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Abstract

Interest in RGB-D devices is increasing due to their low price and the wide
range of possible applications that come along. These devices provide a
marker-less body pose estimation by means of skeletal data consisting of 3D
positions of body joints. These can be further used for pose, gesture or action
recognition. In this work, an evolutionary algorithm is used to determine the
optimal subset of skeleton joints, taking into account the topological structure
of the skeleton, in order to improve the final success rate. The proposed
method has been validated using a state-of-the-art RGB action recognition
approach, and applying it to the MSR-Action3D dataset. Results show that
the proposed algorithm is able to significantly improve the initial recognition
rate and to yield similar or better success rates than the state-of-the-art
methods.
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1. Introduction

Recently, interest has grown on affordable devices as the Microsoft Kinect
(Microsoft Corporation, 2013) or the ASUS Xtion Pro (ASUSTeK Computer
Inc, 2013), which can capture depth quite reliably. These image sensors pro-
vide a depth image (D), besides the regular color image (RGB). The result-
ing RGB-D data can be used to obtain a marker-less body pose estimation.
Specifically, a skeleton model consisting of a set of joints is generated. This
characteristic data can be used in order to learn and classify human poses,
actions or even activities of daily living (ADL). These depth sensors have be-
come popular due to their low cost, high sample rate and capability of com-
bining visual and depth information. Usage can be found both in research
and commercial applications. Although they were initially designed for gam-
ing purposes, other applications, where natural human-computer interaction
(HCI) is required, are extensively employing these technologies (e.g. Seo &
Lee (2013)). In particular, RGB-D devices are used in ambient assisted liv-
ing for fall detection (Mastorakis & Makris, 2012), physical rehabilitation
(Chang et al., 2011; Huang, 2011), medical image exploration in operating
rooms (Gallo et al., 2011) and gait analysis (Stone & Skubic, 2011) among
other applications.

Reliability and accuracy of RGB-D devices have been studied in several
works (Obdrzalek et al., 2012; Alnowami et al., 2012), which show that the ex-
traction of a skeleton from depth information is not straightforward. Among
several difficulties, lack of precision and occlusions caused by body parts or
other objects present in the scene stand out (Khoshelham & Elberink, 2012;
Shotton et al., 2011).

Most of the existing works that employ RGB-devices for human action
recognition use all the available joints obtained by the devices. However,
some actions or gestures involve moving the whole body, whereas others are
performed using only the arms or the hands. Therefore, it is interesting to
determine which joints have a greater value to the success of the recognition
method being used, and which ones can be discarded because they are not
relevant for a specific application, since they introduce confusion or noise and
reduce the recognition rate.

This paper proposes an evolutionary method for the selection of the subset
of relevant joints that improve action recognition using RGB-D devices. A
method based on a bag of key poses and dynamic time warping (DTW) is
used as recognition algorithm in order to calculate the fitness of the different



solutions obtained in the evolution. This evolutionary feature subset selection
method employs specific knowledge about the topological structure of the
skeleton in order to obtain better solutions in less time.

The remainder of this paper is organised as follows: Section 2 reviews the
state of the art on human action recognition with RGB-D devices and evolu-
tionary feature subset selection. Section 3 presents the proposed evolutionary
algorithm. Section 4 deals with the human action recognition method em-
ployed to evaluate the fitness of the individuals in the population. Section 5
presents the results obtained applying our proposed method to a well-known
dataset. Finally, in Section 6 some discussion and conclusions are drawn.

2. Related work

This section reviews the most relevant state of the art on human action
recognition with RGB-D devices and evolutionary feature subset selection
related to this work.

2.1. Human action recognition with RGB-D devices

Experimental results show that humans are able to recognise different ac-
tivities seeing only a few points of light attached to the joints of the human
body (Moving Light Display, Johansson (1973); Polana & Nelson (1997)).
Therefore, it seems that the position, orientation and motion of joints con-
tain enough characteristic data in order to recognise activities using comput-
ers. Furthermore, good performance may be achieved using only the spatial
distribution of the joints.

In the state-of-the-art works in the research field, it can be observed that
an increasing number of applications for RGB-D-based human action recog-
nition are being developed. The necessary datasets, so as to perform initial
evaluations and compare the results, have been recorded and made publicly
available. Both datasets designed for gesture or action recognition for natural
user interfaces (NUI) or gaming (Li et al., 2010), and more complex activities
involving interactions with objects (Wang et al., 2012b; Sung et al., 2011; Ni
et al., 2011; Janoch et al., 2011) have been published.

There are several methods to extract a structured set of joints and their
connections, i.e. the skeletal information, from depth maps (Shotton et al.,
2011). These methods provide different kinds of skeleton models. The Mi-
crosoft Kinect SDK (Microsoft Corporation, 2013) provides a skeleton model



Figure 1: The 20 joints from a skeleton in the MSR-Action3D dataset.

with 20 joints (see Fig. 1), whereas the OpenNI/NITE (PrimeSense, Ltd.,
2013) skeleton tracks a set of 15 joints.

The use of the different data provided by the RGB-D devices for human
action recognition goes from employing only the depth data, or only the
skeleton data extracted from the depth, to the fusion of both the depth and
the skeleton data.

Li et al. (2010) use a simple but effective projection scheme to obtain a
representation set of 3D points from the depth map. Dynamics of human
motion are modelled based on a set of salient postures shared among the ac-
tions. These postures are described using a bag-of-points. Yang et al. (2012)
propose a method to recognise human actions from sequences of depth maps.
They project the depth maps onto three orthogonal planes and accumulate
the whole sequence generating a depth motion map (DMM), similar to the
motion history images (Bobick & Davis, 2001). Histograms of oriented gradi-
ents (HOG) are obtained for each DMM. The concatenation of the three HOG
serves as input feature to a linear SVM classifier. Wang et al. (2012a) treat
an action sequence as a 4D shape and propose random occupancy pattern
features, which are extracted from randomly sampled 4D sub-volumes with
different sizes and at different locations. These features are robust to noise
and less sensitive to occlusions. An Elastic-Net regularization is employed
to select a sparse subset of features that are the most discriminative for the
classification. Finally a SVM classifier is trained for action classification.

Miranda et al. (2012) described each pose using a spherical angular rep-
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resentation of the skeleton joints obtained with Kinect. Those descriptors
serve to identify key poses through a multi-class classifier derived from sup-
port vector learning machines. A gesture is represented as a sequence of key
poses and labelled on the fly through a decision forest, that naturally per-
forms the gesture time warping and avoids the requirement for an initial or
neutral pose. Xia et al. (2012) use histograms of 3D joint locations computed
from the action depth sequences. These features are re-projected using LDA
and then clustered into several posture visual words, which represent the
prototypical poses of actions. The temporal evolutions of those visual words
are modelled by discrete hidden Markov models. Azary & Savakis (2012) use
sparse representations of spatio-temporal kinematic joint features and raw
depth features which are invariant to scale and position. They create over-
complete dictionaries and classify input patterns using both Ll-norm and
L2-norm minimisation. Yang & Tian (2012) propose a new type of features,
the EigenJoints. They employ 3D position differences of joints to charac-
terise action information including posture, motion and offset features. After
a normalisation process, PCA is applied to compute the EigenJoints. Then
they employ a naive-Bayes-nearest-neighbour classifier for multi-class action
classification. Soh & Demiris (2012) propose an online echo state Gaussian
process (OESGP), a novel Bayesian-based online method, to iteratively learn
complex temporal dynamics and produce predictive distributions. They use
a generative modelling approach whereby each action class is represented by
a separate OESGP model. Inference is performed using a Bayes filter to it-
eratively update a probability distribution over the model classes. Fothergill
et al. (2012) employ joint angles, joint angle velocities and xyz-velocities of
joints as feature vector at each frame. Then gesture recognition is carried
out using random forests.

Other methods fuse depth and skeletal data. Wang et al. (2012b) use
the pairwise relative difference between joints’ positions as features. The
authors state that 3D joint positions are insufficient to fully model an ac-
tion, especially when the action includes the interactions between the subject
and other objects. Therefore, these interactions are characterised by local
occupancy patterns (LOP) at each joint. This LOP feature computes the
local occupancy information based on the 3D point cloud around a particu-
lar joint. A Fourier temporal pyramid is then used to obtain a more robust
representation. Then an actionlet ensemble model is learnt to represent each
action and to capture the intra-class variance.



2.2. FEwvolutionary feature subset selection

Feature vectors provide a set of characteristic data that represents the
object to recognise. Along with the useful data, that may lead to a successful
classification by means of machine learning algorithms, the set can include
irrelevant or redundant information which could complicate the classification
(Cantu-Paz, 2004). This unnecessary information can also be affected by
noise, which hinders the classifiers to isolate the appropriate elements (Lanzi,
1997; Kira & Rendell, 1992).

Through feature selection, a subset of variables is chosen in order to
optimise the classification and obtain higher success rates. In addition, a
reduced feature subset also leads to a lower computational cost (Casado
Yusta, 2009; Yang & Honavar, 1998).

When dealing specifically with skeletal data obtained with RGB-D de-
vices, it can be seen that some joints are more important than others if pose
or motion recognition is targeted (Raptis et al., 2011). There are several
joints in the torso, as for instance the shoulders or the hips, which do not
show an independent motion and rather move along with the whole body.
Therefore, taking this knowledge into account, the characteristic value of
the motion can be retained, and at the same time dimensionality reduction
can be performed in order to improve the performance of the classification
(Raptis et al., 2011).

Evolutionary feature subset selection has been used for decades (Siedlecki
& Sklansky, 1989). The basic approach is to consider a binary vector where
each gene represents the further consideration or not of a specific feature.
Two main models are presented to implement this (Canti-Paz, 2004; Casado
Yusta, 2009): the filter model, and the wrapper model (John et al., 1994).
The filter model performs a prior: decisions in order to determine the rel-
evance of the features based on their intrinsic properties (Liu & Motoda,
1998), but it ignores the learning algorithm underneath. On the contrary
in the wrapper model, the feature selection algorithm encloses the learning
algorithm. It uses it in order to perform evaluations on the possible feature
subset selections and to find the optimal one (John et al., 1994). This ap-
proach presents a disadvantage over the former, since each feature subset
evaluation may take a considerable amount of time (Lanzi, 1997; Wang &
Huang, 2009). Nonetheless, wrapper-based approaches are usually preferred
because the resulting feature subset selections show better results (Cantu-
Paz, 2004).



In our case, an evolutionary algorithm is applied as a wrapper method.
Therefore, the best feature subset selection is sought by iteratively evaluating
the possible selections, and creating new selections by means of evolution of
individuals.

3. Evolutionary algorithm for feature selection

This paper presents an evolutionary algorithm specifically designed for
joint selection for skeletal data. The structure of the evolutionary algorithm
follows the process presented in Algorithm 1. The algorithm has the following
characteristics:

e the selection of the individuals to be affected by recombination and
mutation operations is performed following a ranking method (Jong,
2006), according to which those individuals scoring higher in the fitness
function have a larger probability of being selected;

e a specific crossover operator (see Section 3.2) has been developed which
is aware of the topological structure of the skeletons;

e the standard mutation is used, i.e. each gene changes its value accord-
ing to probability p..; and

e the fitness of each individual is obtained as the success rate using it as
input to a recognition algorithm (see Section 4).

3.1. Individuals’ representation

As it is usual in evolutionary feature subset selection, the chromosomes
are encoded as binary vectors, each gene representing the use or not of that
element during the recognition (Fig. 2), i.e. in the calculation of the fitness
function.

3.2. Crossover

In a previous work (Climent-Pérez et al., 2013) we used a 1-point crossover
operator. This operator was not aware of the skeleton topology, and there-
fore the recombination was performed considering at the same time different
parts of the body, because the order of the joints in the chromosome is not
representative of the tree topology where the HEAD joint is the root and
hands and feet are the leaves (Fig. 3).
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Algorithm 1 Evolutionary algorithm

Initialise the populations with N individuals generated randomly
Rank the population by fitness
repeat
for number of new individuals to be created do
—— Generate a new individual
Create one new individual ¢ by crossover
Mutate ¢
—— Calculate fitness
Calculate fitness(i) as the classification rate
end for
——— Generate next generation’s population
Rank the population by fitness
Select next generation’s population with elitism
until generations_without_changes > genqaz
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Figure 2: Chromosome. Joints 0 to 14 are employed by the skeleton models
from both Microsoft and OpenNI/NITE. Joints 15 to 19 are only present in
the 20-joint model from Microsoft.
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Figure 3: Skeleton topology.
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Figure 4: Crossover between skeletons. Gene values are represented by the
colour of the joint (black=1, white=0).

For this reason, this paper proposes a crossover operator that is aware
of the skeleton’s tree topology. It works similar to the typical crossover in
genetic programming, where a node in one parent is randomly selected, and
all the branch below it is substituted by the same branch from a different
parent (Fig. 4).

4. Human action recognition method

In order to evaluate a specific feature subset selection and to obtain the
fitness value of the corresponding individual, a human action recognition
method based on the one from Chaaraoui et al. (2012) is proposed. An
overview of the method can be seen in Fig. 5. The method relies on key
poses in order to model the most representative human poses. Then, se-
quence of key poses are obtained to capture the temporal relationship of
action performances. Finally, action recognition is performed with DTW-
based sequence matching. The adaptation of this recognition method to our
particular skeletal representation obtained from depth images is detailed in
this section.

4.1. Skeletal representation

Regarding the feature extraction process, human silhouettes are used
in Chaaraoui et al. (2012). Translating this to the domain of skeletal data, a
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Figure 5: Overview of the employed human action recognition method.
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Figure 6: Rotation of the skeleton with respect to the Kinect.

body pose feature based on the data received from the RGB-D device needs
to be provided.

In this sense, position, scale and rotation invariance is achieved by apply-
ing the proposed normalisation process detailed in Algorithm 2. As it can be
seen, measures taken from the first instance are used in order to normalise
the whole sequence. Then, the final feature vector is built up with the 3D
coordinates of the joints, where only the joints that are selected during the
evolutionary joint selection are used (Fig. 7).

Algorithm 2 Normalising algorithm

Determine the normalising length as the distance from the TORSO to
the NECK in the first skeleton of the sequence

Determine the y-axis rotation « of the line connecting both shoulders
with respect to the kinect (Fig. 6) in the first skeleton of the sequence

for all the skeletons in the sequence do
Set as (0,0,0) coordinate of the skeleton the average location of the
ToORSO, the LEFTSHOULDER, the RIGHTSHOULDER, the LEFTHIP and
the RIGHTHIP.
for all the joints do
Translate according to the new reference centre
Normalise the coordinates according to the normalising length
end for
Rotate the skeleton « degrees about the vertical axis passing by the
NEeck (Fig. 6)
end for

11
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coordinates of joint ¢ after the application of the normalisation algorithm.

4.2. Bag of key poses

Once the feature vectors are obtained they are employed in the learning
algorithm. Key poses are generated in order to represent the most common
and characteristic pose representations of each action class, and to reduce
the scale of the problem. In this sense, K-means clustering is performed for
the instances of each of the ¢ action classes. The returned cluster centres are
used as representative values and joined together. The resulting bag of key
poses constitutes a dictionary of the most relevant poses for each action class
(Fig. 8 shows an overview of the process).

4.3. Sequence matching

In this step, the temporal relationship between key poses is modelled.
Since the evolution of the human pose over time can provide useful data so
as to improve the recognition, a classification based on sequence matching
is targeted. For this purpose, sequences of key poses are built. For each of
the available training sequences, the individual skeletal representations are
substituted with the nearest neighbour key pose out of the bag of key poses.
The successive key poses make up a simplified sequence of key poses: S =
{kp1, kpa, ..., kp.}. At this point, not only the typical order and transitions
between key poses are captured, but also noise and outlier values are filtered.

In the recognition stage, the same procedure is initially performed:
1) the skeletal representations are obtained for the RGB-D images of the
video sequence to recognise, and 2) the sequence of key poses is built by find-
ing the successive nearest neighbour key poses using the bag of key poses.
Then, sequence matching can be performed. For this purpose, the DTW
algorithm has been chosen, as it is able to successfully align sequences with
consistent temporal order, but meaningful differences in speed. This is very
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Figure 8: The bag of key poses is obtained by generating K key poses for
each action class using K-means clustering, and merging the corresponding

key poses together. Samples of the actions bend, forward punch and high
arm wave are shown.

desirable in the comparison of action performances due to the different pace
at which humans of unlike age and condition perform actions.

The DTW distance dprw (Strain, Stest) between two sequences of key poses
Strain = {kp1, kD2, ..., kpe} and Sy = {kpl, kph, ..., kpl } is defined as:

dDTW(StTaina Stest) = dtw (ta U) s (]-)
dtw (i,7) = min{ dtw (1,5 — 1), + d(kpi, kp}) (2)

dtw (i — 1,5 — 1)

where d(kp;, kp;) is the Euclidean distance between two key poses. Hence,
the label of the closest training sequence, i.e. the best match, will be returned
as the final result of the classification. Fig. 9 shows an example for simplified
one-dimensional sequence elements. It can be observed how the first and last
elements are always matched, and the alignment in between is chosen based
on the lowest distance. In this case, the final DTW distance dtw(5,6) = 9.
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Figure 9: An example of the DTW algorithm for a simplified one-dimensional
case (top), and the final alignment between elements (bottom) are shown.
Note that the matrix elements indicate the accumulated distance between
elements for the partial alignment with the lowest distance (following Eq. 2).

5. Experimentation

The proposed method has been evaluated with the Microsoft Action3D
dataset (Li et al., 2010). This dataset contains 20 different actions (see
Table 1), performed by 10 different subjects and with up to 3 different repe-
titions which makes a total of 567 sequences. However, 10 sequences are not
used because the skeletons were either missing or wrong, as explained by the
authors'. This dataset uses the 20-joint model described in Sec. 3.1.

Table 2 shows the three subsets of 8 gestures each, which have been
commonly used in order to reduce the computational cost of the tests (Li
et al., 2010). The AS1 and AS2 subsets group actions with similar movement,
whereas AS3 groups more complex actions together.

Similarly to Li et al. who first used this dataset, we perform a cross-
subject validation. Since most works do not state how they divided the
subjects into two groups, i.e. the train and test data, we decided to employ
the approach from Azary & Savakis (2012), which performs a 2-fold cross
validation.

'MSR Action Recognition Datasets and Codes, http://research.microsoft.com/en-
us/um/people/zliu/actionrecorsrc/default.htm (last access: 24/05/2013)
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Table 1: Actions in the MSR-Action3D dataset.

Label Action name ‘ Label Action name ‘ Label Action name
a0l  High arm wave a08  Draw tick ald  Side-kick
a02  Horizontal arm wave | a09  Draw circle alé  Jogging
a03  Hammer al0  Hand clap al7?7  Tennis swing
a04  Hand catch all  Two-hand wave | al8  Tennis serve
a05  Forward punch al2  Side-boxing al9  Golf swing
a06  High throw al3  Bend a20  Pick-up and throw
a07  Draw cross al4  Forward kick

Table 2: Actions in each of the MSR-Action3D subsets.

AS1 AS2 AS3
Horizontal arm wave | High arm wave High throw
Hammer Hand catch Forward kick
Forward punch Draw cross Side-kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two-hand wave Tennis serve

Tennis serve
Pick-up and throw

Forward kick
Side-boxing

Golf swing
Pick-up and throw

15



Table 3: Classification rate for each subset.

Dataset
Method AS1 AS2 AS3 Average
DMM-HOG (Yang et al., 2012) 96.2% 84.1% 94.6% 91.63%
EigenJoints (Yang & Tian, 2012) 74.5% 76.1% 96.4% 82.33%
OESGP (Soh & Demiris, 2012) 80.6% 74.9% 87.1% 80.87%
Sparse Repr. (L1-norm) (Azary & Savakis, 2012) 77.66% | 73.17% | 91.58% | 80.80%
Sparse Repr. (L2-norm) (Azary & Savakis, 2012) 76.60% | 75.61% | 89.47% 80.56%
Keyposes and Decision Forests (Miranda et al., 2012) | 93.5% 52% 95.4% 80.30%
Histograms of 3D Joints (Xia et al., 2012) 87.98% | 85.48% | 63.46% 78.97%
Bag of 3D Points (Li et al., 2010) 72.9% 71.9% 79.2% 74.67%
Bag of key poses and DTW (Chaaraoui et al., 2012) | 78.90% | 74.12% | 89.21% 80.74%
Our method 91.59% | 90.83% | 97.28% | 93.23%

The size of the population has been set to N = 10 individuals. Instead
of having a static mutation probability, each time a random value for p,,,; in
the interval [0, 0.2] is selected. This is done to try to avoid early convergence
of the evolution. The termination condition is established as gen,,q.. = 250
generations without changes in the fitness of the best individual of the pop-
ulation. All these parameters have been chosen experimentally.

Table 3 shows the best results we have obtained with our evolutionary
algorithm (each test has been performed 10 times). In the subsets AS2 and
AS3, the available recognition rates are outperformed reaching, to the best
of our knowledge, the highest results so far. A promising result is achieved
in AS1 where the result is better than the obtained by most of the methods.
In average our approach also obtains the best results. As it was expected,
and happens with most of the other algorithms, the results for AS1 and AS2
are worse than those for AS3, as gestures are more similar. Comparing with
the results of the original (without the evolutionary optimisation) bag of key
poses and DTW method, the optimisation improves the results considerably
(16.08% for AS1, 22.54% for AS2, and 9.05% for AS3).

We have repeated similar tests using Leave-One-Actor-Out (LOAO) val-
idation. In this cross validation test, actor-invariance is specifically tested
by training with all but one actor, and testing the method with the unseen
one. This is repeated for all actors, averaging the returned accuracy scores.
Results are presented in Table 4.

Fig. 10 shows the confusion matrices for the recognition method without
and with the application of the evolutionary optimisation applying the LOAO
cross validation. In all the cases, the success rates match or improve the

16



Table 4: LOAO classification rate for each subset.

Dataset
Method AS1 AS2 AS3 | Average
Bag of key poses and DTW (Chaaraoui et al., 2012) | 82.35% | 77.88% | 93.48% | 84.57%
Our method 91.46% | 91.78% | 97.13% | 93.46%

Table 5: Computational cost (in frames per second) for each subset.

Dataset
Method AS1 AS2 AS3
Bag of key poses and DTW (Chaaraoui et al., 2012) | 280.35 | 286.60 | 263.34
Our method 645.91 | 529.83 | 445.29
| Improvement | 119.7% | 89.0% | 69.1% |

previous rates. In the case of the AS1 dataset, results are quite good. Pick-
up and throw (a20) is a complex action composed of the sequences of bend
(a18) and high throw (a06), both actions also included in ASI1. Besides,
there are many Pick-up and throw sequences included in the dataset where
the skeletons are wrongly calculated, but we did not remove them in order to
get the results in the same conditions than the previous works. In AS2, the
gestures are very similar as all are performed with the arms except Forward
kick (a14). Because of that, there is an important confusion between gestures
that is considerably reduced after applying the evolutionary algorithm.

Fig. 11 shows the joints which have been selected for each of the datasets,
as those are the ones that contribute the most to the recognition algorithm.
Since AS1 includes mainly gestures performed with either one or both arms,
these are basically the selected joints; in addition to the HEAD which is
significant in the bend action. Similar conclusions can be drawn for AS2 and
AS3, where joints from the legs or feet are selected, since actions as forward
kick or jogging are included.

The reduction in the size of the feature vector has also an important ef-
fect in the computational cost of the recognition process. The Kinect device
captures RGB and depth at a rate of 30 frames per second (fps). Table 5
shows the rates that the original bag-of-key-poses method and our evolution-
ary optimisation are able to reach. These rates are far superior to those 30
fps, therefore allowing real-time processing.
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and with (Final) the application of the evolutionary algorithm.
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(a) AS1 (b) AS2 (c) AS3

Figure 11: Final feature subsets for each of the datasets (selected joints are
shaded in black, ignored ones are left unshaded).

6. Discussion and future work

In this paper, we have proposed an evolutionary algorithm to improve
action recognition using RGB-D cameras. Joint selection allows to improve
the success rate obtaining better results than the state of the art. The
reduction of the size of the feature vector, i.e. the active joints that have
been chosen by the evolutionary algorithm, has an important impact on the
processing rate, since the recognition is performed faster. That will allow the
development of more complex recognition algorithms and their application in
real-time. We have also presented a tree representation of the individual and
a crossover operator that is aware of this structure in order to obtain better
solutions faster. Once the relevant joints are selected, the feature vector used
as input for the classifier is simple (composed by the 3D coordinates of the
selected joints). Existing research employs more complex and larger feature
vectors composed by distances between joints, quaternions, etc. These are
alternatives that we need to consider in the future. In order to use the 3D
coordinates of the joints, we propose an algorithm to normalise the sequences
of skeletons to scale and rotation.

Two main difficulties have been encountered in our approach: the high
computational cost of the wrapper approach and early convergence. A wrap-
per-based evolutionary feature subset selection approach requires the calcula-
tion of the fitness of an important number of solutions (individuals) until the
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final solution is obtained. As a single fitness calculation involves a complete
training and recognition process, the whole evolution could take a consider-
able time. Nevertheless, this calculation is offline. Once the best subset of
features is obtained, this is used for recognition with a low computational
cost, which allows real-time recognition. Early convergence happens when
the evolutionary search is stacked in a local minimum and cannot achieve a
good solution. In order to solve these problems, future work will be devoted
to the design of variants of this proposal or more specialised evolutionary
approaches. For instance, memetic algorithms (Moscato & Cotta, 2010; Ang
et al., 2010), which combine evolutionary operators and local search proce-
dures, would be a good option. Real-coded chromosomes would allow to
assign weights to each of the joints. This will affect all the process, as this
weighted joint selection must also be considered in the recognition method.

Besides, we have applied our evolutionary approach to an action recog-
nition method that we developed for RGB images. This algorithm, when
applied to skeletal data, obtains classification rates in the middle of the
ranking of the state of the art. So, our optimisation approach obtains very
good results using a recognition method that was not specifically designed
for RGB-D devices. Therefore, the next step will be to apply it to the best
and more recent methods in the state of the art (Wang et al., 2012a; Yang
et al., 2012; Wang et al., 2012b) in order to study the level of optimisation
achieved.
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