
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/116192                                   
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions. 
 
© 2015 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/. 
 

 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/195369838?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/116192
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk


1

Mean Field and Propagation of Chaos in

Multi-Class Heterogeneous Loss Models

Arpan Mukhopadhyay, A. Karthik, Ravi R. Mazumdar, Fabrice Guillemin

Abstract

We consider a system consisting of N parallel servers, where jobs with different resource require-

ments arrive and are assigned to the servers for processing. Each server has a finite resource capacity and

therefore can serve only a finite number of jobs at a time. We assume that different servers have different

resource capacities. A job is accepted for processing only if the resource requested by the job is available

at the server to which it is assigned. Otherwise, the job is discarded or blocked. We consider randomized

schemes to assign jobs to servers with the aim of reducing the average blocking probability of jobs in the

system. In particular, we consider a scheme that assigns an incoming job to the server having maximum

available vacancy or unused resource among d randomly sampled servers. We consider the system in

the limit where both the number of servers and the arrival rates of jobs are scaled by the same large

factor. This gives rise to a mean field analysis. We show that in the limiting system the servers behave

independently – a property termed as propagation of chaos. Stationary probabilities of server occupancies

are obtained from the stationary solution of the mean field. We further characterize the rate of decay of

the stationary tail probabilities. Numerical results suggest that the proposed scheme significantly reduces

the average blocking probability of jobs as compared to static schemes that probabilistically route jobs

to servers independently of their states.

I. INTRODUCTION

Consider jobs with different resource requirements, arriving at a multi-server system consisting

of a large number of parallel servers. Each server has a finite resource capacity and therefore
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can process only a finite number of jobs at a time. Different servers are assumed to have

different capacities. Upon arrival, each job is routed/assigned to a server where it is either

accepted or blocked depending on the availability of resource requested by the job at the server.

If accepted, the processing of the job begins immediately at the server. The objective is to design

job routing/assigning schemes that reduce the average blocking probability of jobs in the system.

Such a model arises frequently in the context of cloud computing systems that provide

infrastructure as a service [1], [2]. A cloud service provider sells computing resources to its

users in terms of virtual machines (VM’s), that are computing instances consisting of various

resources such as CPU, memory, storage etc. To meet different user demands the cloud operator

allows users to choose from various types of VM’s which differ by the amounts of resources

they hold. We model situations [3], [4], where there is one bottleneck resource (e.g. memory).

Hence, in our case the different VM’s correspond to different amounts of the same resource.

Each user requests a VM of specific type (e.g. large or small) for a required amount of time. The

VM request is then assigned to a physical machine (PM) or server where the request is either

accepted or blocked depending on the availability of resource at the server. If accepted, the user

holds the VM for the duration of its service after which it is released. Therefore, to maintain a

certain quality of service, a cloud service provider should aim at reducing the average blocking

probability of users which measures the fraction of time a user is denied its requested resources.

The problem can be cast as a stochastic knapsack or a bin packing problem, where the blocking

behavior is determined by the policy that assigns jobs or VM requests to servers. In particular,

we consider a model where each server has the capacity to serve a finite number VM requests at

a time and different servers can have different capacities. We refer to this as the heterogeneous

loss system model. There are other possible abstractions to model clouds that involve buffering

of jobs in an infinite queue as was analyzed in [5], [6] . However the loss model is particularly

relevant for the Infrastructure-as-a-service (IaaS) paradigm offered by Amazon’s EC2 [1] and

Microsoft’s Azure [2] where each server can process only a finite number of jobs at a time.

We consider a randomized scheme to assign VM requests to servers based on random sampling

of d servers from the entire system. We show that assigning each request to the server having the

maximum vacancy amongst the d ≥ 2 sampled servers yields dramatic reduction in the blocking

probability as compared to that in static assignment schemes (d = 1) where assignments are

made independent of server states. Although, comparing the states of all servers would ideally
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result in the best performance, such comparison involve high communication overhead due to

large size of server farms. Moreover, we show that sampling too many servers is unnecessary

since sampling only a few servers results in nearly optimal in terms of minimizing the average

blocking probability of requests.

Related Literature: The routing scheme that we consider is a loss model analog of the power-

of-d scheme considered in [7]–[9] for first-come-first-serve (FCFS) queues and in [10] for

heterogeneous processor sharing (PS) servers. In the power-of-d scheme, each incoming job

is assigned to the server having the least number of unfinished jobs among d servers, sampled

randomly at the arrival instant of the job. Turner [11], [12] studied this scheme for a system of

Erlang servers having infinite capacities in the large system limit. It was shown that in the large

system limit, the system behavior can be characterized by a mean field limit, which satisfies a

system of differential equations. The resulting tail distribution of server occupancies was shown

to have a fast rate of decay even for small values of d. However, the existence and uniqueness

of the equilibrium point of the mean field were not established. Xie et al. [4] recently analyzed

the the power-of-d scheme in an Erlang loss system with identical (homogeneous) servers in the

mean field limit. Existence, uniqueness, and global asymptotic stability of the equilibrium point

of the mean field were established when there is a single class of customers in the system. For

the case with multiple classes of customers, the authors derived a recursive relationship among

the tail probabilities of the number of occupied resource units at each server assuming asymptotic

independence of the servers in the limiting system. In the current paper, we generalize these

results to the scenario where the servers have heterogeneous capacities.

Contributions: In this paper, we analyze the performance of the power-of-d scheme for a

multi-server system consisting of heterogeneous loss servers in the presence of multiple job

classes using mean field techniques. The mean field limit, given by the solution of a system of

ordinary differential equations, approximates the behavior of the system when the arrival rates

of different classes of jobs and the number of servers in the system are scaled by the same large

factor. We establish the existence of an equilibrium point of the mean field. We also establish

that the equilibrium point is unique and globally asymptotically stable when there is a single

class of jobs arriving into the system. For the multi-class case, we provide some case studies

which strongly suggest that the uniqueness and global asymptotic stability of the equilibrium

point may be true in general for the multi-class case. Furthermore, it is shown that in the limiting
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system any finite set of servers behave independently of each other and if the equilibrium point

is globally asymptotically stable then the stationary distribution of states of any given finite set

of servers can be obtained by taking the product of distributions determined by the equilibrium

point on the given set. To show the independence mentioned above in the heterogeneous case,

we introduce the notion of intra-type exchangeability where exchangeability holds only among

servers having the same capacity. A bound on the rate of decay of stationary tail distribution of

server occupancies similar to that obtained in [4] is found in the heterogeneous case. Numerical

results show that the power-of-d scheme significantly reduces the average blocking probability

of jobs in the system as compared to the static routing schemes and is nearly optimal in terms

minimizing the average blocking probability.

The rest of the paper is organized as follows. In Section II, we introduce the system model and

describe the routing scheme studied in this paper. We then present the main results in Section

III. Section IV presents a detailed analysis of the randomized scheme. Section VI provides

numerical results to compare different routing alternatives. Section VII concludes the paper with

some remarks.

II. SYSTEM MODEL

We consider a system consisting of N parallel servers, where jobs or VM requests arrive

and request necessary resource for processing. We assume that there is only one bottleneck

resource (e.g. memory) since such situations occur often in practice [3]. Each server holds a

finite amount of the resource. The servers are categorized into M different types based on their

resource capacities. Let J = {1, 2, . . . ,M} be the index set of server types. A server of type

j ∈ J is assumed to hold Cj units of resource. Without loss of generality, we assume that the

capacities are ordered as follows: C1 ≤ C2 ≤ . . . ≤ CM . Furthermore, the fraction of type-j

servers in the system is assumed to be fixed and is denoted by γj ∈ [0, 1] for all j ∈ J . Clearly,

we have
∑M

j=1 γj = 1.

Jobs or VM requests are categorized into L classes depending on their resource requirements.

Class l ∈ L = {1, 2, . . . , L} VM requests require Al ≥ 0 units of resource and are assumed

to arrive at the system according to a Poisson process with rate Nλl independent of the other

classes. We denote by A = (A1, A2, . . . , AL) the L-dimensional vector of resource requirements.

Upon arrival, a job is routed to one of the N servers according to the following routing scheme:
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Power-of-d scheme: Upon arrival of each VM request, d ≥ 2 potential destination servers are

sampled uniformly at random from the set of N servers. The actual destination server for the

arriving request is then chosen to be the server having the maximum vacancy or the maximum

units of unused resource among the sampled servers. Ties among (sampled) servers of the same

type are broken uniformly at random and ties across server types are broken by selecting the

server type with the highest index (highest capacity). For example, if there are two type-j servers

and one type i < j server having the maximum vacancy among the sampled set of d servers,

then any one of the two type j servers is chosen to be the destination server with probability

1/2.

The destination server accepts the VM request if the necessary resource is available to process

the request. If accepted, processing of the request begins immediately. Otherwise, the request is

discarded or blocked and lost. We say that a server is in state n = (n1, n2, . . . , nL) when, for

each l ∈ L, there are nl jobs of class l in progress at the server. Clearly, the set of admissible

states for a type j ∈ J server is given by Sj =
{

n ∈ Z
L
+ : n · A ≤ Cj

}

, where Z+ denotes the set

of all non-negative integers and n ·A ,
∑L

l=1 nlAl. We define the set of blocking states B
(l)
j for

class l ∈ L jobs at a server of type j ∈ J as the set of states in Sj for which the vacancy or the

number of unused resource units is less than Al, i.e., B
(l)
j =

{

n ∈ Z
L
+ : Cj −Al < n · A ≤ Cj

}

.

Clearly, a class-l VM request is blocked only when all the d potential destination servers are

in the blocking states for the arriving request. The service times of accepted job requests are

assumed to be independent and exponentially distributed random variables with mean 1. The

service times of jobs are assumed to be also independent of the inter-arrival times of the jobs.

The resource held by a request is released immediately upon the completion of its service.

III. MAIN RESULTS

In this section, we state (without proof) the main results of this paper. Our results are

asymptotic in the sense that they are derived in the limit as the system size N → ∞ keeping the

proportions γj , j ∈ J , fixed. Such results are especially useful in the context of cloud computing

systems since they typically run tens of thousands of servers. Without loss of much generality

we assume that Cj and Al are non-negative integers for each j ∈ J and l ∈ L.

Main results: For the model described in Section II, let the stationary probability that a server

of type j ∈ J has at least k units of occupied resource be P
(N)
k,j . Then P

(N)
k,j converges to Pk,j
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in the limit as N → ∞, where Pk,j is the solution of the following recursive relation:

k (Pk,j − Pk+1,j) =
L
∑

l=1

Alλl
γj

[(

j
∑

i=1

γiPk−Al+Ci−Cj ,i +
M
∑

i=j+1

γiPk−Al+Ci−Cj+1,i

)d

−

(

j−1
∑

i=1

γiPk−Al+Ci−Cj ,i +

M
∑

i=j

γiPk−Al+Ci−Cj+1,i

)d


 , (1)

for 1 ≤ k ≤ Cj , with Pk,j = 1 for k ≤ 0, and PCj+1,j = 0 for all j ∈ J . Furthermore, in

the limit as N → ∞ the servers become mutually independent and their stationary occupancy

distributions are insensitive to the service time distribution.

Remark 1 (Propagation of chaos): We note that for finite system size N , the states of the

servers are not independent of each other since at every arrival instant states of some randomly

sampled servers are compared. However, in the limiting system (N → ∞) the servers become

mutually independent. This is known as the propagation of chaos or asymptotic independence

property.

Remark 2 (Blocking probability): Using the independence of servers stated above and the

probabilities Pk,j found by solving (1) we can compute the blocking probability P
(l)
blocking of

class-l requests in the limiting system as follows: The stationary probability that a server of

type j is in the blocking state for a class l job is PCj−Al+1,j and the probability that it is

sampled at an arrival instant is γj . Thus the total probability that a randomly sampled server is

in the blocking state for class-l requests is
∑

j∈J γjPCj−Al+1,j . Since the servers in the limiting

system are mutually independent, the probability that the class-l arrival is blocked is given by

P
(l)
blocking =

(

∑

j∈J γjPCj−Al+1,j

)d

.

A lower bound on blocking probability: The blocking probability of requests averaged over all

classes obtained from any given routing scheme can be lower bounded as follows. For an arbitrary

job routing scheme, the blocking probability averaged over all classes is given by P avg

blocking =
∑

l∈L
λlP

(l)
blocking∑

l∈L
λl

, where P
(l)
blocking denotes the blocking probability of class-l jobs under that scheme.

By Little’s law the average number customer in the system is given by (1−P avg

blocking)N
∑

l∈L λl.

Now if type j servers can accommodate a maximum of Bj = maxn∈Sj

(
∑

l∈L nl

)

jobs of all

classes combined, then the average number of jobs in the entire system is upper bounded by

N
∑

j∈J γjBj . We therefore have the following lower bound on the average blocking probability:
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P avg

blocking ≥

(

1−

∑

j∈J γjBj
∑

l∈L λl

)

+

=

(

1−
λcrit

λ

)

+

, (2)

where λcrit =
∑

j∈J γjBj is the critical load on the system, λ =
∑

l∈L λl is the total arrival

rate per server, and (w)+ = max(0, w). In Section VI, we compare the blocking probability for

the power-of-d scheme with the lower bound derived above. We conclude that the power-of-d

scheme is nearly optimal in terms of minimizing blocking probability even for small d.

If we specialize (1) to the case where only a single class of jobs (L = 1) requiring one unit of

resource from all servers (A = 1) arrive according to a Poisson process with rate Nλ, then (1)

simplifies to the following recursive relation:

Pk,j − Pk+1,j =
λ

γjk

[(

j
∑

i=1

γiPk−1+Ci−Cj ,i +
M
∑

i=j+1

γiPk+Ci−Cj ,i

)d

−

(

j−1
∑

i=1

γiPk−1+Ci−Cj ,i +
M
∑

i=j

γiPk+Ci−Cj ,i

)d


 . (3)

In this above, Pk,j is the stationary probability that there are at least k jobs in progress at a type

j server in the limiting system. Using (3), explicit upper bounds on the rate of decay of the tail

probabilities Pk,j , k ∈ {0, 1, 2, . . . , Cj}, j ∈ J can be obtained. This is done in the following

proposition whose proof is similar to the proof of Theorem 2 of [4] for the homogeneous loss

model.

Proposition 1: Let
{

P̄k, 0 ≤ k ≤ CM

}

be defined as follows: P̄k = 1 for 0 ≤ k ≤ k0 and

P̄k =
λd

k−k0−1

(⌊λ⌋+ k − k0)(⌊λ⌋ + k − k0 − 1)d . . . (⌊λ⌋+ 1)d
k−k0−1 , (4)

for k0 + 1 ≤ k ≤ CM , where k0 = ⌊λ⌋ + CM − C1, and ⌊y⌋ denotes the greatest integer

not exceeding y. Then for the single class case where each job requires unit resource we have
∑M

j=1 γjPk+Cj−CM ,j ≤ P̄k for 0 ≤ k ≤ CM . In particular, the average user blocking probability

P avg

blocking =
(

∑

j∈J γjPCj ,j

)d

≤ P̄ d
CM

.

Proof: The proof is given in Appendix A.

The above proposition shows that for d ≥ 2 the quantity
∑M

j=1 γjPk+Cj−CM ,j decreases with

k at a rate much faster than that for d = 1. This shows the efficacy of sampling a small number
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servers from the system over randomly sampling the destination server independent of the server

states.

IV. MEAN FIELD ANALYSIS

In this section we provide detailed proofs of the main results discussed in Section III. An

exact characterization of the stationary regime is difficult for finite N due to the fact that the

arrival rate at a given server depends on the states of other servers. However, it is possible to

analyze the system in the limit as the system size N → ∞. Such a limit is known as the mean

field limit [7], [15], [16]. We first introduce the notation and mathematical framework for the

analysis.

Notations: The unit vector in Z
L
+ with one in the rth position is denoted by er and by e ∈ Z

L
+

we denote the L-dimensional vector of all ones. Further, for each j ∈ J we denote the space

of probability distributions on Sj by:

Uj =







(gn)n∈Sj
: gn ≥ 0 for all n ∈ Sj ,

∑

n∈Sj

gn = 1







.

The set of empirical probability distributions on Sj when the system size is N is denoted by

U
(N)
j , i.e., U

(N)
j =

{

(gn)n∈Sj
∈ Uj : Nγjgn ∈ Z+

}

. We will mainly be interested in the spaces

U =
∏

j∈J Uj and U (N) =
∏

j∈J U
(N)
j , which are the Cartesian products of the spaces Uj

and U
(N)
j , respectively, over j ∈ J . A point in the space U (or in U (N)) is denoted by u =

(un,j, n ∈ Sj , j ∈ J ) with the understanding that for each j ∈ J the collection (un,j , n ∈ Sj)

belongs to Uj (U
(N)
j ). Since for each j ∈ J , the set Sj is finite and Uj denotes the space of

probability measures on Sj , the space U =
∏

j∈J Uj is convex and compact under any norm and

all norms defined on this space are equivalent. We shall be using both the Euclidean norm and

the norm induced by the metric ρ (defined below) according to our convenience: for any two

points u,w in U define ρ(u,w) = supj∈J supn∈Sj

|un,j−wn,j|
(n·e)+1

.

For a measure space (H,H, µ) and a µ-integrable function f : H → R , we define duality

brackets as 〈f, µ〉 =
∫

fdµ. Law of a random variable X is denoted by L(X). Weak convergence

(convergence in distribution) of a sequence of probability measures νn (random variables Xn)

to a probability measure ν (random variable X) is denoted by νn ⇒ ν (Xn ⇒ X).

Analysis: For each t ≥ 0 and n ∈ Sj , let x
(N)
n,j (t) denote the fraction of type-j servers in state

n at time t. We define x(N)(t) =
(

x
(N)
n,j (t), n ∈ Sj, j ∈ J

)

. Clearly, (x(N)(t), t ≥ 0) is a Markov
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process with state space U (N), i.e., for each j ∈ J the collection
(

x
(N)
n,j (t), n ∈ Sj

)

denotes

the empirical probability distribution of states of type-j servers at time t ≥ 0. The generator

A(N) of the Markov process (x(N)(t), t ≥ 0) acting on functions ϕ : U (N) → R is given by

A(N)ϕ(u) =
∑

h6=u
r (u → v) (ϕ(v)− ϕ(u)), where r (u → v) denotes the transition rate from

state u ∈ U (N) to state v ∈ U (N). In the following lemma, we provide the expression for the

generator.

Lemma 1: Let u ∈ U (N) and e(n, j) = (ek,i, k ∈ Si, i ∈ J ) be the unit vector with en,j = 1

and ek,i = 0 if k 6= n or i 6= j. Then the generator A(N) of the process x(N)(·) acting on

functions ϕ : U (N) → R is given by

A(N)ϕ(u) = N
∑

j∈J

∑

n∈Sj

∑

l∈L

[

λl
F (n− el, j,u)

E(n− el, j, j,u)
γjun−el,j

(

ϕ(u−
e(n− el, j)

Nγj
+

e(n, j)

Nγj
)

−ϕ(u)

)

+ γjun,jnl

(

ϕ(u+
e(n− el, j)

Nγj
−

e(n, j)

Nγj
)− ϕ(u)

)]

ISj
(n− el), (5)

where IA(·) denotes the indicator function on the set A and for n ∈ Sj and i ∈ J we define

E(n, i, j,u) = γi
∑

n′∈Si:
n′·A=n·A+Ci−Cj

un′,i (6)

G(n, i, j,u) = γi
∑

n′∈Si:
n′·A>n·A+Ci−Cj

un′,i (7)

GE(n, i, j,u) = G(n, i, j,u) + E(n, i, j,u). (8)

and

F (n, j,u) =

(

j
∑

i=1

GE(n, i, j,u) +
M
∑

i=j+1

G(n, i, j,u)

)d

−

(

j−1
∑

i=1

GE(n, i, j,u) +
M
∑

i=j

G(n, i, j,u)

)d

. (9)

Proof: The proof is given in Appendix B.
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Using the generator A(N), we now show that that as N → ∞, the sequence of processes
{

(x(N)(t), t ≥ 0)
}

N
converges to a deterministic process known as the mean field limit of the

system.

Theorem 1: If x(N)(0) converges in distribution to some constant u0 ∈ U as N → ∞, then

as N → ∞ the process (x(N)(t), t ≥ 0) converges in distribution to a deterministic process

(x(t), t ≥ 0), which takes values in the space U and is given by the unique solution of the

following system of differential equations

x(0) = u0, (10)

ẋ(t) = h(x(t)), (11)

where h(·) = (hn,j(·), j ∈ J , n ∈ Sj) and for each n ∈ Sj and j ∈ J

hn,j(x) =
∑

l∈L

[

λl
F (n− el, j,x)

E(n− el, j, j,x)
xn−el,j

− nlxn,j

]

ISj
(n− el)

−

[

λl
F (n, j,x)

E(n, j, j,x)
xn,j − (nl + 1)xn+el,j

]

ISj
(n + el). (12)

In the above equation, IA(·) denotes indicator function of the set A and E(n, i, j,u), F (n, j,u)

are as defined in Lemma 1.

Proof: The proof is given in Appendix C

To emphasize the dependence of the mean field process (x(t), t ≥ 0) on the initial value,

we will sometimes denote the process with x(0) = u0 as (x(t,u0), t ≥ 0). It is important to

characterize the properties of the points π = (πn,j, n ∈ Sj , j ∈ J ) satisfying h(π) = 0. Such

points are called the equilibrium points of of the mean field since x(t,π) = π for all t ≥ 0 and

describes the stationary behavior of the limiting system. Hence, by definition, a point π ∈ U is

an equilibrium point of the mean field (x(t), t ≥ 0) if and only if it satisfies hn,j(π) = 0, i.e.,

(from (12))
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∑

l∈L

[

λl
F (n− el, j,π)

E(n− el, j, j,π)
πn−el,j

− nlπn,j

]

ISj
(n− el)

=
∑

l∈L

[

λl
F (n, j,π)

E(n, j, j,π)
πn,j − (nl + 1)πn+el,j

]

ISj
(n + el), (13)

for each j ∈ J and n ∈ Sj . In the next theorem, we show that such a point indeed exists.

Theorem 2: There exists an equilibrium point π of the mean field process (x(t), t ≥ 0) in

the space U .

Proof: Consider a point x ∈ U . For each j ∈ J , l ∈ L and n ∈ Sj , define

λ
(l)
n,j(x) = λl

F (n, j,x)

E(n, j, j,x)
> 0. (14)

Next, we define the quantities yn,j(x), for j ∈ J , n ∈ Sj as the solution to the following system

of linear equations

∑

l∈L

[

λ
(l)
n−el,j

(x)yn−el,j
(x)− nlyn,j(x)

]

ISj
(n− el)

=
∑

l∈L

[

λ
(l)
n,j(x)yn,j(x)− (nl + 1)yn+el,j

(x)
]

ISj
(n+ el), for j ∈ J and n ∈ Sj (15)

and
∑

n∈Sj
yn,j(x) = 1 for each j ∈ J . Clearly, the solution y(x) = (yn,j(x), n ∈ Sj , j ∈ J ) to

the above set of linear equations satisfies

λ
(l)
n−el,j

(x)yn−el,j
(x)ISj

(n− el) = nlyn,j(x) for all n ∈ Sj , j ∈ J . (16)

The above equations (which imply that yn,j(x) has the same sign for each n ∈ Sj and j ∈

J ) together with
∑

n∈Sj
yn,j(x) = 1 imply that y(x) ∈ U for all x ∈ U . Furthermore, it is

easy to see that the map x 7→ y(x), as defined above, is continuous on the space U (since

(yn,j(x), j ∈ J , n ∈ Sj) is continuous in (λ
(l)
n,j(x), j ∈ J , n ∈ Sj , l ∈ L) which in turn is

continuous in x). Since U is convex and compact, Brouwer’s fixed point theorem guarantees the

existence of a fixed point of the map x 7→ y(x). From (15) and the definition of the quantities

(λ
(l)
n,j(x), j ∈ J , n ∈ Sj , l ∈ L) as given by (14), it is clear that any fixed point π of the map
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x 7→ y(x) satisfies (13) and hence is an equilibrium point of the mean field process. This proves

the existence of an equilibrium point π in U of the mean field (x(t), t ≥ 0).

Remark 3: We note that for each x ∈ U , the mapping x 7→ y(x) satisfies (16). Hence, the

fixed point π, which is also the equilibrium point of the mean field, satisfies

λ
(l)
n−el,j

(π)πn−el,j
In−el∈Sj

= nlπn,j for all n ∈ Sj , j ∈ J . (17)

We shall use this fact later in Section V.

We now focus on the single class case (L = 1) and show that the equilibrium point of

the mean field is unique and globally asymptotically stable, i.e., for any x(0) ∈ U we have

limt→∞ x(t) = π, where π denotes the equilibrium point of the mean field.

Theorem 3: For the single class case (L = 1), the mean field (x(t), t ≥ 0) has a unique,

globally asymptotically stable equilibrium point π ∈ U .

Proof: We note that the uniqueness of the equilibrium point follows (by the uniqueness of

limit) if one can show that any equilibrium point π is globally asymptotically stable. Hence,

it is sufficient to establish the global asymptotic stability of any equilibrium point of the mean

field for the single class case.

For the single class case, we assume without loss of generality that all incoming jobs require

one unit of resource and they arrive according to a Poisson process with rate Nλ , i.e., A1 = 1 and

λ1 = λ. Hence, Sj = {0, 1, . . . , Cj}, Uj =
{

(gn)n∈Sj
: gn ≥ 0,

∑

n∈Sj
gn = 1

}

, U =
∏

j∈J Uj .

In this case, the mean field (x(t) = (xn,j(t), n ∈ Sj, j ∈ J ), t ≥ 0) satisfies the following

system of differential equations (from (10)-(11))

x(0) = u0, (18)

ẋ(t) = h(x(t)), (19)

where h(·) = (hn,j(·), n ∈ Sj , j ∈ J ) is given by (specializing (12) to the case under consider-

ation)

hn,j(x) =

[

λ

γj
F (n− 1, j,x)− nxn,j

]

I1≤n≤Cj
−

[

λ

γj
F (n, j,x)− (n+ 1)xn+1,j

]

I0≤n≤Cj−1.

(20)
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The mean field can equivalently be expressed in terms of the tail sums x̃k,j(t) =
∑Cj

n=k xn,j(t),

k ∈ Sj , j ∈ J . We define x̃(t) = (x̃k,j(t), k ∈ Sj, j ∈ J ). Hence, from (19) and (20) we have

x̃(0) = ũ0, (21)

˙̃x(t) = h̃(x̃(t)), (22)

where the mapping h̃(·) =
(

h̃k,j(·), k ∈ Sj , j ∈ J
)

is given by h̃0,j(x̃) = 0 for all j ∈ J and

for 1 ≤ k ≤ Cj

h̃k,j(x̃) =
λ

γj

[(

j
∑

i=1

γix̃k−1+Ci−Cj ,i +
M
∑

i=j+1

γix̃k+Ci−Cj ,i

)d

−

(

j−1
∑

i=1

γix̃k−1+Ci−Cj ,i +

M
∑

i=j

γix̃k+Ci−Cj ,i

)d


− k (x̃k,j − x̃k+1,j) (23)

We say that ũ ≤ ũ′ if ũk,j ≤ ũ′k,j for all k ∈ Sj and j ∈ J . We first prove the following

monotonicity property of the mean field with respect to the initial condition.

Lemma 2: If ũ0 ≤ ũ′
0 then x̃(t, ũ0) ≤ x̃(t, ũ′

0) for all t ≥ 0.

Proof: Clearly, the right hand side of (23) is non-decreasing in x̃n,i(t) for all (n, i) 6= (k, j).

Hence, (23) defines a quasi-monotone system of differential equations. The proof of the lemma

now follows directly from pages 70-74 of [17].

We now define z(t, ũ0) =
∑

j∈J γj
∑Cj

k=1 x̃k,j(t, ũ0). Clearly, z(t, ũ0) denotes the mean num-

ber of customers in the limiting system at time t when the initial state is ũ0. Using (23) we

obtain

dz(t, ũ0)

dt
= λ



1−

(

∑

j∈J

γjx̃Cj ,j(t, ũ0)

)d


− z(t, ũ0). (24)

Let π̃ be an equilibrium point of the process x̃(·). Hence, from (24) we have

λ



1−

(

∑

j∈J

γjπ̃Cj ,j

)d


 = z(t,π) =
∑

jJ

γj

Cj
∑

k=1

π̃k,j (25)

Now, from Lemma 2 we have
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x̃(t,min(ũ0, π̃)) ≤ x̃(t, ũ0) ≤ x̃(t,max(ũ0, π̃)), (26)

where the maximum and the minimum are taken component-wise. Hence, to establish limt→∞ x̃(t, ũ0) =

π̃ for all ũ0, it is sufficient to show that the convergence holds for ũ0 ≥ π̃ and for ũ0 ≤ π̃.

To show x̃(t, ũ0) → π̃ for ũ0 ≥ π̃ it is sufficient to show that

∫ ∞

0

(x̃n,j(t, ũ0)− π̃n,j) dt <∞, for all j ∈ J , 1 ≤ n ≤ Cj . (27)

Similarly for ũ0 ≤ π̃ the convergence x̃(t, ũ0) → π̃ will follow if we can show that

∫ ∞

0

(π̃n,j − x̃n,j(t, ũ0)) dt <∞, for all j ∈ J , 1 ≤ n ≤ Cj (28)

We discuss the proof for ũ0 ≥ π̃. The proof for ũ0 ≤ π̃ follows similarly.

For ũ0 ≥ π̃ we have using Lemma 2 that x̃(t, ũ0) ≥ π̃ for all t ≥ 0. Hence, to prove (27) it

is sufficient to show that
∫∞

0

(

z(t, ũ0)−
∑

j∈J γj
∑Cj

n=1 π̃n,j)
)

dt <∞. We have

∫ τ

0



z(t, ũ0)−
∑

j∈J

γj

Cj
∑

n=1

π̃n,j



 dt = −

∫ τ

0

dz(t, ũ0)

dt
dt

−

∫ τ

0

λ





(

∑

j∈J

γjπ̃Cj ,j

)d

−

(

∑

j∈J

γj x̃Cj ,j(t, ũ0)

)d


 dt

≤ (z(0, ũ0)− z(τ, ũ0)) ≤ z(0, ũ0)

where the first equality follows from (24) and (25); the second inequality follows since x̃(t, ũ0) ≥

π̃; the third inequality follows since z(τ, ũ0) ≥ 0 for all τ ≥ 0. Hence, the integral on the left

hand side is uniformly bounded by a constant (independent of τ ) for all τ ≥ 0. This implies

that the integral must converge as τ → ∞. This completes the proof.

For the multi-class case, proving the uniqueness and global stability of the equilibrium point

of the mean field is much more challenging since the monotonicity property, similar to the one

established in Lemma 2, (for the single class case) does not hold in this case. We currently do

not have a proof of global stability for the multi-class case. However, some case studies (as

given below) strongly suggest that the uniqueness and global stability of the equilibrium point

may be true in general.
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1) Case study 1: Let us consider a multi-class system with two classes (L = 2), where the

servers are identical with capacity C = 3 and the resource requirements for the two classes are

A1 = 2 and A2 = 3, respectively. In this case, the state space of each server consists of three

states given by S = {(0, 0), (1, 0), (0, 1)}, where the first and the second component in each

state respectively denote the numbers of jobs in the first and the second class that are in progress

at the server. Let x00, x10, and x01 denote the fractions of servers in states (0, 0), (1, 0), and

(0, 1), respectively. We have from (12) that

ẋ00 = −(λ1 + λ2)(1− (x10 + x01)
d) + x10 + x01, (29)

ẋ10 = λ1(1− (x10 + x01)
d)− x10, (30)

ẋ00 = λ2(1− (x10 + x01)
d)− x01. (31)

Now let π = (π00, π10, π01) be an equilibrium point of the above system and define a potential

function V : R+ → R+ as

V (t) =
1

λ1
(x10 − π10)

2 +
1

λ2
(x01 − π01)

2 (32)

Taking the derivative with respect to time and using (29), (30), and (31) we obtain

V̇ (t) = −
2

λ1
(x(1,0),1(t)− π(1,0),1)

2 −
2

λ2
(x(0,1),1(t)− π(0,1),1)

2

− (x(1,0),1(t)− π(1,0),1 + x(0,1),1(t)− π(0,1),1)
2

×

(

d−1
∑

r=0

(π(1,0),1 + π(0,1),1)
r(x(1,0),1(t) + x(0,1),1(t))

d−1−r

)

≤ 0 (33)

This proves that global asymptotic stability (and hence uniqueness) of the equilibrium point

of the mean field in the case under consideration.

2) Case study 2:: Let us consider a multi-class system with two classes (L = 2), where the

servers are identical with capacity C = 4 and the resource requirements for the two classes are

A1 = 2 and A2 = 3, respectively. In this case, the state space of each server consists of four

states given by S = {(0, 0), (1, 0), (0, 1), (2, 0)}. Let x00, x10, x01, and x20 denote the fractions
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of servers in states (0, 0), (1, 0), (0, 1), and (2, 0) in the limiting system, respectively. Thus,

from (12) we have for d = 2 that

ẋ00 = h00(x) = −(λ1 + λ2)(1− (x10 + x01 + x20)
2) + x10 + x01 (34)

ẋ10 = h10(x) = λ1(1− 2(x10 + x01 + x20)
2 + (x01 + x20)

2)− x10 + 2x20 (35)

ẋ01 = h01(x) = λ2(1− (x10 + x01 + x20)
2)− x01 (36)

ẋ20 = h20(x) = λ1((x10 + x01 + x20)
2 − (x01 + x20)

2)− 2x20 (37)

It is sufficient to consider only the last three components, i.e., x = (x10, x01, x20) to describe

the system. It is clear that if the system is started at x(0) ∈ [0, 1]3, then it always remains

in [0, 1]3. We now calculate the Jacobian J(x) of the h(x) = (h10(x), h01(x), h20(x)) at x as

follows

J(x) =











−4λ1(x10 + x01 + x20)− 1 −2λ1(2x10 + x01 + x20) −2λ1(2x10 + x01 + x20) + 2

−2λ2(x10 + x01 + x20) −2λ2(x10 + x01 + x20)− 1 −2λ2(x10 + x01 + x20)

2λ1(x10 + x01 + x20) 2λ1x10 2λ1x10 − 2











.

(38)

The characteristic polynomial of the above Jacobian matrix is given by Φ(z) = z3 + a2z
2 +

a1z + a0, where

a2 = 4 + 2(x10 + 2(x01 + x20))λ1 + 2(x10 + x01 + x20)λ2 (39)

a1 = 5 + 4(x10 + 2(x01 + x20))λ1 + 4(x01 + x20)(x10 + x01 + x20)λ
2
1 + 6(x10 + x01 + x20)λ2

+ 4(x01 + x20)(x10 + x01 + x20)λ1λ2 (40)

a0 = 2 + 2(x10 + 2(x01 + x20))λ1 + 4(x01 + x20)(x10 + x01 + x20)λ
2
1 + 4(x10 + x01 + x20)λ2

(41)
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Fig. 1. Squared Eucledian distance between x(t) and the equilibrium point π as a function of time for λ1 = 10 and λ2 = 15.

We observe that all the coefficients of this polynomial have the same sign. Furthermore, we have

a2a1 − a0 = 18 + 4λ1(6(x10 + 2(x01 + x20)) + (2x210 + 11x10(x01 + x20)

+ 11(x01 + x20)
2)λ1 + 2(x01 + x20)(x10 + x01 + x20)(x10 + 2(x01 + x20))λ

2
1)

+ 2(x10 +x01 +x20)(15+2λ1(2(x01 +x20)(7+3(x01 +x20)λ1)+ x10(5+ 4(x01+ x20)λ1)))λ2+

2(x10 + x01 + x20)
2(3 + 4(x01 + x20)λ1)λ

2
2) > 0, (42)

Hence, by the Routh array test we conclude that J(x) is Hurwitz (hence invertible) for all x ∈

[0, 1]3. We also have that h(x) = (h10(x), h01(x), h20(x)) is a proper mapping (i.e., ‖h(x)‖ →

∞ as ‖x‖ → ∞) from R
3 to R

3. The above two facts imply uniqueness of the equilibrium

point of the system according to Hadamard’s global inverse function theorem. Let π denote the

equilibrium point.

We simulate the dynamics of the system with λ1 = 10 and λ2 = 15 and with random initial

points in [0, 1]3. In Figure 1, we plot the squared Eucledian distance between the x(t) and the

equilibrium point π as a function of time. We observe that for all initial points, the trajectories

converge asymptotically to the equilibrium point.
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We note that for each N the process x(N)(·) is positive recurrent and hence has a unique

stationary distribution πN . We denote by x(N)(∞) the random variable distributed according to

πN . In the next theorem, we show that if the equilibrium point of the mean field is globally

asymptotically stable then x(N)(∞) concentrates near the unique equilibrium point π of the

mean field as N → ∞.

Theorem 4: Let πN denote the stationary distribution of the process x(N)(·). If π is the

globally asymptotically stable equilibrium point of the mean field, then the sequence (πN)N

converges weakly to δπ as N → ∞ or equivalently x(N)(∞) ⇒ π

Proof: We note that since the space U is compact, the sequence of probability measures

on (πN)N is tight. Hence, Prohorov’s theorem [22] implies that the sequence (πN)N has limit

points. We now show that all the limit points coincide with π. Theorem 1 implies that any limit

point of the sequence (πN)N is an invariant measure of the map u0 7→ x(t,u0). The global

asymptotic stability of the equilibrium point implies that the unique invariant measure of the

map u0 7→ x(t,u0) is δπ. Therefore, any convergent subsequence of (πN)N converges to δπ.

This completes the proof.

V. PROPAGATION OF CHAOS

In this section, we focus on the states of a given finite set of servers as N → ∞. We

show that as the system size grows the server occupancies become independent of each other

which is formally known as the propagation of chaos or asymptotic independence property. We

further show that if the equilibrium point of the mean field is globally stable, then the stationary

distribution of server states in the limiting system is determined by the equilibrium point π of the

mean field system (10)-(11). To formally state the results we introduce the following notations.

• The state of the kth server of type j at a finite time t ≥ 0 and at equilibrium are respectively

denoted by the random variables q
(N)
k,j (t) and q

(N)
k,j (∞), for k ∈ {1, 2, . . . , Nγj}, j ∈ J .

• For each j ∈ J and t ≥ 0, we denote by xj(t,u0), the distribution on Sj given by

xj(t,u0) = (xn,j(t,u0), n ∈ Sj), where x(t,u0) is the mean field limit starting from u0.

Further, we define xj(∞) = (πn,j, n ∈ Sj).

Further, we define the following notion of exchangeable random variables.

Definition Let
{

q
(N)
k,j , 1 ≤ k ≤ Nγj , 1 ≤ j ≤M

}

denote a collection of N random variables

classified into M different types. The collection is called intra-type exchangeable if the joint law



19

of the collection is invariant under permutation of indices, 1 ≤ k ≤ Nγj , of random variables

belonging to type j for each j ∈ {1, 2, . . . ,M}.

Theorem 5: For the model considered in this paper, if the equilibrium point π is glob-

ally asymptotically stable,
{

q
(N)
k,j (0), 1 ≤ k ≤ Nγj, 1 ≤ j ≤M

}

is intra-type exchangeable, and

x(N)(0) ⇒ u0 ∈ U as N → ∞, then the following hold

1) For each fix k and t ∈ [0,∞], L(q
(N)
k,j (t)) ⇒ xj(t,u0) as N → ∞.

2) Fix positive integers r1, r2, . . . , rM . For each t ∈ [0,∞],

{

q
(N)
k,j (t), 1 ≤ k ≤ rj, 1 ≤ j ≤M

}

⇒ {Uk,j(t), 1 ≤ k ≤ rj , 1 ≤ j ≤M} , (43)

as N → ∞, where Uk,j(t), 1 ≤ k ≤ rj, 1 ≤ j ≤ M , are independent random variables

with Uk,j(t) having distribution xj(t,u0) for all 1 ≤ k ≤ rj .

Proof: Note that the first part of Theorem 5 is a special case of the second part. Hence, it

is sufficient to prove the second part. We will provide a proof for the M = 2 case. The proof

readily extends to any M ≥ 2.

Due to the dynamics of the system (power-of-d scheme) the joint law of the collection

{q
(N)
k,j (t), 1 ≤ k ≤ Nγj, 1 ≤ j ≤ 2} depends only on the empirical distribution of states at

time t given by x(N)(t). Hence, permuting states among servers of the same type does not affect

the joint law of the collection. Therefore, {q
(N)
k,j (t), 1 ≤ k ≤ Nγj , 1 ≤ j ≤ 2} is intra-type

exchangeable for all t ∈ [0,∞]. Now, given that x(N)(0) ⇒ u0 ∈ U as N → ∞ we know from

Theorem 1 and Theorem 4 that x(N)(t) ⇒ x(t,u0) as N → ∞ for all t ∈ [0,∞]. Henceforth,

we will omit the variables t and u0 in our calculations since they hold for all t ∈ [0,∞] and all

u0 ∈ U . To prove the independence, it is sufficient to show that the following holds:

E

[

r1
∏

k=1

φk

(

q
(N)
k,1

)

r2
∏

k=1

ψk

(

q
(N)
k,2

)

]

→

r1
∏

k=1

〈φk, x1〉

r2
∏

k=1

〈ψk, x2〉 as N → ∞ (44)

for all bounded mappings φk : S1 → R+ and ψk : S2 → R+. We have



20

∣

∣

∣

∣

∣

E

[

r1
∏

k=1

φk

(

q
(N)
k,1

)

r2
∏

k=1

ψk

(

q
(N)
k,2

)

]

−
r1
∏

k=1

〈φk, x1〉
r2
∏

k=1

〈ψk, x2〉

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

E

[

r1
∏

k=1

φk

(

q
(N)
k,1

)

r2
∏

k=1

ψk

(

q
(N)
k,2

)

]

−E

[

r1
∏

k=1

〈φk, x
(N)
1 〉

r2
∏

k=1

〈ψk, x
(N)
2 〉

]∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E

[

r1
∏

k=1

〈φk, x
(N)
1 〉

r2
∏

k=1

〈ψk, x
(N)
2 〉

]

−

r1
∏

k=1

〈φk, x1〉

r2
∏

k=1

〈ψk, x2〉

∣

∣

∣

∣

∣

, (45)

where x
(N)
j = (xn,j, n ∈ Sj) is the random probability measure on Sj induced by the process

x(N). We note that the second term on the right hand side of the above inequality vanishes

as N → ∞ because of the following facts: x
(N)
j ⇒ xj as N → ∞ for j = 1, 2; x1 and

x2 are deterministic; x
(N)
j is a bounded random vector for j = 1, 2. Now, due to intra-type

exchangeability the permutation of states between servers belonging to the same class does not

affect the joint distribution. Hence, we have

E

[

r1
∏

k=1

φk

(

q
(N)
k,1

)

r2
∏

k=1

ψk

(

q
(N)
k,2

)

]

=
1

(Nγ1)r1(Nγ2)r2
×

E









∑

σ∈P (r1,Nγ1)
σ′∈P (r2,Nγ2)

r1
∏

k=1

φk

(

q
(N)
σ(k),1

)

r2
∏

k=1

ψk

(

q
(N)
σ′(k),2

)









(46)

where (N)k = N(N − 1) . . . (N − k+1), and P (r, n) denotes the set of all permutations of the

numbers {1, 2, . . . , n} taken r at a time. Also, by definition of x
(N)
j we have

E

[

r1
∏

k=1

〈φk, x
(N)
1 〉

r2
∏

k=1

〈ψk, x
(N)
2 〉

]

= E

[(

r1
∏

k=1

1

Nγ1

Nγ1
∑

l=1

φk

(

q
(N)
l,1

)

) (

r2
∏

k=1

1

Nγ2

Nγ2
∑

l=1

ψk

(

q
(N)
l,2

)

)]

(47)

Hence, the first term on the right hand side of (45) can be bounded as follows
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∣

∣

∣

∣

∣

E

[

r1
∏

k=1

φk

(

q
(N)
k,1

)

r2
∏

k=1

ψk

(

q
(N)
2,k

)

]

− E

[

r1
∏

k=1

〈φk, x
(N)
1 〉

r2
∏

k=1

〈ψk, x
(N)
2 〉

]∣

∣

∣

∣

∣

≤ (Nγ1)r1(Nγ2)r2

(

1

(Nγ1)r1(Nγ2)r2
−

1

(Nγ1)r1(Nγ2)r2

)

Br1+r2

+ ((Nγ1)
r1(Nγ2)

r2 − (Nγ1)r1(Nγ2)r2)
Br1+r2

(Nγ1)r1(Nγ2)r2

≤ 2Br1+r2

(

1−
(Nγ1)r1(Nγ2)r2
(Nγ1)r1(Nγ2)r2

)

→ 0 as N → ∞

where B is a constant such that ‖φk‖∞ < B for k = 1, 2, . . . , r1 and ‖ψk‖∞ < B for k =

1, 2, . . . , r2. This completes the proof.

Remark 4: We note that any initial condition that specifies x
(N)
n,j (0) = gn,j for all N , n ∈ Sj ,

and j ∈ J , satisfies the conditions in Theorem 5. In particular, the conditions in Theorem 5 are

satisfied when all the servers are empty at t = 0.

Thus, the above theorem shows that in the limiting system any finite set of servers become

independent of each other and the stationary distribution of states of any server of type-j is

given by πj = {πn,j, n ∈ Sj}. The following proposition shows (using the independence of the

servers in the limiting system) that in equilibrium the arrivals of class l ∈ L at any given server

of type j ∈ J in the limiting system form a state dependent Poisson process whose rates are

given by λn,j(π), n ∈ Sj , where λn,j(x) for x ∈ U are as defined in (14).

Proposition 2: In equilibrium, the arrival process of jobs at any given server in the limiting

system is a state dependent Poisson process. Furthermore, the equilibrium arrival rate of class-l

jobs at a server of type j ∈ J , when it is in state n ∈ Sj , is given by

λ
(l)
n,j(π) = λl

F (n, j,π)

E(n, j, j,π)
, (48)

where n ∈ Sj is such that n+ el ∈ Sj and F (n, j,π), E(n, j, j,π) are as defined in Lemma 1.

Proof: The proof is given in the Appendix D.

From Remark 3, we already know that the equilibrium point π of the mean field satisfies

λ
(l)
n−el,j

(π)πn−el,j
In−el∈Sj

= nlπn,j for n ∈ Sj and l ∈ L. (49)

Now, since (by Proposition 2) λ
(l)
n−el,j

(π) is the equilibrium arrival rate of class-l jobs at a server

of type j in state n − el ∈ Sj , the above equations can be interpreted as the detailed balance
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equations that equate the transition rates between the states n− el and n for each n, n− el ∈ Sj ,

j ∈ J , l ∈ L. Using the detailed balance equations, we now find a recursive relationship among

the stationary tail probabilities of the number of occupied resource units as in [23], [24] at each

server in the limiting system. This allows efficient computation of the blocking probabilities for

each class of jobs.

Proposition 3: Let Pk,j, for 1 ≤ k ≤ Cj and j ∈ J , denote the stationary probability that a

server in the limiting system has at least k units of occupied resources, i.e., Pk,j =
∑

n∈Sj :
n.A≥k

πn,j .

Then Pk,j satisfies (1) for 0 ≤ k ≤ Cj − 1, where Pk,j = 1 for k ≤ 0, and PCj+1,j = 0 for all

j ∈ J .

Proof: For j ∈ J , 0 ≤ k ≤ Cj , we define the set Dk,j as Dk,j = {n ∈ Sj : n · A = k} .

Thus, Dk,j denotes the set of states in Sj for which the total number occupied VM’s at a

type j server is exactly k. We note that for all n ∈ Dk,j such that n − el ∈ Sj , we have

G(n−el, i, j,π) = γiPk−Al+Ci−Cj+1,i and E(n−el, i, j,π) = γi(Pk−Al+Ci−Cj ,i−Pk−Al+Ci−Cj+1,i).

Thus, for all n ∈ Dk,j such that n− el ∈ Sj we have

λ
(l)
n−el,j

=
λl

γj (Pk−Al,j − Pk−Al,j)

[(

j
∑

i=1

γiPk−Al+Ci−Cj ,i +

M
∑

i=j+1

γiPk−Al+Ci−Cj+1,i

)d

−

(

j−1
∑

i=1

γiPk−Al+Ci−Cj ,i +

M
∑

i=j

γiPk−Al+Ci−Cj+1,i

)d


 . (50)

Now from (49) we have

∑

l∈L

∑

n∈Dk,j

Alλ
(l)
n−el,j

πn−el,j
In−el∈Sj

=
∑

l∈L

∑

n∈Dk,j

nlAlπn,j for n ∈ Sj and l ∈ L (51)

Now, the LHS of the above equation can be simplified as follows:
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∑

l∈L

∑

n∈Dk,j

Alλ
(l)
n−el,j

πn−el,j
In−el∈Sj

=
∑

l∈L

Alλ
(l)
n−el,j

∑

n∈Dk,j

πn−el,j
In−el∈Sj

=
∑

l∈L

Al
λl

γj (Pk−Al,j − Pk−Al+1,j)

[(

j
∑

i=1

γiPk−Al+Ci−Cj ,i +

M
∑

i=j+1

γiPk−Al+Ci−Cj+1,i

)d

−

(

j−1
∑

i=1

γiPk−Al+Ci−Cj ,i +
M
∑

i=j

γiPk−Al+Ci−Cj+1,i

)d


 (Pk−Al,j − Pk−Al+1,j)

=
∑

l∈L

Al
λl
γj

[(

j
∑

i=1

γiPk−Al+Ci−Cj ,i +

M
∑

i=j+1

γiPk−Al+Ci−Cj+1,i

)d

−

(

j−1
∑

i=1

γiPk−Al+Ci−Cj ,i +

M
∑

i=j

γiPk−Al+Ci−Cj+1,i

)d




The second equality follows since
∑

n∈Dk,j
πn−el,j

In−el∈Sj
= (Pk−Al,j − Pk−Al+1,j). Similarly,

the RHS can be simplified as

∑

l∈L

∑

n∈Dk,j

nlAlπn,j =
∑

n∈Dk,j

πn,j
∑

l∈L

nlAl =
∑

n∈Dk,j

πn,jk = k (Pk,j − Pk+1,j) .

This completes the proof.

Remark 5 (Insensitivity): All the results, discussed so far in this section, have been obtained

assuming that the service time distribution of the incoming jobs is exponential. The same results

can be shown to hold for any service time distribution if asymptotic independence of the servers

is assumed to hold for general service time distributions. The asymptotic independence property

was conjectured to hold for homogeneous systems with local service disciplines and general

service time distributions in [25]. The proof of this remains as an open problem.

Under the assumption of asymptotic independence of servers for general service time distri-

butions, the statement of Proposition 2 continues to hold, i.e., the equilibrium arrival process at

each server in the limiting system is a state dependent Poisson process whose rates are given

by (48). This implies that the detailed balance equations given by (49) also hold for general

service time distributions. Since the servers in the system are loss servers, the detailed balance

condition implies that that the stationary distribution of each server in the limiting system is

insensitive to service time distributions (see Theorem 1 of [26]). We refer to this property as the
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Fig. 2. Accuracy of mean field analysis of power-of-d scheme: Average blocking probability as a function of λ for different

values of N .

asymptotic insensitivity of the system. Thus, asymptotic insensitivity of the system holds under

the hypothesis of asymptotic independence of the servers, the proof of which remains as an open

problem. In the next section, we provide numerical evidences to support insensitivity.

VI. NUMERICAL RESULTS

We first investigate the accuracy of the asymptotic analysis presented in the paper in predicting

the system performance for finite system size N . We set the following parameter values: L = 1,

A1 = A = 1, M = 2, γ1 = γ2 = 0.5, C1 = 20, C2 = 25, and d = 2. All simulation results

presented in this section are the average of 10,000 independent runs. We use λ to denote the

arrival rate of jobs. In Figure 2, we plot the average blocking probability of requests under the

power-of-two scheme as a function of λ for N = 10, 50. We have also plotted the blocking

probability obtained by solving (3). We observe that results obtained from the simulations match

almost exactly with those obtained from the analysis. This leads us to believe that the mean-field

results derived in this paper very accurately predict the behavior of the power-of-d scheme even

for moderate system sizes.

In Figure 3 we compare for L = 1 the average blocking probability of the power-of-d scheme

with that of the state independent routing scheme, in which an incoming job is routed to a

server of type j with probability pj independent of the states of the servers. We set pj =
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Fig. 3. Efficacy of the power-of-d scheme

γjCj/
∑M

i=1 γiCi since in this case pj is proportional to both γj and Cj .
1 The parameters were

chosen as M = 2, N = 100, γ1 = γ2 = 0.5, C1 = 30, and C2 = 60. For this parameter

setting, the critical load is given by λcrit = γ1C1 + γ2C2 = 45. In Figure 3(a), we plot the

average blocking probability of the two schemes as a function of the arrival rate λ. We have also

plotted the lower bound obtained from (2). In Figure 3(b), we plot the ratio of average blocking

probability of the power-of-d scheme to that of the state independent scheme. Note that the

y-axis is in the log scale. From Figure 3(a) we observe that the average blocking probability

obtained for d = 4 is almost equal to that of the lower bound. We also observe from Figure 3(b),

that the average blocking probability under the power-of-d scheme is orders of magnitude lower

than that under the state independent routing scheme around λ = λcap. This shows the efficacy

of such randomized strategies in reducing blocking for realistic systems which are typically

operated near the critical load.

We now numerically confirm the insensitivity of the power-of-two scheme under different

service time distributions. We set the following parameter values: M = 2, d = 2, N = 100,

γ1 = γ2 = 0.5, C1 = 20, and C2 = 25. In Table I, average blocking probability is shown as a

function of λ, for the following distributions: 1) Constant: We consider job length distribution

1The probabilities pj , j ∈ J , can be optimally chosen to minimize the average blocking probability. However, such optimal

choice requires the knowledge of the arrival rate λ, which is difficult to estimate.
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having the cumulative distribution given by F (x) = 0 for 0 ≤ x < 1, and F (x) = 1, otherwise

and 2) Power law: We consider job length distribution having cumulative distribution function

given by F (x) = 1 − 1/4x2 for x ≥ 1
2

and F (x) = 0, otherwise. Note that for each of

the above distributions the average service time is 1. We see from Table I that the change in

blocking probability is insignificant when the service time distribution is changed keeping the

same mean. This supports the fact the under the power-of-d scheme the system is insensitive to

the service time distribution in the limit as N → ∞ (asymptotic insensitivity).

TABLE I

ASYMPTOTIC INSENSITIVITY OF THE POWER-OF-d SCHEME

λ
Constant

(Simulation)

Power Law

(Simulation)

20 0.0087 0.0086

25 0.1467 0.1470

30 0.2758 0.2747

35 0.3733 0.3737

40 0.4490 0.4485

45 0.5085 0.5085

VII. CONCLUDING REMARKS

In this paper, we analyzed the power-of-d scheme for multi-class heterogeneous Erlang loss

systems with a large number of servers. We showed that in the large system limit the evolu-

tion of the empirical occupancy distribution can be characterized through its mean field limit.

Furthermore, we showed that propagation of chaos holds for heterogeneous case through the

requirement of intra-type exchangeability.
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APPENDIX

A. Proof of Proposition 1

Using (3) it can be shown that the following recursive relation holds for 0 ≤ k ≤ CM − 1

∑

j∈J

(k + 1 + Cj − CM)+γj(Pk+1+Cj−CM ,j − Pk+2+Cj−CM ,j)

= λ





(

M
∑

j=1

γjPk+Cj−CM ,j

)d

−

(

M
∑

j=1

γjPk+1+Cj−CM ,j

)d


 , (52)

where (y)+ = max(0, y). From (52) the following can be shown to hold for 0 ≤ k ≤ CM − 1

using backward induction starting at k = CM − 1.

M
∑

j=1

(k + 1 + Cj − CM)+γjPk+1+Cj−CM ,j ≤ λ

(

M
∑

j=1

γjPk+Cj−CM ,j

)d

. (53)

From (53) it is clear that

(

M
∑

j=1

γjPk+1+Cj−CM ,j

)

≤
λ

k + (C1 − CM) + 1

(

M
∑

j=1

γjPk+Cj−CM ,j

)d

, (54)

for CM − C1 ≤ k ≤ CM − 1. Now, for 0 ≤ k ≤ k0, we have P̄k = 1 ≥
(

∑M
j=1 γjPk+Cj−CM ,j

)

.

Assume that
(

∑M
j=1 γjPk+Cj−CM ,j

)

≤ P̄k holds for some k ≥ k0. Using induction, we will now

show that the inequality must hold for k + 1. We have

(

M
∑

j=1

γjPk+1+Cj−CM ,j

)

≤
λ

k + (C1 − CM) + 1

(

M
∑

j=1

γjPk+Cj−CM ,j

)d

≤
λ

k + (C1 − CM) + 1
P̄ d
k = P̄k+1.

This completes the proof.

B. Proof of Lemma 1

We first consider the transition of the system from the state u ∈ U (N) at t− to the state

u −
e(n−el,j)

Nγj
+ e(n,j)

Nγj
at t, where n ∈ Sj . This transition occurs when an arrival of class l ∈ L
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at time t joins a type-j server which was in state n− el at time t− (just before the arrival). Let

k of the d sampled servers be of type j with state n′ satisfying n′ · A = (n − el) · A. For the

transition to occur, we must have k ≥ 1 and one among the k servers must be in state n − el.

Since there are Nγjun−el,j
and N × E(n − el, j, j, u) servers of type j in states n − el ans

n′ satisfying n′ · A = (n − el) · A, respectively, the probability of sampling k such servers is
(

k
1

)

γjun−el,j
Ek−1(n − el, j, j, u). In this case, since there are k servers with equal vacancy, the

arrival joins a server with state n − el with probability 1/k. The other d − k sampled servers

must satisfy either of the following two conditions:

• If the sampled server is of type i < j, then its state n′ must satisfy Ci − n′ · A ≤ Cj −

(n − el) · A, or, n′ · A ≥ (n − el) · A + Ci − Cj . The number of type i servers in a state

satisfying the above relation is N×GE(n−el, i, j,u). Since servers are sampled uniformly

at random, the probability with which one of these servers is sampled is GE(n−el, i, j,u).

• If the sampled server is of type i ≥ j, then its state n′ must satisfy Ci − n′ · A < Cj −

(n− el) · A, or, n′ · A > (n− el) · A+ Ci − Cj . Using the similar argument as before, the

probability with which such a server is sampled is G(n− el, i, j,u).

Thus the total probability with which the incoming arrival joins a server of type j in state

n− el is
∑d

k=1

(

k
1

)

1
k
γjun−el,j

Ek−1(n− el, j, j, u)
(

∑j−1
i=1 GE(n, i, j,u) +

∑M
i=j G(n, i, j,u)

)d−k

which simplifies to
F (n−el,j,u)

E(n−el,j,j,u)
γjun−el,j

. Since the arrival rate of class-l jobs is Nλl, the rate of

transition from the state u to the state u−
e(n−el,j)

Nγj
+ e(n,j)

Nγj
is given by

r

(

u → u−
e(n− el, j)

Nγj
+

e(n, j)

Nγj

)

= Nλl
F (n− el, j,u)

E(n− el, j, j,u)
γjun−el,j

. (55)

Next, we consider the transition from the state u ∈ U (N) to the state u +
e(n−el,j)

Nγj
− e(n,j)

Nγj
,

where n ∈ Sj . This transition occurs when a job of class l ∈ L leaves a type j ∈ J server in

state n. The number of type-j servers in state n when the system is in state u is Nγjun,j . From

each of these servers, the rate at which class-l jobs depart is nl. Hence, the rate of transition

from the state u to the state u+
e(n−el,j)

Nγj
− e(n,j)

Nγj
is given by

r

(

u → u+
e(n− el, j)

Nγj
−

e(n, j)

Nγj

)

= Nγjun,jnl (56)

The expression (5) now follows directly from the definition of A(N).
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C. Proof of Theorem 1

The proof consists of three main steps. The first step is to show that the sequence of Markov

processes
{

x(N)(·)
}

N
is relatively compact. The second step is to show that there exists a

unique process x(·) satisfying (10)-(11). The third step is to show that the operator semigroup
(

T(N)(t), t ≥ 0
)

generated by A(N) corresponding to the Markov process x(N)(·) converges to

the operator semigroup of the process x(·), i.e.,

lim
N→∞

sup
u∈U(N)

∣

∣T(N)(t)f(u)− f(x(t,u))
∣

∣ = 0, (57)

for all continuous functions f : U → R, where the convergence is uniform in t within any

bounded interval. Combining these three steps, the statement of Theorem 1 follows from Corol-

lary 8.7 of Chapter 4 of [27].

The proof of the first part is essentially the same as the proof of Theorem 6.1 of [11] but we

give the details here for the completeness of the paper. We first recall that the metric ρ defined

on the space U is given by:

ρ(u,w) = sup
j∈J

sup
n∈Sj

|un,j − wn,j|

(n · e) + 1
. (58)

Now, to prove relative compactness of the sequence of processes
{

x(N)(·)
}

we need to satisfy

the following three conditions of Theorem 8.6 of Chapter 3 of [27]:

• For every η > 0 and rational t ≥ 0, there exists a compact set Γη,t such that

lim inf
N→∞

P
[

inf
{

ρ(x(N)(t), y) : y ∈ Γη,t

}

< η
]

≥ 1− η. (59)

This is condition (7.7) of Chapter 3 of [27].

• For all T > 0, there exists β > 0, C > 0, and θ > 1, such that for all N and all

0 ≤ h ≤ t ≤ T + 1,

E
[

ρβ/2(x(N)(t+ h),x(N)(t))ρβ/2(x(N)(t),x(N)(t− h))
]

≤ Chθ. (60)

This is condition (8.37) of Chapter 3 of [27] which by Theorem 8.8 of Chapter 3 of [27]

implies condition (8.28) of Theorem 8.6 of Chapter 3 of [27].

• For that β,
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lim
δ→0

lim sup
N→∞

E
[

ρβ(x(N)(δ),x(N)(0))
]

= 0. (61)

This is condition (8.30) of Chapter 3 of [27].

Now, (59) follows immediately by choosing Γη,t = U for all η > 0 and t ≥ 0 since U

is compact and the process x(N)(t) lies in the space U (N) ⊆ U . Clearly, the change under

the metric ρ is bounded above by that under the sup metric. Due to arrival or departure one

of x
(N)
n,j is increased by 1/Nγj and one is decreased by 1/Nγj . This changes xN by at most

1/(N(minj∈J γj)) in the sup metric. We next need to bound the number of arrivals and departures

that can occur in an interval of length h. The arrivals form a Poisson process whose rate is

bounded above by Nλ, where λ =
∑

l∈L λl and the number of departures is bounded above

by the number of events in a Poisson process of rate NB where B = maxj∈J maxn∈Sj
(n · e).

Therefore, the total number of events in an interval of length h is bounded above by a Poisson

random variable with mean (λ + B)Nh. Thus, ρ(x(N)(t + h),x(N)(t)) is bounded above by

1/(N(minj∈J γj)) times a Poisson random variable with mean (λ+B)Nh. Now we set β = 2.

Then using the Markov property of x(N) we have

E
[

ρβ/2(x(N)(t+ h),x(N)(t))ρβ/2(x(N)(t),x(N)(t− h))
]

= E
[

ρβ/2(x(N)(t + h),x(N)(t))
]

E
[

ρβ/2(x(N)(t),x(N)(t− h))
]

≤
(λ+B)2

(minj∈J γj)2
h2. (62)

Hence, (60) holds for all necessary T, t, and h with C = (λ+B)2

(minj∈J γj)2
and θ = 2. It remains to

prove (61) for β = 2. This is easy to see since E
[

ρβ(x(N)(δ),x(N)(0))
]

≤ (λ+B)Nδ+(λ+B)2N2δ2

N2(minj∈J γj)2
.

This completes the proof of relative compactness.

The proof of the second part follows if the mapping h is shown to be Lipschitz continuous,

i.e., there exists K > 0 such that ρ (h(u),h(v)) ≤ Kρ (u,v). For any u,v ∈ U let the L1-

distance between u and v be defined as ‖u− v‖ =
∑

j∈J

∑

n∈Sj
|un,j − vn,j|. Clearly, we have

‖u−v‖
(B+1)S

≤ ρ(u,v) ≤ ‖u− v‖, where S =
∑

j∈J |Sj | and B is as defined before. Thus, these

two metrics are equivalent. It is therefore, sufficient to show ‖h(u)− h(v)‖ ≤ K‖u− v‖ for

some K > 0. But this is satisfied with K = 2B + 2λd+ 8λS(d− 1) as can be seen using (12)

and the L1-norm.
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The proof of the third part essentially the same as the proof of Theorem 2 of [16]. We omit

the details and mention only the key observation used in the proof which is the fact that as

N → ∞ we have A(N)f(u) → d
dt
f(x(t,u))|t=0 uniformly in u for all f : U → R such that

f(u) has bounded partial derivatives of first and second order with respect to each component

of u.

D. Proof of Proposition 2

Consider a tagged server of type j and the class-l arrivals that have the tagged server as

one of its potential destinations. These arrivals constitute the potential arrival process at the

tagged server. The probability that the tagged server is sampled at the arrival instant of a job

is
(N−1
d−1)
(Nd)

= d
N

. Thus, due to Poisson thinning, the potential arrival process of class-l jobs to the

tagged server is a Poisson process with rate d
N
×Nλl = dλl.

Next, we consider the arrivals that actually join the tagged server. These arrivals constitute

the actual arrival process at the server. For finite N , this process is not Poisson since a potential

arrival to the tagged server actually joins the server depending on the number of jobs present at

the other possible destination server. However, as N → ∞, due to the asymptotic independence

property shown in Proposition 5 the occupancies of the sampled servers become independent of

each other. As a result, in equilibrium the actual arrival process converges to a state dependent

Poisson process as N → ∞. Now the arrival rates of the Poisson process, as given in (48), can

be computed following the similar line of arguments as in the proof of Lemma 1.
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