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Summary: 22 

Trimethylamine (TMA) is common in marine environments. Although the 23 

presence of this compound in the oceans has been known for a long time, unlike the 24 

mammalian gastrointestinal tract, where TMA metabolism by microorganisms has been 25 

studied intensely, many questions remain unanswered about the microbial metabolism 26 

of marine TMA. This mini-review summarizes what is currently known about the 27 

sources and fate of TMA in marine environments and the different pathways and 28 

enzymes involved in TMA metabolism in marine bacteria. This review also raises 29 

several questions about microbial TMA metabolism in the marine environments, and 30 

proposes potential directions for future studies.   31 
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Introduction 32 

Trimethylamine (TMA) is one of the several methylated amines that are ubiquitous 33 

in marine systems (King, 1984a; Gibb et al., 1999a; Gibb and Hatton, 2004) and make 34 

up an important component of the oceanic carbon and nitrogen pools (Gibb and Hatton, 35 

2004; Chen et al., 2011; Carpenter et al., 2012) (Figure. 1). TMA has the characteristic 36 

odor of rotting fish. It was found to be produced during fish spoilage in the 1930s 37 

(Beatty, 1938) and later was recognized as a malodorous pollutant (Sandberg and 38 

Ahring, 1992; Rappert and Muller, 2005). TMA is a precursor of other methylated 39 

amines, for example trimethylamine N-oxide (TMAO), through an oxidation pathway 40 

that will be explained further down. TMAO is a common osmolyte used by many 41 

marine biota to regulate osmotic pressure and stabilize proteins against denaturation 42 

(Barrett and Kwan, 1985; Seibel and Walsh, 2002). 43 

TMA first attracted the interest of biogeochemists because it is an important 44 

precursor for methane formation in a variety of marine environments (Figure. 1). Under 45 

anoxic conditions, up to 90% of the methane from salt marsh sediment or slurries can 46 

be attributed to microbial conversion of TMA from the degradation of quaternary amine 47 

precursors (Oremland et al., 1982). A similar finding by an independent research group 48 

also found that 35 to 61% of total methane in surface sediments of an intertidal mud 49 

flat could result from TMA metabolism (King et al., 1983, King GM 1984a). TMA is a 50 

component of marine aerosols. Along with other methylated amines (e.g. 51 

dimethylamine (DMA) and monomethylamine (MMA)), it is emitted from surface 52 

seawater into the atmosphere, which can actively affect the climate system (Carpenter 53 
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et al., 2012; Lidbury et al., 2017) (Figure.1).  54 

Currently, there are two major challenges for biogeochemists in the study of 55 

oceanic methylated amines: the first is to identify the major sources of these compounds 56 

- what is the source of marine TMA? The second challenge concerns the fate of this 57 

compound - who are the major TMA consumers in marine environments? In this review, 58 

we first summarize what is known about the distribution of oceanic TMA and discuss 59 

the significance and sources of this compound in marine environments. We then 60 

describe three different metabolic pathways of TMA degradation and the enzymes that 61 

catalyze the reactions. Finally, we discuss the potential issues and challenges in the 62 

study of TMA metabolism and conclude by highlighting opportunities for future 63 

research directions. 64 

 65 

Sources of marine TMA 66 

It was not until the 1990s, when highly sensitive analytical techniques became 67 

available for the measurement of methylated amines, that researchers gained the 68 

capability to quantify TMA in the oceans reliably and accurately. Ocean-scale research 69 

revealed that concentrations of TMA range from nanomolar (nM) to micromolar (µM), 70 

depending on the marine environment sampled (Table 1). In surface water, TMA 71 

concentrations are low. Unlike DMA and MMA, TMA concentrations in seawater had 72 

no seasonal pattern and did not correlate with the abundance of diatoms nor 73 

mesozooplankton grazing activities (Gibb et al., 1999b). However, methylated amines 74 

can be strongly adsorbed to marine sediments, particularly to those with a high organic 75 
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content (Wang and Lee, 1990), which may help to explain the elevated TMA 76 

concentrations observed in marine sediments (Table 1). 77 

Although the importance of TMA in the global carbon and nitrogen cycle is being 78 

recognized (Lee and Olson, 1984; Gibb and Hatton, 2004; Chen et al., 2011), the 79 

sources of this compound in marine ecosystems are not well established. Many marine 80 

plants and animals have been found to contain high concentrations of methylated 81 

amines (Wang and Lee, 1994; Calderón et al., 2007). Hence, one hypothesis is that 82 

TMA is directly released from tissues during excretion or decay of marine organisms. 83 

It has been reported that TMA is commonly found in marine algae (Fujiwara-Arasaki 84 

and Mino, 1972; Smith, 1975) and TMA production is associated with annual 85 

senescence and production of marsh grass in salt marsh sediments (Wang and Lee, 86 

1990). Wang and Lee experimentally demonstrated that the plant Spartina alterniflora 87 

gets decomposed to release amines, especially TMA, to salt marsh sediments (Wang 88 

and Lee, 1994). Fish, benthic animals and phytoplankton also contain high 89 

concentrations of methylated amines and could be important sources of oceanic TMA, 90 

either by direct release or through decomposition (Shewan, 1951; Budd and Spencer, 91 

1968; Barrett and Kwan, 1985; Wang and Lee, 1994).  92 

Another potential source of TMA is degradative pathways that form TMA as an 93 

intermediate or end-product. Potential TMA sources include common organic 94 

compounds such as the compatible solutes (osmolytes) TMAO, glycine betaine, and 95 

choline, which are abundant in marine eukaryotic cells (Ikawa and Taylor, 1973; King, 96 

1984a; Oren, 1990; López-Caballero et al., 2001; Treberg et al., 2006). These 97 
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compounds can be transformed to produce TMA by a TMAO reductase (TorA), a 98 

glycine betaine reductase (GrdH) or a choline-TMA lyase (CutC), respectively. 99 

Metagenomic studies have shown that the grdH gene is present in marine environments 100 

but at low abundance. The cutC gene is more prevalent in anaerobic marine sediments. 101 

Among these functional genes, the torA gene is the most abundant in both open ocean 102 

and marine sediment datasets, which implies that TMA formation from the TMAO 103 

reduction pathway is prevalent and important in the oceans (Jameson et al., 2016). 104 

TMA production can also occur under aerobic conditions through oxidation of 105 

carnitine ( Unemoto et al., 1966; Rebouche and Seim, 1998; Zhu et al., 2014), which 106 

may explain the presence of TMA in oxygenated marine surface waters (Carpenter et 107 

al., 2012). Notably, but rarely studied, TMA can be produced from the betaine-108 

containing lipid diacylglyceryl hydroxymethyl N,N,N-trimethyl-β-alanine (DGTA) by 109 

a spontaneous deamination process (Vogel et al., 1990). DGTA is widely distributed in 110 

marine phytoplankton (Araki et al., 1991; Cañavate et al., 2016). 111 

The metabolic fate of marine TMA 112 

The study of TMA metabolism has been primarily focused on methylotrophic 113 

bacteria and methanogens (Hippe et al., 1979). These microorganisms can use 114 

methylated amines as their carbon, nitrogen and energy sources (Chistoserdova et al., 115 

2009; Chistoserdova, 2011). Generally, there are four different pathways for microbial 116 

metabolism of TMA: acetogenesis pathway, methanogenesis pathway, the 117 

dehydrogenase pathway and the aerobic oxidation pathway. The bacterium 118 

Acetohalobium is capable of demethylating TMA to an equimolar amount of acetate 119 
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along with less amounts of DMA and MMA via anaerobic acetogenesis (Zhilina and 120 

Zavarzin, 1990), although not much is known on the genes/enzymes involved. TMA-121 

dependent acetogenesis has been rarely studied; therefore we will mainly describe the 122 

other three pathways, which are depicted in Figure 2.  123 

 124 

TMA-dependent methanogenesis 125 

A number of investigations have shown that TMA can be a significant source of 126 

methane in a variety of marine systems (Oremland et al., 1982; Oremland and Polcin, 127 

1982; King et al., 1983; Summons et al., 1998). Oremland et al., and King et al., 128 

showed that the addition of TMA to marine sediments stimulates the production of 129 

methane (Oremland et al., 1982; King et al., 1983; King, 1984b). Several novel strains 130 

of methylotrophic methanogens have been isolated from anoxic marine sediments 131 

which can catabolize TMA to produce methane (Singh et al., 2005). Although the 132 

phenomenon of methanogenesis from TMA has been observed for many years in anoxic 133 

oceans (Hippe et al., 1979; Sowers et al., 1984; Siegert et al., 2011), the featured species 134 

and metabolic process in marine environments are still unclear.  135 

Notably, in similar anaerobic environments, such as the gastrointestinal tract of 136 

ruminants and sewage sludge digesters, TMA has been shown to be a significant 137 

substrate for methylotrophic methanogens (Neill et al., 1978; Mah and Kuhn, 1984; 138 

Zinder et al., 1985; Zhilina and Zavarzin, 1987). Methanogenesis is a metabolic process 139 

driven by obligate anaerobic Archaea. Methanogens, such as members of the 140 

order Methanomassiliicoccales and Methanosarcinales, can use methyl groups from 141 
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TMA to firstly produce methyl-coenzyme M (methyl-CoM) by the concerted action of 142 

two methyltransferases: TMA methyltransferase and coenzyme M methyltransferase 143 

(Ferguson and Krzycki, 1997; Bose et al., 2008). Methyl-CoM is subsequently 144 

converted into methane, CO2 and ammonia by a methyl-CoM reductase (MCR), the 145 

key enzyme of methanogenesis (Figure 2A) (Friedrich, 2005; Kröninger et al., 2017).  146 

Recent bioinformatics analyses of metagenomes and metatranscriptomes provided 147 

further evidence of the TMA-dependent methanogenesis pathway in marine 148 

environments. For example, the alpha-subunit of MCR (mcrA) was detected from 149 

sediment samples of the Western Mediterranean Sea by PCR amplification. 150 

Phylogenetic analysis revealed the presence of diverse methanogen communities 151 

distributed along the different geochemical zonations, including those from known 152 

TMA-utilizers e.g. Methanococcoides and Methanosarcina (Zhuang et al., 2018). 153 

Similarly, metatranscriptomic data from anoxic sediment in the Baltic Sea revealed that 154 

mcrA transcripts affiliated to Methanosarcina were highly abundant, suggesting a role 155 

of TMA-dependent methanogenesis in the sediment (Thureborn et al., 2016).  156 

 157 

Anaerobic TMA dehydrogenase pathway 158 

The second pathway of TMA degradation involves the direct dehydrogenation of 159 

TMA to form DMA and formaldehyde, catalyzed by a TMA dehydrogenase (TMADH) 160 

(Colby and Zatman, 1973; Kasprzak et al., 1983; Yang et al., 1995). In some 161 

methylotrophs, DMA is further demethylated to MMA and then ammonia by a series 162 

of dehydrogenase enzymes: DMA dehydrogenase (DMADH) and MMA 163 
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dehydrogenase (MMADH), with each step simultaneously forming the side-product 164 

formaldehyde (Figure 2B) (Asatoor and Simeshoff, 1965; Colby and Zatman, 1973; 165 

Barrett and Kwan, 1985; Chistoserdova, 2011). The whole pathway is energetically 166 

favorable and oxygen is not required for these processes. However, this energy-saving 167 

pathway seems not to be important in marine microorganisms, since little evidence for 168 

these dehydrogenases have been found in marine metagenomic data. Instead, pathways 169 

for aerobic TMA degradation by bacterioplankton, which are discussed below, have 170 

been intensively studied. 171 

 172 

Aerobic TMA oxidation pathway 173 

This pathway involves the oxygenation of TMA to TMAO, which is further 174 

catabolized to DMA, MMA, ammonia and formaldehyde (Figure 2C). The initial step 175 

of conversion of TMA to TMAO is mediated by a TMA monooxygenase (Tmm). Tmm 176 

is a flavin-dependent enzyme. Bacterial Tmm was first identified and characterized in 177 

the soil bacterium Methylocella silvestris (Dunfield et al., 2003; Chen et al., 2011). 178 

Enzymatic activity assays showed that the marine Roseobacter clade (Roseovarius sp. 179 

217 and Ruegeria pomeroyi DSS-3) and SAR11 clade (HTCC1002 and HTCC7211), 180 

two of the most abundant bacterioplankton groups in the surface ocean, also have Tmm 181 

enzymes to catabolize TMA oxidation (Chen et al., 2011). Metagenomic evidence 182 

revealed that most marine bacterioplankton possess TMA monooxygenase, leading to 183 

the estimate that about 20% of the bacteria in the surface ocean contain this gene (Chen 184 

et al., 2011). This suggests that aerobic TMA degradation is the major pathway for 185 
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TMA utilization in the marine environment, especially in the oxygen-rich surface water. 186 

Most recently, the molecular mechanism of TMA oxygenation by marine bacterial 187 

Tmm was elucidated (Li et al., 2016). There are two half-reactions (reductive and 188 

oxidative) in the catalytic process. In the first half-reaction, flavin adenine dinucleotide 189 

(FAD) is reduced by nicotinamide adenine dinucleotide phosphate (NADPH), and an 190 

intermediate C4a-hydroperoxyflavin is formed. In the second half-reaction, this 191 

intermediate attracts TMA to the catalytic pocket. TMA binding to the catalytic site of 192 

Tmm causes a conformational change in NADP+, which shuts off the substrate entrance 193 

and exposes C4a-hydroperoxyflavin to TMA, thereby starting the oxidative half-194 

reaction (Li et al., 2016).  195 

After oxidation, the oxygenated form, TMAO, is further demethylated to yield 196 

DMA and formaldehyde by a TMAO demethylase (Tdm) (Chen et al., 2011; Lidbury 197 

et al., 2014; Lidbury et al., 2015). Tdm was first proposed and partially purified from 198 

Bacillus (Myers and Zatman, 1971) and methylotrophs such as Pseudomonas 199 

aminovorans (Large, 1971; Boulton et al., 1974) and Hyphomicrobium spp. (Meiberg 200 

et al., 1980; Barrett and Kwan, 1985). Recently, Tdm has been demonstrated to occur 201 

in abundant marine heterotrophic bacteria as well (Chen et al., 2011; Lidbury et al., 202 

2014; Lidbury et al., 2015). Although the enzyme can be purified from aerobic bacteria, 203 

Tdm is oxygen-independent and is not affected in aerobic or anaerobic conditions 204 

(Large, 1971). This enzyme is strongly activated by Zn2+ and Fe2+ metal cofactors (Zhu 205 

et al., 2016).  206 

Conversion of DMA to MMA by a secondary amine monooxygenase has been 207 
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proposed for a long while (Alberta and Dawson, 1987; Alberta et al., 1989). The 208 

enzymology of this protein was also first characterized from P. aminovorans by 209 

spectroscopic analysis (Alberta et al., 1989) and was later known as a heme-dependent 210 

oxidative N-demethylase with a heme-dependent Per-ARNT-Sim (PAS)-domain 211 

(Ortmayer et al., 2016). This particular PAS enzyme is a heterotetramer, and requires 212 

NADPH in the DMA catabolic pathway (Ortmayer et al., 2016) . 213 

Only recently did a study confirm that the gene dmmDABC encodes a functional 214 

DMA monooxygenase (Dmm) in R. pomeroyi DSS-3 for DMA demethylation (Lidbury 215 

et al., 2017), which fills a gap and completes the marine DMA degradation pathway. 216 

The genes encoding DmmDABC are widely distributed in the marine Roseobacter 217 

clade, whereas they are absent from the genomes of some important marine bacterial 218 

taxa, including all representatives of the SAR11 clade. This would explain why the 219 

abundance of the gene cluster dmmDABC was much lower in marine metagenomics 220 

data than the other relative genes involved in degradation of methylated amines 221 

(Lidbury et al., 2017). 222 

Concluding remarks and future prospects 223 

Although the significance of marine TMA is recognized, the sources, fluxes and 224 

fates of this compound in the ocean are still not fully understood. The development of 225 

better analytical methods for the in situ quantification of methylated amines remains a 226 

challenging problem (Lee and Olson, 1984; Abdul-Rashid et al., 1991; Yang et al., 227 

1993). A recent improvement by Zhuang et al., (2017) used a method combining a purge 228 

and trap system coupled with gas chromatography-mass spectrometry (P&T-GC-MS). 229 
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This method quantifies TMA in one analytical step, requires small volumes (5 mL) of 230 

porewater or sediment samples, and can simultaneously measure the stable carbon 231 

isotopic composition in the solid phase of marine sediments (Zhuang et al., 2017). More 232 

recently, Cree et al. reported another method to determine dissolved methylated amines 233 

in seawater samples. Methylated amines converted to the gaseous phase were analyzed 234 

by coupling headspace solid phase microextraction (SPME) and gas chromatography 235 

coupled with a nitrogen–phosphorus detector (GC-NPD) (Cree et al., 2018). This 236 

method provides lower detection limits and is more suitable for measuring methylated 237 

amines at low-nM level in marine environments. Compared to the P&T-GC-MS system, 238 

SPME-GC-NPD has better sensitivity to the low-molecular weight amines, but requires 239 

a larger sampling volume (1L). During the SPME extraction process, maintaining the 240 

thermostat and homogeneity of seawater samples is particularly important. Although 241 

keeping the equilibrium of one sample in the study is available, operating parallel 242 

extractions from multiple large volume samples under the same conditions may be 243 

difficult to control. The possible solution would be to combine the purge and trap 244 

system with the SPME extraction, which could create a constant equilibrium between 245 

aqueous phase and gaseous phase with less interference from temperature variations. In 246 

addition, the introduction of inert gas flow could potentially improve the recoveries of 247 

methylated amines to achieve a better sensitivity and more accurate measurements. 248 

With the development in methodology, more information on in situ concentrations of 249 

methylated amines is likely to become available in the near future, contributing to a 250 

better understanding of TMA biogeochemistry. 251 
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In nature, some microorganisms have been found to possess pathways for both the 252 

aerobic and anaerobic degradation of TMA. This raises two questions: why do some 253 

microbes require two metabolic pathways, and are these two pathways independent or 254 

related? Paracoccus sp. Strain T231 can use two different enzymes, Tmm and TMADH, 255 

to initialize the degradation of TMA in aerobic and anaerobic metabolism, respectively 256 

(Kim et al., 2001). When grown aerobically on TMA, enzyme activities of Tmm, Tdm, 257 

Dmm and MMA monooxygenase from cell-free extract are detected. When grown 258 

anaerobically on TMA and nitrate, enzyme activities of TMADH and DMADH from 259 

the cell-free extract are detected (Kim et al., 2001). In contrast, in aerobic metabolism, 260 

both Tmm and TMADH can be used to initialize the oxidation of TMA in Pseudomonas 261 

putida ATCC 12633 (Liffourrena et al., 2010). 262 

TMA metabolism of Hyphomicrobium is more complicated. This microorganism 263 

is commonly found in soil and fresh water (Harder and Attwood, 1978) and is able to 264 

oxidize TMA by TMADH under both aerobic and anaerobic conditions in the presence 265 

of nitrate (Meiberg and Harder, 1978). For the two known pathways of DMA 266 

demethylation to MMA, oxygen and TMA availability are the key regulatory factors. 267 

The enzyme Dmm is strictly dependent on oxygen as a substrate. Dmm activity was 268 

undetectable when oxygen was absent in the medium, and was expressed immediately 269 

when oxygen was provided. Although the activity of DMADH is independent of 270 

oxygen, the synthesis of DMADH in Hyphomicrobium X was inhibited by high oxygen 271 

tensions, and lowering the oxygen tension relieved this inhibition (Meiberg et al., 1980). 272 

In addition, TMA concentrations were proposed to regulate DMADH activity. During 273 
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the initial stage of cell growth on TMA, a high concentration of TMA acts as a potent 274 

competitive inhibitor for DMADH, and the product DMA accumulates in the medium. 275 

As TMA is degraded and the concentration decreases, DMADH is upregulated, which 276 

allows for the subsequent catabolism of DMA (Meiberg and Harder, 1979; Meiberg et 277 

al., 1980). Overall, these regulatory properties could provide this microorganism with 278 

a selective advantage over competitors in habitats where oxygen and TMA 279 

concentrations fluctuate. 280 

In marine environments, knowledge of microbial TMA catabolism is limited to a 281 

few studies. Genome analysis of heterotrophic bacteria that are abundant in marine 282 

surface water (i.e. the Roseobacter and SAR11 clade) revealed gene clusters only for 283 

aerobic TMA catabolism and the physiological experiments confirmed oxidative 284 

degradation of TMA via TMAO as the key intermediate (Chen et al., 2011; Sun et al., 285 

2011). Metagenomic data from global ocean sampling have also shown an abundance 286 

of the tmm gene and low frequency of dmm (Lidbury et al., 2017), implying the 287 

adaptation of dominant plankton groups to oxygen and the significance of the TMA 288 

oxygenation pathway in marine surface water. However, due to the lack of 289 

metagenomic data in hypoxic zones, whether anaerobic TMA degradation occurs under 290 

low oxygen conditions of the water column is still unknown. Up till now, only a few 291 

marine bacterial species, such as a methylotrophic bacterium Methylophaga sp. strain 292 

SK1 and some denitrifying bacteria isolated from coastal sediments (Kim et al., 2003), 293 

have been found to contain both TMADH and Tmm metabolic pathways for TMA 294 

degradation (Choi et al., 2003; Kim et al., 2006; Chen et al., 2011). However, the 295 
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regulation of the anaerobic dehydrogenase pathway and the aerobic TMA oxidation 296 

pathway in these marine microorganisms is poorly characterized, which limits the 297 

understanding of the adaption of these marine bacteria to their surrounding habitats and 298 

their ecological significant. All of these questions remain to be explored, and will likely 299 

be the focus of future research.  300 

 301 
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Tables: 311 

Table 1. Concentration of TMA in marine environments as reported in the 312 

literature 313 

TMA concentration Source/Location References 

12 ± 3.0 nM Pacific—Hawaii coastal  

(Van Neste et al., 1987) 
41 ± 27 nM Atlantic—Massachusetts coastal 

1.4 ± 1.6 nM Offshore, Mediterranean (Gibb, 1994; Gibb et al., 

1999b) 10 ± 6.9 nM Costal, Mediterranean 

< 4 nM Arabian Sea (Gibb et al., 1999b) 

1.6 ± 1.8 nM Antarctic coastal waters (Gibb and Hatton, 2004) 

< 3-80 nM Flax Pond seawater, New York (Yang et al., 1993) 

20 nM Western English Channel 

(Cree et al., 2018) 

1.4-6.9 nM Southern Ocean 

0 - 4.7µM Porewater of East Anglian 

Estuary sediments  
(Fitzsimons et al., 2001) 

0 - 50 µM Porewater of Oglet Bay 

sediments 

(Fitzsimons et al., 1997) 

0 - 15 µM Porewater of Norsminde Fjord 

Estuary sediments 

(Glob and Sørensen, 1987) 

0.6 µM Porewater of Flax Pond salt 

marsh 

(Wang and Lee, 1990, 1994) 

 314 

 315 

  316 
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Figure legends: 317 

 318 

Figure 1. Diagram of marine biogeochemical cycles of TMA. DOC: dissolved 319 

organic carbon; DON: dissolved organic nitrogen; TMA: trimethylamine. 320 

  321 
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 322 

 323 

Figure 2. Proposed three main TMA metabolic pathways in marine microbes. A) 324 

Methanogenesis; B) Anaerobic TMA dehydrogenase pathway; C) Aerobic TMA 325 

oxidation pathway. DMA: dimethylamine; MMA: monomethylamine; TMA: 326 

trimethylamine; TMAO: trimethylamine N-oxide; NADP+: nicotinamide adenine 327 

dinucleotide phosphate; NADPH: reduced form of nicotinamide adenine dinucleotide 328 

phosphate. TMADH: trimethylamine dehydrogenase; DMADH: dimethylamine 329 

dehydrogenase; MMADH: monomethylamine dehydrogenase. 330 

 331 

  332 
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