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Adaptive Detection and ISI Mitigation for

Mobile Molecular Communication

Ge Chang, Lin Lin, and Hao Yan∗

Abstract

Current studies on modulation and detection schemes in molecular communication mainly focus on

the scenarios with static transmitters and receivers. However, mobile molecular communication is needed

in many envisioned applications, such as target tracking and drug delivery. Until now, investigations

about mobile molecular communication have been limited. In this paper, a static transmitter and a

mobile bacterium-based receiver performing random walk are considered. In this mobile scenario, the

channel impulse response changes due to the dynamic change of the distance between the transmitter

and the receiver. Detection schemes based on fixed distance fail in signal detection in such a scenario.

Furthermore, the intersymbol interference (ISI) effect becomes more complex due to the dynamic

character of the signal which makes the estimation and mitigation of the ISI even more difficult. In

this paper, an adaptive ISI mitigation method and two adaptive detection schemes are proposed for this

mobile scenario. In the proposed scheme, adaptive ISI mitigation, estimation of dynamic distance and

the corresponding impulse response reconstruction are performed in each symbol interval. Based on the

dynamic channel impulse response in each interval, two adaptive detection schemes, concentration-based

adaptive threshold detection (CATD) and peak-time-based adaptive detection (PAD), are proposed for

signal detection. Simulations demonstrate that, the ISI effect is significantly reduced and the adaptive

detection schemes are reliable and robust for mobile molecular communication.
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I. INTRODUCTION

Emerging nanotechnology promises the use of molecular communication (MC) in nanonet-

works, by which biological nanomachines (bio-nanomachines) can communicate with each other

by sending and receiving molecules [1]. Being highly efficient and low-cost [2], MC is prevalent

in nature and human bodies, e.g., in cell-cell communication. With the help of nanotechnology,

MC may facilitate a plethora of applications from nano-electromechanical systems (NEMS) to

in-body health monitoring [3].

A nanomachine is the basic element in a MC system. Its size ranges from nanometers to mi-

crometers. There are three different approaches for the development of nanomachines, including

top-down approach, bottom up approach, and hybrid approach [1]. Genetically engineered cell,

as a bottom up approach, is a good candidate for the development of bio-nanomachines. Among

assorted cells that could be used as bio-nanomachines, flagellate bacteria are universally used

in genetic engineering. For example, Escherichia coli (E. coli) is one kind of bacterium with

flagella having the advantages including being low cost and easy to produce [4] and has been

considered as the communicating nanomachines in MC [5].

MC for static nanomachines has been intensively studied in the past few years [6]–[10].

However, mobile MC has received little attention so far, although it can be envisioned as a

potential scenario in many applications. For example, a group of nanorobots could communicate

and coordinate with each other to move towards cancer cells to release drugs [11]. In [12], digital

MC systems in blood vessels were established, where the transmitter nanomachine is mobile.

A clock synchronization scheme was proposed for a similar mobile scenario in [13]. In [14]

and [15], fluorescence resonance energy transfer (FRET) based mobile molecular nanonetworks

was considered. The communication theoretical analysis as well as coverage and throughput

analysis were conducted. Another kind of mobile ad hoc nanonetworks is proposed for collision-

based MC [11]. A positional-distance codes scheme was proposed for mobile MCs and a

hardware experiment based on a macro-scale testbed was performed [16]. The mobility pattern of

nanoparticles, e.g., E. coli, was described in [17]. However, the investigations on signal detection

schemes for mobile MC are rare. Only recently, a simple detection method for mobile MC was

proposed in [18] without considering intersymbol interference (ISI) effect. Ref. [19] proposed

a bit alignment technique for mobile scenario without providing details for detection. More

in-depth investigations on signal detection schemes for mobile MC are needed.
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In the mobile MC, two categories of problems arise. One problem is that the time-varying

impulse response (IR) of the diffusion channel may influence the signal detection. When the

transmitter releases molecules, the molecules move randomly based on the Brownian motion.

According to the Fick’s second law of diffusion, the expected IR of the diffusion channel is a

function of time and the distance between the transmitter and the receiver. The concentration

at the receiver increases quickly until reaching its maximum, and decreases slowly, forming a

long tail [20]. If the transmitter and the receiver are static, the expected IR is only a function of

time and is always the same. However, if the transmitter and/or the receiver is mobile, then the

expected IR varies due to the random change of the distance between the transmitter and the

receiver. For example, if the transmitter and the receiver get closer, the shape of the expected

IR changes in that its peak amplitude increases while the peak time decreases. This fact impacts

the signal detection at the receiver side if the detection scheme for the static MC is still used.

Another problem is the complicated ISI effect [21], [22]. The ISI is caused by the long-tail

of the channel IR. The residual molecules in the long-tail part of former symbols interfere with

the molecules of the current symbol, which may cause incorrect signal detection. In the mobile

MC, the ISI effect becomes more complicated, because the number of residual molecules from

former symbols varies due to the nanomachine’s mobility character, apart from the effect of

noises caused by Brownian motion. In such case, the ISI effect is hard to calculate and mitigate.

Hence, current ISI mitigation methods and adaptive threshold approaches considering ISI for

static MC, such as [22], do not work well for the mobile case.

In this paper, two adaptive signal detection schemes and an ISI mitigation method for mobile

MC are proposed. In each symbol interval, the receiver adaptively estimates the ISI and adaptively

calculates the threshold to make a decision. In contrast to the studies on signal detection for

the static MC, this work deals with the issues caused by the mobile features. To the best of the

authors’ knowledge, approaches to mitigate the ISI effect and perform adaptive signal detection

for the mobile MC has not been studied yet. The main contributions of this work lie in the

following three parts:

1) A three-dimensional channel model for the mobile MC is established considering E. coli’s

mobility nature.

2) An adaptive ISI mitigation method is proposed for mobile MC.

3) Two adaptive detection schemes are proposed for mobile MC.

The remainder of this paper is organized as follows. In Section II, the related work about
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signal detection for MC is described. Section III presents the system model including the

mobility model and the channel model for mobile scenario. Section IV discusses the two main

problems associated with mobile MC. To solve the problem in mobile MC system, Section V

proposes an adaptive ISI mitigation approach and two adaptive detection schemes. In Section VI,

simulations are performed to evaluate the proposed schemes. The results show that the proposed

ISI mitigation method can effectively suppress ISI effect and the adaptive detection schemes

are effective in the signal detection for mobile MC scenario. Finally, Section VII concludes the

paper.

II. RELATED WORK

In this section, the related work on signal detection in MC is presented. Due to the MC channel

property, the molecule concentration at the receiver side spreads. Signal detection refers to the

process of extracting the original information from the received signal after the transformation

through the channel. In addition, the channel noise, such as additive noise or ISI, corrupts the

modulated signal, which makes the detection more difficult.

Different types of modulation techniques need different detectors. For MC, concentration-based

modulation and type-based modulation are the two main widely used modulation techniques

[23], [24]. Many works focus on the detection issues for either concentration-based modula-

tion [9], [10], [21], [22], [25]–[29] or type-based modulation [30], [31], or concentration and

type combined modulation scheme [32]. In this paper, we focus on the on-off keying (OOK)

concentration-based modulation.

The basic process for signal detection includes two steps: 1) sampling the received signal and

2) comparing the sample with a threshold to make a decision. An important issue in the detection

process is to remove the ISI effect. Increasing symbol interval may be one solution to mitigate the

effect of ISI. However, this sacrifices the data rate, which is undesirable. The existing research

works proposed different detection schemes balancing the probability of error and computational

complexity for different data rates. These previous detection schemes, however, are proposed for

the fixed transmitter and receiver, rather than mobile scenario. Some adaptive detection methods

are proposed for better decoding performance considering the ISI effect. In [25], the authors

proposed two detection schemes, namely, sampling-based detection and energy-based detection

for OOK modulation techniques. The receiver samples the molecule concentration at a time or

accumulates the molecule concentration for a bit period, and then compares the value with a
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pre-defined threshold to make a judgement. In [27] and [28], theoretical formulations and archi-

tectures of the strength-based optimum receivers based on spike transmission of molecules were

presented in the presence of both diffusion noise and ISI. The optimum and sub-optimum versions

of amplitude-shift keying (ASK) and OOK receivers were designed. In [10], the authors proposed

sequence detection methods based on maximum a posteriori (MAP) and maximum likelihood

(ML) criterions. A linear equalizer based on minimum mean-square error (MMSE) criterion

and a decision-feedback equalizer (DFE) were also proposed which reduce the probability of

error detection. Similar ideas were proposed in [33], which accounts for the possibility of the

presence of the steady uniform flow in any arbitrary direction, unwanted molecules from other

source, and enzymes in the propagation environment to degrade the information molecules. In

[22], an analytical technique is proposed to determine the optimum threshold. A new modulation

called molecular transition shift keying (MTSK) was proposed to decrease the effects of ISI and

enhance energy efficiency. A power adjustment technique that utilizes the residual molecules

was proposed. A low-complexity non-coherent signal detector for nanoscale MCs was proposed

which can suppress ISI effectively [21]. A detection algorithm for a molecular multiple-input

multiple-output (MIMO) scenario is proposed in [34].

Current ISI mitigation and detection methods are based on the situation where the distance

between the transmitter and the receiver is fixed. Because the distance in the whole communi-

cation does not change, the IR stays the same. If the former symbol values are known, the

effect of ISI on the current symbol is predictable. However, in the scenario of the mobile

MC, the distance between the transmitter and receiver changes all the time due to the random

movement of the nanomachines. The corresponding IR at the receiver changes correspondingly.

This means we cannot obtain a fixed optimal threshold to detect all the transmitted symbols.

Therefore, the proposed detection schemes in the literature without considering the mobility of

nanomachines will not work anymore for the mobile scenario. Furthermore, the existing ISI

mitigation methods based on the fixed IR are also not valid in the mobile scenario. Even if the

former symbols are correctly detected, the number of molecules expected at the receiver due

to previous intervals randomly changes due to the randomness of the distance. Therefore, the

existing detection proposals for the static MC scenario are no longer applicable for the mobile

scenario.

In this paper, appropriate signal detection schemes along with an effective ISI mitigation

method for mobile MC are proposed.
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III. SYSTEM MODEL

In an isotropic environment without fluid velocity, a MC system between a static transmitter

and a mobile receiver performing random walk is considered. The transmitter is modeled as a

fixed point. One kind of flagellated bacterium, E. coli with volume VR, is adopted as the mobile

receiver [17]. The receiver is a “passive” type receiver. It can sense the concentration within its

observation volume. But such sensing behavior will not impede the diffusion of the molecules.

This kind of passive type receiver has been widely used in many literature such as [35], [36].

In the first subsection, according to E. coli’s characteristics, the receiver’s mobility is modeled.

In the second subsection, a mobile three-dimensional channel model of MC is introduced by

incorporating the receiver’s mobility.

A. Mobility Model

As a well studied prokaryotic cell in biological engineering, E. coli has been frequently adopted

as a mobile nanomachine in the MC studies [5], [37]. It has a group of flagella to decide its

motion status, which falls into two categories, run mode and tumble mode with the flagella

turning counterclockwise and clockwise, respectively [17]. These two modes alternate.

The mobility model of E. coli has been investigated in [5], [17], [37]. In this work, we

refer to the model in [17] and [5]. In the run mode, E. coli executes a linear motion with

a constant velocity Vr in a constant direction of θ. In the tumble mode, E. coli changes its

moving direction. The tumble mode is much shorter than the run mode in practice. The Poisson

distribution is adopted to describe the alternation between the two modes [17]. For each unit time,

the occurrence of the run and tumble modes follows the Poisson distribution with parameters

λ and 1-λ, respectively. We take the run mode as an example. The probability that run mode

occurs between time t and t+ ∆t is

P (t;λ)∆t = λe−λt∆t. (1)

(1) is the Poisson interval distribution (please refer to Eq 6.8 in [17]).

In three dimensional isotropic environment, for each tumble, the receiver would change its

direction from θ0 to θ = θ0 + ∆θ [5], [17]. The random variable ∆θ equals to φ or −φ with

equal probabilities. The mean and variance of θ at time t+ ∆t are

E[θ] = θ0, (2)
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Var[θ] = 4Dr∆t, (3)

where Dr is the rotational diffusion constant [17]. This can be obtained through the Einstein-

Smoluchowski relation as

Dr =
kbT

fr
, (4)

where kb is the Boltzman constant, T is the absolute temperature in the environment, and fr is

the rotational frictional drag coefficient.

The three dimensional angle θ could be expressed as θ = (θxy, θz) with θxy be the azimuthal

angle and θz be the polar angle. The location changes in each run step with the initial angle θ

are

∆x = Vr∆t sin θz cos θxy,

∆y = Vr∆t sin θz sin θxy,

∆z = Vr∆t cos θz. (5)

The fixed transmitter is located at (x0, y0, z0) and the mobile receiver is initially located at

(0, 0, 0). If the dynamic location of the receiver in random walk is [x′(t), y′(t), z′(t)], then the

dynamic distance between the transmitter and receiver, d(t), could be expressed as

d(t) =
√

[x′(t)− x0]2 + [y′(t)− y0]2 + [z′(t)− z0]2. (6)

Based on the moving characteristics of E. coli discussed above, a sample trajectory of E. coli’s

random walk in a three dimensional environment is shown in Fig 1. Cartesian coordinate is used

to describe the location of the receiver. Note that the rotational diffusion coefficient varies in

different environments and will largely determine the motion trail of the receiver [6] such as E.

coli.

B. Mobile MC Model

The model of MC via diffusion is illustrated in Fig. 2. The model includes a transmitter

nanomachine, molecule diffusion channel, additive and signal-dependent noise and a receiver

nanomachine. The symbol sequence {aj} is modulated by the transmitter into the molecule

concentration pulses s(t) which is released by the transmitter into the diffusion channel with an

impulse response h(t). The information molecules then propagate in the aqueous medium via
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Fig. 1. An instance of the mobile receiver’s motion trajectory. Based on the E. coli’s moving characteristics, the trail of the

receiver is simulated with 500000 simulation steps with λ = 0.9. The initial position of the receiver is (0, 0, 0) and it has a

initial velocity Vr .

 

 

 Noise  

Diffusion Channel 

 

Transmitter   Receiver 

Fig. 2. The model of MC via diffusion.

diffusion. And part of the information molecules arrive at the receiver and its concentration is

x(t). At receiver, an additive and signal-dependent noise n(t) exists. The receiver nanomachine

senses the noisy molecule concentration y(t) = x(t) +n(t) to detect the transmitted information

sequence {̂aj}.

Firstly, we discuss the impulse response of the diffusion channel. In the diffusion channel,

the information molecules propagate from the transmitter to the receiver according to the con-

centration gradient. According to the Fick’s second law of diffusion [6], the concentration of

molecules, denoted by C(x′, y′, z′, t), at a receiver location (x′, y′, z′) and time t is described by

∂C(x′, y′, z′, , t)

∂t
= D∇2C(x′, y′, z′, , t), (7)

where ∇2 and D are Laplacian operator and diffusion coefficient, respectively. The expected
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channel IR for a fixed receiver is obtained by solving (7) with the initial condition

C(x′, y′, z′, t = 0) = δ(x′ − x0, y′ − y0, z′ − z0). (8)

The solution of (7) with the initial condition in (8) is the expected IR of the diffusion channel

for the static MC with a fixed distance d =
√

(x′ − x0)2 + (y′ − y0)2 + (z′ − z0)2 which is

expressed as [10]

h(t) =
1

(4πDt)
3
2

exp

(
− d2

4Dt

)
. (9)

In the mobile scenario, the distance is not a constant, but in dynamic change as described by (6).

By substituting d in (9) with the variable d(t) in (6), the expected channel IR of the diffusion

channel for the mobile MC is

h[d(t), t] =
1

(4πDt)
3
2

exp

[
−d

2(t)

4Dt

]
. (10)

In the following part of this paper, we call the expected IR of the diffusion channel as IR for

short.

In our mobile MC model, one symbol interval is divided into multiple steps to better resolve

the distance change caused by the receiver’s random walk. Hence, each step has a different

distance and a corresponding IR according to (10). The channel IR in an interval becomes a

composite of individual IR values as shown in Fig. 3 as an example. The points of the true

IR in one interval are from different IR plots based on different physical distances due to the

random nature of the receiver. Therefore, the true IR cannot be exactly expressed or fitted by

one individual equation as in (9) with a constant d. However, a good estimate of the true IR by

a reconstructed IR with a constant d is possible. This will be discussed in Section V.

From a higher perspective of multiple intervals, the complete IRs in different intervals are

different too, due to the randomness of positions caused by the random walk as illustrated by

Fig. 4. Fig. 4 (a) shows the IRs of a series of symbol “1” for static scenario with a fixed distance

while Fig. 4 (b) shows the IRs for the mobile scenario with variable distances. The corresponding

random distance values are shown in Fig. 4 (c). From Fig. 4, we can see when the distance is

fixed, the IRs are the same as in (a). However, when the distance changes as in (c), the shape

of the IR also changes.

In the mobile MC model, an OOK modulation technique is adopted. Sending a bit “1” is

represented by sending a pulse of N molecules and sending a bit “0” is represented by sending
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Fig. 3. An example of a complete true IR in one interval with multiple steps for a mobile scenario (Please refer to the color

image in electronic pdf version to assist understanding). Different IR profiles determined by different distances at these steps

with (9) are shown in different colors. The corresponding points of these IRs are highlighted by black diamond marks which

forms the complete true IR in this interval. For this particular example, to present a more obvious illustration of the mobile

scenario, the distance is set to keep increasing over the entire interval.

nothing [25]. We assume the duration of the pulse is much smaller than the symbol interval Tb

such that s(t) is

s(t) ≈
∞∑
j=0

ajNδ(t− jTb). (11)

After propagation through the diffusion channel, the response of the channel to the input signal

s(t) is

x[d(t), t] = s(t) ∗ h[d(t), t] =
∞∑
j=0

ajNh[d(t), t− jTb] (12)

where ∗ is the convolution operator. x[d(t), t] is the noiseless molecule concentration signal at

the receiver.

Basically, there are two types of noise sources, physical-sampling noise and physical-counting

noise [38]. Since the physical sampling noise is negligible in the discrete binary concentration

modulation [39], we only include counting noise in the study. The counting noise is the counting

error at the receiver. It is generated due to the randomness of molecules in the movement and the
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discreteness of the particles diffusion process [38]. The counting noise n(t) can be considered

as an additive signal dependent noise with zero mean [39] [40]:

n(t) ∼ N
[
0, σ2

c (t)
]
, (13)

where σ2
c (t) is the variance, defined as

σ2
c (t) =

x[d(t), t]

VR
, (14)

where VR = (4/3)πa3 is the volume of the spherical reception space of the receiver. Including

the noise n(t), the total noisy received concentration by the receiver y[d(t), t] is

y[d(t), t] =
∞∑
j=0

ajNh[d(t), t− jTb] + n(t). (15)

Accordingly the total noisy received concentration by the receiver y(t) for the static MC senario

is

y(t) =
∞∑
j=0

ajNh(t− jTb) + n(t). (16)

Synchronization among nanomachines is assumed to be achieved. It is essential and especially

pivotal for parameter estimation such as distance estimation. This assumption is widely used in

literature such as [41], [42]. For the static MC scenario, there exist several synchronization

protocols [43]–[45]. For the mobile scenario, the synchronization is actually more complicated.

In [13], the authors proposed a method to estimate the clock offset based on the ML estimation

in a mobile molecular communication system. We assume that this method can be conducted in

our system to achieve the synchronization between nanomachines.

If the communication time is long enough, the receiver will move far away and the communi-

cation link will fail. Therefore, the definition of the lifetime of the communication is necessary.

We define the lifetime in terms of distance. If the distance between the transmitter and the

receiver reaches the lifetime distance dend, we assume that the communication link is broken,

which is beyond the scope of this paper. For initial distance d0, the peak time is defined as

t0,peak. It is known that t0,peak =
d20
6D

(this can be derived by the impulse response equation). It is

assumed that the symbol interval is Tb = m × t0,peak, where m is a positive integer. We define

the position that the peak time is equal to the symbol interval is the lifetime distance dend. By

derivation, we have dend = d0
√
m. Based on the above definition, within the system lifetime, the

peak point of the expected IR is always within the symbol interval.
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Fig. 4. Channel IRs in the static and mobile MC scenarios (Th denotes Thresholds). (a) Channel IRs in static MC scenario

with the fixed distance of 15 mm. (b) Channel IRs in mobile MC scenario with the dynamic distance due to the random motion

of the receiver. (c) The dynamic distances in the case of (b). Thresholds in (a) and (b) are defined as the half of the peak value

of the IR of the initial distance. It is shown that, if ISI is appropriately mitigated, symbols could be correctly detected in static

MC in (a) while some symbols could not be correctly detected in mobile MC in (b).

IV. PROBLEM STATEMENT

Due to the mobility of the receiver, the IR changes randomly. On one hand, this randomly

varying IR complicates the signal detection compared to the static scenario. On the other hand,

the ISI also varies due to the movement of the receiver, which makes the signal detection more

challenging.

Firstly, the mobility impacts the signal detection. As shown in Fig. 4 (b), a predetermined

fixed threshold fails in signal detection because of the dynamically changing amplitude of IR

due to the mobility. For example, in the situation that the distance increases shown in the first

half in Fig. 4(c), the amplitude of IR decreases. When it decreases to the value smaller than the

threshold, symbol “1” is misdetected as “0”.

Secondly, the mobility complicates the ISI effect. The ISI effect is caused by the long tail of
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the IR. The residual molecules of previous symbols interfere with the molecules of the current

symbol. Since the receiver cannot distinguish molecules of the current symbol from the residual

molecules of previous symbols, the signal detection is affected. In the mobile MC, ISI effect

becomes more complicated because the IR is varying, meaning that the computation of the ISI

in different symbol intervals uses different IRs. In the static nanomachine scenario, the receiver

samples y(t) of (16). We assume that the sampling rate R = Ns/Tb with Ns ∈ Z+ which means

we take Ns samples in each symbol interval Tb with a sampling interval of Ts = Tb/Ns. The

sampled signal is expressed as

yk = N
∞∑
j=0

ajhk−jNs + nk, (17)

where yk = y(kTs), hk−jNs = h(kTs − jTb) = h(kTs − jNsTs), and nk = n(kTs) with the

sampling index k = 0, 1, ...,∞. For k − jNs < 0, we will have hk−jNs = 0. Then (17) can be

further simplified as

yk = N

bk/Nsc∑
j=0

ajhk−jNs + nk, (18)

where b c represents the floor function. If we further distinguish the molecule concentration of

the current symbol from the ISI signal of former symbols, (18) can be expressed as

yk = Nabk/Nschk−bk/NscNs +N

bk/Nsc−1∑
j=0

ajhk−jNs + nk, (19)

where Nabk/Nschk−bk/NscNs is the molecule concentration of the current symbol. N
∑bk/Nsc−1

j=0 ajhk−jNs

is the ISI signal from former symbols. If we further define

ycurrent,k = Nabk/Nschk−bk/NscNs , (20)

and

yISI,k = N

bk/Nsc−1∑
j=0

ajhk−jNs , (21)

the received signal in (18) can be expressed as

yk = ycurrent,k + yISI,k + nk. (22)

The receiver cannot distinguish ycurrent,k from yk, which causes incorrect signal detection. This

phenomenon with a fixed distance is illustrated in Fig. 5. The transmitted symbol sequence is

[1100100]. The dash-dot blue, green and red curves are the individual IRs for each symbol. The
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Fig. 5. Illustration of the ISI effect in static MC. The distance between the transmitter and the receiver is fixed. Diffusion

coefficient is 5 rad2/s. The transmitted symbol sequence is [1 1 0 0 1 0 0]. The dash-dot blue, green and red curves are the

individual IRs for each symbol. The solid dark yellow curve is the total received concentration including the ISI effect. The

threshold is set as the half of the peak concentration value. Due to the ISI effect, the detection result is [1 1 1 0 1 1 0]. Note

that the noise term is not reflected in this figure.

solid dark yellow curve is the total received concentration including the ISI effect. The noise is

not included since we would like to highlight the effect of the ISI. The 3th and 6th symbols are

incorrectly detected as “1” due to the ISI effect.

In the mobile scenario, mobility complicates the ISI effect. The IR is not only the function of

time, but also the function of a random distance as discussed in (10). In the discrete form, the

random distance d(t) and the corresponding discrete form of IR of (10) become dk = d(kTs),

and hdk,k−jNs = h[d(kTs), kTs − jNsTs]. Therefore, in mobile MC, the received sampled signal

ydk,k become

ydk,k = Nabk/Nschdk,k−bk/NscNs +N

bk/Nsc−1∑
j=0

ajhdk,k−jNs + nk. (23)

It could be further expressed as

ydk,k = ycurrent,dk,k + yISI,dk,k + nk, (24)

where ycurrent,dk,k and yISI,dk,k are

ycurrent,dk,k = Nabk/Nschdk,k−bk/NscNs , (25)
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and

yISI,dk,k = N

bk/Nsc−1∑
j=0

ajhdk,k−jNs . (26)

hk−bk/NscNs in (20) and hk−jNs in (21) becoming hdk,k−bk/NscNs in (25) and hdk,k−jNs in (26)

makes the mobile scenario more complicated. Fig. 6 illustrates the ISI effect in a mobile MC. One

symbol “1” is transmitted by sending N molecules. We discuss its ISI effects on the following

three intervals at the receiver. Due to the mobility, each interval has a different distance and a

corresponding IR presented by the green, pink, yellow, and red curves. The ISI signals of the

symbol on the 2nd, 3rd and 4th intervals are black circles on the pink, yellow, and red curves.

Therefore, it can be seen that in mobile MC the ISI changes due to the change of distance. We

should note that Fig. 6 only illustrates the ISI from one transmitted symbol “1”. However, the

ISI is the accumulated interference from all former symbols. This makes the signal degradation

in the mobile scenario more complicated. Hence investigation of detection schemes suitable for

the mobile MC is quite necessary.

V. PROPOSED DETECTION SCHEME

In this section, we propose a detection scheme for the mobile MC with a mobile receiver. The

aim of the proposed scheme is to overcome the problem caused by the mobility and complicated

ISI in mobile MC to provide a solution for correct detection in mobile MC.

A. Overall Scheme

The proposed scheme includes an adaptive ISI mitigation method, distance estimation and IR

reconstruction, and two adaptive signal detection methods as illustrated in Fig. 7. Firstly, samples

are taken by the receiver. Next, the receiver checks whether there was symbol “1” released in

the former detected symbol sequence. If no symbol “1” has been detected, we use the samples to

directly estimate the distance for the current symbol. Based on the estimated distance, the IR for

the current interval is reconstructed and its peak concentration and peak time are obtained. Then

two adaptive detection methods, concentration-based adaptive threshold detection (CATD) and

peak-time-based adaptive detection (PAD) methods, are adopted to detect the current symbol.

The detection result and the estimated distance are stored for the ISI calculation of the following

symbols.
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Fig. 6. Illustration of the ISI effect in a mobile MC. The transmitter sends a symbol “1”. The ISI effect of this single symbol

on the following intervals are considered in this example. The dashed green, dotted pink, solid yellow, and dash-dotted red

curves are the IRs at the receiver with different distances in the 1st, 2nd, 3rd, and 4th interval which are 27 mm, 30 mm, 33 mm,

23 mm, respectively. The black circles on the green, pink, yellow, and red curves are the real concentrations of the symbol in

the four intervals. The ISI signals are the highlighted black circles in the last three intervals. We should note that, to simplify

the illustration, each interval is assigned with a fixed distance which is not the model used for the rest of the work where each

step is assigned with a random distance.

If there is symbol “1” detected previously, ISI mitigation is implemented before distance

estimation step. The reason is to reduce the influence of the ISI effect on current symbol

and improve the detection accuracy. With ISI effect, the signal of current symbol could be

distorted. The distortion is severe especially at high data rate in mobile MC where ISI effect

is severe and random. With the severely distorted samples, the distance estimation and the IR

reconstruction cannot be accurate. This eventually affects the signal detection and causes high bit

error rate (BER) or even failure in detection. Therefore, for accurate detection, ISI mitigation is

implemented before other processes. To accomplish such ISI mitigation, the distance estimated

from former symbol intervals, instead of the distance in the current symbol interval, is utilized

in the ISI calculation. Then the ISI mitigated data are used in the following procedures including

distance estimation, IR reconstruction, and adaptive signal detection as discussed above.

As discussed in Section IV, the core of the two problems lies in the dynamic distance in

mobile MC. Therefore, the main idea of our solution is to dynamically estimate the varying
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Fig. 7. The proposed detection scheme in one interval.

distance, from which we calculate the adaptive threshold to compare with the sampled signal to

make decision.

The functional blocks including distance estimation and IR reconstruction, CATD/PAD detec-

tion, and adaptive ISI mitigation are discussed in the following subsections in detail.

B. Detailed Scheme

1) Distance Estimation and IR Reconstruction: An important step in the proposed scheme is

to estimate the dynamic distance with the samples and use the dynamic distance to reconstruct
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the corresponding dynamic IR in one interval. Here the samples and data used are referred to

as the ISI reduced samples and data as

zdk,k = ydk,k − ŷISI,dk,k

= ycurrent,dk,k + yISI,dk,k − ŷISI,dk,k + nk,
(27)

where ŷISI,dk,k is the estimated ISI signal. The ISI mitigation will be discussed in detail in Section

V-B-3. If the estimation is good enough, the ISI reduced signal zdk,k can be expressed as

zdk,k = ycurrent,dk,k + nk. (28)

To focus on the analysis and evaluation of the mobility feature, it is assumed that the signal-

to-noise ratio (SNR) is sufficiently large meaning that the noise is small. Then we have

zdk,k ≈ ycurrent,dk,k. (29)

If the SNR is not large enough, (29) can also be obtained if a MIMO system is used for spatial

diversity [46].

zdk,k in (29) is used to estimate the distance. Methods of the parameter estimation, especially

the distance estimation, have been proposed in the literature. In [47], round-trip-time protocol

based on single spike feedback signals was proposed to measure the distance. One nanomachine

releases a single spike of type A molecules. Once the other nanomachine detects A molecules, it

releases a single spike of type B molecules immediately. The original nanomachine detects the

type B molecule. Then the round-trip-time is used to measure the distance. In [48], the authors

derived the ML distance estimator by maximizing the joint observation likelihood function. In

[49], one symbol transmission is adopted. The peak concentration value is used to estimate

the distance. In [50], a similar idea was proposed but the distance is calculated by the peak

concentration time in one symbol transmission. In our scheme, a method close to [49] is used

to estimate distance.

In the case symbol ”1” is transmitted such that aj=bk/Nsc = 1, based on (10) and (25), the

distance dk can be computed with each sample zdk,k as

dk =

∣∣∣∣∣2(−DkTs ln
zdk,k(4πDkTs)

3
2

N
)
1
2

∣∣∣∣∣ ,
k ∈ Z+ and jNs ≤ k < (j + 1)Ns.

(30)
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Due to random walk of the receiver, the true distances in each interval are not the same for

different samples. Hence an averaged distance is calculated for that interval. The averaged

distance in the jth symbol interval, dj,ave, can be expressed as

dj,ave =

∑(j+1)Ns−1
k=jNs

dk

Ns

. (31)

With dj,ave, the IR in the jth interval h(dj,ave, t) can be computed by (10):

h(dj,ave, t) =
1

(4πDt)
3
2

exp

(
−
d2j,ave

4Dt

)
. (32)

Its peak time tj,peak could be calculated by setting the derivative of (32) to zero and be expressed

as

tj,peak =
d2j,ave

6D
. (33)

The peak value of (32), hj,peak, is

hj,peak = h(dj,ave, tj,peak)

=
1(

2π
3

) 3
2 d3j,ave

exp−
3
2 .

(34)

If dj,ave is a good estimate of the distance range in an interval, h(dj,ave, t) is a good estimate

of the true IR in that interval. The estimation accuracy analysis is given in Section V-C.

The calculated dj,ave and h(dj,ave, t) are good estimates for the case of aj = 1. In case of

aj = 0, the estimated distance and the reconstructed IR are incorrect. However, such correctness

and incorrectness can be used for signal detection. Such signal detection methods are presented

in detail in the next part.

2) Adaptive Signal Detection: In this work, two adaptive detection methods for the mobile

MC are proposed.

In the static MC, signal detection is usually performed by comparing the amplitude of samples

with a fixed threshold. In the mobile MC, the motion of the nanomachine leads to time-variant

channel IR. Fixed threshold is no longer applicable. Therefore adaptive signal detection methods

for mobile MC are proposed here. In Section V-B-1, the dynamic distance and dynamic IR are

estimated in each interval. Based on the estimated dynamic IR, adaptive signal detections are

implemented in each interval.

As mentioned in Section V-B-1, the samples are used to reconstruct the IR assuming symbol

“1” is transmitted. Therefore, the characteristics of the reconstructed IR are different in the
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cases that the symbol “1” or “0” is transmitted. Fig. 8 illustrates these characteristics of the

reconstructed IR. Two situations of symbol value “0” and “1” with the same system parameters

are shown in the left and right panes, respectively. In both cases, the received signal in an

interval is the blue curve. The arrows (left) and diamonds (right) are taken samples. Based on

the samples, IRs are reconstructed as shown by the dotted red (left) and dash-dotted red (right)

curves in the two panes. By comparing the two reconstructed IRs in the two figures, it is seen

that the reconstructed IR for symbol “1” fits the samples well while the reconstructed IR for

symbol “0” does not. In the case for symbol “0” transmitted, the concrete differences of the

reconstructed IR from received samples are present in both the amplitude and time. Firstly, the

amplitude of the samples are much smaller than the peak amplitude of the reconstructed IR.

Secondly, the peak time of the reconstructed IR falls outside of the symbol interval, which will

not happen within the system lifetime. Furthermore, the two reconstructed IRs for symbol “0”

and “1” are different, though with the same system parameter. The reconstructed IR for symbol

“1” approximates the true IR well. But the reconstructed IR for symbol “0” is not correct. Its

amplitude is much smaller than the true IR and its peak time is much larger than the true IR.

Based on the above characteristics, we propose two adaptive detection methods, the CATD

method and PAD method.

In CATD scheme, before a symbol “1” is detected, the signal detection is implemented by

comparing sample values {zdk} with half of the peak amplitude of the reconstructed IR in current

interval with the following criterion:

âj =


1, max (zdk) ≥ 1

2
hj,peak,

k ∈ Z+ and jNs ≤ k < (j + 1)Ns,

0, otherwise.

(35)

After a symbol “1” is detected, the signal detection is implemented by comparing the peak

amplitude of the reconstructed IR in current jth interval hj,peak with half of the peak amplitude

of reconstructed IR in last symbol “1” with the following criterion:

âj =


1, hj,peak ≥ 1

2
h∗,peak,

k ∈ Z+ and jNs ≤ k < (j + 1)Ns,

0, otherwise.

(36)

where ∗ denotes the index of last symbol “1”.
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Fig. 8. IR reconstructions for symbol “0” (left figure) and “1”(right figure). Blue curves are the received signal for symbol

“0” and “1”. Arrows and diamonds highlight the sample points. Red dotted and red dash-dotted curves are the corresponding

reconstructed IRs for symbol “0” and “1”, respectively.

In PAD scheme, before a symbol “1” is detected, signal detection is implemented by comparing

the peak time tj,peak of the reconstructed IR with the symbol interval Tb with the following

criterion:

âj =

1, tj,peak ≤ Tb,

0, tj,peak > Tb.
(37)

After a symbol “1” is detected, the signal detection is implemented by comparing the peak time

tj,peak of the reconstructed IR in current jth interval with the peak time of reconstructed IR in

last symbol “1” with the following criterion:

âj =

1, tj,peak ≤ 1.6× t∗,peak,

0, tj,peak > 1.6× t∗,peak.
(38)

where the value 1.6 is choosen because that h(d∗,ave, 1.6× t∗,peak) ≈ 1
2
h(d∗,ave, t∗,peak).

3) ISI Mitigation: ISI is the interference of former symbols on the current symbol. In OOK

modulation, once a symbol “1” is released, ISI exists in the following symbol intervals. ISI

mitigation is implemented to mitigate its impact on the following symbols and to improve the

accuracy of the whole detection scheme.



IEEE TRANSACTIONS ON NANOBIOSCIENCE 22

To implement ISI mitigation, the key issue is the calculation of the ISI in the current interval.

To calculate the ISI, the values of former symbols and the channel IR in the current interval

should be known. However, the IR randomly changes and is difficult to obtain in mobile MC.

This is because the position of the receiver changes all the time. Only if the distance between

the transmitter and receiver is known, the IR in the current interval can be calculated. But, in our

scheme, ISI mitigation is performed before the distance estimation. Therefore, the distance in the

current interval and the corresponding IR is unknown when the ISI calculation is implemented.

To solve this problem, in the ISI calculation, we utilize the distance of the last symbol “1”, d∗,ave

with ∗ ∈ Z+and ∗ < j, to approximate the distances dk with k ∈ Z+ and jNs ≤ k < (j + 1)Ns

for all the Ns samples in the current jth interval. It should be noted that d∗,ave is only adopted in

the ISI calculation and mitigation. It will not be used in the distance estimation, IR reconstruction,

and signal detection processes. The corresponding estimated ISI signal ŷISI,k is

ŷISI,dk,k = N

bk/Nsc−1∑
j=0

ajhd∗,ave,k−jNs . (39)

However, due to the difference between the true distance dk and the approximated distance

d∗,ave, an error exists between the true ISI yISI,k and the estimated ISI ŷISI,k as

eISI = ŷISI,dk,k − yISI,dk,k. (40)

The error is due to the distance difference between d∗,ave and the true distance, which could be

further divided into two parts. One is caused by the difference between d∗,ave in the ∗th interval

and dj,ave in the jth interval. This error increases if the time duration (j−∗)Tb between ∗th and

jth intervals gets larger. The other part is caused by the difference between the averaged distance

dj,ave in the jth interval and the true distances {dk} with k ∈ Z+ and jNs ≤ k < (j + 1)Ns in

the jth interval. This second part of error will be discussed in Section V-C.

4) An Example of the Entire Proposed Scheme: An example is provided in Fig. 9 to illustrate

how the entire proposed detection scheme works. The transmitted symbol sequence is [1 1 0]

with OOK modulation. With ISI, the true signal y(t) at the receiver is shown in Fig. 9 (a) by

the blue curve. The proposed detection scheme is applied as follows. The receiver takes samples

of y(t). In Fig. 9(b), samples {yk} in the first interval are not affected by ISI. Therefore no ISI

mitigation is implemented in this interval. The samples {yk} are directly used to estimate the

distance and reconstruct the IR with the estimated distance d0,ave shown by the yellow curve with
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Fig. 9. Illustration of the proposed detection scheme. The unit of concentration in (a) to (d) is molecules/µm3. The character

“S” represents ISI mitigated signal. Symbol sequence [1 1 0] is transmitted with OOK modulation and is detected by the mobile

receiver. (a) The received concentration at the receiver affected by both ISI effect and counting noise; (b) the signal detection

process in the 1st and 2nd intervals. The yellow, purple and green curves are the reconstructed IR in the 1st interval, the ISI

mitigated signal in the 2nd interval and the reconstructed IR in the 2nd interval, respectively; (c) the proposed detection in the

3rd interval. The yellow, green and pink curves are used to illustrate the ISI from the 1st symbol, the ISI from the 2nd symbol,

and the ISI mitigated signal in the 3rd interval, respectively; (d) all the ISI mitigated signals in the three intervals which are

further used for signal detection.

legend IR1 in (b). By comparing the curve IR1 with the samples taken in the 1st interval on the

blue curves in (b), the proposed adaptive signal detection method (CATD or PAD) decodes the

symbol as “1” and records the estimated distance value d0,ave.

In the 2nd interval, the ISI is first calculated and mitigated. At this moment, the distance in the

current interval is unknown. Because the last symbol is “1”, the distance d0,ave recorded in the 1st

interval is used as the approximated distance d∗,ave for ISI calculation by (39). Then the calculated
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ISI is mitigated from the received y(t) (blue curve) in the 2nd interval. The ISI mitigated signal

is shown by the purple curve with legend “2nd S” in (b). Note that when the ISI mitigated

sample values are negative, they are set to zero in the calculation. Then distance estimation and

IR reconstruction are performed based on these ISI mitigated samples. The reconstructed IR in

the 2nd interval, IR2, is shown by the green curve in (b). The two adaptive detection methods

decode the symbol as “1” by comparing the peak amplitude and time of the green curve IR2

with the peak amplitude and time of the reconstructed IR of last symbol “1” which is the yellow

curve IR1 in the 2nd interval.

The process in the 3rd interval is similar to that in the 2nd interval. The only difference is

that, both former symbols are included in the ISI calculation. The ISI mitigated signal is the

“3rd S” denoted by the pink curve in (c). The proposed detection methods decode it as “0”. Fig.

9(d) presents the ISI mitigated signals in all the three intervals. Comparing (d) with with (a),

we can see that the ISI mitigation method is effective.

C. Accuracy Analysis and Parameter Design

In the mobile case, the distance randomly changes which makes the analytical derivation of

the error probability very difficult. On one hand, the distance of the last symbol “1”, d∗,ave, is

used to approximate the current distance in ISI calculation, which introduces error. Due to the

randomness, this error cannot be expressed mathematically in a closed-form expression. On the

other hand, the threshold hj,threshold, tj,peak and h∗,threshold, t∗,peak are also dependent on the random

distance. Therefore, it is very difficult to obtain the analytical expression of the error probability.

The accuracy of the proposed detection scheme including the ISI mitigation relies on the

accuracy of the distance estimation and the corresponding reconstructed IR. As discussed in

Section III, the reconstructed IR h(dj,ave, t) with a constant distance dj,ave in (31), at most, could

be a good estimate of IR, but cannot be exactly the same as the true IR. Because the true IR is

a composite of the points from different IRs, as shown in Fig. 3, it cannot be expressed by an

IR with a constant distance. The aim of this subsection is to discuss the estimation accuracy of

h(dj,ave, t) and how to design system parameters for accurate estimation.

For quantitative evaluation, correlation coefficient ρ is used to quantify the similarity of the

reconstructed IR h(dj,ave, t) and true IR h(dk, t) with k ∈ Z+ , jNs ≤ k < (j + 1)Ns as
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ρ =
Cov[h(dj,ave, t)), h(dk, t)]√

Var(h(dj,ave, t))
√

Var(h(dk, t))
,

k ∈ Z+ and jNs ≤ k < (j + 1)Ns,

(41)

where Cov(X, Y ) is the covariance function of two variables X and Y , and Var is the data’s

variance. Larger ρ indicates a larger similarity and therefore a better estimate.

To achieve a good estimate of h(dj,ave, t), the average distance dj,ave should be a good estimate

of {dk} with k ∈ Z+ and jNs ≤ k < (j + 1)Ns which is the range of random walk within one

interval. For such purpose, the range of relative distance change in one interval should not be

too large. We adopt relative distance change index r to define the maximum relative distance

change in one interval as

r =
dmax

d0
=
Vr × Tb
d0

, (42)

where d0 is the initial distance. dmax is the maximum possible distance change a receiver could

reach in an interval. A larger r relates to a larger deviation in dj,ave from {dk} in one interval.

Next we investigate the relation of such deviation on the impact of the accuracy of the IR

estimation. Simulations with different values of r are performed. With a value of r, a trajectory

of random walk is generated. The distances are estimated and the IRs are reconstructed. The

similarities between the reconstructed IR and the true IR are calculated by index ρ. The results

are shown in Fig. 10 (results with r = 5%, 30%, and 50%) and Table I (more complete results

with r = 0.5%, 5%, 15%, 30%, and 50%). The true IR and the reconstructed IR fit well with each

other with r = 0.5%. However their difference gets larger when r increases. Table I quantitatively

shows that the similarity indicator ρ decreases when r increases which agrees with the result

shown in Fig. 10. With r less than 5%, the correlation coefficient ρ between the estimated IR

and the true IR is larger than 0.9988 which indicates that the established IR is a good estimate of

the true IR. In this work, we define the situation with r ≤ 5% as good conditions for estimation

according to our investigation data.

Therefore, in order to achieve accurate IR reconstruction, system parameters including initial

distance d0, receiver velocity Vr, and interval length Tb should be selected to make the index r

less than 5%.
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Fig. 10. IR reconstruction with different values of r. The value of r is selected from 5%, 30%, and 50%. The curves with

legend r:5%, r:30%, r:50% are the true IRs with r equal to 5%, 30%, and 50%, respectively. The corresponding reconstructed

IRs with our proposed methods are presented by curves with legend M1, M2 and M3, respectively. The difference between the

true and reconstructed IRs becomes larger with larger r.

TABLE I

CORRELATION COEFFICIENTS FOR INDEX VALUES

r 0.5% 5% 15% 30% 50%

Correlation Coefficient ρ 1 0.9988 0.9827 0.8687 0.5631

VI. SIMULATION RESULTS

In this section, the proposed detection scheme is evaluated by Monte Carlo simulations.

Important system factors are investigated. These factors include the symbol sequence length,

the symbol interval, the initial distance, and number of released molecules.

A. Simulation Parameters

In the simulations, a flagellated bacterium performing random walk is considered as the mobile

receiver [51]. We assume that there is no drift velocity in the environment. The released molecules

by the transmitter undergo the Brownian motion [24]. Unless otherwise stated, parameters in
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TABLE II

SIMULATION PARAMETERS

Parameters Symbol Values

Symbol sequence length B 7× 104

Absolute temperature T 305 K

Diffusion coefficient of information molecules D 10−9 m2/s

Number of molecules N 3× 106

Initial distance d0 12µm

Volume of spherical reception space of receiver VR 1µm3

Symbol interval Tb 96ms

Peak time of channel IR at initial distance t0,peak 24ms

Simulation step length Ts 6 ms

Occurrence parameter of run modes λ 0.9

Velocity of the receiver Vr 1.33µm/s

Rotational diffusion coefficient of receiver Dr 5 rad2/s

Table II are adopted as default parameters in simulation based on [5], [17]. OOK is adopted as

the modulation scheme.

An adaptive threshold detection (ATD) method is implemented as a reference to compare with

the proposed scheme [22]. The decision rule is

âj =


1, max (zdk,k) ≥ γj,

k ∈ Z+ and jNs ≤ k < (j + 1)Ns

0, otherwise.

(43)

where max (zdk,k) is the max concentration in the jth interval. γj is the threshold. âj is the

detected symbol value in the jth interval. With the detected symbol values, their ISI in the current

interval is calculated and added on the threshold γj to fight the ISI effect in the detection. The

initial threshold γ0 is set as the half of the channel IR peak value of the initial distance d0. All

the calculations in this method are based on the fixed distance (i.e. initial distance) between the

transmitter and the receiver.

To quantitatively evaluate the performance of different detection schemes, the BER is used as

the performance metric [29]. For Ntr transmitted symbols, Ne symbols are incorrectly detected

by the receiver. BER is defined as

BER =
Ne

Ntr
. (44)
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A lower BER indicates a better performance.

All the simulations are conducted within the lifetime which is defined in Section III. The

complete detection algorithm is described in Algorithm 1.

Algorithm 1 The Proposed Adaptive Detection Algorithm
Initialization: set ISIF lag = 0, dave = 0, FormerDistance = initial distance, DetectedSignal

= 0.

for ii = 1 : B do

Sample (t1, C1), ..., (tNs, CNs) in current interval;

if ISIF lag != 0 then

Remove ISI of former bits based on FormerDistance and DetectedSignal ;

end if

Calculate current interval’s dave(ii) from samples (t1, C1), ..., (tNs, CNs) by (31);

Reconstruct IR with current dave(ii) using (9);

Record amplitude Cmax and time Tmax of the peak point of the reconstructed IR;

if CATD detection method is chosen then

Utilize criteria of (35) and (43) to perform detection;

end if

if PAD detection method is chosen then

Utilize criteria of (37) and (38) to perform detection;

end if

Record the detected signal value in DetectedSignal(ii)

if DetectedSignal(ii) == 1 then

FormerDistance= dave(ii)

end if

if DetectedSignal!= 0 then

ISIF lag = 1;

end if

end for
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Fig. 11. The impact of symbol sequence length on the BER performance for different detection schemes.

B. Investigation of Symbol Sequence Length

Based on the mobility model, the increase of the released symbol sequence length increases the

possibility of a larger distance change with respective to the initial distance d0. In this subsection,

The impact of released symbol sequence length on the performance of detection schemes for

mobile MC is evaluated.

The simulation result is shown in Fig. 11. BER here represents the bit error rate of the entire

sequence. The symbol sequence length changes from 1× 104 bits to 7× 104 bits with a step of

1× 104 bits. The life time of the system is dend = d0
√
m with m = Tb/t0,peak as defined at the

end of Section III. With parameters in Table II, we have m = 4, d0 = 12 µm and dend = 24 µm.

We check that the distances in this simulation of the symbol sequence length are all smaller than

dend = 24 µm. Therefore, in the simulation, the dynamic distances do not go beyond the lifetime

distance dend and the communication link is alive for the results shown. From the result, it is

seen that BER increases as the symbol sequence length increases for all of the three detection

methods. The proposed CATD and PAD detection methods outperform the ATD method.

For the reference ATD detection, the threshold for the current symbol is calculated as the sum

of the initial threshold and the current ISI. In the simulation based on our system model, the

averaged distance becomes larger as the symbol sequence increases. Because the reference ATD

method considers fixed transmitter and receiver, and therefore fixed distance, so the distance

used for estimating ISI is smaller than the actual distance after a number of symbol bits are

sent. Then the estimated ISI is bigger than the actual ISI. Therefore, the estimated threshold,
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Fig. 12. The impact of symbol interval on the BER performance of different detection schemes for mobile MC.

which is the sum of the initial threshold and the current ISI, becomes bigger than it should be.

The error of this threshold calculation leads to wrong detection.

BER of both CATD and PAD methods also increases as the symbol sequence length increases.

As the distance from former symbol “1” is utilized for ISI mitigation, error exists in the estimated

distance and the reconstructed IR which further affects the signal detection. Furthermore, once

there is a symbol “1” decoded incorrectly as “0”, the ISI of this symbol “1” in the following

symbols cannot be counted and cannot be removed. This leads to more residual molecules in the

following sequence and affects the detection. As the released symbol sequence length increases,

errors keep accumulating and result in a worse performance.

It can be seen that PAD performs better than CATD, especially when the data sequence length

is larger than 5× 104. The reason is that CATD is more sensitive to distance than PAD. Hence,

PAD has a better tolerance to the distance error than CATD. In PAD, the detection is based

on the peak time. The peak time value is calculated by (33) and its derivative with respect to

distance is shown in (45) which presents its sensitivity to distance. In CATD, the detection is

based on peak amplitude. The peak amplitude is obtained in (34). Its derivative with respect to

distance is (46) which presents its sensitivity to distance. To compare two methods’ sensitivity

to distance, we calculate absolute value of (45) and (46). With the parameters in Table II, the

absolute value of (46) for CATD is larger than that of (45) for PAD. This indicates that CATD

is more sensitive and easily affected by the distance error than PAD.

d tj,peak

d dj,ave
=
dj,ave

3D
, (45)
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d h(tj,peak)

d dj,ave
=

−3e−
3
2

(2π
3

)(
3
2
)d4j,ave

. (46)

C. Investigation of Symbol Interval

Symbol interval is an important parameter in the MC system. It determines the data rate

and affects the ISI effect. In this part, the impact of symbol interval on the schemes for the

mobile MC is investigated. In the simulation, system parameters in Table II are adopted. We

use normalized symbol interval Tm = Tb
t0,peak

instead of Tb. In each run, Tm changes from 2 to 8

with a step of 1. The corresponding Tb value changes from 2× t0,peak to 8× t0,peak with a step

of t0,peak.

Simulation result is shown in Fig. 12. The proposed CATD and PAD perform better than

the ATD scheme. For the proposed CATD and PAD methods, the BER firstly decreases, and

then gradually increases with respect to Tm. The larger BER at the small values of Tm is due

to the severer ISI effect at small symbol interval. As the symbol interval increases, the ISI

effect is alleviated and therefore the BER decreases. As the increase of Tm, the BER starts to

increase. This is because, with larger symbol interval Tb, the dynamic range of the distance

in an interval increases and index r = Vr×Tb
d0

in (42) increases too. Therefore, diave is not as a

good representative of the dynamic range in a large interval as in a small one. The difference

between the averaged distance diave and the true distance range in one interval increases. This

further causes a larger difference between the reconstructed IR and the true IR. This affects the

signal detection accuracy. Meanwhile, the reconstructed IR is also used in the ISI estimation. The

inaccuracy of the reconstructed IR leads to the inaccuracy of the ISI calculation and mitigation.

Although increasing Tm reduces ISI effect, the result manifests that the impact of increased

inaccuracy of the reconstructed IR overwhelms the impact of reduced ISI effect and results in

a larger BER. Among the two proposed methods, PAD performs better than the CATD due to

that PAD is more robust to the distance estimation error.

D. Investigation of Initial Distance

In this part, the impact of the initial distance d0 on the performance of detection schemes

is investigated. In this simulation, system parameters in Table II are adopted. In each run, d0

changes from 12 to 36µm with a step of 3µm.
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Fig. 13. The impact of initial distance d0 on the BER performance of different detection schemes for mobile MC.

The simulation result is shown in Fig. 13. Both the proposed CATD and PAD method

outperform the ATD method. The BER of all methods decreases as d0 increases before the initial

distance reaches 21µm. However, after 21µm, the BER of both detection methods increases as

the initial distance d0 keeps increasing. Two effects explain this phenomenon. The first is that

larger initial distance d0 has a smaller index r in (42) which indicates a smaller relative change of

the distance in an interval. Accordingly, the reconstructed IR with dave is a better representative of

the true IR. The signal detection will be more effective. Hence, the detection accuracy increases

with the distance. The other impact with the increase of the initial distance d0 is the shape change

of the IR. With larger d0, the amplitude of IR becomes smaller and the peak time increases,

meaning that more molecules will arrive at the receiver outside its own interval and becomes the

ISI to the following signals. This increased ISI may be the reason that the BER increases as d0

increases. These two impacts compete with each other to determine the final BER performance.

It is possible that the first impact dominates the performance before 21µm and the second impact

dominates after 21µm.

Among the two proposed methods, PAD outperforms CATD. Similar to the investigations of

symbol sequence length and interval, this is because PAD is more robust to distance error.

E. Investigation of the Number of Released Molecules

As stated in Section III-B, in the OOK MC system, N molecules are released when transmitting

symbol “1”. The influence of the value of N is investigated. From Fig. 14, it is seen that as the

increase of the value of N from 2×105 to 12×105 with a step of 2×105, the BER decreases for all
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Fig. 14. The impact of the number of released molecules for bit “1” on the BER performance of different detection schemes

for the mobile MC.

the three methods. The reason can be explained as following: The noise variance is proportional

to the signal amplitude, which is shown in (14). The instantaneous SNR can be simply calculated

as x2[d(t),t]
σ2
c (t)

= VR × x[d(t), t]. Therefore, the larger the signal amplitude is, the larger the SNR

is. The signal amplitude is proportional to the number of released molecules, hence, larger N

leads to larger SNR. With larger SNR, the distance estimation and IR reconstruction will be

more accurate. The ISI mitigation is then more effective. Hence, the accuracy of the signal

detection is improved. Similar to the above investigations, PAD and CATD outperform ATD.

And PAD is more robust to the inaccuracy of the distance estimation and therefore achieves

better performance than CATD.

VII. CONCLUSION

The existing detection schemes for static MC communication system are not suitable for the

mobile MC because of the random varying CIR in mobile MC communication systems. In this

paper, we propose two adaptive detection schemes for the mobile MC. A well studied flagellated

bacteria, E. coli, is considered as a mobile receiver performing random walk. Three-dimensional

channel model is established. The adaptive detection scheme includes three main parts which are

adaptive ISI mitigation, distance estimation and IR reconstruction, and two adaptive detection

methods PAD and CATD. By adaptively using the estimated distance to calculate the ISI and

subtract it from the concentration samples, the detection schemes effectively decode original

data sequence in the mobile MC system.
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The proposed detection schemes are evaluated by Monte Carlo simulations. The simulation

results show that the proposed detection schemes outperform the adaptive threshold strategy for

the static MC which does not consider the mobility feature. Among the two detection schemes,

PAD outperforms CATD because PAD is more robust to the inaccuracy of the distance estimation.

The impacts of important system factors including symbol sequence length, symbol interval,

initial distance, and number of released molecules are also studied.

In future work, there are two related open issues. Firstly, the data rate in the current system

is too low. High data rate scenario detection schemes are expected. Secondly, detection schemes

for other modulation methods such as MoSK in mobile MC are expected to be investigated.
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