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DICER1 is the enzyme responsible for cleaving double-stranded RNAs 

(dsRNAs) into functionally mature ~20-24 nucleotide (nt) long microRNAs 

(miRNAs). miRNAs are the effectors of an RNA-induced gene silencing 

system that functions at the post-transcriptional and post-translational levels, 

and are essential for mouse development. Due to maternal Dicer1 contribution 

in the early stages of embryonic development, the exact timing for miRNA 

requirement has not yet been established. Furthermore, precise miRNA 

functional studies in early embryonic development have been lacking since 

miRNA knockout studies are hindered due to redundancy in the miRNA 

network. Thus, miRNA function in early embryonic development remains 

elusive. To address this knowledge gap, we set out to knockout DICER1 in 

human ESCs (hESCs) and assess human-specific miRNA requirements in the 

primed state. We report that DICER1 is essential in hESCs unlike in mouse 

embryonic stem cells (mESCs), and that this likely reflects a unique 

requirement for DICER1 in primed versus naïve pluripotency. Additionally, we 

designed an inducible DICER1 system to bypass the lethality of DICER1 loss 

in hESCs and enable the generation of homozygous mutants. A targeted 

mature miRNA rescue screen identified members of the miRNA-302-367 and 

miRNA-371-373 clusters, but surprisingly not miRNA-17-92, as having pro-

survival functions in hESCs. Since it bypasses the common issue of 

redundancy in the miRNA network, our screening platform is particularly suited 



	

to dissect the roles of individual miRNAs and miRNA clusters in early human 

development and hESC differentiation. 
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CHAPTER 1: Introduction 
 
 

1.1 OUR MODEL SYSTEM: HUMAN EMBRYONIC STEM CELLS 

1.1.1 Human Embryonic Stem Cells as a Platform to Study Human 

Development 

Understanding our basic biology as human beings is at the core of our 

innate curiosity about life, but also at the core of our necessity to find cures for 

developmental defects and cancer development. It has long been a priority to 

understand how genes function and how they can provoke abnormalities in 

disease states by performing controlled human genetic studies. Due to the 

obvious lack of material to study human development, gene function has been 

traditionally studied in model systems such as Drosophila and mouse, which 

share substantial functional conservation with human genes (99%) and major 

similarities in development, physiology and anatomy (Zhu and Huangfu, 2013). 

It is reassuring that many gene homologs in mouse and human behave 

similarly, as is the case for the Hox genes responsible for controlling body plan 

configuration in the developing embryo (Mallo et al., 2010). Considerable 

insight into human genetics has been gained from these mouse models, 

particularly in aspects pertaining to cell fate specification and tissue 

morphogenesis.  

However, studying the specifics of human development poses a unique 

challenge, for it is more complex and not entirely conserved from mouse. For 

example, there are obvious differences in gestation period, morphology, and 

the spatial-temporal regulation of gene expression (Zhu and Huangfu, 2013). 

Additionally, around 1% of human genes have no recognizable mouse 

homologs. Thus, it is possible to miss the crucial function of a gene in human 
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development even after extensive study of the mouse homolog. For example, 

patients deficient for the hypoxanthine-guanine phosphoribosyl transferase 

(Hprt) gene develop Lesch-Nyhan syndrome, a disease characterized by 

increased uric acid production and neurological dysfunction. However, the 

Hprt knockout mice do not reflect these symptoms (Finger et al., 1988). Thus, 

mouse models do not always reflect human development or disease.  

 

The need for a better model system that recapitulates human 

development more intimately is critical. Human pluripotent stem cells have two 

properties that render them ideal for human genetic studies: 1) they have self-

renewing ability, which provides us with an unlimited amount of material to 

work with, and 2) they are pluripotent, which means that they can be coaxed 

into any cell type of the body. The applications of hESCs are vast; studying 

human embryonic development ‘in a dish’, disease modeling, and cell 
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replacement therapies being the main ones. We will focus our study on human 

embryonic stem cells (hESCs) but it is worth mentioning that induced 

pluripotent stem cells (iPSCs), that are pluripotent stem cells derived from 

somatic cells of an adult patient (Takahashi and Yamanaka, 2006), can also 

be used for human genetic studies and developmental modeling.  

To this end, the ability to differentiate hESCs into cell types of interest is 

of crucial importance. In recent years, much progress has been achieved in 

differentiating hESCs into different cells types such as pancreatic b-cells, 

neuroectoderm, and specialized neuronal cells, amongst many other cell types 

(Fattahi et al., 2016; Qi et al., 2017; Rezania et al., 2014; Williams et al., 

2012). These directed differentiation protocols have been informed by mouse 

studies on signaling pathways in mouse development with much success, 

albeit some limitations (Zhu and Huangfu, 2013). For example, the formation 

of mature cell types still poses a challenge, as well as the variable ability of 

different hESC lines to differentiate into distinct cell types. Nevertheless, 

considerable progress is being made with directed differentiation protocols.  

To take full advantage of the hESC model system one must be able to 

manipulate it genetically to study the underlying mechanisms of human 

development and of human patient phenotypes. Traditional homologous 

recombination (HR) used in mouse genetics is not efficient in hESCs since the 

rate of HR is extremely low (Hockemeyer and Jaenisch, 2010). Some studies 

have shown success with traditional gene targeting in hESCs (Zwaka and 

Thomson, 2003), but these studies were extremely time consuming and 

required the generation of very large constructs which were many times 

unsuccessful (Hockemeyer and Jaenisch, 2016). This challenge has recently 

been overcome by the advent of site-specific nucleases (SSN) that 
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dramatically increase the rate of HR (Rouet et al., 1994), namely Transcription 

Activator-Like Effector Nuclease (TALENs) and Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR) technologies.  

 

1.1.2 A New Genetic Toolset to Study Gene Function in hESCs: 

CRISPR/Cas9 and TALENs 

At the intersection of human embryonic stem cells (hESCs) and 

genome editing lies the unique opportunity to study human development and 

disease in the lab. In hESCs we are now able to alter the genome effectively 

and precisely using SSN’s (‘DNA scissors’), which are enzymes that cut the 

backbone of DNA and cause either small insertions or deletions by Non-

Homologous End Joining (NHEJ), or precise genome editing by Homology 

Directed Repair (HDR) using a ssDNA donor template (Doudna and 

Charpentier, 2014). These technologies have allowed researchers to perform 

gain-of-function and loss-of-function studies in hESCs efficiently and 

accurately, and boosted confidence in the use of hESCs as a human genetic 

model system. 

Our laboratory has pioneered a rapid, multiplexable, and highly efficient 

genome-engineering platform in hESCs, called iCRISPR (inducible CRISPR), 

which takes advantage of both TALEN and CRISPR/Cas9 technologies 

(Gonzalez et al., 2014). We generated an inducible Cas9-expressing cell line 

by integrating a Cas9 expression cassette into the AAVS1 locus using 

TALENs. The AAVS1 locus is a safe harbor locus like the ROSA26 locus in 

mice (Smith et al., 2008). In our system, Cas9 is induced by expression of 

doxycycline so that genome editing only requires the expression or delivery of 

the single guide RNA (sgRNA), enhancing the efficiency of CRISPR targeting. 
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Our iCas9-HUES8 cell line allows the generation of biallelic knockout hESCs 

for loss-of-function studies, as well as homozygous knockin hESCs that harbor 

specific nucleotide alterations for disease modeling.      

Work from our lab has uncovered human-specific phenotypes for 

pancreatic differentiation genes such as NGN3 and GATA6 using the iCRISPR 

platform (Shi et al., 2017; Zhu et al., 2016). For example, NGN3 null hESC 

mutants differentiated towards the pancreatic lineage consistently give rise to 

~0.5% of insulin-positive cells, whereas Ngn3 has been shown to be essential 

for b-cell development in the mouse and no insulin-positive cells are detected 

in vivo (Gradwohl et al., 2000; Zhu et al., 2016). This phenotypic difference 

raises the possibility of an unidentified NGN3-independent pro-endocrine 

pathway(s), and highlights the importance of probing gene function in human 

ESCs.    

Another advantage of using hESCs and gene editing tools is that it 

allows the study of haploinsufficient human disease genes. Modeling a 

haploinsufficient disease gene is very difficult in the mouse since it usually 

requires inactivating both alleles of the mouse ortholog to recapitulate the 

disease phenotype. Our lab studied the contribution of a heterozygous GATA6 

inactivating mutation that has been observed in many patients with pancreatic 

agenesis, a rare birth defect characterized by the lack of a pancreas or a small 

one (Lango Allen et al., 2011). Inactivation of only one allele of GATA6 in the 

mouse does not cause apparent pancreatic defects (Morrisey et al., 1998), but 

our lab showed that heterozygous GATA6 mutants are compromised in 

definitive endoderm formation, as well as formation of pancreatic progenitor 

and glucose-responsive b-cells (Shi et al., 2017). Thus, our hESC model 

system is amenable to studying human-specific genetic phenotypes. 
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Other labs have also taken advantage of gene editing in hESCs. 

Recently, knockout studies on both DNMT1 and EZH2, which are genes that 

have been extensively studied in the mouse, rendered surprisingly different 

phenotypes in hESCs. In the case of DNMT1, it was found to be required for 

hESC viability (Liao et al., 2015), although not being essential for mouse ESCs 

(Tsumura et al., 2006). Similarly, EZH2 knockout hESCs are not viable 

(Collinson et al., 2016) despite being nonessential in mESCs (Shen et al., 

2008). These studies highlight the value of an hESC model system that allows 

human-specific requirements to be studied. 

Powerful gene editing techniques in hESCs have opened the doors into 

unforeseen territory, and will deepen our understanding of human 

development and disease states. A model system tends to be as powerful as 

its genetic tools, and hESCs are now amenable to powerful genome editing 

tools.  

 

1.2 MICRORNA’s & DICER1 

The hESC platform has become an attractive model system for studying 

human genetics. For example, it has enabled the study of DICER1, the RNase 

III protein responsible for processing microRNAs into their functionally mature 

forms, in human primed ESCs. 

 

1.2.1 MicroRNA Biogenesis & Function 

MicroRNAs are endogenous short noncoding RNAs 19-25nt long that 

regulate gene expression at the post-transcriptional level (Bartel, 2004). Since 

their discovery in C. elegans by Victor Ambros (Lee et al., 1993), thousands of 

microRNAs have been identified in a wide range of organisms from plants to 
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mammals. They are evolutionarily conserved and are thus recognized as one 

of the essential regulators in the control of many biological processes including 

development, metabolism, and homeostasis (Bartel, 2009). Aberrant 

microRNA expression is associated with human disease, including cancer 

(Chang and Mendell, 2007).  

MicroRNAs represent ~4% of the human genome and regulate the 

expression of more than a third of the protein-coding genes at the post-

transcriptional level (Bentwich et al., 2005). About half of the microRNAs are in 

intergenic regions controlled individually or as a cluster by their own 

promoters, and the other half lie within protein-coding genes and are co-

transcribed with their host genes or from miRNA-specific promoters (Bartel, 

2004, 2009; Rodriguez et al., 2004).    

MicroRNAs are transcribed by RNA-polymerase II into long transcripts 

called primary miRNA (pri-miRNA) (Lee et al., 2004a). These transcripts 

undergo multiple sequential endonucleolytic cleavage steps that ultimately 

result in ~20nt long mature hairpin molecules. First they are processed by the 

RNase III enzyme Drosha (Lee et al., 2003) and the RNA-binding protein 

Dgcr8 in the nucleus into ~60-70nt long hairpin precursor miRNAs (pre-

miRNAs) (Denli et al., 2004; Gregory et al., 2004; Han et al., 2004; Landthaler 

et al., 2004). Then they are actively transported from the nucleus into the 

cytoplasm through the export receptor Exportin-5 (Lund et al., 2004; Yi et al., 

2003), where the pre-miRNAs are cleaved by the RNAse III enzyme Dicer1 

into 19-25 nt double-stranded mature miRNAs (Hammond et al., 2000). 

Finally, either the 3p or 5p arm of the double stranded RNA is bound by an 

RNA-binding protein of the Argonaute family (Ago1-4) forming the RNA-

induced silencing complex (RISC) (Khvorova et al., 2003; Schwarz et al., 



	

	 	8	

2003). Endogenous small interfering RNAs (endo-siRNAs) are also cleaved by 

Dicer1 and loaded into the RISC complex but are derived from long double-

stranded RNAs from different genomic loci and bypass Dgcr8/Drosha 

cleavage (Elbashir et al., 2001; Zamore et al., 2000).  

 

The RISC complex bound to the miRNA localizes to the 3’ untranslated 

region (UTR) of target mRNAs through complementary base pairing (Bartel, 

2004). Nucleotides 2-8 from the 5’end of the microRNA (seed region) are 

crucial for target identification. Whether the RISC favors degradation, 

destabilization, or translation inhibition depends on the free energy of the base 

pairing between the small miRNA and the mRNA target (Baek et al., 2008; 

Djuranovic et al., 2012; Guo et al., 2010). Perfect complementarity between 

miRNAs and their target mRNAs result in Ago2 degradation of the target 

(Brennecke et al., 2005; Lewis et al., 2005). Important to note that only Ago2 

has slicer activity and therefore is the only Argonaute that can degrade target 

mRNA (Liu et al., 2004). Partial complementarity leads to repression of the 

mRNA translation at the initiation step, or to sequestration of the target 



	

	 	9	

mRNAs into cytoplasmic processing bodies where they undergo polyA-

nuclease degradation via deadenylation pathways (Guo et al., 2010). miRNAs 

function primarily through translational inhibition and target destabilization, 

whereas siRNAs result in target degradation. However, there are rare 

exceptions to this rule where mature miRNAs cleave targets directly (Yekta et 

al., 2004), and siRNAs behave like miRNAs (Doench et al., 2003).     

 

1.2.2 Dicer1 Protein 

Dicer1, an RNase III endonuclease, was first discovered for its role in 

generating the small interfering RNAs (siRNAs) that mediate RNA interference 

(RNAi) (Bernstein et al., 2001). Since then, at least three distinct functions of 

Dicer1 in the RNAi pathway have been delineated. First, as previously 

mentioned, its role in processing gene-encoded miRNA precursor hairpins 

(pre-miRs) into mature miRNAs (Grishok et al., 2001; Hutvagner et al., 2001; 

Ketting et al., 2001), and long dsRNAs into small interfering RNAs (siRNAs) 

(Elbashir et al., 2001; Knight and Bass, 2001; Zamore et al., 2000). Second, 

its role in loading small RNAs onto Argonaute (Ago) proteins to form the RNA-

induced silencing complex (RISC), a function called RISC-loading (Maniataki 

and Mourelatos, 2005; Pham and Sontheimer, 2005). And third, Dicer1’s role 

in serving as a scaffold in protein-protein interactions between RNAi cofactors 

in the RISC loading complex (RLC), the RISC itself, and other complexes 

involved in endo-RNAi mechanisms (Duchaine et al., 2006; Lee et al., 2004b).   

Although Dicer1’s most well-known function is in microRNA biogenesis, 

it is also involved in the endogenous siRNA pathway (endo-siRNA). EndoRNAi 

is elicited by transcribed genomic sequences that fold onto themselves or 

base-pair with other transcripts to generate double-stranded RNA molecules 
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that are processed by Dicer1 into endogenous siRNAs (endo-siRNAs) 

(Flamand and Duchaine, 2012; Okamura and Lai, 2008). This pathway then 

affects gene expression and genome organization at the transcriptional or 

post-transcriptional levels and, although similar to miRNAs, they can also 

modify histone marks and DNA methylation. Endo-siRNA targets in 

mammalian cells include a wide variety of repeated sequences, such as 

centromeric repeats, transposable elements and Alu repeats, but also include 

protein-coding genes (Fukagawa et al., 2004; Reinhart and Bartel, 2002; 

White and Allshire, 2004).  

Higher order organisms like vertebrates that evolved alternate antiviral 

strategies retained only one Dicer gene and lost Dicer2, which is presumably 

involved in host defense against RNA viruses in Drosophila (Kurzynska-

Kokorniak et al., 2015; Mukherjee et al., 2013). In humans, DICER1 is located 

on chromosome 14q32.13, it contains 26 protein coding exons, and it is made 

up of 1,922 aminoacids. It is a 220kD multidomain enzyme harboring an amino 

(N)-terminal helicase domain (homologous to DExD/H-box helicases), a 

DUF283 domain (domain of unknown function), a PAZ (Piwi-Argonaute-Zwille) 

domain, two RNase III domains (RNase IIIa and IIIb) and a dsRNA-binding 

domain (dsRBD) (Macrae et al., 2006a; Macrae et al., 2006b; Zhang et al., 

2002; Zhang et al., 2004). From this DICER1 gene, multiple transcripts have 

been identified as a result of alternative transcription initiation sites and 

alternative splicing. To date, four full-length DICER1 proteins have been 

identified comprising all 1,922 aminoacid residues. These four variants differ 

only in their 5’ and 3’ non protein-coding sequences as they maintain the 

coding regions. Numerous shorter alternative splice variants have been 

identified as well. Some of them encode short proteins retaining only the N- or 
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C-terminus of DICER1, and other variants do not code for protein. The 

function of these shorter variants has not been elucidated yet (Kurzynska-

Kokorniak et al., 2015).   

 

1.2.3 MicroRNA Expression in Naïve and Primed ESCs 

Embryonic stem cell (ESC) lines can be derived from mouse and 

human embryos. These include mouse ESCs (mESCs), mouse epiblast-like 

stem cells (mEpiSCs), and human ESCs (hESCs) (Greve et al., 2013). These 

stable cell lines can be passaged indefinitely in culture and differentiate into all 

three embryonic germ layers (endoderm, ectoderm and mesoderm). mESCs 

are derived from the inner cell mass (ICM) of embryos in the blastocyst stage 

(Evans and Kaufman, 1981; Martin, 1981). These mESCs are characterized 

by a specific self-reinforcing circuitry of transcription factors that allows the 

long term self-renewal and maintenance of pluripotency in vitro. As mESCs 

remain pluripotent, they integrate and contribute to the embryo proper when 

they are injected into blastocysts, generating chimeras.  

Interestingly, although mESCs and hESCs are derived from the 

blastocyst stage of pre-implantation embryos, they seem to differ in their 

transcriptional program and appear to represent different developmental 

stages in embryonic development (Brons et al., 2007; Tesar et al., 2007; 

Thomson et al., 1998). Molecular profiling, X-chromosome activation status, 

morphological observations and growth conditions indicate that hESCs 

resemble mEpiSCs more than mESCs (Pera and Tam, 2010). mEpiSCs are 

derived from post-implantation mouse embryos or by differentiating mESCs in 

the presence of Activin and Fgf. mEpiSCs, unlike mESCs, are unable to 

contribute to chimeras and upregulate early differentiation markers, but they 
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can still form teratomas (Pera and Tam, 2010). The discovery of these two 

different pluripotent states led to the idea that hESCs and mEpiSCs share a 

‘primed’ pluripotent state and mESCs represent a ‘naïve’ pluripotent state 

(Brons et al., 2007; Tesar et al., 2007; Weinberger et al., 2016).  

The microRNA profile of pluripotent stem cells (PSCs) has been 

extensively studied (Bar et al., 2008; Calabrese et al., 2007; Houbaviy et al., 

2003; Marson et al., 2008; Mathieu and Ruohola-Baker, 2013; Morin et al., 

2008; Stadler et al., 2010). Interestingly, a single microRNA family sharing an 

AAGUGC seed sequence and known as the ESC-specific cell cycle-regulating 

(ESCC) family of miRNAs dominates the miRNA landscape in PSCs (Wang et 

al., 2007). This is in stark contrast to most somatic cells which express a 

diversity of miRNA molecules. Individual ESCC miRNAs are expressed from 

different clusters, mainly the miR-290-295 (miR-371-373 in human), miR-302-

367, and miR-17-92b clusters, and these clusters contain both ESCC, ESCC-

like (shifted by one base) and non-ESCC miRNAs. Consequently, although 

expressed from distinct loci, this ESCC miRNA superfamily comprises 

between 20% and 50% of all miRNAs in PSC lines (Greve et al., 2013).  

The differences between mESCs, mEpiSCs, and hESCs are also 

distinguishable in their microRNA expression profiles. In mESCs, the clusters 

miR-290-295 (human analog miR-371-373) and miR-17-92 are the 

predominant contributors to the miRNA profile (Marson et al., 2008), whereas 

hESCs and mEpiSCs mainly express the miR-302-367 cluster (Bar et al., 

2008; Jouneau et al., 2012), and the miR-290-295 (=miR-371-373) and miR-

17-92b are expressed at lower levels. During mouse development, miR-290 is 

ubiquitously expressed in the zygote, but later become restricted to the 

extraembryonic structures such as the placenta and the yolk sac (Parchem et 
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al., 2015; Parchem et al., 2014; Tang et al., 2007). However, miR-302 

expression starts after implantation ~(E) 5.5 in the epiblast and is co-

expressed with miR-290 until embryonic day (E) 7.5, when miR-290 is 

downregulated and miR-302 expression persists localized to anterior 

structures until ~(E) 10.5 (Card et al., 2008; Houbaviy et al., 2003; Parchem et 

al., 2015; Parchem et al., 2014; Tang et al., 2007). 

Consistent with their primed pluripotent state, hESCs and mEpiSCs 

upregulate miRNAs commonly found in differentiated tissues (Chiang et al., 

2010; Jouneau et al., 2012). Upon differentiation, the ESCC miRNA-containing 

clusters are silenced (Suh et al., 2004), demonstrating that these clusters are 

specific to early embryonic tissues. 

 

1.3 MICRORNA FUNCTION IN DEVELOPMENT 

 

1.3.1 Transcriptional Control of MicroRNA Expression in ESCs 

Maintaining appropriate levels of miRNAs in ESCs is crucial to maintain 

self-renewal and to deterr differentiation, but also to ‘prime’ the cells for 

differentiation. The well-defined pluripotency circuitry of Oct4, Nanog, and 

Sox2 in the inner cell mass (ICM) and in ESCs (Avilion et al., 2003; Chambers 

et al., 2003; Mitsui et al., 2003; Nichols et al., 1998; Niwa et al., 2000) co-

occupy promoters of many miRNAs and protein-coding genes in ESCs. They 

bind and activate promoters of pluripotency-associated genes, including their 

own promoters (Boyer et al., 2006; Marson et al., 2008), thus maintaining a 

state of self-renewal. The Oct4/Nanog/Sox2 axis also represses genes 

involved in lineage commitment by co-occupying these promoters with 
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Polycomb-group protein (PcG), priming them for differentiation (Bernstein et 

al., 2006; Boyer et al., 2006). 

Three research groups in 2008 found that Oct4, Nanog, and Sox2 

positively associated with the ESCC miRNA cluster promoters (mmu-miR-290-

295, hsa-miR-371-373, miR-302-367, and miR-106a-363 clusters), as well as 

the promoters of differentiation-inducing miRNAs such as the let-7 family 

(Barroso-delJesus et al., 2008; Card et al., 2008; Marson et al., 2008). The 

expression of pri-let-7 family of miRNAs is elevated in mESCs (Thomson et 

al., 2006) but processing of these primary transcripts into their functional forms 

is inhibited by Lin28 (Thornton and Gregory, 2012). Lin28 is also under 

transcriptional control of Oct4/Nanog/Sox2 and it is downregulated upon 

differentiation (Marson et al., 2008; Moss and Tang, 2003). High levels of 

immature let-7 transcripts in ESCs thus function as a priming mechanism for 

rapid differentiation upon Lin28 downregulation that doesn’t require immediate 

transcription of the let-7 genes (Greve et al., 2013; Marson et al., 2008). 

Furthermore, the ESCC microRNAs inhibit the let-7 family from 

silencing the pluripotency program of ESCs, thus promoting their self-renewal 

(Melton et al., 2010). Contrary to the ESCC miRNAs, let-7 is a suppressor of 

cell-cycle progression (Johnson et al., 2007) and causes ESCs to accumulate 

in the G1 phase. Blelloch’s group identified an additional 5 microRNAs that 

promote differentiation by inducing accumulation at the G1 phase, and that are 

antagonized by the ESCC miRNAs: miR-26a, miR-99b, miR-193, miR-199a-

5p, and miR-218 (Wang et al., 2013b). 

 

1.3.2 Global microRNA Function in Mouse Development 



	

	 	15	

As previously discussed, Dicer1 is required for the last endonucleolytic 

cleavage step that precursor miRNAs undergo before forming functionally 

mature miRNAs. Thus, to study global microRNA function Dicer1 is a good 

candidate to knockout (Greve et al., 2013). Dicer1 knockout in the mouse was 

established by Emily Bernstein and colleagues and demonstrated that Dicer1 

is essential for early mouse development (Bernstein et al., 2003). Specifically, 

they replaced exon 21 (RNase IIIa domain) with a neomycin resistant gene, 

and then carried out timed heterozygous matings to determine at which 

developmental stage Dicer1 is required. Dicer1-/- embryos collected at days 

(E) 9.5, 10.5, and 11.5 displayed empty or necrotic epithelium. At E8.5 they 

also found empty or necrotic epithelium but it was surrounded by a normal yolk 

sac. At E7.5 the embryos appeared small and morphologically abnormal, 

although embryonic and extraembryonic regions were clearly demarcated. At 

this stage, Dicer1-/- embryos did not stain for the primitive streak marker 

Brachyury, which means that Dicer1 is required before the body plan is 

configured during gastrulation. Moreover, about half of the embryos predicted 

from mendelian inheritance were observed at this developmental stage, 

presumably because a fraction of the embryos die at an earlier timepoint 

(Bernstein et al., 2003).  

Contrary to the finding that Dicer1 is required for gastrulation, a more 

recent study showed that gastrulation is initiated in the epiblast of Dicer1-/- 

mice but with a day of delay causing smaller embryos compared to wildtype 

(Spruce et al., 2010). Upon further investigation, they found this delay is 

caused not by decreased proliferation but rather from increased apoptosis. 

These findings were corroborated in null mutant embryos and in embryos 

where Dicer1 has been removed specifically from the epiblast. MicroRNAs, 
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therefore, are responsible for controlling cell survival at E5.5. It is possible that 

differences in genetic background of the embryos analyzed in these two 

studies could account for the increased severity of the phenotype observed in 

the work of Bernstein and colleagues (Spruce et al., 2010). 

Nevertheless, both studies observe embryonic lethality of Dicer1 null 

embryos and conclude that Dicer1 is essential for mammalian development 

(Bernstein et al., 2003; Spruce et al., 2010). One confounding factor in these 

Dicer1 null studies is the fact that mature miRNAs are still present in Dicer1-/- 

mice in preimplantation stages due to perdurance of maternally-contributed 

Dicer1. In fact, three members of the miR-290 family were still expressed in 

Dicer1-/- blastocyts (Spruce et al., 2010). Thus, the exact timing for Dicer1 

requirement during development remains elusive, so is Dicer1’s requirement in 

preimplantation ESCs.       
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1.3.3 Global microRNA Function in Naïve and Primed Cultured ESCs 

To bypass the confounding factor of maternally contributed Dicer1 in 

preimplantation stages, researchers set out to study Dicer1’s role in mESCs, 

which are derived from E3.5 blastocysts and are said to be in a “naïve” 

pluripotency state (Kanellopoulou et al., 2005; Murchison et al., 2005; 

Weinberger et al., 2016). Dicer1 knockout mESCs are viable, display normal 

ES morphology and express the pluripotency circuitry. However, Dicer1 

knockout cells proliferate slower than wildtypes and accumulate in the G1 

phase of the cell cycle, unlike the ICM in Dicer1 knockout embryos (Spruce et 

al., 2010). Upon induction of embryo body formation, Dicer1 knockout mESCs 

fail to upregulate differentiation markers and downregulate pluripotency 

markers (Kanellopoulou et al., 2005). In line with these findings, Dicer1 

knockout mESCs failed to generate teratomas upon subcutaneous injection in 

mice. Together, these reports suggest that miRNAs are not required for the 

survival or self-renewal of ESCs, but are instead important for proliferation and 

cell cycle structure, and are essential for proper differentiation and silencing of 

the pluripotency network. 
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Blelloch’s group took a slightly different approach. Since Dicer1 is 

required for both miRNA and siRNA pathways, Blelloch’s group opted to 

knockout Dgcr8, which is only required in the miRNA pathway for pri-miRNA 

processing. Dgcr8 knockout mESCs present comparable phenotypes when 

compared with Dicer1 knockout mESCs, albeit less severe (Wang et al., 

2007). For example, upon differentiation, Dgcr8 knockout mESCs show 

reduced levels rather than a complete lack of differentiation markers. These 

phenotypic differences may suggest additional functional roles for Dicer1 in 

mESCs (Greve et al., 2013), or may suggest a role for mirtrons, which are a 

class of intronic miRNAs that bypass Drosha/Dgcr8 processing but require 

Dicer1 (Okamura et al., 2007; Ruby et al., 2007). 

However, these mESC studies do not explain the post-implantation cell 

death observed in vivo (Spruce et al., 2010). To this end, mEpiSCs and 

hESCs, which are cells primed for differentiation and resemble the epiblast of 

the post-implantation embryo (Nichols and Smith, 2009), are better suited to 

study. In fact, Dicer1 deletion in mEpiSCs mimicks the in vivo observation and 

leads to increased apoptosis as measured by Annexin and Cleaved Caspase-

3 (Pernaute et al., 2014). Specifically, miRNAs seem to be required to control 

apoptosis via the mitochondrial pathway by regulating the expression of the 

proapototic protein BIM in the primed pluripotent state. Changes in expression 

of pluripotency or lineage-specific markers were not observed, neither were 

changes in the activation of signaling pathways required for EpiSC 

maintenance (FGF and Activin), demonstrating that regulation of cell survival 

is the primary role of miRNAs in the primed pluripotent state in mice.   

 Although DICER1 knockout studies have not yet been performed in 

hESCs, Ruohola-Baker’s group attempted shRNA knockdown of DICER1 and 
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DROSHA in hESCs (Qi et al., 2009). Reduced levels of miRNAs caused 

proliferation defects, but surprisingly, had no effect on survival of the cells 

resembling the Dicer1 knockout mESCs. There are several possible 

explanations for these primed hESCs behaving differently than their mouse 

counterparts, mEpiSCs. One possibility is that the DICER1 and DROSHA 

knockdowns did not reach sufficient levels to elicit the proper phenotype. The 

other explanation is that human and mouse primed ESCs may behave 

differently. Proper characterization of DICER1 knockout hESCs is required to 

discern between these possibilities.  

 

1.3.4 Function of miRNA-290-295 Cluster (miRNA-371-373 in human) in 

ESCs 

The miRNA-290-295 cluster, and its human homolog miRNA-371-373, 

is amongst the most abundant miRNA classes in ESCs (Calabrese et al., 

2007; Marson et al., 2008; Suh et al., 2004). It is a cluster specific to ESCs, as 

its expression increases during preimplantation development, remains 

elevated in undifferentiated ESCs, and decreases upon differentiation 

(Houbaviy et al., 2003; Tang et al., 2007).  

In mESCs, individual miRNAs from these clusters directly target the 

cell-cycle inhibitors p21 and LATS2, which normally repress the G1-S phase 

transition (Wang et al., 2008). mESCs have a unique cell cycle structure 

characterized by a short G1 phase, and thus it is believed that the miR-290 

cluster encourages the cell cycle transition at the G1-S phase, shortening it 

and thus allowing faster cycling of the cells (Wang et al., 2008; White and 

Dalton, 2005).  
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In addition to its role in cell proliferation, this cluster plays a role in 

differentiation of mESCs by promoting de novo DNA methylation (Benetti et 

al., 2008; Sinkkonen et al., 2008). miR-290 miRNAs repress the expression of 

Rbl2, which is a transcriptional repressor of de novo DNA methyltransferases. 

Dicer1-/- mESCs downregulate de novo DNA methyltransferases like Dnmt1, 

Dnmt3a, Dnmt3b and Dnmt3L and are unable to de novo methylate the Oct3/4 

locus, which is at least partially caused by miR-290 loss-of-function (Benetti et 

al., 2008; Sinkkonen et al., 2008). The inability of mESCs to differentiate in 

Dicer1 and Dgcr8 knockout backgrounds is likely attributed to the absence of 

the miR-290 cluster, causing defective de novo DNA methylation during 

differentiation especially at the Oct3/4 locus (Sinkkonen et al., 2008). Another 

group found that miR-290 cluster miRNAs repress the Wnt pathway inhibitor 

Dkk1 and thus prevent ESC differentiation to mesoderm and germ cells in vitro 

(Zovoilis et al., 2009).  

Furthermore, Kanellopoulou and colleagues found that bivalent genes, 

specifically of the Hox family, were upregulated in Dicer1-/- mESCs, and that 

miR-290 is responsible for Hox gene repression by inactivating Ash1l 

(Kanellopoulou et al., 2015), which normally evicts Polycomb during 

differentiation (Miyazaki et al., 2013; Tanaka et al., 2011). Another group 

found that Dicer1 is required for bivalent gene repression and polycomb group 

binding at bivalent genes, which is rescued by miR-294, a member of the miR-

290-205 cluster (Graham et al., 2016). Thus, the miRNA-290-295 cluster is 

required for repression of bivalent genes in ESCs to prevent differentiation.    

The miRNA-290 cluster indirectly antagonizes the maturation of the let-

7 family of miRNAs, which are strong inducers of differentiation, to maintain 

pluripotency and prevent differentiation in mESCs (Melton et al., 2010). By an 
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unknown mechanism, miR-290 maintains the expression of Lin28, an RNA-

binding protein that blocks the maturation of let-7. The miRNA-290 cluster and 

the let-7 family show a mutually exclusive expression pattern: let-7 is not 

expressed in ESCs, but upon induction of differentiation, the loss of 

pluripotency transcription factors causes miR-290 levels to decrease, which 

downregulates Lin28. Consequently, let-7 maturation is reestablished 

increasing its expression and further promoting differentiation by repressing 

pluripotency factors that normally increase miR-290 levels (Melton et al., 

2010). The mutually exclusive expression pattern and opposing functions of 

these clusters form a regulatory feedback loop that regulates the balance 

between self-renewal and differentiation.  

A more recent study links the miR-290 cluster with a pro-survival 

function in mESCs (Zheng et al., 2011). Using gain-of-function and loss-of-

function studies, the authors confirmed that the miR-290 cluster prevents 

apoptosis during exposure to genotoxic stress by targeting Caspase 2 and 

Ei24, both known pro-apoptotic factors activated by p53 (Zheng et al., 2011). 

This anti-apoptotic function of miR-290 in mESCs can be particularly relevant 

during physiological stress in embryonic development, and could partially 

explain the increased apoptosis observed in post-implantation Dicer1-/- 

embryos (Spruce et al., 2010). 

miR-290 cluster knockout studies have also been performed. Null 

mESCs are viable and indistinguishable from wildtypes, suggesting that the 

miR-290 cluster is dispensable for maintaining the pluripotent state in ESCs 

(Medeiros et al., 2011). Nevertheless, miR-290 null mice resulted in partially 

penetrant embryonic lethality (Medeiros et al., 2011). Three quarters of the 

miR-290 cluster nulls are lost during development before birth, specifically 
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between E11.5 and E18.5, but embryo abnormalities are observed as early as 

E8.5. Abnormalities include embryos localized outside the yolk sac or 

developmentally delayed embryos (Medeiros et al., 2011).  

 Overall, the miRNA-290-295 cluster is important for development and 

studies from mESCs have highlighted its role in cell cycle, differentiation, 

bivalent gene repression, and apoptosis. However, the human homolog 371-

373 has not been fully elucidated in the context of ES cell biology, particularly 

in the primed state, i.e. hESCs.  

   

1.3.5 Function of miRNA-302-367 Cluster in ESCs 

The miRNA-302-367 cluster belongs to the ESCC family of miRNAs 

that are highly expressed in ESCs and that function, at least partially, to 

promote proliferation in ESCs through a characteristically short G1 phase 

(Wang et al., 2008). Although expressed in mESCs, it is the most abundant 

miRNA cluster in primed hESCs and mEpiSCs (Bar et al., 2008; Jouneau et 

al., 2012; Suh et al., 2004).  

Studies have shown that this cluster functions in the cell cycle to 

promote the G1-S transition. For example, transfection of miR-302b, miR-

302c, and miR-302d in Dgcr8 deficient mESCs decreases the percentage of 

cells in the G1 phase to wildtype levels (Wang et al., 2008). This effect is 

orchestrated through suppression of a cyclinE-Cdk2 complex inhibitor, Cdkn1a 

(Wang et al., 2008). Another group found that ectopic expression of miR-302a 

in primary and transformed cell lines leads to a decrease in the percentage of 

cells in the G1 phase by translational inhibition of the CyclinD1-Cdk4 complex, 

which is a G1-2 transition regulator (Card et al., 2008). Similarly, studies in 

human embryonal carcinoma cells (hECCs) show that miR-302b indirectly 
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regulates the expression of OCT3/4 and directly regulates expression of Cyclin 

D2 protein, which is a developmental regulator during gastrulation (Lee et al., 

2008).  

Besides its role in cell proliferation, the miR-302 cluster has been 

implicated in differentiation. Prior reports have shown that the TGF-b/Nodal 

signaling pathway is critical in the maintenance of pluripotency in hESCs 

(James et al., 2005; Vallier et al., 2005). miR-302 has been shown to target 

the TGF-b/Nodal inhibitors LEFTY1/2 in hESCs and thus promoting TGF-

b/Nodal signaling (Rosa et al., 2009; Tabibzadeh and Hemmati-Brivanlou, 

2006). As an upstream regulator of the TGF-b/Nodal signaling pathway, miR-

302 leads to a delay in early hESC differentiation and facilitates the 

maintenance of pluripotency (Barroso-delJesus et al., 2011). Another group 

showed that by indirectly raising Nodal activity, miR-302 promotes the 

mesendodermal lineage at the expense of neuroectoderm differentiation, thus 

preventing the default neural induction of hESCs (Rosa et al., 2009).   

miR-302 is also implicated in bone morphogenetic protein (BMP) 

signaling. BMP signaling activation promotes differentiation towards 

mesoderm and trophectoderm lineages in hESCs at the expense of 

neuroectoderm (Xu et al., 2002; Zhang et al., 2008). miR-302 was shown to 

inhibit neural differentiation and enhance trophectodermal fate by promoting 

BMP signaling (Lipchina et al., 2011). Since neural induction is initiated by 

inhibition of the TGF-b and BMP signaling pathways, by targeting inhibitors of 

both pathways, and therefore activating them, miR-302-367 both suppresses 

neural induction and promotes pluripotency (Lipchina et al., 2011). This 

strategy makes sense as in the absence of cell-cell signaling, hESCs are fated 
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for neural differentiation at the expense of mesendodermal and 

trophectodermal lineages (Munoz-Sanjuan and Brivanlou, 2002). 

Consistent with miR-302’s role in suppressing neural induction, mouse 

knockout ESCs for miR-302a-d show an expansion in neuroepithelium at (E) 

9.5 caused by early increases in proliferation and later decreases in apoptosis 

(Parchem et al., 2015). miR-302a-d knockout mice are embryonic lethal with a 

fully penetrant phenotype, unlike the partial penetrance of miR-290 knockout 

mice (Medeiros et al., 2011; Parchem et al., 2015). Although expression of the 

miR-302 cluster begins ~(E) 5.5, the phenotype is only evident at (E) 9.5, 

presumably because of overlapping expression and function with the miR-290 

cluster between (E) 5.5 and (E) 7.5. In fact, double knockout mice for miR-290 

and miR-302 clusters led to an earlier phenotype prior to neurulation, which 

could not be appropriately staged because of the highly abnormal morphology 

of the mutant embryos. Nevertheless, this demonstrated a role for miR-302 

before neurogenesis that is redundant with miR-290, but that has not been 

studied yet (Parchem et al., 2015).     

 To conclude, the miR-302 cluster is essential for embryonic 

development.  Studies have shown it plays important roles in the cell cycle, 

differentiation, and maintenance of pluripotency. Furthermore, there are 

indications of an earlier role for miR-302 during gastrulation which has not yet 

been elucidated. 

 

1.3.6 Function of miRNA-17-92 Cluster in ESCs 

The miR-17-92 cluster of miRNAs is enriched in ESCs (Houbaviy et al., 

2003; Suh et al., 2004) and contains miRNAs with similar seed sequences to 

those of the ESCC family of miRNAs (Marson et al., 2008). Unlike other ESCC 
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miRNAs, this cluster is expressed in adult tissues as well, and is therefore not 

specific to the epiblast. This cluster forms a family with two paralogues: the 

miR-106b-25 and the miR-106a-363 clusters, which also share similar seed 

sequences as the ESCC miRNAs (Mogilyansky and Rigoutsos, 2013). During 

mouse development, miR-17-92 and miR-106b-25 clusters, but not miR-106a-

363, are expressed in mESCs and mid-gestation embryos (Ventura et al., 

2008).  

In line with other ESCC family miRNA, five miRNAs from the miR-17-92 

family (miR-19a, miR-20a, miR-20b, miR-93, and miR-106a) were able to 

partially rescue the proliferation defects observed in Dgcr8-/- mESCs (Wang et 

al., 2008). Thus, miR-17-92, like other ESCC miRNAs, play an activating role 

in proliferation of mESCs.  

Deletion of miR-17-92 in mice leads to fully penetrant neonatal lethality 

and specific defects in heart, lung and B cell development (Ventura et al., 

2008). Redundancy with miR-106b-25 was confirmed by a double knockout 

which showed severe cardiac defects, increased apoptosis and embryonic 

death by mid-gestation - much earlier than miR-17-92 deletion alone (Ventura 

et al., 2008). Important to note, miR-17-92 is the only cluster in this family that 

is essential for proper development. The miR-106b-25 and miR-106a-363 

single knockout mice were normal and viable, and it was only in the context of 

miR-17-92 deletion that miR-106b-25 caused a phenotype (Ventura et al., 

2008). No phenotype was observed in embryos earlier than mid-gestation, 

presumably due to overlapping functions of the ESCC miRNAs which are 

abundantly expressed in early development.      

Of particular interest, Tyler Jacks’ group found that miR-17-92 

negatively regulates the expression of the proapoptotic gene Bim during 
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development (Ventura et al., 2008), which leads to apoptosis upon 

overexpression (Bouillet and Strasser, 2002).Thus, the miR-17-92 cluster 

seems to have a protective role against apoptosis at least during B cell 

development and lymphomagenesis. 

It is no wonder that roles in accelerating proliferation and diminishing 

apoptosis may be co-opted in cancer. miR17-92, also called OncomiR-1, has 

been extensively studied in the context of cancer and is known to be 

upregulated in this setting (Mendell, 2008), but will not be discussed in depth 

here.  

miR17-92 has been implicated in cancer, as well as in proliferation and 

apoptosis in the developing embryo. However, its function in ESCs, 

particularly during early embryonic development, has not yet been elucidated 

(Mallanna and Rizzino, 2010), presumably due to redundancy issues.  

 

1.3.7 miRNAs in Reprogramming 

The in vitro derivation of induced pluripotent stem cells (iPSCs) from 

somatic cells, a process denominated reprogramming (Takahashi and 

Yamanaka, 2006), has been an area of extensive research due to its potential 

clinical applications. Briefly, a set of defined transcription factors (such as 

Oct4, Sox2, Klf4, and c-Myc, collectively dubbed OSKM) is introduced into 

somatic cells in DNA vectors, and these factors induce a dedifferentiation 

process in some cells that adopt the morphology and molecular profile of 

ESCs, reestablishing both self-renewal and pluripotency (Greve et al., 2013). 

Since miRNAs are important regulators of the pluripotent state and can be 

easily overexpressed or suppressed, many groups investigated the potential of 

miRNAs in the generation of iPSCs. 
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Studies of gene expression patterns during reprogramming have 

identified several miRs from the miR-17-92, miR-106a-363, and miR-106b-25 

clusters as being activated early in OSKM reprogramming of mouse 

embryonic fibroblasts (MEFs) (Chen et al., 2012; Li et al., 2011; Polo et al., 

2012). This activation is induced by direct c-Myc binding to their promoters 

(Liao et al., 2011). On the other hand, the miR-290 cluster reactivates late in 

reprogramming, together with other core pluripotency factors (Chen et al., 

2012; Judson et al., 2009; Polo et al., 2012). Although the promoter of this 

cluster is bound by all OSKM factors, it is not activated until epigenetic 

remodeling occurs (Judson et al., 2009; Marson et al., 2008). Other microRNA 

clusters with known roles in PSCs, such as the miR-302 and miR-200 clusters, 

have been reported to be activated during reprogramming (Chen et al., 2012; 

Lee et al., 2013; Li et al., 2011; Liao et al., 2011; Polo et al., 2012; 

Samavarchi-Tehrani et al., 2010; Wang et al., 2011). The timing of their 

activation has been inconsistent, which probably reflects the stochasticity of 

the conversion process.  

Exogenous overexpression of a myriad of miRNAs has been shown to 

enhance reprogramming of MEFs (Greve et al., 2013). The first study focused 

on the miR-290 and miR-302 clusters due to their important roles in 

pluripotency. Only the ESCC seed-containing miRNAs in these clusters were 

able to enhance iPSC colony formation in a dose-dependent manner (Judson 

et al., 2009). These miRNAs not only increased reprogramming efficiency up 

to 70%, but also reduced the generation of partially reprogrammed or 

transformed colonies (Judson et al., 2009). In fact, all ESCC-containing 

miRNAs, even ESCC-like miRNAs, enhanced reprogramming, showing the 
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robustness of ESCC miRNA-complemented reprogramming (Li et al., 2011; 

Liao et al., 2011), even in human fibroblasts (Subramanyam et al., 2011).  

Reprogramming of fibroblasts is initiated by a mesenchymal-to-

epithelial transition (MET) (Samavarchi-Tehrani et al., 2010). ESCC miRNAs 

have been shown to cause an acceleration of MET (Liao et al., 2011; 

Subramanyam et al., 2011), which likely enhances reprogramming. The miR-

200 family, also highly expressed in PSCs, is also well-known for its role in 

promoting MET and, as expected, enhances MET during reprogramming 

(Samavarchi-Tehrani et al., 2010). However, it does not increase the number 

of ultimate iPSC colonies generated, suggesting that the ESCC miRNAs must 

play additional roles in reprogramming (Liao et al., 2011; Samavarchi-Tehrani 

et al., 2010). In fact, it has been shown in human that the ESCC miRNAs 

reduce cellular senescence by directly targeting P21 and P130, activate Oct4 

expression through targeting of NR2C2, and inhibit a range of epigenetic 

modifiers (Banito et al., 2009; Hu et al., 2013; Lee et al., 2013; Lin et al., 2011; 

Subramanyam et al., 2011). It is unknown whether these are the only targets 

of ESCC miRNAs during reprogramming or whether there are more.   

 

1.4 THESIS AIMS 

 While Dicer1 is undoubtedly essential for mammalian development, the 

exact timing for its requirement has not yet been established due to the 

confounding factor of maternal Dicer1 in early mouse development. Since 

Dicer1-/- mESCs are viable, it seems like the requirement for Dicer1 occurs 

after implantation. Individual miRNA function at these early stages has not 

been thoroughly assessed since miRNA knockout studies are hindered due to 

redundancy in the miRNA network. Thus, precise miRNA functional studies in 



	

	 	29	

early embryonic development have been lacking. To address this knowledge 

gap, we set out to knockout DICER1 in human ESCs, which model stem cells 

of the post-implantation epiblast, to assess global miRNA requirement in the 

primed state. Also, we set out to specifically dissect human miRNA 

requirements at this stage. We report that DICER1 is essential in hESCs 

unlike in mESCs, and that this likely reflects a unique requirement for DICER1 

in primed versus naïve pluripotency. Additionally, we set up a system to 

interrogate individual and miRNA clusters that bypasses redundancy problems 

and allows proper assessment of their functions in human primed pluripotency. 
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CHAPTER 2: DICER1 Requirement and miRNA Function in hESCs 
 
 

2.1 INTRODUCTION 

MicroRNAs (miRNAs) are ~20-24 nucleotides (nt) long noncoding RNAs 

that bind target messenger RNAs (mRNAs) through partial complementarity 

with their 3’UTRs to destabilize or inhibit translation of the transcripts (Ebert 

and Sharp, 2012). This gene regulatory system is largely enabled by the 

RNase III enzyme Dicer1 that is required for the biogenesis of canonical 

miRNAs into their functional forms (Kurzynska-Kokorniak et al., 2015). Genetic 

deletion of Dicer in the mouse is embryonic lethal, and embryos are grossly 

abnormal by E7.5 during the postimplantation stage (Bernstein et al., 2003; 

Spruce et al., 2010), emphasizing the importance of microRNAs in early 

mouse development. 

Nevertheless, Dicer1-/- mESCs exhibit normal mESC morphology and 

express the proper pluripotency markers corroborating the in vivo observation 

that miRNAs are required not for the establishment of pluripotent cells but 

rather for differentiation (Kanellopoulou et al., 2005; Spruce et al., 2010). 

However, Dicer1-/- and Dgcr8-/- mESCs exhibit a proliferation and cell cycle 

defect not observed in vivo, and accumulate in the G1 phase of the cell cycle 

(Kanellopoulou et al., 2005; Murchison et al., 2005; Wang et al., 2007). miRNA 

rescue experiments in Dgcr8-/- mESCs have shown that the cell cycle of 

mESCs is regulated by members of the miR-290-295 (its human analog miR-

371-373), miR-302, and miR-17-92b clusters, commonly referred to as the 

ESC-specific cell cycle-regulating (ESCC) family of miRNAs (Wang et al., 

2008). However, miR-290-295 and miR-17-92b cluster mouse knockouts do 

not mimic Dicer1 embryonic lethal phenotype (Medeiros et al., 2011; Ventura 
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et al., 2008). Thus, the Dicer1-null lethality remains unexplained due to the 

redundant nature of miRNAs, which poses a technical challenge since multiple 

clusters would have to be deleted in order to recapitulate the global knockout 

phenotype (Greve et al., 2013).  

Although the field has inferred some microRNA function from studying 

mESCs, it is not clear which miRNAs are responsible for the Dicer1 knockout 

phenotype, and more importantly, human ESC (hESC) microRNA function is 

still lacking (Greve et al., 2013). To the best of our knowledge, DICER1 has 

not been knocked out in hESCs yet, despite several indications that we should 

study hESC-specific phenotypes and not rely solely on mESC data. mESCs 

and hESCs differ in their microRNA expression profiles. Firstly, in mESCs the 

miR-290-295 and miR-17-92b clusters are the dominant contributors to the 

miRNA profile, whereas hESCs express miRNAs from the miR-302-367 

cluster predominantly (Bar et al., 2008; Jouneau et al., 2012). Different miRNA 

profiles might indicate different functional roles for miRNAs in these different 

cell types. Secondly, recent knockout studies in hESCs have shown significant 

differences in the regulation of the stem cell state between mouse and human 

ESCs. For example, Dnmt3b and EZH2 are unexpectedly essential in hESCs 

but not in mESCs (Collinson et al., 2016; Liao et al., 2015), highlighting the 

need to study hESC-specific knockout phenotypes. Thus, it is crucial that we 

study the effects of DICER1 deletion to uncover novel and human-specific 

miRNA functional roles in the context of human development. 

Here we report the generation and characterization of DICER1-deficient 

human ESCs. Our study shows that DICER1 is essential for hESC self-

renewal, revealing its crucial function in early human development. We also 

identify an unexpected difference in the requirement for DICER1 between 
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human and mouse ESCs, since DICER1 is not essential in mESCs. 

Furthermore, our study provides a powerful tool for the discovery of specific 

interactions and functions of individual and families of miRNAs in regulating 

hESCs during early human embryonic development. 

 

2.2 MATERIALS & METHODS 

 

2.2.1 hESC Culture 

All experiments were performed on HUES8 iCas9 lines (Gonzalez et al., 

2014). HUES8 iCas9 lines, and the lines derived from these (like TRE-

DICER1*), were cultured on irradiated mouse embryonic fibroblast (iMEFs) 

feeder layers in DMEM/F12 (without HEPES) supplemented with 20% 

KnockOut Serum Replacement, 1X Non-Essential Amino Acids, 1X GlutaMAX, 

100 U/ml Penicillin/100 µg/ml Streptomycin (Gemini), 0.055mM 2-

mercaptoethanol, and 10ng/mL recombinant human basic FGF. DICER1 

knockout lines derived from the TRE-DICER1* line (B2, C2, D11, F2) were 

maintained on doxycycline (2 μg/ml) unless otherwise specified. Cultures were 

passaged at a 1:12 split ratio every 4-6 days using TrypLE. Upon passaging of 

the cells, 5µM Rho-associated protein kinase (ROCK) inhibitor Y-27632 

(Selleck Chemicals, S1049) was added to the culture media. All cell culture 

reagents were purchased from Life Technologies. We routinely checked for 

mycoplasma contamination in our hESCs cultures to ensure that the cells 

were not infected. The hESC culture work was approved by the Embryonic 

Stem Cell Research Committee (ESCRO) and conducted following NIH 

guidelines. 
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2.2.2 Generation of gRNAs for CRISPR/Cas9 Targeting 

To generate CRISPR/Cas9 expression vectors targeting specific genomic loci, 

20 base pairs (bp) of sequence located 5’ of the PAM sequence was cloned 

into piCRg Entry (Gonzalez et al., 2014) following an established protocol 

(Cong et al., 2013). In summary, piCRg Entry was digested with BbsI, 

dephosphorylated and gel purified. A pair of oligos including the 20bp 

homology (Table 1) were annealed and phosphorylated, generating BbsI 

overhangs that can be cloned into the BbsI-digested and dephosphorylated 

vector. For production of gRNAs, we first generated a T7-gRNA IVT template 

by adding the T7 promoter to the gRNA sequence in the piCRg Entry vector 

through PCR amplification using CRISPR-specific forward primers and a 

universal reverse primer (Table 1). Alternatively, for Cr7-9 gRNAs we 

designed a 120-nt oligo including the T7 promoter and the full-length gRNA 

sequence. This oligo was used as a template for PCR amplification using T7 

and gRNA universal primers (Table 1). T7-gRNA PCR products were used as 

templates for IVT using the MEGAshortscript T7 kit (Life Technologies). The 

resulting gRNAs were purified using the MEGAclear kit (Life Technologies), 

eluted in RNase-free water and stored at −80°C until use. 

 

2.2.3 Establishment of Clonal Mutant Lines Using CRISPR/Cas9 

A detailed description on how to establish clonal mutant lines from HUES8 

iCas9 hESCs has been described previously (Gonzalez et al., 2014; Zhu et al., 

2014). To generate mutant lines, iCas9 hESCs were treated with doxycycline 

(2 μg/ml) for 1 day before gRNA transfection, or in the case of the TRE-

DICER1* lines, they were kept on doxycycline continuously. Cells were 

dissociated using TrypLE Select, replated onto iMEF-coated plates and  



	

	 	34	

 

Table 1. CRISPR gRNA sequences, T7E1 primers, and Sanger sequencing primers. 
CRISPR
gRNA

DICER1 Region
Targeted

CRISPR gRNA Target 
Sequence (5’     3’)

Oligo Sequence for Cloning into 
piCRg Entry Vector (5’     3’) 

Cr1

Cr2

Cr3

Cr4

Cr5

Cr6

Cr7

Cr8

Cr9

PAZ domain

PAZ domain

RNase IIIa 
domain
RNase IIIa 
domain
RNase IIIa 
domain
RNase IIIa 
domain
RNase IIIa 
domain
RNase IIIa 
domain
RNase IIIa 
domain

GAGAAGTCTGAAGCTCGCAT F: CACCGAGAAGTCTGAAGCTCGCAT
R: AAACATGCGAGCTTCAGACTTCTC

TTCCATTTAAATACCTACCT F: CACCGTCCATTTAAATACCTACCT
R: AAACAGGTAGGTATTTAAATGGAC

GCTAACAGAGACTTTTGCCA F: CACCGCTAACAGAGACTTTTGCCA
R: AAACTGGCAAAAGTCTCTGTTAGC

GATCTGCTGAAACTTCAACG F: CACCGATCTGCTGAAACTTCAACG
R: AAACCGTTGAAGTTTCAGCAGATC

CCTGTGATGGCCGTAATGCC F: CACCGCTGTGATGGCCGTAATGCC
R: AAACGGCATTACGGCCATCACAGC

CAGGAGAGTACATTCATCGC F: CACCGAGGAGAGTACATTCATCGC
R: AAACGCGATGAATGTACTCTCCTC

ACTTACCCTGATGCGCATGA N/A

N/A

N/A

ACTCTGTCAAACGCTAGTGA

CGCTAGTGATGGATTTAACC

Oligonucleotides used for in vitro transcription form piCRg Entry templates
CRISPR gRNA Oligo (5’     3’) 
Cr1
Cr2
Cr3
Cr4
Cr5
Cr6
Universal - 
RNA-tracr R

TAATACGACTCACTATAGGGAGAAGTCTGAAGCTCGCAT
TAATACGACTCACTATAGGTTCCATTTAAATACCTACCT
TAATACGACTCACTATAGGGCTAACAGAGACTTTTGCCA
TAATACGACTCACTATAGGGATCTGCTGAAACTTCAACG
TAATACGACTCACTATAGGCCTGTGATGGCCGTAATGCC
TAATACGACTCACTATAGGGAGGAGAGTACATTCATCGC

AAAAGCACCGACTCGGTGCC

Oligonucleotides used for in vitro transcription from ssDNA templates:
CRISPR
gRNA

110nt Oligo Template for IVT (5’     3’)

Cr7

Cr8

Cr9

Universal -
T7 F
Universal -
gRNA R

TAATACGACTCACTATAGGGACTTACCCTGATGCGCATGAGTTTTAGAGCTAGAAA
TAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGT

TAATACGACTCACTATAGGGACTCTGTCAAACGCTAGTGAGTTTTAGAGCTAGAAA
TAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGT

TAATACGACTCACTATAGGGCGCTAGTGATGGATTTAACCGTTTTAGAGCTAGAAA
TAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAAAAGTGGCACCGAGT

TAATACGACTCACTATAGGG

AAAAGCACCGACTCGGTGCC

PCR Primers for T7E1 and Sanger Sequencing:
CRISPR
locus

Forward Primer 
(5’     3’)

Reverse Primer 
(5’     3’)

Sequencing Primer 
(5’     3’)

PAZ
domain
(Cr1-2)
RNase
IIIa
(Cr3-6)
RNase
IIIa
(Cr4&6
for TRE-
DICER1*)
RNase
IIIa
(Cr7-9)

TCAACTTTAGA
AGGCGGAAGCTC

CGGGTGGAAAA
AATCTATTGACAG

CGGGTGGAAAA
AATCTATTGACAG

GCGATGAATGTA
CTCTCCTGA

TACAATGCTAAAATCACAGCCCAC

CTCATATATGAAAGGCGGCCC

GCATGATACGTTCTCATCCTC

CAATACTCATCAACTGCCAGG

GATCGAGGTGCCTCTTCTATT

CGGGTGGAAAAAATCTATTGACAG

CGGGTGGAAAAAATCTATTGACAG

GCGATGAATGTACTCTCCTGA
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transfected in suspension with gRNA using Lipofectamine RNAiMAX (Life 

Technologies) per manufacturer’s instructions. gRNAs were added at a final 

concentration of 10nM. A second transfection was performed a day later. Two 

days after the last gRNA transfection, hESCs were dissociated into single 

cells, passed through a 40μm cell strainer, and replated at a low density 

(2,000 cells/10cm dish). Genomic DNA was also extracted at this stage to 

perform T7E1 assay to verify that the gRNAs had generated indels. Cells were 

grown until clonal colonies became visible (~12-14 days). 48-96 colonies were 

picked when colonies were in excess. Colonies were mechanically 

disaggregated and replated into individual wells of 96-well plates. Clonal lines 

were expanded and analyzed by Sanger sequencing to identify mutant clones. 

PCR and sequencing primers are listed in Table 1. Selected clonal lines 

carrying desired mutations were further expanded and frozen down.  

 

2.2.4 Construction of pIND_DICER1_∆PAM-Cr4 and -Cr6 

Construction of low copy pBR_ENT vector: pCR-Blunt II-TOPO vector 

(Thermo Fisher Cat. K280002) was partially digested with PvuII and BspHI to 

replace the high copy pUC origin of replication and the Zeocin resistance gene 

by a PvuII-BspHI fragment obtained from pMC1403 vector 

(http://seq.yeastgenome.org/vectordb) containing the low copy pBR322 origin 

of replication. The resulting vector was then opened with ApaI and SacI in 

order to insert an ApaI-SacI digested (in bold) GenScript-synthetized DNA 

fragment (Piscataway, NJ, USA): 

TTTAGGGCCCCAAATAATGATTTTATTTTGACTGATAGTGACCTGTTCGTT

GCAACAAATTGATGAGCAATGCTTTTTTATAATGCCAACTTTGTACAAAAA

AGCAGGCTCCGCGGCCGCCAGTGTGATGGATATCTGCAGAATTCAAGGG
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TGGGCGCGCCGACCCAGCTTTCTTGTACAAAGTTGGCATTATAAGAAAGC

ATTGCTTATCAATTTGTTGCAACGAACAGGTCACTATCAGTCAAAATAAAA

TCATTATTTGCCATCCAGATCCGAGCTCCCTT. This fragment contains 

attL1 and attL2 Gateway cloning sequences flanking a polylinker including 

SacII, NotI, EcoRV, PstI and EcoRI unique restriction sites.  

Construction of pBR_ENT hsDICER vector: pBR_ENT was opened with 

EcoRV and dephoshorylated to clone the Xho-Acc65I digested, Klenow blunt 

ended Flag-tagged hsDICER cDNA from pCAGGS-Flag-hsDICER (a gift from 

Phil Sharp, Addgene plasmid #41584)(Gurtan et al., 2012) 

Construction of pBR_ENT hsDICER∆PAM-Cr4 and -Cr6: To introduce silent 

mutations in the amino acid sequence of hsDICER disrupting the PAM 

sequence of RNACr4 and Cr6 we used the QuikChange II Site-Directed 

Mutagenesis Kit (Agilent Cat. #20052) following manufacturers guidelines, 

using pBR_ENT hsDICER as template and the primers specified on Table 2. 

Construction of pIND_hsDICER ∆PAM-Cr4 and -Cr6: We used Gateway LR 

Clonase (Invitrogen Cat. #11791-020) to transfer hsDICER ∆PAM-Cr4, and 

hsDICER ∆PAM-Cr6 attL1-attL2 flanked inserts into the pINDUCER21 (a gift 

from Stephen Elledge & Thomas Westbrook, Addgene plasmid #46948) 

(Meerbrey et al., 2011).  

 

2.2.5 Generation of TRE-DICER1* Lines 

Table 2. Primers for site-directed mutagenesis of DICER1*. 

Cloning 
Construct

Cr4

Cr6

Forward Primer (5’     3’) Reverse Primer (5’     3’)

GCGAGTCCCCTGGTAAGCTACACGTT
GAAGTTTCAGC

GCTGAAACTTCAACGTGTAGCTTACCA
GGGGACTCGC

CGAGAACCAGCCCCAGCCGAGCGAT
GAATGTACTCTCCTG

CAGGAGAGTACATTCATCGCTCGGCTG
GGGCTGGTTCTCG



	

	 	37	

Preparation of pIND_∆PAM-Cr4 and -Cr6 virus: Plated 14 million 293T cells in 

15cm dishes previously coated with collagen. Allowed cells to grow in the 

absence of Pen/Strep for two days. Thirty minutes before transfection, fresh 

media was added to the cells. Transfection was performed using JetPRIME 

Polyplus transfection reagent (VWR, Cat. No. 114-01) as per manufacturer’s 

recommendations. To summarize, 20.4µg of pIND_hsDICER ∆PAM lentiviral 

vector was mixed with 8.16µg of psPAX2 and 2.04µg of pCMV-VSVG. This 

mix was then diluted in 1500µl of JetPRIME buffer, followed by the addition of 

60µl of JetPRIME transfection reagent. The mix was incubated at room 

temperature for 10 minutes, and then added dropwise to one 15cm dish. The 

media was changed the following day, and the supernatant was harvested on 

days 2,3, and 4 post transfection. The three harvests were pooled together 

and passed through a 0.45µm filter. Virus was concentrated by 

ultracentrifugation for 1.5 hours at 4°C and 250,000 rpm, and resuspended in 

400µl of hESC medium overnight at 4°C. The virus was then aliquoted and 

stored at -80°C. 

Infection of HUES8 iCas9 lines: HUES8 iCas9 cells were grown to 60-70% 

confluency, and then disaggregated using TrypLE, counted, and resuspended 

at 1million/ml in hESC medium with 5µm of Rock inhibitor (Selleck Chemicals, 

S1049) and 10µg/ml of Protamine Sulfate (MP Biomedicals). 1ml of cells were 

plated per well of a 6well dish that was previously seeded with iMEFs.  

Infection was carried out overnight using 150µl of virus. Media was changed 

everyday until the cells were confluent and ready for FACS sorting of GFP+ 

colonies. GFP+ cells were plated at low density (2,500 cells) in 10cm dishes 

previously seeded with iMEFs, and grown for ~2 weeks until colonies were 
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visible and ready to pick. Five colonies were picked per line, and one was 

chosen to carry out experiments.  

 

2.2.6 RNA Processing and Quantitative qRT-PCR 

MicroRNA and total RNA were isolated using miRNeasy Mini Kit (Qiagen, Cat. 

No. 217004). For mRNA qRT-PCR, this was followed by cDNA synthesis 

using the High Capacity cDNA Reverse Transcription Kit (Life Technologies), 

and qRT-PCR was performed with QPCR SYBR Green low ROX Kit (Thermo 

Scientific, AB4322B). For microRNA qRT-PCR, we used Taqman MicroRNA 

Assays (Thermo Fisher Scientific, Cat. No. 4427975) per manufacturer's 

instructions. RNU-44 was used for normalization. We used the Applied 

Biosystems 7500 Real-Time PCR System for all qRT-PCRs. Primer 

Table 3. qRT-PCR primers. 

Gene Forward Primer (5’     3’) Reverse Primer (5’     3’)
DICER1 – total
(DICER1_total_transcript_
(ex-ex)_F & R)
DICER1* – exogenous
(Flag_F & 
DICER_Flag_R=128nt)
OCT4
NANOG
SOX2
KLF4
ECAD
NCAD
ZEB1
ZEB2
TWIST1
SNAIL
SLUG
GATA4
GATA6
SOX7
FOXA2
SOX17
SOX1
PAX6
OTX2
GSC
BRACHY
GAPDH

AGCATGCCATCACCACATATC CCAAGGCGATACAGATTACAG

TGGACTACAAAGACGATGACG TTGTTGCCATGGCAGTCCAAA

TGGTCCGAGTGTGGTTCTGTAA TGTGCATAGTCGCTGCTTGAT
GCTGGTTGCCTCATGTTATTATGC CCATGGAGGAAGGAAGAGGAGAGA
GGCAGCTACAGCATGATGCAGGAGC CTGGTCATGGAGTTGTACTGCAGG
TATGACCCACACTGCCAGAA TGGGAACTTGACCATGATTG
GCTGAGCTGGACAGGGAGGA ATGGGGGCGTTGTCATTCAC
CCACCTTAAAATCTGCAGGC GTGCATGAAGGACAGCCTCT
GCACCTGAAGAGGACCAGAG TGCATCTGGTGTTCCATTTT
AACAACGAGATTCTACAAGCCTC TCGCGTTCCTCCAGTTTTCTT
TCCATTTTCTCCTTCTCTGGAA GTCCGCGTCCCACTAGC
AGGTTGGAGCGGTCAGC CCTTCTCTAGGCCCTGGCT
AGATGCATATTCGGACCCAC CCTCATGTTTGTGCAGGAGA
AAAGAGGGGATCCAAACCAG TTGCTGGAGTTGCTGGAAG
GTGCCCAGACCACTTGCTAT TGGAATTATTGCTATTACCAGAGC
CATGCAGGACTACCCCAACT ACTCACCCCTGTCCTCCTTC
GGGAGCGGTGAAGATGGA TCATGTTGCTCACGGAGGAGTA
GGCGCAGCAGAATCCAGA CCACGACTTGCCCAGCAT
AACACTTGAAGCCCAGATGGA GCAGGCTGAATTCGGTTCTC
TGGGCAGGTATTACGAGACTG ACTCCCGCTTATACTGGGCTA
CATGCAGAGGTCCTATCCCAT AAGCTGGGGACTGATTGAGAT
AACGCGGAGAAGTGGAACAAG CTGTCCGAGTCCAAATCGC
ACCCAGTTCATAGCGGTGAC CCATTGGGAGTACCCAGGTT
GGAGCCAAACGGGTCATCATCTC GAGGGGCCATCCACAGTCTTCT
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sequences are specified in Table 3. 

 

2.2.7 Western Blotting 

Protein samples were collected from cell lysate homogenized in RIPA buffer 

in the presence of proteinase inhibitor cocktail (Cell Signaling Technology) 

and stored in -80ºC until use. Proteins were separated on a NuPAGE Novex 

Bis-Tris 3-8% Tris-Acetate protein gel (Life Technologies), and transferred to 

a PVDF membrane (Life Technologies) overnight at 4ºC. Blocking was 

performed with 5% milk in TBST. Membranes were incubated with primary 

antibodies overnight at 4ºC and HRP-conjugated secondary antibodies for 1 

hour at RT. ECL reagents (Pierce) were obtained from GE Healthcare. 

Primary antibodies used were DICER1 (1:1000, Cell Signaling, D5F2 #5325), 

Flag (1:5000, Sigma Aldrich, Cat. No. F1804), AGO2 (1:1000, borrowed from 

Eric Lai’s lab, monoclonal mouse Ab) and GAPDH (1:5000, Cell signaling, 

D16H11 #5174).  

 

2.2.8 Northern Blotting 

Total RNA were isolated using the miRNeasy Mini Kit as per manufacturer’s 

recommendation (Qiagen, Cat. No. 217004). 20 µg of total RNA per lane were 

separated on 15% polyacrylamide 7M urea gels and transferred onto 

GeneScreen Plus membrane (Perkin Elmer) using A Trans-Blot SD Semi-Dry 

Cell (Biorad). The blots were UV crosslinked (Stratagene), baked at 80°C for 

1hour and probes with γ-[32P]-ATP labeled DNA oligonucleotide probes. The 

probe sequences are listed in Table 4. The blots were stripped and re-probed 

for multiple miRNAs and loading control (RNU44). Decade Marker RNA 



	

	 	40	

(Thermo Fisher) was labeled with γ-[32P]-ATP and used as size standard (10-

100 bases). 

 

2.2.9 Alkaline Phosphatase and Immunofluorescence Staining 

Cells were fixed with 4% paraformaldehyde in PBS for ≤10 minutes. For 

nuclear immunostaining, we washed once with PBS, and then permeabilized 

in PBS with 0.1% Triton (PBS-T) for 15min. Blocking was done using donkey 

blocking solution at RT for 5 min (5% donkey serum in PBS-T). Primary and 

secondary antibodies were diluted in blocking solution, and incubated at RT 

for 1 hour. The following primary antibodies were used: Nanog (1:100, 

Cosmobio Japan, Cat. No. REC-RCAB0004P-F), Oct3/4 (1:100, Santa Cruz, 

sc-8628), Sox2 Y-17 (1:100, Santa Cruz, sc-17320), Ki67 (1:1000, Vector 

Laboratories, VP-K451), PH3 (1:100, Cell Signaling, Ser10 #9701), and Csp3 

(1:400, Cell Signaling, Asp175 #9661). AP staining was performed using 

Vector Red Alkaline Phosphatase Substrate Kit following manufacturer’s 

guidelines (Vector Laboratories, SK-5100). 

 

2.2.10 miRNA Mimic Rescue Screen and Quantification 

Table 4. Northern Blot primers. 

miR-302c-3p
miRNA Probe (5’     3’)

miR-200c-3p
miR-92a-1-5p
miR-92a-1-3p

CCACTGAAACATGGAAGCACTTA
TCCATCATTACCCGGCAGTATTA
AGCATTGCAACCGATCCCAACCT
ACAGGCCGGGACAAGTGCAATA

miR-367-3p TCACCATTGCTAAAGTGCAATT
miR-17-5p CTACCTGCACTGTAAGCACTTTG
DICER1(RNase III)

RNU44 AGTTAGAGCTAATTAAGACCT

F: CTGGAGAGGTTACCATATCCA *
R: GCAGACTTTCCCATTTGGCTT

*the PCR product of the F&R primers was used as the probe.
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For the miRNA screen, DICER1 knockout hESCs (B2, D11) were dissociated 

with TrypLE and counted. They were replated at a concentration of 125,000 

cells per ml in 24-well plates, and transfected in suspension with microRNA 

mimics (mirVana® miRNA mimics, Thermo Fisher, Cat. No. 4464066) using 

Lipofectamine RNAiMAX (Life Technologies) per manufacturer’s instructions. 

5µM ROCK inhibitor Y-27632 (Selleck Chemicals, S1049) was added upon 

replating. The final concentration of each small RNA was 10nM, as used in 

(Wang et al., 2008). Cells were allowed to grow without Doxycycline for 6 

days, at which point the cells were either fixed and stained for Alkaline 

Phosphatase, or counted with a cell counter.  

 

2.2.11 Small RNA-Sequencing Analysis 

For small RNA-Sequencing total RNA was isolated with the miRNeasy Mini Kit 

(Qiagen, Cat. No. 217004), and gel purified to collect RNAs <200nt. We 

cloned small RNA libraries from DICER1-Hypomorph (B4-1) and wildtype (A5) 

hESC lines in two biological replicates. Single pair 50bp, 70 million reads. 

After removing 5’ and 3' adaptor sequences with cutadapt (Martin, 2011), we 

mapped small RNA-Seq reads from these datasets to UCSC Homo sapiens 

(hg38) genome assembly using Bowtie. Unmapped reads were iteratively 

trimmed one nucleotide each iteration retaining a read length of >=17nt, and 

then mapped to the genome using Bowtie with no mismatches, up to 30 

iterations. The reads were required to match to the microRNA mature 

sequences with at least 15 nt overlap, and within 2 nt of the 5’ end. We 

normalized small RNA-Seq by total microRNA counts in each library by the 

trimmed mean of M-values (TMM) normalization method in the edgeR/Limma 

Bioconductor library (Oshlack et al., 2010). We used the voom method of 
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Limma (Smyth, 2005) to correct for the Poisson noise due to the discrete 

counts of small RNA-seq. Differentially expressed miRNAs between Dicer-

Hypomorph versus wild type were identified by a moderated t-test, and FDR 

(Benjamini- Hochberg) was estimated, using the Limma library (Smyth, 2005) 

in Bioconductor. The genes with FDR < 0.1 and FC > 2-fold were considered 

to be differentially expressed. To examine microRNA mature and star strand 

change in DICER1-Hypomorph, a proportion of microRNA 5p vs. 3p was 

calculated by 5p/(5p+3p) for each microRNA in each sample and proportion 

difference was calculated between DICER1-Hypomorph and wildtype.  

 

2.2.12 RNA-Sequencing 

For RNA-Sequencing total RNA was isolated with the miRNeasy Mini Kit 

(Qiagen, Cat. No. 217004) from HUES8-iCas9 (A5), DICER1-Hypo (B4-1, B4-

4), DICER1-KO (D11+Dox) and DICER1-KO (D11-Dox) hESCs (n=2 for A5, 

B4-1 and B4-2, and n=3 for D11+Dox and D11-Dox each). RNA samples were 

submitted to the MSKCC Integrated Genomics Core for library prep and 

sequencing. Paired-end 50bp, 20 million reads each. 

 

2.2.13 Naïve Stem Cell Culture 

hESCs were cultured on irradiated mouse embryonic fibroblast (iMEFs) feeder 

layers as described in “hESC Culture” above, and then passaged and cultured 

using the Stem Cell Technologies RSet Medium (Cat. # 05970) as per 

manufacturer’s recommendation. The naïve cells were maintained on iMEFs 

and the cells were kept in a hypoxic chamber at 5% O2 levels, except for the 

~30min when the cells were passaged.   
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2.2.14 Flow Analysis 

Intracellular marker. hESCs were disaggregated with TrypLE for 5 

minutes and washed with cold FACS buffer: 5% Fetal Bovine Serum 

(Invitrogen, 261400799) in PBS. Cells were pelleted by centrifugation and 

washed again with FACS buffer. Each sample was resuspended in FACS 

buffer and incubated with a Live/Dead Fixable stain (Life Technologies 

L34964, 1:1000) for 30 minutes at RT. Afterwards cells were washed with 

FACS buffer and resuspended in fixation solution (eBioscience, 00-5523-00) 

for 1 hour at RT. Cells were washed with permeabilization buffer (eBioscience, 

00-5523-00) and then resuspended in permeabilization buffer and the 

appropriate antibody: OCT4 (Santa Cruz, Cat. # sc-8628), DICER1 (Cell 

Signaling, Cat. # 5325S), Caspase-3 (Cell Signaling Asp175, Cat. # 9602S), 

Caspase-2 (EMD Millipore, Cat. # MAB3501), Caspase-8 (Cell Signaling, Cat. 

# 9746), AIF (Abcam, Cat. # ab32516), and BIM [Y36] (Abcam, Cat. # 

ab32158) for 1 hour at RT. Cells were washed with FACS buffer and then 

incubated with the appropriate Molecular Probes Alexa Fluor dye conjugated 

secondary antibody (Life Technologies, 1:500) for 1 hour at RT. Cells were 

then washed with FACS buffer and analyzed by FACS. 

Surface marker. Confluent hESCs were disaggregated with TrypLE for 

5 minutes and washed with cold FACS buffer. Cells were pelleted by 

centrifugation and washed again with FACS buffer. Each sample was 

resuspended in FACS buffer with the appropriate conjugated antibody: Tra1-

60-FITC (BD Pharminogen, Cat. # 560380), Tra1-81-FITC (BD Pharminogen, 

Cat. # 560194), or SSEA3-FITC (BD Pharmingen, Cat. # 561145). Cells were 

incubated in FACS buffer with the antibody for 30 minutes on ice. After 

staining cells were washed two times with FACS buffer and resuspended in 
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FACS buffer with DAPI and analyzed by FACS. 

 Cell Cycle Analysis. hESCs were harvested in FACS buffer (5% FBS 

in PBS) at a concentration of 500,000 cells/ml. 1ml of cells was placed on a 

15ml Falcon tube on ice and allowed to cool. Then, 3ml of cold (-20°C) ethanol 

was added dropwise while vortexing. Cells were fixed overnight at -20°C. Cells 

were washed twice with PBS, centrifuged at 3,500 rpm for 5 minutes at 4°C 

each time. Supernatant was then removed, and samples were resuspended in 

200ul of RNase-Propidium Iodide (PI) solution (188ul of PBS and 2ul of RNase 

(5mg/ml) and 10ul of PI (1mg/ml). Samples were left in the dark overnight, 

then passed on a cell strainer, and analyzed by flow. 

 

2.2.15 Teratoma Assay 

Confluent hESCs grown on a MEF feeder layer were collected in 1mg/mL 

Collagenase type IV (Life Technologies, 17104-019) for 10min, then the 

collagenase was removed and the cells were scraped off and resuspended in 

hESC medium. Cells were spun for 5min and then resuspended in 400ul of 

PBS per 10cm dish. One quarter of the cells (100ul) from a confluent 10cm 

dish were injected subcutaneously to the dorsal flank of a SCID mouse. 

Palpable tumors were typically observed 1-2 months after injection. Tumor 

samples were usually collected in 2-3 months, fixed in 4% paraformaldehyde 

and processed for paraffin embedding and hematoxylin and eosin staining 

following standard procedures.  

 

2.2.16 Colony Forming Assay 

hESC cells were washed with PBS, treated with TrypLE for 5min at 37°C, then 

collected with fresh hESC medium, passed through a 40um cell strainer to 
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make sure cells were single cells, and then counted. Two-thousand cells were 

plated in a 10cm dish previously coated with iMEF and either treated with 

Rock inhibitor or not for the first 4 days. Cell were grown for two weeks, then 

stained with alkaline phosphatase (AP) and counted.   

 

2.2.17 Suspension Culture 

Cells were adapted to the E8 feeder-free condition, and after two passages, 

were transported into low attachment U-bottom 6-well plates, at a density of 5 

million cells per well. Rock inhibitor was added on the first day of plating, and 

media was changed every day. The plates were maintained in rocking 

conditions at 95rpm in the incubator.    

 

2.2.18 Neuroectoderm Differentiation 

hESCs were plated on matrigel-coated (BD, 354234) dishes in hESC media 

with ROCK-inhibitor at a density of 180,000–200,000 cells/cm2. After 12 hours, 

differentiation into neuroectoderm was initiated by switching to knockout 

serum replacement (KSR) media with 10 μM TGF-b inhibitor (SB431542, 

Tocris 161410) and 100 nM LDN (Axonmedchem, 1509).  On day 1 and day 2 

of differentiation, the media was removed and fresh KSR with 10 μM TGF-b 

inhibitor and 100 nM LDN was added. Starting on day 4 of differentiation an 

increasing amount of N2 media was added to the KSR media every two days, 

while maintaining 10 μM TGF-b inhibitor and 100 nM LDN. On day 4 a 3:1 

mixture of KSR/N2 media was added. On day 6 a 1:1 mixture of KSR/N2 

media was added, and on day 8, a 1:3 mixture of KSR/N2 media was added. 

The cells were isolated for analysis on days 4,6,8, and 10 of differentiation. 

KSR media contains Knockout DMEM (Invitrogen, 10829018), Knockout 
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Serum Replacement (Invitrogen, 10828028), 1X MEM Non-Essential Amino 

Acids (Life Technologies, 11140050), 1X GlutaMAX (Life Technologies, 

35050079), and 2-mercaptoethanol (Life Technologies, 21985023). N2 media 

contains DMEM/F12 medium (Life Technologies, 12500-062), glucose (Sigma, 

G8270), sodium bicarbonate (Sigma, S5761), putrescine (Sigma, P5780), 

progesterone (Sigma, P8783), Sodium selenite (Sigma, S5261), apo-

transferrin (Sigma, T1147), and insulin (Sigma, I2643). 

 

2.2.19 Proliferation Assay 

hESCs were washed with PBS, counted, and then 50,000 cells were plated 

per well of a 24-well plate previously coated with iMEF. Two replicates of each 

sample were plated per timepoint. Every 24hs the cells were disaggregated 

and counted, up to day 6.  

 

2.2.20 Statistical Analysis 

All values are shown as mean +/- SD. Data were analyzed using Student’s t-

test in GraphPad Prism. p-values of <0.05 (*) were considered significant.  
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2.3 RESULTS 

 
2.3.1 Failure to Generate True DICER1 Null hESCs using iCRISPR 

To investigate the role of DICER1 in human primed pluripotency, we 

used CRISPR/Cas9 to disrupt the catalytic domains of DICER1 in hESCs. 

Nine guide RNAs (gRNAs) designed to target the PAZ and RNase IIIa 

functional domains of DICER1 were identified as resulting in high indel 

efficiencies by the T7 Endonuclease 1 (T7E1) assay, which recognizes and 

cleaves heteroduplexes formed from the hybridization between wildtype and 

mutant sequences (Mashal et al., 1995) (Figure 2.1A and 2.1B). These gRNAs 

were individually transfected into iCRISPR HUES8 hESC line in the presence 

of doxycycline (DOX), and colonies were then picked, expanded, and 

analyzed by Sanger DNA sequencing (Gonzalez et al., 2014). The efficiency 

of disrupting the target sequence within the DICER1 coding region with  
  

Table 5. Results of CRISPR gRNA targeting of DICER1 in iCas9 HUES8 hESCs. if, in frame allele; fs, frameshift allele. 

DICER1

CRISPRGene

Cr1

Cr2

Cr3

Cr4

Cr5

Cr6

Cr7

Cr8

Cr9

Domain

PAZ

RNase IIIa

Mutant Alleles Per Clone

1

2

In frame Frameshift

HomozygousCompoud Heterozygotes

In frame Frameshiftif/if fs/fs if/fs

4/36 3/36 2/36 0/36 0/36 0/36 0/36

2/9 0/9 0/9 0/9 0/9 0/9 0/9

4/96 2/96 11/96 0/96 38/96 0/96 2/96

6/48 7/48 0/48 0/48 0/48 0/48 0/48

4/79 15/79 0/79 0/79 2/79 0/79 1/79

2/21 4/21 0/21 0/21 1/21 0/21 0/21

1/59 4/59 0/59 0/59 0/59 0/59 0/59

1/86 8/86 0/86 0/86 1/86 0/86 0/86

0/30 1/30 0/30 0/30 1/30 0/30 0/30



	

	 	48	

  

Figure 2.1. Generation of DICER1-/- hESCs using iCRISPR HUES8 hESCs. (A) 
Schematic representation of DICER1 protein with domains. Red and orange arrows 
represent gRNA-targeting loci. Red arrows represent gRNAs targeting the PAZ domain, 
and orange arrows represent gRNAs targeting the RNase IIIa domain. cr, CRISPR; DUF, 
Domain of Unknown Function; dsRBD, double-stranded RNA-Binding Domain. (B) T7E1 
assay in HUES8 iCas9 cells transfected with nine different gRNAs targeting the functional 
domains of PAZ and RNase IIIa. cr, CRISPR; T7E1, T7 endonuclease 1. (C) CRISPR/Cas9 
targeting results of HUES8 iCas9 lines. White, wildtype lines; Yellow, monoallelic mutant 
lines; Red, biallelic mutant lines. Indel: insertion/deletion. N= number of clones analyzed. 
(D) Sequences of two DICER1 biallelic mutant lines and wild type line generated using Cr4. 
(E) Normal karyotype of two clones of B4 and G4 DICER1-/- and their passage-matched 
wild-types.
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different gRNAs was variable, with ~3% - 29% of clonal lines containing a 

mutation on one allele (DICER1-/+) (Figure 2.1C and Table 5). This efficiency 

lies within the expected percentages for other iCRISPR targetings in hESCs 

(Gonzalez et al., 2014). However, only 3 out of 464 screened lines had biallelic 

frameshift mutations, and one of them did not survive (Figure 2.1C and Table 

5). The two-other surviving DICER1-/- lines were generated using Crispr 4 

(cr4), and one harbors a single (T) base pair insertion and the other one 

harbors a seven base pair deletion (Figure 2.1D). The lines were subcloned to 

ensure they were clonal and free from wildtype contamination, and this was 

confirmed by TA cloning. Two subcloned lines for each mutant were chosen 

for further studies (B4-1, B4-4, G4-1, and G4-2), and two passage-matched 

wildtype lines (A5 and H4) that underwent targeting but were not mutated were 

also picked and subcloned, and used as controls. These six lines were all 

karyotypically normal (Figure 2.1E).  

Next, we set out to validate the DICER1-/- lines. First, we tested 

DICER1 protein expression using a DICER1 antibody that recognized the N-

terminal domain of the protein. Surprisingly, we observed expression of 

DICER1 in both mutant lines (B4, G4), albeit much reduced compared to 

wildtype lines (Figure 2.2A). G4 DICER1 mutant line appeared to produce ~4 

times as much protein as the B4 line. To confirm these results, we used a 

second DICER1 antibody that recognizes the RNase IIIa functional domain of 

the protein, and again we saw reduced, but not completely ablated, DICER1 

protein expression (Figure 2.2A). This is surprising since the genomic 

mutations are expected to render null alleles. The mutant mRNA transcript is 

expressed, and thus does not seem to undergo nonsense-mediated mRNA 

decay (NMR) (Figure 2.2B).  
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To functionally validate the DICER1-/- lines, we tested their ability to 

‘dice’ primary microRNAs (pri-miRNAs) into mature microRNAs that are 

normally expressed in hESCs (Suh et al., 2004). We checked mature miRNA 

levels of miR-302c, miR-92, miR-17, and miR-367 by qRT-PCR and Northern 

blot, and both assays showed compromised but still functional DICER1 activity 

(Figure 2.2C and 2.2D). Northern blots were performed by Sonali Majumdar in 

Eric Lai’s lab at MSKCC. Interestingly, the reduction in DICER1 activity seems 

to be miRNA-dependent since miR-302c showed about a 10-fold reduction, 

and miR-92 showed no significant reduction compared to wildtype. miR-302c 

was more reduced in the B4 line (10-fold reduction) compared to the G4 line 

(2-fold reduction) (Figure 2.2C). As expected of DICER1-compromised cells, 

pri-miRNAs accumulated in the DICER1-/- line (B4) in all four miRNAs tested, 

even when their mature miRNA reduction did not reach significant levels by 

qRT-PCR (Figure 2.2C and 2.2D).  

To investigate the global depletion of mature microRNAs in our 

DICER1-/- lines, we first ran size-fragmented RNA samples (<150nt long 

species) from wildtype (A5) and DICER1 mutant (B4-1 and B4-4) lines through 

the Agilent Bioanalyzer 2100 to find out the percentage of the global mature 

miRNA population in our samples (Appendix 1). Sonali Majumdar from the Lai 

lab performed the RNA gel extraction.  We found a global reduction in the 

percentage of mature miRNA populations in the DICER1 mutants lines (15-

21%) compared to the wildtype (35%).  To precisely determine these miRNA 

populations, we next performed miRNA-deep sequencing (miRNASeq) of 

DICER1-/- (B4) and wildtype (A5) lines followed by analysis performed by Jiayu 

Wen in the Lai lab. We found 288 mature miRNAs out of a total of ~500 

mature miRNAs significantly dysregulated (above a 1-fold change, and p-value  
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Figure 2.2. DICER1-/- lines are hypomorphic. (A) Western blots of DICER1 in two wildtype 
lines (A5, H4) and 4 DICER1-/- (B4-1, B4-4, G4-1, G4-2) using antibodies recognizing the 
N-terminus and the RNase III domain. kD, kiloDalton. (B) mRNA levels of DICER1 transcript 
in wild type and DICER1 mutant by qRT-PCR. n=3. (C) qRT-PCR of mature miRNAs 302c 
and 92 in two wildtype lines (A5, H4) and 4 DICER1-/- (B4-1, B4-4, G4-1, G4-2). n=3. 
(D) Northern blots of precursor and mature miRNAs 302c, 17, 367, and 92 in one wildtype 
line (A5) and two DICER1 mutant lines (B4-1, B4-4). RNU44 was used as loading control. 
pre-mir, precursor miRNA; miR, mature miRNA. (E) miRNA-Seq of wild-type (A5) and 
DICER1-/- (B4-1) lines presented as a volcano plot with the log Fold Change on the x-axis 
and the -log10 of the p-value on the y-axis. In black, miRNAs with a p-value>0.05 and less 
than 1-fold difference comparing DICER1 -/- to wildtype; in yellow, miRNAs with a 
p-value<0.05 and less than 1-fold difference comparing DICER1 -/- to wildtype; in red, 
miRNAs with a p-value<0.05 and over 1-fold difference comparing DICER1 -/- to wildtype; 
in blue, miRNAs with a p-value<0.05 and more than 2-fold difference comparing DICER1 -/- 
to wildtype. (F) Northern blot of DICER1 mature mRNA in two wildtype lines (A5, H4) and two 
DICER1 -/- lines (B4, G4). The blot on the right is the loading control showing the 28S and 
18S rRNA bands.   
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<0.05) in the DICER1-/- line compared to wildtype; of which 213 were 

downregulated as expected, and 75 were upregulated (Figure 2.2E). However, 

around 50% of the mature miRNAs were not significantly dysregulated, and 

this demonstrated that there are microRNAs’ expressions that remain the 

same in these DICER1-/- cells. Additionally, some microRNAs’ expression 

diminished but are not abolished, suggesting low levels of DICER1 activity are 

still functional. 

We next sought to investigate whether the mature mRNA of DICER1 in 

mutant (B4-1 and G4-1) versus wildtype lines (A5 and H4) was still being 

processed. We designed an oligo that recognizes the exon-exon junction in 

the RNase IIIa domain of DICER1 and performed a Northern blot (Figure 

2.2F). The Northern blot was ran by Sonali Majumdar in the Lai lab. We found 

that around ~5-10% of the mature mRNA is still being processed in the mutant 

lines, presumably allowing some extent of miRNA maturation for some but not 

all miRNAs (Figure 2.2F).    

Thus, after extensive characterization, we were not able to validate 

these DICER1-/- lines as true nulls, but rather as hypomorphic alleles. 

Therefore, we were not able to generate true DICER1 nulls using iCRISPR. 

This hypothesis was further supported by the failure to create DICER1 

frameshift homozygous-mutants by targeting DICER1-/+ lines instead of 

DICER1+/+ lines (Figure 2.3A-C). We chose two karyotypically normal DICER1 

heterozygous lines (with one frameshifted allele) generated by targeting with 

Crispr 3 (Cr3) and Crispr 6 (Cr6) gRNA (Figure 2.3A,B). We selected lines that 

contained deletions spanning the PAM sequence in the mutant allele so that it 

would not be targeted again by the gRNA. We subjected these lines to another 

round of targeting with either Cr3 or Cr6, and compared the results to the  
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Figure 2.3. Inability to Generate DICER1 Null Alleles Suggests DICER1 is Essential
in hESCs. (A) Sequences of DICER1 heterozygous lines chosen for a second round of 
targeting using the same gRNAs (Cr3 and Cr6) they were initially targeted with. Chosen 
lines harbor a deletion spanning the NGG on one allele. In red, NGG sequence. (B) Normal 
karyotype of chosen DICER1 heterozygous lines. (C) Frameshift and in frame allele
frequency results of Cr3 and Cr6 targetings in wildtype lines (+/+) versus heterozygous lines
(+/-), and compared with the theoretical expectation. Chi-test was used for statistical 
analysis. 

A B

0

50

100

%
 o

f t
ot

al
 c

ol
on

ie
s

****
****

20

15

4

Exp
ec

te
d

(th
eo

re
tic

al) +/+ +/-

DICER1 Heterozygous (Cr6)

5’- ATTCATCGCTGGGCTGGGGCT -3’
5’- ATTCATC- - - - - - - - -TGGGGCT -3’

-7bp

ns

DICER1 Heterozygous (Cr3)

5’- GACTTTTGCCAAGGAAATCAGCTAAATTACTA -3’

5’- GACTTTT- - - - - - - - - - - - - - - - - - - - - -TTACTA -3’ -19bp

C
Cr3Cr6

0

50

100

%
 o

f t
ot

al
 c

ol
on

ie
s

in frame
frameshift

2

1

*
*ns

2

1

4

2 4

Exp
ec

te
d

(th
eo

re
tic

al) +/+ +/-

DICER1 Heterozygous (Cr6)

DICER1 Heterozygous (Cr3)

Normal Male: 46, XY

Normal Male: 46, XY



	

	 	54	

expected (theoretical) ratio of two frameshifts per one in frame (Table 6). 

While the results for targeting a wildtype line fell in line with this theoretical 

expectation, targeting a heterozygous line did not as no frameshift  

homozygous lines were generated (Figure 2.3C and Table 6). These results 

suggest that DICER1-deficient hESCs are not viable. 

 

2.3.2 DICER1 Hypomorphs Maintain Pluripotency Marker Expression  

Since our DICER1 hypomorphs downregulate DICER1 about 10-fold or 

more, we decided to study them further as they may be useful in identifying 

DICER1 knockout phenotypes. First, we checked the transcript levels of four 

pluripotency factors (OCT4, NANOG, SOX2, and KLF4) in B4-1 and B4-4 lines 

by qRT-PCR, and found that these genes were all expressed in the mutants 

as expected from mouse DICER1 knockouts (Spruce et al., 2010). However, 

OCT4 was significantly downregulated by ~25% in the B4-4 line and NANOG 

was downregulated by 25% or ~50% in the B4-1 and B4-4 lines respectively 

(Figure 2.4A). These results contrast the shRNA-mediated downregulation of 

DICER1 in hESCs in which they found upregulation of OCT4 (Qi et al., 2009). 

Furthermore, we found that OCT4, NANOG, and SOX2 protein were still 

expressed at comparable levels (Figure 2.4C). This finding suggests that one 

or more miRNAs might control pluripotency factor transcription in an as-of-yet  

Table 6. Results of CRISPR gRNA targeting of DICER1+/-  and DICER1+/+ hESCs. if, in frame allele; fs, frameshift allele. 

DICER1

CRISPRGene

Cr3

Cr3

hESC Line

Mutant Alleles Per Clone

1

2

In frame Frameshift

HomozygousCompoud Heterozygotes

In frame Frameshiftif/if fs/fs if/fs

DICER1+/+

DICER1+/-

DICER1+/+

DICER1+/- Cr6

Cr6

20/172 0/172

4/69 0/69

2/21 4/21 0/21 0/21 1/21 0/21 0/21

N/A

N/A

4/79 15/79 0/79 0/79 2/79 0/79 1/79
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Figure 2.4. DICER1 Hypomorphs Maintain Expression of Pluripotency Markers.
(A) qRT-PCR of pluripotency markers OCT4, NANOG, SOX2 and KLF4. mRNA levels are
normalized to wildtype. WT, wildtype; ns, not significant; *, p-value <0.05 **, p-value <0.01. 
(B) Flow cytometry of pluripotency-associated cell-surface markers TRA1-60, TRA1-81 and 
SSEA3. Hypo, hypomorph. (C) Immunofluorescence of pluripotency markers NANOG, OCT4 
and SOX2 in DICER1 hypomorph and wildtype lines. Scale bar, 100µm.
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unknown pathway, although more studies are needed to test this hypothesis. 

Finally, we tested pluripotency surface marker expression (TRA1-60, TRA1-

81, and SSEA3) by flow cytometry and found no difference in expression  

between the wildtype (A5) and knockout lines (B4 and G4) (Figure 2.4B). 

Together, these results suggest that pluripotency markers are maintained, 

although OCT4 and NANOG transcript levels are downregulated.  

 

2.3.3 DICER1 Hypomorphs Retain Characteristic Cell Cycle Properties 

and Normal Apoptosis Levels 

Next, we were interested in analyzing the cell cycle properties of the 

DICER1 hESC hypomorphs, since Dicer1 mESC knockouts and DICER1 

hESC knockdowns show a slower proliferation rate and an accumulation of 

cells in the G1 phase compared to wildtypes (Qi et al., 2009; Wang et al., 

2008). Thus, we first counted cell number every-day for 6 days and found that 

the wildtype (A5) and the DICER1 Hypomorph (B4) proliferate at comparable 

rates (Figure 2.5A). We then looked at proliferation marker Ki67 and mitotic 

marker Phospho-Histone3 (PH3) by flow cytometry during days 0, 2, 4, and 6 

and found that the levels in DICER1 Hypomorphs remain the same as in the 

wildtype controls (Figure 2.5B). These results were corroborated by 

immunofluorescence staining as well (Figure 2.5C). Next, we sought to 

investigate the proportion of cells in the G1, S, or G2 stages of the cell cycle 

by Propidium Iodide (PI) staining and flow cytometry. Again, we found no 

significant accumulation in G1 of the cell cycle in DICER1 hypomorphs (Figure 

2.5D, E). Although our results show that DICER1 hypomorphic hESCs do not 

have an altered cell cycle structure unlike found in other studies (Qi et al., 

2009), these results are in line with the in vivo observations of Dicer1 knockout  
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Figure 2.5. DICER1 Hypomorphs Maintain Proliferation and Cell Cycle Properties.
(A) Proliferation assay of DICER1-Hypomorph and wildtype lines by counting total cell 

number every 24hs for 6 days. Results are normalized to total cell number for each line at 

24hs. (B) Flow cytometry analysis of prolfieration markers Ki67 and PH3 in wildtype (A5, H4) 

and DICER1-Hypomorphs (B4-1,B4-4, G4-1, G4-2) every 48hs for 6 days. n=3. 

(C) Immunofluorescence of Ki67 and PH3 proliferation markers in DICER1-Hypomorph (B4)

and wildtype (A5) lines. (D) Representative propidium iodide flow cytometry histograms 

showing the percentage of cells in the G1, S or G2 stags of the cell cycle in wildtype (A5) 

and DICER1-Hypomorph (B4-4) lines. (E) Quantification of propidium iodide flow 

cytometry. n=3.
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during mouse development (Spruce et al., 2010). It remains to be seen 

whether these differences are cause because the DICER1 hypomorphs do not  

reach sufficient abolition of DICER1 protein levels, or if these differences 

display a mouse to human difference in DICER1 function.  

We also checked levels of apoptosis in the DICER1 hypomorphs 

compared to wildtypes. We performed flow cytometry to check for Cleaved 

Caspase-3 staining at days 0, 2, 4, and 6 of plating and observed no 

significant differences in apoptosis levels at any of the days analyzed (Figure 

2.6A). These results were corroborated with immunostaining for Cleaved 

Caspase-3 (Figure 2.6B). Thus, apoptosis levels remain unchanged in 

DICER1 hypomorphs.  

 

2.3.4 DICER1 Hypomorphs Show Impaired Colony Forming Ability 

Even though proliferation and apoptosis rates remained the same in 

DICER1 hypomorphs, we did notice that the total number of cells after 6 days 

of growth without normalizing to 24 hours was lower in DICER1 hypomorphs 

compared to wildtype. Thus, we investigated the ability of the hypomorphs to 

self-renew by subjecting them to colony forming assay, hypothesizing that they 

may have impaired colony forming ability, which could account for the 

difference in population at day six. Therefore, we plated DICER1 hypomorph 

(B4) or wildtype (A5) cells at low density in 10cm dishes, and counted the cell 

number after two weeks. The results showed that the DICER1 hypomorphs 

were indeed impaired in colony forming ability, resulting in half as many 

colonies when cultured without Rock inhibitor, and a quarter less when 

cultured in the presence of Rock inhibitor (Figure 2.7A). Addition of Rock 

inhibitor partially rescued the colony forming ability (Figure 2.7A). 
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Figure 2.6. Cell Death is Not Observed in DICER1 Hypomorphs.
(A) Flow cytometry analysis of apoptotic marker cleaved caspase-3 (CCSP-3) in wildtype 
(A5, H4) and DICER1-Hypomorphs (B4-1,B4-4, G4-1, G4-2) every 48hs for 6 days. n=3. 
(B) Immunofluorescence images of cleaved caspase-3 (CCSP-3) in WT (A5) and 
DICER1-Hypomorphs (B4, G4) lines.
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We next checked the levels of epithelial-to-mesenchymal transition 

(EMT) markers in DICER1 hypomorph (B4) compared to wildtype (A5). Loss of  

E-Cadherin is considered a fundamental event in EMT (Kim et al., 2014), and 

we found that E-Cadherin levels were significantly downregulated in the 

DICER1 hypomorph by about a half (Figure 2.7B). Consistent with these 

results, ZEB1, an EMT-promoting transcription factor, was highly upregulated 

by around 5-fold in the DICER1 hypomorph (Figure 2.7B). These findings 

could be explained by the reduction of the hESC-expressed miR-200 family in 

the DICER1 hypomorphs since this family has been shown to prevent EMT in 

hESCs and target the E-Cadherin inhibitors ZEB1 and ZEB2 directly (Gill et 

al., 2011; Zhang and Ma, 2012). Additional studies are needed to test this 

hypothesis. 

 

2.3.5 DICER1 Hypomorphs Dysregulate Differentiation Markers but 

Retain the Ability to Differentiate 

Since DICER1 knockout mESCs are unable to differentiate as 

evidenced by their inability to generate teratomas, to contribute to the embryo 

proper, and to upregulate differentiation markers upon embryoid body 

formation (Bernstein et al., 2003; Kanellopoulou et al., 2005; Murchison et al., 

2005), we set out to investigate whether this also holds true in the DICER1 

hESC hypomorphs. First, we performed qRT-PCR of transcription factors 

associated with the three germ layers (endoderm, ectoderm, and mesoderm) 

and the extraembryonic primitive endoderm in DICER1 hypomorphs (B4-1 and 

B4-4) and wildtype (A5). The results showed a 5 to 15-fold significant increase 

in FOXA2 expression and a 30 to 100-fold significant increase in SOX17 

expression in the DICER1 hypomorphs (Figure 2.8A). Ectoderm markers  
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Figure 2.7. DICER1 Hypomorphs Show Impaired Colony Forming Ability.
(A) Colony forming assay showing number of colonies after 2 weeks with or without Rock 
inhibitor for wildtype and DICER1-Hypomorph (B4) lines. Results are normalized to wildtype 
number of colonies. In black, colony forming assay for without Rock inhibitor; in grey, results
with Rock inhibitor. n=3. (B) qRT-PCR of ECAD, NCAD and EMT-promoting transcription
factors ZEB1, ZEB2, TWIST1, SNAIL and SLUG in DICER1-Hypomorph lines normalized to 
wildtype. In black, wildtype line; in grey, DICER1-Hypomorph line. n=3.  
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Figure 2.8. DICER1 Hypomorphs Dysregulate Developmental Transcription Factors. 
(A) qRT-PCR of transcription factors associated with the three germ layers (endoderm,

ectoderm, mesoderm) and the extraembryonic endoderm in DICER1-Hypomorph lines and

normalized to WT hESCs. n=3. (B) RNA-Sequencing plot of DICER1-Hypomorph and WT 

hESC lines. n=2. R, correlation coefficient. (C) Gene ontology analysis of genes upregulated 

in DICER1-Hypomorph compared to WT line. GO, gene ontology.
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SOX1 and OTX2 seem not to change significantly, but PAX6 does increase by 

about 2-fold (Figure 2.8A). Mesoderm markers Goosecoid (GSC) and  

Brachyury (BRACHY) seem to increase, albeit the changes detected were not 

statistically significant. Extraembryonic primitive endoderm markers like 

GATA4 and GATA6 were significantly upregulated 7 and 20-fold respectively, 

and SOX7 was significantly downregulated by a half (Figure 2.8A). Thus, we 

did find significant changes in differentiation marker expression. 

To investigate the global transcript levels in the DICER1 hypomorph 

(B4) compared to wildtype (A5), we performed RNA-sequencing followed by 

analysis performed by Solomon Shenker from the Lai lab at MSKCC. Overall, 

we found that global transcript levels remained fairly the same with a 

correlation coefficient of R=0.993 (Figure 2.8B). This is not surprising given 

that we did find some level of functional DICER1 in these hypomorphic lines. 

However, out of a total of 74,030 transcripts, 392 were significantly 

upregulated and 273 were significantly downregulated. Gene ontology (GO) 

analysis on the upregulated gene list, presumably direct targets of the 

microRNAS, rendered GO terms related to differentiation and development. 

The top three terms were “Developmental Process”, “Cell Differentiation”, and 

Cellular Developmental Process” (Figure 2.8C). Contrary to DICER1 knockout 

mESC data, our DICER1 hypomorph hESCs upregulated differentiation 

genes.  

Thus, we were interested in figuring out whether our DICER1 

hypomorphs could form teratomas when injected under the skin of SCID-mice. 

We injected eight mice per line (A5, B4-1 and B4-4), out of which 3 mice 

injected with wildtype hESCs generated teratomas, 4 mice injected with B4-1 

and 4 mice injected with B4-4 also generated teratomas (Figure 2.9A). The 
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teratomas formed were comparable in size between wildtype and mutant 

(Figure 2.9A). All teratomas derived from wildtype and DICER1 hypomorph 

hESCs were stained with hematoxylin & eosin (H&E) and then visualized 

under the microscope for endoderm, mesoderm and ectoderm structures. 

DICER1 hypomorph-derived teratomas displayed structures from all three 

germ layers, like wildtype-derived ones, showing that DICER1 hypomorph 

hESCs can differentiate, unlike Dicer1 knockout mESCs. 

To investigate whether DICER1 hypomorph hESCs are amenable to 

directed differentiation, we opted to differentiate these mutants into the 

neuroectodermal lineage. Studies performed in hESCs have shown that miR-

302, the most abundant miRNA cluster in hESCs, inhibits neural differentiation 

by promoting BMP signaling, and thus we investigated whether the DICER1 

hypomorph, which have reduced levels of miR-302, might be precociously 

differentiating into neuroectoderm (Barroso-delJesus et al., 2011; Lipchina et 

al., 2011). Thus, we induced neuroectoderm differentiation for ten days and 

analyzed the expression of pluripotency markers (OCT4 and NANOG) and 

neuroectoderm markers (PAX6 and SOX1) by qRT-PCR on days 0, 6, and 10 

of differentiation (Figure 2.9C). We found that pluripotency markers OCT4 and 

NANOG were properly downregulated by day 6 in DICER1 hypomorphs (B4 

and G4), with a concomitant increase in PAX6 and SOX1 transcripts at similar 

levels to wildtype (A5) (Figure 2.9D). Then, we checked the percentage of 

cells that expressed PAX6 protein, which is a transcription factor that is both 

necessary and sufficient for neuroectoderm formation (Zhang et al., 2010), by 

flow cytometry on days 4, 6, 8 and 10 of differentiation (Figure 2.9E, F). The 

percentage of DICER1 hypomorph cells expressing PAX6 at days 4, 6, 8 and 

10 were comparable to wildtype cells (Figure 2.9E). After 10 days of  
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Figure 2.9. DICER1 Hypomorphs Retain the Ability to Differentiate into All Three Germ Layers. 
(A) Teratoma assay of DICER1-Hypomorph (B4-1, B4-4) and WT (A5) lines by subcutaneous injections 

into 8 immunodeficient SCID mice per line. Table shows number of injected mice that developed a 

teratoma. (B) Hematoxylin & Eosin staining of teratoma cross sections displaying all 3 germ layers 

(endoderm, ectoderm, mesoderm). (C) Schematic representation of neuroectoderm differentation 

experimental procedure. (D) Flow cytometry plots of PAX6 positive cells on day 10 of neuroectoderm 

differentiation in DICER1-Hypomorph and WT lines. (E) Flow cytometry results of PAX6 positive cells 

at days 4,6,8,10 of neuroectoderm differentiation in DICER1-Hypomorphs (B4, G4) and WT lines. 

(F) qRT-PCR of pluripotency markers (OCT4 and NANOG) and neuroectoderm markers (PAX6 and 

SOX1) at days 0, 6 and 10 of neuroectoderm differentiation. (G) Immunofluorescence staining of PAX6,

SOX1 and OCT4 at day 10 of neuroectoderm differentiation in DICER1-Hypomorph and wildtype lines.     
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differentiation, ~90% of the neuroectoderm cells derived from either DICER1 

hypomorph or wildtype hESCs expressed PAX6 protein at comparable levels 

(Figure 2.9D, E). Immunostaining of PAX6, SOX1 and OCT4 confirmed these 

results (Figure 2.9G). Therefore, this means that DICER1 hypomorph hESCs  

can differentiate to neuroectoderm and do not appear to differentiate 

precociously. 

In sum, DICER1 hypomorph hESCs can differentiate efficiently and 

downregulate pluripotency factors at an appropriate pace, unlike Dicer1 

knockout mESCs. 

 

2.3.6 DICER1 Hypomorphs Downregulate Argonautes 2-4 

Out of the four mammalian Argonautes (AGO1-4), only Argonaute 2 

(AGO2) has catalytic activity (Liu et al., 2004). We were interested to 

investigate whether Argonaute 2 might be upregulated in the DICER1 

hypomorphs to aid in ‘slicer’ activity of microRNAs. To this end, we performed 

qRT-PCR of Argonautes 1 through 4 (AGO1-4) in DICER1 hypomorph (B4-1 

and B4-4) and wildtype (A5), and observed a significant downregulation for 

Argonautes 2, 3 and 4, but not 1 (Figure 2.10A). Western blotting of AGO2 

was performed by Sonali Majumdar of the Lai lab and confirmed that protein 

levels were also reduced in these DICER1 hypomorphs (Figure 2.10B). Even 

though the results don’t align with our hypothesis, these results make sense in 

the context of a previous study, which found that the stability of AGO declines 

in Dicer1-knockout mouse cells, and that Argonaute levels are finely tuned in 

part by the cellular availability of mature miRNAs (Smibert et al., 2013). 

Nevertheless, whether the remaining AGO2 levels are playing a role in slicing  
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Figure 2.10. Argonaute Proteins Are Downregulated in DICER1 Hypomorphs.
(A) qRT-PCR of the four human Argonaute proteins (AGO1, AGO2, AGO3, AGO4) in
DICER1 Hypomorph lines (B4-1, B4-4) and a wildtype line. mRNA levels are normalized to
GAPDH. AGO, Argonaute. n=3. (B) Western blot of Argonaute-2 in DICER1 Hypomorph lines
(B4-1, B4-4) and a wildtype line. GAPDH was used as loading control. 
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pre-miRNAs in the DICER1 hypomorph context is still unknown and needs 

further exploration. 

 

2.3.7 Successful Generation of DICER1 Knockout hESCs using a TRE-

DICER1* Rescue Strategy 

To overcome the hypothesized DICER1-/- defect, we designed a rescue 

strategy to enable the generation of homozygous-mutant lines without the 

apparent lethality of DICER1 loss, similar to the strategy used for knocking out 

DNMT3b in hESCs (Liao et al., 2015). We introduced a lentivirus containing a 

doxycycline-inducible TRE-DICER1* transgene into an iCas9 HUES8 line, 

creating a Tet-On DICER1* cell line to be used for subsequent targeting 

(Figure 2.11A and Appendix 2.A). The TRE-DICER1* vector was cloned by 

Federico Gonzalez in our lab. We selected cr4 and cr6 for further targeting 

due to their ability to generate indels and biallelic mutations (Figure 2.1C, 

Figure 2.11B and Table 5). We generated two Tet-On DICER1* lines each 

with a silent mutation in the protospaceradjacent motif (PAM) sequence of cr4 

or cr6 to prevent the gRNA from disrupting exogenous DICER1* (Appendix 

2.B). Expression of DICER1* transgene was confirmed by addition of 

doxycycline followed by qRT-PCR, which confirmed tight expression of the 

transgene (Appendix 2.C). We next used the CRISPR/Cas9 approach to 

knock out endogenous DICER1 while maintaining expression of exogenous 

DICER1* by doxycycline addition (Figure 1A). We now obtained several 

homozygous mutant lines using cr4 and cr6 gRNAs, suggesting that our 

rescue strategy maintains sufficient levels of DICER1 activity for survival 

(Figure 2.11C, Table 7 and Table 8). We picked four lines (B2, C2, D11, F2), 
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two from each gRNA targeting, and confirmed that they were karyotypically 

normal to perform more detailed characterization (Figure 2.11D, E). It is worth  

noting that the C2 line harbors the same biallelic base pair insertion as the B4 

DICER1 hypomorphic line generated initially (Figure 2.1D).  

 

DICER1 homozygous knockout hESCs proliferated normally and could 

be maintained over several passages as long as exogenous DICER1* was 

expressed. Removal of doxycycline for 5 days caused downregulation of 

DICER1* mRNA levels as well as DICER1* and DICER1 protein levels, which 

were barely detectable (Figures 2.12A, B, C). Additionally, we observed 

significant mature microRNA reduction by qRT-PCR and Northern blot at this 

stage with concomitant increase in precursor miRNA in the case of miRNA-

92a, showing that these lines are compromised in microRNA processing as 

expected (Figures 2.12D, E). However, 5 days were not sufficient for 

microRNAs to be fully ablated.  

As an alternate strategy to the lentiviral infection with the TRE-DICER1* 

transgene, we generated stable HUES8 hESC lines that harbor the TRE-

DICER1* transgene with either the PAM of cr4 or cr6 mutated on one allele of 

the AAVS1 locus, and either an M2rtTA cassette alone or an M2rtTA couple 

with Cas9 cassette on the other allele (Appendix 3A). Results of the three  

Table 7. Results of CRISPR gRNA targeting of DICER1 in TRE-DICER1* and iCas9 HUES8 hESCs. if, in frame allele; fs, frameshift allele. 

DICER1

CRISPRGene

Cr4
Cr4

hESC Line

Mutant Alleles Per Clone

1

2

In frame Frameshift

HomozygousCompoud Heterozygotes

In frame Frameshiftif/if fs/fs if/fs

iCas9 HUES8
TRE-DICER1*

iCas9 HUES8
TRE-DICER1* Cr6

Cr6

4/96 2/96 11/96 0/96 38/96 0/96 2/96

6/79 7/79 0/79 0/79 0/79 0/79 0/79

0/93 7/93 0/93 13/93 11/93 0/93 18/93

6/94 24/94 0/94 1/94 4/94 1/94 1/94
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Figure 2.11. TRE-DICER1* Rescue Strategy Allows the Generation of DICER1-/- hESC
Lines. (A) Schematic of the procedure followed to generate DICER1 knockout (-/-) hESCs. 
CRISPR/Cas9 was used to generate DICER1 -/- mutations in cells infected with a 
gRNA-immune doxycycline-inducible TRE-DICER1* transgene. Cas9 protein and DICER1* 
protein are induced simultaneously by doxycycline treatment. DICER1 -/- mutants were 
maintained in doxycycline until the start of experiments. Asterisk (*) is used to distinguish the 
exogenous modified DICER1* from endogenous DICER1. DOX, doxycycline (red dots). 
(B) Schematic representation of DICER1 protein with domains. Orange arrows represent 
gRNA-targeting loci upstream of the RNase IIIa functional domain. cr, CRISPR; DUF, Domain 
of Unknown Function; dsRBD, double-stranded RNA-Binding Domain. (C) CRISPR/Cas9 
targeting results of TRE-DICER1* hESC lines. White, wildtype lines; Yellow, monoallelic 
mutant lines; Red, biallelic mutant lines. Stripes indicate DICER1 -/- lines. Indel: insertion/
deletion. (D) Representative sequences of four selected DICER1 -/- clones with PAM 
sequences labeled in red. (E) Normal karyotype results of DICER1 -/- lines (B2 and C2 from 
cr4; D11 and F2 from cr6).

A

B

cr4 cr6

N=93 N=94

+/+
indel/+
indel/indel

5’- TACGAGAACCAGC----------------------------TGAATGTACTCTCCTGA -3’
5’- TACGAGAA-----------------------------------------------TGTACTCTCCTGA -3’

5’- CCAGCCCCAGCC-----------------------------------TCCTGAGTAATAAA -3’
5’- CCAGCCCCAGCC-----------------------------------TCCTGAGTAATAAA -3’

F2

D11

-13bp
-22bp

-17bp
-17bp

5’- CCCCTGGTAAGCTCC--------TGAAGTTTCAGCAGATCTTACAGCA -3’
5’- CCCCTGGTAAGCTCC--------TGAAGTTTCAGCAGATCTTACAGCA -3’

5’- CCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAG -3’
5’- CCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGC -3’

B2

C2

-4bp
-4bp

+1bp
+1bp

cr
4

cr
6

C

Helicase DUF283 PAZ RNase IIIa RNase IIIb dsRBD

cr4
cr6

D 5’- CCCCTGGTAAGCTCCACGTTGAAGTTTCAGCAGATCTTACAG -3’
5’- CCCCTGGTAAGCTCCACGTTGAAGTTTCAGCAGATCTTACAG -3’WT

WT

DICER1 gRNA

TRE-DICER1* DICER1-/-
+ DOX

TRE-DICER1*

- DOX

+ DOX
DICER1
DICER1*

DICER1
DICER1*

5’- CCAGCCCCAGCCCAGCGATGAATGTACTCTCCTGAGTAATAAA -3’
5’- CCAGCCCCAGCCCAGCGATGAATGTACTCTCCTGAGTAATAAA -3’

E
B2 C2 D11 F2



	

	 	71	

 
 
 

  

Table 8. Sequences of DICER1-/- form CRISPR targeting of TRE-DICER1* HUES8 hESCs. 

TRE-DICER1* Cr6

TRE-DICER1* Cr4

TTTATACAGTTACGAGAACCAGCCCCAGCCCAGCGATGAATGTACTCTCCTGAGTAATAAATACCTTGAT
TTTATACAGTTACGAGAACCAGCCCCAGCCCAGCGATGAATGTACTCTCCTGAGTAATAAATACCTTGAT

TTTATACAGTTACGAGAACCAGC----------------------------TGAATGTACTCTCCTGAGTAATAAATACCTTGAT
TTTATACAGTTACGAGAA-----------------------------------------------TGTACTCTCCTGAGTAATAAATACCTTGAT

TTTATACAGTTACGAGAACCAGCCCCAGCC-----------------------------------TCCTGAGTAATAAATACCTTGAT
TTTATACAGTTACGAGAACCAGCCCCAGCC-----------------------------------TCCTGAGTAATAAATACCTTGAT

A1

F2

D11

-13bp
-22bp
-17bp
-17bp

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCC--------TGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCC--------TGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGT--GAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGT-----------TTTCAGCAGATCTTACAGCAATTAATGGTC

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCCCTGGTAAGC-----------------------------------------AGATCTTACAGCAATTAATGGTC

A1

B2

C2
(16 total)

G8

C3

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTT------------------------AGATCGTACAGCAATTAATGGTC

E5

T>G

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCA----------------GTTTCAGCAGATCTTACAGCAATTAATGGTCG5
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGT-GGAGTTGCA-GCAGATCTTACAGCAATTAATGGTC

TGAAGTTTCA>GGAGTTGCA

B6

E7 CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGT---------------------GCAGGTCTCACAGCAATTAATGGTC

A>G T>C
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCC----------------------------------TGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC

F8

E9 CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGT-GGAGTTG-CAGCAGATCTTACAGCAATTAATGGTC
TGAAGTTT>GGAGTTG

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGT--GAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
H9

B10
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCCCTGGTAAG-----------------TGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC

G10 CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGCGAGTCCC----------------------------------TGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC

D12
CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC
CGTTGCTCAGC-------------------------------------------------------------------------AGATCTTACAGCAATTAATGGTC

WT

WT

-4bp
-4bp
+1bp
+1bp

+1bp

+1bp

+1bp

+1bp

+1bp

+1bp

+1bp

+1bp

+1bp

+1bp

+1bp

-1bp
-5bp

-19bp

-11bp

-7bp

-10bp, +9bp

-10bp

-16bp

-8bp, +7bp

-1bp

-8bp

-16bp

-35bp

CGTTGCTCAGCGAGTCCCCTGGTAAGCTCCACGTTTGAAGTTTCAGCAGATCTTACAGCAATTAATGGTC +1bp
CGTTGCTCAGCGAGTCCCCTGGTAAG----------------------------TTTCAGCAGATCTTACAGCAATTAATGGTC -13bp

F10
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electroporations to generate these lines can be found in Appendix 3B. Since 

the lentiviral strategy described above worked we did not continue along this 

path, and thus further characterization of these cell lines by Southern blotting 

is required. However, these lines have been generated and could be used in 

future studies.  

 

2.3.8 DICER1 is Essential for Self-Renewal in hESCs 

To investigate whether these DICER1 knockout hESC lines require 

DICER1* expression for survival, we removed doxycycline for 6 days (Figure 

2.13A). Although displaying reduced levels of mature microRNAs at this stage, 

the DICER1-depleted hESCs survived and even seemed to grow faster as 

observed by alkaline phosphatase (AP) staining (Figure 2.13B). The apparent  

increased proliferation may be attributed to a slower proliferation of hESCs on 

doxycycline, but control experiments are needed to test this hypothesis. 

Moreover, the DICER1-depleted hESCs maintained comparable protein levels 

of pluripotency markers OCT4, NANOG, and SOX2 by immunofluorescence, 

albeit displaying slightly lower transcript levels by qRT-PCR (Figures 2.14A, 

B). This lower transcript level of pluripotency markers resembles what is 

observed in the DICER1 hypomorphs (Figure 2.4A).  

 Since the majority of mature microRNAs are stable and have half-lives 

longer than 18hs, it is likely that a longer treatment without doxycycline was 

required to fully deplete these lines of mature microRNAs (Guo et al., 2015). 

Thus, we passaged these DICER1-depleted cells and maintained them in the 

absence of doxycycline for another 6 days (Figure 2.13A). After a total of 12 

days of doxycycline removal there were very few DICER1-depleted hESCs 

remaining in the dish, except for the C2 line where clear colonies were  
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Figure 2.12. Validation of DICER1 -/- hESC Lines. (A) Schematic representation of the 
experimental procedure. (B) qRT-PCR analysis of DICER1* transgene expression in four 
DICER1 mutant lines with and without doxycycline treatment for 5 days. Levels relative to 
GAPDH. n=3. (C) Western blot of Flag-DICER1* and total DICER1 levels of four DICER1 
mutant lines (B2, C2, D11, F2) with and without doxycycline treatment for 5 days. (D) Mature 
microRNA qRT-PCR analysis of eight hESC-expressed microRNAs in B2 DICER1 KO hESC 
line. Levels normalized to +DOX. n=3. (E) Northern blots of three hESC-expressed 
microRNAs (hsa-miR-302c-3p, hsa-miR-200c-3p, hsa-miR-92a-3p) in DICER1 -/- hESC lines 
treated with or without doxycycline for 5 days. RNU44 was used as loading control. Pre-mir, 
precursor microRNA; miR, mature microRNA.
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growing (Figure 2.13C). The few remaining DICER1-depleted cells could not 

be propagated, but we could maintain the C2 line in culture. As previously 

mentioned, the C2 line is a DICER1 hypomorph, and thus we were expecting 

this line to survive upon doxycycline removal. This argues against the 

hypothesis that adaptation of the DICER1 hypomorph (B4) in culture causes 

its survival since this line survives despite immediate withdrawal of DICER1*. 

DICER1 knockout hESC phenotype was partially rescued by inducing ectopic 

DICER1* expression upon replating (Figure 2.16B). These results confirmed 

that DICER1 is required for hESC self-renewal, unlike in mESCs.  

  To explore whether the DICER1 knockout phenotype is caused by 

compromised adherence to the extracellular matrix (ECM), we followed the 

cells from day 7 to day 12 of doxycycline removal and checked for survival of 

pluripotent cells by AP staining and cell growth by cell counting (Figures  

2.13D, E). Upon closer examination, we observed that the cells were properly 

attaching after replating, which means that at least initial adherence to the 

ECM remains intact. Along these lines, qRT-PCR of E-cadherin, N-cadherin 

and EMT-promoting transcription factors on day 6 shows that E-cadherin and 

N-cadherin levels remain the same as in wildtypes, albeit some 

downregulation of ZEB2, TWIST1, and SNAIL is observed, which indicates 

that epithelial-to-mesenchymal transition (EMT) is not occurring at this point 

(Figure 2.14C). Instead, the DICER1-deficient cells appear to die around days 

9-10 of doxycycline removal (Figures 2.13D, E). This effect was also observed 

when plating four times as many cells, arguing against the possibility of a 

density-dependent phenotype (Figure 2.13F).  
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Figure 2.13. DICER1 is Essential in Human Embryonic Stem Cells. (A) Schematic 
representation of experimental procedure. AP, alkaline phosphatase; DOX, doxycycline. 
(B) Alkaline phosphatase (AP) staining of four DICER1 mutant lines with and without 
doxycycline treatment for 6 days. Scale bar represents 500mm. Levels relative to GAPDH. 
n=3. (C) Alkaline phosphatase (AP) staining of four DICER1 mutant lines treated with and 
without doxycycline treatment for 6 days, and then replated and grown with and without 
doxycycline for another 6 days. Scale bar represents 500mm. (D) Schematic representation 
of experimental procedure. Close-up pictures of alkaline phosphatase (AP) stained B2 
DICER1 -/- hESC line with and without doxycycline after replating between days 7 and 12. 
Scale bar represents 500um.(E) Cell number quantification of B2 DICER1 -/- hESC line after 
replating between days 7 and 12. n=5 for d7-9, n=4 for d10, and n=3 for d11-12. (F) Whole-
well view of AP-stained B2 DICER1 -/- after being replated at different densities (28,000 cells 
or 112,000 cells per cm2) from days 7 to 12 with or without doxycycline treatment. Scale bar 
represents 500mm.

A

B

-DOX:

d4d0 d2 d6

+DOX:

AP staining

C
+D

O
X

-D
O

X

B2 C2 D11 F2

Split cells
(28K cells/cm2)

AP staining

d10d6 d8 d12

d7 d8 d9 d10 d11 d12

+D
O

X
-D

O
X

E

B2 C2 D11 F2

+D
O

X
-D

O
X

d7 d8 d9 d10 d11 d12
0

2 106

4 106

6 106

8 106

To
ta

l L
iv

e 
C

el
l #

 / 
w

el
l o

f 6
-w

el
l d

is
h

+DOX
-DOX

* ** **ns ns ns

d6 d12

D

+ 
D

O
X

- D
O

X

d7 d8 d9 d10 d11 d12

+ 
D

O
X

- D
O

X
28

K
 c

el
ls

/c
m

2
11

2K
 c

el
ls

/c
m

2

F



	

	 	76	

  

Figure 2.14. DICER1 -/- Lines Maintain Pluripotency Marker Expression and Do Not 
Seem to Undergo EMT Five Days After Doxycycline Removal. (A) Immunofluorescence 
staining of pluripotency markers (OCT4, NANOG, SOX2) in B2 DICER1 -/- with and without 
doxycycline treatment for 6 days. (B) qRT-PCR analysis of pluripotency marker expression 
(OCT4, NANOG, SOX2, and KLF4) in four DICER1-/- lines with and without doxycycline 
treatment for 5 days. Levels relative to GAPDH. n=3. (C) qRT-PCR analysis of E-Cadherin 
and N-Cadherin as well as EMT-promoting trancription factors ZEB1, ZEB2, TWIST1, SNAIL 
and SLUG in four DICER1.-/- lines with and without doxycycline treatment for 5 days. Levels 
relative to GAPDH. n=3. 
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2.3.9  Loss of DICER1 in hESCs Causes Caspase-3-Mediated Apoptosis 

To explore whether hESCs require DICER1 for survival, we assessed 

Cleaved Caspase-3 levels by flow cytometry at days six through eleven after 

doxycycline withdrawal (Figure 2.15A). As a control, we kept the cells on 

doxycycline. We did not check levels at day twelve since there were not 

enough cells remaining at that timepoint. Flow cytometry showed that Cleaved 

Caspase-3 levels increase significantly when Doxycycline, and therefore 

DICER1*, is removed (Figure 2.15B). This increase is significant starting from 

day eight after Doxycycline removal and peaks at day ten (Figure 2.15B, C), 

which correlates with the alkaline phosphatase staining data (Figure 2.13D). In 

fact, at day ten there is a 6-fold increase in Cleaved Caspase-3 staining 

(Figure 2.15C). These results were confirmed by immunofluorescence staining 

of Cleaved Caspase-3 at days nine and ten when a clear increase in Cleaved 

Caspase-3 protein is observed (Figure 2.15D). Reassuringly, we find nuclei 

condensation and loss of OCT4 in Cleaved Caspase-3 positive cells (Figure 

2.15D, inset).   

 

2.3.10 Five Days of Doxycycline Removal Results in Few Changes in 

Transcriptome 

To investigate global transcriptome changes in the DICER1 hESC 

knockouts after five days of doxycycline withdrawal, we performed deep 

sequencing analysis of DICER1 knockout (D11 cultured without doxycycline 

for 5 days) and wildtype cells (D11 cultured with doxycycline) followed by 

analysis performed by Professor Todd Evans. The results showed that after 

five days of doxycycline withdrawal the transcriptome remains almost 

unchanged (Figure 2.16A). As mentioned earlier, this may not be surprising  
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Figure 2.15. Loss of DICER1 in hESCs Causes Caspase-3 Mediated Cell Death.
(A) Schematic representation of the experimental design. (B) Flow cytometry of Cleaved
Caspase-3 from days 6 through 11 in D11 mutant hESCs with and without Doxycycline. 
CCSP-3, cleaved caspase-3; ns, not significant; DOX, doxycycline. n=3. (C) Representative 
flow plots of D11 mutant line with and without Doxycycline at day 10. CCSP-3, cleaved 
caspase-3; DOX, doxycycline. (D) Representative immunofluorescence pictures of 
cleaved Caspase-3 and OCT4 in D11 mutant hESCs with and without Doxycycline at days
9 and 10. Inset represents a close-up of showing nuclei fragmentation and loss of OCT4. 
Scale bar for closeup= 7um. Scale bar for main images= 30um. n=3.
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Figure 2.16. Deep Sequencing in DICER1-/- After Five Days of Doxycycline Removal 
Reveals Few Changes in Transcriptome. (A) Scatter plot of RNA-Sequencing results of 
DICER1-/- hESCs (D11 Minus Doxycycline) compared to WT hESCs (D11 Plus Doxycycline). 
Only eighty-two genes are significantly dysregulated by a factor of 2 or more, and seven 
hundred and fifty-six genes are significantly dysregulated by a factor of 1.1 or more. (B) A list 
of the top twenty upregulated and downregulated genes in DICER1-/-. Selection criteria
involved genes that were significantly dysregulated (p-value <0.05) and by a factor of 2 or
more. In green, FERMT2, a protein of interest. 

A
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RP4-536B24.2  antisense
RP11-685G9.2  antisense
FERMT2   protein_coding
STC2    protein_coding
AC004771.1   pseudogene
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FLT1    protein_coding
MT-TT    Mt_tRNA
IFNWP19   pseudogene
SLC7A11-AS1  processed_transcript
PPP1R3B   protein_coding
ARAP3   protein_coding
ADC    protein_coding
RP11-789C2.1  lincRNA
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GRB10   protein_coding
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EMC4    protein_coding
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PSME3   protein_coding
PDSS1   protein_coding
SPAG4   protein_coding
NEFH    protein_coding
GPC3    protein_coding
ATP1A2   protein_coding
NCAPG2   protein_coding
MT2P1   pseudogene
R3HDM4   protein_coding
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given that most microRNAs are very stable and have half-lives longer than 18 

hours (Guo et al., 2015), and we do see reduced but still present expression of 

all microRNAs tested (Figures 2.12D, E). Nevertheless, we found 44 genes 

with a 2-fold or more upregulation and a p-value <0.05, and 38 genes with 2-

fold or more downregulation and a p-value <0.05 (Figure 2.16A). We found 

more genes, 756 to be exact, with subtle but significant changes above 1.1-

fold (Figure 2.16A). Gene ontology (GO) analysis did not reveal any 

significantly enriched GO categories in the upregulated genes. However, we 

listed the top 20 upregulated and top 20 downregulated genes in the DICER1 

knockout cells that had been depleted of doxycycline for 5 days (Figure 

2.16B). It will be informative to perform deep sequencing at ~day 8-9 when the 

cells start dying and have presumably downregulated the microRNAs enough 

to show a phenotype.   

 

2.3.11 ESCC miRNA Clusters 371-373, 302-367 but not 17-92 Rescue 

DICER1 Knockout hESCs 

To address whether hESC self-renewal requires miRNAs or other 

DICER1-dependent functions, we performed a rescue experiment with select 

microRNA families. We chose the ESCC-family of miRNAs (miR-302-367, 

miR-371-373, and miR-17-92) since they have been previously implicated in 

mouse ESC self-renewal (Greve et al., 2013; Wang et al., 2008). Additionally, 

we tested the miR-200 family because it has been shown to be important in 

reprogramming of human fibroblasts to iPSCs and because its role in hESCs 

has not yet been elucidated (Samavarchi-Tehrani et al., 2010; Suh et al., 

2004; Wang et al., 2013a). Thus, we selected these four families to transfect 

into DICER1 knockout hESCs and probe their function further. Specifically, we 



	

	 	81	

cultured the cells without doxycycline for 6 days, and then passaged and 

transfected them with miRNA mimics, individually or all members of a cluster. 

Positive and negative controls were transfected with a control miRNA mimic 

that contains a non-specific sequence and that doesn’t bind to any mRNAs. 

We allowed these cells to grow until day 12, at which point we either fixed 

them and stained for alkaline phosphatase to visualize pluripotent cells, or we 

counted live cells for quantification (Figure 2.17A). These experiments were 

performed in two DICER1 knockout lines, D11 and B2 (Figures 2.17B, C and 

Appendix 4B, respectively). Criteria for rescuing the DICER1 knockout hESC-

phenotype was based on at least a 25% rescue as assessed by live cell 

counting by an individual miRNA or miRNA cluster. 

The most striking rescues were observed for the miR-302-367 and miR-

371-373 clusters by alkaline phosphatase (AP) staining and cell counting 

(Figure 2.17B, C). miR-302-367 rescued 45% of the number of cells in the 

positive control, whereas miR-371-373 rescued 36% (Figure 2.17C). Since 

~60% of the cells are successfully transfected with miRNA mimics (Gonzalez 

et al., 2014), it is hard to predict whether these microRNAs are partially 

rescuing or fully rescuing the DICER1 knockout hESC phenotype. Thus, the 

possibility that there are other microRNAs required to fully rescue the 

phenotype cannot be excluded at this time. The other two clusters, miR-17-92 

and miR-200, had milder rescuing effects that lay under our 25% cutoff and 

therefore we did not consider them significant (Figure 2.17C). Notably, 

members of the miR-17-92 cluster that were shown to be sufficient to rescue 

the proliferation defect in miRNA-depleted mESCs (Wang et al., 2008), appear 

not to be required in miRNA-depleted hESCs. Also, although we did not 

observe high percentage rescue for the miR-200 cluster, the rescued cells  
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Figure 2.17. ESCC MicroRNAs 371-373 and 302-367, but not 17-92, Rescue DICER1-/- 
hESCs. (A) Schematic representation of microRNA mimic transfection procedure. Cntrl, 
control; miR, mature microRNA; DOX, doxycycline; AP, alkaline phosphatase. (B) Whole-well 
view of alkaline phosphatase (AP)-stained DICER1-/- hESCs on day twelve treated with or 
without microRNA transfection of individual microRNAs or groups of microRNAs. In green, 
nine microRNAs that rescue the DICER1-/- phenotype at varying degrees. Representative 
images of four independent experiments. (C) Quantification of miRNA rescue by cell counting 
of 24-well plates, and normalized to plus doxycycline control. n=3. (D) List of mature 
microRNAs (3p or 5p) transfected in D11 DICER1-/- hESCs. In green, mature microRNAs 
that significantly rescued the DICER1-/- phenotype. The boxes represent the common seed 
sequence amongst those mature microRNAs that rescue the DICER1-/- phenotype.
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appeared to form refractive edges with an appearance resembling that of 

naïve cells, and they stained highly for alkaline phosphatase (Figure 2.17B). 

These observations were specific to miRNAs 200b-3p, 429-3p, and 200c-3p, 

which remarkably share the ‘AAUACUG’ seed sequence unlike the other two 

members of the family, miRNAs 200a-3p and 141-3p. It will be interesting to 

study whether this ‘AAUACUG’ seed sequence plays a role in the naïve stem 

cell state.  

Interestingly, not all members of the miR-302-367 and miR-371-373 

clusters rescued the DICER1 knockout hESC phenotype. For example, 

although miRNAs 302a, 302b, 302c, and 302d significantly rescued between 

44-60% of the cells in the positive control, miR-367 did not rescue (a non-

significant 8%) (Figures 2.17B, C). Similarly, although miRNAs 372 and 373 

rescued 47% and 41% of the cells in the positive control respectively, miRNA 

371 failed to rescue (a non-significant 8%) (Figures 2.17B, C). Notably, the 

individual miRNAs that rescued in these two clusters contain the ESCC seed 

sequence ‘AAGUGC’, whereas miR-371a-5p and miR-367-3p do not. Since 

the seed sequence is predominantly responsible for mRNA target specificity 

(Bartel, 2009), these results emphasize the relevance of the ESCC seed 

sequence in survival of hESCs, and highlights the value of our system to 

identify individual key players. 

 To address whether the rescued cells expressed proper pluripotency 

markers, we analyzed expression of OCT4 and NANOG by 

immunofluorescence for each individual miRNA tested as well as the grouped 

miRNAs (Appendix 4 and data not shown). Individual, pooled and clusters of 

miRNAs transfected in DICER1 knockout hESCs resulted in survival of hESCs 
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expressing the proper pluripotency markers, indicating that these miRNAs 

restored self-renewal of DICER1 knockout hESCs. 

 

2.3.12 DICER1 Seems Not to be Essential in Naïve hESCs 

Although both derived from the pre-implantation blastocyst stage (Brons 

et al., 2007), mESCs and hESCs are believed to represent different embryonic 

developmental stages, in which hESCs represent a slightly later 

developmental stage, and thus resemble mEpiSCs more than mESCs (Tesar 

et al., 2007; Weinberger et al., 2016). Therefore, hESCs are classified as 

‘primed’ ESCs, whereas mESCs are classified as ‘naïve’ ESCs (Weinberger et 

al., 2016). To investigate whether the requirement for DICER1 in hESCs is 

specific to the ‘primed’ state, we investigated whether our DICER1 knockout 

hESCs would survive if they were converted to the naïve state. To this end, we 

used the Stem Cell Technologies RSeT Media, which is based on Jacob 

Hanna’s protocol (Gafni et al., 2013), to convert the four DICER1 mutant 

hESCs (B2, C2, D11, F2) to the naïve state under hypoxic conditions (5% O2). 

This was carried out in the presence of doxycycline to maintain DICER1* 

levels in these DICER1 knockout hESCs. By the third passage in naïve 

conditions, all four DICER1 knockout hESCs under naïve conditions acquired 

typical naïve stem cell morphology with tightly-packed, dome-shaped colonies 

with refractive edges (Figures 2.18A, C). Molecularly, they activated key 

transcripts associated with naïve-like ESCs, such as STELLA and DNMT3L 

(Figure 2.18B). Thus, proper conversion from the primed to the naïve-like ESC 

state was achieved. 

Next, we removed doxycycline from the culture to test whether the 

DICER1 knockout hESCs could survive in naïve conditions without the  
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Figure 2.18. DICER1 is Apparently Not Essential in Naïve hESCs Lines. (A) Brightfield 
images of primed human embryonic stem cells (HUES8 line) and naive human embryonic 
stem cells at passage 3 (P3) of primed-to-naive conversion. Scale bar represents 100um. 
(B) qRT-PCR of markers associated with naive and primed stem cell states in primed and 
naive TRE-DICER1* lines (with doxycycline). mRNA levels are normalized to primed 
embryonic stem cells (HUES8 line). n=3 (for naive embryonic stemcells this corresponds to 
passages 3, 4 and 5 of primed-to-naive conversion). (C) Brightfield images of DICER1-/- 
(TRE-DICER1*) lines with doxycycline and without doxycycline for five days (P0, passage 0) 
and for ten days (P1, passage 1). Scale bar represents 100um. (D) qRT-PCR graph showing 
RNA levels of DICER1* transgene being downregulated upon doxycycline removal for five 
days. (E) Brightfield images of DICER1-/- naive human embryonic stem cells surviving 
despite long-term withdrawal of doxycycline. Five passages correspond to ~25 days of 
doxycycline withdrawal. Scale bar represents 100um. 
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exogenous DICER1* protein. The doxycycline was removed for five days and 

we confirmed the absence of DICER1* transgene expression (Figure 2.18D). 

As expected from our results in the primed state (Figure 2.13B), the cells did 

not die (Figure 18.C, “-DOX P0” panel). However, when these cells were 

replated again without doxycycline, the cells survived, albeit in decreased 

numbers (Figure 2.18C, “-DOX P1” panel). These naïve cells could be 

maintained in naïve conditions in the absence of doxycycline for at least five 

passages (Figure 2.18E). These results contrast what was observed for 

primed DICER1 knockout hESCs that cannot be maintained when depleted of 

exogenous DICER1* (Figure 2.13C). Notably, these DICER1-depleted naïve-

like cells proliferated very slowly and were hard to maintain as a line, similar to 

observations reported for Dicer1 and Dgcr8 knockout mESCs (Kanellopoulou 

et al., 2005; Murchison et al., 2005; Wang et al., 2007). 

 

2.4 DISCUSSION 

Analysis of DICER1 knockout hESCs has allowed us to study miRNA 

requirements in the primed state of pluripotency. We have shown that DICER1 

is essential for hESC survival, which is in contrast to its nonessential role in 

mouse ESCs. This is an interesting finding since DICER1 knockdown in 

hESCs had previously rendered viable cells, albeit displaying slower 

proliferation rates similar to the phenotype in mouse ESC knockouts 

(Murchison et al., 2005; Qi et al., 2009). We also generated two DICER1 

hypomorph hESC lines which were viable, did not show increased levels of 

apoptosis but, in contrast to the DICER1 knockdown, seemed to proliferate 

normally. A possible explanation in the discrepancy between the DICER1 

knockout and the knockdown/hypomorph phenotypes might be that complete 
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lack of DICER1 is required to render the cells inviable, whereas reduced levels 

might impair certain functions but allow cell survival.  

Notably, we found that the human DICER1 knockout displays a different 

phenotype than the mouse knockout. There are two plausible explanations for 

this apparent discrepancy. The first is that the Dicer1 knockout mESCs may 

have been selected for viability in culture and may not be viable in the in vivo 

context. Given that in vivo studies of Dicer1 knockout at pre-implantation 

stages are compromised due to maternal Dicer1 contribution (Spruce et al., 

2010), Dicer1 requirement at these early stages has not been elucidated. In 

fact, some groups have questioned whether the Dicer1 knockout mouse ESCs 

are truly viable or result from a cell culture artifact (Greve et al., 2013; 

Murchison et al., 2005). In particular, Murchison and colleagues reported that 

most Dicer1 knockout clones they generated were initially severely impaired in 

proliferation, and that after two weeks in culture, two lines eventually ‘escaped’ 

and achieved growth rates slower than but approaching that of Dicer wildtype 

lines, which could only then be maintained in vitro (Murchison et al., 2005). 

Our strategy to study DICER1 knockouts in hESCs using a DICER1* 

transgene is specifically designed to bypass issues with cell culture adaptation 

and is thus particularly fit to study acute DICER1 depletion during 

development.  

However, a more likely explanation for the discrepancy between the 

mouse and human requirement for Dicer1 might be the established notion that 

mouse and human ESCs represent different pluripotent states. Recently, 

knockout studies for EZH2 and DNMT3A have shown essential phenotypes in 

human ESCs, contrary to their nonessential roles in mouse ESCs (Collinson et 

al., 2016; Liao et al., 2015; Shen et al., 2008; Tsumura et al., 2006). In fact, 
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our preliminary studies with naïve DICER1 knockout hESCs suggest that this 

is the case since naïve DICER1 knockout hESCs are able to survive, albeit 

with compromised proliferation rates. Since human ESCs model the post-

implantation epiblast, this may indicate that this is the first developmental 

period when DICER1 becomes essential. In fact, a similar phenotype has 

been shown for mouse epiblast stem cells where DICER1 deletion causes 

massive apoptosis (Pernaute et al., 2014). It will be interesting to perform 

more extensive characterization of DICER1 knockouts in naïve versus primed 

hESCs to detail miRNA function in these contexts. 

Dicer1 is not essential for survival in all cell types during development. 

For example, Dicer1 conditional knockout studies of the adrenal gland showed 

that Dicer1 is dispensable in the specification and survival of the fetal adrenal 

cortex (Krill et al., 2013), and another study indicated that it is not required for 

survival in the γδ lineage cells during T cell development (Cobb et al., 2005). 

Similarly, it is not essential for survival in the colorectal cancer cell line 

HCT116 (Kim et al., 2016). However, Dicer1 is essential for survival in other 

developmental cell types such as the limb mesoderm at E10.5, the αβ lineage 

during T cell development, and in melanocyte stem cells and differentiated 

melanocytes (Cobb et al., 2005; Harfe et al., 2005; Levy et al., 2010). Thus, it 

seems like Dicer function is not universally required for survival but its 

requirement is instead context-dependent and is likely contingent on cell-type 

specific miRNA function.  

In this study, we generated a platform to investigate cell-type specific 

miRNA requirements in primed and naïve pluripotency that can also be used 

to address miRNA requirements in differentiation of hESC-derived cell types. 

An advantage of our system is that it allows us to study the contribution of 
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individual microRNAs and microRNA clusters without encountering the 

problem of masked phenotypes due to redundancy in the miRNA network 

(Park et al., 2010). Of the more than forty reported genetic deletions of 

individual miRNAs, none have demonstrated embryonic defects prior to E14.5 

(Kuhnert et al., 2008; Liu et al., 2008; Park et al., 2010; Ventura et al., 2008; 

Zhao et al., 2007). However, double knockouts for miRNA-302a-d and miRNA-

290 clusters in mice exhibit an earlier phenotype than either knockout cluster 

alone, suggesting an earlier redundant function for these clusters (Medeiros et 

al., 2011). The contribution of individual miRNAs to this earlier function is very 

hard to study in mice, but our hESC platform is particularly suited to easily 

dissect miRNA function in this context. We found that the miRNA-302-367 and 

miRNA-371-373 clusters are necessary and sufficient on their own for survival 

of primed ESCs, which indicates that they act redundantly and that they are 

essential for survival during the post-implantation embryo. Additionally, we 

were able to distinguish which individual miRNAs within these clusters are 

functionally relevant. It will be interesting to study the exact mechanism of 

action in future studies. 

Intriguingly, we did not find that the ESCC miRNA-17-92 cluster 

rescues DICER1 knockout viability in hESCs. This result contrasts its role in 

miRNA-depleted mESCs where miRNA-19a was shown to rescue the 

proliferation defect (Wang et al., 2008), as well as the function of miRNA-92a 

in rescuing cell death in Dicer1 knockout mEpiSCs (Pernaute et al., 2014). 

This difference in the role of the miRNA-17-92 cluster suggests that miRNA 

function differs between mouse and human, and underpins the importance of 

assessing human-specific miRNA requirements by performing studies in 

human ESCs.  
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Even though we identified two clusters that are necessary and sufficient 

to rescue survival in DICER1 knockout hESCs, there may be other microRNAs 

that are required and sufficient in this context. Our platform is particularly 

suitable to investigate novel functions of miRNAs in the primed state, and it will 

be interesting to perform a blind miRNA rescue screen to uncover unknown 

miRNA functions in the future.    

Taken together, our study provides a comprehensive examination of 

DICER1 and miRNA function in hESC pluripotency. Our study uncovers 

human to mouse differences in DICER1 requirement, and provides a platform 

to discover novel and essential miRNAs players in early human development.  
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CHAPTER 3: Conclusions & Perspectives 

  

3.1    SUMMARY 

Precise microRNA functional studies in the post-implantation stage of 

mouse development have been lacking due to redundancy issues in the 

microRNA network. Moreover, human specific miRNA requirements have not 

been assessed in primed ESCs. The purpose of my thesis work was to 

elucidate global and specific miRNA function in primed pluripotency as a proxy 

to the in vivo post-implantation stage. Thus, we set out to knockout DICER1 in 

human ESCs for the first time and to evaluate miRNA-specific requirements in 

the primed state.  

To our surprise, we were initially unable to generate DICER1 knockout 

ESCs through CRISPR targeting. Nevertheless, we obtained two DICER1 

hypomorphic lines that we used for assessing the contribution of DICER1 in 

hESC pluripotency. DICER1 hypomorphs maintained the overall levels of 

pluripotency factors, although we detected a slight decrease in the expression 

of OCT4 and NANOG transcript levels. Importantly, we did not observe a 

proliferation defect in the hypomorphs nor did we detect any changes in cell 

survival. However, we did find that the DICER1 hypomorphs had impaired 

colony forming ability, and the cells downregulated E-CADHERIN and 

upregulated ZEB1, which are signs that the cells undergo epithelial-to-

mesenchymal transition and that could, at least partially, explain the colony 

forming disability. Contrary to Dicer1 mouse knockouts, our DICER1 

hypomorphs were able to differentiate into all three germ layers as evidenced 

by the formation of teratomas displaying structures of all three lineages. 

Moreover, they were able to properly upregulate differentiation markers and 
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downregulate pluripotency markers upon directed differentiation into 

neuroectoderm cells. In line with these results, RNA-Sequencing revealed an 

increase in developmental transcription factors in the hypomorphs. We tested 

the expression of mammalian Argonautes (AGOs) 1-4 in the hypomorphs and 

found the transcript levels of AGOs 2-4 decreased as well as the protein levels 

of AGO2, arguing against the possibility of AGO2 playing a role in processing 

the mature miRNAs found in the DICER1-compromised cells. 

Our results suggested that DICER1 is essential in hESCs, and we 

confirmed this by generating a doxycycline-inducible line that expressed a 

gRNA-immune DICER1* transgene to enable the retrieval of DICER1-/- hESCs 

during CRISPR targeting. These knockout lines downregulated DICER1* upon 

doxycycline removal which caused depletion of miRNAs. miRNA-depleted 

hESCs did not survive passaging, demonstrating that DICER1 is indeed 

essential for survival in hESCs. Specifically, DICER1 knockout hESCs died 

around days 9-10 of doxycycline withdrawal if they were passaged. Plating 

four times as many cells did not prevent the DICER1 knockout cells from 

dying, suggesting that the phenotype is not density-dependent. Flow cytometry 

of Cleaved Caspase-3, an apoptotic marker, showed that hESCs in the 

absence of DICER1 undergo cell death. RNA-Sequencing studies after five 

days of doxycycline depletion revealed very few transcriptional changes, which 

might reflect the fact that miRNAs, which are known to be very stable, perdure 

at this timepoint. Nevertheless, we detected minor downregulation of 

pluripotency factors OCT4, NANOG, SOX2 and KLF4.  

Additionally, we found that ESCC microRNA clusters 302-367 and 371-

373, but not miRNA-17-92, rescue self-renewal in hESCs. Although we found 

that the miRNA-200 family did not significantly rescue the number of cells that 
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survived, we observed that the cells that did survive formed dome-shaped 

colonies with refractive edges that resembled naïve stem cells.  

Finally, we converted our DICER1 knockout hESCs into the naïve state 

and removed doxycycline. Contrary to the knockout phenotype in the primed 

state, we found that DICER1 knockout naïve-like hESCs survived passaging, 

suggesting that DICER1 may not be required in the naïve state.       

 

3.2    FUTURE DIRECTIONS 
 

3.2.1 Detailed characterization of DICER1 Knockout Phenotype in 

hESCs 

We identified a requirement for DICER1 in survival of hESCs. However, 

the exact mechanism by which the cells die remains elusive. Studies 

assessing Cleaved Caspase-3 by flow cytometry and morphological evidence 

of cell shrinkage point towards apoptosis as the culprit of the DICER1 

knockout phenotype in hESCs. We have not yet identified whether the 

apoptosis is caused by the extrinsic or intrinsic (mitochondrial) pathways of 

apoptosis. These observations correlate with the increased apoptosis 

observed in DICER1 knockout in mouse EpiSCs (Pernaute et al., 2014). It will 

be important to investigate what causes the apoptosis in DICER1 knockout 

hESCs. 

 

3.2.2 Mechanism of action of miRNA-302-367 and miRNA-371-373 in 

hESCs 

We uncovered a pro-survival function in hESCs for two clusters, 

miRNA-302-367 and miRNA-371-373. Both clusters have been previously 



	

	 	94	

implicated in pro-survival functions, albeit in different contexts. For example, 

the miRNA-302-367 cluster is sufficient to partially rescue apoptosis in Dicer1-

deficient mEpiSCs (Pernaute et al., 2014). In mESCs, the miRNA-290 cluster 

(miRNA-371-373 in human) prevents apoptosis during exposure to genotoxic 

stress, which might be relevant during physiological stress in the developing 

embryo (Zheng et al., 2011). It will be important to elucidate the mechanism of 

action for this pro-survival function in hESCs. An informative experiment will 

be to perform RNA-Sequencing at ~days 8-9 of doxycycline withdrawal in our 

DICER1 knockout hESCs to understand which mRNA transcripts are 

upregulated at this stage, indicating possible miRNA targets and revealing 

potential mechanistic insights.     

 

3.2.3 Genome-wide miRNA Screen to Identify Novel miRNA Players in 

hESCs Pluripotency and Differentiation 

We performed a targeted screen with four clusters of miRNAs, and 

identified key miRNA players in hESC self-renewal. However, our study does 

not tell us whether there might be additional miRNAs that are necessary and 

sufficient to rescue the DICER1 knockout phenotype. It might be interesting to 

perform double knockouts of miRNA-302-367 and miRNA-371-373 to test 

whether they phenocopy the DICER1 knockout phenotype in hESCs, which 

would indicate whether there might be other microRNAs required in the primed 

state. Regardless, it will be informative to perform a genome-wide miRNA 

screen, or at least an ESC-specific miRNA library screen, to identify novel 

miRNAs that can fully or partially rescue aspects of the DICER1 knockout 

phenotype.  
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Another exciting application for our inducible DICER1 knockout hESC 

platform is its potential to uncover miRNA requirement during differentiation 

into any cell type of interest. As long as doxycycline does not impair 

differentiation, this platform will be extremely useful to discover miRNA 

requirements in hESC differentiation and in early stages of development.   

 

3.2.4 Identify Naïve Versus Primed miRNA Requirements in hESCs 

We converted our DICER1 knockout hESCs to the naïve state, and 

found that DICER1 knockout naïve cells can survive but show compromised 

proliferation abilities. It will be interesting to uncover human specific miRNA 

requirements in the naïve state, as well as miRNAs that promote conversion 

between primed and naïve ESCs identity. Our platform is suitable for both 

studies.  

 

3.3     CONCLUSIONS 

My doctoral thesis revealed an unknown requirement for DICER1 in 

human ESC survival, and showed that miRNA function is required as early as 

the post-implantation period during embryonic development.   

 Significantly, we uncovered differences between human and mouse 

global miRNA function in pluripotency. We found that the regulation of cell 

survival is the primary role of miRNAs in the primed pluripotent state, whereas 

in mESCs, microRNAs are primarily important for proliferation and 

differentiation. The differing roles of miRNAs in mESCs and hESCs can be 

attributed to the different developmental stages that mESCs and hESCs 

represent. Indeed, in preliminary studies, naïve knockout hESCs survived 
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without DICER1, but showed compromised proliferation rates mimicking the 

mESC phenotype.  

 Additionally, we identified the ESCC-family members miRNA-302-367 

and miRNA-371-373 as playing a pro-survival role in hESCs. Interestingly, 

these ESCC miRNAs are also required in mESCs although their functions 

differ, highlighting the importance of context in evaluating miRNA function. 

Unexpectedly, the miRNA-17-92 ESCC-family cluster does not prevent 

apoptosis in hESCs even though it is essential in the mouse development 

equivalent cell line, mEpiSCs. Our results emphasize the importance to study 

human-specific miRNA function in human ESCs rather than in mouse ESCs or 

mouse EpiSCs.  

Finally, we generated an inducible platform that allows the assessment 

of acute DICER1 knockout phenotypes in hESCs before adaptation can occur 

in cell culture. Our platform is particularly advantageous for studying miRNA 

requirements because it bypasses the problem of redundancy in the network. 

It is also versatile, allowing the study of miRNA function in both primed and 

naïve pluripotency, as well as in differentiation. 

 Thus, our study elucidated aspects of microRNA function during early 

human embryonic development and generated a valuable tool to uncover 

novel and human-specific miRNA function during human development and 

stem cell differentiation.   
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APPENDIX 
 
Appendix 1. 
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B

Appendix 1. DICER1 Hypomorphs Show Global Reduction of MicroRNA Species. 
Agilent Bioanalyzer 2100 small RNA electrophoresis (A) and electropherogram (B) results of 

size-fragmented RNA populations (<150nt long species) of two repeats of a wildtype hESC 

line (A5) and two DICER1 hypomorph hESC lines (B4-1 and B4-4). Percentages represent

the relative microRNA to small RNA ratio in the samples. n=2.

Related to Figure 2.2.  
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Appendix 2. 
 
 
 
 

 
 
 
 
 
  

Appendix 2. Generation of TRE-DICER1* Lines. (A) Schematic representation of DICER1 
protein with domains. Orange arrows represent gRNA-targeting loci upstream of the 
RNase IIIa functional domain. cr, CRISPR; DUF, Domain of Unknown Function; dsRBD, 
double-stranded RNA-Binding Domain. (B) Sequences of the endogenous DICER1 and 
gRNA-immune exogenous DICER1* in TRE-DICER1*cr4 and TRE-DICER1*cr6 lines. NGG 
sequence is in red. Silent mutation base pair change is in green. (C) Diagram showing the 
TRE-DICER1* line expressing DICER1* and Cas9 upon doxycycline treatment. qRT-PCR 
data showing the expression of DICER1* upon doxycycline treatment. DOX, doxycycline.
Related to Figure 2.11.  
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Appendix 3. 
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Appendix 3. Generation of AAVS1-Inducible DICER1* Lines. (A) Schematic 
representation of AAVS1 locus targeting of a Hygro-iDICER1* cassette and a Neo-M2rtTA
cassette. Small red arrows indicate PCR primers. Hygro, hygromycin; Neo, neomycin; INT,
internal probe for Southern; EXT, external probe for Southern; SA, splice acceptor; 2A, 2A
peptide; M2rtTA, M2 reverse tetracycline (tet)-controlled transactivator. These lines need to 
be transfected or electroporated with Cas9 plus gRNA. (B) Schematic representation of 
AAVS1 locus targeting of a Hygro-iDICER1* cassette and a Puro-M2rtTA-Cas9 cassette. 
Small red arrows indicate PCR primers. Hygro, hygromycin; Puro, neomycin; INT, internal 
probe for Southern; EXT, external probe for Southern; SA, splice acceptor; 2A, 2A peptide; 
M2rtTA, M2 reverse tetracycline (tet)-controlled transactivator. These lines need to be 
transfected with gRNA only. (C) Results of three electroporation rounds to generate four 
different lines (AAVS1-TRE-DICER1-M2rtTAOnly-RNAcr4 or 6 and AAVS1-TRE-DICER1-
M2rtTA+Cas9-RNAcr4 or 6). Number of colonies frozen from colonies formed is shown.
Related to Figure 2.11.   
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Appendix 4. 
 

 

Appendix 4. MicroRNAs Rescue DICER1-/- hESCs Expressing Proper Pluripotency
Markers. (A) Schematic representation of microRNA mimic transfection procedure in 
DICER1-/- hESCs (B2). Cntrl, control; miR, mature microRNA, DOX, doxycycline. Black, 
plus doxycycline; White, minus doxycycline. (B) Whole-well view of alkaline phosphatase 
(AP)-stained DICER1-/- hESCs (B2) with or without microRNA transfection of individual 
microRNAs or groups of microRNAs. Representative images of four experiments. In green, 
nine microRNAs that rescue the DICER1-/- phenotype. (C) Immunofluorescence staining of 
pluripotency markers NANOG and OCT4 in DICER1-/- (D11) transfected with select 
microRNAs or clusters/families. The positive and negative controls were transfected with 
control microRNAs, and the positive control contains doxycycline and the negative control
does not contain doxycycline. Scale bar represents 500mm.
Related to Figure 2.17.   
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