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ABSTRACT
In the era of big data, computing exact answers to analyt-
ical queries becomes prohibitively expensive. This greatly
increases the value of approaches that can compute effi-
ciently approximate, but highly-accurate, answers to analyt-
ical queries. Alas, the state of the art still suffers from many
shortcomings: Errors are still high, unless large memory in-
vestments are made. Many important analytics tasks are not
supported. Query response times are too long and thus ap-
proaches rely on parallel execution of queries atop large big
data analytics clusters, in-situ or in the cloud, whose acqui-
sition/use costs dearly. Hence, the following questions are
crucial: Can we develop AQP engines that reduce response
times by orders of magnitude, ensure high accuracy, and
support most aggregate functions? With smaller memory
footprints and small overheads to build the state upon which
they are based? With this paper, we show that the answers
to all questions above can be positive. The paper presents
DBEst1, a system based on Machine Learning models (re-
gression models and probability density estimators). It will
discuss its limitations, promises, and how it can complement
existing systems. It will substantiate its advantages using
queries and data from the TPC-DS benchmark and real-life
datasets, compared against state of the art AQP engines.

CCS CONCEPTS
• Information systems → Database query processing;
Query optimization; Online analytical processing engines.

1’Est’ derives from the Latin verb ‘to be’and the prefix from ‘estimator’
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1 INTRODUCTION
We live in the era of big data, whose timely, accurate, and
inexpensive analysis bears great opportunities and benefits
which permeate practically all facets of our lives.Analytical
queries in this realm typically rely on two fundamental com-
ponents. Firstly, selection operators (such as range predi-
cates) help focus on specific data regions. Secondly, aggrega-
tion functions (such as AVG, SUM, COUNT, PERCENTILE,
VARIANCE) are applied on the selected data regions to pro-
vide key insights. In SQL, a core component of a large class
of analytical queries takes the form:

SELECT AF(y) FROM T

WHERE x BETWEEN lb AND ub;

where range predicates on attributes (x ) are used to define a
data region within that of (a csv file or) table T, and an ag-
gregation function AF is used on attribute y. A close look at
many real-world data sets and analytical workloads reveals
that certain types of data attributes play a key role. Obviously,
AFs operate on numerical attributes. Additionally, selection
operators often operate on numerical attributes as well, or
equivalently on ordinal categorical attributes, such as dates,
time, location, etc. Examples abound: Sensor and IoT datasets
are a significant contributor to the big data phenomenon.
Smart city analytical queries involve ranges on time, loca-
tion, wind speed, air pressure e.g., to analyze pollution (e.g.,
PM2.5, CO2 levels, etc. [33]). Smart home analytics involve
measurements (temperature, humidity, etc.) to analyze home
power consumption. Power plants in operation, engineering
plants, scientific applications (from astronomy to bio-medical
applications) are awash with such data and analytics needs.
Such queries are fundamental to exploratory analytics,

where primarily analysts wish to understand the datasets
by exploring various data subspaces (defined using ranges)
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and deriving descriptive statistics information (using AFs)
about said subspaces. Within data warehouses/databases,
the above query type may be augmented with GROUP BY
operators, whereby the AF is performed separately for each
value of the group attribute. Finally, queries may involve
more than one table, requiring their join and performing the
above analyses on the join-result table.

Unfortunately, the timely, accurate, and inexpensive anal-
ysis of big data presents formidable challenges. Traditional
solutions do not scale well, suffer from long response times,
and/or require large money investments to deploy them on
top of big data analytics stacks (e.g., [17, 57, 59]). To ad-
dress these challenges, AQP strives for approximate-but-
accurate-enough answers which can be delivered swiftly.
AQP has been studied for over two decades now, and signifi-
cant progress has been made. Nonetheless, as data continue
to grow in size, AQP engines struggle to keep up.

Motivations
The state of the art in AQP research has been dominated
by sampling-based approaches, broadly divided into two
categories. First, techniques that rely on online sampling,
create samples on the fly during query execution and use
them to approximate answers. The second category of re-
search, exploits the fact that often query workloads are (at
least partially) predictable, in the sense that one can know
beforehand the popular query templates, including for exam-
ple the attributes for range predicates, the joined tables and
join keys, the grouping attributes, used together. Given this
knowledge, these works create offline samples for selected
tables and column sets, kept in memory, and process queries
over said samples. But, across the spectrum, the state of the
art still suffers from several shortcomings.
How long does it take a state of the art AQP engine to

answer an analytical query of the types above over a mid-
sized table (say, of a few Billion tuples)? Are, say, several
minutes, acceptable? Is it acceptable to rely on the use of large
clusters of tens or hundreds of nodes/cores upon which each
query is sent to execute in order to bring response times to a
few seconds? What if analysts cannot afford to procure such
infrastructures or pay the cost to use them online on clouds?
What are the implications of having each query execute
across all nodes/cores on system throughput? Even then,
can we do better than seconds? How much space is required
to achieve such response times? Is ca. 10% relative error
acceptable given the above time/space/money investments?
And, how many analytical operators (i.e., AFs and other
analytics tasks) can be supported, even at such costs?
This paper is driven by these questions, the answers to

which currently leave a lot to be desired. We revisit the

problem and solution space. The overriding guiding prin-
ciple is to develop and study a model-driven solution,
instead of a data-driven solution,where queries are an-
swered by models of data and not the data itself (or
samples of it). The principal challenges and goals are to
develop and experimentally substantiate such a model-based
AQP engine that is much more efficient, ensures high accu-
racy, and investigate its benefits and limitations. The key
insights of this work is to exploit the ability of models
to generalize. This affords the luxury of building the
models from very small samples. Combined, these facts
ensure small overheads, with shorter response times, even
with just a single-thread, thus rendering analytics less costly
and achieving much higher system throughput.

Contributions
This paper presents the design and implementation of DBEst,
an AQP engine supporting the aforementioned analytical
needs, using prebuilt, a priori state (i.e., models over samples
of datasets), while offering, compared to the state of the art:
• orders of magnitude shorter query response times,
• orders of magnitude higher throughput
• significantly smaller memory footprints per query,
• high accuracy,
• support for all mentioned aggregate functions, and
• short state-building times.
The paper will:
• show how to develop and train appropriate models and
how to use them to answer analytical queries,

• analyze the sensitivity of and stress DBEst’s performance
on key parameters, such as sample sizes used to derive the
models, the selectivity of selection operators, the effect of
groups in Group By, the effect of joins, etc.

• perform a comprehensive performance evaluation of DBEst,
comparing it against state of the art big data AQP engines,
(BlinkDB and VerdictDB), using queries based on the TPC-
DS queries and its schema/data and synthetic queries over
real-life UCI-ML repository datasets.

• evaluate single-threaded andmulti-core DBEst performance
and show that even the sequential DBEst can often achieve
large (>10x) query processing speedups against a 12-core
state of art AQP engine and that this can help achieve 10x
to 30x speedups in system throughput.
To our knowledge, this is the first AQP engine based on

combining sampling, density estimators, and regression mod-
els. DBEst can offer big gains across all metrics of interest.
The paper also takes a qualitative step forward: its models
can be employed for various other analytical needs: (i) im-
puting missing attribute values; (ii) estimating the value of
a dependent variable when values for the independent vari-
ables are missing or hypothesized, (iii) estimating the value



of aggregation functions over the dependent variable, when
independent-variable values are missing or hypothesized,
(iv) quickly discovering relationships between attributes, (v)
quickly visualizing descriptive statistics for the dependent
attribute in data subspaces, etc. In general, DBEst provides
support for predictive analytics, hypotheses testing, etc.

2 THE DBEST AQP ENGINE
2.1 System Overview
Fig. 1 shows the architecture of DBEst. DBEst is independent
of the underlying storage layer; it can be just a local FS, an
RDBMS, or a distributed FS, and/or a NoSQL DB.

QP Engine DBEst 

Analysts 

Catalog	

Samples	

Models	

Data Store 

Exact	QP	

Approx	QP	

Query 

Answer 

Figure 1: DBEst architecture.

There are three major components: (1) The sampling mod-
ule interacts with the storage layer to build samples; (2) The
models module, consists of density estimators and regres-
sion models, which are built from the samples. (3) The model
catalog stores information for the available models and their
correspondence to the column sets and tables of the base data
they model. When a query arrives, DBEst reads the model
catalog to check for models that could answer it. If so, the
particular models will be used to process the query. If not,
the query will be sent to an underlying system in the level
below it, as shown in the architecture. This can be another
AQP engine (e.g., one with online sampling, QuickR [29]) or
it can go directly to an exact answer QP engine.

2.2 Supported Queries
DBEst belongs in the class of AQP for predictable/popular
query templates. In this class, as mentioned, DBEst supports
analytical queries, involving range predicates and aggre-
gate functions, including COUNT, SUM, AVG, VARIANCE,
STDDEV and PERCENTILE. DBEst also supports GROUP BY
operators. To be concrete, the following is typical in queries
in TPC-DS [36]. Given a table store_sales, with the col-
umn of interest, ss_quantity, return the average value of
ss_ext_discount_ amt within a specific range.

SELECT ss_store_sk , SUM(ss_sales_price)
FROM store_sales

WHERE ss_sold_date_sk BETWEEN lb AND ub

GROUP BY ss_store_sk;

returns the sum of ss_sales_price within the given range
of ss_sold_date_sk, for each ss_store_sk group value.

Thus, DBEst supports straightforwardly selections on nu-
merical and ordinal categorical attributes for all AFs men-
tioned above, optionally coupled with GROUP BY operators.
DBEst can also provide support for selections on nominal
categorical attributes, as will be discussed later.
DBEst does not support ad hoc join queries with no pre-

built models. In these cases, DBEst will revert to the under-
lying AQP engine (e.g., QuickR [29], or VerdictDB [39]).

DBEst supports joins for predictable/popular joined tables
using two alternative approaches. The first approach follows
the following steps: First, precompute the join result table,
then build a (small) sample over it, and finally build regres-
sion and density estimator models over this sample. Please
note that this is particularly possible for DBEst, as neither
the original join result nor any large sample of it need be
maintained - both join result and the sample can simply be
discarded after models are built. Only the models need be
stored and used during query processing. And models are
very small in size (typically a few 100s KBs). This is in con-
trast to the state of the art AQP engines [29, 39] which must
compute the join based on (universe/hashed) per-table sam-
ples (each having typically 10s of millions of tuples) online
during query execution. The performance evaluation section
will provide details and quantify the resulting benefits.

The second approach improves on the precomputation
time when joining very large tables. Specifically, each large
join table can be sampled (using hashed samples) and the
join be computed based on these samples (a la VerdictDB
and QuickR). Finally, a small uniform sample is built from
the sample join and models are built from this small sample.
DBEst does not support general nested queries. When

nested queries can be ’flattened’ using joins, (as done in
VerdictDB [39]) then DBEst can support these nested queries
using the above explained support for joins. Finally, DBEst
does not currently support UDAs.

2.3 DBEst Query Processing Foundations
In contrast to competing AQP approaches where samples are
generated and maintained to answer queries, DBEst chooses
an alternative approach. It builds models, specifically regres-
sionmodels and density estimators, throughwhich aggregate
queries are answered with high accuracy and efficiency and
at lower costs. In this section, we describe in detail the math-
ematical foundations for providing approximate answers for
analytical queries.
DBEst uses the density estimator and/or the regression

model to compute the AF answer. Based on whether a regres-
sion model is involved in making the approximate predic-
tion, the supported aggregate functions are divided into two



categories: density-based and regression-based . For density-
based aggregate functions, only the density estimator D(x)
is needed to make the prediction; for regression-based ag-
gregate functions, both the density estimator D(x) and the
regression model R(x) are involved. Table 1 contains the
notation used in this section.

Notation Description
T original table
Q a query

AF
a supported aggregate function, is one of
COUNT, SUM, AVG, VARIANCE,
STDDEV, PERCENTILE

x the independent variable (column),
usually accompanied with a condition.

y the dependent variable (column) in the query,
which is the aggregate attribute

p the pth percentile point for
a PERCENTILE query.

CP a unique column pair, consisting of x and y
N the size of Table T
n the size of the sample

S(CP,n) the sample, for column pair CP,
with the sample size of n

lb the lower bound of x for the aggregate query
ub the high bound of x for the aggregate query

R(x) the regression model of x,
training from [x,y] pairs.

D(x) the density estimator over column x,
which is normalized to unity.

Table 1: Notation in §2

We now discuss how each aggregate is processed in DBEst.
The PERCENTILE AF has a syntax a la HIVE, which is:

SELECT PERCENTILE(x, p) FROM T;

which returns an approximate pth percentile of the numeric
column x for Table T.

For regression-based aggregate functions, as a regression
modelR(x) is built between y and x,R(x) is used to provide an
approximate answer for y. DBEst could answer two kinds of
VARIANCEAFs: regression-based and density-based. Density-
based VARIANCE AFs take the following general form:

SELECT VARIANCE(x) FROM T

WHERE x BETWEEN lb AND ub;

where only (column) x is involved in the query. Regression-
based VARIANCE queries take the following form:

SELECT VARIANCE(y) FROM T

WHERE x BETWEEN lb AND ub;

having both independent and dependent variables. These
require both the density estimator and the regression model.

2.3.1 Computing Aggregates with Density Estimators.

Density-BasedAggregate Functions include COUNT, VARIANCE,
STDDEV and PERCENTILE.

COUNT. Formally:

COUNT (y) ≈ N ·

∫ ub

lb
D(x)dx (1)

The integral of the density estimator is evaluated in inter-
val given in the range selection operator, i.e.,

∫ ub
lb D(x)dx ,

yielding the proportion of data points that lie within this
range. N (the size of the table), scales up

∫ ub
lb D(x)dx to be

an approximate representation of the total number of points
in this range.

VARIANCE and STDDEV. Formally:

VARIANCE_x(x) = E
[
x2
]
− [E [x]]2

=

∫ ub
lb x2D(x)dx∫ ub
lb D(x)dx

−

[ ∫ ub
lb xD(x)dx∫ ub
lb D(x)dx

]2
(2)

STDDEV _x(x) =
√
VARIANCE_x(x)

=

√√√√∫ ub
lb x2D(x)dx∫ ub
lb D(x)dx

−

[ ∫ ub
lb xD(x)dx∫ ub
lb D(x)dx

]2 (3)

By definition, the variance of x is equal to E
[
x2
]
−[E [x]]2.

The expectation of x and x2 could be calculated via the inte-
grals involving the density estimator D(x) as shown above.

PERCENTILE. In general, PERCENTILE returns the value p,
for which P(x < α) = p. Thus, given the probability density
estimator D(x) and the pth percentile point, the problem
translates to finding the value α that meets

∫ α
−∞

D(x)dx =

p. Note,
∫ α
−∞

d(x)dx is the cumulative distribution function
(CDF), and is usually denoted as F (x). Thus, the problem
becomes finding the root for equation

F (x) = p (4)

If the reverse of the CDF, F−1(p), could be obtained, then the
pth percentile for Column x is

α = F−1(p) (5)

However, there is usually not a theoretical solution for F−1(p),
and a more practical solution adopted in DBEst is to find the
solution for Equation 4 through an iterative process, which
is the Naive Bisection method for finding the root [27].



2.3.2 Computing Aggregates with Regression Models. Aggre-
gates that can be computed using regression models include
SUM, AVG, VARIANCE and STDDEV.

AVG. Formally:

AVG(y) = E [y]

≈ E [R(x)]

=

∫ ub
lb D(x)R(x)dx∫ ub

lb D(x)dx

(6)

The average value of y, or its expectation E [y], could
be approximately treated as the expectation of R(x), which
is E [R(x)]. To calculate the average value of a continuous
function R(x), we only need to know its density function.

SUM. Formally:

SUM(y) = COUNT (y) · AVG(y)

≈ COUNT (y) · E [R(x)]

= N ·

∫ ub

lb
D(x)dx ·

∫ ub
lb D(x)R(x)dx∫ ub

lb D(x)dx

= N ·

∫ ub

lb
D(x)R(x)dx

(7)

The sum of y equals the product of the count and the aver-
age value ofy. FromEquation 1 and 6, we get the approximate
representations of the count and average value of y: mul-
tiplying equation 1 by equation 6, we get the approximate
representation of SUM(y), which is N ·

∫ ub
lb D(x)R(x)dx .

VARIANCE and STDDEV. (Please refer to Density-Based Aggre-
gate Functions for the density-based VARIANCE and STDDEV
AFs). Formally:

VARIANCE_y(y) = E
[
y2
]
− [E [y]]2

≈ E
[
R2(x)

]
− [E [R(x)]]2

=

∫ ub
lb R2(x)D(x)dx∫ ub

lb D(x)dx
−

[ ∫ ub
lb R(x)D(x)dx∫ ub

lb D(x)dx

]2
(8)

STDDEV _y(y) =
√
VARIANCE_y(y)

≈
√
VARIANCE_x(R(x))

=

√√√√∫ ub
lb R2(x)D(x)dx∫ ub

lb D(x)dx
−

[ ∫ ub
lb R(x)D(x)dx∫ ub

lb D(x)dx

]2
(9)

By definition, the variance ofy is equal to E
[
y2
]
−[E [y]]2.

ReplacingywithR(x), gives an approximation of VARIANCE(y).

Supporting Group By
DBEst supports GROUP BY queries of the form:

SELECT z, AVG(y) FROM T

WHERE x BETWEEN lb AND ub

GROUP BY z;

DBEst’s rationale is to treat each value of z as a separate
data set over which to evaluate the given AF. Therefore,
during sampling, a sample is recorded per each z value. Sub-
sequently, themodels are built and used per each such sample
to compute the AFs, as detailed above.

Thus, given a GROUP BY query, DBEst will call all models
built for the z values, and the predictions from all models
form the result for this particular query.

Supporting Multivariate Selection Operators
So far, supported queries included a range predicate over a
single attribute. The multivariate range-selection operator
can be straightforwardly supported. The mathematical foun-
dation for multivariate aggregate query processing is similar
to the univariate query processing. Take AVG queries as an
example and an aggregate query with the following form:

SELECT AVG(y) FROM T

WHERE x1 BETWEEN lb1 AND ub1

AND x2 BETWEEN lb2 AND ub2;

The AVG aggregate of y could be approximately treated as:
AVG(y) = E [y]

≈ E [R(x1,x2)]

=

∫ ub1
lb1

∫ ub2
lb2 D(x1,x2)R(x1,x2)dx2dx1∫ ub1
lb1

∫ ub2
lb2

D(x1,x2)dx2dx1

(10)

And this could be extended to higher dimensions, as well as
other aggregates, following the formulas given earlier.

Supporting Categorical Attributes
For ordinal attributes the treatment is straightforward as
attribute values essentially map to ordered numbers. Hence,
supported queries include range predicates on such attributes.
For nominal attributes there is no simple way to transfer the
values to meaningful numbers. DBEst’s support for nomi-
nal categorical attributes mimics the support for GROUP BY
attributes by maintaining regression and density estimator
models for each nominal value, such as store_ids, city, or
classes of products in a commercial application, etc.

Limitations
We note that GROUP BY queries with large numbers of groups
pose special challenges for DBEst. First, the number of mod-
els grows linearly with the number of groups. This affects



overall training time. (Fortunately, this task is embarrassingly
parallelizable). Likewise, this affects also query response
times: Each model (one per group) needs be evaluated; again,
this is embarrassingly parallelizable.

Similarly, although per-model the space savings of DBEst
are very large, the required space grows linearly with the
number of groups. DBEst has the following alternatives: First,
to not build models when the number of groups is too large.
This is inlinewithwhat VerdictDB does for "large cardinality"
groups, reverting to an exact answer QP engine for such
queries. Admittedly, alas, the problem for DBEst is more
serious. Second, to ‘sacrifice’DBEst’s space savings in order
to just enjoy the large speedups when processing queries
over the models instead of on (sampled) data.
Even further, DBEst can store models for queries having

very large group cardinalities in an SSD. We have imple-
mented this creating model bundles, each of which bundles
all the models needed by a query with a large number of
groups. Concretely, consider a query that requires a join of a
(10m-row sample of a) large fact table with a small dimension
table and 500 of groups (models). Serializing this bundle of
500 models amounts to 97MBs. Reading from the SSD and
deserializing such a bundle takes <132ms. Added to the ca.
600ms needed to process this join with GROUP BY query in
DBEst gives a total of <800ms response time. To put this
in context, VerdictDB requires ca. 8secs for such a query, a
speedup of 10x.

Small groups pose additional limitations. Specifically, build-
ing models over small groups is an overkill; it is preferable
to just keep and process the small number of tuples in the
group. This is inline with what state of the art AQP engines:
they do not build samples over small tables. Even QuickR
[29] which builds samples online, discovered that a 25% of
all queries in TPC-DS cannot be supported due to groups
not having enough support.
Finally, unlike sampling-based AQP engines, DBEst cur-

rently does not provide a priori error guarantees.

3 IMPLEMENTATION
As shown in Fig. 1, a sample is firstly generated for every
column set of interest, which is used to train a regression
model and a density estimator, which are in turn then used
to answer analytical queries on this column set.

Sampling
Stratified sampling [34] is usually the first choice when we
try to filter or group data. It avoids the difficulties when deal-
ing with rare groups and highly skewed data distributions.
However, it also increases the difficulty if we try to build
a regression model or a density estimator over a stratified
sample. DBEst relies solely on reservoir sampling [55] to

generate uniform samples over the original table. Different
GROUP BY values are recorded from the original table dur-
ing the training process, and they are further used to check
whether any group is underrepresented in the samples. Our
experiments show that this suffices to provide excellent per-
formance with respect to accuracy and efficiency for all AFs
and for GROUP BY, across all tested data sets.
As DBEst is a model-based AQP engine, any samples it

builds are deleted after model training. Thus, DBEst sig-
nificantly reduces memory requirements, as its models are
significantly smaller than the samples. Also, as accuracy de-
pends on sample sizes, this indirectly affords the opportunity
to use larger samples for training models.

Density Estimator
There are many existing density estimation methods, in-
cluding the kernel estimator, the nearest neighbor method,
the variable kernel method, orthogonal series estimators,
etc [51]. Histograms are the simplest form of density esti-
mators and have enjoyed a prominent role in DBs [3] for
enhancing query processing performance. However, their
discrete nature is at odds with the continuous-function view
employed within DBEst. Therefore, the kernel density esti-
mation method is chosen as the density estimator in DBEst
as it has been found to be highly accurate and efficient.

The density estimation implementation is based on
sklearn.neighbors.KernelDensity from the scikit-learn
package [42], which uses the Ball Tree or KD Tree. In ad-
dition, kernel density estimation can be performed in any
number of dimensions, allowing DBEst to extend its support
for multivariate query processing.

Regression Model Selection
High performance regression models include XGBoost [12],
catboost [45], LightGBM [30], gradient boosting (GBoost)
[21], etc. DBEst resorted to boosted regression tree models
since its models must be powerful so to generalize as they
are built from small samples.
We used standard scikit-learn packages (GridSearchCV)

to tune the models using cross-validation. Note that as sam-
ples increase, the regression tree models use deeper and
more trees. However, the choice of an appropriate regression
model is complex: Different models work better for differ-
ent data regions. Our implementations have used various
regression models from piece-wise linear models to XGBoost,
and GBoost and also built an ensemble regressor based on
XGBoost and GBoost. First, each model is trained separately.
Subsequently, the accuracy performance of each of these
models is evaluated, using random queries over the indepen-
dent attribute’s domain. This evaluation data was then used
to train a classifier, which learned which of the constituent



regressors is best for a given range predicate.The XGBoost
classifier was used for this purpose. To shed light into the im-
pact of the regression model, our evaluation section provides
more details for the related times-accuracy-speed trade-offs.

Selecting which Models to Build
This is a generic problem faced by all related efforts in AQP,
that build, a priori state (samples, sketches, or ML models,
as we do) for popular/predictable queries. Approaches range
from trying all combinations for column sets (e.g. [1, 10]),
mining query logs, like BlinkDB [4] which showed that in-
teresting column sets can be identified early in the execution
of a typical workload, or depending on users, like VerdictDB
[38], to identify popular tables, etc. DBEst is rather orthog-
onal to this - any of the above approaches can be used. All
experiments assume knowledge of said column sets of inter-
est, given which DBEst builds samples, models, and evaluates
queries.

Integral Evaluation
The efficiency of the integral evaluation implementation
has a great impact on the performance of DBEst, with in-
teresting accuracy-efficiency trade-offs. Fortunately, this is
a well-studied problem. The integral evaluation package
adopted in DBEst comes from the integrate module in
SciPy [27], which uses a technique from the Fortran library
QUADPACK [43]. The underlying Gauss-Kronrod quadrature
sums are fundamental to many of the automatic subroutines
in QUADPACK. Given an integral

Iw [lb,ub]f =

∫ ub

lb
w(x)f (x)dx (11)

over an interval [lb, ub], where w(.) is a weight function,
then a quadrature sum yields an approximation

Iw [lb,ub]f ≈

n∑
k=1

wk f (xk ) (12)

In Equation 12, the numbers x1,x2, ...,xn are nodes, and
w1,w2, ...,wn are weights corresponding to these nodes. To
calculate a numerical approximation for the integral prob-
lem within absolute accuracy ϵa or a relative accuracy ϵr ,
QUADPACK computes the sequences

{Rnk ,Enk },k = 1, 2, ...,N (13)

WhereRnk is an estimation to the integral value, and Enk is an
error estimation at the iteration step nk . QUADPACK chooses
an adaptive approach that the position of the integration
points of thenth iterate depends on the information gathered
from iterate 1, ...,n − 1.

Parallel/Distributed Computation
Much of DBEst’s internal functioning is embarrassingly par-
allelizable and can be performed on centralized data nodes
or on clusters of data nodes within big data analytics stacks.
First, sampling is easily parallelizable, as different nodes stor-
ing dataset partitions can independently participate in the
sampling process. Secondly, model training can be performed
in parallel. And, for models supporting GROUP BY queries,
samples for each group can be distributed and model training
can occur in parallel. As mentioned, the chosen regression
model is an ensemble, consisting currently of two different
regression models (gradient boosting and XGBoost). Each of
these can be trained in parallel. In fact, several open-source
packages are available. For the parallel implementation of
DBEst we have used these packages.
Thirdly, query processing can easily be parallel. Alterna-

tively, DBEst query execution can remain sequential and ad-
ditional nodes/cores in the system can be utilized to process
other queries, improving significantly system throughput.
Our evaluation section will quantify such savings.
For GROUP BY queries, evaluation of the models of the

different group attribute values can be done in parallel. Our
implementation for this feature is currently suboptimal: (i)
as it is Python-based, we ran into the Global Interpreter
Lock problem (only 1 thread can use the interpreter at a
time) and the fix we implemented (based on using multiple
separate processes is suboptimal); (ii) the packages we use
for model evaluation and integral computation are amenable
to parallel execution but currently we have implemented
no control to orchestrate overall core/node assignment to
tasks. As a result, these subtasks conflict with each other for
resources. Despite this, our results show that parallel DBEst
can achieve speedups per query which can be >10x faster
for queries involving joins with or without GROUP BY.

Actually, a key goal is to avoid relying on big data clusters
or multi-core/node use during query execution as much as
possible. And as we shall see, sequential DBEst, even for
large data sets, often outperforms multi-core VerdictDB.

4 PERFORMANCE EVALUATION
We have evaluated DBEst using queries using column sets
queried in the TPC-DS queries and its schema/data and syn-
thetic queries over real-life UCI-ML repository datasets. Ad-
ditionally, as we wanted to study the sensitivity of DBEst
on key parameters (selectivity of predicates, sample sizes,
supported AFs, etc.) we used synthetic queries over selected
column sets from TPC-DS. The above allows us to system-
atically study separately the effects of GROUP BY and join
operations, as well as the impact of using multiple cores/n-
odes on DBEst and competing solutions. Finally, in addition,



we have experimented with a few complex queries as found
in TPC-DS for stress-testing purposes.

Experiments ran on an Ubuntu 18.04 Server with 12 Intel
Xeon X5650 cores, 64GB RAM and 4TB of SSD disk space.

4.1 Experimental Setup
4.1.1 TPC-DS Workload.
We used scale factors 40-1000, resulting in the largest ta-
ble having ≈2.6 Billion rows and >1TB of data. The queries
involved 16 column pairs from 4 tables. We performed 5
experiments: a.) Multi-column-pair analysis contains ≈100
SELECT-FROM-WHERE queries with a range predicate on
one attribute and an AF on another, involving all 16 col-
umn pairs. b.) Sensitivity analysis consists of 1,000 queries,
measuring performance under various AFs, varying query
ranges, and sample sizes. The column pair [ss_list_ price,
ss_wholesale_cost] is selected and 200 queries are ran-
domly generated for each of COUNT, SUM, AVG, PERCENTILE,
VARIANCE and STDDEV. Sample sizes are 10k, 100k, 1 million
tuples, and the query range varies from 0.1%,0.5%, 1% to
10% of the range-attribute’s domain. c.) Group-by analysis
contains 30 randomly generated queries for the column pair
ss_sold_date_sk, ss_sales_pricewith the Group By at-
tribute ss_store_sk. d.) Join analysis contains 42 randomly
generated join queries between table store_sales and table
store on join key ss_store_sk. The performance of ag-
gregates on ss_whole_sale_cost and ss_net _profit is
analyzed by varying s_number_of_employees. (e) Complex
TPC-DS uses query number 7 and (complex subqueries of)
query 5 and 77 from TPC-DS involving 2-way and 5-way
joins, 2-4 AFs, and 57 to 25,000 groups (in Appendix D).

4.1.2 Combined Cycle Power Plant Workload.
CCPP [56] contains 9568 rows showing hourly average am-
bient variables of a power plant. It is scaled up to 2.6 billion
records. There are 5 columns: Temperature (T), Ambient
Pressure (AP), Relative Humidity (RH), Exhaust Vacuum (V),
and Net hourly energy output (EP). 108 queries are randomly
generated for three column pairs [T,EP], [AP,EP] and [RH,
EP], with query ranges varying from 0.1%,1%,5% to 10%.

4.1.3 Beijing PM2.5 Workload.
This data set [33] contains PM2.5 data of Beijing Interna-
tional Airport and US Embassy. There are 43824 records
totally and this dataset is similarly scaled up. The target is to
predict pm2.5[PM25] level, given Dew Point (DEWP), Pres-
sure (PRES), Temperature (TEMP), Cumulated wind speed
(IWS), etc. 72 queries are randomly generated for four col-
umn pairs [DEMP, PM25], [PRES, PM25], [TEMP, PM25] and
[IWS, PM25], and similar range-query selectivity was used.

4.1.4 Baseline Comparison Setup.
We compare DBEst against state of the art AQP engines:

VerdictDB [38] (source code obtained from [39], BlinkDB [4]
(source code obtained from [48]). We also compare with the
results from an exact-answer columnar analytics RDBMS
(MonetDB [25]) using uniform samples to approximate re-
sults (in Appendix C). Initially, DBEst is configured to run
using a single thread and BlinkDB is deployed in pseudo-
cluster mode in order to compare fairly (without hiding costs
for acquiring/using large clusters). After that, DBEst is con-
figured to use all cores. VerdictDB always runs over Spark
using all 12-cores.

4.2 DBEst Sensitivity Analysis
We stress-test DBEst under varying (i) range-query sizes (se-
lectivity), (ii) sample sizes (used to build the density estimator
and regression models), and (iii) across all AFs.

4.2.1 Sample Size Effect.
Query ranges are set at 1% of the domain size. Sample sizes
vary from 10k, 100k, 1M, and 5M records. Fig. 2 shows
DBEst’s relative errors. The relative error is less than 10%,
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Figure 2: Influence of Sample Size on Relative Error

regardless of sample size, and as the sample size increases
the relative error drops significantly, bringing it to below 1%
when the sample has 1 million records.

Fig. 3 shows the corresponding query response times. As
expected, smaller samples yield shorter response times and
that approximately, an order of magnitude smaller sample
yields an order of magnitude shorter response time. The
message here is that with a sample of 10k records, response
times are well below 100 milliseconds! And this buys a rela-
tive error of < 10%. Investing into samples of 100k records,
brings down relative errors to below 1% for PERCENTILE,
VARIANCE, STDDEV, AVG and to a few % for COUNT, SUM
while response times hover around 0.3 second.

To provide more context, Fig. 4 (a) shows results for DBEst
and VerdictDB for state-building times (sampling + model
training time for DBEst and sampling time for VerdictDB).
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Figure 4: DBEst vs VerdictDB Overheads

Results show that envisaged DBEst sample sizes, yield big im-
provements in state building times compared to VerdictDB.

Fig. 4(b) shows the space overhead of DBEst and VerdictDB.
Recall, DBEst needs to maintain only the models and not the
samples for query execution. The space overhead of DBEst
is 1 to 2 orders of magnitude less than VerdictDB’s.

4.2.2 Query Range Effect.
Sample sizes are fixed at 100k, and query ranges vary (0.1%,
1% to 10%). In Fig. 5, as ranges increase, we see a decrease
in the error for all AFs. This is expected as smaller samples
are pressed hard to find enough representatives. However,
accuracy performance is nonetheless excellent.
Fig. 6 shows response times. Except for PERCENTILE, (as

multiple integrals are involved in finding the pth point and
times are 1.2secs) the query time for all other AFs is less than
1 second. As expected, query times increase as query ranges
increase, as integral evaluation take more time.

4.3 CCPP Workload Performance
CCPP is scaled to include 2.6 billion records, (similar to the
scaled-up TPC-DS) totaling around 1.4TB in size. 108 queries
are randomly generated for COUNT, SUM and AVG for 3 col-
umn pairs, stress-testing with low-selectivity query ranges

CO
UN

T

PE
RC

EN
TIL

E

VA
RI

AN
CE

ST
DD

EV SU
M

AV
G

1.0%

Re
la

tiv
e 

Er
ro

r (
%

)

0.1% query range
1.0% query range
10.0% query range

Figure 5: Influence of Query Range on Relative Error
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Figure 6: Influence of Query Range on Response Time

(0.1%, 0.5% to 1%). We compare the accuracy performance
between DBEst, VerdictDB, and BlinkDB over samples sizes
varying of 10k to 100k.
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Figure 7: Relative Error: CCPP Dataset (10k Sample)

Fig. 7 and Fig. 8 summarize the average relative error of
DBEst, VerdictDB and BlinkDB. The overall error of DBEst
is 3.5%, while for the other QP engines, the corresponding



COUNT SUM AVG OVERALL
0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

Re
la

tiv
e 

Er
ro

r (
%

)

DBEst_100k
BlinkDB_100k
VerdictDB_100k

Figure 8: Relative Error: CCPP Dataset (100k Sample)

error is more than 10% for 10k samples (especially for COUNT
and SUM). For 100k samples, DBEst error drops to 1.9% and
the error of VerdictDB drops to 3.5%. Thus, to achieve the
same accuracy, VerdictDB acquires one order of magnitude
larger sample size. The accuracy of BlinkDB is worse than
VerdictDB.

Fig. 9 shows the query times for DBEst and VerdictDB.
For DBEst they are less than 0.3 seconds. The average query
response time is around 0.02 seconds if the sample size is
10k, and increases to 0.27 seconds for 100k samples. The time
cost for VerdictDB varies between 0.6 to 0.9 seconds. Hence,
DBEst brings speedups from ca. 4x to ca. 30x. Please note
that VerdictDB uses all 12 cores, while DBEst uses 1 thread.
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Figure 9: Response Time for CCPP Dataset

We also conduct the experiments using MonetDB [25],
and the comprehensive comparison results between DBEst
and MonetDB are shown in Appendix C.

4.4 TPC-DS Workload Performance
Using appropriate values (from the sensitivity analysis) we
evaluate accuracy, response times and time/space overheads
for both DBEst and VerdictDB for TPC-DS.

4.4.1 Accuracy.
Fig. 10 shows the average relative errors. Given the same
sample size, DBEst always achieves better prediction accu-
racy than VerdictDB for aggregates COUNT, SUM and AVG. For
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Figure 10: Relative Error: DBEst vs VerdictDB

this workload, if/when the sample size is 10k, there is a big
difference in accuracy: Overall, DBEst achieves 5.26% relative
error, while VerdictDB involves more than 10% relative error.
For 100k samples, both DBEst and VerdictDB have excellent
error, and DBEst wins only slightly.

4.4.2 Query Response Time.
Fig. 11 shows corresponding query times of DBEst and Ver-
dictDB. For 10k samples, DBEst takes less than 0.02 seconds
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Figure 11: Response Time: DBEst vs VerdictDB

to process a query, while VerdictDB takes around 0.33 sec-
ond! Query response times of DBEst increase to 0.12 second
for 100k samples while VerdictDB requires >0.40 seconds
to process the same queries. Juxtaposing the last two fig-
ures yield consistent conclusions with what we observed
from the sensitivity analysis with respect to trade-offs be-
tween response times and accuracy. Overall, DBEst enjoys
speedups from ca. 3.5x to ca. 16x than VerdictDB and better
accuracy. Please note that VerdictDB times use all 12 cores,
while DBEst uses just 1 thread.

4.4.3 Overheads.
We now evaluate both the training time and space overheads
of DBEst and VerdictDB. Fig. 12(a) summarizes the averaged
model sample+training time of DBEst and VerdictDB’s sam-
pling time per column pair.For 10k samples, DBEst takes



around 68s to generate a sample and 0.65s to build the mod-
els. While the average time for VerdictDB to generate the
sample is around 108s. When the sample size increases to
100k, the time cost to generate samples remains the same,
while it takes around 4.97s for DBEst to build the models.
Overall, the total state building time of DBEst is less than
that of VerdictDB.
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Figure 12: Overheads: DBEst vs VerdictDB

Fig. 12(b) shows the space overheads. For 10k samples it
takes DBEst about 0.192MB to keep one regression model
and one density estimator, while the memory overhead for
VerdictDB is 1.7MB to keep the sample. For 100k samples,
DBEst needs about 1.68MB to keep the models, while Ver-
dictDB needs ca. 9.7MB for its samples. So, in terms of space
DBEst offers an improvement from 5x to 9x.

4.5 Beijing Workload Performance
The Beijing data set is scaled up to 100 million records, and
72 queries are randomly generated across AFs.

Fig. 13 displays relative errors obtained by DBEst and
VerdictDB.We notice a big difference in accuracy when small
samples are used. For 10k samples, the average relative error
by DBEst is 4.72%, while the relative error by VerdictDB is
9.57%. For 100k samples, the relative errors drop to 1.67%
and 4.41%, respectively. Thus, as before, sample-based AQPs
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Figure 13: Accuracy: DBEst vs VerdictDB

give higher errors if the sample size is small (especially when
range predicate selectivity is small). As DBEst adopts models
on top of samples, which can generalize, DBEst requires
smaller samples to make more accurate estimations.

Fig. 14 shows the corresponding query response times for
various sample sizes. Even if the sample size is 10k, VerdictDB
still needs at least 0.38s to produce the answer, while around
0.6s are needed for 100k samples. With 10k samples, DBEst
needs only 0.013s to provide an answer; with 100k samples,
DBEst needs around 0.23s, This agrees with the above sensi-
tivity study. Overall, DBEst brings speedups from ca. 3x to
ca. 30x compared to VerdictDB. Please note that VerdictDB
times use all 12 cores, while DBEst uses just 1 thread.
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Figure 14: Response Time: DBEst vs VerdictDB

4.6 TPC-DS Group By Performance
In total, 90 queries are used for the [ss_wholesale_cost_sk,
ss_list_price] column pair from the TPC-DS workload,
having 30 queries for each of COUNT, SUM and AVG, where
the GROUP BY attribute is ss_store _sk. The table used is
store_sales and is scaled up to include 100 million tuples.
There are 57 distinct values for the GROUP BY attribute. The
sample size for DBEst is chosen so that on average there will
be 10k rows for each GROUP BY value.

Fig. 15(a) shows average relative errors (averaged over all
57 groups). For COUNT and SUM, DBEst outperforms VerdictDB
significantly. For AVG, both have similar relative error, which
is less than 3%, and DBEst performs slightly better.

Query response times are shown in Fig. 15(b). VerdictDB
takes slightly less time than DBEst for a GROUP BY query.
Note, VerdictDB uses all cores, while DBEst only uses one.
§4.7 will show a DBEst with parallel GROUP BY processing.

Figure 16 shows the time/space overheads for building the
states required by DBEst and VerdictDB. The conclusions for
the Group By case are consistent with all previous results
on overheads of DBEst and VerdictDB. Note, DBEst models
are currently trained in sequence. If the models are trained
in parallel, the training time is 1 order of magnitude smaller.
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Figure 15: Query Performance for 57 Group Values
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Figure 16: Overheads for 57 Group Values

We now study error performance for individual groups.
Fig. 17 shows the histogram of the relative error for the 57
groups for SUM queries. The average error for the SUM queries
in DBEst is 5.84% and for VerdictDB 16.32%. More than 80%
of the 57 groups have a relative error <7.0% for DBEst. For
VerdictDB, the minimum achieved error is around 10%. Note
also that variance around the mean is smaller for DBEst and
large for VerdictDB. The maximum relative errors are ca.
10% and 24%, respectively, and several groups suffer from
errors >20% with VerdictDB. Fig. 22 in Appendix A shows
the histograms and same conclusions for COUNT and AVG.

Figure 17: Accuracy Histogram: SUM for 57 Groups

4.7 Parallel Query Execution
Previous experiments had DBEst run with a single thread,
while VerdictDB (or Spark) made use of all 12 cores. Here,
we show DBEst’s performance when running in parallel.

4.7.1 Parallel GROUP BY.
If there aren distinct groups DBEst buildsnmodels uses them
all to answer the query. The n models can be evaluated in
parallel. Recall that, our current implementation for parallel
model evaluation is suboptimal.
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Figure 18: Group By Query Response Time Reduction

Single-threaded DBEst needs 1.46s, while VerdictDB using
all 12 cores needs 0.82s. Multi-core DBEst brings the total
query response time down to 0.57s, as shown in Fig. 18.

To be fair, with the current implementation, DBEst would
take more time than VerdictDB when the number of groups
exceeds ca. 100. But this is largely an implementation issue,
as in principle, per-groupmodel evaluation is embarrassingly
parallelizable. It is also important to note that the Group By
queries tested did not involve any joins. As will be shown
later, processing even relatively small joins is ca. 60x more
expensive in VerdictDB (as it needs to compute the join of
million-tuple samples), whereas DBEst does not. In such
cases, Group By in DBEst becomes better practically always
than VerdictDB (since when the number of groups becomes
very high, none of the systems would develop samples/mod-
els and let the exact-answer QP engine handle such queries).
Nonetheless, as we see below, it may be preferable to accept
longer query processing times, even using per-query single-
threaded execution, in order to increase system throughput.

4.7.2 Throughput with Parallel Execution.
All state of the art AQP engines utilize many or all nodes/-
cores in the system for each query execution - intra-query
parallelism - in order to reduce response times to acceptable
levels. In principle, this will reduce overall system through-
put, as concurrently executing queries would conflict for
threads/cores. DBEst allows for large inter-query parallelism
levels, as most queries execute using a single thread.

Fig. 19 displays the impact of the number of cores on the to-
tal query response time. With DBEst, time decreases as more
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Figure 19: Throughput of Parallel Execution (CCPP)

cores are used. With 12 cores, the total time drops from 35.4s
to 5.78s (from 4.6 to 0.9) for 100k (10k) samples. However,
for VerdictDB, as each query uses all cores, the total query
processing time remains unaffected. The same experiments
are run for the TPC-DS and Beijing PM2.5 datasets, and the
same conclusion hold, see Appendix B for more information.
DBEst improves throughput by ca. 6x to 30x.

4.8 Join Query Processing
We now demonstrate DBEst’s performance for join queries.
Two tables from TPC-DS store_sales and store, are joined
on ss_store_sk. Aggregates on ss_net_profit and ss_
wholesale_cost are analyzed by varying store.s_number
_of_employees. 42 queries are used for the [s_number_of_
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Figure 20: Join Accuracy Comparison

employees, ss_net_profit] and [s_number_of_employees,
ss_wholesale _cost] column pairs, having 14 queries for
each of COUNT, SUM and AVG. VerdictDB joins a sample of
the large fact table (default size of 10m tuples) with the actual
small 60-row dimension table.

Fig. 20 shows the overall DBEst error is 4.48% (10k samples)
and 2.24% (1m samples). As VerdictDB uses a very large 10m
sample, the error is slightly better (1.66%). Appendix D will
show cases where VerdictDB has a higher error than DBEst.
Appendix C will also show how robust DBEst accuracy is
for joins even when stressed with skewed join-attribute dis-
tributions, unlike other approaches.
Turning to Fig. 21, for 10k samples, DBEst needs only

0.028s and 0.37MB. For 1m samples, it needs 0.82s and 1.12MB.
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Figure 21: Join Performance Comparison

VerdictDB, takes 6.7s, while requiring >270MB. Overall, DBEst
achieves speedups from 8x to >200x and smaller space over-
head from ca. 100x to 250x. The improvements would be
much larger if two large tables were joined.

4.9 Major Lessons
The major lessons learned are as follows: DBEst
• brings big (orders of magnitude) gains in query processing
times. Even single-threaded DBEst often outperforms a
12-core installation of a state of the art AQP engine.

• allows for inter-query parallelism, which can lead to up to
30x improvement in throughput.

• is particularly frugal in system resource demands, e.g., in
cores and memory, while achieving low response times.

• ensures high accuracy with small per-group variance, with
small overheads (state building times, and space).

• can trade-off accuracy vs efficiency: multiple models with
different-size samples can be developed and the one that
caters to efficiency vs accuracy targets can be used.

• operation (sampling, training, and evaluation) can be par-
allelized, making it suitable for scale-out/up installations.

• can process joins with up to ca. 250x speedups, compared
to the state of the art. Furthermore, its accuracy is high
even when stress-tested, with skewed and non-skewed
join-attribute distributions, unlike related work.

• is significantly space/time-challenged with large numbers
of groups in Group By. To ameliorate this, DBEst can
create model bundles, serialize and store them, say, in SSDs.
Thus only the small state crucial for the query at hand is
needed in memory. Our experiments show the time for
IO and deserialization is very small (ca. 100ms for 500-
group bundles), ensuring still large speedups. Additionally,
the bundles can be processed in parallel by different cores
and/or different nodes in a scale-out cluster, able to attain
thus sub-second latency even for large group numbers.

5 RELATEDWORK
Big data infrastructures, (e.g., SPARK [59], Hadoop [17], and
TEZ [47]) and QP engines over them, such as Hive [54],



Spark SQL [8], Impala [32], Amazon Redshift [23], and Shark
[19] have been a catalyst for analytical query processing.
Efficient analytical QP engines with columnar data repre-
sentations have also been developed (e.g., MonetDB [25] or,
for streaming environments, Trill [18], which can also run
in distributed .NET environments, (Orleans [9]). A related
thread concerns applying data pre-fetching techniques [26],
including semantic windows [28], or developing caches for
analytical query results e.g., Data Canopy [58].

With respect to AQP research, the existing solution space
is quite complex. Some approaches based on data sketches
have received considerable attention [14–16]. Others focus
on progressive/online aggregation [13, 18, 24, 37, 46]. Nonethe-
less, AQP research has been largely dominated by sampling-
based approaches [1, 2, 4, 10, 20, 22, 29, 38, 40, 41, 44]. A
different perspective is to think of forgetting data (items).
DBs with ‘amnesia’[31] could be viewed as equivalent to
sampling approaches in that forgotten items correspond to
non-sampled items. It would be interesting to see how such
an approach compares with state of the art AQP engines.

State of the art sampling-basedAQP approaches are broadly
divided into two categories and in general no single approach
is a ‘silver buller’[52]. Techniques that rely on online sam-
pling, create samples on the fly and use them to approximate
answers. But, even the best such efforts (e.g., [29]) only de-
liver a ca. 2x speedup. The second category can bring much
bigger speedups [1, 4, 10, 38, 41] exploiting the fact that often
query workloads are (at least partially) predictable: one can
know beforehand popular query templates, including the
joined tables and join keys, attributes for range predicates
and grouping, etc. STRAT [10] creates a stratified sample over
the unions of columns that occur in the GROUP BY or HAVING
clauses. It considers all combinations of the column pairs.
BlinkDB [4] showed that such templates can be identified
from a small prefix of a workload. VerdictDB [38] depends
on users providing this information. Samples are created
for predictable/popular tables and column sets offline and
kept in memory and queries are processed over the samples
reducing drastically execution times.
Works on predictable queries with prebuilt, a priori sam-

ples are closest to DBEst. BlinkDB [4] relies on uniform and
stratified sampling and can trade-off performance vs accu-
racy, while it supports the COUNT, SUM, AVG AFs. DBL [41],
builds a ‘learning’layer on top of AQPs (like BlinkDB) in an
effort to learn how to reduce errors. VerdictDB [38] develops
uniform, hashed, and stratified samples and supports cur-
rently COUNT, SUM, AVG. Samples are at least 10m-tuples
each. It contributes fast error approximation techniques, pro-
viding error guarantees with low costs. Our work was in-
spired by such efforts. DBEst extends the state of the art in
this domain. It uniquely combines regression and density
estimator models, which can generalize and provide high

accuracy, even when built over very small samples. These
models are very compact guaranteeing large speedups in
query times. However, unlike sampling-based AQP research,
currently DBEst does not provide a priori error guarantees.
With respect to model-based approaches, [50] developed

clustering techniques to derive low-error density estimators
(DEs) and showed how to use them for COUNT/SUM/AVG.
It does not use regression models (RMs) and pits DEs vs
sampling. FunctionDB, [53] builds Piecewise Linear (PLR)
functions over complete datasets and query these functions
instead: Queries define data regions, R, using ranges. AFs are
computed integrating PLR over sampled data points in R. No
DEs are employed and sampling online is expensive, while
PLR often suffers from high errors. More recent research on
applying ML models include DBL [49] and [5–7]. Most of
these works make assumptions of the expected workload.
Recent work on learning to forecast workloads [35] may
help overcome some of these assumptions. DBEst builds SML
models and queries are answered without any sample, or
base data accesses and DBEst models are “first class citizens”,
unlike DBL, being the only way to answer queries. Unlike
[5–7] it does not depend on a large number of prior queries
to learn while it handles many, not just one AF.

6 CONCLUSION
With this paper we presented DBEst, an SML-model-based
AQP engine. DBEst’s salient feature is that it processes queries
using regression and density-estimator models. Its key in-
sight is that derivedmodels can generalize nicely, thus able to
attain high accuracy despite being built from very small sam-
ples. These facts allow DBEst to offer highly accurate AQP
with dramatic speedups, while being very frugal in memory
requirements, as models are very compact. DBEst’s philoso-
phy additionally departs from related work in being frugal
with respect to demands for system resources during AQP:
often single-threaded DBEst outperforms multi-core AQP
engines. The paper studied DBEst’s sensitivity on key pa-
rameters and systematically evaluated it against two state of
the art AQP engines, studying separately the effects of range
predicate selectivities, GROUP BY, and join operations, as well
as the impact of using multiple cores/nodes. Future work fo-
cuses on sampling strategies, density estimators, and regres-
sion models offering better efficiency-overheads-accuracy
trade-offs, SML models for advanced selection operations
on nominal categorical attributes, and better integration of
DBEst with other AQP and exact-answer engines.
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A DETAILED ANALYSIS: GROUP BY
§4.6 shows in detail the error distribution for GROUP BY
queries involving SUM. Here, we demonstrate the same for
AFs COUNT and AVG, as shown in Fig. 22.

(a) COUNT (b) AVG

Figure 22: Accuracy Histogram for 57 GROUPS

For COUNT, the average relative errors by DBEst and Ver-
dictDB are 5.34% and 16.13%, respectively. It is also noticeable
that the error has a smaller variance from DBEst, while Ver-
dictDB tends to produce a bad prediction with a big variance.
The same conclusion holds for AF AVG as well.
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Figure 23: Throughput with Parallel Query Execution

B THROUGHPUTWITH INTER-QUERY
PARALLELISM

§4.7.2 analyzes the total workload response time for CCPP.
This section further demonstrate DBEst’s abilities in process-
ing queries for the TPC-DS and Beijing PM2.5 Datasets.
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Figure 24: Error Histogram vs MonetDB: TPC-DS GROUP By Workload

Fig. 23(a) shows the overall time for processing all 97
queries in the TPC-DS dataset, as the number of processes
increases from 1 to 12. For example, with 100k-samples, it
takes ca. 24s for DBEst to process all 97 queries with a single
process. This time drops to 3.07s when 12 processes are run-
ning in parallel. This means that to answer a single query,
DBEst only needs around 32ms on average. The same con-
clusions hold for the Beijing PM2.5 dataset, (Fig. 23(b)). We
observe speedups up to ca. 10x by utilizing all available cores.

C COMPARISONWITH MONETDB
It is instructive to discuss how a standard exact-answer sys-
tem, turned into an approximate query engine by operating
on samples, would fair against DBEst and other AQP engines.
Here we address this issue using a state-of-the-art columnar
DB for analytics, MonetDB.

There is little argument that such systems, like MonetDB,
could crunch very efficiently samples and produce approxi-
mate answers. The point here is not about response times.
Using an exact-answer QP engine over a sample, could yield
large errors, unless samples got very large. The relative error
bounds achievable with such techniques are well understood.
For example, (using 0.9 probabilty Hoeffding bounds) [20]
for COUNT, relative errors are ca. 1.22 / (s ×

√
(n)), where

s is the selectivity in the query result before the aggregate
operation (i.e., combined selectivity of all selection and join
operations) and n is the sample size. As these are bounds,
we conducted the experiments below using our datasets and
queries from above.
As many models are needed to support the GROUP BY

queries, DBEst needs significantly higher query response
time to process each group sequentially, but, in any case,
overall response time is 360ms (single-threaded) or 107ms
(12 cores), while MonetDB processes the query with a fewms.
Turning to errors, Fig. 25 compares the performance between
DBEst and MonetDB for the TPC-DS GROUP BY workload.
Using 10k samples, DBEst achieves an overall relative error
of 4.43%, while MonetDB’s corresponding relative error is
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Figure 25: Error vs MonetDB : TPC-DS Group By

12.46%. To shed more light into accuracy-performance, the
histograms of relative errors for COUNT, SUM and AVG are sum-
marised in Fig. 24. Take SUM as an example. The maximum
(minimum) error produced by DBEst is ca. 10% (2%). While
for MonetDB, the corresponding relative errors are >30% (ca.
8%). So, DBEst provides estimations with low mean error and
variance among groups, while for several groups MonetDB’s
error is unacceptably high.
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Figure 26: Error vs MonetDB: CCPP Workload

Fig. 26 summarizes DBEst and MonetDB’s accuracy for
CCPP. The same conclusions hold. DBEst error is better than
MonetDB’s, even when the latter uses an order of magnitude
larger samples. As models are ca. one order of magnitude
more compact than actual samples, the above translates to
achieving lower error with ca. 53x smaller space require-
ments (340KB vs 18.24MB).



Approximate MonetDB and Joins
We now study approximate MonetDB for join queries. [11,
60] state that the join result accuracy is greatly influenced
by the distribution of the join attribute. We create two tables
A(x,y) and B(z,y), whose join attribute y follows the Zipf dis-
tribution with density function p(x = k) = k−s/ζ (s) where k
is the rank, s is the Zipf parameter (s ≥ 1 and higher values
yield more skewed distribution) and ζ () is the Riemman’s
zeta function. Here, s = 2.

Table A (B) has 100k (100m) records. And y in Table B has
a skewed and a non-skewed region. MonetDB answers 20
queries (10 for the skewed region) of the form:

SELECT COUNT(z), SUM(z), AVG(z)
FROM A, B

WHERE A.y=B.y

using 10k, 100k, and 1m samples fromTable B and small Table
A. Fig. 27 shows that MonetDB is significantly more chal-
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Figure 27: Accuracy Comparison for Join Queries

lenged with such distributions. Unlike DBEst, MonetDB error
is unacceptably high and it could not answer any query (3
queries) with the 10k (100k) samples. Even with 1m samples,
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Figure 28: Query Response Time Comparison

MonetDB errors for COUNT and SUM are 25.41% and 25.39%. In
contrast, DBEst always achieves high accuracy, with errors
ranging from 1.74% to 3.51%.
Fig. 28 shows that MonetDB is much more efficient than

DBEst: for 10k (100k) sample, DBEst takes 17.57ms (129ms),
while MonetDB only requires 0.74ms (2.65ms). This is as ex-
pected, sinceMonetDB has been optimized for over 2 decades

now (and it is also written in C which is inherently much
faster than Python). Nonetheless, DBEst’s time is in absolute
terms very fast, while also guaranteeing high accuracy. This
showcases DBEsts’ all-around strong performance.

D COMPLEX TPC-DS QUERIES
We now turn to DBEst’s performance for complex queries
as they appear exactly in the benchmark: Namely, Query 7
and (complex subqueries of) Query 5 and Query 77. These
queries involve 2 to 4 AFs, 2- to 5-way joins, as well as nested
subqueries (flattened out and materialized for DBEst).
There are 57 groups for Query 5 and 77, and >25,000 for

Query 7. As stressed earlier, queries like Query 7 would not
be handled by DBEst due to the very large number of groups.
In fact, query 7 will not be handled by systems like QuickR
either (as groups have a very low support – less than 20
entries per group). So, this represents an extreme stress-test.
Performance is summarized in Fig. 29. Sample sizes vary

from 10k to 100k. Overall, DBEst achieves higher accuracy
and significantly smaller response times: For Query 77 and
10k-samples, as an example, DBEst (VerdictDB) achieves an
overall relative error of 7.56% (11.24%). If the sample size
increases to 100k, the relative error drops to 2.76% and 3.42%,
respectively. Note this is in contrast to the accuracy observed
in Fig. 20. For Query 7, as the joined tables have fewer than
10m rows, VerdictDB computes the exact answer (zero error).
Given that each of the 25k groups consists of <20 records,
DBEst is trained on the complete join-table instead of on sam-
ples. The overall error is <6%, although a small percentage
of groups have relative errors higher than 20%.
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Figure 29: Performance for TPC-DS Queries 5, 7, 77

As explained, DBEst’s query response time is greatly in-
fluenced by the number of groups in the queries. For Query
7, the query response time is ca. 600s using a single-threaded
implementation. Fig. 29(b) shows performance with multi-
threaded DBEst, which exploits all 12 cores and reduces the
response time to ca. 50 seconds. Dividing the 25k groups into
N model bundles and using a scale-out cluster of N such 12-
core nodes would reduce further the time by a factor equal
to N . So, a cluster of ca. 50 such nodes would be required to
attain a sub-second response time.
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