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The Mean-field Behavior of Processor Sharing Systems with
General Job Lengths Under the SQ(d) Policy

ABSTRACT
In this paper, we study the mean-field behavior of large-scale sys-

tems that consist of N (large) identical parallel processor sharing

servers with Poisson arrival process having intensity Nλ and gen-

erally distributed job lengths under the randomized SQ(d) load
balancing policy. Under this policy, an arrival is routed to the server

with the least number of progressing jobs amongd randomly chosen

servers. The limit of the empirical distribution is then used to study

the statistical properties of the system. In particular, this shows

that in the limit as N grows, individual servers are statistically in-

dependent of others (propagation of chaos) and more importantly,

the equilibrium point of the mean-field is insensitive to the job

length distributions that has important engineering relevance for

the robustness of such routing policies used in web server farms.

We use a framework of measure-valued processes and martingale

techniques to obtain our results. We also provide numerical results

to support our analysis.
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1 INTRODUCTION
The emergence of the cloud computing paradigm and other central-

ized applications result in server farms that contain large numbers

of servers to process the incoming job requests. The front end job

dispatchers route an arriving job to one of the servers that pro-

vide minimal response times as the tasks in most cases are delay

sensitive[20]. Therefore the key challenge in these systems is to

design low complex load balancing algorithms that results in effi-

cient use of resources thereby good system performance. In server

farms, the resources are shared by processing requests in a round-

robbin manner with small time granularity. This model can be well

approximated by the processor sharing model [17, 36] where the
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processing speed of a server is equally shared by all the progressing

jobs.

In practice, the server farms such as Cisco Local Director, IBM

Network Dispatcher, Microsoft Sharepoint use the classical Join-the-

shortest-queue (JSQ) policy to achieve the load balancing. It was

shown in [14, 34] that the JSQ policy is nearly optimal and further, it

is robust to the job length distributions since it is nearly insensitive.

The notion of insensitivity implies that the stationary distribution

of occupancy depends only on the mean job lengths but not on

the type of job-length distributions. For large scale systems that

contain hundreds of thousands of servers, the JSQ policy requires

the information about the number of progressing jobs at all the

servers. However it was shown in [6, 21–24, 32] that a randomized

routing scheme SQ(d) based on sending jobs to the best amongst

d randomly chosen servers can achieve almost the same gains at

a much smaller sampling cost. This policy achieves near optimal

performance even for d = 2 and hence, led to the popularization of

the so-called power-of-2 terminology.

In [32], under the assumption of exponential service time distri-

butions, the SQ(d) policy withd = 2was introduced for multi-server

systems having N severs with FCFS service discipline and the job

arrival process is a Poisson process with rate Nλ, where the policy
of routing the smaller of two randomly sampled servers was studied.

Since under the SQ(d) or power-of-d routing policy, the servers are

coupled in a finite N system, the exact analysis of the system is not

tractable and it is extremely difficult. Their key contribution was

that by first taking the limit as N → ∞ the system decouples into

independent queues where the limiting empirical distribution of

a queue is described by a deterministic non-linear equation called

the mean-field or hydrodynamic limit. The property of decoupling

between servers as N → ∞ is called propagation of chaos. More-

over they showed that the limit of the stationary distribution of

the queues corresponds to the equilibrium or fixed point of the

mean field equations (MFE) and the proof relies on the fact that

the mean-field has quasi-monotonicity property. Furthermore, the

fixed point of the MFE that represents the stationary distribution

of a queue shows a dramatic reduction in the average response

time due to the fact that the occupancy (Q) has tail distribution

satisfying a super-exponential decay given by Pr(Q ≥ k) = ( λµ )
2
k−1

instead of ( λµ )
k
that would be the case if uniform routing had been

used. Later the analysis is extended to the SQ(d) policy with d > 2

in [21] where it was shown that the fixed point of the MFE satis-

fies Pr(Q ≥ k) = ( λµ )
dk −1
d−1 . These nice conclusions reflect that the

mean-field techniques can help us to obtain deeper insights about

a large-scale complex stochastic system when the exact analysis is

not tractable.

The SQ(d) policy was introduced in [32] which treated the ex-

ponential service times case. The study of the SQ(d) policy for

large-scale systems with general service time distributions has only

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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been recently addressed with some partial progress and simulation

observations that we recall later in this section. This is because

for queuing systems with general service times, the job occupancy

process (Queue-length process) is not Markov and this limits us in

extending the analysis directly from exponential case to the gen-

eral distributions case. In that case one needs to Markovianize the

system by considering the occupancy state as well as the age or

residual service times of the jobs in service which makes the mean-

field analysis a challenging task. However, it is very important

to make progress on understanding the large-scale multi-server

system behavior when we employ the SQ(d) policy since more real-

istic models need us to dispense with the exponential job length

hypothesis. For example, the service time distributions are Log-

normal in call centers [8], and Gamma distributed in automatic

teller machines (ATMs) [18] etc. Therefore it is necessary to study

the impact of SQ(d) routing scheme when job lengths are generally

distributed.

In this paper we consider a multi-server large scale processor

sharing systemwith the generally distributed job lengths with finite

mean
1

µ under the SQ(d) policy. Earlier, the case with groups of

heterogeneous servers under the assumption of exponential job

lengths was studied in [22, 23] using mean-field techniques. In

particular, they established the global asymptotic stability (GAS) of

the mean-field limit that also establishes that the fixed point of the

MFE corresponds to the limiting stationary distribution of a server

occupancy.

The focus in this paper is to understand the probabilistic behavior

of systems with a large number of servers by studying the limiting

behavior when the number of servers goes to infinity. We show

that in this context the limit of the empirical distribution satisfies

a deterministic equation called the mean-field or hydrodynamic

limit. One of the key insights we seek is how the distribution of

the job lengths affects the mean-field behavior. We show that as

N → ∞ any finite set of servers become statistically independent

and moreover the fixed point of the mean field only depends on the

mean job lengths and not their distributions, the property termed

as insensitivity. It is well known that Processor Sharing systems

are insensitive to the service time distributions in equilibrium for

Poisson inputs, and thus our result shows that this property is

inherited under randomized SQ(d) routing. In prior works [6, 23]

evidence of this property was presented via simulations but without

complete proof.

We now discuss some of the results on the large-scale multi-

server systems with general job length distributions under the

SQ(d) policy. The SQ(d) policy for processor sharing, FIFO, and

LIFO with preemptive resume models with general job length dis-

tributions in the homogeneous context were studied in [6] under

the ansatz hypothesis that the underlying stationary distribution

of the occupancy of the Markov process converges to a unique

limiting distribution and any finite set of servers are asymptotically

independent using the cavity method. As we show in Section 5.2,

the ansatz carries the necessary and sufficient conditions needed

to conclude insensitivity for processor sharing systems. This is

because each individual server must have state dependent Poisson

arrivals which is a consequence of the assumption of asymptotic

independence of servers or propagation of chaos and furthermore,

existence of unique stationary distribution is essential to conclude

insensitivity. Bramson [7] succeeded in proving the ansatz only

for the case of FIFO models with job length distributions having

decreasing hazard rate functions.

Recently the FIFO case with generally distributed service times

has been revisited in [1] via a mean-field approach where they show

that the joint process that counts the jobs at a server and the age

of the job in service has a mean-field that is described by a set of

PDEs. However the analysis is only restricted to the finite time or

transient case and no results are given for the stationary regime.

They also established the propagation of chaos for the individual

queues for any finite time t in the limiting system. However, in

the processor sharing case, the analysis is now more complicated

because in addition to the occupancy process one needs to keep

track of the ages of all the jobs in the system. This results in a

Markov process on

⋃
n∈Z+ (n,ℜ

n
+) and the analysis and proofs are

much more difficult because the ages do not increase linearly at

the rate of processing speed of the server but the rate depends on

the server occupancy or the first coordinate of the Markov process.

This requires us to consider a measure-valued Markov process

representation.

The use of measure-valued processes to deal with general service

time distributions is natural. In [13] it was used to study the fluid

limit of a single GI/GI/1 processor sharing system in critically

loaded regime. The steady state analysis of the fluid limit established

in [13] is considered in [25]. However, the mean-field limit that we

study in this paper has not been addressed for processor sharing

systems under SQ(d). The analysis is now more difficult because the

mean-field limit represents the dynamics of a non-linear Markov

process and the arrival rate to each server in the limiting system

takes a specific form under the SQ(d) policy.
Recently there has been interest in PULL based policies such as

Join-Idle-Queue (JIQ)[20]. In JIQ the dispatcher stores the identities

of servers that are idle in a memory and an arrival is routed to a ran-

domly selected idle server if there are any available in the list at the

dispatcher, otherwise the job is routed to a server chosen uniformly

at random. In [29], it was shown that under sub-critical system

load, the steady state probability of waiting vanishes as N → ∞.

However, under high load, since random routing is used, there are

often no idle servers in the list and it is observed in [20, 33] that the

SQ(d) performs better than JIQ. To overcome this, extensions to JIQ

have been considered. In one approach, the dispatcher stores the

identities of all the servers with number of progressing jobs less

than or equal to some threshold value such as one[20]. An arrival is

routed to a randomly selected server from the list at the dispatcher

if there are any available, otherwise the job is routed to a server

chosen uniformly at random. In the second approach, the JIQ is

combined with the SQ(d) where when there are no idle servers,

the destination server is chosen according to the SQ(d) policy[33].
These extensions increase complexity significantly. Therefore un-

derstanding the impact of the SQ(d) policy when job lengths are

general is an important problem.

Main contributions: The main contributions of this paper are

listed below:

• Mean-field limit: We show that the measure-valued Markov

process (νNt , t ≥ 0) that tracks the fraction of servers lying
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in each possible server state converges in distribution to a

unique deterministic measure-valued process called as the

mean-field limit. As a consequence of this, we also establish

the propagation of chaos for any finite time t .
• Insensitivity of Equilibrium point of the MFE: We then show

that the partial differential equation (PDE) that describe the

mean-field limit has a unique equilibrium point. Further-

more, the equilibrium point is insensitive to the job length

distributions.We also provide simulation results that support

the insensitivity and the GAS of the equilibrium point. This

result has significant engineering implications in practice

since the load balancing for large-scale processor sharing

systems appear in server farms.

Organization of the paper
The rest of the paper is organized as follows: In Section 2, we intro-

duce the system model, the SQ(d) policy, notation, and a Markovian

description of the system by using a state descriptor. In Section 3,

we give the main results of this paper. We then study the unique-

ness of the fixed-point of the mean-field limit and its insensitivity

in Section 4. After that, in Section 5, we provide a discussion on

the relationship between propagation of chaos in the stationary

regime and the mean-field where we also recollect existing works

regarding this. In Section 5, we also provide numerical results that

support insensitivity and GAS of the fixed-point of the mean-field

limit. Finally, we conclude in Section 6 with a discussion on future

work. The proofs are provided in Appendix (Section 7).

2 SYSTEM MODEL AND PRELIMINARIES
We first introduce the system model and the routing policy consid-

ered in this paper.

We consider a large-scale system that contains N identical pro-

cessor sharing servers each having unit processing rate. Therefore

if there are n jobs in progress at a server, then each job is processed

at the rate of
1

n .

Jobs arrive into the system according to a Poisson process with

rateNλ and there is a central job dispatcher that routes an incoming

job to one of the servers according to the SQ(d) routing policy

described below.

Definition 1. The SQ(d) Routing:
An incoming job is routed to the server with least number of ongoing
jobs among d chosen servers uniformly at random with replacement1.
The ties if there are any, are broken by choosing a server uniformly
at random. The d randomly chosen servers are called as potential
destination servers and the server that is picked from the potential
destination servers to route the arrived job is called as the destination
server.

We assume that the job lengths have general cumulative distribu-

tion function G(·) with density function д(·) such that the average

job length is equal to
1

µ . The hazard rate function of the job length

1
Although we consider that servers are picked with replacement for simplification

of the analysis, in both the cases with or without replacement, as N → ∞, they

would result in the same mean-field limit. For large N systems, simulation results also

support this.

distribution is denoted by β(·) =
д(·)
G(·)

. For the system to be in stable

region, we must have λ < µ.
Notation:We now introduce the mathematical notations that

we use in rest of the paper. LetZ,R denote the space of integers and

real numbers, respectively. The space of non-negative integers and

non-negative real numbers are denoted byZ+, R+, respectively.

For any given metric space E, let Kb (E),Cb (E),Ck (E) be the

space of real-valued bounded measurable, bounded continuous, and

continuous functions with compact support, respectively. Further,

let C1(E) be the space of once continuously differentiable functions
defined on E. The subset of functions in C1(E) that are bounded
functions whose first derivatives are also bounded is denoted by

C1

b (E) and the space of functions with compact support in C1(E) is

denoted by C1

k (E). For any function f ∈ Kb (E), we define

∥ f ∥ = sup

x ∈E
| f (x)| . (1)

The space Cb (E) is equipped with the uniform topology, i .e ., a
sequence of functions { fn }n≥1 in Cb (E) is said to converge to a

function f ∈ Cb (E) if ∥ fn − f ∥ → 0 as n → ∞.

We next define for any function f ∈ C1

b (E),

∥ f ∥1 = ∥ f ∥ + ∥ f ′∥, (2)

where f ′ is the first derivative of f . The space C1

b (E) is equipped

with the topology induced by the norm ∥·∥1. For a function f ∈

C1

b (R
n
+), we define a function f ′∑ : Rn

+ 7→ R as follows

f ′∑(x1, · · · ,xn ) =
1

n

n∑
i=1

∂ f (x1, · · · ,xn )

∂xi
. (3)

For given metric space E, let the Borel σ -algebra be denoted by

B(E). The space of finite non-negative measures defined on E is

represented by MF (E) and the space of probability measures is

denoted by M1(E). For a Borel set B ∈ B(E), the measure value of

the set B with respect to the measure ν is given by ν(B) and the

measure value at an element y ∈ E is given by ν ({y}). Further, the
Dirac measure with unit mass at x ∈ E is denoted by δx . We also

define a set of probability measuresMN
1
(E) as follows

MN
1
(E) = {ν ∈ M1(E) : Nν (B) ∈ Z+,∀B ∈ B(E)}. (4)

We next define for any ϕ ∈ Cb (E), ν ∈ MF (E),

⟨ν ,ϕ⟩ =

∫
y∈E

ϕ(y)dν (y). (5)

The space MF (E) is equipped with the weak topology, i .e ., a se-
quence {νn } in MF (E) is said to converge weakly to ν ∈ MF (E) if
and only if ⟨νn ,ϕ⟩ → ⟨ν ,ϕ⟩ as n → ∞ for all ϕ ∈ Cb (E). We recall

that if E is a Polish space, then MF (E) equipped with the weak

topology is also a Polish space.

We next introduce the notations that are required to model a

processor sharing system evolution. To model the system evolution

by a Markov process, we consider that the state of a server is given

by (n,a1, · · · ,an ) where ai indicates the age of the i
th

progressing

job. We define the age of a progressing job as the amount of cu-

mulative service it has received since its arrival. If γ (t) denotes the

number of jobs in service at time t at a server, the age ai of the i
th
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progressing job at time t that entered the server at time Ti (t ≥ Ti )
is given by

ai =

∫ t

s=Ti

1

γ (s)
ds . (6)

LetUn be the set of all possible states of a server when there are n
progressing jobs, i .e .,

Un = {(n,a1, · · · ,an ) : ai ∈ R+, 1 ≤ i ≤ n}. (7)

When there are no progressing jobs, then the server state lies in

the set

U0 = {0}. (8)

Therefore at any given time t , the state of a server lies in the set

U = ∪n∈Z+Un . (9)

Without loss of generality, we indicate an element (n,u1, · · · ,un ) ∈
U for n ≥ 0 by u. For u = (n,u1, · · · ,un ) and v = (m,v1, · · · ,vm ),

we define the metric

dU (u,v) =

{∑n
i=1 |ui −vi | if n =m

∞ otherwise.
(10)

We say that a sequence {un ,n ≥ 1} in U converges to u ∈ U if

limn→∞ dU (un ,u) = 0.

For any Borel set B ∈ B(U ), we define the indicator function of

B as

I {B }(u) =

{
1 if u ∈ B

0 otherwise.
(11)

Further, we define a function 1 : U 7→ R as

1(u) = 1, (12)

for u ∈ U .

Any measure ν ∈ MF (U ) restricted to the space U0 is a Dirac

measurewithmass at (0). Further, forn ≥ 1, we say that themeasure

ν ∈ MF (U ) is absolutely continuous at x ∈ Un if ν ({x}) = 0 and the

measure ν is called absolutely continuous with respect to Lebesgue

measure if ν ({y}) = 0 for all y ∈ Un , n ≥ 1. We say that a function

f : U 7→ R is differentiable if for every i ≥ 1,
∂f (i,x1, · · · ,xi )

∂x j
exists

for every 1 ≤ j ≤ i at every (x1, · · · ,xi ) ∈ Ri
+. Hence a function

of the type f = I {Un } , for n ≥ 1, that we use frequently in our

analysis is differentiable.

We next define the following two functions that are used in

Assumption 2 in order to establish the mean-field limit. The first

function is Ξ : U 7→ R defined as

Ξ(n,x1, · · · ,xn ) = n, (13)

for (n,x1, · · · ,xn ) ∈ U . The second function, ϒ : U 7→ R is defined

as

ϒ(n,x1, · · · ,xn ) =

{
0 for n = 0,

x1 + · · · + xn otherwise.

(14)

We next define the transition operators on functions and mea-

sures that we use in describing the time evolution of the system.

For any u ∈ Un , n ≥ 1 and for b > 0, if a sever lies in state u ∈ Un
at time t , then if there are no arrivals or departures at this server in

the interval (t , t + b], then its updated state at time t + b is denoted

by

τ+b (n,u1, . . . ,un ) =

(
n,u1 +

b

n
,u2 +

b

n
, · · · ,un +

b

n

)
(15)

and

τ+b (0) = (0). (16)

Further, for any y > 0, f ∈ Kb (U ), we define a mapping

τy : Kb (U ) → Kb (U ) (17)

satisfying

τy f (u) = f (τ+y u). (18)

For y > 0, now let us define a shifted measure τyν ∈ MF (U ) such

that for any Borel set B ∈ B(U ), we have

τyν (B) = ν (τ
+
y (B)). (19)

For ν ∈ MF (U ), the measure τyν ∈ MF (U ) satisfies

⟨τyν , f ⟩ = ⟨ν ,τy f ⟩ (20)

for all f ∈ Kb (U ). The Riesz-Markov-Kakutani theorem [27, 30]

implies the existence of the unique measure τyν satisfying equa-

tion (20). For the measure-valued Markov process (νNt , t ≥ 0)

that describes the system evolution, equation (20) plays crucial

rule in computing the expression of the generator of the process

(νNt , t ≥ 0). In particular, by using equation (20), the information

about change in the process (νNt , t ≥ 0) in a given time interval

can be treated as a change in the function f . Based on this idea,

by choosing the class of functions of the type νNt 7→ ⟨νNt ,ϕ⟩ for

ϕ ∈ C1

b (U ), one can compute the expression of the generator of the

Markov process (νNt , t ≥ 0).

We next define a norm on the measure ν ∈ MF (U ) that we use

in proving the uniqueness of a solution to the MFE given an initial

point. For ν ∈ MF (U ), ⟨ν ,ϕ⟩ is a continuous linear operator on the

space of functions ϕ ∈ Cb (U ), we define

∥ν ∥ = sup

ϕ∈Cb (U )

|⟨ν ,ϕ⟩|

∥ϕ∥
. (21)

When H is a Polish space, let DH([0,T ]),DH([0,∞)) denote

the càdlàg
2
functions that take values inH defined on [0,T ], [0,∞),

respectively. The space of the continuous functions that take values

inH defined on [0,T ], [0,∞) are denoted by CH([0,T ]),CH([0,∞)),

respectively. We assume that the spacesDH([0,T ]),DH([0,∞)) are

equipped with the Skorokhod J1-topology and in that case, they are

Polish spaces. For two local martingales (M1

t , t ≥ 0) and (M2

t , t ≥ 0),

we denote the covariation and quadratic variation in DR ([0,T ]) by
(< M1

· ,M
2

· >t , t ≥ 0) and (< M1

· >t , t ≥ 0) = (< M1

· ,M
1

· >t , t ≥

0), respectively.

In this paper, we work with H−valued stochastic processes

whereH =MF (U ). We assume that the considered stochastic pro-

cesses are random elements defined on (Ω,F,P) with sample paths

lying in DH([0,∞)). The space DH([0,∞)) is equipped with the

Borel σ−algebra generated by the open sets under the Skorokhod

J1− topology [4]. A sequence {Xn } ofH -valued càdlàg processes

defined on (Ωn ,Fn ,Pn ) is said to converge in distribution to aH -

valued càdlàg process X defined on (Ω,F,P) if, for every bounded,

continuous, real valued functional F : DH : [0,∞) → R, we have

lim

n→∞
En (F (Xn )) = E(F (X )) (22)

2
Also referred to as RCLL (right continuous with left limits).
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where the expectation operators En ,E are defined with respect to

Pn ,P, respectively. The convergence of {Xn } in distribution to X
is denoted by Xn ⇒ X . Law of a random variable X is denoted by

L(X ).

Markovian description: We first introduce the system state

descriptor that represents the system state at any given time t . We

then describe the system evolution.

In our analysis, we consider age of each progressing job in mod-

eling the system by a Markov process. At any time t , a server’s

state is represented by (n,a1, · · · ,an ) where n denotes the number

of progressing jobs at the server at time t and ai denotes the age

of the ith progressing job at time t . If a server has no job at time

t , then its state is considered to be (0). We now define the system

state descriptor as follows.

Definition 2. System State Descriptor
If the state of server “i” at time t is denoted by sit = (ni ,a1,i ,a2,i , · · · ,ani ,i ),
then the system state at time t is defined by the measure valued process

νNt =
N∑
i=1

δ(s it )
(23)

where δ(n,x1, · · · ,xn ) denotes the Dirac measure with unit mass at
(n,x1, · · · ,xn ). Note that νNt ({(m, z1, · · · , zm )}) denotes the number
of servers with state (m, z1, · · · , zm ) at time t .

Once we define the state descriptor, the time evolution of the sys-

tem is modeled by tracking the time evolution of the the measure-

valued process (νNt , t ≥ 0). For given h > 0 and νNt , to know

the value of νNt+h , we need to exactly track how each server state

changes in the time interval (t , t + h]. In this interval, there can

be no event (arrival or departure) or some events(arrivals and de-

partures) can occur in the system. The departure events can be

modeled by using hazard rate function β(x) =
д(x )
G(x )

that defines

the instantaneous rate of departure of a job conditioned on its

age value equal to x . Precisely, if a job achieves age x at time t ,
then it departs in the interval (t , t + y] with probability given by

G(x+y)−G(x )
G(x )

= β(x)y + o(y). When the number of progressing jobs

does not change at a server with state say (n,a1, · · · ,an ) at time t
in the interval (t , t + h], then its state becomes τ+h (n,a1, · · · ,an ) at
time t +h. By assuming h is a small value, we consider that multiple

events do not occur in the interval (t , t + h].

3 MAIN RESULTS
We now present the main results of this paper.

The goal of this paper is to study the limit of the following

normalized process (νNt , t ≥ 0) defined as

νNt =
νNt
N

(24)

when N → ∞. Furthermore, we would like to study the fixed-point

of the limit to obtain some Engineering insights.

We next state the following simple result on probability of choos-

ing a server with state (n, l1, · · · , ln ) as the destination server upon

an arrival.

Lemma 1. Suppose νNt = η, then according to the SQ(d) routing
policy, if a job arrives at time t , the probability that it is routed to a
server with state (n, l1, · · · , ln ) is equal to

pr (n, l1, · · · , ln ;η) =
η{(n, l1, · · · , ln )}

N
Φn

( η
N

)
, (25)

where

Φn
( η
N

)
=

(Rn (
η
N )d − Rn+1(

η
N )d )

(Rn (
η
N ) − Rn+1(

η
N ))

(26)

and Rn (
η
N ) =

∑∞
j=n η({Uj })

N represents the fraction of servers with at
least n jobs at time t .

The proof of Lemma 1 is given in Appendix 7.1.

Our analysis shows that under the SQ(d) policy, the probability
of choosing a server as destination server given by (25) has the

following implications in the limiting system as N → ∞. Once we

establish the mean-field (ν t , t ≥ 0), in the limiting system, due to

propagation of chaos, each individual server has Poisson arrival

process having rate λΦn (ν t ) when there are n progressing jobs at

time t .
Before stating our results precisely, we briefly summarize our

analysis and findings below.

Sketch of the analysis: In this paper, we show the weak convergence
of the measure-valued Markov process (νNt , t ≥ 0) to the mean-field
limit via the following arguments. We first construct the Dynkin
martingale[11] in Theorem 1 associated with the process (νNt , t ≥

0). We then state the result on establishing the mean-field limit in
Theorem 2. In the first part of Theorem 2, we show that there exists
unique solution to the MFE for given initial point. In the second part
of Theorem 2, we show that the process (νNt , t ≥ 0) converges to the
unique solution of the MFE referred as the mean-field solution. For this,
we use the constructed martingale Theorem 1 to establish the tightness
of the process (νNt , t ≥ 0) by using Jakubowski’s criteria[10]. After
that, by showing that the sequence of martingales converge to the null
process as N → ∞ and the tightness of (νNt , t ≥ 0), we get that every
limit point satisfies the MFE. Further, since there exists unique mean-
field solution for given initial point, under the assumption of νN

0
⇒ ν0

where ν0 is a deterministic measure in M1(U ), we get that all the
limit points have identical distribution coinciding with that of the
unique deterministic mean-field solution. This establishes the mean-
field limit and as a consequence, we also establish the propagation of
chaos for any finite time t in Theorem 4. In order to study the fixed-
point of the mean-field, we translate the integral form of the MFE to
the PDEs satisfied by the mean-field. Finally, we state our main result
on the insensitivity of the fixed-point of the mean-field in Theorem 3.
We also provide some insights about the stationary behavior of the
limiting system in Section 5 where we also discuss drawbacks of [6]
in concluding the insensitivity.

The starting point of our analysis depends on finding a suitable

martingale process that can be used to establish the mean-field

limit. For this, the starting step is to characterize the Markov pro-

cess (νNt , t ≥ 0) and finding its generator AN (·). We consider the

filtration defined by

F N
t = σ (ν

N
s (B) : s ≤ t ,B ∈ B(U )). (27)

Theorem 1. The process (νNt , t ≥ 0) is a Feller-Dynkin process[10,
11] ofDMF (U )([0,∞)). Let ϕ ∈ C1

b (U ), then the process (MN
t (ϕ), t ≥
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0) defined as

MN
t (ϕ) = ⟨νNt ,ϕ⟩ − ⟨νN

0
,ϕ⟩ −

∫ t

s=0
AN ⟨νNs ,ϕ⟩ds (28)

is a square integrable F N
t -martingale and it is right continuous with

left limits (RCLL) process. Further, for ϕ,ψ ∈ C1

b (U ), the mutual
variation of (MN

t (ϕ), t ≥ 0) with (MN
t (ψ ), t ≥ 0) is given by

< MN (ϕ)·,M
N
· (ψ ) >t=

∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

( β(x j )
n

)
× (ϕ(n − 1,x1, · · · ,x j−1,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× (ψ (n − 1,x1, · · · ,x j−1,x j−1,x j+1, · · · ,xn ) −ψ (n,x1, · · · ,xn ))

× dνNs (n,x1, · · · ,xn )

+ Nλ
[νNs ({0})

N
Φ0

(
νNs
N

)
(ϕ(1, 0) − ϕ(0))(ψ (1, 0) −ψ (0))

+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

N (n + 1)
Φn

(
νNs
N

)
× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× (ψ (n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) −ψ (n,x1, · · · ,xn ))

× dνNs (n,x1, · · · ,xn )
] )
ds . (29)

.

The proof of Theorem 1 is given in Appendix 7.2.

We now look at establishing the mean-field limit. For this, we

require the following assumptions:

Assumption 1. The hazard rate function β(·) satisfies

β ∈ Cb (R+) and ∥β ∥ < ∞. (30)

Assumption 2. The sequence of initial measures of the normal-
ized measure-valued processes (νNt , t ≥ 0) satisfy

(νN
0
, ⟨νN

0
,Ξ⟩, ⟨νN

0
, ϒ⟩) ⇒ (ν0, ⟨ν0,Ξ⟩, ⟨ν0, ϒ⟩) (31)

where ν0 ∈ M1(U ) is absolutely continuous measure satisfying
⟨ν0,Ξ⟩ < ∞ and ⟨ν0, ϒ⟩ < ∞.

Definition 3. Mean-field equations (MFE): The following evo-
lution equations are referred to as the MFE with initial point η

0
∈

M1(U ) satisfied by a process (ηt ∈ M1(U ), t ≥ 0) ∈ CM1(U )([0,∞)),
for all ϕ ∈ Cb (U ),

⟨ηt ,ϕ⟩ = ⟨η
0
,τtϕ⟩ +

∫ t

r=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
τt−rϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − τt−rϕ(n,x1, · · · ,xn )

)
× dηr (n,x1, · · · ,xn )

+ λ

[ (
ηr ({0})Φ0

(
ηr

)
(τt−rϕ(1, 0) − τt−rϕ(0))

)
+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)
Φn

(
ηr

)
× (τt−rϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) −τt−rϕ(n,x1, · · · ,xn )),

× dηr (n,x1, · · · ,xn )

])
dr , (32)

where Φn
(
ηr

)
=

(Rn (ηr )
d−Rn+1(ηr )

d )

(Rn (ηr )−Rn+1(ηr ))
and R j (ηr ) =

∑∞
n=j ηr (Un ).

Any solution of the above equation is referred to as the mean-

field solution. Note that since for ϕ ∈ Cb (U ), t 7→ ⟨ηt ,ϕ⟩ is a
continuous mapping and Cb (U ) is a separating class of M1(U ),

t 7→ ηt is continuous and hence any mean-field solution belongs

to the set CM1(U )([0,∞)).

We next state our main result of the paper.

Theorem 2. We establish the following two results

• There exists unique solution in CM1(U )([0,∞)) satisfying the
MFE for given initial point ν0 ∈ M1(U ). Furthermore, if
(ν1t , t ≥ 0) and (ν2t , t ≥ 0) are two mean-field solutions that
start at the initial measures ν1

0
∈ M1(U ),ν2

0
∈ M1(U ), re-

spectively, then

∥ν1t − ν
2

t ∥ ≤ ∥ν1
0
− ν2

0
∥ e(2∥β ∥+8d

2λ)t . (33)

• If the sequence {νN
0
} satisfies the assumption 2, we then have

for everyT > 0, (νNt , 0 ≤ t ≤ T ) ⇒ (ν t , 0 ≤ t ≤ T ) where the
process (ν t , 0 ≤ t ≤ T ) is a deterministic process referred to
as the mean-field limit is the unique solution of the MFE (32)

with initial point ν0.

The proof of above Theorem 2 is given in Appendix 7.3.

We now look at the probabilistic interpretation to the MFE. By

using the propagation of chaos result that we state later in this sec-

tion, ν t represents the distribution of a server state in the limiting

system. We next obtain the partial differential equations satisfied by

the mean-field limit by using MFE (32). Since ν0 is absolutely con-

tinuousw .r .t . Lebesgue measure, then at every t ≥ 0, ν t is also ab-

solutely continuous resulted from the fact that ν0 is absolutely con-

tinuous and the mapping t 7→ ν t is continuous. Let pt (0) denotes
ν t ({0}) and pt (n,x1, · · · ,xn ) denotes the Radon-Nikodym deriva-

tive of the measure ν t w .r .t . Lebesgue measure at (n,x1, · · · ,xn ).
Let us define the process Pt = (Pt (u),u ∈ U ) as

Pt (n,y1, · · · ,yn ) =

∫ y1

x1=0
· · ·

∫ yn

xn=0
pt (n,x1, · · · ,xn )dx1 · · ·dxn .

(34)

Hence Pt (n,y1, · · · ,yn ) denotes the probability that a server has n

jobs and ith job, 1 ≤ i ≤ n, has age atmost yi in the limiting system

at time t .

Corollary 1. The process Pt = (Pt (u),u ∈ U ) satisfies the PDEs

dPt (0)

dt
=

∫ ∞

y=0
β(y)

(
∂Pt (1,y)

∂y

)
dy − λΦ0(Pt )Pt (0), (35)

for n ≥ 1,

dPt (n,y1, · · · ,yn )

dt
= −

n∑
i=1

1

n

∂Pt (n,y1, · · · ,yn )

∂yi

+

n+1∑
j=1

∫ ∞

x j=0

β(x j )

n + 1

(
∂Pt (n + 1,y1, · · · ,yj−1,x j ,yj , · · · ,yn )

∂x j

)
dx j
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−

n∑
j=1

∫ yj

x j=0

β(x j )

n

(
∂Pt (n,y1, · · · ,yj−1,x j ,yj+1, · · · ,yn )

∂x j

)
dx j

+

n∑
j=1

λΦn−1(Pt )

n
Pt (n − 1,y1, · · · ,yj−1,yj+1, · · · ,yn )

− λΦn (Pt )Pt (n,y1, · · · ,yn ), (36)

whereΦn (Pt ) =
(Rn (Pt )d−R

d
n+1(Pt ))

(Rn (Pt )−Rn+1(Pt ))
andRn (Pt ) =

∑∞
j=n Pt (j,∞, · · · ,∞)

denotes the probability that there are at least n jobs in progress

at a server in the limiting system at time t . The proof of above

Corollary 1 is given in Appendix 7.6.

Notice that the PDEs (35)-(36) represent the evolution equations

of (Pt (u),u ∈ U ) where Pt (n,u1, · · · ,un ) denotes the probability

that there are n jobs in progress and ith job has age atmost yi
in a single server processor sharing system in which jobs arrive

according to a Poisson process with state-dependent time varying

arrival rates λ
(Rn (Pt )d−R

d
n+1(Pt ))

(Rn (Pt )−Rn+1(Pt ))
when there are n progressing jobs

at the server and the job length distributions are same as given in

Section 2. Hence the mean-field PDEs represents the evolution of

a non-linear Markov process. We now look at what each term on

the right side of equation (36) represent. The first term represents

the change in Pt (n,y1, · · · ,yn ) due to change of the age of each

progressing job at the rate of
1

n when there are no arrivals or

departures. The second term corresponds to the departure event

when there are n + 1 jobs resulting in server state (n,a1, · · · ,an )
such that ai ≤ yi , 1 ≤ i ≤ n. The departure event when the server

state is (n,a1, · · · ,an ) such that ai ≤ yi , 1 ≤ i ≤ n is represented

by the third term. The fourth term corresponds to the arrival event

when the server has n − 1 jobs. Finally, the fifth term corresponds

to the case of arrival event when server state is (n,a1, · · · ,an ) such
that ai ≤ yi , 1 ≤ i ≤ n.

We now state our main result on the insensitivity of the fixed

point of the mean-field limit. We first define a class of fixed-points

Y as

Y = {θ : If Rn (θ ) =
∞∑
j=n

θ (n,∞, . . .), we have lim

n→∞
Rn (θ ) = 0}.

(37)

Note that the class Y contains the fixed-points under which the

average queue length is finite

Theorem 3. There exists a unique fixed-point for the process
(Pt , t ≥ 0) = (Pt (u),u ∈ U , t ≥ 0) denoted by π among class of
fixed-points Y given by,

π (n,y1, · · · ,yn ) = π
(exp)(n)µn

n∏
i=1

∫ yi

xi=0
G(xi )dxi . (38)

where π (exp) = (π (exp)(n),n ≥ 0) denotes the unique fixed-point of
the mean-field limit when job lengths are exponentially distributed
with mean 1

µ and π (exp)(n) is the stationary probability that there are

n jobs in the limiting system at a server. Furthermore, as
∫ ∞

x=0G(x)dx =
1

µ , the fixed-point is insensitive since

π (n,∞, · · · ,∞) = π (exp)(n). (39)

The proof of Theorem 3 is given in section 4.

Remark 1. For any closed or open subset B ∈ U , by having
νNt ⇒ ν t , since ν t is absolutely continuous w .r .t . Lebesgue mea-
sure for every t ≥ 0, we then have by using continuous mapping
theorem that ⟨νNt , I {B }⟩ ⇒ ⟨ν t , I {B }⟩. This means that for large N ,
we can approximate ⟨νNt , I {B }⟩ by ⟨ν t , I {B }⟩. In particular the tail
distributions are obtained by taking B =

⋃
j≥n Uj , n ≥ 1. These

results are reported in [1] for the case of FCFS queueing models.

Propagation of chaos: The existence of the mean-field limit

allows us to show that any finite subset of servers become inde-

pendent of each other in the limiting system. We first define the

needed notation below.

• Let the state of the kth server at finite time t ≥ 0 be denoted

by the random variable q
(N )

k (t) ∈ U .

• Assuming the assumptions 1-2 are true, from Theorem 2, we

denote the mean-field limit by (ν t , t ≥ 0) defined onU .

Definition 4. : Let {S(N )

k , 1 ≤ k ≤ N } denote a collection of N
random variables. Then the collection is called exchangeable if the
joint law of collection is invariant under any permutation of indices,
1 ≤ k ≤ N , of random variables.

Theorem 4. If {q(N )

k (0), 1 ≤ k ≤ N } are exchangeable and if the
assumptions 1-2 are true, then the following holds

• For each fixed k and t ∈ [0,∞), L(q
(N )

k (t)) ⇒ ν t as N → ∞.
• For any fixed positive integer l and for each t ∈ [0,∞), we
have {q(N )

k (t), 1 ≤ k ≤ l} ⇒ {Vk (t), 1 ≤ k ≤ l} as N → ∞,
whereVk (t), 1 ≤ k ≤ l are independent random variables with
L(Vk (t)) is equal to ν t for all 1 ≤ k ≤ l .

The proof of Theorem 4 is given in Appendix 7.8.

4 INSENSITIVITY: PROOF OF THEOREM 3
Proof. Now let us look at the uniqueness of the fixed-point

π = (π (u),u ∈ U ) of the mean-field limit and its insensitivity. Let

θ = (θ (u),u ∈ U ) be a fixed-point for the process (Pt , t ≥ 0). We

first show that any fixed-point θ must satisfy

θ (n,y1, . . . ,yn ) =

(∏n
i=1

λ(GEN )

i−1 (θ )
µ

)
1 +

∑∞
m=1

(∏m
i=1

λ(GEN )

i−1 (θ )
µ

) µn n∏
i=1

∫ yi

xi=0
G(xi )dxi

(40)

and

θ (0) =
1

1 +
∑∞
m=1

(∏m
i=1

λ(GEN )

i−1 (θ )
µ

) (41)

where λ
(GEN )
n (θ ) = λ Rn (θ )

d−Rn+1(θ )d

Rn (θ )−Rn+1(θ )
. Since 0 ≤ Rn (θ ) ≤ 1 for

n ≥ 0, Rn (θ ) ≥ Rn+1(θ ) and limn→∞ Rn (θ ) = 0, it is verified that

we have

∑∞
m=1

∏m
i=1

λ(GEN )

i−1 (θ )
µ < ∞.

We now draw an analogy between the single server system with

pre-specified state dependent arrival rates and the mean-field limit.

This analogy is used in the proof. We first recall in Appendix 7.7,

the dynamics of the probabilities of server state of a single server

processor sharing system in which the job arrival process is a

Poisson process with pre-specified state-dependent arrival rates.
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On comparing the equation (157) satisfied by the mean-field limit

with the single server Kolomogorov equation (186), it is clear that

both the dynamics are identical except that αi in equation (186)

is replaced by λ (Rn (ν s )d−Rn+1(ν s )d )
(Rn (ν s )−Rn+1(ν s ))

when the probability measure

for server occupancies is νs at time s . Hence we have that the

equation (186) represents the evolution of a linear Markov process

whereas equation (157) represents the evolution of a non-linear

Markov process.

We use contradiction arguments to establish equations (40)-(41).

Let γ be a fixed-point that does not satisfy equations (40)-(41). Us-

ing this fixed-point γ , we first compute the set of arrival rates

(λ
(GEN )

i (γ ), i ≥ 0). Now let us consider a single server processor

sharing system where pre-specified state-dependent arrival rate is

equal to λ
(GEN )

i (γ ) when there are i jobs in progress and the job

length distributions are same as given in the system model. The

expression for the unique stationary distribution is given by equa-

tion (190) where we replace αi by λ
(GEN )

i (γ ). On comparing the

stationary evolution equations corresponding to single server dy-

namics given in equations (188)-(189) and the mean-field dynamics

given in equations (35)-(36), we have that γ is also another station-

ary distribution for single server system with pre-specified arrival

rates (λ
(GEN )

i (γ ), i ≥ 0). This contradicts the result established in

[9] that there exists unique stationary distribution for single server

system with pre-specified state-dependent arrival rates. Hence the

equations (40)-(41) must be true.

Now let Γ = (Γn ,n ≥ 0) is defined such that Γn = θ (n,∞, · · · ,∞))

and Γ0 = θ (0). We then have from equations (40)-(41),

Γn =

(∏n
i=1

λ(exp)i−1 (Γ)
µ

)
1 +

∑∞
m=1

(∏m
i=1

λ(exp)i−1 (Γ)
µ

) (42)

and

Γ0 =
1

1 +
∑∞
m=1

(∏m
i=1

λ(exp)i−1 (Γ)
µ

) (43)

where

λ
(exp)
n (Γ) = λ

(
∑∞
j=n Γj )

d − (
∑∞
j=n+1 Γj )

d

(
∑∞
j=n Γj ) − (

∑∞
j=n+1 Γj )

. (44)

We also have

λ
(exp)
n (Γ)Γn = µΓn+1. (45)

From [23], the only probability measure satisfying equations (44)-

(45) is the unique fixed-point π (exp)
of the mean-field limit when

job lengths are exponentially distributed with mean
1

µ . Hence from

equations (40) and (41), every fixed point θ satisfies,

Γn = θ (n,∞, · · · ,∞) = π (exp)(n). (46)

This concludes the insensitivity of the fixed-point of the mean-field

limit. By using equation (40), every fixed point θ satisfies

θ (n,y1, . . . ,yn ) = π
(exp)(n)µn

n∏
i=1

∫ yi

xi=0
G(xi )dxi (47)

This concludes that the fixed-point is unique since π (exp)
is unique.

□

5 ON THE STATIONARY REGIME
In this section, we provide some numerical results to support insen-

sitivity and the global asymptotic stability (GAS) of the fixed-point

of the mean-field by numerically evaluating the MFE when job

lengths have mixed-Erlang distributions. Further, we also discuss

later on the propagation of chaos in the stationary regime and rec-

ollect some existing relevant works. If one can prove the GAS of the

mean-field, then we can exploit Prokhorov’s theorem to conclude

the convergence of the stationary distribution for a server occu-

pancy of a finite N system to the fixed-point of the mean-field[23].

Proving the GAS of the mean-field is extremely difficult since the

mean-field does not possess any monotonicity properties when job

lengths are generally distributed unlike the exponential case[22, 23].

Recently, the case of loss models has been considered in [31] under

the assumption of mixed-Erlang distributions where the existence,

uniqueness and insensitivity of the fixed-point of the mean-field

was shown but the GAS of the mean-field is not shown and was only

studied numerically. Here also we provide simulation results that

support the convergence of the stationary distribution for a server

occupancy of a finite N system as N → ∞ to the fixed-point of the

mean-field. As a result, since our analysis proves the insensitivity

of the fixed-point of the mean-field, it supports the insensitivity of

the stationary distribution of the limiting system as N → ∞.

From a computational point we consider the numerical evalu-

ation of the MFE when job length distributions are mixed-Erlang

using Euler’s method with step size of 2 × 10
−3
. From the case of

exponential distributions we know that the stationary probability

that there are atleast k jobs at a server under the SQ(d) policy in the

limiting system is given by ( λµ )
dk −1
d−1 [32] for given values of

λ
µ (< 1).

We assume that the servers have a finite buffer size of C chosen

such that ( λµ )
dC −1
d−1 is negligible. We consider the system parameters

as follows. The job length distributions have Mixed-Erlang distri-

butions under which a job length is sampled with probability pi
(i ∈ {1, 2, . . . ,M}) from an Erlang distribution having i exponential
phases with rate µp . As a consequence, from the average job length,

we have

1

µ
=

∑M
i=1 ipi

µp
. (48)

Let us define the state of a server with n progressing jobs having

lj phases remaining for jth progressing job by l = (n, l1, . . . , ln )
with 1 ≤ lj ≤ M , 1 ≤ j ≤ n. For n ≥ 1, let Sn = {(n, l1, . . . , ln ) : 1 ≤

li ≤ M, 1 ≤ i ≤ n} be the set of all possible states of a server when
there are n progressing jobs and S0 = {(0)} denotes the state of a

server when there are no progressing jobs. We then define S to be

the set of all possible server states given by

S = ∪Cn=0Sn . (49)

We can model the system evolution by using a Markov process

xN (t) = (xNl (t), l ∈ S) where xNl (t) denotes the fraction of servers

lying in state l at time t . Since the underlying space S is countable,

the mean-field limit can be established by the same procedure as

that of the exponential case[23]. Hence we claim the following

result and the proof is omitted.

Claim 1. If xN (0) converges in distribution to a state u, then
the process xN (·) converges in distribution to a deterministic process
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x(·, u) as N → ∞ referred to as the mean-field. The process x(·, u) is
the unique solution of the following system of ordinary differential
equations.

x(0, u) = u, (50)

Ûxl (t , u) = hl (x(t , u)), (51)

and h = (hl , l ∈ S) with the mapping hl given by

h(n,l1, · · · ,ln )(x) =
n∑

b=1

(
plb
n

)
x(n−1,l1,l2, ..., lb−1,lb+1, ..., ln )(t)

× λ
(ME)
n−1 (x) − xl (t)λ

(ME)
n (x)I {n<C }

+

n+1∑
b=1

µp

n + 1
I {n<C }x(n+1,l1, ...,lb−1,1,lb , ..., ln )(t)

+

n∑
b=1

µp

n
x(n,l1, ...,lb−1,lb+1,lb+1, ..., ln )(t) − µpx(n,l1, · · · ,ln )(t), (52)

where

λ
(ME)
n (v) =

λ

(
∑
l ∈Sn vl )


©«
C∑
i=n

∑
l ∈Si

vl
ª®¬
d

−
©«

C∑
j=n+1

∑
l ∈Sj

vl
ª®¬
d  . (53)

We now numerically evaluate theMFE by choosing the following

parameters: d = 2, µ = 1, C = 7,M = 2, p1 = 0.4 and p2 = 0.6.

The unique fixed-point π = (πl , l ∈ S) is given by

π(n,l1, · · · ,ln ) = π
(exp)(n)

n∏
i=1

©«
∑M
j=li

pj∑M
r=1 rpr

ª®¬ , (54)

where π (exp) = (π (exp)(n), 0 ≤ n ≤ C) is the unique fixed-point of
the mean-field in exponential case.

In Figure 1, we plot dtv (x(t , u),π ) as a function of t where dtv
is the total variation distance defined by

dtv (a, b) =
∑
l ∈S

���al − bl

��� . (55)

In Figure 2, by defining a process y(t , v) = (yn (t , v), 0 ≤ n ≤ C)
referred to as the tail mean-field that satisfies y(0, v) = v and

yj (t , v) =
∑C
i=j

∑
l ∈Si xl (t , u), we plot ϑtv (y(t , v),π∗) as a func-

tion of t where π∗ is the fixed-point of y(t , v) and ϑtv is the total

variation distance defined by

ϑtv (w, z) =
∑

0≤n≤C
|wn − zn | . (56)

It is clear from Figure 1 and Figure 2 that the mean-field x(t , u)
and its tail mean-fieldy(t , v) converge to their fixed-points for three
different initial points when λ takes 0.7 and 0.9. This supports that

the mean-field x(t , u) and y(t , v) are globally stable.

From Figure 2, it is clear that ϑtv (y(t , v),π∗) the total variation
distance between the tail mean-field y(t , v) and its fixed-point π∗

is not monotonically decreasing. Further, let ϑE (y(t , v),π∗) be the
euclidean distance between y(t , v) and π∗ defined by

ϑE (w, z) =
√ ∑

0≤n≤C
|wn − zn |

2. (57)
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Figure 1: Convergence of the mean-field to its fixed-point
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Figure 2: Convergence of the tail mean-field to its fixed-
point

Then from Figure 3, ϑE (y(t , v),π∗) is also not decreasing mono-

tonically. The case with λ = 0.9 and v = v2 for the region where

ϑE (y(t , v),π∗) is increasing is shown in Figure 4. Therefore from

Figure 2 and Figure 3, both the total variation distance and the

euclidean distance cannot be used for constructing a Lyapunov

function to show the GAS of the tail mean-field.

We now present the simulation results that support insensitivity

of the fixed-point of the mean-field limit and the convergence of the

stationary distribution of a finite N system to the fixed-point of the

mean-field as N → ∞ for various class of job length distributions.

Let θN = (θNi , i ≥ 1) such that θNi denotes the stationary probabil-

ity that there are atleast i jobs in progress at a server in the system

with N servers in which arriving jobs are routed according to the

SQ(d) policy. In our simulation results, when we implement the

SQ(d) policy, d servers are sampled without replacement whereas
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Figure 3: Convergence of the tail mean-field to its fixed-
point
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Figure 4: Convergence of the tail mean-field to its fixed-
point

in our analysis we assume that servers are sampled with replace-

ment. By using PASTA property, we compute θN for various type

of job length distributions by simulating the system up to 2000000

job arrivals. Let θ (exp) = (θ
(exp)
i , i ≥ 0) be the fixed point of the

mean-field limit of the tail queue length process, then as shown in

[32],

θ
(exp)
i =

(
λ

µ

) di −1
d−1
. (58)

We now compute the total variation distance between θN and

θ (exp) defined as

ϑtv (θ
N ,θ (exp)) =

∑
i

���θNi − θ
(exp)
i

��� . (59)

We assume that the parameters λ, µ,d are fixed at 0.7, 1, and 2,

respectively. The different types of job length distributions that we

consider are exponential (Exp), constant (Const), power-law (PL),

and mixed-Erlang (ME) distributions. The power-law distribution

has CDF G(y) = 1 − 1

3y
3

2

for y ≥ 1

3
and zero otherwise. In the

mixed-Erlang case, the distribution has i (1 ≤ i ≤ 2) exponential

phases with probability pi and each exponential phase has rate µp .
We choose p1 = .4,p2 = 0.6 and µp is chosen by looking at the

formula of average job length given by

2∑
i=1

ipi
µp
=

1

µ
. (60)

It is clear from Table 1 that for large N system, θN for different job

length distributions having same average job length can be approx-

imated by the fixed-point of the mean-field limit under exponential

job length distribution having the same average job length. This

supports insensitivity and the global asymptotic stability of the

mean-field limit.

Table 1: ϑtv (θN ,θ (exp)) for different job length distributions

N Exp Const PL ME

10 0.0424 0.0409 0.0419 0.0421

50 0.0078 0.0068 0.0072 0.0077

100 0.0060 0.0037 0.0071 0.0038

300 0.0012 0.0016 0.0016 0.0017

The SQ(d) policy even for small value of d improves the system

performance significantly. We plot the average sojourn time (E(Ts ))
of a job under the SQ(d) or Power-of-d policy and the random

routing scheme (d = 1) in Figure 5. The expression for E(Ts ) under
the SQ(d) or Power-of-d policy is given by

E(Ts ) =
∑
i≥1

θ
exp
i (61)

and for the random routing, we have

E(Ts ) =
∑
i≥1

(
λ

µ

)i
. (62)

We also plot the simulation results in Figure 5 by considering a

system with N = 100 and exponential job length distributions.

It is clear that the SQ(d) policy reduces the average sojourn time

significantly over the random routing policy (d = 1).

5.1 On the propagation of chaos in the
stationary regime:

We now discuss the relationship between the propagation of chaos

in the stationary regime, the tightness of (πN )N , and the GAS of

the equilibrium of the mean-field. For simplicity, we assume that the

job length distributions are mixed-Erlang and each server has finite

bufferC . When
λ
µ < 1, a finiteN system is stable[5], and hence there

exists a unique invariant distribution πN
for the Markov process

xN (t) = (xNl (t), l ∈ S). In this case, the mean-field equations are

given by equations (50)-(52). However the system does not exhibit
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Figure 5: The average sojourn time (E(Ts )) versus λ

monotonicity properties unlike the simple exponential case and

thus establishing propagation of chaos is a challenging problem as

noted in [7]. When the GAS of the mean-field is true, by invoking

Prokhorov’s theorem we can establish that πN ⇒ δπ where π is

the fixed-point of the mean-field[23]. This implies the validity of

the interchange of limits

lim

N→∞
lim

t→∞
xNt = lim

t→∞
lim

N→∞
xNt . (63)

Further, this would then imply that propagation of chaos holds in

the stationary regime[2, 23]. Thus it appears that GAS, propagation

of chaos, and the coincidence of the stationary distribution and the

fixed point of the mean field are all inter-related. We now discuss

what happens when we cannot show GAS of the mean-field.

Since the space of probability measures on S denoted by M1(S)
with metric induced by total variation distance is compact, from

Prokhorov’s theorem[4], the sequence (πN )N is tight inM1(M1(S))
under the topology induced by the weak convergence. Let (πNk )k
be a converging subsequence with limiting point Z ∈ M1(M1(S)).
We say that for the sequence of systems with index (Nk )k , the

limiting system is said to have stationary distribution Z for the

stationary empirical random variable. Then form Theorem 1 of [2],

Z is an invariant distribution of the mean-field x(t , ·) that means∫
M1(S )

f (x(t , u))dZ (u) =
∫
M1(S )

f (u)dZ (u). (64)

Furthermore, from Theorem 3 of [3], the support of Z is a compact

set included in the Birkhoff center of the mean-field where the

Birkhoff center is the closure of the set of recurrent points. Hence

the Birkhoff center includes the existing limit cycles, fixed-points

of the mean-field.

Let q
Nk
i (∞) be the random variable that denotes the state of

server i in the stationary regime in a finite Nk system. LetV Nk (∞),

V (∞) be random variables with distribution πNk and Z , respec-
tively. Note that since the system behavior is symmetric to servers

as servers’ labels do not play any role, the set (q
Nk
i (∞), 1 ≤ i ≤ Nk )

is exchangeable irrespective of the initial conditions on (q
Nk
i (t), 1 ≤

i ≤ Nk ) in the transient regime. Let us consider continuous bounded

mappings ϕi : S → R+, 1 ≤ i ≤ l .

Theorem 5. If πNk ⇒ Z , then

E

[ l∏
i=1

ϕi (q
Nk
i (∞))

]
→ E

[ l∏
i=1

⟨V (∞),ϕi ⟩

]
(65)

as k → ∞. Any finite set of servers (ni )1≤i≤l in the limiting system
of the sequence (πNk )k are mutually independent iff Z is a Dirac
measure. Furthermore, if Z = δa for some a ∈ M1(S), then each
server state is a random variable with distribution a.

Proof. We can write�����E
[ l∏
i=1

ϕi
(
q
Nk
i (∞)

)]
− E

[ l∏
i=1

⟨V (∞),ϕi ⟩

] �����
≤

�����E
[ l∏
i=1

ϕi
(
q
Nk
i (∞)

)]
− E

[ l∏
i=1

⟨V Nk (∞),ϕi ⟩

] �����
+

�����E
[ l∏
i=1

⟨V Nk (∞),ϕi ⟩

]
− E

[ l∏
i=1

⟨V (∞),ϕi ⟩

] ����� . (66)

Note that since V Nk (∞) ⇒ V (∞), the second term on the right

hand side of the above inequality vanishes as Nk → ∞. Now, due

to exchangeability, the permutation of states between servers does

not affect the joint distribution. Hence, we have

E

[ l∏
i=1

ϕi
(
q
Nk
i (∞)

)]
=

1

(Nk )l
E


∑

σ ∈Q (l,Nk )

l∏
i=1

ϕi
(
q
Nk
σ (i)(∞)

) (67)

where (N )j = N (N − 1) . . . (N − j + 1), and Q(r ,n) denotes the set
of all permutations of the numbers {1, 2, . . . ,n} taken r at a time.

Also, by definition of V Nk (∞) we have

E

[ l∏
i=1

⟨V Nk (∞),ϕi ⟩

]
= E

©«
l∏
i=1

1

Nk

Nk∑
j=1

ϕi
(
q
(Nk )
j (∞)

)ª®¬
 (68)

Hence, the first term on the right hand side of (193) can be bounded

as follows�����E
[ l∏
i=1

ϕi
(
q
Nk
i (∞)

)]
− E

[ l∏
i=1

⟨V Nk (∞),ϕi ⟩

] �����
≤ 2Bl

(
1 −

(Nk )l

(Nk )
l

)
→ 0 as Nk → ∞

where maxi ∥ϕi ∥ = B.
Finally, from equation (65), any finite set of servers are indepen-

dent of each other iff Z is a Dirac measure. Otherwise they are

coupled through the sample value of the random variable V (∞). If

Z = δa , then it implies that in the limiting system the stationary

empirical random variableV (∞) is a deterministic value coinciding
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with a. Then the following equation concludes that each server has

distribution a

E

[ l∏
i=1

ϕi (q
Nk
i (∞))

]
→

l∏
i=1

⟨a,ϕi ⟩ (69)

as Nk → ∞. This completes the proof. □

Since Z is an invariant distribution of the mean-field x(t , ·), from
equation (64)

E

[ l∏
i=1

ϕi (q
Nk
i (∞))

]
→

∫
u∈M1(S )

( l∏
i=1

⟨x(t , u),ϕi ⟩

)
dZ (u) (70)

as Nk → ∞. The equation (70) implies that in the stationary regime,

at any time t , servers are coupled through the position of the mean-

field x(t , ·) which is a random element since its initial point is

random with distribution Z . Furthermore, in the limiting system,

at any instant t in the stationary regime, each servers’ state is a

random variable with distribution coinciding with the position of

the mean-field. For example, if support of Z contains limit cycles

or multiple fixed-points of the mean-field, then at any instant in

the stationary, the position of the mean-field is random as a result,

any finite set of servers are coupled.

5.2 Discussion on prior work in [6]:
In the literature, the only work that claims to prove the insensitivity

of the stationary distribution of the limiting system is [6] based on

an ansatz that we recall below. Using Theorem 5, we demonstrate

that the ansatz in [6] carries the necessary and sufficient conditions

required to establish insensitivity of the limiting system. As a result,

the insensitivity of the stationary distribution of a server state in

the limiting system is an immediate consequence. Infact, the ansatz
is the result that we aim to establish in studying the large-scale

systems under randomized load balancing in order to understand

the impact of the load balancing policy on system performance by

using the stationary distribution in the limiting system.

Let QN (t) = (r1,N (t), r1,N (t), · · · , rN ,N (t)) is the joint queue-
size process at time t where r i,N (t) (notation qi,n (t) is used in

[6]) denotes the number of jobs at server i at time t . Let ΓN (Γ is

replaced with π in [6]) be the stationary distribution of QN (t). We

now recall exactly the ansatz stated in [6].

Ansatz in [6]:
Demonstrate (ΓN ) ⇒ (Γ) as N → ∞, where Γ is a stationary and
ergodic measure onZ∞

+ . Show that the limit Γ is unique, depending
only on the service distribution, service discipline and load balancing
rule. Let Γ(k ) be the restriction of Γ to its first k coordinates, with
γ = Γ(1) being the one-dimensional marginal of Γ. Show that, for
every k ,

Γ(k ) = ⊗ki=1γ . (71)

Let Q
N
(∞) = (Q

N
i (∞), 0 ≤ i ≤ C) where Q

N
i (∞) denotes the

random variable in the stationary regime indicating the faction of

servers with i jobs. Then from Theorem 5 (also Proposition 2.1 of

[12]), Q
N
(∞) ⇒ γ where γ is a deterministic measure in M1(S).

Since the SQ(d) policy uses the queue-size information of a finite set

of d randomly sampled servers that have independent and identical

distributions coinciding with γ , the arrival process is a Poisson

process to any particular server which is a necessary condition to

have insensitivity in processor sharing systems. Furthermore, the

arrival process to each server is a state-dependent Poisson arrival

process with rate λk = λ
(
∑C
j=k γj )

d−(
∑C
j=k+1 γj )

d

γk
when there are k

jobs at the server. Therefore the set of arrival rates Λ = (λk , 0 ≤

k ≤ C) can be written as a function of γ as

Λ = F1(γ ). (72)

Further, for given set of arrival rates Λ, the stationary distribution

for a server occupancy in the limiting system can bewritten through

a mapping F2 as

γ = F2(Λ). (73)

Thereforeγ must be an unique fixed-point of the mapping F2(F1) for
the case of general job length distributions which is not shown in [6]

except for the case of FIFO queues with service time distributions

having decreasing hazard rate functions. To have insensitivity, γ
must be same for all the general job length distributions having

same average job length. In [6], from uniqueness of γ in ansatz,
insensitivity is concluded from reversibility since arrival process to

each server is a state-dependent Poisson arrival process. Note that

since the mappings F2, F1 are same for both exponential and general

distributions, the uniqueness of the fixed-point of F2(F1) follows
from the GAS of the mean-field in exponential case. Therefore the

fixed-point of the mapping F2(F1) is same for both exponential and

general job-length distributions when they have same average job

lengths. Since ansatz implies the Poisson arrival process to servers

and uniqueness of the stationary distribution in the limiting system,

the insensitivity follows immediately. However, the proof of ansatz
remains an open problem and has been shown only for the case

of FIFO queuing models with service time distributions having

decreasing hazard rate functions in [7].

6 CONCLUSIONS AND FUTUREWORK
In this paper we have obtained the mean-field limit for PS sys-

tems under SQ(d) routing and have shown that its equilibrium

point is unique and insensitive. In [6], the analysis was restricted

to studying the limit limN→∞ limt→∞ νNt under the assumption

of the ansatz. Later [7], proved the ansatz for the case of FIFO

queuing models with service time distributions having decreasing

hazard rate functions by exploiting the monotonic behavior of the

system. However, as stated in [7, page 252] that the proof tech-

niques cannot be extended to processor sharing models since the

preordering of states is not possible unlike FIFO systems which

is the key idea in showing monotonicity. On the other hand, the

mean-field limit obtained by studying limN→∞ νNt is a determinis-

tic process. It is enough to show the GAS of the mean-field since

the Prokhorov’s theorem would then imply the interchange of

limits limN→∞ limt→∞ νNt = limt→∞ limN→∞ νNt . This will be

addressed in future work.
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7 APPENDIX
7.1 Proof of Lemma 1

Proof. When a potential destination server is randomly cho-

sen from N servers, the probability that the chosen server lies in

state (m,a1, · · · ,am ) is given by
η({(m,a1, · · · ,am )})

N . Suppose out of

d potential destination servers, j servers have n jobs and the re-

maining d − j potential destination servers have atleast n + 1 jobs.
Further, out of j servers that have n jobs, let i servers lie in state

(n, l1, · · · , ln ). Then according to the SQ(d) policy, the probability
that the destination server lies in state (n, l1, · · · , ln ) is equal to(

d

j

) (
j

i

)
i

j

(
η({(n, l1, · · · , ln )})

N

)i (
η(Un ) − η({(n, l1, · · · , ln )})

N

) j−i
×

(∑∞
k=n+1 η(Uk )

N

)d−j
. (74)

Then by summing over all possible values of i and j, we get equa-
tion (25). □

7.2 Proof of Theorem 1
Proof. The proof of Theorem 1 involves establishing three re-

sults. The first result is to obtain the expression for the semigroup

operator of the Markov process (νNt , t ≥ 0). Using this, in the sec-

ond result, we then show that the Markov process (νNt , t ≥ 0)

is a Feller-Dynkin process[10, 11] of DMF (U )([0,∞)). Finally, in

the third result, by using the generator AN (·) of the Markov pro-

cess (νNt , t ≥ 0), we study the martingale process defined in equa-

tion (102) by using Dynkin’s lemma[11].

We next derive expression for the semigroup operator of the

Markov process (νNt , t ≥ 0). Given that the initial state is νN
0
= η,

letAh andDh be the number of arrivals and departures, respectively,

in the interval (0,h]. Further, let the measure η contains the mass

atm points denoted by u(l ) = (nl ,u1l , · · · ,unl l ), 1 ≤ l ≤ m, and

the number of servers with state u(l ) is given by η({u(l )}). Let
us denote the probability that there is no departure at a server

with state b = (n,b1, · · · ,bn ) at time t in the interval (t , t + h] by
pND (b;h). Then

pND (b;h) =
n∏
i=1

(
G(bi +

h
n )

G(bi )

)
. (75)

Further, we can write

pND (b;h) =
n∏
i=1

(
(1 − β(bi )

h

n
)

)
+ o(h). (76)

We next obtain expression for the semigroup operator of the

Markov process (νNt , t ≥ 0) defined by

TN
h f (η) = E

[
f (νNh )|νN

0
= η

]
, (77)

where the mapping f : MF (U ) 7→ R is a continuous and bounded

mapping.

Lemma 2. If f is a bounded continuous function onMF (U ), then
the semigroup operator TN

h f (η) of the Markov process (νNt , t ≥ 0) is
given by

TN
h f (η) = (1 − Nλh)

m∏
l=1,nl >0

(pND (u
(l )
;h))η({u

(l ) }) f (τhη)

+ (1 − Nλh)
m∑

i=1,ni>0
η({u(i)})

×

ni∑
j=1

∫ h
ni

˜h=0

д(uji + ˜h)

G(uji )

ni∏
k=1,k,j

G(uki + ˜h)

G(uki )

(
(pND (u

(i)
;h))(η({u

(i ) })−1)
)

×

( m∏
r=1,r,i

(pND (u
(r )

;h))η({u
(r ) })

)
× f

(
τhη + δ(B(u (i ), j, ˜h,h)) − δ(ni ,u1i+ h

ni
, · · · ,uni i+

h
ni

)

)
d ˜h

+ P({Dh = 0})Nλh

×E

[(
f
(
τh (η+δ(M+1,Z1, · · · ,ZL−1,0,ZL, · · · ,ZM )−δ(M,Z1, · · · ,ZM ))

) )
|νN
0
= η

]
+ ϵ(η,h), (78)

where

B(u(i), j, ˜h,h)

=
(
ni − 1,u1i + ˜h +

(h − ni ˜h)

ni − 1

, · · · ,u(j−1)i + ˜h +
(h − ni ˜h)

ni − 1

,

u(j+1)i + ˜h +
(h − ni ˜h)

ni − 1

, · · · ,uni i +
˜h +

(h − ni ˜h)

ni − 1

)
(79)

and ϵ(η,h) is a o(h) term. Further, (M,Z1, · · · ,ZM ) denotes the
random variable that denotes the state of the destination server at
time t = 0 when the arrived job is routed according to the power-of-d
policy with system state as νN

0
= η (job is considered to be arrived at

T1 = 0). Further, L is the random variable that denotes the position
of the routed job that is picked up uniformly at random fromM + 1
possible positions at the destination server.

Proof. From the definition of TN
h f (η), we can write

TN
h f (η) =

∑
i≥0

∑
j≥0
E

[
f (νNh )I {Ah=i }I {Dh=j } |ν

N
0
= η

]
. (80)

Hence we can write

TN
h f (η) = E

[
f (νNh )I {Ah=0}I {Dh=0} |ν

N
0
= η

]
+ E

[
f (νNh )I {Ah=0}I {Dh=1} |ν

N
0
= η

]
+ E

[
f (νNh )I {Ah=1}I {Dh=0} |ν

N
0
= η

]
+

∑
i≥1

∑
j≥1
E

[
f (νNh )I {Ah=i }I {Dh=j } |ν

N
0
= η

]
. (81)

We first look at the expression forE
[
f (νNh )I {Ah=0}I {Dh=0} |ν

N
0
= η

]
that corresponds to the event that there are no arrivals and no de-

partures in the interval (0,h]. In this case, we have νNh = τhη.
Therefore, we have

E
[
f (νNh )I {Ah=0}I {Dh=0} |ν

N
0
= η

]
= P({Ah = 0})P({Dh = 0})f (τhη).

(82)

We can write
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E
[
f (νNh )I {Ah=0}I {Dh=0} |ν

N
0
= η

]
= (P({Ah = 0}) + (1 − Nλh) − (1 − Nλh))P({Dh = 0})f (τhη)

= (1 − Nλh)P({Dh = 0})f (τhη) + ϵ1(η,h)

= (1 − Nλh)
m∏

l=1,nl >0

(pND (u
(l )
;h))η({u

(l ) }) f (τhη)

+ ϵ1(η,h), (83)

where

ϵ1(η,h) = (P({Ah = 0}) − (1 − Nλh))P({Dh = 0})f (τhη) (84)

is a o(h) term.

The expression for the second termE
[
f (νNh )I {Ah=0}I {Dh=1} |ν

N
0
= η

]
that corresponds to the event that there is no arrival and one job

departs in the interval (0,h] is obtained as follows. We can write

E
[
f (νNh )I {Ah=0}I {Dh=1} |ν

N
0
= η

]
= P({Ah = 0})E

[
f (νNh )I {Dh=1} |ν

N
0
= η

]
= (1 − Nλh)E

[
f (νNh )I {Dh=1} |ν

N
0
= η

]
+ ϵ2(η,h) (85)

where ϵ2(η,h) = (P({Ah = 0})−(1−Nλh))E
[
f (νNh )I {Dh=1} |ν

N
0
= η

]
is ao(h) term. Let a job departs from a server that had state (n,a1, · · · ,an )

at time t = 0 and assume that jth job departs at time n ˜h, i .e .,

when jth job age reaches aj + ˜h, then the server state would be

equal to

(
n − 1,a1 + ˜h + (h−n ˜h)

n−1 , · · · ,aj−1 +
˜h + (h−n ˜h)

n−1 ,aj+1 +
˜h +

(h−n ˜h)
n−1 , · · · ,an +

˜h + (h−n ˜h)
n−1

)
at time h. By using the index i to

represent that jth job departs at time n ˜h from a server that had state

u(i) = (ni ,ui1, · · · ,uni i ) at time t = 0, we have

E
[
f (νNh )I {Ah=0}I {Dh=1} |ν

N
0
= η

]
= (1−Nλh)

m∑
i=1,ni>0

η({u(i)})

×

ni∑
j=1

∫ h
ni

˜h=0

д(uji + ˜h)

G(uji )

ni∏
k=1,k,j

G(uki + ˜h)

G(uki )

(
(pND (u

(i)
;h))(η({u

(i ) })−1)
)

×

( m∏
r=1,r,i,nr >0

(pND (u
(r )

;h))η({u
(r ) })

)
f
(
τhη + δ

(
B(u (i ), j, ˜h,h)

) − δ
(ni ,u1i+ h

ni
, · · · ,uni i+

h
ni

)

)
d ˜h + ϵ2(η,h).

(86)

We now consider expression forE
[
f (νNh )I {Ah=1}I {Dh=0} |ν

N
0
= η

]
that corresponds to the the event that there is an arrival in the in-

terval (0,h] and none of the ongoing jobs depart the system. Note

that if a job arrives at timeT1(T1 ≤ h), we use the system state to be

νNT1
in implementing the SQ(d) policy since the ages of progressing

jobs increase with time. Suppose the arrived job achieves age of
˜h

by the time of h and further, suppose it has joined at jth position of

a server that had state (n,a1, · · · ,an ) at time t = 0. This happens

only if job arrives at time h − (n + 1) ˜h. In this case, server will have

state (n + 1,a1 +
h−(n+1) ˜h

n + ˜h, · · · ,aj−1 +
h−(n+1) ˜h

n + ˜h, ˜h,aj+1 +
h−(n+1) ˜h

n + ˜h, · · · ,an +
h−(n+1) ˜h

n + ˜h). Suppose the job arrives at

time T1 which is sampled according to exponential distribution

with rate Nλ, then we have

E
[
f (νNh )I {Ah=1}I {Dh=0} |ν

N
0
= η

]
= P({Dh = 0})

× E

[(
f (τhη + δ(C((M,Z1, · · · ,ZM ),L,T1,h)) − δ(M,Z1+

h
M , · · · ,ZM+ h

M )
)

× I {Ah=1}

)
|νN
0
= η

]
(87)

where

C((M,Z1, · · · ,ZM ),L,T1,h)

=

(
M + 1,Z1 +

T1
M
+
h −T1
M + 1

, · · · ,ZL−1 +
T1
M
+
h −T1
M + 1

,

h −T1
M + 1

,ZL +
T1
M
+
h −T1
M + 1

, · · · ,ZM +
T1
M
+
h −T1
M + 1

)
(88)

and (M,Z1, · · · ,ZM ) denotes the random variable that represents

the state of the destination server (chosen according to power-of-d
policy at arrival instantT1) at time t = 0 andL is the random variable

that indicates the position that is picked up uniformly amongM + 1
positions at the destination server for the job. Note that while

choosing the destination server, the system state is considered as

νNT1
= τT1η when we implement the SQ(d) policy.

Now we can write

E
[
f (νNh )I {Ah=1}I {Dh=0} |ν

N
0
= η

]
= P({Dh = 0})Nλh

×E

[(
f
(
τh (η+δ(M+1,Z1, · · · ,ZL−1,0,ZL, · · · ,ZM )−δ(M,Z1, · · · ,ZM ))

) )
|νN
0
= η

]
+ P({Dh = 0})(P({Ah = 1}) − Nλh)

×E

[(
f
(
τh (η+δ(M+1,Z1, · · · ,ZL−1,0,ZL, · · · ,ZM )−δ(M,Z1, · · · ,ZM ))

) )
|νN
0
= η

]
+ P({Dh = 0})

×

(
E(1)

[(
f (τhη+δ(S ((M,Z1, · · · ,ZM ),L,T1,h)) −δ(M,Z1+

h
M , · · · ,ZM+ h

M )
)

× I {Ah=1}

)
|νN
0
= η

]
− E(2)

[(
f
(
τh (η + δ(M+1,Z1, · · · ,ZL−1,0,ZL, · · · ,ZM ) − δ(M,Z1, · · · ,ZM ))

)
× I {Ah=1}

)
|νN
0
= η

])
, (89)

where

S((M,Z1, · · · ,ZM ),L,T1,h)

=

(
M + 1,Z1 +

T1
M
+
h −T1
M + 1

, · · · ,ZL−1 +
T1
M
+
h −T1
M + 1

,
h −T1
M + 1

,

ZL +
T1
M
+
h −T1
M + 1

, · · · ,ZM +
T1
M
+
h −T1
M + 1

)
. (90)
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Further, on the right side of equation (89), in the first and second

terms, we have that T1 = 0 and hence we use η as the system state

in choosing the destination server while in the third term, E(1)[·]
is obtained by assuming that T1 takes any arbitrary value sampled

according to exponential distribution and E(2)[·] is computed by

taking T1 = 0. The sum of second and third terms on the right side

of equation (89) is denoted by ϵ3(η,h) and it is checked that ϵ3(η,h)
is a o(h) term.

Finally, by the fact that f is a bounded function, then the fourth

term is a o(h) term denoted by ϵ4(η,h). By defining

ϵ(η,h) = ϵ1(η,h) + ϵ2(η,h) + ϵ3(η,h) + ϵ4(η,h), (91)

we obtain equation (78). □

Proposition 1. The process (νNt , t ≥ 0) is a Feller-Dynkin process[10,
11] of DMF (U )([0,∞)).

Proof. The process (νNt , t ≥ 0) has Feller-Dynkin property if

we have the following properties ( Using Lemma 3.5.1 and Corol-

lary 3.5.2 of [10]):

For f ∈ C1

k (U ),η ∈ MF (U ), let Qf : MF (U ) 7−→ R be defined by

Qf (η) = e−⟨η,f ⟩ , then we must have

(1) The mapping η 7−→ E
[
Qf (ν

N
h )|νN

0
= η

]
is continuous for

all f ∈ C1

k (U ) and h > 0.

(2) For all h > 0, we have

E
[
Q1(ν

N
h )|νN

0
= η

]
→ 0 (92)

as η(U ) → ∞.

(3) For all η ∈ MF (U ) and f ∈ C1

k (U ), we have

E
[
Qf (ν

N
h )|νN

0
= η

]
→ Qf (η) (93)

as h → 0.

By using equation (78), we have

E
[
Qf (ν

N
h )|νN

0
= η

]
= e−⟨τhη,f ⟩

{
(1 − Nλh)

×
©«

m∏
j=1,nj>0

(pND (u
(j)
;h))η({u

(j ) })ª®¬
+ (1 − Nλh)

m∑
j=1,nj>0

nj∑
r=1

η({u(j)})

(
G(ur j + h) −G(ur j )

G(ur j )

)
×

( nj∏
w=1;w,r

(
G(uwj + h)

G(uwj )

))
(pND (u

(j)
;h))(η({u

(j ) })−1)

×
©«

m∏
i=1,ni>0,i,j

(pND (u
(i)
;h))η({u

(i ) })ª®¬
×Qf

(
τh (δ(nj−1,u1j , ...,ur−1j ,ur+1j , ...,unj j ) − δ(nj ,u1j , ...,unj j ))

)
+ P({Dh = 0})(Nλh)

×E

[
Qf

(
τh (δ(M+1,Z1, ...,Z(L

1
−1),0,ZL, ...,ZM ) − δ(M,Z1, ...,ZM ))

)
|νN
0
= η

]

+ ϵf (η,h)

}
(94)

where ϵf (η,h) is given by

ϵf (η,h) = ϵ1f (η,h) + ϵ2f (η,h) + ϵ3f (η,h) + ϵ4f (η,h) (95)

such that

ϵ
1f (η,h) = (P({Ah = 0}) − (1 − Nλh))P({Dh = 0}), (96)

ϵ
2f (η,h) = (P({Ah = 0}) − (1 − Nλh))

m∑
i=1,ni>0

η({u(i)})

×

ni∑
j=1

∫ h
ni

˜h=0

д(uji + ˜h)

G(uji )

ni∏
k=1,k,j

G(uki + ˜h)

G(uki )

(
(pND (u

(i)
;h))(η({u

(i ) })−1)
)

×

( m∏
r=1,r,i,nr >0

(pND (u
(r )

;h))η({u
(r ) })

)
Qf

(
δ (
B(u (i ), j, ˜h,h)

) − δ
(ni ,u1i+ h

ni
, · · · ,uni i+

h
ni

)

)
d ˜h, (97)

ϵ
3f (η,h) = P({Dh = 0})[P({Ah = 1}) − Nλh]

×E

[
Qf

(
τh (δ(M+1,Z1, ...,Z(L

1
−1),0,ZL1, ...,ZM ) − δ(M,Z1, ...,ZM ))

)
|νN
0
= η

]
+ P({Dh = 0})

×

(
E(1)

[
Qf

(
(δ(S ((M,Z1, · · · ,ZM ),L,T1,h)) − δ(M,Z1+

h
M , ...,ZM+ h

M )
)

)
×I {Ah=1} |ν

N
0
= η

]
−E(2)

[
Qf

(
τh (δ(M+1,Z1, ...,Z(L

1
−1),0,ZL1, ...,ZM ) − δ(M,Z1, ...,ZM ))

)
×I {Ah=1} |ν

N
0
= η

])
(98)

and

ϵ
4f (η,h) =∑

i≥1, j≥1
E

[
Qf

( i∑
r=1

(δ(S ((Mr ,Z1r , · · · ,ZMr r ),Lr ,0,h−Tr ))

−δ
(Mr ,Z1r+

h−Tr
Mr

, ...,ZMr r+
h−Tr
Mr

)

+

j∑
l=1

(δ(B((nl ,X1l , ...,Xnl l ), Jl ,0,h−Wl ))

−δ
(nl ,X1l+

(h−Wl )
nl

, ...,Xnl l+
(h−Wl )
nl

))

)
× I {Ah=i,Dh=j } |ν

N
0
= η

]
. (99)

In equation (99), Tr denotes the arrival time of r th job which is

routed to a server with state (Mr ,Z
(r )
1
, . . . ,Z

(r )
Mr

) at time Tr and Lr
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is the position of r th arriving job at its destination server. Corre-

sponding to departures, suppose l th departure occurs at timeWl at

a server with state (nl ,X
(l )
1
, . . . ,X

(l )
nl ) at timeWl and the position of

the departing job is Jl . By using the same arguments as for ϵ(ν ,h)
in equation (78), ϵf (ν ,h) is also a o(h) term.

Now let us look at the proof of the first condition required for

Feller property, we write equation (94) as

E
[
Qf (ν

N
h )|νN

0
= η

]
= (e−⟨τhη,f ⟩)V (η,h). (100)

We have that e−⟨τhη,f ⟩ is a continuous mapping of η. Now if we

showV (η,h) is a continuousmapping ofη, thenE
[
Qf (ν

N
h )|νN

0
= η

]
is a continuous mapping of η. By the fact that η is a point measure

at finite N , the continuity of V (η,h)w .r .t . η follows from the fact

that the routing probabilities under the SQ(d) policy as shown in

equation (25) and the departure probabilities are continuous map-

pings of η. Since τhη(U ) = η(U ) = N , the second condition is

satisfied. Finally, since ⟨τhη, f ⟩ = ⟨η,τh f ⟩, by applying the domi-

nated convergence theorem we have ⟨τhη, f ⟩ → ⟨η, f ⟩ as h → 0.

This establishes the third condition. Hence the process (νNt , t ≥ 0)

is a Feller process. □

Before looking at the third result, we now recall the definition

of the generator AN (·) of the Markov process (νNt , t ≥ 0) by using

the semigroup operator TN
h (·) that satisfies equation (78). For any

F ∈ C(MF (U )), the generator AN (·) is defined as

AN F (η) = lim

h→0

E
[
F (νNh )|νN

0
= η

]
− F (η)

h
, (101)

where F ∈ C(MF (U )) such that the limit exists. We now define a

process (MN
t (ϕ), t ≥ 0) for ϕ ∈ C1

b (U ) using the generator AN (·)

and the Dynkin’s formula.

Lemma 3. Let ϕ ∈ C1

b (U ), then the process (MN
t (ϕ), t ≥ 0) de-

fined as

MN
t (ϕ) = ⟨νNt ,ϕ⟩ − ⟨νN

0
,ϕ⟩ −

∫ t

s=0
AN ⟨νNs ,ϕ⟩ds (102)

is a square integrable F N
t -martingale and it is right continuous with

left limits (RCLL) process. Further, for ϕ,ψ ∈ C1

b (U ), the mutual
variation of (MN

t (ϕ), t ≥ 0) with (MN
t (ψ ), t ≥ 0) is given by

< MN (ϕ)·,M
N
· (ψ ) >t=

∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

( β(x j )
n

)
× (ϕ(n − 1,x1, · · · ,x j−1,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× (ψ (n − 1,x1, · · · ,x j−1,x j−1,x j+1, · · · ,xn ) −ψ (n,x1, · · · ,xn ))

× dνNs (n,x1, · · · ,xn )

+ Nλ
[νNs ({0})

N
Φ0

(
νNs
N

)
(ϕ(1, 0) − ϕ(0))(ψ (1, 0) −ψ (0))

+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

N (n + 1)
Φn

(
νNs
N

)
× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× (ψ (n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) −ψ (n,x1, · · · ,xn ))

× dνNs (n,x1, · · · ,xn )
] )
ds . (103)

.

Proof. We first look at the expression for the generator AN (·).

By using equation (78) and since the set of linear combinations of

Qf for f ∈ C1

k (U ) defined by Qf (η) = e−⟨η,f ⟩ is dense in the set

C(MF (U ))[26, proposition 7.10], by using expression forANQf (η),
we get

AN F (η) = lim

h→0

(
F (τhη) − F (η)

h

)
− NλF (η)

−

∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

(
β(x j )

n

)
F (η)dη(n,x1, · · · ,xn )

+

∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

(
β(x j )

n

)
×

(
F (η + δ(n−1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − δ(n,x1, · · · ,xn ))

)
dη(n,x1, · · · ,xn )

+ Nλ

[
η({0})

N
Φ0

( η
N

)
F (η + δ(1,0) − δ(0))

+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

N (n + 1)
Φn

( η
N

)
× F (η + δ(n+1,x1, · · · ,x j−1,0,x j , · · · ,xn ) − δ(n,x1, · · · ,xn ))

× dη(n,x1, · · · ,xn )

]
. (104)

We make it clear that when ϕ ∈ C1

b (U ), η ∈ MF (U ), then

AN ⟨η,ϕ⟩ is well defined. By using the Dynkin’s formula [11], the

process (MN
t (ϕ), t ≥ 0) defined as

MN
t (ϕ) = ⟨νNt ,ϕ⟩ − ⟨νN

0
,ϕ⟩ −

∫ t

s=0
AN ⟨νNs ,ϕ⟩ds (105)

is a RCLL F N
t −local martingale. Upon simplification, we have

MN
t (ϕ) = ⟨νNt ,ϕ⟩ − ⟨νN

0
,ϕ⟩ −

∫ t

s=0
⟨νNs ,ϕ

′∑⟩ ds

−

∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, . . . ,xn ) − ϕ(n,x1, · · · ,xn )

)
× dνNs (n,x1, · · · ,xn )

+ Nλ

[ (
νNs ({0})

N
Φ0

(
νNs
N

)
(ϕ(1, 0) − ϕ(0))

)
+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

N (n + 1)
Φn

(
νNs
N

)
× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× dνNs (n,x1, · · · ,xn )

])
ds, (106)
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where

⟨νNs ,ϕ
′∑⟩ =

∞∑
n=1

n∑
i=1

∫
x1

· · ·

∫
xn

1

n

∂ϕ(n,x1, . . . ,xn )

∂xi
dνNs (n,x1, · · · ,xn ).

(107)

Further, letψ ∈ C1

b (U ), then the mapping η 7→ ⟨η,ϕ⟩⟨η,ψ ⟩ also be-

longs to the domain ofAN . We now define a process (M̃N
t (ϕ,ψ ), t ≥

0) as

M̃N
t (ϕ,ψ ) = ⟨νNt ,ϕ⟩⟨ν

N
t ,ψ ⟩ − ⟨νN

0
,ϕ⟩⟨νN

0
,ψ ⟩

−

∫ t

s=0
AN ⟨νNs ,ϕ⟩⟨ν

N
s ,ψ ⟩ds (108)

is a RCLL F N
t −local martingale. It is verified that, we have

AN ⟨η,ϕ⟩⟨η,ψ ⟩ = ⟨η,ϕ⟩AN ⟨η,ψ ⟩ + ⟨η,ψ ⟩AN ⟨η,ϕ⟩

+

∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn )

)
×

(
ψ (n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) −ψ (n,x1, · · · ,xn )

)
× dη(n,x1, · · · ,xn )

+ Nλ

[ (
η({0})

N
Φ0

( η
N

)
(ϕ(1, 0) − ϕ(0))

)
+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

N (n + 1)
Φn

( η
N

)
× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× (ψ (n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) −ψ (n,x1, · · · ,xn ))

× dη(n,x1, · · · ,xn )

]
. (109)

By using Itô’s formula, we have

⟨νNt ,ϕ⟩⟨ν
N
t ,ψ ⟩ = ⟨νN

0
,ϕ⟩⟨νN

0
,ψ ⟩ +

∫ t

s=0
⟨νNs ,ϕ⟩ dM

N
s (ψ )

+

∫ t

s=0
⟨νNs ,ψ ⟩ dM

N
s (ϕ) +

∫ t

s=0
⟨νNs ,ϕ⟩A

N ⟨νNs ,ψ ⟩ ds

+

∫ t

s=0
⟨νNs ,ψ ⟩A

N ⟨νNs ,ϕ⟩ ds+ < ⟨νN· ,ϕ⟩, ⟨ν
N
· ,ψ ⟩ >t . (110)

Further, by using equations (108)-(109), we have∫ t

s=0
⟨νNs ,ϕ⟩ dM

N
s (ψ ) +

∫ t

s=0
⟨νNs ,ψ ⟩ dM

N
s (ϕ)

+

∫ t

s=0
⟨νNs ,ψ ⟩A

N ⟨νNs ,ϕ⟩ ds+ < ⟨νN· ,ϕ⟩, ⟨ν
N
· ,ψ ⟩ >t=

M̃N
t (ϕ,ψ ) +

∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn )

)
×

(
ψ (n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) −ψ (n,x1, · · · ,xn )

)
× dνNs (n,x1, · · · ,xn )

+ Nλ

[ (
νNs ({0})

N
Φ0

(
νNs
N

)
(ϕ(1, 0) − ϕ(0)) (ψ (1, 0) −ψ (0))

)

+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

N (n + 1)
Φn

(
νNs
N

)
× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× (ψ (n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) −ψ (n,x1, · · · ,xn ))

× dνNs (n,x1, · · · ,xn )

])
ds . (111)

By identifying the finite variation process, P−a.s. we have

< ⟨νN· ,ϕ⟩, ⟨ν
N
· ,ψ ⟩ >t=∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn )

)
×

(
ψ (n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) −ψ (n,x1, · · · ,xn )

)
× dνNs (n,x1, · · · ,xn )

+ Nλ

[ (
νNs ({0})

N
Φ0

(
νNs
N

)
(ϕ(1, 0) − ϕ(0)) (ψ (1, 0) −ψ (0))

)
+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

N (n + 1)
Φn

(
νNs
N

)
× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× (ψ (n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) −ψ (n,x1, · · · ,xn ))

× dνNs (n,x1, · · · ,xn )

])
ds . (112)

By using equation (105), we have

< ⟨νN· ,ϕ⟩, ⟨ν
N
· ,ψ ⟩ >t=< MN

· (ϕ),MN
· (ψ ) >t . (113)

Hence as ϕ,ψ ∈ C1

b (U ) and β ∈ Cb (R+), we have

E
[
< MN

· (ϕ),MN
· (ψ ) >t

]
< ∞ (114)

and hence (MN
t (ϕ))t ≥0 is a square integrable martingale. □

□

7.3 The mean-field Limit: Proof of Theorem 2
Proof. We first give the first part of the proof that corresponds

to the existence and uniqueness of themean-field solution. This is an

essential requirement in proving the convergence of (
νNt
N , t ≥ 0) as

N → ∞. We then give the proof of the second part that corresponds

to the convergence of (
νNt
N , t ≥ 0) as N → ∞.

Existence and Uniqueness of Mean-field Solution: From
equation (32), for ϕ ∈ Cb (U ), the operator ϕ 7→ ⟨ν t ,ϕ⟩ is a linear
operator and ν t (U ) = 1. Therefore from Riesz-Markov-Kakutani

theorem [27, 30], for νt ∈ M1(U ), showing the existence of unique

probability measure ν t is equivalent to showing the existence of

unique operator ϕ 7→ ⟨ν t ,ϕ⟩.
We next prove that given an initial measure ν0, there exists

atmost one mean-field solution by establishing that there exists

atmost one real valued process ⟨ν t ,ϕ⟩ satisfying the MFE. Now let
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(ν1t , t ≥ 0), (ν2t , t ≥ 0) be two solutions that satisfy MFE with initial

points ν1
0
,ν2

0
, respectively. For ϕ ∈ Cb (U ), we have

⟨ν1t − ν
2

t ,ϕ⟩ = ⟨ν1
0
− ν2

0
,τtϕ⟩ +

∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
τt−sϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − τt−sϕ(n,x1, · · · ,xn )

)
× d(ν1s − ν

2

s )(n,x1, · · · ,xn )

)
ds

+

∫ t

s=0

(
λ

[ (
ν1s ({0})Φ0(ν

1

s ) (τt−sϕ(1, 0) − τt−sϕ(0))
)

+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)
Φn (ν

1

s )

× (τt−sϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − τt−sϕ(n,x1, · · · ,xn ))

× dν1s (n,x1, · · · ,xn )

]
− λ

[ (
ν2s ({0})Φ0(ν

2

s ) (τt−sϕ(1, 0) − τt−sϕ(0))
)

−

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)
Φn (ν

2

s )

× (τt−sϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − τt−sϕ(n,x1, · · · ,xn ))

× dη2s (n,x1, · · · ,xn )

])
ds . (115)

We would like to achieve a result of the form

∥ν1t − ν
2

t ∥ ≤ b + c

∫ t

s=0
∥ν1s − ν

2

s ∥ds (116)

for someb, c > 0, t ∈ [0,T ]. This implies fromGronwall’s inequality[11]

that

∥ν1t − ν
2

t ∥ ≤ b ect (117)

for t ∈ [0,T ]. By using the first term on the right side of equa-

tion (115), we can write��⟨ν1
0
− ν2

0
,τtϕ⟩

�� ≤ ∥ν1
0
− ν2

0
∥∥ϕ∥. (118)

To simplify the second term, we define a functionwt,s as follows:

wt,s (n,x1, · · · ,xn ) =

n∑
k=1

β(xk )

n
(τt−sϕ(n−1,x1, · · · ,x j−1,x j+1, · · · ,xn )−τt−sϕ(n,x1, · · · ,xn ))

(119)

and wt,s (0) = 0. Since ϕ ∈ Cb (U ) and β ∈ Cb (R+), we have

wt,s ∈ Cb (U ). Further, we have

∥wt,s ∥ ≤ 2∥β ∥∥ϕ∥. (120)

Using the definition ofwt,s , we have∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×

(
τt−sϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn )

− τt−sϕ(n,x1, · · · ,xn )

)
d(ν1s − ν

2

s )(n,x1, · · · ,xn )ds =∫ t

s=0
⟨ν1s − ν

2

s ,wt,s ⟩ds . (121)

Now consider the third term, let us define a function ht,s,η as

follows,

ht,s,η (n,x1, · · · ,xn ) =
n+1∑
j=1

1

(n + 1)

(Rn (η)
d − Rn+1(η)

d )

(Rn (η) − Rn+1(η))

×(τt−sϕ(n+1,x1, · · · ,x j−1, 0,x j , · · · ,xn )−τt−sϕ(n,x1, · · · ,xn ))
(122)

for xi ≥ 0 for all i . Then the third term is equal to∫ t
s=0 λ

(
⟨ν1s ,ht,s,ν 1

s
⟩ − ⟨ν2s ,ht,s,ν 2

s
⟩

)
ds . Further, we can write���⟨ν1s ,ht,s,ν 1

s
⟩ − ⟨ν2s ,ht,s,ν 2

s
⟩

��� ≤ ���⟨ν1s − ν2s ,ht,s,ν 1

s
⟩

���
+

���⟨ν2s ,ht,s,ν 1

s
− ht,s,ν 2

s
⟩

��� . (123)

Hence we have,���⟨ν1s ,ht,s,ν 1

s
⟩ − ⟨ν2s ,ht,s,ν 2

s
⟩

��� ≤ ∥ν1s − ν
2

s ∥∥ht,s,ν 1

s
∥

+ ∥ν2s ∥∥ht,s,ν 1

s
− ht,s,ν 2

s
∥. (124)

As ν2s is a probability measure, we have ∥ν2s ∥ = 1. Further, we also

have that ∥ht,s,ν 1

s
∥ ≤ 2d ∥ϕ∥. We also have���ht,s,ν 1

s
(n,x1, · · · ,xn ) − ht,s,ν 2

s
(n,x1, · · · ,xn )

���
≤ 2d2∥ϕ∥

(���Rn (ν1s ) − Rn (ν
2

s )
��� + ���Rn+1(ν1s ) − Rn+1(ν

2

s )
���) . (125)

Further, by defining a function h∗ such that form ≥ n and for all

xi , 1 ≤ i ≤ m, we have

h∗(m,x1, . . . ,xm ) = 1 (126)

and form < n and for allxi , 1 ≤ i ≤ m, we haveh∗(m,x1, · · · ,xm ) =

0, then we can write

Rn (ν
1

s ) = ⟨ν1s ,h
∗⟩. (127)

We then have���Rn (ν1s ) − Rn (ν
2

s )
��� ≤ ∥ν1s − ν

2

s ∥∥h
∗∥ = ∥ν1s − ν

2

s ∥. (128)

By using bounds for all the terms, we have��⟨ν1t − ν2t ,ϕ⟩�� ≤ (
∥ν1

0
− ν2

0
∥ +

∫ t

s=0
2∥β ∥∥ν1s − ν

2

s ∥ ds

+

∫ t

s=0
8d2λ∥ν1s − ν

2

s ∥ ds

)
∥ϕ∥. (129)

Therefore we get

∥ν1t − ν
2

t ∥ ≤ ∥ν1
0
− ν2

0
∥ + (2∥β ∥ + 8d2λ)

∫ t

s=0
∥ν1s − ν

2

s ∥ ds . (130)

Finally, from equation (116), we have

∥ν1t − ν
2

t ∥ ≤ ∥ν1
0
− ν2

0
∥ e(2∥β ∥+8d

2λ)t . (131)

Therefore for the given initial measure ν0, there exists atmost one

solution for the MFE.
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Let us now look at the existence of a solution for MFE. From the

proof of the second part that we state next, we have the relative

compactness of the sequence {νNt , t ≥ 0} inDM1(U )([0,∞)). Every

limit point of the sequence {νNt , t ≥ 0} has sample paths a.s .
satisfying the equation (32). This establishes that there exists a

solution to the MFE.

Convergence of (νNt , t ≥ 0):We now look at the convergence

of (νNt , t ≥ 0) in DM1(U )([0,∞) as N → ∞. We have that νNt ({u})
is equal to the fraction of servers that lie in u at time t . Further,

suppose (F
N
t , t ≥ 0) is the natural filtration associated with the

process (νNt , t ≥ 0).

By using assumption 2, we first show that the sequence of pro-

cesses (νNt , t ≥ 0) is relatively compact and we then prove that

every limit point (χ t , t ≥ 0) has sample paths evolving almost

surely according to the MFE. Since the deterministic measure ν0
is the initial point for all the limiting points, from the uniqueness

of the mean-field solution for given initial measure, we have that

all limiting points have almost surely identical sample paths co-

inciding with the unique mean-field solution. Hence we call the

unique mean-field solution as the the mean-field limit denoted by

(ν t , t ≥ 0).

Using Theorem 3, for ϕ ∈ C1

b (U ), the process (M
N
t (ϕ), t ≥ 0)

defined as follows is an RCLL square integrable F
N
t −martingale

M
N
t (ϕ) = ⟨νNt ,ϕ⟩ − ⟨νN

0
,ϕ⟩ −

∫ t

s=0
A
N
⟨νNs ,ϕ⟩ ds, (132)

where A
N
(·) is the generator of the Markov process (νNt , t ≥ 0).

Upon simplification, we have

M
N
t (ϕ) = ⟨νNt ,ϕ⟩ − ⟨νN

0
,ϕ⟩ −

∫ t

s=0
⟨νNs ,ϕ

′∑⟩ ds

−

∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn )

)
× dνNs (n,x1, . . . ,xn )

+ λ

[ (
νNs ({0})Φ0(ν

N
s ) (ϕ(1, 0) − ϕ(0))

)
+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)
Φn (ν

N
s )

× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× dνNs (n,x1, · · · ,xn )

])
ds . (133)

Further, for ϕ,ψ ∈ C1

b (U ), we have

< M
N
· (ϕ),M

N
· (ψ ) >t=

1

N

[ ∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn )

)
×

(
ψ (n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) −ψ (n,x1, · · · ,xn )

)
× dνNs (n,x1, · · · ,xn )

+ λ

[ (
νNs ({0})Φ0(ν

N
s ) (ϕ(1, 0) − ϕ(0)) (ψ (1, 0) −ψ (0))

)
+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)
Φn (ν

N
s )

× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× (ψ (n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) −ψ (n,x1, · · · ,xn ))

× dνNs (n,x1, · · · ,xn )

])
ds

]
. (134)

For establishing the convergence of (νNt , t ≥ 0), we first show

that the sequence of the processes {(νNt )t ≥0} is relatively compact

inDM1(U )([0,∞)). By Prohorov’s theorem [4], as the spaceM1(U )

endowed with the weak topology is complete and separable, estab-

lishing the relative compactness of the sequence of the processes

{(νNt , t ≥ 0)} is equivalent to proving the tightness of the processes

{(νNt , t ≥ 0)}.

We next recall the Jakubowski’s criteria (From Theorem 4.6 of

[15]) which gives the necessary and sufficient condition to have

the relative compactness of the sequence of the processes {(νNt , t ≥
0)} in Section 7.5. By using conditions J1, J2, C1, and C2 given in

Section 7.5, we next give proof of the second part of Theorem 2.

We first focus on establishing the relative compactness of the

sequence (νNt , t ≥ 0). In this direction, we establish the relative

compactness of (⟨νNt ,ϕ⟩, t ≥ 0) for ϕ ∈ C1

b (U ) in DR ([0,∞)) by

establishing condition J2. For this, we need to establish conditions

C1 and C2. For any T > 0, t ∈ [0,T ], we have

⟨νNt ,ϕ⟩ ≤ ∥ϕ∥1⟨ν
N
t , 1⟩ (135)

and since ⟨νNt , 1⟩ = 1, with b = ∥ϕ∥1, the condition C1 is satisfied.

Now let us look at the proof of condition C2. By using equa-

tion (134) and Doob’s inequality, for ϵ > 0, we have

P

(
sup

t ≤T

���MN
t (ϕ)

��� ≥ ϵ

)
≤

4

ϵ2
E

[
< M

N
· (ϕ) >T

]
(136)

≤
4T

ϵ2
∥ϕ∥2

1

N
(∥β ∥ + dλ) → 0 (137)

as N → ∞. Therefore from standard convergence criterion in

DR ([0,T ]), the sequence of processes (M
N
t (ϕ), t ≥ 0) converges in

distribution to the null process. Further, we have that the sequence

of processes (M
N
t (ϕ), t ≥ 0) is tight in DR ([0,T ]) and hence, there

exists ρ1 > 0 and N1 > 0 such that for all N ≥ N1, we have

P

(
sup

u,v≤T , |u−v | ≤ρ1

���MN
v (ϕ) −M

N
u (ϕ)

��� ≥ γ

2

)
≤
ϵ

2

(138)

For any u < v ≤ T , from equation (133), we have���⟨νNv ,ϕ⟩ − ⟨νNu ,ϕ⟩
��� ≤ ∫ v

s=u

���⟨νNs ,ϕ ′∑⟩

���ds + 2∥β ∥∥ϕ∥ |u −v |

+ 2∥ϕ∥λ |u −v |

+

���MN
v (ϕ) −M

N
u (ϕ)

��� . (139)

We therefore have���⟨νNv ,ϕ⟩ − ⟨νNu ,ϕ⟩
��� ≤ |v − u | ∥ϕ∥1(1+2∥β ∥+2dλ)+

���MN
v (ϕ) −M

N
u (ϕ)

��� .
(140)
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Therefore from equations (138) and (140), there exists some ρ2 > 0

and N2 > 0 such that for N ≥ N2, we have

P

(
sup

u,v≤T , |u−v | ≤ρ2

���⟨νNv ,ϕ⟩ − ⟨νNu ,ϕ⟩
��� ≥ γ

)
≤ ϵ . (141)

This completes the proof of condition J2.

Now let us look at compact containment condition J1. Suppose at

time t , (ni (t),xi1(t) . . . ,xini (t )(t)) denotes the state of the i
th
server

where xi j (t) denotes the age of the jth progressing job. We then

have

⟨νNt , ϒ⟩ =
1

N

N∑
i=1,ni (t )>0

(xi1(t) + · · · + xini (t )(t)). (142)

Let Yt be the random variable representing the age of a progressing

job at time t , and X is a random variable sampled with job length

distribution G, then for any b ≥ 0, we have

P(Yt ≥ b) ≤ P(X ≥ b). (143)

Further, we have

⟨νNt ,Ξ⟩ =
∞∑
n=0

∫
x1

· · ·

∫
xn

ndνNt (n,x1, · · · ,xn ). (144)

Let EN (t) be the number of jobs that arrive into the system in

the interval (0, t]. At any t , a progressing job in the system could

be the one which stays in the system at time t = 0 or it could be the

one which arrived into the system in the interval (0, t]. If a job that
is present initially in the system at time t = 0 has age a, then its age

is upper bounded by a + t ′ at time t = t ′. If Z (0) are the number of

jobs in the system at time t = 0, then at time t , the number of jobs

that are in progress from time t = 0 is bounded by its initial value

Z (0). Further, at time t , the number of jobs that are in progress at

time t which had arrived in the interval (0, t] is upper bounded by

the total number of arrived jobs EN (t). Therefore we can write

P(⟨νNt , ϒ⟩ ≥ b) ≤ P
©«
⟨νN0 , ϒ⟩ + t ⟨νN0 ,Ξ⟩ +

∑EN (t )
j=1 Yj

N

 ≥ b
ª®®¬

(145)

where (Yj , 1 ≤ j ≤ EN (t)) are i.i.d random variables sampled ac-

cording to job length distributionG . Now let us look at convergence

of

∑EN (t )
j=1 Yj
N in distribution sense. Here EN (t) denotes the number

of jobs arrived according to a Poisson process with intensity Nλ.
However, a Poisson process with intensity Nλ is equal to the sum

of N independent Poisson processes with intensity λ. Therefore,
we can write

EN (t) =
N∑
i=1

E(i)(t) (146)

where E(i)(t) denotes the number of arrivals in the time [0, t] from

ith Poisson process with intensity λ. We can write∑EN (t )
j=1 Yj

N
=

1

N

N∑
i=1

©«
E(i )(t )∑
k=1

Yik
ª®¬ (147)

where {Yik } are i.i.d. random variables with job length distribution

G. Then by law of large numbers, we have∑EN (t )
j=1 Yj

N
⇒

λt

µ
. (148)

By using assumption 2, we have

⟨νN
0
, ϒ⟩ + t ⟨νN

0
,Ξ⟩ +

∑EN (t )
j=1 Yj

N
⇒ ⟨ν0, ϒ⟩ + t ⟨ν0,Ξ⟩ +

λt

µ
. (149)

Further, from assumption 2, there exists someM0 such that

lim inf

N→∞
P(max(⟨νN

0
,Ξ⟩, ⟨νN

0
, ϒ⟩) < M0) > 1 − γ . (150)

By choosingMT = M0(1 +T ) +
2λT
µ , we have

lim inf

N→∞
P( sup

t ∈[0,T ]
⟨νNt , ϒ⟩ < MT ) > 1 − γ . (151)

For all 0 < γ < 1, let

WT ,γ ≜ {ζ ∈ M1(U ) : ⟨ζ , ϒ⟩ < MT } . (152)

For a > 0 and as ⟨ζ , ϒ⟩ ≤ MT for ζ ∈ WT ,γ , for any Borel set

of the form Bn = ([0,a], · · · , [0,a]) ∈ B(Un ) with n ≥ 1 and

B = {(0)} ∪ (∪nBn ) and if B denotes the complement of B, then

ζ (B) ≤
MT
a

(153)

and hence

lim

a→∞
sup

ζ ∈WT ,γ

ζ (B) = 0. (154)

Now using Lemma A7.5 of [16], WT ,γ is relatively compact in

M1(U ). Further, from equation (151), we have

lim inf

N→∞
P(νNt ∈ WT ,γ ∀t ∈ [0,T ]) > 1 − γ . (155)

LetKT ,γ is the closure ofWT ,γ , we then found a compact setKT ,γ
such that

lim inf

N→∞
P(νNt ∈ KT ,γ ∀t ∈ [0,T ]) ≥ 1 − γ . (156)

This proves the condition J1 and therefore the tightness of the

sequence of processes (νNt , t ≥ 0) is true.

Suppose (χ t , t ≥ 0) be a limiting point of a converging subse-

quence of (νNt , t ≥ 0) then χ
0
almost surely coincides with ν0 from

assumption 2. By using the continuous mapping theorem, we have

⟨χt ,ϕ⟩ = ⟨χ0,ϕ⟩ +

∫ t

s=0
⟨χs ,ϕ

′∑⟩ ds

−

∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn )

)
× dχs (n,x1, · · · ,xn )

+ λ

[
(χs ({0})Φ0(χs ) (ϕ(1, 0) − ϕ(0)))

+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)
Φn (χs )

× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))
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× dχs (n,x1, · · · ,xn )

])
ds . (157)

We now show that the sample paths of (χ t , t ≥ 0) coincide al-

most surely with the unique mean-field solution. For this, we

first show that by observing that the sample paths (χt , t ≥ 0) ∈

CM1(U )([0,∞)) since C1

b (U ) is a separating class of M1(U ), for

given initial point η0, we establish any process (ηt , t ≥ 0) ∈

CM1(U )([0,∞)) is a solution to equation (157) iff it is a solution

to the mean-field equation (32). We give proof of this in Section 7.4.

Finally, since there exists unique solution to the mean-field equa-

tion for given initial point, from assumption 2, we have that all the

limiting points have almost surely identical sample paths coinciding

with the mean-field solution. Therefore the sequence of processes

(νNt , t ≥ 0) converges in distribution to the unique mean-field

solution denoted by (ν t , t ≥ 0). □

7.4 Evolution of (⟨ηt ,ψ ⟩, t ≥ 0) forψ ∈ Cb (U )

Proof. We first show that any process (ηt , t ≥ 0) that satisfies

equation (157) also satisfies equation (32). For this, for ϕ ∈ C1

b (U ),

if the integrand in equation (157) is a continuous function of s , a
real valued process (⟨ηt ,ϕ⟩, t ≥ 0) satisfying the equation (157) is

a solution to the following differential equation

d ⟨ηt ,ϕ⟩

dt
= ⟨ηt ,ϕ

′∑⟩ +

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn )

)
× dηt (n,x1, · · · ,xn )

+ λ

[
(ηt ({0})Φ0(ηt ) (ϕ(1, 0) − ϕ(0)))

+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)
Φn (ηt )

× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× dηt (n,x1, · · · ,xn )

])
. (158)

Therefore we need to show that the two terms on the right side of

equation (158) are continuous functions of t . The first term ⟨ηt ,ϕ
′∑⟩

is a continuous function of t since ϕ ∈ C1

b (U ) and the mapping

t 7→ ηt is continuous. The second term that corresponds to the case

of departures can be written as

∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn )

)
× dηt (n,x1, · · · ,xn ) = ⟨ηt , ˜ψ ⟩, (159)

where the function
˜ψ is defined such that

˜ψ (0) = 0 (160)

and for n ≥ 1

˜ψ (n,x1, · · · ,xn ) =

n∑
j=1

β(x j )

n
((ϕ(n−1,x1, . . . ,x j−1,x j+1, . . . ,xn )−ϕ(n,x1, . . . ,xn )).

(161)

Since ϕ ∈ C1

b (U ) and β ∈ Cb (R+), we have that ˜ψ ∈ Cb (U ). There-

fore ⟨ηt , ˜ψ ⟩ is a continuous function of t . Now let us look at the

expression that corresponds to the case of arrivals, we can write

λ

[
(ηt ({0})Φ0(ηt ) (ϕ(1, 0) − ϕ(0)))

+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)
Φn (ηt )

× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× dηt (n,x1, · · · ,xn )

= ⟨ηt ,ψ(ηt )⟩, (162)

whereψ(ηt ) is defined as

ψ(ηt )(n,x1, · · · ,xn ) =
λ

(n + 1)
Φn (ηt )

× (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn )). (163)

We have that ψηt ∈ Cb (U ) since ϕ ∈ Cb (U ). Hence for some

fixed b ≥ 0, the mapping t 7→ ⟨ηt ,ψ(ηb )⟩ is continuous. To es-

tablish continuity of the mapping t 7→ ⟨νt ,ψ(ηt )⟩, we need to show

⟨ηt+b ,ψ(ηt+b )⟩ → ⟨ηt ,ψ(ηt )⟩ as b → 0. We can write���⟨ηt+b ,ψ(ηt+b )⟩ − ⟨ηt ,ψ(ηt )⟩
��� ≤ ���⟨ηt+b ,ψ(ηt+b )⟩ − ⟨ηt+b ,ψ(ηt )⟩

���
+

���⟨ηt+b ,ψ(ηt )⟩ − ⟨ηt ,ψ(ηt )⟩
��� . (164)

Asψ(ηt ) ∈ Cb (U ), we have

lim

b→0

���⟨ηt+b ,ψ(ηt )⟩ − ⟨ηt ,ψ(ηt )⟩
��� = 0. (165)

We next show

lim

b→0

���⟨ηt+b ,ψ(ηt+b ) −ψ(ηt )⟩��� = 0. (166)

Consider a L > 0 and let

V (L) = {(n,x1, . . . ,xn ) ∈ Un : n ≥ 1,xi > L for all 1 ≤ i ≤ n}.
(167)

For given ϵ > 0, we can choose L > 0 such that we have

⟨ηt , I{V (L)}⟩ < ϵ . (168)

From continuity of t 7→ ηt , there exists some r1 > 0 such that for

all b ∈ [−min (t , r1), r1],

⟨ηt+b , I{V (L)}⟩ < ϵ . (169)

Further,ψ(ηt ) is a continuous function of t asRn (ηt ) = ⟨ηt , I{
∪∞
j=nUj

}⟩
is a continuous function of t . Hence,ψ(ηt+b ) is uniformly continuous

on the interval b ∈ [−min (t , r1), r1] and u ∈ V
(L)

(the complement

of V (L)
). Therefore there exists some r2 ∈ (0, r1) such that for

b ∈ [−min(t , r2), r2], u ∈ V
(L)

, we have���ψ(ηt+b )(u) −ψ(ηt )(u)��� < ϵ . (170)

Using equations (169)-(170), for b ∈ [−min(t , r2), r2], we have,
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{
V

(L)
}⟩ + 2dλ∥ϕ∥ϵ
≤ ϵ + 2dλ∥ϕ∥ϵ . (171)

Now by letting b → 0 and then ϵ → 0 in equation (164), we have

continuity of the mapping t 7→ ⟨ηt ,ψ(ηt )⟩.
By using the change of variables, we now obtain an alternative

form of the equations that are satisfied by any solution to the

equation (158). For this, let us define a function
˜ϕ from ϕ ∈ C1

b (U )

as follows: For r ≤ t , let

˜ϕ(n,x1, . . . ,xn ) = ϕ
(
n,x1 +

t − r

n
, · · · ,xn +

t − r

n

)
(172)

= ϕ(τ+t−r (n,x1, · · · ,xn )) (173)

= τt−rϕ(n,x1, · · · ,xn ) (174)

and
˜ϕ(0) = ϕ(0). Now consider the change of ⟨ηr , ˜ϕ⟩ w .r .t . the

variable ‘r ’. We have

d ⟨ηr , ˜ϕ⟩

dr
=
d ⟨ηr , ˜ϕ⟩

dr
|(fixed ˜ϕ) +

d ⟨ηr , ˜ϕ⟩

dr
|(fixed ηr ) (175)

where the first term on the right side represents the change in

⟨ηr , ˜ϕ⟩ for fixed ˜ϕ due to change in ηr as a function of r and the

second term represents the change in ⟨ηr , ˜ϕ⟩ for fixed ηr due to

change in
˜ϕ as a function of r . Hence the first term can be computed

by using equation (158) and the second term is equal to −⟨ηt , ˜ϕ
′∑⟩.

Therefore, we have

d ⟨ηr , ˜ϕ⟩

dr
=

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×

(
˜ϕ(n − 1,x1, . . . ,x j−1,x j+1, . . . ,xn ) − ˜ϕ(n,x1, . . . ,xn )

)
× dηr (n,x1, · · · ,xn )

+ λ

[ (
ηr ({0})Φ0(ηr )

(
˜ϕ(1, 0) − ˜ϕ(0)

))
+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)
Φn (ηr )

× ( ˜ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ˜ϕ(n,x1, · · · ,xn ))

× dηr (n,x1, · · · ,xn )

])
. (176)

By integrating
d ⟨ηr , ˜ϕ ⟩

dr with respect to r from 0 to t , we get equa-
tion (32).

We next show that for ϕ ∈ C1

b (U ), any solution (⟨ν t ,ϕ⟩, t ≥ 0)

of the equation (32) also satisfies the equation (157). For this, we

need to show that the differentiation of ⟨ν t ,ϕ⟩ with respect to t

exists. The existence of
d ⟨ν 0,τtϕ ⟩

dt follows from bounded conver-

gence theorem since ϕ ∈ C1

b (U ). The existence of the differentiation

of the second term on the right side of equation (32) with respect

to t follows from Leibniz integral rule. According to this rule, we

first need to show that the integrand is continuous with respect to

both the variables r and t . This follows from the same arguments

as that of the continuity of the integrand in equation (157). After

that we have to show that the differentiation of the integrand with

respect to t exists and further, the differential should be continuous

with respect to both the variables r and t . Since ϕ ∈ C1

b (U ), by the

bounded convergence theorem, the differentiation of the integrand

exists and further, it is continuous with respect to r and t from the

similar arguments as that of the continuity of the integrand in equa-

tion (157). Hence, any process ν t ∈ CM1(U )([0,∞)) is a solution to

the equation (157) if and only if it is a solution to the equation (32).

Note that ϕ in equation (32) need not be differentiable. □

7.5 Conditions J1, J2, C1, C2
Jakubowski’s criteria:

A sequence of {XN } of DM1(U )([0,∞))− valued random ele-

ments defined on (Ω,F,P) is tight if and only if the following two

conditions are satisfied:

J1: For eachT > 0 and γ > 0, there exists a compact set KT ,γ ⊂

M1(U ) such that

lim inf

N→∞
P(XN

t ∈ KT ,γ ∀t ∈ [0,T ]) > 1 − γ . (177)

This condition is also referred as the compact-containment

condition.

J2: There exists a family Q of real valued continuous functions

F defined on M1(U ) that separates points in M1(U ) and

is closed under addition such that for every F ∈ Q, the

sequence {(F (XN
t ), t ≥ 0)} is tight in DR ([0,∞)).

To prove condition J2, we consider a class of functions Q as

follows.

Q ≜ {F : ∃f ∈ C1

b (U ) such that F (η) = ⟨η, f ⟩, ∀η ∈ M1(U )}

(178)

The class of functions Q defined in equation (178) can be considered

to prove condition J2 as every function F ∈ Q is continuousw.r.t. the

weak topology on M1(U ) and further, the class of functions Q

separates points inM1(U ) and closed under addition.

We next state the following sufficient condition (From Theo-

rem C .9,[26]) to prove condition J2.

Tightness in DR ([0,T ]): If S = DR ([0,T ]) and (Pn ) is a se-

quence of probability distributions on S , then (Pn ) is tight if for any
ϵ > 0,

C1: There exists b such that

Pn (|X (0)| > b) ≤ ϵ (179)

for all n ∈ Z+

C2: For any γ > 0, there exists ρ > 0 such that

Pn (wX (ρ) > γ ) ≤ ϵ (180)

for n sufficiently large, where

wX (ρ) = sup{|X (t) − X (s)| : s, t ≤ T , |s − t | ≤ ρ} (181)

and any limiting point P satisfies P(CR ([0,T ])) = 1.

7.6 Proof of Corollary 1:
Proof. By assuming that ν0 is absolutely continuous w .r .t .

Lebesgue measure at all u ∈ Un for n ≥ 1, we have absolutely

continuity of ν t at all u ∈ Un for n ≥ 1 and t ≥ 0. Let pt (0) denotes
ηt ({0}) and the Radon-Nikodym derivative of ν t w .r .t . Lebesgue
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measure at (n,x1, . . . ,xn ) be denoted by pt (n,x1, . . . ,xn ). Now let

us construct a process Pt = (Pt (u),u ∈ U ) as follows,

Pt (n,y1, . . . ,yn ) =

∫ y1

x1=0
. . .

∫ yn

xn=0
pt (n,x1, · · · ,xn )dx1 · · ·dxn .

(182)

We now look at ⟨ν t , ˆϕ⟩ where ˆϕ = I{l ∈Un : 0≤li ≤yi , ∀i} . For given
absolutely continuous measure η that has no atoms,

⟨η, ˆϕ⟩ = ⟨η,ψ ⟩, (183)

whereψ = I{u ∈Un : 0<li<yi , ∀i} . We first recall the property that for

any open set O in Un , n ≥ 1, there exists a sequence of functions

{ fn } ∈ Cb (U ) that increase point wise to I {O } . Now by using

monotone convergence theorem and equation (32), we get that the

equation (32) is also true for the function ψ (Indicators on open

sets). Due to absolutely continuity of νs for all s ≥ 0, we have that

equation (32) is true with the function
ˆϕ (Indicators on closed sets).

Using equation (32), we now obtain the evolution equations for the

process (Pt , t ≥ 0) that satisfy Pt (n,y1, . . . ,yn ) = ⟨ν t , ˆϕ⟩.
We then get final expression for the process (Pt (u),u ∈ U , t ≥ 0)

using equation (32) and using the following observation

⟨νs ,τb I{l ∈Un : 0≤li ≤yi , ∀i}⟩ = ⟨νs , I{l ∈Un : 0≤li+ bn ≤yi , ∀i
}⟩ (184)

= ⟨νs , I{l ∈Un : 0≤li ≤yi− b
n , ∀i

}⟩. (185)

By simplifications, we obtain the set of partial differential equations

for the process Pt (n,y1, . . . ,yn ) as in equations (35)-(36). □

7.7 Single server system with pre-specified
arrival rates

Consider a single server system in which jobs arrive according

to a Poisson process with intensity αn when there are n jobs in

progress at the server. The job lengths are sampled according to

general distributionG(·) as in the systemmodel. If ν
(sinдle)
t denotes

the probability measure for server occupancies at time t , then it is

verified that the Kolmogorov equations are given by, for ϕ ∈ C1

b (U ),

⟨ν
(sinдle)
t ,ϕ⟩ = ⟨ν

(sinдle)
0

,ϕ⟩ +

∫ t

s=0
⟨ν

(sinдle)
s ,ϕ ′∑⟩ ds

−

∫ t

s=0

(
∞∑
n=1

n∑
j=1

∫
x1

· · ·

∫
xn

β(x j )

n

×
(
ϕ(n − 1,x1, · · · ,x j−1,x j+1, · · · ,xn ) − ϕ(n,x1, · · · ,xn )

)
× dν

(sinдle)
s (n,x1, · · · ,xn )

+

[ (
α0ν

(sinдle)
s ({0}) (ϕ(1, 0) − ϕ(0))

)
+

∞∑
n=1

n+1∑
j=1

∫
x1

· · ·

∫
xn

1

(n + 1)

× αn (ϕ(n + 1,x1, · · · ,x j−1, 0,x j , · · · ,xn ) − ϕ(n,x1, · · · ,xn ))

× dν
(sinдle)
s (n,x1, · · · ,xn )

])
ds . (186)

Now let the Radon-Nikodym derivative of the measure ν
(sinдle)
t

at u ∈ U be denoted by p
(sinдle)
t (u). We can derive the differential

equations satisfied by the density functionp
(sinдle)
t = (p

(sinдle)
t (u),

u ∈ U ) by using the similar procedure as in [19, 28, 35, 36]. We

then obtain the differential equations for the process P
(sinдle)
t =

(P
(sinдle)
t (u),u ∈ U ) where

P
(sinдle)
t (n,y1, · · · ,yn )

=

∫ y1

x1=0
· · ·

∫ yn

xn=0
p
(sinдle)
t (n,x1, · · · ,xn )dx1 · · ·dxn , (187)

are given by

dP
(sinдle)
t (0)

dt
=

∫ ∞

y=0
β(y)

(
∂P

(sinдle)
t (1,y)

∂y

)
dy − α0P

(sinдle)
t (0),

(188)

for n ≥ 1,

dP
(sinдle)
t (n,y1, · · · ,yn )

dt
= −

n∑
i=1

1

n

∂P
(sinдle)
t (n,y1, . . . ,yn )

∂yi

+

n+1∑
j=1

∫ ∞

x j=0

β(x j )

n + 1

(
∂P

(sinдle)
t (n + 1,y1, · · · ,yj−1,x j ,yj , · · · ,yn )

∂x j

)
dx j

−

n∑
j=1

∫ yj

x j=0

β(x j )

n

(
∂P

(sinдle)
t (n,y1, · · · ,yj−1,x j ,yj+1, · · · ,yn )

∂x j

)
dx j

+

n∑
j=1

(αn−1
n

)
P
(sinдle)
t (n − 1,y1, · · · ,yj−1,yj+1, · · · ,yn )

− αnP
(sinдle)
t (n,y1, · · · ,yn ). (189)

From [9], for single server processor sharing system with pre-

specified state-dependent arrival rate αi when there are i jobs in
progress and job lengths are generally distributed with finite mean

1

µ , the unique stationary distribution π (sinдle) = (π (sinдle)(u),u ∈

U ) is given by,

π (sinдle)(n,y1, · · · ,yn ) =

(∏n
i=1

αi−1
µ

)
1 +

∑∞
m=1

(∏m
i=1

αi−1
µ

)
× µn

n∏
i=1

∫ yi

xi=0
G(xi )dxi (190)

and

π (sinдle)(0) =
1

1 +
∑∞
m=1

(∏m
i=1

αi−1
µ

) . (191)

7.8 Proof of Theorem 4
Proof. Note that the first part of Theorem 4 is a special case of

the second part. Hence, it is sufficient to prove the second part.

For t ≥ 0, we define νNt , the probability measure onU such that

νNt ({u}) for u ∈ U denotes the fraction of servers lying in state

u ∈ U at time t .
From the dynamics of the system under SQ(d) scheme and the

exchangeability of {q
(N )

k (0), 1 ≤ k ≤ N } implies that the collection

{q
(N )

k (t), 1 ≤ k ≤ N } is also exchangeable for all t ∈ [0,∞). Further,

from Theorem 2, we have νNt ⇒ ν t for t ∈ [0,∞) as N → ∞.
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To prove the result, it is sufficient to show that the following

holds:

E

[ l∏
k=1

ϕk (q
(N )

k (t))

]
→

l∏
k=1

⟨ν t ,ϕk ⟩, (192)

for all continuous bounded mappings ϕk : U → R+ as N → ∞.

We can write�����E
[ l∏
k=1

ϕk

(
q
(N )

k (t)
)]

−

l∏
k=1

⟨ν t ,ϕk ⟩

�����
≤

�����E
[ l∏
k=1

ϕk

(
q
(N )

k (t)
)]

− E

[ l∏
k=1

⟨νNt ,ϕk ⟩

] �����
+

�����E
[ l∏
k=1

⟨νNt ,ϕk ⟩

]
−

l∏
k=1

⟨ν t ,ϕk ⟩

����� . (193)

Note that from Theorem 2, the second term on the right hand

side of the above inequality vanishes as N → ∞. Now, due to

exchangeability, the permutation of states between servers does

not affect the joint distribution. Hence, we have

E

[ l∏
k=1

ϕk

(
q
(N )

k (t)
)]
=

1

(N )l
E


∑

σ ∈Q (l,N )

l∏
k=1

ϕk

(
q
(N )

σ (k)(t)
) (194)

where (N )k = N (N − 1) . . . (N − k + 1), andQ(r ,n) denotes the set
of all permutations of the numbers {1, 2, . . . ,n} taken r at a time.

Also, by definition of νNt we have

E

[ l∏
k=1

⟨νNt ,ϕk ⟩

]
= E

©«
l∏

k=1

1

N

N∑
j=1

ϕk

(
q
(N )

j (t)
)ª®¬

 (195)

Hence, the first term on the right hand side of (193) can be bounded

as follows�����E
[ l∏
k=1

ϕk

(
q
(N )

k (t)
)]

− E

[ l∏
k=1

⟨νNt ,ϕk ⟩

] �����
≤ 2Bl

(
1 −

(N )l

(N )l

)
→ 0 as N → ∞

where maxk ∥ϕk ∥ = B. This completes the proof. □
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