frequently chosen in experiments focused on de-
tecting the phenotypic effects of these drugs. As our intent in this experiment was
to identify proteins whose activities changed specifically in response to each drug
applied, we used them in regimes that we anticipated would minimize promiscu-

ous binding and other effects related to non-specificity.
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Experiment protocol

Beginning at two passages before each experiment, cells were grown in flasks
pre-coated with laminin (Sigma L2020) to enable the growth of tumorspheres as
adherent monolayers. We used DME-F12 medium supplemented with B27, EGF
and FGF (20ng/ml each) and heparin. Cells were seeded in laminin coated 6 well
plates 12 hours prior to drug application. At the selected times after drug applica-
tion, the plates were transferred to an ice-trough where the cells were rapidly
scraped off each well, pelleted and frozen. Subsequently they were lysed and the
protein fraction of the lysate was diluted appropriately for analysis using reverse

phase protein arrays.

Data acquisition and normalization

Protein activities obtained using RPPA are reported relative to each other and to
positive control spots printed uniformly on each slide. This allows the relative
quantification of a protein’s activity across treatments or conditions. We first ap-
ply a spatial normalization routine to the raw intensities obtained that removes
spatial non-uniformity imposed on the measurements by factors such as uneven
exposure of slides to experimental reagents [17]. Next, to map the quantified in-
tensities to relative protein concentrations, we use a joint estimation method
called SuperCurve [107] that fits all the sample intensities on each slide to a 3 pa-

rameter logistic equation.

Thus, each slide is associated with both global parameters and protein concentra-

tion estimates. The estimates obtained across all proteins are now normalized by

median normalization and then rescaled by dividing them by the second median
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obtained for each treatment across all protein values. The procedure is termed

double median normalization.
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Figure 7. A. List of observed antibodies in
the single drug perturbation experiment
performed to determine the temporal
behavior of TS667 to targeted drugs. B
lllustration of antibody based detection
system used by Reverse Phase Protein
Arrays (RPPA). C is an image of an actual
array used in the experiment. Panels of
gradation observed are due to serial dilution
of each sample.
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Results

We observed that proteins fell into three broad categories, displaying local max-
ima and minima early (6min-0.5h), intermediately (1.5h-6hours) or late (>12h)
after treatment. To identify those proteins whose activities were the most affect-
ed by treatment, we computed the area under the time series curve (AUC) for
each protein in response to every treatment and compared this to the corre-
sponding AUC of that protein’s time course in the absence of treatment. We iden-
tified proteins showing an absolute change in AUC of 25% or greater compared to
untreated control as ‘responders’ if this response was statistically significant
across all three replicates of the time course measured. For this, we used a two
tailed t-test, assessing the level of significance of the p-values obtained by com-
paring them with the level of significance obtained from a 1% FDR-permissive
Storey test. The list of responders across each protein is in Table 3.
Some of our specific observations were
(a) Lapatinib treatment is associated with the late induction of BIM in TS676
(b) Obatoclax and PKCi are associated with an intermediate induction of
pAKT-pS473.
Both Western Blots and Zeptosens RPPA data validated the latter of these
observations. However, in both cases, pAKT continued to increase after 6
hours up to 24hours. This discrepancy could be because of experimental
error in the first RPPA experiment, where we had to deal with multiple
samples and temperature or other effects could have introduced noise in-
to the results. Further the MDA RPPA platform is inherently noisy because

of factors discussed earlier. As the western blots were repeated and Zep-
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tosens arrays are less error prone than MDA-RPPA, we are confident that

pAKT levels rise over the period of a day in response to obatoclax.

Changes in the levels of proteins downstream of the targets of lapatinib and
obatoclax observed between 6 minutes and 1 day after inhibition. lapatinib
treatment leads to the inhibition of pAKT whereas obatoclax potentiates it. This

observation was validated by subsequent experiments including Western Blots
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Figure 8. Responses of the proteins pAKT and BIM to single drug applica-
tion with lapatinib and Obatoclax
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Table 4. Statistically significant responders to single drug treatments identi-
fied by comparing the ratio of the area under each protein’s time series
curve to that of the protein’s untreated control curve. A two-tailed t-test was
used to determine significance across 3 replicates

med p38_pT180_Y18: Obatoclax 1.6277686 0.0011 -896.739
early  p38_pT180_Y18: Obatoclax 1.4410454 0.0008 -1284.38
early MEK1_pS217_S2 Obatoclax 1.4064922 0.0016 -980.234
early Rab1l.R.E Lapatinib 1.3574756 0.0016 -808.125
med MEK1_pS217_S2 RO-31-7549 1.354577 0.0014 -733.933
early C.Raf_pS338.R.E Obatoclax 1.3144994 0.0014 -3109.14
late Rab11l.R.E Obatoclax 1.3132368 0.0006 -243.664
med c.Kit.R.V Temozolomic 1.2987036 0.0008 -598.4
early Rab11l.R.E PD0332991 1.2917168 0.0015 -808.766
med JNK_pT183_pT1¢ Obatoclax 1.2883029 0.0019 -651.191
early Rab11.R.E Curcumin 1.2830512 0.0015 -808.85
med c.Kit.R.V Curcumin 1.2811378 0.0006 -601.052
med MEK1_pS217_S2 Curcumin 1.2807678 0.0016 -748.594
med MEK1_pS217_S2 BEZ-235 1.2778012 0.0014 -749.183
late PKC.delta_pS664 Lapatinib 1.2777283 0.0002 -1415.04
early PI3K.p110.alpha. Lapatinib 1.2740156 0.0002 -1127.41
med p38_pT180_Y18:R0O-31-7549 1.2737422 0.0010 -986.039
med Notch1.R.V Obatoclax 1.2705029 0.0007 -1525.91
late HER3_pY1298.R. BEZ-235 1.2699474 0.0012 -1239.84
med p9O0RSK_pT359_¢ BEZ-235 1.2647174 0.0008 -1356.96
early c.Kit.R.V Curcumin 1.2638852 0.0001 -782.209
early Rab1l.R.E Obatoclax 1.254467 0.0015 -809.129
early Rab11.R.E BEZ-235 1.2544271 0.0016 -809.129
early RBM15.R.V RO-31-7549 0.7499868 0.0008 -25478.3
late Akt.R.V PD0332991 0.7444625 0.0015 -21568.3
med RBM15.R.V Curcumin 0.7365044  0.0009 -21950
early Akt.R.V EGF 0.7338995 0.0012 -32923.8
early RBM15.R.V Obatoclax 0.7305153  0.0008 -25485
early elF4G.R.C PD0332991 0.7301565 0.0011 -24675.7
early Akt.R.V RO-31-7549 0.7296427 0.0012  -32925.9
overall mTOR_pS2448.R RO-31-7549 0.728994 0.0001 -762.2
late Akt.R.V Lapatinib 0.7276539 0.0001 -21833
early Akt.R.V BEZ-235 0.7263001 0.0012 -32927.6
overall  Akt.R.V Lapatinib 0.7175975 0.0002 -9402.11
early PRAS40_pT246.R BEZ-235 0.7165496 0.0011 -6534.68
med Akt.R.V Lapatinib 0.7153165 0.0016 -27664.5
early RBM15.R.V Curcumin 0.7094862 0.0008 -25492.2
med elF4G.R.C PD0332991 0.7077669 0.0016 -21118.7
early Akt.R.V PD0332991 0.7032897 0.0012 -32939.2
med TSC1.R.C PD0332991 0.6868866 0.0006 -25309.9
med Akt.R.V BEZ-235 0.6813607 0.0012 -27931.7
late mTOR_pS2448.R RO-31-7549 0.6749901 0.0002 -1833.85
late elF4G.R.C Obatoclax 0.6740922 0.0013 -16368.8
med PRAS40_pT246.R BEZ-235 0.6648197 0.0013 -5682.67
early Akt.R.V Obatoclax 0.6647895 0.0012 -32958.6
late Myosin.lla.pS194 Lapatinib 0.6645339  0.0009 -23250
med elF4G.R.C BEZ-235 0.6560012 0.0008 -21394.8
overall  IGFBP2.R.V BEZ-235 0.6499928 0.0014 -4355.6
early GSK3.alpha.beta, RO-31-7549 0.647414 0.0016 -2170.22
early Akt.R.V Curcumin 0.646385 0.0012 -32967.8
med Akt.R.V Curcumin 0.6435094 0.0015 -28229.5
late Akt.R.V Obatoclax 0.6416966 0.0014 -23186.8
late Tuberin.R.E Obatoclax 0.6328233 0.0018 -13618
late PRAS40_pT246.R Obatoclax 0.6281506 0.0013  -4427.85
late mTOR_pS2448.R Obatoclax 0.6220387 0.0004 -1910.62
early YAP_pS127.R.E RO-31-7549 0.6178186 0.0014 -6124.71
late mTOR_pS2448.R BEZ-235 0.5877526 0.0005 -1960.33
overall mTOR_pS2448.R BEZ-235 0.5626977 0.0002 -1229.9
med mTOR_pS2448.R BEZ-235 0.5309018 0.0011 -2504.97
overall  elF4G.R.C BEZ-235 0.5189625 0.0007 -11975.1
late elF4G.R.C BEZ-235 _ 0.0011 -19174.8

42



II. Time delay dependent modulation of response to lapatinib by obatoclax

Rationale

We looked to our observations from the single drug time series responses to se-
lect both drug targets and delay times for a phenotypic screen aimed at evaluat-
ing the effects of a set of sequential drug combinations. Based on our observa-
tions that the greatest number of observed nodes changed by > 25% w.r.t un-
treated control during the intermediate time period (1.5-6h), we chose 6h as one
of the delay periods between drug applications to use in a screen. To incorporate
effects that might arise from targeting proteins that have equilibrated to steady
state levels imposed by the action of the first drug, we contrasted the selection of

6h with a second delay period of 24 hours.

Drug choice was motivated by network considerations such as the proximity of
the second target to perceived/prior knowledge of pathway structure. Thus we
selected drugs whose targets were proximal to EGFR, the target of lapatinib, such
as a PI3 kinase inhibitor or inhibited possible bypass activators, such as a PDGFR
inhibitor. We selected the cytotoxic drug doxorubicin, to enable a comparison of
our results with those of Lee et al [14], and Curcumin - a drug with several attrac-
tive targets including NFkB and COX-2. Finally, we included drugs with targets
distant from EGFR, such as the BCL2 inhibitor obatoclax and the STAT3 inhibitor

stattic.
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Experiment protocol

Cells were seeded in 96 well plates at nearly 50% confluence. After 12 hours,
they were treated with drugs, either as single perturbations, or in sequential or
simultaneous combinations with lapatinib. After 3 days from the first treatment,
cell viability across all measured conditions was evaluated using a resazurin as-
say. Cellular activity under each condition as reported as a fraction of the un-

treated control.
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Fiogure 9. Exnerimental design of seauential drug annlication screen

Results
The combination of lapatinib with obatoclax was synergistic when administered
with delay, with sequential treatment benefitting the latter combination in an or-

der dependent manner. As the combination was also more effective than the oth-
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ers we screened, we used a trypan blue exclusion based counting method to ob-

serve the effects of this combination on the cell line on cell death and growth. We

observed that the drug combination was able not only to kill more cells than the

individual drugs (fig 4), but also to slow the growth of the cell population (data

not shown). Further, our observations of time and order dependency were con-

firmed by this assay
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Figure 10. Fractional cellular viability resulting from simultaneous and se-
quential drug combinations in a screening experiment
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Two other drug combinations of interest that we did not pursue further were the
combinations of lapatinib with the PKC inhibitor RO-31-7549, and doxorubicin
respectively. Both combinations were synergistic when administered simultane-
ously, as determined by our original synergy screen. In subsequent experiments
using the ViCell assay, the PKC inhibitor had comparable effects on cell growth

inhibition (data not shown) but continued to show enhanced cell killing when
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Both Obatoclax (BCL2i) and R0O-31-7549 (PKCi) cause cell death in select
configurations of their combination with Lapatinib. R0-31-7549's
effectiveness is greatest when administered 6h before Lapatinib whereas
Obatoclax's is maximized at 24h before Lapatinib

Figure 11. Fractional cell death in response to simultaneous and
sequential combinations of Lapatinib with Obatoclax and RO-31-
7549 respectively in tumorsphere line TS676
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PKC inhibitor preceded lapatinib by 6h.

(iii) Differential effects of lapatinib and obatoclax on GBM cell lines with
variable EGFR status

Rationale

To investigate whether the efficacy and synergy observed with lapatinib and
obatoclax extended to other GBM tumorsphere lines, and the dependence of the
observations on the EGFR status of the population, we tested the effect of these
drugs on two additional cell lines - TS600, a line bearing an EGFR gain and
GBM39, an EGFRVIII mutation and amplification bearing line that the lab of Dr.

Frank Furnari kindly shared with us

Experiment protocol

Cells were seeded in 24 well plates, at uniform confluence near 40%. They were
treated with drugs starting one day after cell seeding, and were imaged every 2h
for the next 3-4 days. Per user defined settings, Incucyte ZOOM™ reported the av-
erage confluence from a total of 9 images spanning the area of the well. This
choice reduced the variation arising from any cellular unevenness that might re-

sult from temperature or motion effects.

Results

(a) Pretreatment with obatoclax is beneficial in TS676 but not in TS600 or
GBM39

The combination reduced the observed cellular density in both cell lines syner-
gistically but delay was mildly beneficial in TS600 (in the condition where lapa-

tinib preceded obatoclax) and increased rate of cell growth in GBM39. As images
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taken early in the experiment occur while drugs are being added to various wells
across the plate, there is frequent plate displacement and cellular motion with
drug addition until the end of one day. That makes the early phase of each curve
less reliable than after one day. Hence we also quantified the effect of each treat-
ment by evaluating the slope of the growth curve in a 4 hour window centered at

3 days (fig. 5, below).
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Figure 12.Pretreatment with Obatoclax before Lapatinib favors cell death in TS676
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(c) Obatoclax and lapatinib cause distinct morphological changes in

TS676 upon exposure to different treatment regimens

Changes in TS676 cell density and morphology over time as observed using the Incucyte ZOOM.

LAPATINIB OBATOCLAX L+O OthenL (12h)
1 day : TN

Cell growth rate is Cells aggregate and Cell growth Cells appear

comparable with become rounder appears slowed sparse and
untreated control display elongation

Figure 13. Changes in TS676 cell density and morphology in response to
different drug treatments as observed with Incucyte ZOOM™

These qualitative observations motivate the use of addditional quantitative
methods for the acquisition of a greater number of therapeutically relevant phe-

notypic responses from these data.

(iv) Protein response to sequential and single treatments with Western

Blots reveals time dependent potentiation of pAKT by obatoclax

We next investigated the effects of these treatments on the levels of pAKT-pS473

as measured using Western Blots. We wanted to explore whether there were any

obvious protein level differences between the response of these cell lines to lapa-
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tinib treatment, at a protein downstream of lapatinib’s target EGFR. when per-
formed with and without obatoclax pretreatment. We observed a strong potenti-
ation of pAKT levels with longer exposure to obatoclax in TS676 that was not
mirrored by TS600. Further, this increase in pAKT persisted in TS676 that had
been subjected to short pre-treatments with obatoclax, reaching maximal activity

at 12h of pretreatment but then dropping when pretreated with obatoclax for

24h.

By contrast, TS600 did not show a similar lapatinib response to pAKT levels
when we compared single administration of lapatinib with the obatoclax pre-

treatment conditions.
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Figure 14. Protein response to sequential and single treatment with
lapatinib and obatoclax in TS676 reveals time dependent potentiation
of pAKT by Obatoclax

Protocol
Cells were seeded in 6 well plates at 70% confluence and treated with drugs for

the times indicated. After the treatment period, cells were scraped off each well
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over ice and the pellets obtained were lysed with a RIPA based buffer. Protein
extracts were stabilized in SDS and 2-mercaptoethanol and loaded into the wells
of a 4-15% western blot gel. After the proteins were run, they were transferred to

a nitrocellulose membrane and imaged.

(v) Protein correlates of response to single, simultaneous and sequential

treatment in TS676 and TS600.

Rationale

The behavior of pAKT in response to the treatment regimens we tested was un-
expected. To our knowledge, the time dependent potentiation of pAKT by BCL2
inhibitors behavior has not yet been reported in any other cell line or system.
Prior knowledge about the pathways that connect the targets of lapatinib and
obatoclax indicates that RTK activation leading to the phosphorylation of AKT
can inhibit apoptosis by inhibiting a family of FOXOs including FOX03a [108,
109], proteins that transcriptionally activate diverse pro-apoptotic pathway
members. In this paradigm, AKT activity can affect the level of apoptotic proteins
accessible to a second drug targeting them, such as obatoclax. Further, the com-
bination of lapatnib and obatoclax has been shown to lead to autophagic re-
sponses [110, 111] but the contribution of each drug towards the effects ob-

served remains to be understood.

Towards explaining the effect of obatoclax on AKT mediated signaling and its ef-
fect on the observed synergy, we investigated the time dependent behavior of 46
proteins in response to the drugs administered singly, simultaneously and se-

quentially in both orders, with a time delay of 12h, which corresponded to the
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time interval at which the observed effect of the combination was maximized
when obatoclax preceded lapatinib in TS676. We selected the time points at
which to capture protein profiles based on our prior experience with these lines.
To enable to detection of slow and sustained changes in protein levels, we incor-
porated cell collection every 12 hours after treatment, up to 36 hours. Further,
for each treatment applied, we collected additional samples 15 minutes and 1.5h

into treatment, to observe early phosphoprotein response to these inhibitions.
oh 12h 24h 36h

: L then O

;é; : : OthenlL

> L+0

».  OBATOCLAX

LAPATINIB

DMSO

DESIGN OF EXPERIMENT TO
Bl PRETREATMENT PERIOD MEASURE PROTEIN RESPONSE TO

LAPATINIB (L)
B oaro0eL 0] SEQUENTIAL AND SIMULTANEOUS

W Dbwmso TREATMENT WITH LAPATINIB AND
OBATOCLAX

Figure 15. Design of experiment to measure protein level changes in re-
sponse to sequential and simultaneous treatment with lapatinib and Obato-
clax in TS676 and TS600

Protocol

To perform this experiment, we used the Zeptosens protein array system de-
scribed earlier in this thesis. Samples were prepared in manner similar to that for
Western Blots. Cell pellets were lysed in a Urea based buffer and robotically spot-

ted at four dilutions and 3 biological replicates each onto the surface of Zeptosens
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glass slides. The relative protein activity of each sample relative to positive con-
trol spots on each slides was quantified and reported. Examples of the time

courses obtained over the conditions tested are in the figure overleaf.

Results and Discussion

The data from this experiment lead us to a few qualitative observations. The se-
quential treatment of T676 with obatoclax followed by lapatinib 12 hours later,
which was also the most effective treatment in this cell line, displayed the highest
cleaved caspase 3 levels at the end of treatment. This observation could indicate
that lapatinib is able to more effectively engage the apoptosis pathway in cells
whose state is altered by the action of obatoclax. In addition, the level of p38-
MAPK rises in TS676, most noticeably in response to obatoclax. In inhibiting the
mitochondrial apoptotic machinery, obatoclax could lead to the generation of re-
active oxygen species (ROS) [112]. p38 MAPK is a stress inducible kinase that can
respond to ROS and mediate both differentiation and cell death [113, 114], rais-
ing the possibility that it mediates the effects observed in treatments that include

obatoclax.

Prior studies have observed the induction of autophagic phenotypes and proteins
in response to the combination of drugs, as well as the inhibition of ERBB family
members in response to lapatinib and its combination with obatoclax [110].
However, how the interaction of the drugs’ targets and downstream effectors
leads to these phenotypes remains to be understood. Further, the relationship
between combination effects resulting from these drugs and the genotypes of
GBM tumors and cell lines has not been studied and the effect of combined EGFR

and PTEN status on the combination’s ability to inhibit growth is not known. This
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is particularly relevant in the context of GBM, where the amplification of EGFR
with PTEN inactivation is a frequent co-occurrence. One of the reasons why the
role of EGFR status on drug effects in GBM is a challenging area of study in cell-
lines is that the EGFR amplicon can be lost easily over the course of passaging.
The use of tumorsphere cultures in early passages, as in our work, may enhance
our understanding of combination effects by retaining key alterations present in

the parent tumor.

One of the open questions from our work is how delivery order and timing im-
pacts combination effects. It is possible that by acting 12h into treatment rather
than in the beginning, lapatinib could be causing the inhibition of MAPK and AKT
signaling at a time when resistance mechanisms against obatoclax are being re-
cruited. We observe that the levels of both total and phosphorylated ERK1/2 are
lowered at 24h in the obatoclax before lapatinib (OeL) condition, whereas they
have begun to rise after early inhibition in all conditions where lapatinib is ad-
ministered early, i.e. single administration (L), simultaneous administration
(L+0) and lapatinib before obatoclax (LeO). While individual observations con-
sistent with known pathway biology can aid our understanding of the mechanism
of a drug or combinations, a network view of responses to perturbation can be
beneficial. A goal of network analysis would be to quantitatively relate the pro-
tein targets of a perturbation to the oncogenic phenotypes observed, through
downstream effectors of each protein target. Identifying both the nodes and edg-
es in a network that are altered in the GBM tumorsphere lines of interest, and
how these are altered by drugs, could lead to an understanding of the genetic
context in which the drug combinations we studied are the most effective, and

subsequent cohort studies in non-human animals and clinical trials.
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Future work

We have begun more detailed quantitative analyses of the data acquired. A useful
method by which to identify correlations in complex multivariate data is that of
partial correlations. The partial correlation between sets of variables, observed
over a series of conditions, can provide insight into direct associations that drive
system behavior [115]. In our data, because the protein levels observed at vari-
ous points along a time course are correlated to one another, using naive partial
correlation methods that do not apply to time course data can be misleading. An
effort by the lab of Dr. Korbinian Strimmer[116], to evaluate dynamical partial
correlations that exist within time series data is available as the R package
GeneNet. Applying this method to our data has demonstrated differences be-
tween the protein correlations observed between cell lines and between the dif-
ferent treatments and regimens (data not shown). Suggested next steps are gen-
erating hypotheses computationally, validating the observations using appropri-
ate methods such as permutation tests and ranking the observations in order of
their magnitude and statistical significance, and subsequently testing them in the
lab. We hope that this work will help point us to the proteins that mediate the ef-
fects of obatoclax pretreatment on the efficacy of lapatinib or nominate addition-
al targets that, in conjunction with lapatinib and obatoclax, may lead to effective
treatments for EGFR amplified and PTEN deficient GBMs, which constitute a

common and aggressive variant of primary glioblastoma.
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Spatial Normalization of Reverse Phase Protein array data
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Abstract

Reverse phase protein arrays (RPPA) are an efficient, high-throughput,
cost-effective method for the quantification of specific proteins in complex
biological samples. The quality of RPPA data may be affected by various
sources of error. One of these, spatial variation, is caused by uneven expo-
sure of different parts of an RPPA slide to the reagents used in protein de-
tection. We present a method for the determination and correction of sys-
tematic spatial variation in RPPA slides using positive control spots print-
ed on each slide. The method uses a simple bi-linear interpolation tech-
nique to obtain a surface representing the spatial variation occurring
across the dimensions of a slide. This surface is used to calculate correc-
tion factors that can normalize the relative protein concentrations of the
samples on each slide. The adoption of the method results in increased

agreement between technical and biological replicates of various tumor
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and cell-line derived samples. Further, in data from a study of the mela-
noma cell-line SKMEL-133, several slides that had previously been reject-
ed because they had a coefficient of variation (CV) greater than 15%, are
rescued by reduction of CV below this threshold in each case. The method
is implemented in the R statistical programing language. It is compatible
with MicroVigene and SuperCurve, packages commonly used in RPPA data
analysis. The method is made available, along with suggestions for imple-

mentation, at http://bitbucket.org/rppa_preprocess/rppa_preprocess/src

Introduction

In the last decade, the study of cancer biology has been accelerated by
many technological advances, enabling analyses of the genome at both
high resolution and throughput. This has led to the identification of muta-
tions and biomarkers specific to various cancer types and patient sub-
groups. However, clinical trials of targeted therapy guided by these stud-
ies have met with less success [117, 118]. One of the reasons for this is
that while the causes of cancer are genetic, they result in cellular malfunc-
tion at the level of proteins. While changes in each level may be observed
discretely, they are related intimately through processes such as transla-
tion of mRNA to protein and the control of gene transcription by proteins.
Further, proteins can interact with metabolites post-translationally. This
increases the complexity of the proteome via the existence of multiple
forms of - e.g. phosphorylated, nitrosylated and methylated - molecules
that vary in function. There is hence a need for reliable and affordable

methods for protein measurement, at a scale capable of complementing
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today’s genomics studies, so that together, they may reveal the mecha-

nisms driving cancer.

Reverse phase protein array (RPPA) technology is a powerful technique
for measuring the activities of proteins from tissue- and cell-derived ly-
sate. It is an inexpensive, high throughput, quantitative method with low
sample requirements, making it ideal for large-scale proteomic profiling
studies. In RPPA, small (~pl) amounts of lysate extracted from biological
samples under study are evenly spotted onto the surface of glass slides
coated with an absorbent material such as nitrocellulose. A single RPPA
slide of Zcmx5cm can be used to simultaneously measure the levels of a
protein in thousands of samples at a time, using an automated and effi-
cient procedure that can be scaled up to hundreds of proteins [66, 119,
120]. Each slide is probed with a primary antibody against the protein of
interest, sensitive to pg-ng of protein [121], followed by a secondary anti-
body. A colorimetric or fluorescent signal is then generated, in proportion
with the secondary antibody bound, and may be quantified to yield esti-

mates of relative protein concentration in each sample.

RPPA design has several advantages over existing methods for protein de-
tection. Unlike methods such as Western Blotting and 2D-Gel Electropho-
resis, RPPA has high throughput and low sample requirements. While oth-
er assays such as multiplexed flow-cytometry and microsphere-based as-
says retain some of these advantages, they are far more expensive than
RPPA and are often more labor intensive [122]. Mass spectroscopy (MS),

which is another method used in large-scale protein level studies, can ana-
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lyze the proteins in a sample using both unbiased and targeted approach-
es. However, current methods for MS require high sample volumes and
the time required for sample analysis can be high. Reverse Phase Protein
Arrays have enabled studies of protein networks implicated in different
cancers [123, 124], infectious disease [125] and the responses of cells to
various drugs [126-128]. However, many of the factors that make RPPA an
appropriate choice for proteomics studies also introduce noise into the
data. For example, the use of targeted antibodies enables the measure-
ment of low-abundance proteins, but low antibody specificity can lead to
promiscuous binding and false positives [129, 130]. Similarly, the han-
dling of low sample volumes can lower the signal to noise ratio of the re-
sults [131]. The reliability and reproducibility of RPPA data are a key de-
terminant of the utility of such studies. We examine one factor that con-
tributes to noise in the RPPA data - spatial heterogeneity - and describe a

method for correcting it, thereby enhancing the quality of the data.

Spatial variation in RPPA slides occurs due to unequal exposure of the
slides to the experimental reagents used. This causes non-uniform signal
generation, resulting in systematic variations across the area of each slide.
Spatial heterogeneity is obvious when identical samples distributed over a
slide produce variable signal intensities. Consequently, variance across
identical samples serves as a reference with which one can measure and
then correct errors arising from this heterogeneity (Fig. 1). We show that
spatial differences affect the results of RPPA data obtained from diverse
biological datasets. We use a simple, flexible and powerful 2D interpola-

tion method to normalize the data, resulting in significantly enhanced data
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quality as measured by improvements in reproducibility and the signal to
noise ratio of the results. Also, data from antibodies that were previously
unusable are rescued with the method, improving the utility of the studies
performed. R code for the method is provided as a package that can be
used in conjunction with MicroVigene, currently a widely used platform

for the analysis of RPPA data.
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Figure 1. Steps in the acquisition and processing of RPPA data. Cells derived from differ-
ent in vitro and in vivo systems are lysed and protein extracted (1). Serially diluted ex-
tracts are printed onto the surface of slides (2) where primary and secondary antibodies
bind to the protein of interest and generate a signal proportionate to the amount of pro-
tein in each sample. Each slide can accommodate 5808 printed spots, for different num-
bers of total samples depending on the layout and number of dilutions used (3). Readouts
obtained are translated to sample intensities after scanning and processing of the slides
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(4). Intensities of positive control spots (horizontal yellow spots in (4)), which are tech-
nical replicates of each other, may be used to evaluate and correct spatial variation ob-
served in each slide. Spatial correction of data can improve data quality resulting in bet-
ter estimates of relative protein concentration and improved agreement between inter-
and intra-slide replicates from various experiments.

Materials and Methods

Data sets analyzed using normalization routine

RPPA data for this study were obtained from slides printed with various
human cell-line and tumor derived samples and probed with antibodies
specific to proteins relevant to the study. The details of the method are
provided in the results. We tested this method on the following data sets.

1) Set A - Quality control samples. This dataset was comprised of 16
slides, each identically printed with sample and then queried with a single
primary antibody. The samples in these slides were obtained from a quali-
ty control study performed in the M.D. Anderson Cancer Center RPPA
core-facility and a list of the antibodies used is provided in supplementary
table S2.

2) Set B - Human melanoma cell line-derived samples. This data set
was obtained from experiments performed in-house in the Sloan Kettering
Institute. The melanoma cell line SKMEL-133, a V600EBRAF/PTEN null mu-
tant cell line kindly gifted to us by Dr. David Solit, MSKCC [132], was per-
turbed with 10 small molecule inhibitors (supplementary table S1) target-
ing specific kinases that control cell death and proliferation. Cells were
treated with each drug individually as well as with all pairwise combina-
tions of the drugs. Three biological replicates of each experimental condi-
tion were generated, constituting approximately 300 samples that were
measured with RPPA. Cell lysate from each sample was spotted onto slides
and probed using 159 antibodies (supplementary table S2) to measure the
quantities of clinically relevant proteins or phospho-proteins in those

samples. Several of the slides were probed with the same antibody 2-3
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times, resulting in a total of 238 slides and 53 antibodies with replicate
slides.

3) Set C - Miscellaneous anonymized samples. A data set comprised of
30 slides from cell-line data processed at the M.D. Anderson Cancer Cen-

ter.

Preparation, layout, printing and quantification of lysate array sam-
ples

Homogenized cell pellets consisting of cellular proteins are derived from
cells grown in-vitro or from tissue samples in-vivo. Samples are lysed and
the protein extract obtained is diluted based on the design of each exper-
iment. In the slides comprising the data sets in this study, each sample un-
dergoes a % serial dilution four times, leading to a total of 5 concentra-
tions per sample. These initial serial dilutions are performed manually.
Diluted samples are then robotically spotted onto the surface of slides
coated with nitrocellulose. In our experimental design, each sample and
positive control is printed in five dilutions. The slides are laid out as grids
of 132x44 spots, comprised of 48 subgrids containing 121 spots each.
Thus, each subgrid accommodates 22 samples and 2 positive control sam-
ples, in 5 dilutions each. A subgrid is also printed with a single buffer spot
that serves as a negative or background control. Each slide thus accom-
modates 1056 serially diluted samples and 96 positive control samples
(with 5 dilutions per sample), and an additional 48 negative control spots
(Fig. 2). The positive control spots, are printed at fixed intervals across the
length and breadth of each slide, and are technical replicates of each other,

obtained from a single batch of standard mixed cell lysate [133]. Since the
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controls are designed to contain sufficient amount of each of the proteins
in the antibody panel for reliable detection, similar levels of the concerned
protein should also be detected in experimental samples when the appro-
priate dilution of antibody is used. The negative control spots consist of
buffer containing no protein and are hence informative of the level of

background signal generated.
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Figure 2. In the experimental design we use for the analysis of the samples in sets A and
B, lysate is spotted in 96 arrays consisting of 22 samples, two positive controls and one
buffer spot each. Each of the samples and the positive controls is printed in five 1:2 serial
dilutions each.
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Protein in each sample is quantified by washing the slide with a solution of
primary antibody followed by secondary antibody. The biotinylated sec-
ondary antibody interacts with a streptavidin bound peroxidase to cata-
lyze the deposition of a biotinylated brown tyramide compound on the
surface of the spot. The intensity of the colored signal thus generated is
proportional to the amount of secondary antibody and protein bound to
the slide. Signal intensities obtained by scanning images of the slides were
quantified by MicroVigene software [134]. These are then translated into
relative protein concentrations using an R package called SuperCurve
[135]. SuperCurve estimates the concentrations of all the samples on a
slide with respect to one another. The estimation is based on the assump-
tion that all the samples on a slide lie on a single dose response curve,
since the hybridization kinetics of all samples have similar chemistry. The
curve thus obtained may be used to obtain the relative concentration of

each sample on the slide.

Assessment of data quality

The effectiveness of normalization was assessed based on the behavior of
biological and technical replicates compared before and after normaliza-
tion. Successful normalization should reduce noise, resulting in improved
comparability of data and should bring replicates closer to each other. We
define technical replicates as spots that are printed from lysate that was
obtained from a single batch of cells in a single experiment. When printed
onto a single slide, they are called intraslide replicates and when printed
onto different slides, they are interslide replicates. For example, all the

positive control spots belonging to a single dilution on a single slide are
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intraslide technical replicates because they were obtained from a single
mix of cells and subjected to dilution in a batch before the lysate was
printed onto slides. Biological replicates are spots that are printed from
cell lysate obtained from cells that were subjected to the same experi-
mental conditions, but in separate batches. For example, in procuring da-
taset B, SKMEL-133 cells were grown in 3 different petri-dishes, and each
was subjected to normal medium spiked with a dose of EGF ligand. They
were then used to yield three separate cell pellets that when lysed and

printed onto a slide, gave rise to biological replicate spots.

We expect technical and biological replicates to have different degrees of
variability. Similarity of technical replicates is indicative of the reliability
and uniformity of steps in the procedure such as printing, probing and
scanning. On the other hand, biological replicates may vary for a number
of reasons. The heterogeneity inherent to populations of cells obtained
from both cell lines and tumors may make subsets of such populations be-
have differently when subjected to the same treatment. Several other fac-
tors could introduce biological variation, such as time to freezing and the
presence of stromal and endothelial cells in tumor-derived samples, or the
sample preparation method used [136-139]. Thus when technical variabil-
ity is low, the differences between biological replicates can yield useful

information about cellular variability in the samples studied.

To determine how spatial normalization improves the quality of RPPA da-

ta, we calculated
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1. Agreement between interslide and intraslide technical replicates across
16 pairs of duplicate slides from dataset A, and 53 pairs of duplicate slides
from dataset B.

2. Agreement between intra-slide biological replicates in a 238-slide mela-
noma cell line study.

Agreement was evaluated with the Pearson’s correlation (p) between cor-
responding spot intensities (Ia and Ig) across duplicate slides and the coef-
ficient of variation (%CV) between replicates within-slide, where p de-
notes the mean and o the standard deviation of the spot intensities (I) or

protein concentrations (P) measured.
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Results

Bilinear interpolation of correction factors to remove spatial biases
in RPPA data

The central assumption is that in the absence of spatial variance all posi-
tive controls of a given dilution should yield equal intensities. Consequent-
ly, observed variability of positive control intensities is a survey of the
spatial bias on the slide. With this information, we can systematically fac-
tor out the spatial bias at any location based on neighboring positive con-

trol intensities.
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We define the relationship between the measured sample intensity I(x,y)
and the true intensity I'(x,y) in terms of a correction factor CF(x,y) that

represents spatial variance.

_ (x,y)

P = Crtoy

Correction factors are simply the ratio of positive control intensities

PCI(x,y) to some reference intensity <PCI>.

PCI(x,

Here, we choose the mean positive control intensity <PCI> to be the refer-
ence intensity. CF values above 1 indicate regions on the slide where there
is a bias towards larger intensities. CF values below 1 indicate regions on

the slide where there is a spatial bias towards smaller intensities.

However, these correction factors are not directly calculable at sample lo-
cations precisely because those locations do not contain positive controls.
To compensate for this missing information, we use interpolation to ap-

proximate pseudo-positive control intensities at the sample locations.

Interpolation is the calculation to approximate the value of a function
f(x,y) at specific locations (x,y) given fixed knots or measured function
values at neighboring locations f(xc, yc) and is analogous to “Connect the
Dots”. Linear interpolation means we connect the dots with lines. The
points lying on the lines between the dots are the interpolated values, and

the dots themselves are fixed knots or anchor points. The interpolated
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values are approximations inferred based on nearest neighbor data. In this
case, we will use the measured positive control intensities to interpolate
or approximate pseudo-positive control intensities at all locations on the

slide.

Consider a location (x,y) that lies between four measured positive control
spots with corresponding intensities PCI(xqya), PCl(Xayp), PCI(xpya),

PC(xpyb).
X, — X xX—x

PCI (x,y,)= PCI(x,,y,)+ “ PCI(x,,y,)
. N % B Ra

PCI (x,y,)=—2 PCI(x,,y,)+ “ PCI(x,,y,)
) ‘§b : ‘xa ) ‘xb__ a

PCT (x,y)= 22X PCI" (x,y,) + 22 PCI" (x,y,)
yb _ya yb _ya

These are pseudo-positive control intensities (indicated by an asterisk) in
that they are approximations for what a control intensity at that location
would have been had it been spotted with control sample. The correction
factors at these locations are calculable with simple division by the refer-
ence positive control intensity.

. PCI(x,

The bilinear interpolation calculation described above reflects only our
assumptions about the smoothness of the spatial bias between measured
positive control locations. It says nothing about the relationship any sam-
ple intensity has to another sample intensity. A similar correction can be
applied after performing a cubic spline interpolation between the correc-
tion factors. Overall, the results of normalization using spline interpola-

tion are similar to those with bilinear interpolation (supplementary table
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S3). Hence we use the simpler of the two, bilinear interpolation, for nor-
malization (supplementary Figure S1). Further, in the sample and control
format used in our experiments, there are 96 sets of positive controls
printed in 5 dilutions each. We use the median of each set as anchors for
our interpolation step as this dilution is the most likely to be in the linear
range of the assay for the set of antibodies used in the experiment. Users
of the method are encouraged to design their experiments such that all the
query samples are contained within the interpolation region of the posi-
tive controls. In our design, a portion of the slide (1/12t%) does not have
positive controls at its periphery and hence, each sample in this region

was normalized by the closest correction factor evaluated.

Spatial normalization improves Coefficient of Variation between bio-
logical replicates.

Spatial normalization improves agreement between intraslide biological
replicates in dataset B and ‘rescues’ previously discarded slides enabling
further analysis of these proteins. Melanoma cell line samples were ac-
quired for a large study aimed at understanding the basis of RAF inhibitor
resistance in certain melanoma cell lines. Cell lysate was obtained from a
melanoma cell line SKMEL-133 and subjected to various drug treatment
conditions in triplicate, resulting in approximately 300 samples that were
then quantified using RPPA. Agreement between the biological replicates
was calculated before and after normalization. Around 10% of the slides
(25/238) show increases of over 5% in agreement between biological rep-
licates after normalization whereas only 1.2% (3/238) slides show a

worsening of CV by over 5% with normalization. Despite increased
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agreement overall, biological replicates show different degrees of im-

provement with spatial normalization (Fig. 3)
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Figure 3. Coefficient of variation (%CV) of biological replicates across all antibodies be-
fore and after normalization clearly improve with normalization. The degree of im-
provement varies from antibody to antibody (higher for EGFR-pY992 and cJUN-pS73
than YB1-pS102) and is significant for many antibodies relevant to signaling in the mela-
noma cell lines studied.
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The data from this study were used to train a mathematical model of mel-
anoma biology in SKMEL-133. To maximize model accuracy, only data
points with sufficient reliability were kept for model incorporation and
training. Slides were selected if the average coefficient of variation (%CV)
of biological replicates within each slide was seen to be less than or equal
to 15%. This threshold was arbitrarily selected by the authors and is left
to the discretion of the user. %CV, which is the ratio of the standard devia
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Figure 4. Spatial normalization reduces variance between biological replicates in the ma-
jority of the slides comprising a melanoma cell line study. In the study, a cutoff coefficient
of variation (CV) of 15% is used to decide whether slides are retained for biological anal-
ysis. After spatial normalization, CVs in 8 slides (Caspase 9, IGFBP2, ATR, COX2,
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FAK_pY397, BCL2(mouse), PARP, AKT) that were previously unusable drop to acceptable
values. One slide - PCNA(mouse) - that had earlier been used in analysis is rejected after
normalization.

tion between observations to the mean of those observations, expressed
as a percentage, is a good measure of signal to noise in biological data and
rises with noise in the data. A set of 168 slides was originally selected after
discarding saturated and defective slides. Of the 168, when we evaluated
%CV across all biological replicates in each slide, 15 slides were unusable
because of %CV greater than 15%. After normalization, only 7 slides had
%CV greater than 15%. The slides that were rescued by spatial normaliza-
tion measured AKT, PARP, BCL2, BIM, ATR, YAP, IGFBP and FAK (Fig. 4).
In certain cases, %CV appears to rise after normalization. This could re-
flect real noise present in the data. However, the cases where this occurs

are those where %CV is significantly below the cutoff of 15% and hence
this did not affect the selection of antibodies in our study. To further verify
this result, we also calculated the Z’-factor [140] of each slide before and
after spatial normalization. In agreement with the %CV improvements we
observed in biological replicates, the per-slide Z’-factor evaluated in da-
taset B also improves in > 98% of the slides used in the experiment (de-
tails and calculations provided in supplementary materials, including Fig.

S3).

Spatial normalization modestly improves the agreement between in-
ter-slide replicates
To evaluate whether spatial normalization improved data quality signifi-

cantly, we compared the agreement between technical and biological rep-
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licates before and after normalization. We compared the Pearson’s corre-
lation of the estimated concentrations of samples printed at equivalent
locations across 69 pairs of duplicate slides procured independently from
sets A and B to assess interslide reproducibility. Here, duplicate slides are
slides that were printed with the same samples in equivalent locations on

each slide.

Many slide pairs improve in overall correlation between concentrations,
with only a minority of the slide pairs showing a large such improvement.
Further, slides showing a modest improvement in the behavior of in-
terslide technical replicates with normalization often show greater im-
provements in concordance of biological replicates (Fig. 5 and supplemen-
tary table S4). Earlier studies using RPPA have consistently shown that
such correlations evaluated between the concentrations of interslide rep-
licates are generally high [133] but may not be the best measure of im-

provement in data quality after normalization.
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Figure 5. Correlation between concentrations of samples printed across duplicate slides
increases slightly with normalization (upper panels, L>R, melanoma samples and
probed with anti-pMAPK antibody). Coefficient of variation between the concentrations
of biological replicates printed on one of these slides improves after normalization (low-
er panels, L->R).

Spatial normalization improves Intra-slide reproducibility of tech-
nical replicates
The slides evaluated for interslide reproducibility each have 480 positive

controls, spotted as 96 sets of 5 dilutions each. The 96 points within a dilu-
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tion are hence all technical replicates of one another. While the normaliza-
tion method uses one of these sets, the median set, as anchor points for
evaluating spatial variation and correction factors, we can use the remain-
ing dilutions of the positive controls to measure %CV between each set
before and after normalization. Doing this showed significant improve-
ments in agreement between each such set of technical replicates, across
most antibodies used. (Fig. 6) In the melanoma data-set, agreement be-
tween technical replicates showed an average improvement of 4%, with
%CV falling from 12% to 8%, after normalization across slides probed
with different antibodies. Further, 16 out of the 168 antibodies showed
improvements of 10% or above in the coefficient of variation between

technical replicates.

76



8% 10%

INOLLNTIa

% 6%

2%

1L

0%

ZNOLLNTIa

PERCENTAGE OF SLIDES
8% 10% 0%

6%

YNOILNTIa

4%

2%

[

0%

6% 8% 10%

SNOLLNTIa

2% 4%

UNNORMALIZED
L‘_ NORMALIZED

S0 20 40 60 80
% COEFFICIENT OF VARIATION

o

Figure 6. Coefficient of variation between intensities of intraslide technical replicates in
dataset B decreases significantly with normalization. One out of 5 dilutions of positive
controls is used for spatial normalization. The correlation of the remaining positive con-
trols, which are technical replicates within each dilution, is observed after normalization.
Correlations increase with normalization for each of the observed dilutions.

Discussion
RPPA is one of two main techniques used in large-scale proteomics studies
today - array based techniques and mass spectrometry. High-throughput,

low sample requirement and high sensitivity make it a promising technol-
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ogy with which to examine protein networks in a variety of systems in-
cluding cell lines and tissue samples. However, some of the features that
make RPPA an appropriate choice for several kinds of proteomics studies,
such as antibody-based detection, where antibodies have may different
target-affinities and variable specificities, also add noise to the data it gen-
erates. Hence noise reduction and data normalization are essential for the
successful application of RPPA. Our normalization technique evaluates
one source of noise in RPPA data - spatial variation - and uses the meas-
ured variation to correct the data leading to increased reproducibility be-
tween duplicates in various studies. The method also makes the data from
previously discarded, noisy slides usable in analysis, potentially expanding
the scope of the biological questions that a set of RPPA experiments may

address.

Among the genomics platforms, such as DNA microarrays, standards for
experimental design and analysis have greatly improved the quality of
those data and the scope of the studies that they enable [141-144]. This
has lead to collaborative efforts such as the TCGA that have significantly
enhanced our understanding of various cancers [1]. Among the protein
activity measurement platforms, there are fewer methods that similarly
address data quality. One such method [145], in which control samples are
used to normalize for spatial and scaling errors in RPPA data successfully
reduces intra-array replicate CV by up to 70%. However these improve-
ments were the result of printing of as many control samples as each slide
contained query samples and is hence expensive. Further, the published

method was only applicable to a specified sample layout. Our method cor-
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rects a significant and systematic source of bias in RPPA data effectively
reducing error in sample sets normalized with relatively few controls.
Among the melanoma data we corrected, for instance, fewer than 2% of
the samples were used to normalize a total of 5808 samples. Further, the
method is flexible, allowing the user to correct for spatial biases in a varie-
ty of formats containing identical control samples that contain a level of
the protein of interest that is within the linear detection range of the assay
used. Others in the research community have similar goals and improved
standardization of analysis methods will help realize the potential of RPPA
in, e.g., characterizing the signaling response to drug treatment or in train-

ing mathematical models of biological systems.

As this manuscript was completed, two other alternative methods for spa-
tial normalization of RPPA data were published [146, 147]. The first, by
Troncale et al.,, uses a non-parametric model that takes into account every
sample’s Row and Column location while fitting the obtained intensities to
relative protein expressions, thus adjusting for spatial effects along with
other sources of variation addressed by the paper, such as background
and total protein deposited at each spot. The method of Neeley et al. is
similar in ideology to ours, in that it uses the variation observed between
identical controls printed at various locations on each array to normalize
for spatial effects. The correction is model based, and is specific to an ar-
ray format that is commonly used in the community. While a systematic
comparison of existing methods would help a user to select the method
best suited to their experiment and data, this is beyond the scope of our

current work. We compare the changes in reproducibility of data observed
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using our method with Neeley et al across the antibodies in the melanoma
dataset. These results are provided in the supplementary materials (sup-
plementary Figure S2). More extensive comparisons of the existing meth-
ods may aid in the selection of a set of standard methods for data normali-
zation, or an improved understanding of what quantification and normali-
zation methods work the best for different types of experiments. This
would be beneficial to the RPPA community, where comparisons of exper-

imental results are currently confounded by a lack of standardization.

A metric frequently used to assess data quality in RPPA is interslide and
intraslide correlation between spot intensities of technical replicate spots
[133]. While this gives us some confidence about the reliability of the re-
sults, it may not be an adequate measure of reproducibility. Since RPPA
has a low dynamic range as compared to some other proteomics methods,
this range is often expanded by printing multiple dilutions of each sample
on the surface of a single slide. The dilutions of a sample may be widely
separated in intensity, and correlations measured across all spot intensi-
ties on a slide may be biased by the range of intensities spanned by each
slide (Fig. 7). When evaluating interslide correlations, we attempt to re-
duce this bias by comparing relative protein concentrations rather than
intensities. Nonetheless, measures of intraslide technical and biological
replicate equality can be more informative of data quality than Pearson’s
correlation. Other metrics of data quality, such as the Z'factor [140] and a
Welch'’s t-statistic [148] to evaluate the mean difference between the posi-

tive and negative controls before and after normalization also showed im-
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provements from normalization for the vast majority of samples.

(supplementary figures S3 and S4).
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Figure 7. Correlation calculations performed using intensities of all spots printed onto
duplicate slides may be a misleading measure of reproducibility because of experimental
design that uses multiple dilutions to evaluate sample concentrations. In the case of two
identical slides probed with anti-pBAD antibody, overall correlation coefficient R=0.82
whereas correlations of the individual dilutions are lower.
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The spatial normalization technique we implemented not only significant-
ly decreased coefficient of variation improved agreement between biolog-
ical and technical replicates within slides, but also made it possible to ana-
lyze the data from many slides that were previously unusable because of
high variation. A particular example is our use of the antibody for PARP-1
in a study of melanoma samples subjected to various treatment condi-
tions, where the %CV between biological replicates decreased from 21%
to 13%, enabling more reliable use in the study after normalization. Poly
(ADP ribose) polymerase (PARP) proteins (PARP-1 and PARP-2) play a
critical role in controlling necrosis and apoptotic cell death. These PARP
proteins are located inside the nucleus and take part in DNA-repair in re-
sponse to DNA breaks and facilitate transcription, replication and DNA
base excision repair [149]. PARP inhibitors (Olaporib, iniparib and velipa-
rib) are undergoing clinical trials in BRCA mutated ovarian and breast
cancer patients [150]. Furthermore, PARP-1 has been linked to altered
control of p53-mediated DNA response and NFKappa-B response
[151]. Consequently, accurate quantification of cleaved PARP-1 could be
critical in understanding the complex signaling mechanisms involving

PARP-inhibition as well as perturbations involving BRCA1 and BRCAZ2.

Other proteins similarly rescued in this and other studies could expand
the scope of the biological problems addressed by RPPA. One context in
which spatial normalization could be very relevant is in the analysis of
tumor samples using RPPA, that due to requirements of throughput, cost

and limited availability of patient material, are often unable to have sam-
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ple replicates within slides. One such effort, belonging to the umbrella of
TCGA projects, measures and compares protein abundance data across
various tumors. In cases such as this, spatial variation alone could cause
the appearance of differences that may bias the results. Hence it is very
important that these data be appropriately normalized before use and
analysis in other projects R code for our spatial normalization method can
be used in conjunction with MicroVigene and SuperCurve. It is flexible and
may be adapted to several different kinds of experimental designs, with
the user specifying the locations of positive controls or other identical

samples to be used as reference points for normalization.

Our method is one of several early efforts for the standardization and
quality control of RPPA data. As data acquisition methods improve and
RPPA moves into more widespread use, we advocate the adoption of
common standards for the evaluation and correction, where possible, of
systematic errors in RPPA data as well as in the analysis of these data to
enable larger, multi-center studies and improve comparability across in-

dividual studies.
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