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Abstract 

HIV-associated tuberculosis (HIV/TB) was responsible for an estimated 374,000 deaths globally 

in 2016. Much of this burden resides in hospitals in sub-Saharan Africa, where HIV/TB is usually 

disseminated and is the major cause of admission and death. Recently, urine-based detection 

of mycobacterial lipoarabinomannan (LAM) or nucleic acids (using the Xpert MTB/RIF assay) 

has improved diagnosis of HIV/TB in this population, with the potential to improve outcomes. 

However, disseminated ‘urine-positive’ TB may also be associated with a higher mortality risk 

and impaired immune responses compared to patients with HIV/TB disease who are urine TB 

test negative. This thesis addresses the hypothesis that positive urine-diagnostics in inpatients 

with HIV/TB disease are associated with mortality, can identify patients with impairment of 

immune responses, and can be used as useful prognostic markers for identifying patients with 

poor outcomes.  

 

First, a systematic review and meta-analysis was undertaken to synthesise existing evidence of 

the association between urine-LAM detection and mortality risk in HIV/TB (Gupta-Wright et al, 

BMC Med 2016). Ten eligible studies were identified, and random-effects meta-analysis 

demonstrated urine-LAM positive patients had a 2.3-fold greater mortality risk, and 2.5-fold 

greater adjusted odds of death than urine-LAM negative HIV-TB patients.  

 

Secondly, a prospective observational cohort study nested within a large randomised trial of 

urine-based TB screening was undertaken (STAMP trial in Malawi and South Africa, Gupta-

Wright at al BMC Inf Dis 2016 and Lancet 2018). It included 322 patients with laboratory-

confirmed HIV/TB disease and demonstrated a remarkably high (31%) 2-month mortality risk 

despite rapid initiation of TB treatment. It also demonstrated that advanced 

immunosuppression was common in HIV/TB disease despite high antiretroviral therapy (ART) 

coverage. Cohort data were used to identify clinical phenotypes associated with poor 

outcomes: urine-test positivity (LAM, Xpert or both) was independently associated with a 50% 

increase in 2 month case-fatality.  

 

Thirdly, a study of immune responses was nested in the Malawi STAMP trial site. A functional 

whole blood assay of phagocytic activity was developed (Gupta-Wright et al, Frontiers 

Immunology 2017) and utilised in 65 HIV/TB patients and 16 matched HIV-positive TB-negative 

controls. Cellular and soluble markers of immune activation, ex-vivo monocyte and T-cell 

cytokine responses and multiplex plasma cytokine and chemokine levels were also measured. 

Poor outcomes and urine-positive HIV/TB disease were associated with broadly impaired 



6 
 

immune responses, including phagocytic oxidative burst function, monocyte activation and 

dominant innate immune responses. Finally, urine-LAM was included in a simple, pragmatic 

clinical score to identify patients at high risk of a poor outcome in resource-poor settings, 

which was externally validated on an individual-patient record dataset combining data from 2 

different studies over 5 African countries (Gupta-Wright et al, PLOS Medicine 2019).  

 

This PhD has demonstrated the high prevalence and case-fatality associated with disseminated 

HIV/TB disease in HIV-positive hospital admissions despite widespread access to ART, and the 

utility of urine-diagnostics in identifying patients at high risk of mortality, in addition to their 

diagnostic use. These linked studies could potentially inform on the choice and nature of 

interventions to reduce the high mortality of HIV/TB, including better identification and 

management of ART failure, therapies to address TB-related immune dysfunction, and 

improved supportive care and prevention and treatment of co-morbidities. 
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Chapter 1: Introduction 

Part 1: Review of HIV-associated Tuberculosis 

 

Summary 

This section reviews the epidemiology of HIV-associated TB, highlighting the ongoing burden of 

this dual epidemic in sub-Saharan Africa in terms of mortality and morbidity. Despite public 

health interventions aimed at controlling HIV (and therefore reducing the degree of host 

susceptibility to TB), TB control efforts and collaborative HIV/TB activities, the incidence and 

mortality is not declining at the rate needed to meet global targets and avert millions of 

deaths. The diagnosis of HIV-associated TB remains a major barrier, especially in hospitals 

where HIV-associated immunosuppression is more advanced and case fatality is high. Rapid 

urine-based diagnostics provide some potential, as they have good diagnostic yield in this 

population and identify patients with disseminated TB at higher risk of poor outcomes and 

difficult to diagnose with means available, who may benefit from adjunctive interventions (in 

addition to TB therapy and appropriately timed antiretroviral therapy). However, relatively 

little is known about factors associated with mortality in this group, and therefore how to 

improve treatment outcomes.   

 

1.1 Introduction 

Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis complex (MTB), has 

affected humans globally for millennia, with few infectious diseases probably having claimed 

as many lives as TB. The peak of TB occurred during the 17th century in Europe, when incidence 

rates were as high as 1000 per 100,000 (1%) per year, and accounted for up to one-quarter of 

deaths in Europe until the 19th century [1]. Both the incidence and mortality of TB began to fall 

during the 18th and 19th centuries due to improvements in housing, nutrition, reductions in 

poverty and recognition that TB was infectious. This is long before the discovery of the 

Tubercle bacillus by Robert Koch, Bacillus Calmette-Guérin (BCG) vaccination and anti-

tuberculosis drugs in 1940s. Reductions in TB incidence continued after these discoveries, 

particularly in industrialised regions of the world. 

 

However, TB emerged again as a public health threat in 1990s, with the World Health 

Organization (WHO) declaring TB a global emergency in 1993 [2]. Much of the sharp increase 

in TB incidence triggering that response was driven by the human immunodeficiency virus 

(HIV)/acquired immune deficiency syndrome (AIDS) epidemic, particularly in southern Africa 

where TB incidence increased exponentially from 1990 (figure 1.1), despite being stable or 
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reducing in developed regions of the world [3]. Both in the individual host and at a population 

level, TB and HIV potentiate one another. 

 

Soon after the first descriptions of AIDS in early 1980s, HIV rapidly emerged as the strongest 

risk factor for development of TB disease [4]. Although TB occurs at all levels of HIV-related 

immune suppression, it has become inextricably linked to the control of HIV 

immunosuppression in countries with generalised HIV epidemics, as well as countries with high 

HIV prevalence in substantial ‘key populations’ such as prisoners and injecting drug users. The 

risk of TB disease is up to 30-fold higher in the most immunosuppressed HIV positive patients, 

such as those with CD4+ T-lymphocyte (CD4 cell) counts less than 100 cells/µL [3]. 

Concerningly, even those HIV-positive patients who are stable on antiretroviral therapy (ART), 

with suppression of HIV viral replication and restoration of CD4 cell counts still have up to 5-

fold increased risk of TB disease compared to their HIV-uninfected counterparts [5]. 

 This inherent biological predisposition to TB caused by HIV was compounded by under 

resourced TB control programmes and health systems in sub-Saharan Africa, which impacted 

both HIV and TB. Vertical TB programmes (focussed on a single disease independent of the 

general health system) consisting of BCG vaccination and TB case management were not 

effectively transferred to resource-poor settings.  

The DOTS strategy [6] was developed largely uninformed by HIV-associated TB patients. 

Although successful in improving treatment outcomes for HIV-negative patients, DOTS was ill-

suited to high HIV-prevalence settings because of a reliance on sputum smear microscopy for 

diagnosis, lack of screening for HIV amongst TB patients, and no recognition of complications 

of HIV-associated TB, for example drug interactions and poorer survival. 

This lead to the integration of TB programmes into general health services, but this was not 

accompanied by an increase in resources, leading to the neglect of TB control outside 

resource-rich settings. Case detection of TB was often poor, and cure rates were low, fuelling 

both transmission of TB and high case fatality rates. Globally, investments in new technologies, 

research into TB diagnostics, drugs, treatment regimens and vaccines were also neglected for 

from the 1970s onwards, contributing to a return to TB incidence rates in pockets of sub-

Saharan Africa resembling those of 19th century London. 
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A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 1.1 A. Estimated TB incidence rates in WHO regions globally between 1990 and 2008, showing 
the exponential increase in high HIV-prevalence settings in Africa. Data is from the Global Tuberculosis 
report 2009 [7], figure is reproduced from Lawn and Zumla [3] B. WHO estimated TB incidence rates in 
12 Southern and Eastern African countries from 2000 to 2016, showing only a slow decline in incidence 
in most countries. Data is from the Global Tuberculosis Report 2017 [8]. 

 
 

B. 
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1.2 Epidemiology of HIV-associated TB 

By 2017, there were estimated to be 36.7 million people living with HIV (PLHIV) worldwide, 

including 1.8 million new infections that year, a 46% decrease from peak annual incidence in 

1996 [9]. Despite 21.7 million people accessing ART, there were almost 940,000 HIV related 

deaths in 2016, a 50% decrease from the peak in 2004 [9]. Although HIV is a global epidemic, 

the burden of prevalence, incidence and mortality lies in sub-Saharan Africa, and more 

specifically in Eastern and Southern Africa where 19.6 million (53%) of PLHIV and 380,000 

(40%) of HIV deaths occur [9]. 

 

TB is still the leading single infectious cause of death and one of the top ten leading overall 

causes of death worldwide (figure 1.2) [8]. An estimated 10.4 million people had TB disease in 

2016, of whom 25% lived in the WHO African region [8]. There were also an estimated 1.7 

million deaths from TB in the same year, despite a 3% annual reduction in TB mortality and 2% 

reduction in incidence (figure 1.1). 

 

 
Figure 1.2 Deaths from TB and HIV-associated TB. Taken from The Global Tuberculosis Report 2017 [8]. 

 
 
Both HIV and TB burden are highest in sub-Saharan Africa, and this is where the HIV-associated 

TB epidemic resides. Of the 30 countries on the WHO’s 2016-2020 high-burden list for HIV/TB, 

23 are in the sub-Saharan Africa region [8]. In 2016, globally there were an estimated 1 million 
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cases and 0.4 million TB deaths among PLHIV (see figure 1.3) [8]. TB is the leading cause of 

mortality amongst PLHIV, with 82% of these HIV related deaths occurring in sub-Saharan 

Africa.  

 

Global trends in TB mortality are downwards, although reductions are predominantly in the 

HIV-negative population rather than PLHIV (figure 1.4) [8]. There are also substantial costs to 

the healthcare system of HIV-associated TB, and to individuals, for whom there is growing 

evidence of a high risk of catastrophic costs both pre- and post-diagnosis [10]. Given these high 

individual, financial and societal costs, there is a clear need to intensify and optimise control 

strategies as far as possible within available resources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Global HIV and TB statistics in 2016. Data from the WHO Global tuberculosis report 2017 [8]. 

 

1.3 Public health interventions to address HIV-associated TB 

Control of HIV-associated TB aims to reduce both incidence, and morbidity and mortality. 

Despite the link between TB and HIV having been recognised early in the HIV epidemic, 

collaborative HIV and TB public health activities began relatively late [11]. Thus, much of the 

early control of HIV-associated TB has resulted from control programs aimed at HIV or TB as 

single diseases entities.  

Global HIV and TB statistics in 2016 
HIV 

• 36.7 million people living with HIV 

• 1.8 million new HIV infections (64% in sub-Saharan Africa) 

• 1.0 million deaths attributed to HIV 
 
TB 

• 10.4 million incident cases (equivalent to 140 cases per 100,000 
population) 

• 1.7 million deaths attributed to TB 

• 0.6 million cases of drug resistant TB 

• TB is the 9th leading cause of all-cause mortality, and the leading 
infectious cause of death globally 

 
HIV and TB Co-infection 

• 1 million TB cases in people living with HIV 

• 0.4 million deaths attributed to TB and HIV co-infection (these are 
officially classified as deaths caused by HIV/AIDS) 

• 82% of HIV-TB deaths occurred in sub-Saharan Africa 

• Co-infection responsible for 1 in 4 TB deaths, and 1 in 3 HIV deaths 
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Reducing incidence can be achieved through reducing TB transmission, for example within 

health care facilities and some congregate settings where transmission can be strongly driven 

by HIV. Within the community, prolonged infectious TB (more common in HIV-negative 

patients as HIV-positive patients progress to severe illness more quickly, therefore duration of 

infectiousness is thought to be less) presents a major threat to HIV-positive individuals [12]. In 

high TB prevalence settings, the majority of TB (including HIV-associated disease) is caused by 

recent infection rather than ‘reactivation’ of latent infection, suggesting transmission is a key 

factor in controlling HIV-associated TB [13,14].  

 

 

 

 

Figure 1.4 Global trends in TB incidence and mortality as numbers of cases and rates, stratified by HIV-
status.  Taken from The Global Tuberculosis Report 2017 [8]. 

 

TB incidence can also be addressed through reducing host susceptibility to TB (ie reducing time 

spent at lower CD4 cell counts when TB risk is greater) [5]. This is primarily through early 

diagnosis of HIV-infection and delivering accessible and effective HIV care (optimising the HIV 
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‘treatment cascade’). The use of TB preventative therapy in HIV-positive patients can also 

reduce TB incidence [15]. 

TB Control 

Following the alarming resurgence of TB in the early 1990s, including well publicised 

nosocomial and institutional epidemics of drug-resistant (DR)-TB with high mortality, and 

decades of neglect, global stakeholders developed a new approach to TB control which 

targeted all levels of the healthcare system, given the brand name ‘DOTS’ (not to be confused 

with directly observed therapy, DOT, which is a component of DOTS) [6]. The five elements of 

DOTS are summarised in figure 1.5, but the philosophical basis was prompt diagnosis and 

effective treatment of smear positive TB to interrupt transmission [16]. 

 

Figure 1.5 The DOTS TB control strategy 

 

Reaching STOP TB Partnership targets for global TB, launched in 2006 and underpinning the 

Global plan from 2011 to 2015 (a 50% reduction in incidence and mortality compared to 1990 

levels by 2015) had been the focus of national and international TB control efforts. In the post-

2015 era of the sustainable development goals (SDGs), the international community has 

committed to ending the HIV/AIDS and TB epidemics [17]. Goals to be achieved include an 

80% reduction in TB cases and a 90% reduction in TB deaths by 2030, with the ultimate aim of 

achieving a TB incidence of <10 cases per 100,000 people, considered sufficient to ‘end’ the 

global TB epidemic (figure 1.6) [17]. However, meeting these ambitious targets will require 

specific interventions targeted to PLHIV. Even though incidence and mortality have been 

declining over recent years (figure 1.4), this decline is much slower in HIV-positive compared to 

HIV-negative populations, and will be too slow to attain End TB targets by 2030. 

The five essential elements of DOTS (directly observed therapy, short 

course) 

• Clear and sustained political commitment by national governments to 

foster national and international partnerships for TB control 

• Case detection using sputum smear microscopy in patients presenting 

to health care services with cough or respiratory symptoms (a form of 

passive case finding) 

• Treatment with standard ‘short-course’ chemotherapy using a 

rifamycin based regimen and administered with supervised therapy 

(eg directly observed therapy) for at least 2 months 

• An effective, regular supply of essential antituberculosis drugs, 

including drug supply and management systems 

• Reliable monitoring and evaluation system with regular 

communication between the central and peripheral levels of the 

health system is vital 
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Figure 1.6 The pillars and components of the End TB strategy. 

 

Control of HIV 

The advent of anti-retroviral drugs in the late 1980s and the use of combination therapy were 

enormous advances and altered the natural history of HIV. However, the impact on HIV-

associated TB was not truly felt until the negotiated decline in the pricing of ART in low income 

countries to less than US$150 per year (from over US$15,000 per year) in the early 2000s, 

which allowed high HIV-prevalence countries to introduce ART through the public sector with 

donor funding support [16]. ART scale-up is one of the most important public health 

interventions in history in terms of the number of deaths averted, with 1.7 million adult lives 

saved in South Africa alone between 2000 and 2014 [18].  

ART is one of the most potent tools for the public health control of HIV-associated TB via 

several mechanisms. Current CD4 cell count is the strongest risk factor for TB disease, and ART 

reduces the person-time spent at lower CD4 cell counts and therefore at higher risk of TB. 

Multiple cohort studies reported substantial risk reductions in TB incidence following ART 

initiation, with early studies estimating an overall risk reduction of two-thirds [19]. This risk 

reduction is irrespective of evidence of latent TB (eg tuberculin skin test positive), suggesting 

reduced TB infection as well as reactivation. 

Entry into a life-long ART program also provides ongoing opportunity for intensified TB 

screening among HIV-positive individuals, potentially shortening TB disease duration and 

Post-2015 End TB Strategy pillars and components 

• The vision was a world free of TB with zero deaths, disease and suffering due to 

TB, and the goal to end the TB global epidemic 

• Milestones for 2020 are (compared to 2015): 

o 35% reduction in TB deaths 

o 20% reduction in TB incidence rate 

• Milestones for 2025 are (compared to 2015): 

o 75% reduction in TB deaths 

o 50% reduction in TB incidence rate 

• Milestones for 2035 are (compared to 2015): 

o 95% reduction in TB deaths 

o 90% reduction in TB incidence rate 

o No affected families facing catastrophic costs due to TB 

• The three ‘pillars’ of the End TB strategy are: 

o Integrated, patient centred care and prevention 

o Bold policies and supportive systems 

o Intensified research and innovation 
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transmission risk. ART also reduces individual level mortality in HIV-associated TB. Finally, 

effective ART may also prevent HIV through reduced transmission, and HIV testing could 

provide concomitant opportunities for TB screening in the general population. 

Early global targets for ART scale-up included UNAIDS and WHO’s ‘3 by 5’ initiative, launched 

in 2003, which aimed to have 3 million HIV-positive people on ART by the end of 2005 [20]. 

Global scale-up of ART continues, with the more recent UNAIDS target of ’90-90-90’- including 

having 90% of PLHIV who know their status on ART. 

Many high HIV and TB burden settings are implementing universal ART (‘test and treat’) 

following updated WHO 2016 guidance and strong evidence of individual reductions in 

morbidity and mortality as well as the population benefit of treatment as prevention [21,22]. 

This increase in coverage, as demonstrated by population-based HIV impact assessments 

(PHIA) [20], has only been possible due to decentralisation of ART services and task shifting to 

lower level health care workers. 

There is now compelling evidence at individual, cohort and national level of decreasing TB 

notifications at the population level during periods of extensive ART scale-up in settings such 

as South Africa and Malawi, with more marked declines in HIV-positive than HIV-negative 

populations supporting ART as a causal factor [23]. 

HIV and TB collaborative activities 

The WHO published a strategic framework to decrease the burden of HIV-associated TB in 

2002, followed by an interim policy on collaborative HIV/TB activities in 2004 [11,24]. The 

document recognised the morbidity and mortality from HIV-associated TB and aimed to assist 

countries on activities, whilst understanding the limited of evidence for collaborative activities 

available at that time. The policy was updated in 2012 using the same framework, but 

emphasising activities with the strongest evidence base [24]. Collaborative activities from both 

documents are summarised in table 1.1. 

The WHO’s HIV/AIDS and TB departments met in 2008, in collaboration with other 

stakeholders, to develop recommendations on the “Three I’s”, which were the key public 

health strategies to decrease the TB burden in PLHIV [25]. They included TB preventative 

therapy with isoniazid, intensified case finding to diagnose TB in PLHIV, and infection control to 

prevent TB in vulnerable PLHIV as well as health care workers and the community. 
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Framework 
for HIV/TB 
collaboration 

Interim 2004 
policy 

2012 Policy 
changes 

Evidence/Notes 

A. 
Mechanisms 
for 
collaborative 
TB & HIV 
services 

Set-up 
coordinating 
body for HIV/TB 
at all levels 

Addition of 
strengthening 
coordinating 
bodies 

Based on operational research 
showing such bodies ensure 
commitment and ownership 

Surveillance of 
HIV prevalence 
among TB 
patients  

Addition of TB 
prevalence 
amongst PLHIV 

Crucial to understanding the impact of 
interventions for HIV/TB 

Joint HIV/TB 
planning 

Integration of 
HIV/TB services 

Several models of care were 
identified, but referral between HIV 
and TB services was seen as risky. 
Integrated services at a single facility 
are considered the gold-standard, 
supported by observational data 

Monitoring and 
evaluation 

 Standardised monitoring and 
evaluation help determine the impact 
of activities and facilitate comparisons 
between services 

B. Reduce 
burden of TB 
in PLHIV 
(Three I’s for 
HIV/TB) 

Intensified TB 
case-finding 

Addition of 
ensuring high 
quality anti-TB 
treatment 

High rates of undiagnosed TB in PLHIV 
and higher risk of incident TB, in part 
due to inadequate diagnostic tools. 
Improved outcomes with early 
initiation of ART in HIV/TB 

Initiate TB 
prevention with 
isoniazid 
preventative 
therapy 

Addition of early 
antiretroviral 
therapy 

Evidence that early initiation of ART 
substantially reduced TB incidence 
(even at higher CD4 counts), and the 
effect was additive to IPT.  

Infection control 
in healthcare and 
congregate 
settings 

 Tugela Ferry outbreak of DR TB (2006) 
in HIV-positive patients in hospital 
highlighted the importance of 
infection control for vulnerable PLHIV 

c. Reduce 
burden of HIV 
in TB patients 

Provide HIV 
testing and 
counselling to TB 
patients 

Addition of 
presumed TB 
patients as well 
as diagnosed TB 
patients 

Evidence emerged that HIV prevalence 
was higher in patients presenting with 
TB symptoms than the general 
population. This is another 
opportunity for HIV diagnoses and 
linkage to care 

HIV preventative 
interventions  

 

Co-trimoxazole 
preventative 
therapy for PLHIV 

 Strong evidence to support reduced 
morbidity and mortality with CPT use 
in HIV/TB as well as PLHIV 

ART for TB 
patients living 
with HIV 

  

Table 1.1 HIV/TB collaborative activities, adapted from WHO’s interim policy on collaborative HIV/TB 
activities 2004 [11] and WHO policy on collaborative TB/HIV activities 2012 [24] 
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1.4 Clinical features of HIV-associated TB 

TB in adults has a number of clinical manifestations, although the lung is the predominant site 

of TB disease as infection almost always occurs from inhalation of MTB bacilli. Clinical features 

pertain to the site of the disease, as well as non-specific constitutional symptoms such as 

fevers, night sweats, and weight loss. Early during the pathogenesis of TB, patients may be 

asymptomatic due to subclinical disease [26]. Classical clinical features of pulmonary TB, 

defined as TB of the lung parenchyma and/or tracheobronchial tree, include cough (often 

lasting over two to three weeks), sputum production and/or haemoptysis [3].  

Although physical signs of pulmonary TB are non-specific, radiographic features often show 

infiltrates which may be extensive and contain cavities, and are usually more pronounced in 

the upper lobes. Extra-pulmonary TB occurs in between 10 and 42% of patients, depending on 

several factors including age, ethnicity, co-morbidities, immunosuppression and MTB strain 

[26]. It can affect any organ, with a variety of signs and symptoms. Some more common 

extrapulmonary presentations include TB lymphadenitis, pleural disease, central nervous 

system disease or disseminated (‘miliary’) TB [27,28]. 

Impaired host immune responses against MTB not only make TB disease more common in 

PLHIV, advancing immunosuppression can markedly alter presentation. However, patients 

with higher CD4 cell counts often present with ‘typical’ HIV-negative clinical features [3]. 

Progressive immunosuppression, as reflected by a declining CD4 count, increases risk of 

extrapulmonary and disseminated disease, with increasingly non-specific presentations 

[29,30]. A Ugandan study showed no difference in the proportion of HIV-positive patients with 

CD4 cell counts >300 cells/µL with radiographic disease or cavitation in the upper lobes of the 

lungs than in HIV-negative patients [31]. However, as CD4 count declined, these classical 

radiographic features also became less common, and adenopathy, effusions, military patterns 

and lower lobe disease predominated. 

This disease pattern in HIV-associated TB has also been confirmed in autopsy studies spanning 

the last 20-25 years, with a systematic review showing that 90% of fatal HIV-associated TB in 

health-facilities in sub-Saharan Africa were disseminated, with the lung, spleen, liver, lymph 

nodes and bone marrow being commonly affected, suggesting haematogenous spread of 

infection from the lungs [32,33]. Similar findings have been demonstrated ante-mortem using 

computed tomography (CT) [34]. 
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1.5 Diagnosis of HIV-associated TB (see [35]) 

There remains a major gap between estimated TB incidence, and TB cases diagnosed and 

notified [8]. TB diagnostic tools are a major weakness in the TB care cascade, and in low- and 

middle-income settings where the major burden of TB resides, health systems still rely on 

outdated tools such as sputum smear microscopy, chest radiography or health care workers’ 

clinical suspicion of TB disease [35]. These lack sufficient sensitivity and/or specificity [34]. The 

global ‘gold standard’ TB diagnostic, liquid culture, is expensive, requires considerable 

infrastructure, is too slow, not available in peripheral health care facilities close to patients, 

and still far from 100% sensitive. Immunological assays, such as the Tuberculin skin test (TST) 

or interferon-gamma release assays have limited role in the diagnosis of active TB disease, as 

they cannot differentiate active from ‘latent’ TB infection. 

Diagnosis of HIV-associated TB remains a particular challenge owing to atypical host responses, 

which lead to atypical clinical presentations. Smear microscopy, even with concentration and 

fluorescence microscopy to increase sensitivity, has inadequate sensitivity in HIV [36]. 

Similarly, chest radiography has reduced diagnostic utility in HIV-positive compared to HIV-

negative TB disease [37]. The underlying mechanism is advanced HIV-related 

immunosuppression causing reduced cavitation, resulting in lower mycobacterial burden in 

sputum specimens, compounded by rapid dissemination beyond the lungs [38–41]. 

If EndTB targets to reduce TB deaths by 95% and new cases by 90% by 2035 are to be met, 

major improvements in diagnostic strategies are amongst the most pressing needs [42–44]. TB 

has not kept pace with other infectious diseases such as HIV and malaria, where cheap and 

rapid point-of-care diagnostics have simplified diagnostic algorithms and been successfully 

scaled up throughout sub-Saharan Africa [35]. However, following decades of under-

investment in research, development of TB diagnostics has progressed, and the TB diagnostics 

pipeline looks more promising over the past decade (figure 1.7) [35]. Advances include 

improvements in current diagnostic technologies such as smear microscopy and culture-based 

systems [45,46]. More importantly, some progress has been made with respect to 

development of new rapid diagnostic tests that are also applicable to HIV-associated TB [47].  
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Figure 1.7 Current tuberculosis diagnostics pipeline listing examples of different types of diagnostics 
and their development phase (as of 2017). WHO: World Health Organization; LED: light-emitting diode; 
MODS: microscopic observation of drug susceptibility; LAM: lipoarabinomannan; NAAT: nucleic acid 
amplification test; TB: tuberculosis. Adapted from Gupta-Wright and Lawn [35], data from [48–50]. 

 

 

Xpert MTB/RIF assay 

The development and introduction of nucleic acid amplification tests without the need for 

complex molecular laboratory infrastructure has been described as a ‘game changer’ [35]. The 

Xpert MTB/RIF assay (Xpert, Cepheid Inc, USA) is a self-contained, semi-automated and fully 

integrated nucleic acid amplification test developed for use by individuals without laboratory 

training [51,52]. Within a single use cartridge, it uses hemi-nested real-time polymerase chain 

reaction (PCR) and ‘molecular beacon’ technology to detect DNA sequences within MTB’s RNA 

polymerase β subunit gene (RpoB), allowing diagnosis of MTB and genotypic detection of 

approximately 95% of rifampicin resistant strains [53–55].  
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It was endorsed by WHO in 2010 due to superior diagnostic accuracy compared to sputum 

smear microscopy, in addition to ease of use, a substantially reduced biosafety risk and 

relatively short processing time (approximately two hours) [56,57]. Initial recommendations 

were for Xpert’s use for rapid diagnosis of multidrug resistant (MDR)-TB, with its use as the 

primary diagnostic test for HIV-associated TB also being included [57]. However, logistical and 

health-system factors may make the of Xpert outside the laboratory environment challenging 

[35]. Also, relatively low mycobacterial burden in sputum specimens and rapid dissemination 

beyond the lungs in PLHIV means the assay’s sensitivity from testing sputum is reduced in HIV-

positive TB compared to HIV-negative TB patients [58]. 

Since the initial multi-country assessment, many studies have been undertaken to assess the 

diagnostic accuracy of Xpert for HIV-associated TB [59]. The pooled sensitivity from meta-

analyses of Xpert for diagnosis of culture-positive pulmonary TB in HIV-infected individuals was 

79% (95% CI 70-86%), and specificity was 99% (95% CI 98-100%) compared to a culture 

reference standard [58]. Sensitivity was 61% (95% CI 40-81%) for sputum smear-negative TB, 

compared with 97% (95% CI 90-99%) for sputum smear-positive pulmonary disease [58].  

Xpert’s sensitivity appears to be related to mycobacterial load, thus is likely to be lower in 

populations with fewer symptoms and less smear-positive disease, for example when used for 

screening asymptomatic HIV-positive patients [60,61]. This may explain some of the variability 

between studies seen in sensitivity. The high proportion of patients with HIV-associated TB 

who have extrapulmonary TB provides another important use of this diagnostic assay [62]. 

Systematic reviews have reported very high specificity of Xpert when testing a very wide 

variety of non-respiratory clinical samples [63,64], despite the fact that culture is an imperfect 

reference standard for extrapulmonary TB which may lead to underestimation of specificity 

[65,66].  

Overall sensitivity of Xpert was high for smear-positive extrapulmonary samples (97.4%, 95%CI 

95.5-99.3%) [63]. However, sensitivity varied substantially with different specimen types when 

using a mycobacterial culture reference standard. The best sensitivities were observed with 

lymph node tissue (83.1%, 95% CI 71.4-90.7%) and cerebrospinal fluid (80.5%, 95% CI 59.0-

92.2%), but poor sensitivity in pleural fluid (46.4%, 95% CI 26.3-67.8%) [63]. It is difficult to 

directly compare diagnostic accuracy of Xpert for extrapulmonary TB in HIV-positive and HIV-

negative individuals due to paucity of data, but estimates did not differ substantially in studies 

with high and low proportions of HIV-positive patients [63]. WHO has also endorsed the use of 

Xpert for a variety (but not all) non-respiratory samples [67]. 
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1.6 Urine diagnostics for HIV-associated TB 

Urine has many advantages over sputum as a clinical sample for diagnostic testing, including 

the relative ease of collection and low biohazard risk when collecting specimens and during 

laboratory handling [61]. It is especially useful in severely unwell patients who are often too 

weak to produce sputum samples. Early morning urines were traditionally a common sample 

used to diagnose TB, despite low diagnostic yield [68], and urine culture was shown to provide 

a good diagnostic yield for TB in a cohort of patients with advanced HIV/AIDS in whom 77% 

tested urine culture positive [69]. However, the use of urine culture, as with sputum culture, 

and is not suitable for scaling up in high burden but resourced limited settings due to cost, 

infrastructure and turnaround time. However, two rapid diagnostic tests for urine that are 

potentially implementable have shown promise in diagnosis of HIV-associated TB: a lateral 

flow assay to detect lipoarabinomannan, and the Xpert assay. 

Urinary detection of lipoarabinomannan (see [35] and [70]) 

Whereas assays of the immunological response to MTB are likely to be undermined in HIV-

positive patients, direct detection of MTB antigens still has potential diagnostic utility in such 

patients [35]. Several different antigens of MTB have been detected from the urine of patients 

with microbiologically confirmed pulmonary TB [71,72]. Lipoarabinomannan (LAM), a 

mycobacterial cell wall lipopolysaccharide, is one such antigen and has emerged as a potential 

TB diagnostic assay target [73]. Several studies have investigated the diagnostic accuracy of 

enzyme-linked immunosorbent assays (ELISA) detecting LAM and, more recently, a low cost, 

point-of-care lateral flow assay (LFA)- the Determine TB-LAM Ag assay (TB-LAM, Alere, USA) 

[74]. This truly point-of-care bedside test can be performed with limited training and uses only 

60µL of unprocessed urine, which is applied to the test strip. The result is then read after only 

25 minutes by comparing visible bands with the manufacture’s reference card (see figure 

1.8A). 

Although TB-LAM’s overall sensitivity for diagnosing TB is sub-optimal (<25% HIV-uninfected 

populations), LAM assays are significantly more sensitive in HIV-positive patients [75]. An early 

meta-analysis of diagnostic accuracy in PLHIV reported pooled sensitivities of 56% (95% CI 40-

71%) and specificities of 95% (95% CI 77-99%) [75]. A more recent systematic review reported 

overall sensitivities of 39-84% and specificities of 81-99% [76]. Specificities have been sub-

optimal in many studies due to the use of mycobacterial culture on a only one sputum 

specimen as the reference standard, which will not reliably diagnose disseminated disease, 

and therefore may mis-classify some LAM-positive patients as ‘false-positives’ [66]. However, 

when reference standards include culture and nucleic acid amplification tests from several 
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extra-pulmonary sites, specificity is very high (≥99%) [77]. Although there is some cross-

reactivity with non-tuberculous mycobacteria [78,79], this is not thought to be a significant 

cause of false positive results in the context of patients with advanced HIV in sub-Saharan 

Africa [80]. 

A key observation for urine LAM testing was greater diagnostic accuracy with more advanced 

HIV-associated immunosuppression (figure 1.9) [74,75,81]. Studies stratifying urine LAM 

sensitivity by CD4 cell count demonstrated higher sensitivities (56-85%) among patients with 

CD4 cell counts <100 cell/µL [82–88]. Observational studies have also shown significant 

incremental diagnostic yield when urine LAM assays were used to screen HIV-positive medical 

hospital admissions for TB, compared to sputum-based diagnostics alone [89]. This probably 

relates to the basis of urine LAM detection being haematogenously-disseminated TB with renal 

involvement, with dissemination more common in advanced immunosuppression (compared 

to immune-competent patients) [70,90]. Urine LAM detection also has strong associations with 

markers of increased mycobacterial load [91]. 

 

   

 

 

 

 

 

 

 

 

 

Figure 1.8 Determine TB-LAM Ag lateral flow assay with manufacturers reference card  (A) Pre-2014 
reference card. Photo provided by Dr Andrew Kerkhoff. (B) Manufacturers reference card after the 
weakest positive band was removed, leaving only four positive ‘grades’ (post 2014) 
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Figure 1.9 Sensitivity of urine LAM assay in ART-naïve individuals, stratified by CD4 cell count. Error 
bars represent 95% confidence intervals. Whilst overall sensitivity is inadequate with current assays, in 
advanced HIV urine LAM has good sensitivity. Adapted from Lawn et al [92].  

 

The manufacture’s reference card provided with the TB-LAM assay contains bands of graded 

intensity within the ‘positive’ range, without clear instructions on interpretation [93]. The least 

intense band within the positive range was often referred to as ‘grade 1’ positive, with the 

band of next intensity being described as ‘grade 2’, up to ‘grade 5’ (see figure 1.8 A). In early 

studies of diagnostic accuracy of TB-LAM, researchers defined a positive result as either equal 

or greater intensity than the ‘grade 1’ or the ‘grade 2’ bands, with visible bands that are 

weaker in intensity being called ‘negative’.  

 

Comparison of these two definitions of positivity from several studies concluded that the 

grade 1 cut-off was difficult to interpret (as it is quite faint and therefore less reproducible, 

especially in routine clinical practice), and less specific than the grade 2 cut-off [93]. Although 

using grade 2 to define a positive result led to a decrease in sensitivity, the area under the 

receiver operator curve (ROC) was greater. Therefore, researchers published a consensus that 

all future studies should use the grade 2 definition in 2013, to which the manufacture 

responded by updating their TB-LAM reference cards in 2014 so that the original ‘grade 1’ was 

no longer present (the new reference card only contains four bands of different intensity 

within the positive range, see figure 1.8B) [93]. The least intense band within the positive 

range on the new (post 2014) reference card is now also referred to as ‘grade 1’ (despite being 

different to the ‘old’ grade 1). 
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Urine Xpert MTB/RIF assay 

Although Xpert has been endorsed for non-respiratory samples by WHO [67], its use on urine 

was not been recommended due to insufficient data. Three published studies have assessed 

Xpert’s utility in diagnosing HIV-associated TB using urine samples. In outpatients with culture-

positive TB, overall sensitivity of Xpert was poor (19%), but 44.4% in patients with CD4 counts 

<50 cells/µL [92]. In hospital inpatients with clinically suspected TB, sensitivity was 47.8% 

compared to the gold standard of liquid culture [94].  

A recent study screening hospital admissions for TB in Cape Town demonstrated sensitivity of 

59.0% when urine was concentrated by centrifugation prior to testing with Xpert (sensitivity 

was 42.4% using unconcentrated urine, a 40% relative increase) [95]. Specificity was >98% 

when reported [94,95]. Diagnostic accuracy, as with urine LAM, was greater with more 

advanced degrees of immunosuppression. 

Evidence for positive urine diagnostic tests representing disseminated TB (see [70]) 

Early works presumed that LAM-antigenuria (and therefore positive urinary-LAM assays) 

resulted from renal filtration of free circulating LAM in the circulation [96,97]. This seemed 

plausible as it was known that replicating MTB produced LAM in large quantities at sites of TB 

disease, from which it could entered the bloodstream [98]. As a 17kDa glycolipid (similar in size 

to myoglobin) it should readily cross the renal glomerular basement membrane [74].  

After production at sites of TB, it has been demonstrated that LAM is detectable in blood, 

albeit following extensive processing due to its incorporation within high density lipoprotein 

(HDL) particles [99], or a high degree of immune-complexing with anti-LAM antibodies [100]. 

Renal filtration of circulating LAM is also a plausible explanation for why LAM assays detected 

both pulmonary and extrapulmonary TB [70].  

Neither immune-complexed nor HDL-associated LAM should pass from the systemic circulation 

through the intact basement membrane in a healthy renal glomerulus [101]. Whilst 

dysfunction of the glomerulus might theoretically allow LAM-containing-complexes to pass 

into the urine, studies have not found associations between urine LAM detection and 

glomerular damage or proteinuria [84,102], and there was no histological evidence of 

glomerular damage at autopsy in urine LAM positive TB patients [90].  

LAM is also released by dying mycobacteria in large quantities [74]. If LAM freely filtered into 

urine, it would be expected that early during TB therapy, when substantial mycobacterial 

killing occurs, urine LAM concentrations would also rise. However, urine LAM levels do not 
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increase, and usually decrease, during early TB treatment, suggesting an alternative 

mechanism to simple renal filtration [102,103]. 

If LAM in the urine of HIV-infected patients were the result of renal TB, it may be expected that 

MTB would be culturable from LAM-positive urine samples. Unfortunately, data correlating 

urine LAM detection and urine mycobacterial culture are currently lacking. Nonetheless, other 

important evidence comes from studies testing urine with Xpert, which detects whole MTB 

bacilli through amplification of organism-associated DNA (rather than detection of free DNA 

which is filtered out early in the process) [51,104]. A large overlap exists between TB-LAM and 

Xpert positivity in urine from patients with HIV-associated TB, with ≥60% of LAM-positive urine 

samples also testing positive by Xpert MTB/RIF [92,94,105]. The detection of whole MTB bacilli 

in urine of LAM-positive patients strongly corroborates the notion that renal TB as the source 

of urinary LAM.  

Renal TB, usually in the form of microabscesses, arises in this patient population as a result of 

haematogenous dissemination, and is a common post-mortem finding in patients who have 

died from HIV-associated TB (50%-69%) [106–109]. In patients with advanced HIV (typically 

CD4 cell counts of <100 cells/L) a strong association has been observed between MTB 

bacteraemia and urine LAM-positivity, with 70-90% of bacteraemic patients also being urine 

LAM positive [110–113].  

Renal TB readily provides a mechanism for this association, and Cox et al demonstrated (in 

post-mortem series) histological evidence of renal TB in most urine LAM positive patients [90]. 

In the same study, all patients with detectable urine LAM had evidence of either renal or 

disseminated TB. Renal TB also was also frequently found in cadavers of adults with 

disseminated TB in other post-mortem studies [106–109]. 

Discrepancy between urine LAM and urine Xpert MTB/RIF positivity 

Few studies have compared urine LAM and urine Xpert positivity on urine samples from the 

same patients. Four studies have demonstrated urine LAM to have a higher diagnostic yield 

than urine Xpert [92,94,114,115]. In all these studies, approximately half of patients with 

positive urine LAM results were also urine Xpert positive. Although I hypothesise that the 

mechanism of positivity is similar for both assays in urine (haematogenously disseminated 

renal TB leading to MTB entering the urinary tract), the assays themselves detect MTB 

differently which may explain the discrepancy between LAM and Xpert positivity. The Xpert 

assay only detects whole MTB bacilli, and in spiking experiments was found to have a limit of 

detection of ~131 colony forming units (CFU)/ml. (automated liquid mycobacterial culture 

techniques have a lower limit of detection as low as ~10 CFU/ml) [54]. It is likely that assays  
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Table 1.2 Direct and indirect evidence that urine lipoarabinomannan (LAM) antigenuria is due to renal 
involvement with haematogenously disseminated TB, and not free filtration of LAM into the urine. 
Taken from Lawn and Gupta-Wright [70] 

Observation Evidence References 

LAM is unlikely to be able 

to pass from systemic 

circulation into the urine via 

the renal glomerulus 

  

• LAM in the bloodstream is mostly 

immune-complexed or bound to 

high-density lipoprotein 

• These LAM containing molecules 

are too large to freely filter in the 

renal glomerulus 

Sada et al 1992[100] 
Sakamuri et al 
2013[99] 
Haraldsson et al 
2008[101] 

LAM concentration in the 

urine does not increase 

during the first weeks of TB 

treatment 

 

• Serum LAM concentration likely 

increases early after the massive 

mycobactericidal effect of anti-TB 

treatment.  

• If  LAM was freely filtered in the 

kidneys, LAM concentration in the 

urine would also be expected to 

increase early after treatment 

Wood et al 2012[102] 
Bekker et al 
1998[116] 

Most LAM-positive urines 

test Xpert 

MTB/RIF-positive 

• Xpert MTB/RIF detects 

M.tuberculosis DNA in whole 

bacilli (not free DNA), suggesting 

most LAM-positive urines contain 

whole M.tuberculosis bacilli 

 

Wood et al 2012[102] 
Lawn et al 2012[92] 
Blakemore et al 
2010[104] 

Frequent LAM-positive 

urine in patients with M. 

tuberculosis bacteraemia  

 

• The strong association between 

M. tuberculosis bacteraemia and 

LAM-positive urine is very 

plausibly linked mechanistically by 

haematogenously disseminated 

renal TB 

Manabe et al 
2014[110] 
Nakiyingi et al 
2015[111] 
Nakiyingi et al 
2014[112] 
Lawn & Kerkhoff 
2015[113] 

In patients with 

disseminated TB at autopsy, 

renal TB is common 

• Prevalence of renal TB is similar to 

the sensitivity of LAM-positive 

urine in this population 

Lanjewar et al 
2011[107] 
Ansari et al 2002[106] 
Cox et al 2015[90] 
 

Post-mortem renal TB in 

HV-positive patients is 

associated with LAM-

positive urine 

• Autopsy study revealed frequent 

renal TB in those whose urine also 

tested LAM-positive and all LAM-

positive patients had 

haematogenously disseminated 

TB 

• No patients with renal TB were 

urine LAM-negative 

Cox et al 2015[90] 
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detecting LAM antigen will be positive with a lower concentration of MTB than Xpert, 

explaining the superior sensitivity. 

These studies have also reported a small proportion of patients who were urine Xpert positive 

but urine LAM negative. Reasons for this are unclear, but may be explained by LAM being 

variably bound to other proteins in the urine, preventing detection by ELISA or antibody-

binding based assays in some patients [117]. A more recent study from South Africa found a 

larger proportion (47%, see figure 1.10) of urine Xpert positive patients to be urine LAM 

negative. This study concentrated urine through centrifugation prior to Xpert testing (but not 

prior to LAM testing), which may explain improved sensitivity of Xpert [77]. 

Diagnostic yield of rapid TB tests 

Data show urine testing with both LAM and Xpert has inadequate overall sensitivity for HIV-

associated TB, but moderate to good sensitivity in patients with advanced HIV, such as those 

admitted to hospital and/or those patients with low CD4 cell counts [70]. Sensitivity of sputum 

Xpert has been shown to be greater than those of urine TB diagnostics [58]. However, given 

that many of HIV-positive patients are unable to produce sputum (particularly those who have 

advanced disease), whereas almost all patients can produce urine samples [95], diagnostic 

yield is a better measure of utility than sensitivity (sensitivity of sputum-based assays can only 

be calculated in patients who were able to produce sputum). 

A recent study by Lawn et al which screened all HIV-positive patients admitted to a hospital in 

Cape Town for TB, irrespective of symptoms or presentation, using rapid diagnostic assays was 

done to assess comparative diagnostic yields of sputum and urine [77,95,105]. The study used 

a robust reference standard which included culture and Xpert of any clinical samples (including 

sputum, blood, lymph node aspirate, cerebrospinal fluid, pleural fluid and urine), and collected 

a median of 5 samples per patient.  

32% (n=139) of PLHIV admitted to hospital were diagnosed with microbiologically confirmed 

TB. Sputum samples were only produced by 37% of patients. Of all patients with TB, only 28% 

could be diagnosed by sputum Xpert (figure 1.10). However, 38% could be diagnosed by urine 

LAM, and 59% by urine Xpert. Combining urine LAM and Xpert would diagnose 67% of TB. 

Finally, combining sputum and urine Xpert with urine LAM could diagnose 82% of TB, and 

these assays could all be done within hours of admission, potentially expediting TB treatment. 

However, it is not known how many patients diagnosed using urine-based assays would have 

been started on TB treatment based on clinical grounds alone (empirical TB treatment). 
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Figure 1.10 Diagnostic yield of various rapid TB diagnostic assays and combinations of assays. Error 
bars represent 95% confidence intervals. Total number of TB cases were 139, and were defined by any 

positive TB culture or Xpert result on any clinical sample. Data from Lawn et al [77,95,105] 

 

1.7 Management of HIV-associated TB 

The current management of patients with HIV-associated TB follows similar principles as HIV-

negative patients, and drug-sensitive TB disease is usually treated with four standard drugs for 

2 months (rifampicin, isoniazid, pyrazinamide and ethambutol, ‘intensive phase’), followed by 

4 months of rifampicin and isoniazid (‘continuation phase’) [3,118]. There have been no 

advances in TB treatment over several decades, and patients with HIV are often excluded from 

trials of new TB drugs or drug regimens [3]. 

Firstly, early diagnosis is a prerequisite of optimal HIV-associated TB management, both to 

improve case ascertainment and to expedite anti-tuberculosis treatment. Non-specific clinical 

presentation, or sub-clinical disease means this must involve optimising diagnostic and 

screening strategies for PLHIV (including new diagnostic tools), and empirical TB treatment for 

certain high-risk patients when diagnostics are not available or fail [119]. Screening for HIV in 

patients diagnosed with TB or presumptive TB is also important [120].  

In addition to effective anti-tuberculosis treatment, HIV-positive patients should receive an 

additional package of care to reduce their mortality and improve outcomes [119]. This includes 

early provision of ART – there are data from randomised controlled clinical trials informing the 

optimal timing to start ART, and evidence supports early initiation in ART naïve individuals as 

deferral is associated with higher mortality risk [121–123].  

One potential drawback of early ART is increased risk of immune reconstitution inflammatory 

syndrome (IRIS). A clinical trial of prednisolone for the treatment of TB-IRIS demonstrated 
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reductions in the duration of symptoms and reduced hospitalisation compared to placebo 

[124]. However, IRIS is rarely fatal in HIV-associated TB [125]. Whilst concurrent first-line ART 

and TB treatment is relatively straightforward due to widespread availability of efavirenz based 

regimens and therefore relatively few pharmacokinetic drug interactions, second-line ART 

(which is mostly protease-inhibitor based) remains problematic [119]. Despite evidence that 

incident TB during ART is a predictor for poor virological control of HIV [126], few guidelines 

recommend screening for virological failure, and optimal management of ART switching has 

not been studied. 

Other considerations include the prevention and treatment of HIV-related co-morbidities and 

co-infections. Co-trimoxazole preventative therapy has good observational and randomised 

controlled trial evidence of beneficial effect in patients with HIV-associated TB in a range of 

settings, and reduces early mortality [127–130]. A recent randomised control trial of a 

combination of preventative therapies in advanced HIV found mortality reductions, although 

many patients with active TB disease at admission were excluded [131]. There is little evidence 

for empirical prescription of antibacterial drugs, despite bacterial infections being common 

amongst TB patients [132].  

At present, there remains a lack of evidence to support other adjunctive interventions in HIV-

associated TB. However, there is growing interest in host-directed therapies in TB, and efficacy 

trials are already underway, including some recruiting patients with HIV-associated TB 

[133,134]. 

 

1.8 Mortality in HIV-associated TB, and burden within hospitals 

TB patients undergoing treatment in sub-Saharan Africa still have a high risk of death, 

especially if HIV co-infected (figure 1.11) [135]. A meta-analysis relatively early in ART scale-up, 

and including data from 1991 to 2009, estimated that 18.8% (95% CI 14.8-22.8%) of HIV-

infected patients die during treatment, compared to 3.5% of HIV uninfected patients [136]. 

This mortality is not spread evenly amongst different levels of health care. Another meta-

analysis found patients with TB symptoms in high HIV-prevalence settings had a much higher 

mortality in hospital (22.6%), compared to primary care (3.1%) or community (1.6%) settings 

[120]. 

Both clinical and post-mortem studies from multiple settings have reported TB to be a major 

cause of hospitalisation among HIV-positive individuals: mortality among this population is 

high [32,137]. Meta-analysis of observational hospital cohorts found that 24% (95% CI 18-29%) 

of adult HIV-related hospital admissions in Africa and 27% (95% CI 21-33%) of hospital HIV-



40 
 

related deaths were caused by TB, and in-hospital case fatality for HIV-associated TB was 29% 

(95% CI 20-38%), although these data are likely to be subject to misclassification [138]. This 

may be an underestimation, given that post mortem studies have found up to half of fatal HIV-

associated TB in health facilities remains undiagnosed [32]. This high mortality risk appears to 

have persisted despite implementation of evidence-based interventions to reduce mortality 

(rifamycin containing regimen, co-trimoxazole prophylactic therapy and early initiation of 

antiretroviral therapy (ART) [119,139]. 

 

 

Figure 1.11 Estimates of case fatality ratios for TB from 2016 data. Taken from The Global Tuberculosis 

Report 2017 [8]. 

 

1.9 Risk factors for mortality 

Few studies have described in detail the clinical and/or epidemiological risk factors for 

mortality among hospitalised patients with HIV-associated TB after diagnosis and 

commencement of treatment (see table 1.3). HIV-positivity is a strong risk factor for death 

among TB patients [135]. However, among HIV and TB co-infected inpatients, current CD4 cell 

count (measured at the time of diagnosis or admission) was the overriding predictor of 

mortality in both crude and adjusted analyses [110,140–142].  

Whereas greater mortality has been found in smear-negative pulmonary TB patients in high 

HIV-prevalent settings [135], no studies in HIV-positive in-patients have reported sputum 

smear-negativity as a risk factor, and only one study found extrapulmonary TB to be risk 
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associated with death [143]. MTB bacteraemia has been identified as a common cause of 

severe sepsis syndrome in hospitalised HIV-infected adults in Uganda [144]. However, few 

studies have examined clinical signs on presentation in relationship to early mortality. 

Increased respiratory rate and lower peripheral capillary oxygen saturation were associated 

with early mortality in one study [140]. A clinical prediction score has been developed to 

predict mortality in HIV-positive patients with pneumonia (including pulmonary TB), but has 

not been validated in extrapulmonary HIV-associated TB or in different settings [145]. 

Both indices of malnutrition (e.g. body mass index <17kg/m2 and mid-upper arm 

circumference <220mm) and anaemia are risk factors for death in TB patients in ambulant TB 

patients [135], but no studies have demonstrated this association in hospitalised HIV-TB 

patients. TB treatment delay was shown to predict mortality in one study [146]. Being ART 

naïve or having a more recent HIV diagnosis were also predictors for mortality [140,141,143]. 

However, these data mainly relate to ART naïve individuals, and include patients without 

bacteriologically-confirmed TB disease. Risk factors for mortality in hospitalised patients with 

HIV-associated TB may have also changed over time given the implementation of public health 

interventions to address HIV-TB, such as isoniazid preventative therapy, co-trimoxazole and 

improved ART coverage.  

 

1.10 Association between urine diagnostics and outcomes 

In addition to its diagnostic yield, observational studies from SSA have shown increased 

mortality in patients with HIV-associated TB who test positive for LAM in urine compared to 

those who are urine LAM negative [74]. A cohort in South Africa demonstrated 25% mortality 

in hospitalised patients with HIV-TB who were urine LAM-positive compared to 7% in those 

who were urine LAM-negative (figure 1.12) [77,89]. After adjustment for other risk factors, 

urine LAM was associated with an adjusted hazard ratio for death of 4.2 (95%CI 1.5-11.8). 

Urine LAM status was a stronger predictor of mortality than CD4 cell count.  

The association between urine Xpert positivity and mortality has not been reported in the 

literature, but given the similar pathological mechanisms to LAM positivity, urine Xpert is likely 

to be associated with increased mortality risk. 
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Citation TB definition Population Total 
HIV-TB 

patients 

Deaths 
(%) 

Follow-
up 

duration 

Factors associated 
with mortality 

(unadjusted 
analysis) 

Factors 
associated with 

mortality (in 
adjusted 
analysis) 

Proportion 
taking ART 
at baseline 

Comments and 
limitations 

Kyeyune 
et al 2010 

[140] 

Culture +ve TB TB suspects 
(cough >2 

weeks, 353) 

190 59 (31) 2 
months 

Lower CD4 cell 
count; Higher 

Respiratory Rate, 
Lower oxygen 

saturation, Known 
HIV infection 

Not reported 16% Factors associated 
with mortality in all 

TB suspects, not 
confirmed TB. 13% 

LTFU. 

Diendere 
et al  
2015 
[146]   

Smear -ve or 
EPTB 

(presumptive) 

Not reported 116 48 (41) 2 
months 

TB treatment delay 
(>30 days), hospital 
admission duration 

>15 days 

Not reported 54% Data pre ART scale-
up (2007-2008), only 

smear -ve 

Bigna et 
al 2015 
[143] 

Clinical and/or 
microbiological 

Retrospective 
TB cohort 

337 89 (26) 2 
months 

Extrapulmonary TB, 
non-AIDS 

comorbidity 

Increased 
duration of 
known HIV 
infection 

5% Data pre ART scale-
up (2006-2013), 

retrospective data 
collection 

Holtz et al 
2011 
[142] 

Presumptive 
(smear -ve) 

Seriously ill ad 
suspected TB 

344 87 (25) 2 
months 

Not reported Lower CD4 cell 
count 

15% Old data (2008-
2009), excluded 

patients unable to 
provide sputum 

Manabe 
et al 2014 

[110] 

Clinical and/or 
microbiological 

Suspected TB 145 32 (22) 2 
months 

Not reported CD4 <50 cells/µL   38% High LTFU, Factors 
associated with 

mortality in all TB 
suspects, not 
confirmed TB. 

Continued on the next page 
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Kirenga et 
al 2014 
[141]   

Microbiological 
(culture-based) 

Suspected TB 64 25 (39) 6 
months 

Not reported CD4 <50 cells/µL, 
Karnofsky 

performance 
score <60 

23% Old data (2003-
2006) 

Crump et 
al 2014 
[147]   

Mycobacterial 
blood culture 

positive 

Febrile  with 
weight loss 

29 15 (52) 36 days Lower CD4 cell 
count or total 

lymphocyte count 

Not reported Not 
reported 

Non-generalisable 
cohort with only 

mycobacteraemia 

Marcy et 
al 2014 
[148] 

Smear +ve 
pulmonary TB 

CD4<200, ART 
naïve 

661 149 
(23) 

50 weeks Age >40 years, BMI 
<16, CD4 <25 

cells/µL, 
Haemoglobin <7 

g/dL, Disseminated 
TB, MDR-TB 

Disseminated, 
Age >40 years, 

BMI <16,  
inadequate TB 

therapy,  
Haemoglobin <7 

g/dL 

All ART 
naïve 

All patients ART 
naïve, non-African 

setting 

Subbarao 
et al 2015 

[149]  

Microbiological 
or clinico-

radiologially 

Consecutive 
hospitalised 
TB patients 

99 32 (32) 8 weeks Age>50, CD4 <50 
cells/µL, poor 

performance status, 
GCS <14, Albumin 

<24g/L, Lactate 
>4mmol/L, CRP 

>165mg/L 

Age>50, CD4 <50 
cells/, GCS <14, 

Lactate 
>4mmol/L, 

22% Small cohort, small 
number of deaths 

Talbot et 
al 2012 

[82] 

Microbiological 
(culture-based) 

Suspected TB 69 22 (58) 2 
months 

Not reported Not taking ART Not 
reported 

Data pre ART scale-
up (2007-2008), very 

high LTFU 
Table 1.3 Summary of studies reporting mortality in hospitalised patients with HIV and TB co-infection.
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Figure 1.12 Cumulative probability of death of confirmed cases of HIV-associated TB over 90 days from 

study enrolment, stratified by urine LAM-status. Urine LAM positive is the red solid line, and urine LAM 

negative isd the blue solid line. Magnified view shown in upper right [89]. 

 

Clinical utility of urine diagnostics for HIV-associated TB 

Based on the diagnostic accuracy and yield, urine LAM lateral flow assays (specifically the 

Determine TB-LAM assay which was the only commercial assay available) were conditionally 

approved by WHO for use in HIV-positive patients with CD4 cell counts <100 cells/µL, or those 

who are seriously ill in 2015 [150]. Furthermore, in 2016, an individually randomised controlled 

trial showed a 4% absolute reduction in early mortality when the TB-LAM assay was used to 

test HIV-positive hospital admissions suspected of having TB, and positive results triggered TB 

treatment [151]. 

Urine-testing identifies a different population of patients with HIV-associated TB than to 

sputum-based diagnostics assays, raising the possibility of combining them to screen for or 

diagnose HIV-TB [70,74]. Similarly, urine LAM identified a different population to those treated 

empirically for HIV-associated TB [94]. In addition to increasing diagnostic yield, urine LAM 

appears to identify those patients who have worse prognostic indicators or higher mortality 

risk [86,91,110]. These patients maybe the most likely to benefit from interventions such as 

early commencement of TB-treatment, supportive care or adjunctive therapies. By virtue of 

their low-cost, technically simple operation, existing infrastructure (in the case of urine Xpert) 
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and rapid results, urine diagnostics appears to be well suited for use in low-resource settings 

among patients with advanced HIV, for example in hospitalised patients. 

 

Implications of increased mortality risk with positive urine diagnostics  

The mechanisms underlying the association between urine LAM-positivity and increased 

mortality risk after diagnosis and commencement of anti-tuberculosis treatment remain 

unclear, although there are multiple potential mechanisms. Urine LAM detection has been 

associated with mycobacteraemia and other markers of higher mycobacterial burden 

[91,112,113,152,153]. Therefore, urine LAM detection may simply be a marker of more severe, 

disseminated TB, explaining its association with mortality. However, the increased mortality 

risk may be related to TB-disease, to other co-morbidities, for example increased susceptibility 

to other infections, or a combination of both. Urine LAM assays are also more sensitive in 

patients with low CD4 cell counts (typically <50-100 cells/µl) [74], and these patients are 

thought to have higher mortality risk. Urine LAM detection may simply be an epiphenomenon 

detecting patients with more advanced immunosuppression.  

The host immune responses to MTB has long been considered an important factor in the 

outcome of TB infection, progression to disease and outcome of treatment. MTB is and 

intracellular pathogen, and its survival depends on its ability to suppress host immune 

responses. Much in vitro research has been done examining LAM’s role as a key virulence 

factor for MTB. LAM interacts with several receptors of the immune-system and has direct 

effects which impair host immune defences [154]. Therefore, urine diagnostic test positive 

patients may have a greater degree of immune suppression resulting from a higher 

mycobacterial and/or LAM burden, directly contribute to increased mortality risk among urine- 

positive patients. 

 

In short, urine diagnostics (particularly urine LAM assays) are a promising tool that could 

contribute as point of care tests able to detect TB disease in the sickest HIV-positive patients. 

They are aimed at disseminated TB, and are therefore particularly suited to hospital inpatients. 

Interventions are still needed for HIV-associated TB, as mortality in HIV-positive inpatients with 

suspected or confirmed TB remains unacceptably high (despite ART scale-up) and TB is the 

major cause of death. Furthermore, point of care diagnostics for critically ill patients will open 

up many research avenues beyond simple diagnostic tests, such as predicting outcomes or 

benefit from additional interventions. 
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Part 2: Immune responses in HIV-associated TB 

 

Summary 

This section reviews the human host immune response to Mycobacterium tuberculosis (MTB) 

infection. It summarises the multifaceted immune responses that control tuberculosis (TB), 

including innate and adaptive immunity, and cytokine and cellular functions. The impact of HIV 

infection on host susceptibility to MTB and control of infection, beyond the simple depletion of 

CD4+ T-lymphocytes is also discussed, as HIV causes widespread immune deficits that can have 

an impact on the pathogenesis of TB. I summarise the evidence linking immune responses with 

clinical features and outcomes in HIV-associated TB, including studies of mechanisms and/or 

pathways as well as more functional aspects of the immune system. Finally, I review specific 

evidence that implicates disseminated HIV-associated TB (diagnosable by urine diagnostic 

assays including lipoarabinomannan detection) with impaired immunological function. 

 

 

1.11 The immune response to TB 

Introduction 

One-quarter of the world’s population is thought to be infected with Mycobacterium 

tuberculosis complex (MTB), yet only 5-10% will develop active tuberculosis (TB) disease during 

their lifetime, indicating the complexity and variability of the human immune response to TB 

[155,156]. There are a range of outcomes following exposure to and infection with MTB (figure 

2.1) [38]. Development of active TB depends upon several factors, including the environment, 

the pathogen and suppression of host defences by HIV co-infection and other immune-

deficiencies [157]. 

It is clear from studying human TB disease and animal models that cluster of differentiation 

(CD) 4+ T-cells, macrophages, interferon-gamma (IFN-γ) and tumour necrosis factor-alpha (TNF-

α) are crucial to the control of MTB, yet our understanding of the wide heterogeneity of 

clinical disease and immune control of MTB remains incomplete [158,159]. An important 

feature of MTB is its ability to undermine and therefore survive the host’s immune responses, 

yet also use immune-mediated tissue destruction to further its transmission [38]. 

Protective immune responses against MTB are multifaceted, and involve an interaction 

between innate immune responses, granuloma development and adaptive immunity. Innate 

responses are fundamental to antigen processing and presentation required by adaptive 

immunity, as well as early bacterial control [157]. MTB usually infects humans through 



47 
 

inhalation of aerosolised bacilli within small (1-5µm) droplets [160]. Internalisation of MTB by 

macrophages and dendritic cells (DCs) is an important initial step following infection, and 

typically occurs in the lower respiratory tract alveolar macrophages [161]. DCs containing 

phagocytosed MTB can then migrate to regional lymph nodes where they activate T-cells, 

which will subsequently migrate back to the site of infection, attracted by inflammatory signals 

such as chemokines [162]. Neutrophils also predominate in this early phase. 

 

Figure 1.13 Range of outcomes from MTB exposure. HIV infection alters the risk of active TB, and the 
spectrum of clinical disease (red arrows), especially in advanced HIV disease when immune responses 
are inadequate to control MTB replication and infection, causing progressive dissemination and reduced 
immune mediated tissue damage (which causes pulmonary cavitation). Figure reproduced from Esmail 
et al [38] 

 

A later stage in the immune response is granuloma formation, which coincides with 

development of delayed hypersensitivity (a positive tuberculin skin test in some people) and 

emergence of activated T-cell subsets [163]. Granulomata serve to contain MTB infection by 

acting as an immunological platform to limit replication, and involve activated macrophages, 

DCs, T-cells, fibroblasts and B-cells. There is also a humoral response producing a wide array of 

antibodies to MTB which are likely to be important in protective immunity, although their 

exact role remains  less clear [164]. For instance, specific antibodies to MTB in patients with 

latent disease were better at controlling MTB growth than those from patients with active TB 

disease [165]. The host response to the failure of granuloma to contain MTB infection is also 

important and likely to influence outcomes, especially in HIV when this is more common [38]. 
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Phagocytosis, macrophages and antigen presentation 

Phagocytosis is mediated by an array of receptors on the surface of macrophages, including 

complement receptors (especially CR3), scavenger receptors, toll-like receptors (TLR) and the 

mannose receptor (MR) [166,167]. Mycobacterial cell wall glycoproteins, such as 

mannosylated lipoarabinomannan (LAM) and 19 kDa protein, also play a key role mediating 

entry into the macrophage independently of complement [168]. 

Once MTB is internalised by macrophages, processes begin that lead to degradation and killing 

of the organism and presentation of MTB antigens to T-cells via antigen-presenting molecules, 

most notably major histocompatibility complex (MHC) class I and II [169]. DCs are responsible 

for processing and presenting MTB antigens with co-stimulatory molecules to activate CD4+ T-

cells (via MHC II) and CD8+ cytotoxic T-cells (via MHC I) [170,171]. DC-specific intracellular 

adhesion molecule-3 grabbing non-integrin (DC-SIGN) and C-type lectin are important 

receptors for MTB’s entry into DCs, binding strongly to LAM and other MTB surface glycolipids 

[172]. 

The major mechanism of killing is phagocytosis followed by maturation of phagosomes 

through fusion with endosomes and lysosomes and gradual acidification, which is thought to 

occur predominantly in activated macrophages [173]. However, in contrast to non-pathogenic 

organisms such as non-tuberculous mycobacteria, MTB can prevent these processes and adapt 

to the intracellular macrophage environment through several mechanisms [174]. Other 

mechanisms of killing MTB include macrophage necrotic death (which may allow MTB to 

escape during cell-lysis) and apoptotic death (after which the cell membrane remains intact 

preventing escape of MTB). Prevention of macrophage apoptosis is a further virulence feature 

of MTB, and MTB may also use macrophages as vectors for translocation [175–177].  

Monocytes, which develop from myeloid progenitors and retain the ability to differentiate into 

macrophages and DCs, are also involved in the response to MTB, as demonstrated by the 

importance of monocyte chemoattractant protein 1 (MCP-1) in TB patients [178], and 

increased susceptibility to TB in patients with de-sensitisation of C-C chemokine receptor type 

2 (CCR2) to MCP-1 [179]. However, their exact role and underlying mechanisms are not well 

characterised. Monocytes recognise mycobacterial antigens through pathogen recognition 

receptors (PRRs), including Toll like receptor (TLR) 2 and TLR4, and are capable of phagocytosis, 

degradation and presentation of MTB antigens via MHC II [180]. Monocytes are multi-

functional, and directly produce pro-inflammatory cytokines (such as interleukin [IL]-1, IL-6, 

TNF-α) as well anti-inflammatory cytokine production (for example IL-10), and are important in 

activating T-cells [181]. 
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Neutrophils are also important in the early defence against TB, contributing to innate immune 

responses through phagocytosis and killing, as well the release of antimicrobial peptides 

[182,183]. Their importance is a relatively recently recognised phenomenon – neutrophils are 

the predominant intra-pulmonary cell type infected with MTB, were the main driver in a 

transcriptional signature which differentiated active and latent TB infection, and are also 

sources of pro-inflammatory cytokines [184–187]. As well as clearing MTB bacilli, they may 

also contribute to dissemination of bacilli and exacerbate pathology [188]. Virulent MTB can 

also inhibit apoptosis of neutrophils, which delays antigen presentation and activation of CD4+ 

T-cells, and escape oxidative killing by neutrophils [189,190]. 

 

T-lymphocytes and the adaptive immune response 

Controlling bacterial growth during MTB infection is reliant on CD4+ T-cells, as demonstrated 

by failure to control bacterial replication in CD4 deficient mice and high TB susceptibility 

amongst HIV-infected patients with low CD4+ T-cell counts [5,191]. Human and animal models 

have suggested a considerable delay in MTB specific T-cell responses, probably due in part to 

MTB antigen presentation and activation occurring in regional lymph nodes [192]. It can take 

up to 10 days after infection before naïve T-cells are activated, and around 20 days for effector 

immune cells to mediate protection at the site of infection [158].  

This delay may allow for dissemination of MTB beyond the lungs, is markedly different to other 

lung infections and may be prolonged by MTB’s modulation of the immune response 

[193,194]. Both activated CD4+ T-cells and, to a lesser extent, CD8+ T-cells contribute to the 

control of MTB through proliferation, differentiation, and secretion of IFN-γ which activates 

macrophages (important for their control of MTB), upregulates cell-surface MHC expression 

and induces production of cytokines and microbicidal products such as inducible nitric oxide 

synthase (iNOS) [171].  

However, many effector mechanisms of IFN-γ are still being elucidated [157]. Although MTB, 

being an intracellular pathogen, is preferentially recognised by the MHC II pathway, secreted 

MTB antigens are also presented through MHC I pathways and therefore elicit CD8+ T-cell 

responses [195]. CD8+ T-cells can kill MTB through lysis of MTB infected macrophages by 

granule exocytosis (using perforin, a pore-forming protein), capsase-dependent apoptosis and 

the microbicidal molecule granulysin, as well as producing proinflammatory cytokines 

[196,197].  
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Cytokines and chemokines 

The role of TNF-α in the immune response to TB is confirmed by the substantial increase in risk 

of active TB disease faced by individuals on anti-TNF therapies [198,199]. TNF-α is a pro-

inflammatory cytokine produced by macrophages, neutrophils, DCs and T-cells. It is 

fundamental to early responses to MTB through its role in activating macrophages, inducing 

cytokine and chemokine production, maturation of DCs and migration of cells to regional 

lymph nodes, as well as being fundamental to effective granuloma formation [200]. Murine 

and primate models have suggested TNF-α boosts the intracellular killing of MTB [201]. 

Interleukin (IL)-6 drives a similar pro-inflammatory response, and is produced predominantly 

by activated macrophages [163]. 

IFN-γ is secreted by activated CD4+ T-helper type 1 (Th1)-cells, CD8+ T-cells and natural killer 

(NK) cells [171]. A lack of IFN-γ in mice and humans is associated with failure to control MTB 

and more severe mycobacterial disease [159,202].  IFNγ is one of the most commonly detected 

cytokines at sites of MTB infection in humans, and is used to measure responses of peripheral 

blood mononuclear cells (PBMCs) to mycobacterial antigens [157]. Levels of IFN-γ have been 

shown to correlate with disease severity [203].However, IFN-γ production is dependent on 

stimulation by interleukin-12 (IL-12) which is produced by MTB-activated macrophages and 

DCs [204]. IL-12 is necessary for the initial activation of IFN-γ T-Cell responses and the ongoing 

MTB-specific Th1 responses required to control chronic TB 

Furthermore IL-12 upregulates CD8+ T-cell killing function through increasing expression of its 

cytotoxic products [205]. Studies have demonstrated that a lack of IL-12 increases bacterial 

growth, reduces IFN-γ T-cell responses and increases disease severity [206,207]. Mutations in 

the IL-12/IFN-γ axis increase susceptibility to and severity of mycobacterial disease [208]. 

There are several other cytokines with IL-12 like function that are produced by antigen-

presenting cells (e.g. 1L-18, IL-23 an IL-27) [163]. 

IL-17 is thought to be protective against MTB by enhancing Th1 responses, recruiting 

monocytes and contributing to neutrophil mediated inflammation, although much of this is 

inferred from mouse models [209,210]. There are suggestions that overexpression of IL-17 

could be detrimental also, as it has been associated with neutrophil-recruitment and 

exacerbated lung inflammation in mice, and TB-immune reconstitution inflammatory 

syndrome (IRIS) in patients with meningitis [211,212]. IL-22, which like IL-17 is expressed by 

Th17 CD4 cells, has been associated with severe TB in animal models, and elevated levels have 

been found at the site of TB disease and in the plasma of TB patients [213,214]. 
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As uncontrolled TNF-α responses can cause significant damage to human tissues, regulation 

mechanisms are required, which are provided by regulatory T-cells (Tregs), T-helper type 2 

(Th2) and IL-10 in MTB infection [193]. The balance between these inflammatory and 

regulatory systems is crucial to the outcome of MTB infection, with excesses of either system 

being broadly detrimental to the host [157]. If IL-10, an immunosuppressive cytokine made by 

macrophages, DCs and lymphocytes, is overproduced it can contribute to chronic infection 

[215]. IL-10 works through inhibiting macrophage killing of MTB, DC function and production of 

pro-inflammatory cytokines such as TNF-α [216]. 

 

1.12 Impact of HIV on the immune response to TB 

Several clinical and epidemiological studies have shown a significantly increased risk of active 

TB disease associated with HIV-infection, with depletion of CD4+ T-cells (the hallmark of HIV) 

being the strongest risk factor [217,218]. The annual risk of reactivation of latent TB infection 

in HIV-infected individuals is estimated to be 5-15% annually, and this population is also at 

increased susceptibility to new MTB infections [219]. Evidence from DNA fingerprinting studies 

suggest that, in high-incidence settings, TB is predominantly due to acquisition of new 

infection rather than reactivation of ‘latent’ infection [13,14,220].  

HIV replication has been shown to be increased at sites of MTB infection [221,222]. Whilst this 

may have an adverse impact on the immune response to HIV, it can also impact the immune 

response to TB [223]. Mechanisms through which HIV interacts with MTB include up-regulating 

MTB entry receptors on macrophages [224], interfering with macrophage killing of MTB [225–

227] and macrophage apoptosis [228,229], inhibiting chemotaxis pathways, and decreasing 

Th1 responses/increasing Th2 responses [230]. These effects may be particularly marked in the 

lungs [231]. 

T-cells 

As described above, CD8+ T-cells also play a role in the immune response to TB and can be 

impaired by HIV infection, although this is little studied in the context of TB [38,232]. Chronic 

activation is characteristic of advanced HIV, and impacts CD8+ T-cells more than CD4+ T-cells, 

therefore it is plausible that their activity in MTB control is impaired in HIV-coinfected 

individuals [233]. Granulomas require CD4+ T-cells and TNFα for maintenance, and are crucial 

for containing MTB infections. HIV and MTB-coinfected individuals have atypical granuloma 

structure, which probably makes them less effective at containing MTB infection [223]. 

Clinically, this manifests as fewer cavitary lesions on chest x-ray and more disseminated TB 

disease with multiple organ involvement outside the lungs [40,234]. 
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MTB-specific memory CD4+ T-cells have been shown to be decreased in HIV-infection [235,236] 

with lower IFN-γ, TNFα and IL-2 production [237–239]. Very early impairment of MTB-specific 

immune responses and increased risk of TB disease before extensive CD4+ T-cell depletion in 

peripheral blood suggests that HIV also impairs CD4+ T-cell function (in addition to depletion of 

numbers) [240,241]. Potential mechanisms include reducing capacity to secrete chemokines 

and cytokines (e.g. macrophage inflammatory protein 1β [MIP-1β]), impairing recruitment of 

monocytes and granulocytes and activation of macrophages [236,242,243].  

Innate immunity 

HIV also adversely impacts the function of neutrophils- impairing activation, phagocytosis, 

respiratory burst and subsequent killing capacity [188]. This appears to be correlated with HIV-

associated immunosuppression, as patients with higher HIV plasma viral loads and lower CD4 

cell counts have greater impairment of neutrophil function. Neutrophils from HIV-positive 

patients were less effective at restricting MTB growth ex vivo than HIV-negative whole blood 

neutrophils [244], and HIV can impair MTB phagocytosis by neutrophils [245]. 

Traditionally, monocytes were not considered to be a major target of HIV infection, despite 

increased activation, with their differentiation into macrophages considered more important 

[246]. However, monocytes can be infected by HIV, and are potential viral reservoirs [247,248]. 

HIV impairs the phagocytic ability and cytokine production of monocytes though similar 

mechanisms as in macrophages [246]. This increases host susceptibility to broad range of 

pathogens including MTB. However, monocyte function in HIV-associated TB has not been well 

studied beyond finding increased levels of activation [249,250]. 

The aim of antiretroviral therapy (ART) is to suppress HIV viral replication, and subsequently 

restore circulating CD4+ T-cell numbers and protective immune function. Although CD4+ T-cell 

depletion is an important factor in the increased risk of TB, recovery of CD4+ T-cells associated 

with ART does not entirely mitigate increased TB risk compared to HIV-uninfected individuals 

[5]. Suppression of HIV viral replication does not fully restore immune responses to MTB, 

including alveolar macrophage function and pulmonary cytokine networks [251,252]. 

 

1.13 Relationship between immune responses and clinical features or outcomes in HIV-

associated TB 

Although a vast literature exists describing the human immune response to MTB [253], few 

studies have sought to correlate immune responses with clinical features of disease or 

outcomes in patients. Host immune responses are central to the control of TB, as 
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demonstrated by the marked increase in TB incidence among HIV-positive patients with 

impaired cell-mediated immunity in the form of reduced CD4 cell counts [5]. 

Most immunological research on MTB has been in the context of animal models, comparing TB 

patients with healthy controls (without TB), or developing diagnostics and/or biomarkers for 

TB infection and disease. Most HIV-associated TB research has aimed to understand the 

phenomenon of TB-IRIS. Furthermore, in the few studies that have examined relationships 

with clinical outcomes, those with HIV-infection are often excluded (usually to reduce the 

‘confounding’ caused by HIV’s impact on the immune system). Studies examining the immune 

mechanisms of TB-IRIS in HIV-infected patients frequently exclude those who die early. Those 

studies that have examined immune responses and clinical features usually recruit HIV and/or 

TB patients from outpatient clinics, rarely studying immune responses in those with advanced 

or severe infections. 

Cytokine responses in HIV-associated TB and ‘immune exhaustion’ 

Cytokines have constituted the main line of investigation for characterising the immune 

responses of patients with HIV-associated TB. This is justified given the importance of 

cytokines in orchestrating protective immunity against MTB [254]. Pro-inflammatory cytokines 

such as IL-6, IL-12, IFN-γ and TNF-α, as well as other markers of inflammation such as C-

reactive protein (CRP), have been repeatedly found to be higher at baseline in TB and HIV-

associated TB patients compared to healthy controls in unstimulated plasma or serum samples 

[255–257]. Several studies have compared cytokine levels in HIV-positive and HIV-negative TB 

patients, however, results have differed. Some studies found higher levels of pro-inflammatory 

cytokines including IFNγ, TNFα, IL-12 and IP-10 [258–260], whilst others found lower levels or 

no differences [255,261–263]. These differing findings may be due to TB disease severity being 

more important in influencing immune responses than HIV co-infection alone.  

TNF-α and other pro-inflammatory cytokines have been associated with more advanced TB 

disease and constitutional symptoms [203,264], and clinical deterioration during treatment 

[256,265]. The few studies stratifying cytokine responses in TB patients by survival have found 

higher plasma or serum levels of IL-6, CRP and TNF-α in those that died [266–268]. However, 

studies examining inflammatory cytokine responses to ex vivo stimulation with bacterial or 

mycobacterial antigens have found decreased cytokine responses following stimulation among 

patients who die, compared to those who survive [269,270].  

These decreased cytokine responses are even more marked in HIV-TB co-infected patients 

compared to TB alone [255,271], although this maybe confounded by the finding of 

suppressed inflammatory cytokine responses in HIV-infected patients who die irrespective of 
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cause [272–274]. Suppressed cytokine responses to antigenic stimulation seem contradictory 

to the raised unstimulated inflammatory cytokine levels, but may be part of an overall picture 

of ‘immune exhaustion’ or anergy, caused by chronic stimulation or active immune 

suppression by endogenous or exogenous substances. 

This phenomenon is well described for T-cells in association with the cell surface marker 

programmed cell death protein 1 (PD-1), and is hypothesised to be caused by chronic and/or 

overwhelming antigen stimulation in chronic infections such as HIV, but has not been well 

described in the context of TB [275–280]. There appears to be an overlap with ‘anergy’ (non-

responsiveness to in vitro or ex vivo stimulation) and ‘senescence’ (terminal differentiation and 

loss of proliferative capacity), although molecular-signatures of the processes have been 

shown to differ.[281]  

Some studies found high serum levels of the anti-inflammatory cytokine IL-10 and increased IL-

10 responses to stimulation, especially in advanced disease, which may partially explain 

observed anergy [203,256,282,283]. No studies have clearly demonstrated high baseline 

inflammatory cytokine profiles and reduced responses to stimulation in patients with 

advanced HIV-TB coinfection in the post-ART era, nor studied the association between immune 

exhaustion and clinical outcomes in this patient population. The containment of MTB likely 

requires a tightly regulated cytokine response, as both inflammation and activation are 

required but an excess can be detrimental to control of MTB and outcome [38]. However, 

relationships between different cytokines are rarely studied in relation to outcomes. 

In addition to absolute cytokine levels, functional deficits in CD4+ T-cells, which are important 

in the production of cytokines in HIV-TB, have been demonstrated in response to MTB 

antigens [284]. Polyfunctional CD4+ T-cells are capable of simultaneous release of multiple 

inflammatory cytokines (with multiple effector functions), and have been associated with 

improved TB control in HIV-uninfected patients, as well as better control of several other 

pathogens [285–287]. Increasing HIV-1 viral load has been shown to reduce numbers of 

polyfunctional CD4+ T-cells, and lower proportions have been found at sites of TB disease 

compared to blood in HIV-TB [288,289]. However, their role in advanced disease or with 

relation to clinical outcomes has not been described. 

Functional immune responses in HIV-associated TB 

One criticism of studies examining cytokine responses alone is interpretation of the results. 

Cytokine networks are complex, and making distinctions between the innate and adaptive 

immune responses or underlying pathogenic mechanisms based on cytokines alone is difficult 

as they are intricately related and regulate one another. Detected associations may arise 
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simply by chance when multiple comparisons are made without appropriate statistical 

adjustments. ‘Appropriate’ or ‘effective’ immune responses are likely to require a balance 

between anti-inflammatory and pro-inflammatory responses, and involve both innate and 

adaptive immune systems, driven by many host and pathogen factors.  

Studies that examined ‘functional’ immune responses in patients with HIV-TB, especially with 

relation to clinical outcomes, are limited. One recent study showed reduced PPD-specific 

ELIspot responses in HIV-TB patients who died compared to those who survived [266]. 

Tuberculin-skin-test (TST) anergy was an independent risk factor for death among HIV-infected 

patients in a high TB prevalence settings [290], but this relationship has not been examined or 

confirmed in HIV-associated TB.  

ELIspot and TST outputs relate to TB-specific immunity alone, and broader immune 

competence is likely to be important in outcomes as co-infections are important causes of 

mortality [32,291,292]. Whilst whole-blood killing assays are well-established [293], their use 

tends to be to assess responses to vaccinations or pathogen-specific questions rather than 

being applied to broader questions regarding the general state of immune competence of 

individuals [294]. These methods have not been widely applied to individuals with HIV-

associated TB. 

Immunological effects of MTB, the example of LAM 

LAM is a 19kDa glycolipid, a major constituent of MTB and one of several interrelated 

lipopolysaccharides within the mycobacterial cell wall [295]. LAM is made up of three 

structural domains: the glycophospholipid anchor, the mannan core and arabinan domain 

[296]. Variable capping of side-chains of the arabinan domain lead to several different types of 

LAM, with a mannosylated cap giving rise to the specific type of LAM (ManLAM) associated 

with pathogenic mycobacterial species such as M. tuberculosis complex (MTB), M. leprae and 

M.bovis [297]. 

ManLAM is considered a major virulence factor of MTB through its in vitro immunomodulatory 

effects (figure 2.2), promoting the survival of MTB in the human host [297]. In contrast, non-

pathogenic mycobacterial lipoarabinomannans that are capped with phosphate-inositol 

(PILAM) or not capped at all (AraLAM) promote strong pro-inflammatory responses [297,298]. 

ManLAM binds to several receptors on the surface of macrophages [299]. Notably, LAM has 

been shown to inhibit apoptosis [300] and phagosome-lysome fusion within macrophages 

[301,302]. ManLAM (from here on referred to as LAM) reduces secretion of pro-inflammatory 

cytokines including IL-12, IFN-γ and TNF-α [154,303,304], while increasing anti-inflammatory 

cytokines such as IL-10 [303,305,306]. It has also been demonstrated to negatively modulate 
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nitric oxide and free radical production within cells, and to downregulate T-cell signalling [299]. 

Although these in vitro immunomodulatory effects are likely to promote survival of MTB in the 

host and impair host immune response to other pathogens, this has not been tested or 

demonstrated in TB patients. 

In addition to being found in the urine of patients with pulmonary TB, LAM has been detected 

from sites of TB infection, including sputum [307,308], pleural fluid [309], and cerebrospinal 

fluid (CSF) [310]. LAM has also been detected in the blood of patients with pulmonary TB, 

albeit following extensive sample processing due to being complexed with anti-LAM antibodies 

and/or high density lipoprotein (HDL) particles [99,100]. LAM can be recovered in large 

quantities from cultures of MTB (up to 15mg per gram of MTB) [307,311], suggesting there 

may be sufficiently high systemic concentrations of LAM in patients with disseminated TB to be 

immunologically active. However, due to LAM being largely intracellular and/or protein- or 

lipid-bound, the relationship between urine LAM detection and serum LAM concentrations has 

not been established. 

 

 

Figure 1.14 Summary of the immunological mechanisms by which LAM acts as a virulence factor and 
supresses host immune responses to MTB. 

 

 

Other potential immunological mechanisms of poor clinical outcomes  

LAM’s direct suppressive effects on macrophages and cytokine responses could be a potential 

mechanism for the poor clinical outcomes in HIV-associated TB patients with positive urine-



57 
 

LAM assays. Another potential mechanism for poor outcomes in advanced HIV-associated TB 

includes T-regulatory cells (T-regs), which reduce effector T-cell activation and response as part 

of an immune homeostatic mechanism in response to inflammation [312]. This may favour the 

survival of MTB. Several studies have also demonstrated increased T-regs in disseminated and 

extra-pulmonary TB [313,314], but none in relation to outcomes. 

Monocytes are a key component of the immune response to HIV and TB [180]. Soluble markers 

of monocyte activation (sCD14) have been described in HIV-associated TB [249,250,315]. 

Human monocyte populations can also be described in terms of their surface markers (CD14 

and CD16), with very different functional roles. CD14-CD16+ (non-classical) monocytes are 

usually referred to as ‘pro-inflammatory’ as they produce higher quantities of TNF-α, IL-6 and 

IL-1, but low quantities of IL-10, and are upregulated in most infections, including TB [316,317].  

However, CD14+CD16- (classical) monocytes have been associated with TB-IRIS [318]. 

Monocyte phenotype or function have not been systematically investigated with respect to 

clinical outcomes in advanced HIV-associated TB, although deactivation, monocyte dysfunction 

and increased production of IL-10 have been described in bacterial sepsis, including correlation 

with poor outcomes  [319–321].  

Anaemia is strongly associated with mortality in HIV-associated TB, and is a strong predictor of 

urine LAM-detection in HIV-TB patients [322]. Hepcidin, an acute phase reactant that is 

stimulated by pro-inflammatory cytokines (e.g. IL-6) and antigens from MTB, is a central 

regulator of iron homeostasis [323]. In vitro studies have demonstrated that hepcidin has an 

important role in the immune response against MTB, as demonstrated in vitro, and recent 

clinical data has shown that hepcidin was independently associated with increased mortality 

risk in HIV-TB co-infected patients [322,324]. 

 

1.14 Immune responses and reducing mortality in HIV-associated TB 

Despite public health interventions including improved access to HIV testing, coverage of ART 

and isoniazid preventative therapy, HIV-TB continues to have a high mortality, even after 

appropriate initiation of both anti-TB therapy and ART [121,122]. There is observational 

evidence to suggest expediting treatment through improved diagnostics can reduce mortality 

[142], and trials have been undertaken to address this question [325–327]. However, even 

after expedited diagnosis, mortality in this population remains substantial, and reductions in 

mortality are currently too small to reach global End TB targets. 
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Figure 1.15 Diagrammatic summary of immune responses and outcomes based on clinical spectrum of 
HIV-associated TB disease. Extent of the immunological phenomenon denoted on the left is 
summarised by the height of the wedge. 

 

The mechanisms of death in this population remain unclear. Post-mortem studies have 

established disseminated TB as commonplace in advanced HIV, and TB was thought to be the 

primary cause of death in 91% of patients [32]. However, HIV-infection impairs host-immune 

responses not only to TB but to bacterial and other pathogens, which are also common in 

advanced HIV [291,292]. However, the spectrum and burden of TB is also an important factor 

in effective immune responses, control of TB and/or HIV, and outcomes (figure 1.15). 

Immunological impairment is likely to contribute towards high mortality rates, although the 

specific mechanisms remain incompletely defined.  

TB-IRIS is a condition where immune recovery associated with ART leads to pathological 

inflammatory responses directed at microbial antigens, and is an example of how a loss of 

balance between protective immunity and immunopathology can impact clinical outcomes 

[328]. Studies in HIV-negative TB patients also demonstrated death from TB due to extensive 

tissue damage even despite effective control of TB infection [329]. Immunological failure is 

also an interruption in the immunological balance, with inadequate pathogen-specific immune 

responses and control of infection. It can lead to early mortality in advance HIV-associated TB, 

and seems more common than TB-IRIS and has worse outcomes [329]. Addressing 
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‘immunological failure’ and IRIS would require differing approaches, with IRIS requiring 

inhibition and immune failure requiring enhancement of immune responses. 

It is likely that interventions adjunctive to anti-TB therapy and ART will be needed to 

significantly reduce mortality in this patient population, for example adjunctive anti-bacterial 

drugs or host-directed immune-therapies [329]. In the context of a limited TB-drug pipeline, 

growing drug-resistance and continuing high-mortality in HIV-TB co-infection, host-directed 

therapies for TB are climbing up the research agenda [133]. A better understanding of immune 

responses and mechanisms underlying impaired immunological responses (see table 1.1) will 

inform further research into such adjunctive and host-directed interventions, and help guide 

which type of interventions to evaluate (for instance, if anergic or exhausted immune 

responses predominate, anti-inflammatory treatments such as steroids are unlikely to be 

effective). Furthermore, urine-based diagnostics, such as LAM detection or Xpert, in addition 

to their diagnostic utility, may prove a useful method of identifying patients at increased 

mortality risk who could benefit from adjunctive interventions. 
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Observation What remains unknown  Possible implications 

HIV-associated TB patients have high 
baseline plasma levels of inflammatory 
cytokines such as TNF-α, IFN-γ and IL-6, 
but ex-vivo stimulated responses appear 
supressed compared to HIV+ patients 
without TB [255], and HIV-negative TB 
patients [269,270] 

• Inflammatory cytokine responses following antigenic 
stimulation in hospitalised patients with HIV-
associated TB and associations with mortality have not 
been well studied in the post-ART era 

• Cytokine data have not been linked with cellular 
function in this population, therefore cellular factors in 
this process remain unknown 

• If supressed immune responses are a manifestation of 
‘immune exhaustion’ 
 

Reduced pro-inflammatory immune 
responses may reduce host ability to 
deal with MTB or other bacterial 
pathogen infections, impacting 
morbidity and mortality 
  

More advanced clinical HIV-positive TB 
disease is associated with TST anergy 
[290] and reduced PPD-specific ELIspot 
responses [266] 
 

• Broader functional immune responses in patients with 
HIV-associated TB have not been well investigated, 
especially in relation to clinical features and outcomes 

Impaired broader functional immune 
responses may impair host defences 
to MTB and other co-pathogens 
 

MTB antigens (eg LAM) are associated 
with reduced macrophage killing of MTB 
[301,302], reduced production of 
inflammatory cytokines (IL-12, TNF-α 
and IFN-γ) and greater production of 
anti-inflammatory cytokines (IL-10) in 
vitro [154,303,304] 
 

• If patients with disseminated TB and high 
mycobacterial burden (signified by positive urine 
diagnostics) have similarly impaired phagocytosis, 
killing and inflammatory cytokine production 
 

Impaired immunological responses in 
urine-positive patients may implicate 
impaired immune responses in the 
causal pathway to increased 
mortality 

Monocyte activation and function is a 
key immune response in HIV-associated 
TB [249,250,315] 

• Monocyte phenotype, activation and function in HIV-
associated TB are not well described, nor are their 
association with outcomes 

Impaired monocyte function may be 
responsible for impaired immune 
responses in HIV-TB patients, and 
may be a potential therapeutic 
target. 
 

Table 1.4 Summary of immunological mechanisms that may be implicated in impaired immune responses in HIV-TB co-infected patients
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Chapter 2: Overview of aims and study designs for thesis  

 

2.1 Thesis rationale 

HIV-associated tuberculosis (TB) is currently one of the leading health challenges facing sub-

Saharan Africa, with substantial mortality and morbidity, especially amongst people living with 

HIV (PLHIV) who are admitted to hospitals [1]. TB is still the major cause of death in this 

population, and mortality remains unacceptably high despite sustained public health 

interventions over the past two decades [2]. 

Urine-based TB diagnostics - lipoarabinomannan (LAM) detection using the Determine TB-LAM 

lateral flow assay (TB-LAM) and nucleic acid detection using Xpert MTB/RIF (Xpert) - are rapid, 

affordable, point of care (or near patient in the case of Xpert), potentially implementable and 

can detect disseminated TB in the sickest PLHIV, for example those admitted to hospital. Their 

use to diagnose HIV-associated TB, thereby reducing the number of patients with missed TB 

diagnoses and expediting TB treatment, may reduce early mortality [3,4]. However, mortality 

remains unacceptably high despite better diagnostics, TB treatment and optimally timed 

antiretroviral therapy (ART). Therefore, adjunctive interventions will be needed to 

substantially reduce mortality to meet ambitious global TB targets.  

In addition to their diagnostic function, urine-based TB diagnostic assays seem to detect the 

sickest HIV-positive patients at highest risk of mortality. The basis of this association is not fully 

defined, but may be related to one, or a combination, of the following: 

• disease dissemination (haematogenously disseminated disease) 

• higher mycobacterial burden 

• more advanced HIV-related immunosuppression  

• impaired immunological host defences against Mycobacterium tuberculosis (MTB) 

and/or other opportunistic infections 

A better understanding of the mechanisms underlying the association between positive urine 

diagnostic tests and mortality in HIV-associated TB could help to optimize the use of urine-

based TB assays, using their prognostic as well as diagnostic value to inform the design of 

simple interventions applicable even in low resource health systems that are aimed at 

identifying and reducing the risk of death in the most severely ill PLHIV. For this to be realised, 

there would have to be reversible pathology as well as affordable therapeutic options but, for 

instance, demonstrating that the presence of MTB DNA and/or LAM in urine is associated with 

an anergic or immunosuppressed state would encourage evaluation of a different set 

interventions than would be the case if the association was instead with hyperinflammation. 
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2.2 Thesis aim and research questions 

Aim 

The overarching aim of this PhD was to investigate mortality and urine-based diagnostics 

among hospitalised patients with HIV-associated TB in sub-Saharan Africa, with specific focus 

on characterising the epidemiological and clinical factors associated with increased mortality 

risk in patients who test positive with rapid urine-based diagnostic assays, and characterising 

immune responses in this patient population. 

 

Specific research questions 

1. Are positive urine-based diagnostic tests associated with increased mortality in HIV-

associated TB? 

 

2. What is the absolute risk and timing of mortality in hospitalised patients with HIV-

associated TB? 

 

3. What are the risk factors for early mortality, and the clinical phenotype of patients 

with high mortality risk, among hospitalised patients with HIV-associated TB? 

 

4. Can rapid urine diagnostic tests, in addition to other clinical features at hospital 

admission, be used to develop a pragmatic clinical score to predict mortality risk (and 

can such a score be externally validated)? 

 

5. Can an ex vivo immunological assay be used to classify and provide insight into the 

immune state and functional responses of patients with HIV-associated TB in high 

burden settings? 

 

6. How do ex vivo immune responses differ according to TB disease dissemination (based 

on urine diagnostic tests) and in relation to mortality? 
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Hypotheses 

1. Urine diagnostic tests are associated with increased mortality risk in HIV-associated TB. 

 

2. Mortality risk is high in hospitalised patients with HIV-associated mortality, and deaths 

occur early during hospital admission. 

 

3. Positive urine-diagnostic assays (as a marker of disseminated TB disease), and features 

of advanced immunosuppression will predominate as risk factors for mortality in 

hospitalised patients with HIV-associated TB. 

 

4. Urine diagnostic tests, along with other markers of advanced disease can form a 

pragmatic clinical score that predicts which patient have the highest mortality risk. 

 

5. Functional immunological assays can be developed to assess clinically relevant 

immune states in HIV-associated TB, even in high burden settings. 

 

6. Ex vivo analysis of immune responses demonstrates impairment and/or anergy in 

patients with HIV-associated TB who have positive diagnostic tests and in those with 

poor outcomes. 

 

Figure 2.1 Map showing the location of the study sites 
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2.3 Study settings: Malawi 

Malawi is one the poorest countries globally, ranking 170/188 in the 2016 human 

development index [5]. Malawi is economically vulnerable with a largely agriculture based 

economy. Recent extreme weather events and ongoing energy shortages (<10% of the 

population have access to electricity) continue to hamper economic growth [6]. Meanwhile, 

population growth continues to place more strain on limited resources, with a population of 

17.2 million growing at a predicted 3.2-3.4% rate for the next 5 years [7]. Total fertility rate is 

4.4 children per women.  Under-five mortality has fallen 4-fold to 64/1000 births over the last 

20 years, contributing to population growth [5,6]. Malawi remains mostly rural, with 80% of 

the population living rurally. Only 36% of men and 26% of women have some secondary 

education [6]. 

HIV 

Malawi has a generalised HIV-epidemic, with an estimated 11.2% (95% CI 10.5 to 11.9%) 

prevalence in adult (aged 18-49) women and 7.1% (95% CI 6.7 to 7.5%) in men [8]. However, 

Malawi has long had a forward-looking strategy for control of HIV, and new infections and HIV-

related mortality continue to fall and ART coverage continue to grow [8]. Anti-retroviral drugs 

are provided free to all patients. Malawi has implemented universal HIV ‘test and treat’ since 

mid-2016, prior to that the threshold for ART was a CD4 cell count of 500 cells/µL. HIV care is 

usually delivered through local health centres, and monitoring visits are monthly for patients 

newly initiated for 6 months, then 2 monthly for 6 months, and thereafter 3 monthly [9]. Viral 

load testing is recommended to monitor response to ART, but CD4 cell count testing is not 

routinely available. The first line ART regimen is tenofovir, lamivudine and efavirenz as a fixed-

dose combination. 

TB 

The 2014 Malawian TB prevalence survey included 31,579 adults screened using TB symptoms, 

chest radiographs and 2 sputum samples for microscopy and liquid culture if symptomatic or 

suggestive chest radiograph. Data from this survey suggest a national prevalence of 

microbiologically confirmed pulmonary TB of 452 per 100,000 (95% CI 312 to 593 per 100,000), 

and sputum smear positive TB of 220 per 100,000 (95% CI 142 to 297 per 100,000) [10]. 16,959 

patients with microbiologically confirmed TB were notified in 2016 [11]. Drug-resistant (DR) TB 

is uncommon in Malawi, with 0.75% of new cases and 6.4% of ‘retreatment’ cases estimated 

to have DR-TB [10]. 

Malawian TB services are decentralized with dedicated Environmental Health cadre health 

care workers (‘TB officers’) within community health centres providing treatment registration 
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and monitoring, so that TB management is usually provided separately to other health 

services. Diagnostics within the national TB programme are largely limited to sputum smear 

microscopy in community settings, with sputum Xpert and chest radiography limited to 

secondary care facilities.  

In Malawi, TB is treated using the standard WHO recommended 4-drug regimen for 6 months 

(a 2-month intensive phase with isoniazid, rifampicin, pyrazinamide, and ethambutol, followed 

by a 4-month continuation phase with isoniazid and rifampicin) [12]. Patients being treated for 

a second time, or failing their first course of treatment, are managed with streptomycin added 

to the intensive phase, usually requiring hospitalisation and daily intramuscular injections for 

60-days. TB drugs are dispensed every 2 weeks during the first 2-months and monthly 

thereafter, provided free of charge. Directly observed therapy (DOT) is implemented via an 

appointed family member or guardian, and undertaken in the home setting. In the event of a 

patient not attending for follow up, health centres are required to follow-up individuals in the 

community. 

During 2015, national treatment success rates (classified as treatment completion or cure) 

were estimated at 81%, comparable to global treatment success (83% in 2015) despite much 

higher HIV prevalence in Malawian TB patients than the global average [13]. 

Zomba Central Hospital 

Zomba is a largely rural district in Southern Malawi (figure 2.1) with an estimated population of 

799,000 in 2015, of whom approximately 138,000 live in urban Zomba. HIV prevalence is 

estimated to be 16.8% among 15-49 year olds in 2015 [14]. Zomba is one of the districts with 

the highest TB incidence in Malawi, with estimated notification of 150 per 100,000 population 

per annum in 2015. Over half of the TB notifications occur at Zomba Central Hospital 

(unpublished data, Malawi National TB Programme). 

Zomba Central Hospital serves as a district hospital within Zomba district and a tertiary referral 

centre to 4 other district hospitals. The hospital has 500 beds and 4 main clinical departments: 

internal medicine, surgery, paediatrics and obstetrics & gynaecology. There is no emergency 

department, with admissions instead made through outpatient clinics. The hospital is mostly 

staffed by clinical officers (a 3-year Diploma training in Clinical Medicine). All services are 

provided free at the point-of-care. 

The medical department has 160 beds spread over 3 wards (figure 2.2). Bed occupancy can, 

however, be >100% with use of mattresses on the floor during busy periods. The inpatient care 

is delivered by 6 clinical officers supervised by 3 medical doctors. The nurse to patient ratio is 

usually between 1:20 and 1:30. Only basic haematology (full blood count, cross-matching, CD4 
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count), biochemistry (renal and liver function), microbiology (microscopy), serology (hepatitis 

and syphilis) and HIV-1 viral load testing are available, although there are frequent disruptions 

when these services are not available. The radiology department offers radiography and 

ultrasound during office working hours. Complex patients can be referred to the regional 

referral centre (Queen Elizabeth Central Hospital) in Blantyre (approximately 60km away). 

Routine TB diagnostics available on-site include sputum smear microscopy and Xpert MTB/RIF 

assays (during office working hours only). Only respiratory samples are processed for Xpert, 

and no mycobacterial culture facilities are available. Patients with suspected MDR-TB (eg Xpert 

rifampicin resistant samples) are managed by the National TB Programme, and samples are 

sent to Lilongwe for culture and first line drug sensitivity testing (second line drugs are 

centralized at national level in Malawi). Sputum induction is not available. Cerebrospinal fluid 

(CSF) can be processed for microscopy, cryptococcal antigen testing and India ink staining only. 

No other routine TB diagnostics are available. 

Figure 2.2 Photographs of Zomba Central Hospital general medical ward (top) and the corridor outside 
the TB ward (bottom). Photographs were taken as part of the STAMP trial film [15], and consent was 
obtained from patients pictured. 
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HIV-associated TB is managed by TB clinics, except for at Zomba Central Hospital where there 

is an integrated HIV and TB clinic. ART is commenced within 2 weeks if ART naïve using the first 

line regimens. After discharge, HIV-associated TB patients are seen monthly at Zomba Central 

Hospital  

for clinical review and drug refills, unless they live nearer a peripheral health facility in which 

case they will be referred there for TB care. 

Malawi-Liverpool-Wellcome Trust Clinical Research Programme (MLW) 

MLW was established over 20 years ago and is a research centre build around high quality 

laboratory infrastructure and strategically located in the largest hospital in the country – 

Queen Elizabeth Central Hospital. MLW is affiliated with the University of Malawi’s College of 

Medicine, and is funded by a core grant from the Wellcome Trust. I was based at MLW whilst 

undertaking the work reported in this thesis, and the immunology laboratory work was 

undertaken within laboratories at MLW (figure 2.3).  

Figure 2.3 Facilities in the MLW immunology and tissue laboratory. 

 

2.4 Study settings: South Africa 

Despite South Africa being classed as a middle income country, and within medium human 

development category (ranked 119/188 in 2016), there remain huge inequalities [16].  The 

majority (65%) of 54.5 million population live in urban settings [17]. Health indicators are 

generally better than the rest of the Southern African region, with under-five mortality rate 

40.5 per 1,000 live births. However, life expectancy remains only 57.7 years, with the HIV and 

TB epidemics being leading causes of reduced life expectancy [16]. KwaZulu-Natal is the 

province located in the Southeast of the country, with Pietermaritzburg being the 
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governmental capital and Durban its most populated city. The province has a population of 

11.4 million and is the second most populous in South Africa.  

HIV 

South Africa has the highest number of HIV-positive residents of any country in the world, with 

South Africans accounting for almost one-fifth of the global burden of people living with HIV 

(PLHIV), as well as 15% of all new HIV infections and 11% of all HIV-related deaths [18]. Among 

adults aged 15-49 years, HIV prevalence is estimated to be 18.8% (95% CI 16.2 to 20.9%). HIV 

incidence was an estimated 9.6 per 1,000 adults aged 15-49 in 2016, and there are 110,000 

deaths annually attributed to HIV. There have been some successes in HIV control – new 

infections have reduced by 31% and deaths by 43% since 2010. South Africa also has the 

largest treatment programme in the world, providing 20% of ART use globally, with 80% 

funded directly by the government. 

 

In January 2015, the ART treatment threshold was 500 cells/µL, and from September 2016 

universal ‘test and treat’ was introduced, prioritising patients with CD4 cell counts <350 

cells/µL [19]. First line ART currently consists of Tenofovir, Emtricitabine and Efavirenz as a 

fixed-dose combination pill. HIV care is managed at the primary healthcare clinics and is 

primarily nurse led, with doctor input when required. Viral load monitoring is recommended at 

month 6, month 12 and then every 12 months while on ART. CD4 monitoring is only 

recommended annually and if ‘clinically indicated’. 

TB 

South Africa is one of the highest burden countries for TB, HIV-associated TB and drug 

resistant TB [13]. It is also one of seven countries that account for almost two-thirds of new TB 

cases, globally. TB incidence is estimated at 781 per 100,000 (95% CI 543 to 1,065 per 

100,000), meaning approximately 0.8% of the population develop active TB disease each year 

[20,21]. Over 244,000 new TB cases were notified in 2016, with TB treatment success of 81% in 

new and relapsed cases. It is estimated 3.4% of new cases and 7.1% of retreatment cases have 

DR-TB. KwaZulu-Natal, and the Eastern and Western Cape Provinces have the highest 

incidence rates of TB (and highest prevalence of HIV). 

 

TB is treated using the standard rifamycin-based 4-drug regimen for 6 months [22]. The 

continuation phase is extended to 7 months for TB meningitis. HIV-associated TB care is 

managed mainly by primary healthcare clinics, including provision of ART. Treatment naïve 

patients are usually prescribed ART within 2-8 weeks of TB diagnosis, often during hospital 

admission, along with cotrimoxazole prophylaxis. 
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Edendale hospital, KwaZulu-Natal 

Edendale Hospital is a regional level public-sector institution, situated in the peri-urban 

outskirts of the uMgungundlovu District in Pietermaritzburg, KwaZulu-Natal, South Africa 

(figure 2.1). There is a high burden of both HIV and TB: the uMgungundlovu District has a TB 

notification rate of 678 cases per 100,000 population p.a. and an antenatal HIV prevalence of 

44% [20]. 

With a 900 bed capacity, Edendale is South Africa’s 4th largest hospital serving about 1 million 

individuals. A level 2 healthcare centre, Edendale provides specialist support to Level 1 

facilities. These include four referring district hospitals, two TB hospitals, and an additional 18 

Primary and Community Health Care Centres. Specialist services include emergency medicine, 

general internal medicine, paediatrics, general and specialist surgery, obstetrics and 

gynaecology, ophthalmology and psychiatry. Services are charged for on an income-based 

sliding scale and are essentially free to patients who are unable to pay.  

The medical department consists of 234 inpatient beds across 7 wards (figure 2.4). Admissions 

are from the emergency department, ambulatory care or outpatient department and referrals 

from other hospitals. Internal medicine is staffed by 40 doctors, including eight specialist 

physicians, fourteen medical officers, and eighteen medical interns. Intern doctors are each 

responsible for approximately 15 to 20 patients. Nursing care is provided by approximately 140 

nurses, with a nurse-to-patient ratio of approximately 1:8. Inpatient HIV prevalence is 

estimated to be 35-50%, with new TB diagnoses among inpatients estimated to be 15-20% 

[23]. Laboratory testing includes full biochemistry, haematology and microbiology services. 

Inpatient point of care HIV testing is performed by ward staff. 

Routine TB diagnostics at Edendale include onsite fluorescence microscopy for acid fast bacilli 

and Xpert MTB/RIF (respiratory and non-respiratory samples) during working hours, with 

results usually available within 48 hours. Mycobacterial culture is available (off-site) for 

respiratory and non-respiratory samples, and drug-resistance testing for suspected drug 

resistant TB (eg Xpert rifampicin resistance samples). Sputum induction is not routinely 

performed but is available if requested. Biochemical and cell analysis are performed on extra-

pulmonary specimens, including cerebrospinal, pleural and ascitic fluid. Cytology and histology 

services are also available. Chest radiography is available 24 hours per day and other radiology 

services include ultrasound and CT scanning, available during working hours. Laboratory 

testing includes CD4 cell count and viral load testing. 
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Figure 2.4 Photographs of Edendale Hospital (top) a general medical ward (bottom), demonstrating 
differences in resources between the two study settings. Photographs were taken as part of the STAMP 
trial film [15], and consent was obtained from patients pictured. 

 

2.5 Design of studies contributing to thesis  

Overview 

The thesis aims and research questions were answered using prospective observational cohort 

designs, nested within a randomised clinical trial of rapid urine-based diagnostic assays (the 

STAMP trial). 

The thesis consists of the following five main components which addressed the overall aim and 

specific research questions:  

1. Systematic review and meta-analysis of the association between urine-LAM positivity 

and short-term (3-6 months) risk of death in patients with HIV-associated TB (research 

question 1) 
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2. Cohort study of the absolute risk of death by 56 days, and clinical and epidemiological 

risk factors for mortality in patients admitted to hospital with HIV-associated TB 

(research questions 1, 2 and 3) 

3. Cohort studies for derivation (STAMP study) and external validation of a clinical score 

predicting short-term mortality risk in patients admitted to hospital with HIV-

associated TB (research question 4) 

4. Cross-sectional study assessing a whole-blood assay measuring ex vivo phagocyte 

function in HIV/TB patients and healthy volunteers (research question 5) 

5. A cohort study of immunological responses in patients admitted to hospital with HIV-

associated TB and their relationships to short-term mortality and urine Xpert/LAM 

positivity (research question 6) 

An overview of each component is given below, with detailed methodologies reported in the 

respective research papers or chapters reporting the results. 

The STAMP trial 

The STAMP trial (rapid urine-based Screening for TB to reduce AIDS Mortality in hospitalised 

Patients in Africa) was a multi-centre trial investigating if the addition of rapid urine-based 

diagnostic screening for TB (using urine TB-LAM and Xpert assays) in unselected HIV-positive 

medical admissions can reduce mortality compared to standard screening based on sputum-

testing. The trial recruited 2,600 patients in Malawi and South Africa between October 2015 

and September 2017.  

The STAMP trial provided the opportunity to further study mechanisms relating to mortality, 

factors associated with outcomes and immune responses in patients with HIV associated-TB, 

by recruiting and clinically characterising HIV-positive patients with microbiologically 

confirmed TB, including ascertaining outcomes at 2 months. The design and methodologies for 

STAMP trial are outlined in the study design and protocol paper that follows in chapter 3 [24], 

and in the main trial publication which is presented in the appendix [25], respectively. 

My role within the STAMP trial was running the trial as the trial co-ordinator. Specifically, I 

wrote the trial protocol and site specific standard operating procedures for the conduct of the 

trial. I wrote and submitted the applications for ethical and regulatory approvals in the UK and 

at both trial sites. I designed the data collection tools and I trained the local trial teams in all 

trial procedures (including laboratory procedures). During the trial, I oversaw the running of 

both trial sites, including leading the quality assurance processes, reviewing the data collected 

and overseeing data query management. I oversaw data management procedures during the 

trial in collaboration with trial data manager and trial statisticians.  
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The pre-specified primary and secondary analyses for the trial (see chapter 3) were done by 

the trial statistician and were not part of this thesis (see appendix for main trial results). The 

trial design and securing funding was led by Prof Lawn. My role within the trial was supervised 

and supported by my supervisors (and STAMP trial co-investigators) Prof Lawn, Prof Corbett 

and Prof Fielding, as well as the site principal investigators (PIs) Prof Joep van Oosterhout and 

Dr Doug Wilson. There were a large team of research physicians, nurses and support staff who 

were vital to the STAMP clinical trial, and whose roles related to this thesis are summarised in 

table 2.1. 

 

Name Position Role 

Stephen Lawn Professor of 
Infectious Diseases, 
LSHTM 

PhD supervisor; Chief investigator of STAMP 
trial; conceived STAMP trial and secured 
funding (died Sept 2016) 

Elizabeth Corbett Professor of Tropical 
Epidemiology, LSHTM 

PhD supervisor; co-investigator STAMP trial 

Katherine Fielding Professor of Medical 
Statistics & 
Epidemiology, LSHTM 

PhD supervisor; co-Chief investigator STAMP 
trial 

Henry 
Mwandumba 

Reader, Liverpool 
School of Tropical  

PhD supervisor (immunology component) 

David Russell Professor of Infection 
Biology, Cornell 
University 

Collaborator, input in to phagocytosis assays 
and immunology studies 

Kondwani Jambo Post-doctoral fellow, 
MLW 

Collaborator, input in to phagocytosis assays 
and immunology studies 

Doug Wilson Head of Medicine, 
Edendale Hospital 

Co-investigator STAMP trial, responsible for 
the Edendale trial site 

Joep van 
Oosterhout 

Head of Research, 
Dignitas international  

Co-investigator STAMP trial, responsible for 
the Zomba trial site 

Clare Flach (until 
Oct 2016) 

Lecturer in Statistics, 
LSHTM 

STAMP trial statistician, PhD advisory 
committee member, input into data analysis 
methods 

Daniel Grint (post 
Oct 2016) 

Assistant Professor in 
Statistics, LSHTM 

STAMP trial statistician, PhD advisory 
committee member, input into data analysis 
methods 

Lingstone Chiume Data Manager, MLW Essential role in data management of STAMP 
trial 

Elizabeth 
Chimbayo 

Laboratory research 
assistant, MLW 

Support for performing immunology assays in 
MLW lab in Malawi 

Leonard Mvaya Laboratory research 
assistant, MLW 

Support for performing immunology assays in 
MLW lab in Malawi 

Melanie 
Alufandika-Moyo 

Physician, Dignitas 
International 

Trial physician, input into recruitment of 
patients at the Zomba trial site 

Jurgens Peters Clinical Research 
Fellow, LSHTM 

Trial physician, input into recruitment of 
patients at the Edendale trial site 

Table 2.1 List of contributors to the STAMP trial and research presented within this thesis. 
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Systematic review and meta-analysis of urine-LAM detection’s association with mortality 

(Chapter 4) 

Assays detecting mycobacterial LAM in urine are promising new tools for the diagnosis of HIV-

associated TB. Whilst some prospective cohort studies primarily aimed at assessing diagnostic 

accuracy or clinical utility have noted associations between LAM detection and increased 

mortality risk, the strength of this relationship had not been clearly defined. I therefore 

conducted a systematic review and meta-analysis summarising the current evidence for 

increased mortality risk in HIV-positive patients with microbiologically confirmed TB who are 

urine-LAM positive compared to urine-LAM negative.  

The search identified studies reporting patient characteristics and urine LAM-status in adult 

patients with HIV-TB co-infection, and mortality (the primary outcome). The primary outcome 

was mortality risk. The other outcome of interest was adjusted odds ratio of mortality for urine 

LAM-positive versus LAM-negative TB-cases based on a multi-variable analysis including other 

predictors of mortality. Pooled estimates were calculated using a random-effects modelling, 

summarising the assay’s potential prognostic value. The findings are discussed along with 

potential mechanisms underlying any associations, and the implications for the 

implementation of urinary LAM testing in this vulnerable population. 

 

Cohort study of mortality, and risk factors for mortality (Chapter 5) 

There is a scarcity of data in settings of widespread access to ART and improved diagnostics 

such as the Xpert assay describing the mortality and factors associated with mortality in in 

hospitalised patients with HIV-associated TB. Understanding such factors could help develop 

strategies to identify high-risk patients, and interventions to reduce their mortality. To address 

these questions, I constructed a prospective cohort study nested within the STAMP trial, 

restricted to patients from the STAMP trial diagnosed with microbiologically confirmed TB.  

The prevalence of disseminated TB, as diagnosed by positive urine rapid diagnostic tests, and 

associations with mortality are reported. Baseline clinical phenotypes are described using 

hierarchical cluster analysis, and Cox regression analysis was used to identify associations with 

early mortality. The findings are discussed, as are the implications for reducing mortality in this 

patient population. 
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Cohort study of derivation and external validation of a clinical score predicting mortality risk 

(Chapter 6) 

Clinical decision tools and risk scores are used widely in clinical practice to simplify the 

identification of patients at highest risk for poor health outcomes. Although scores have been 

developed to predict risk of TB disease in various, they cannot be used to predict outcomes of 

TB disease. Being able to identify patients at the highest risk of mortality could inform the 

development and assessment of new interventions, and also identify which patients would 

benefit most from these. I therefore undertook a study to assess if urinary LAM detection, 

along with other clinical variables readily available in high-burden settings, could be used to 

predict early mortality in HIV-positive patients admitted to hospital and diagnosed with TB, 

and to externally validate this predictive tool. 

The study used data from the same cohort nested within the STAMP trial as described above 

(Chapter 5) for the clinical predictor score derivation using multivariable regression modelling. 

The score was internally evaluated against observed mortality risk at 2-months, and externally 

validated using data collected independently from two studies: a multicentre diagnostic clinical 

trial of adjunctive urine TB-LAM testing in HIV-positive patients with TB symptoms who were 

admitted to hospital [3]; and a prospective cohort study assessing the diagnostic yield of TB-

LAM in HIV-positive patients in Kenya [26]. 

 

Cross-sectional study assessing the use of whole-blood functional assay of phagocyte activity 

(Chapter 7) 

The accurate assessment of immune competence through ex vivo analysis is paramount to our 

understanding of those immune mechanisms that lead to protection or susceptibility against a 

broad range of human pathogens. Such an assay opens opportunities for the rapid assessment 

of immune responses from whole blood, allowing comparisons of immune responses patients 

with HIV-associated TB according to outcome and/or positive urine diagnostic tests. 

I therefore developed a flow cytometry based, whole blood phagocyte functional assay that 

utilizes the inflammatory inducer zymosan, coupled to OxyBURST-SE, which measures both 

phagocytic uptake and the superoxide burst in the phagocyte populations in whole blood [27]. 

The assay was first applied to whole blood from Malawian healthy volunteers to demonstrate 

kinetics, reproducibility and validity. It was then used in demonstrating the perturbation of 

phagocyte function in the blood from patients with HIV-associated TB in Malawi compared to 

healthy volunteers. 
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A cohort study of immunological responses in HIV-associated TB (Chapters 8 and 9) 

Disseminated TB disease in HIV-positive patients can be identified by detecting mycobacterial 

nucleic acids (using the Xpert MTB/RIF assay) or LAM (using TB-LAM lateral flow assays) in 

urine, a sign of haematogenously disseminated renal TB [28,29]. Given these patients have a 

higher burden of TB, and poorer outcomes [30], I undertook a study in patients  with 

microbiologically confirmed TB to compare baseline immune responses among those with  and 

without positive urine-diagnostics (indicating disseminated disease). I also compared baseline 

immune responses in microbiologically confirmed TB patients who died with those who 

survived to 2-months, to help understand if patients with poor outcomes have altered immune 

responses and inform strategies to reduce the high mortality from HIV-associated TB. 

This study is based on a cohort of patients with microbiologically confirmed TB disease nested 

within the STAMP trial Zomba (Malawi) site. The study was limited to Malawi as this was the 

site within close proximity to an immunology research laboratory with the capacity to 

undertake the assays. The cohort was recruited between June 2016 (after commencement of 

the trial) until September 2017. The inclusion criteria were the same as for the STAMP trial, 

and patients were approached for enrolment into this sub-study after their microbiologically 

confirmed TB diagnosis. An additional group of HIV-positive ‘control’ patients without TB who 

were enrolled in the STAMP trial and matched by baseline CD4 cell count to enrolled TB 

patients were also recruited. These patients were approached if their STAMP TB screening test 

results were negative. 

Immunological mechanisms characterised included cytokine, chemokine and inflammation 

biomarker concentrations, markers of immune activation and exhaustion, and functional 

responses including cytokine production following stimulation and phagocyte function (using 

the assay described in chapter 6). 

 

2.6 Procedures for the STAMP trial and sub-studies contributing to the thesis 

Study procedures were undertaken according to the protocol for the parent STAMP trial, 

which is described in Chapter 3. Additional details or procedures relevant to the thesis are 

detailed below or described in the relevant research paper or chapter reporting the results. 

TB screening 

In the STAMP trial, patients randomised to the intervention arm had urine tested for TB using 

TB-LAM and Xpert assays in real time. Patients randomised to the SOC had concentrated and 

unconcentrated urine stored at -80°C for retrospective testing with TB-LAM and Xpert assays.  
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Testing of stored urine using TB-LAM and Xpert was done for all patients diagnosed with TB in 

the SOC arm to determine if they had ‘urine-positive’ TB disease (indicative of 

haematogenously disseminated TB). This was done in batches and followed the same 

procedures as fresh urine samples. 

The TB-LAM assay was performed as per the manufacturer’s instructions. 60µL of 

unconcentrated urine was pipetted onto the sample pad of new TB-LAM strip. A timer was set 

for 25-minutes, after which the validity of the test was assessed by checking for a band in the 

control window. The test result was then assessed by comparing the intensity of the band in 

the sample window (if present) with the manufacturer’s reference card. If the band was as or 

more intense than the lightest positive band (grade 1 on the post 2014 reference card), the 

test was deemed positive. The positive results were graded (grade 1-4) according to the band 

which the sample window was as intense as (see chapter 1). Non-valid tests were repeated. 

TB-LAM test strips were stored and a random sample independently double-read, masked to 

the original result, for quality assurance. TB-LAM tests were read prior to the results of the 

Xpert MTB/RIF and without knowing any clinical details of the patient to reduce bias in how 

the assays were read. 

Approximately 40-50mLs of urine was concentrated for Xpert testing urine by centrifugation at 

3000g for 15 minutes. The supernatant was discarded, and the urine pellet resuspended in 

approximately 2ml of residual urine/supernatant. 0.75mL of the resuspended pellet was added 

to 1.25mL of Xpert MTB/RIF sample reagent and incubated for 15 minutes, then added to the 

cartridge and processed as per the manufacturer’s instructions [25]. Cycle time values for 

positivity for each of the Xpert probes was also recorded.  

Other procedures 

Upon enrolment to the STAMP trial at admission to hospital, all patients had blood taken for 

haemoglobin (HemoCue) and full blood count (Horiba), CD4 cell count (PIMA or BD FacsCount) 

and 4mLs of plasma for storage at -80°C, which was processed by STAMP trial laboratory 

technician immediately after collection of samples. Eligible consenting patients (eligibility 

criteria are described in chapter 8) in the immunology sub-study (in Malawi only) underwent 

additional venepuncture for 10-12mls of heparinised whole blood, which was taken before TB 

treatment was commenced. This sample was immediately transferred to the laboratory at the 

Malawi-Liverpool-Wellcome Trust Clinical Research Programme for processing. 

Masking 

All STAMP trial team members were masked to the study arm, TB diagnostic results (ie if urine 

diagnostic tests were positive or negative), and patient outcomes until December 2017, apart 
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from the STAMP trial laboratory technicians who performed the TB screening (based at Zomba 

Central or Edendale Hospitals). Thus, all immunological assays were performed and analysed 

masked to the urine TB diagnostic status of the patient, clinical features, CD4 cell count and 

outcome. 

 

2.7 Data collection, management and analysis 

Patients were identified using a unique patient identifier (5 digits and a check digit), which was 

used to identify all records and samples. Clinical and demographic data for all patients was 

collected as part of the STAMP trial onto case report forms (CRFs). Both data and sample 

collection for the above cohort studies was the same as for the parent STAMP trial, no 

additional clinical data were collected. 

Clinical data were collected by study nurses, clinical officers or doctors either directly from the 

patient, from medical notes or a combination of both. At hospital admission, a detailed clinical 

history was taken including duration of illness, TB symptoms, past history of TB, HIV care, WHO 

clinical stage and history of ART. Vital signs, performance status (measured as Karnofsky score) 

and nutrition status (body mass index and mid-upper arm circumference) were also assessed. 

During the inpatient admission, all medical events were captured including TB diagnoses 

(including basis of diagnosis, nature of TB disease), TB treatment (including time from 

admission to TB treatment), initiation of ART, concomitant infections and prescriptions of 

antimicrobials, length of hospital stay and death. 

Diagnostic laboratory assay results (eg all TB diagnostics, CD4 cell counts, haemoglobin, CRP, 

HIV viral load, CrAg) were also entered onto CRFs. All CRFs were entered into a database via 

optical character recognition software (TeleForm, Hewlett Packard), with entered data verified 

with case report forms by a data coordinator. Data were extracted from the database as CSV 

files and imported into Stata version 14.0 (StataCorp). All flow cytometry, ELISA and multiplex 

bead-based assays had results exported as CSV files, which were also imported into Stata for 

data cleaning and analysis. 

Sample size justification 

The cohort study aimed to describe the clinical and epidemiological risk factors for mortality in 

HIV-associated TB is based on the hypotheses that disseminated TB is an independent risk 

factor for mortality. Sample size justification was based upon the following assumptions, which 

were extrapolated from previous studies reporting urine LAM status and mortality: 50% of 

patients with HIV-associated TB were urine positive, the increased risk ratio of mortality 

associated with detectable urine-LAM was 2-3 fold, the overall mortality at 2-months was 
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between 15-40% and the 2-sided type I error was 5%. A range of sample sizes are presented in 

table 2.2. Little data were available upon expected relative risk of mortality based on other 

variables. This study was nested within the STAMP trial, which had an expected overall sample 

size of 2,600 patients, and with TB prevalence expected to be about 20%, this would provide a 

total sample of 520 patients with HIV-associated TB for this study. Thus, based on a range of 

possible mortality risk ratios, this study had >80% power to detect a mortality difference 

between urine positive and urine negative patients, even accounting for a 10% loss to follow-

up. 

 

Overall 
mortality 

Urine-positive  
2-month 
mortality 

Urine-negative  
2-month 
mortality 

Power 
Sample size  

(including 10% 
LTFU) 

13.5% 20% 7% 80% 230 

15% 20% 10% 80% 432 

20% 30% 10% 80% 130 

22.5% 30% 15% 80% 259 

26.5% 40% 13% 80% 84 

30% 40% 20% 80% 173 

33.5% 50% 17% 80% 62 

37.5% 50% 25% 80% 121 

40% 50% 30% 80% 200 
Table 2.2 A range of sample size estimations based upon 50% of HIV-TB patients will test LAM-positive 

on urine and a 2-sided type I error is 5% 

 

Sample size calculations for the immunology study were challenging as few studies had 

compared immune responses in hospitalised patients with HIV-associated TB who died 

compare to those who survived, and no studied had compared patients with and without 

positive urine diagnostic tests. Therefore, sample size calculations were based primarily upon 

data on differences in stimulated TNF-α levels in patients with good and poor outcomes 

reported from a similar patient cohort in Blantyre, Malawi [31]. This study demonstrated 

significantly lower TNF-α levels (median 47pg/mL) in patients with poor outcomes (death or 

acute deterioration requiring hospitalisation) compared to those with good outcomes (median 

290 pg/mL). Based on Wilcoxon non-parametric tests on two independent groups, with the 

assumption that mortality among hospitalised TB-HIV patients would be 30%, a total sample 

size of 56 patients provided 80% power to detect a difference in TNFα levels between patients 

who died and who survived with a two-sided type 1 error (α) probability of 0.03 (adjusted for 

multiple tests) (see figure 2.5). The sample size was also limited by practical limiting factors of 

sample volume, laboratory capacity and study budget. Assuming a mortality of 25% increased 

the sample size to 66. 
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Figure 2.5 Sample size estimations. Sample size estimates plotted against power based on detecting a 

difference in TNF-α levels in patients with good and poor outcomes, assuming 30% have a poor 

outcome, and a two-sided type 1 error (α) probability of 0.03 

 

 

2.8 Ethical considerations 

The STAMP trial and associated sub-studies were carried out to good clinical practice (GCP) 

standards and according to the 2008 Declaration of Helsinki, and all study staff trained in GCP. 

Ethical approval for the STAMP trial was been granted by three research ethics committees: 

London School of Hygiene & Tropical Medicine Research Ethics Committee (LSHTM REC), the 

College of Medicine Research Ethics Committee in Malawi (COMREC), and the University of 

KwaZulu Natal Biomedical Research Ethics Committee (UKZN BREC). Ethical approval for the 

sub-studies were also granted by the LSHTM REC and relevant local ethics committee.  
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Rapid urine-based screening for
tuberculosis to reduce AIDS-related
mortality in hospitalized patients in Africa
(the STAMP trial): study protocol for a
randomised controlled trial
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Abstract

Background: HIV-associated tuberculosis (TB) co-infection remains an enormous burden to international public
health. Post-mortem studies have highlighted the high proportion of HIV-positive adults admitted to hospital with
TB. Determine TB-LAM and Xpert MTB/RIF assays can substantially increase diagnostic yield of TB within one day of
hospital admission. However, it remains unclear if this approach can impact clinical outcomes. The STAMP trial aims
to test the hypothesis that the implementation a urine-based screening strategy for TB can reduce all cause-
mortality among HIV-positive patients admitted to hospital when compared to current, sputum-based screening.

Methods: The trial is a pragmatic, individually randomised, multi-country (Malawi and South Africa) clinical trial with
two study arms (1:1 recruitment). Unselected HIV-positive patients admitted to medical wards, irrespective of
presentation, meeting the inclusion criteria and giving consent will be randomized to screening for TB using either:
(i) ‘standard of care’- testing of sputum using the Xpert MTB/RIF assay (Xpert) or (ii) ‘intervention’- testing of sputum
using Xpert and testing of urine using (a) Determine TB-LAM lateral-flow assay and (b) Xpert following
concentration of urine by centrifugation. Patients will be excluded if they have received TB treatment in the
previous 12 months, if they have received isoniazid preventive therapy in the last 6 months, if they are aged
<18 years or they live outside the pre-specified geographical area. Results will be provided to the responsible
medical team as soon as available to inform decisions regarding TB treatment. Both the study and routine medical
team will be masked to study arm allocation. 1300 patients will be enrolled per arm (equal numbers at the two trial
sites). The primary endpoint is all-cause mortality at 56 days. An economic analysis will be conducted to project
long-term outcomes for shorter-term trial data, including cost-effectiveness.
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(Continued from previous page)

Discussion: This pragmatic trial assesses an intervention to reduce the high mortality caused by HIV-associated TB,
which could feasibly be scaled up in high-burden settings if shown to be efficacious and cost-effective. We discuss
the challenges of designing a trial to assess the impact on mortality of laboratory-based TB screening interventions
given frequent initiation of empirical treatment and a failure of several previous clinical trials to demonstrate an
impact on clinical outcomes. We also elaborate on the practical and ethical issues of ‘testing a test’ in general.

Trial registration: ISRCTN Registry (ISRCTN71603869) prospectively registered 08 May 2015; the South African
National Controlled Trials Registry (DOH-27-1015-5185) prospectively registered October 2015.

Keywords: TB, HIV, HIV-associated TB, Screening, LAM, Xpert

Background
HIV-associated TB remains an enormous burden to
international public health, even in regions with high
coverage of antiretroviral therapy (ART). Globally, in
2014, there were an estimated 0.4 million TB related
deaths in people living with HIV, which accounts for ap-
proximately one-quarter of TB deaths and one-third of
HIV deaths [1]. This burden disproportionately affects
sub-Saharan Africa where TB is a common cause of hos-
pital admission and mortality among HIV-positive pa-
tients admitted to hospital [2].
Diagnosis of TB in people living with HIV remains

challenging due to non-specific clinical features, early
dissemination beyond the lungs and relatively low myco-
bacterial burden within sputum samples [3–5]. A meta-
analysis of post-mortem studies in adult HIV-positive
patients dying in hospitals in sub-Saharan Africa re-
ported that between 32 and 67 % (pooled summary esti-
mate 43 %) had evidence of TB at post-mortem [6]. TB
was disseminated in almost 90 % of patients, and
remained undiagnosed at the time of death in almost
one-half of TB cases, reflecting a failure of current spu-
tum and clinical based diagnosis of TB, and presenting a
strong rationale for routine systematic screening of HIV-
positive hospital admissions.
New diagnostic tools have been high on the TB research

agenda for the past decade, and are recognised as crucial
to the World Health Organization’s (WHO) End TB Strat-
egy [7]. The Xpert MTB/RIF rapid molecular assay (Xpert,
Cepheid, Sunnyvale, CA, USA) has a pooled sensitivity for
diagnosis of pulmonary TB in HIV-positive adults of 79 %
(95 % CI 70–86 %), with 99 % specificity. The test has
been approved by WHO and widely implemented in high
burden settings [8]. Systematic reviews have also reported
very high specificities for Xpert when testing a wide-
variety of non-respiratory clinical samples, despite culture
being an imperfect reference standard for extra-
pulmonary TB [9, 10]. Although data were insufficient for
the WHO guidelines to endorse the use of Xpert for TB
diagnosis from urine, studies have demonstrated useful
diagnostic yield and high specificity in urine among hospi-
talised HIV-positive patients [11–14].

Urine also has several advantages as a diagnostic sam-
ple for hospitalised HIV-positive patients, including rela-
tive ease of collection and lower biohazard risk during
specimen handling during collection and in the labora-
tory. The Determine TB-LAM (TB-LAM, Alere, Wal-
tham, MA, USA) lateral flow assay is a simple, point-of-
care test for detecting the mycobacterial cell wall antigen
lipoarabinomannan (LAM) in urine. It requires 60 μL of
unprocessed urine, giving a result in 25 min at a rela-
tively low cost (approximately US$2.50). Whilst sensitiv-
ity of this assay is poor in general populations, it is
improved in advanced HIV-related immunosuppression,
and studies in HIV-positive patients admitted to hospital
have demonstrated sensitivities between 40 and 70 %
[15–20]. Specificity is exceptionally high when the refer-
ence standards include culture of non-respiratory sam-
ples [19, 21]. TB-LAM was conditionally approved in
November 2015 by WHO for use in diagnosing TB in
hospitalised HIV-positive patients [22].
Evidence suggests that high mortality amongst hospi-

talised patients with HIV/TB co-infection is fuelled by
under-diagnosis of TB and delays in diagnosis due to
overreliance on sputum based diagnostics, imaging and/
or clinical features, and an inability to diagnose dissemi-
nated and extra pulmonary TB disease. We therefore
sought to evaluate the impact on mortality of a high-
yield, rapid-urine based screening approach for TB in
HIV-positive medical admissions to hospital in South
Africa and Malawi.

Rationale for studies of clinical impact
A study from South Africa intensively screened unse-
lected HIV-positive hospital admissions to medical
wards with comprehensive clinical sampling (sputum,
blood, urine and other clinically relevant samples) [14].
Using mycobacterial liquid culture and/or Xpert, TB was
diagnosed in 139/427 patients (33 % TB prevalence,
95 % CI 28–37 %). However, only 28 % of microbiologic-
ally confirmed TB in this study could have been diag-
nosed by Xpert testing of sputum alone. In contrast,
81 % of TB cases could have been diagnosed by Xpert
testing of both sputum and urine, with additional TB-
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LAM testing of urine, and results are available within
the first 24 h of hospital admission [14, 23]. Xpert is the
best diagnostic test available in most high-burden set-
tings and the WHO’s recommended initial TB test for
HIV-positive patients. The use of this rapid, relatively
low cost screening approach increased diagnostic yield
by almost three-fold.
Despite this increase in diagnostic yield, there is no

evidence that this urine-based screening strategy will im-
pact mortality or clinical outcomes; it is recommended
that impact be demonstrated before such interventions
can be endorsed or implemented [24]. This is especially
true, as numerous studies have noted that the replace-
ment of sputum smear-microscopy with the more sensi-
tive Xpert has failed to demonstrate any impact on
clinical outcomes [25]. A recently published randomised
controlled trial of adjunctive urine testing with the TB-
LAM assay (the LAM RCT) in a selected population of
hospitalised HIV-positive patients being investigated for
TB demonstrated an absolute mortality reduction of 4 %
(95%CI 1–7 %) and a relative reduction in mortality of
17 % (95%CI 4–27 %). These data support the potential
for a urine-based screening approach to reduce mortality
among unselected HIV-positive in-patients [26].

Rationale for a Randomized Controlled Trial (RCT)
Whilst a high yield, urine-based screening strategy might
benefit this patient population by increasing the number
of TB diagnoses and decreasing time to TB treatment, it
may also be associated with a range of adverse conse-
quences. A rapid TB diagnosis within the first 1–2 days
of hospital admission may divert clinical attention from
co-pathologies, and may reduce the likelihood of empir-
ical prescription of antibiotics for occult bacterial infec-
tions. Further, despite excellent specificity, this screening
approach may lead to some false-positive TB diagnoses
and false-positive rifampicin resistance results from
Xpert assays, leading to inappropriate use of potentially
harmful medication. Although relatively low cost, the
implementation of such a screening strategy will require
investment of limited health service resources, and may
divert resources from other interventions with poten-
tially greater impact on health outcomes.
Although diagnostic tests are routinely implemented

on the basis of diagnostic accuracy or effectiveness with-
out assessment of impact on clinical outcomes (e.g.
Xpert and rapid malaria diagnostics), their impact on
population health is part of a wider cascade of processes
including care seeking and initiation of appropriate
treatment [27]. Thus, they should be evaluated under
such circumstances too, and evidence of diagnostic ac-
curacy alone should not be taken as evidence of impact
on patient-appropriate outcomes such as reducing mor-
bidity or mortality [27]. This is especially true of TB

diagnostics, as even mycobacterial culture (the most sen-
sitive diagnostic) can have minimal impact on clinical
decision to initiate TB treatment [28].

Methods/Design
Aim
The principal aim of this trial is to test the hypothesis
that the implementation of a rapid, sensitive urine-based
screening strategy for TB can reduce all cause-mortality
among HIV-positive patients admitted to hospitals in
sub-Saharan Africa when compared to current, sputum-
based screening.

Study design
The trial is a pragmatic, individually randomised, multi-
country clinical trial with two study arms with 1:1 allo-
cation between arms (Fig. 1). HIV-positive patients ran-
domised to the ‘standard of care’ arm will be screened
for TB by testing sputum (if produced by spontaneous
expectoration) using the Xpert assay. HIV-positive
patients randomised to the intervention arm will, in
addition to the standard of care, have a urine sample (if
produced) tested for TB using the TB-LAM assay and,
following concentration of 40–50mls of urine by centri-
fugation, the Xpert assay. Patients, the responsible med-
ical team and study team will be masked to the study
arm allocation (except for the study statistician, data
managers and laboratory technicians). TB screening test
results will be communicated to the medical teams re-
sponsible for clinical care of the patients (whilst main-
taining masking to study arm allocation), but the clinical
management decisions informed by the test results, in-
cluding whether to commence TB treatment, will not be
altered by the study team. Beyond collection of TB
screening samples, running of assays and issuing of
results, the study team will have no involvement in the
clinical care of participants.

Study population
The trial will take place at two sites: Zomba Central
Hospital, Southern Malawi, and Edendale Hospital,
KwaZulu-Natal, South Africa. Both hospitals serve popu-
lations with high HIV prevalence and TB incidence.
All new admissions to medical wards who have con-

firmed HIV-infection (either an existing or new diagno-
sis), irrespective of antiretroviral therapy (ART) status,
will be screened for eligibility. HIV testing of all hospital
admissions with unknown HIV-status is recommended
as part of national guidelines at both trial sites, and will
be supported by study staff where necessary. Eligibility
criteria are designed to be as broad as possible. Patients
will be eligible for inclusion regardless of reason for
medical admission or presence of TB symptoms (unse-
lected), although patients <18 years old, those who have
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received TB treatment in the preceding 12 months or
isoniazid preventive therapy in the preceding 6 months,
those unable to provide informed consent or living out-
side a pre-defined geographical area will be excluded. It
is envisaged that recruitment will take place over a
period of 24 months, with equal numbers recruited at
each study site.

Study procedures
After obtaining written informed consent from eligible
patients, a study nurse will collect data at baseline to de-
termine clinical history, including TB symptoms, past
history of TB and HIV care, vital signs and nutritional
and performance status. Venepuncture for haemoglobin
concentration and CD4 cell count will be conducted and
single sputum sample and up to 50mls of urine will be
collected from all participants, irrespective of study arm.
If sputum and/or urine samples cannot be spontaneously

produced, participants will remain in the study but no
further samples for TB investigation will be arranged by
the study team. However, the responsible medical team
will remain at liberty to arrange further TB investiga-
tions that are available as standard of care at the study
hospital.
A randomisation list stratified by study site using com-

puter generated random block size will be generated.
Randomisation will occur at enrolment, but the study
team will be masked to study arm allocation. When TB
samples (sputum and/or urine) from participants arrive
in the laboratory, the study laboratory technician will
identify the allocated study arm by opening a sealed en-
velope marked with the unique participant ID, and de-
termine which samples will be screened for TB. Urine
from participants randomised to the standard of care
arm will not be tested for TB and will be safely dis-
carded. TB-LAM assays will be read by the laboratory

Fig. 1 Study design flow diagram
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technician and results will be deemed as positive using
the grade 1 cut-off on the manufacturer’s reference card.
20 % of TB-LAM assays will read by a second, blinded
reader for quality control.
TB screening tests will only be processed during office

working hours on weekdays. Once the TB screening tests
have been completed (anticipated to be within 24-48 h of
sample collection), the results will be issued whilst main-
taining masking of the study arm and responsible medical
teams (reported as either ‘TB screening test positive’, ‘TB
screening test negative’ or ‘TB screening test not done’).
Rifampicin resistance results, when available, will also be
communicated to the medical teams.
The responsible medical team will receive training on

how to interpret the screening tests, including estimated
positive and negative predictive values of the screening
algorithms in each study arm, and that a negative
screening test does not ‘rule out’ TB. The responsible
medical team will be at liberty to organise further TB in-
vestigations and commence TB treatment as clinically
appropriate. Management of HIV will be as per local
and national guidelines, including timing of ART initi-
ation. Data on TB investigations, diagnoses (including if
microbiologically confirmed or ‘empirical’) and treat-
ment will be collected during follow-up.

Outcomes
The primary outcome is risk of all-cause mortality at 56-
days following enrolment. Secondary outcomes are: time
to all-cause mortality; proportions of patients with (i)
microbiologically confirmed and (ii) clinically diagnosed
TB disease; time to TB diagnosis and commencement of
TB treatment; proportions of patients receiving antimi-
crobials and ART; and (i) duration of hospital admission,
(ii) cumulative incidence of hospital readmission, and
(iii) cumulative incidence of loss to follow-up. Outcomes
will be ascertained by patient interview and review of
medical notes during in-patient admission, and patient
interview for vital status at 56-days post enrolment. This
will be supplemented with information from patients’
next of kin for those lost to follow-up.
Microbiologically confirmed TB is defined as at least

one positive smear-microscopy, Xpert, or culture posi-
tive result on any specimen or a positive urine TB-LAM
result. Clinically diagnosed TB is defined as having a
compatible clinical illness or radiological disease and/or
the decision of the responsible clinical team to com-
mence TB treatment in the absence of any positive
microbiological tests for TB.

Economic analysis
An economic analysis from a societal perspective will be
undertaken to demonstrate the longer-term clinical and
budgetary impact as well as the cost-effectiveness of the

intervention; demonstrating economic feasibility and
cost-effectiveness will be essential prior to implementa-
tion, should this screening intervention prove effective.
Given the complexities of diagnosis and treatment of
HIV/TB coinfection for patients requiring hospital ad-
mission, we will estimate health service costs based upon
resource utilization of trial participants, inclusive of
laboratory reagents and services, inpatient
hospitalization days and outpatient visits, as well as drug
costs. Trial-site specific costs will be collected on a lim-
ited cohort of 100 participants per site. We anticipate
that, in the short term, costs of hospital admission are
likely to account for a large proportion of health service
provider expenditure; over the longer term, we expect
increased survival related to the intervention will result
in greater cumulative antiretroviral drug costs. Longer
term cost-effectiveness will be estimated based on the
Cost-Effectiveness of Preventing AIDS Complications-
International (CEPAC-I) computer simulation model
[29]. Model-based outcomes will include a short-term
validation of trial results; that is, we will ensure that
model results after 2 months of simulation accurately re-
flect trial outcomes of 56 days. Longer-term model re-
sults will include: 1-year and 5-year survival, TB-deaths
averted, overall deaths averted and per person costs as
well as life expectancy (LE) and lifetime costs. At each
time horizon (1-year, 5-year and lifetime), the incremen-
tal cost-effectiveness of the intervention compared with
the standard of care (Δ$/ΔLE, both discounted by 3 %
per year) will be calculated. Model results will be exam-
ined in one-way and multi-way deterministic sensitivity
analyses, examining influential parameters of interest
(e.g. mean CD4 at presentation, TB screening test sensi-
tivity/specificity and cost, active TB prevalence on
admission). In addition to cost-effectiveness analyses, the
budgetary impact of implementation and scale-up at
1- and 5- years of this intervention will be reported.

Sample size justification
Sample size calculations were based upon unpublished
data from the trial sites, which showed a mortality of
HIV-positive medical in-patients of 21–23 % during hos-
pital admission and are supported by subsequently pub-
lished meta-analyses on hospitalised HIV-positive
patients in Africa [2, 30]. We assumed that 56-day mor-
tality would be 25–30 % in the standard of care arm
and, based upon post-mortem prevalence of TB, we esti-
mated 40–50 % of deaths in the standard of care arm
would be TB-related.
The sensitivity of the intervention for diagnosing TB

disease was assumed to be 80 % (a 3-fold increase in
diagnostic yield compared to sputum alone) based upon
a background study [14]. An observational study of
early-initiation of TB treatment among HIV-positive
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smear-negative hospital in-patients observed a reduction
in mortality at 2-months of 47 % in patients whose TB
treatment was expedited by use of WHO-recommended
diagnostic algorithm compared to standard practice [31].
Our study was powered to detect a 40–50 % reduction
in TB-related mortality, and assuming half of deaths are
TB related, this would equate to a 20–25 % reduction in
all-cause mortality. Our sample size of 1300 patients per
arm would provide 90 % power to detect a 25 % reduc-
tion in mortality and 80 % power to detect a 20 % reduc-
tion in mortality, assuming an all-cause mortality of
25 % in the ‘standard of care’ arm and a 2-sided type 1
error of 5 % and 10–15 % loss to follow-up. If the 56-day
mortality was unexpectedly lower (20 %) in the standard
of care arm, our sample size would still provide 80 %
power to detect a 25 % reduction in all-cause mortality.

Data collection and management
Data will be collected at four main times: enrolment, dur-
ing the hospital admission, at hospital discharge and at the
56-day follow-up visit (Table 1). Specially designed case
report forms are completed by study staff at each time
point, and scanned, verified and committed to a local site
database within 48 h of completion using the optical-
character-recognition software TeleForm (Hewlett
Packard Software, CA, USA). All data in critical fields are
verified upon scanning. Completed forms are stored as the
source documentation in a locked cabinet, with access
restricted to specified study team members. Locator

information is stored separately to other case report forms
which are identified by unique participant ID number and
do not contain any patient identifiable information.
Queries based on data in the database are generated
weekly, including date, range and logic checks, and sent to
sites for resolution.
Follow-up at 56-days is undertaken through outpatient

appointment attendance at the study site. If participants
are unable to attend the outpatient appointment, they
are traced by telephone and/or home visit if they have
provided prior consent for this to occur. Participants are
defined as lost to follow-up if they are unable to be con-
tacted after three tracing attempts after 56-days from
enrolment. Quality assurance processes are in place to
check all consent forms, screening case report forms,
laboratory case report forms and a random sub-sample
of all other case report forms.

Statistical analysis
The trial profile will be summarised using a CONSORT
flow chart, including reasons for non-eligibility and non-
enrolment (Fig. 2) [32]. All analyses will be conducted
by initially assigned study arm in an intention-to-treat
analysis, and adjusted for randomisation site. Baseline
variables will be presented by study arm.
For the primary outcome the risk difference and odds

ratio, and their associated 95 % confidence intervals for
the effect of study arm on mortality risk will be calcu-
lated. The primary analysis of this endpoint will assume

Table 1 Schedule of STAMP study activities

Time-point: Enrolment Baseline
assessment

TB testing In-patient
stay

Hospital exit Outpatient Review

Time On-Study: Day 0 Day 0 Day 0–1 Day 0+ Day 0+ Day 56

Enrolment:

Eligibility Screen X

Informed consent X

HIV confirmation X

Study arm allocation X

Interventions:

Collect admission specimens (blood, sputum
and urine)

X

TB screening & issuing results X

Assessments:

Baseline demographic and clinical information X

EQ5D X X

TB investigations, diagnosis and/or treatment X X X

Vital status X X X

HIV care/ART X X X

Health service use X X X

EQ5D quality of life questionnaire [38]
ART antiretroviral therapy
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participants who are lost to follow-up before 56 days
have not died. Sensitivity analyses will be conducted to
assess assumptions made regarding missing data and pa-
tients lost to follow-up. A sub-group analysis of the pri-
mary outcome will be conducted for the following
variables: study site, calendar time, baseline CD4 cell
count (<100 or >100 cells/μL), presence of severe an-
aemia (Hb <80 g/L) and clinically suspected TB at ad-
mission. The interaction effects by subgroup will be
investigated and p-values reported.
Secondary outcomes (as defined above) will be com-

pared between study arms using logistic regression for
binary outcome and survival analysis with Kaplan-Meier
curves and Cox proportional hazards for time to event.
All analyses will be adjusted for randomisation site.
A statistical analysis plan documents the analysis of all

trial outcomes in detail, and was reviewed by the Data
Safety and Monitoring Board (DSMB).

Trial governance and approvals
The trial will be governed by a Trial Steering Committee
(TSC), including an independent chairperson and at

least three other independent members. The TSC will
oversee the trial and advise the investigator team, includ-
ing monitoring progress, receiving reports from the Data
and Safety Monitoring Board (DSMB), and assessing the
impact of new scientific evidence. The DSMB’s role is to
protect the safety of trial participants, they will meet
every six months to review data from the trial, as set out
in the DSMB charter, and are independent to the trial
sponsor (the London School of Hygiene & Tropical
Medicine). Monitoring visits will be undertaken at least
three-monthly for quality assurance and to ensure ad-
herence to the trial protocol, and auditing of the trial
conduct will be undertaken by the trial sponsor.
The trial has also received approval from the Research

Ethics Committees of the London School of Hygiene &
Tropical Medicine (ref: 9630), College of Medicine
University of Malawi (ref: P.06/15/1743) and the
University of KwaZulu-Natal Biomedical Research Ethics
Committee (ref: BFC215/15). STAMP is registered with
the ISRCTN Registry (ref: ISRCTN71603869) and the
South African National Controlled Trials Registry (ref:
DOH-27-1015-5185). The trial is funded by the Joint

Fig. 2 CONSORT flow diagram
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Global Health Trials scheme (a collaboration between
the UK Department for International Development, the
UK Medical Research Council and the Wellcome Trust),
and was peer reviewed as part of the funding application
process.

Discussion
The STAMP trial aims to assess whether a novel, rapid
urine-based screening strategy for TB with a high diag-
nostic yield can reduce early mortality in HIV-positive
patients admitted to hospital in sub-Saharan Africa. The
need for this trial is clear given the high mortality
among HIV-positive patients admitted to hospital in
these settings, and the high proportion of patients that
die with undiagnosed TB disease [6, 30]. Positive urine-
based TB diagnostic tests in advanced HIV are a marker
of haematogenously disseminated renal TB, and these
patients are at higher risk of mortality, supporting the
rationale that earlier diagnosis and treatment may re-
duce mortality [33, 34].
Other trials have assessed empirical TB treatment in

HIV-positive patients at high risk of TB, although mostly
in outpatient settings. The REMEMBER trial failed to
demonstrate a mortality benefit of empirical TB treat-
ment compared to isoniazid preventive therapy [35].
The TB Fast Track trial assessed an algorithm using
body mass index, presence of anaemia and urine TB-
LAM testing to identify HIV-positive ambulatory
patients with CD4 cell counts ≤150 cells/μL at high risk
of TB in whom empirical TB treatment was started
immediately, but found no reduction in 6-month mortal-
ity compared to the standard of care [34, 35]. The
STAMP investigators believe that utilising new TB diag-
nostics can provide better specificity than empirical TB
treatment and prevent the potential harm from prescrip-
tion of TB treatment to HIV-positive patients without
TB disease among hospital inpatients.
A trial of adjunctive urine testing with the TB-LAM

assay in a selected population of hospitalised HIV-
positive patients being investigated for TB (the LAM
RCT) recently demonstrated a reduction in mortality at
2-months [26]. The STAMP trial differs from this RCT
in respect to several factors. Firstly, the inclusion criteria
differ in that STAMP is a screening intervention target-
ing unselected HIV-positive patients admitted to hos-
pital regardless of clinical presentation, and the LAM
RCT investigated the TB-LAM diagnostic in hospitalised
HIV-positive patients who were presumed to have TB.
As such, STAMP has the potential to detect TB among
those without any clinical suspicion for TB on hospital
entry. Secondly, the STAMP intervention includes the
Xpert MTB/RIF assay performed on urine in addition to
TB-LAM, whereas LAM RCT evaluated urine testing
with TB-LAM alone. This increases the diagnostic yield

of the intervention and adds the potential to diagnose ri-
fampicin resistance. Thirdly, the standard of care in the
STAMP trial includes Xpert testing of sputum (if pro-
duced) at all study sites, whilst the standard of care in
LAM RCT varied from easy access to Xpert in South
Africa to no access to Xpert in Zimbabwe. Finally, in the
STAMP trial but not in the LAM RCT, both study teams
and routine medical teams managing patients are
masked to the study intervention arm (i.e. which TB
screening tests are done).
The rationale for a clinical trial to demonstrate impact

prior to implementation is supported by the lack of dem-
onstrable benefit upon patient outcomes of sputum
screening using Xpert in HIV-positive patients, despite in-
creases in diagnostic yield compared to sputum smear mi-
croscopy [25]. Reasons for the failure of such trials of
Xpert sputum testing to demonstrate impact may include
lower occurrence of mortality endpoints in populations
studies (largely outpatient based studies), high rates of em-
pirical TB treatment and the failure of some positive Xpert
results to be translated to TB treatment due to delays be-
tween submission of samples and issuing of results. The
decision to start TB treatment is complex, and in such tri-
als is likely to be influenced by the premise of the study to
reduce undiagnosed, or ‘missed’ TB cases, potentially in-
creasing empirical TB treatment [36].
These issues have been considered when designing the

STAMP trial. For example, in-patient settings have a
high mortality, and initiating TB treatment following
positive results is more likely to occur when patients are
admitted to hospital compared to community settings.
Masking of clinicians, investigators and patients to the
study intervention arm should reduce any ‘Hawthorne’
effect which could increase empirical TB treatment in
the standard of care arm due to clinicians observing
higher diagnostic yield in the intervention arm [37]. The
use of ‘double-blinding’ in this manner is unusual in as-
sessments of diagnostics, and, to our knowledge, this is
the first time it has been used in TB diagnostics. How-
ever, a disadvantage of masking is that it might impair
the ability of clinicians to make decisions about TB
treatment in the absence of a positive screening result.
The STAMP trial sites have also been chosen to repre-

sent differing facilities, cadre of healthcare workers and
resource utilisation in the region. Two studies to date,
including one RCT, have demonstrated decreases in
early mortality from expedited TB treatment in hospita-
lised HIV-positive patients, supporting the STAMP trial
hypothesis that urine-based screening could reduce mor-
tality [26, 31].
The unique challenges of ‘testing a test’ have also been

considered in the STAMP study design, in particular, re-
garding the ethics of conducting such a trial. If consider-
ing the diagnostic accuracy or yield of the STAMP study
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intervention compared to sputum screening or clinical
diagnosis alone, [14] it could be argued there is a lack of
equipoise (i.e. disagreement about the relative merits of
the intervention). Whilst equipoise may not exist for
diagnostic accuracy of the intervention for detecting
HIV-TB, equipoise clearly exists for the impact of the
study intervention on early mortality in unselected HIV-
positive hospital admissions when compared to the spu-
tum and clinical screening strategies that are current
standard of care [27]. We have also considered the po-
tential negative consequences of a rapid microbiological
TB diagnosis, such as delay in initiating ART, a reduc-
tion in the prescription of empirical antibiotics which
may treat covert sepsis in this severely immunosup-
pressed population and false-positive rifampicin resist-
ance results. This study will be able to describe and
document the impact of these potential harms and com-
pare these secondary endpoints between study arms.
Furthermore, the pragmatic nature of the STAMP

trial, with clinical care including TB diagnostics outside
the study intervention, TB treatment and ART under
routine conditions for each study setting, make the find-
ings more generalisable and applicable to scale up. The
wide inclusion criteria and not restricting TB testing to
patients with ‘presumptive’ TB (for which the definition
often varies between settings) also makes the results
more applicable. The recently published WHO guidance
on the use of LAM lateral flow assays advises against its
use for screening, based upon low quality evidence [22].
The STAMP study can provide randomised trial quality
evidence to support or refute these recommendations
for HIV-positive, hospitalised patients. The study inter-
vention should be possible to replicate in resource-
limiting settings given the widespread availability of the
Xpert assay and lack of equipment required for the TB-
LAM testing, in keeping with STAMP being a pragmatic
trial. The concentration of urine prior to testing with the
Xpert assay (which has been shown to increase sensitiv-
ity [14]) is done using a bucket centrifuge. Laboratory
based research is also being undertaken to look for alter-
native, lower resource methods to concentrate urine
prior to testing with Xpert.
The STAMP trial acknowledges the potential disad-

vantages of urine-based TB screening for this popula-
tion, especially the cost implications. Although the
intervention is relatively low-cost, health budgets in high
TB and HIV settings are limited, and therefore wide-
spread implementation of the STAMP study interven-
tion may have substantial budgetary impact. The
STAMP trial incorporates an economic analysis which
will assess cost-effectiveness of the study intervention
from a societal prospective and will include an analysis
of budgetary impact of scale-up of this intervention.
Should the intervention prove both effective and cost-

effective, these analyses will assist in motivating the
financial resources to promote its implementation.
In summary, the STAMP trial is assessing a novel,

urine-based screening strategy utilising the TB-LAM
and Xpert assays in HIV-positive patients admitted to
hospital in sub-Saharan Africa. We hypothesise that use
of this screening algorithm will reduce all-cause mortal-
ity at 2 months compared to sputum and clinical diag-
nostics (using the Xpert assay) which is the standard of
care as currently recommended by the WHO. The trial
commenced recruitment of patients in October 2015,
and is projected to complete recruitment by September
2017 and follow-up by November 2017.
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Detection of lipoarabinomannan (LAM) in
urine is an independent predictor of
mortality risk in patients receiving
treatment for HIV-associated tuberculosis
in sub-Saharan Africa: a systematic review
and meta-analysis
Ankur Gupta-Wright1,2* , Jurgens A. Peters1, Clare Flach3 and Stephen D. Lawn1,4

Abstract

Background: Simple immune capture assays that detect mycobacterial lipoarabinomannan (LAM) antigen in urine
are promising new tools for the diagnosis of HIV-associated tuberculosis (HIV-TB). In addition, however, recent
prospective cohort studies of patients with HIV-TB have demonstrated associations between LAM in the urine and
increased mortality risk during TB treatment, indicating an additional utility of urinary LAM as a prognostic marker.
We conducted a systematic review and meta-analysis to summarise the evidence concerning the strength of this
relationship in adults with HIV-TB in sub-Saharan Africa, thereby quantifying the assay’s prognostic value.

Methods: We searched MEDLINE and Embase databases using comprehensive search terms for ‘HIV’, ‘TB’, ‘LAM’
and ‘sub-Saharan Africa’. Identified studies were reviewed and selected according to predefined criteria.

Results: We identified 10 studies eligible for inclusion in this systematic review, reporting on a total of 1172 HIV-TB
cases. Of these, 512 patients (44 %) tested positive for urinary LAM. After a variable duration of follow-up of
between 2 and 6 months, overall case fatality rates among HIV-TB cases varied between 7 % and 53 %. Pooled
summary estimates generated by random-effects meta-analysis showed a two-fold increased risk of mortality for
urinary LAM-positive HIV-TB cases compared to urinary LAM-negative HIV-TB cases (relative risk 2.3, 95 % confidence
interval 1.6–3.1). Some heterogeneity was explained by study setting and patient population in sub-group analyses.
Five studies also reported multivariable analyses of risk factors for mortality, and pooled summary estimates
demonstrated over two-fold increased mortality risk (odds ratio 2.5, 95 % confidence interval 1.4–4.5) among urinary
LAM-positive HIV-TB cases, even after adjustment for other risk factors for mortality, including CD4 cell count.
(Continued on next page)
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Conclusions: We have demonstrated that detectable LAM in urine is associated with increased risk of mortality
during TB treatment, and that this relationship remains after adjusting for other risk factors for mortality. This may
simply be due to a positive test for urinary LAM serving as a marker of higher mycobacterial load and greater
disease dissemination and severity. Alternatively, LAM antigen may directly compromise host immune responses
through its known immunomodulatory effects. Detectable LAM in the urine is an independent risk factor for
mortality among patients receiving treatment for HIV-TB. Further research is warranted to elucidate the underlying
mechanisms and to determine whether this vulnerable patient population may benefit from adjunctive
interventions.

Keywords: HIV, Tuberculosis, Lipoarabinomannan, LAM, Mortality, Systematic review

Background
Tuberculosis (TB) remains the most frequent cause of
HIV/AIDS-related deaths globally, accounting for 0.4
million deaths in 2014 alone [1]. Diagnosis of HIV-
associated TB (HIV-TB) remains challenging due to
non-specific clinical features, early dissemination beyond
the lungs, the relatively low mycobacterial burden within
sputum samples, and clinical over-reliance on sputum-
based diagnostic tests [2–4]. Mycobacterial culture is
still regarded as the ‘gold standard’ diagnostic test; how-
ever, in practice its use and utility are greatly limited by
prolonged turnaround times and lack of widespread
availability due to the need for expensive infrastructure
and skilled laboratory personnel. Diagnostic tools that
are rapid, have good diagnostic accuracy and can be
used at all levels of the healthcare system will be
required to meet ambitious World Health Organization
(WHO) goals of reducing TB deaths by 95 % and new
cases by 90 % by 2035 [5–7].
Recent years have seen increased investment and

research into rapid, ‘point-of-care’ diagnostics. Given the
challenges of obtaining sputum samples and limited
yield in extrapulmonary TB, urine has been identified as
a favourable alternative biological sample due to the ease
of obtaining samples from patients, the ease of labora-
tory handling and processing, and the lower risk of
nosocomial transmission to healthcare and laboratory
workers. Several mycobacterial antigens have been iden-
tified in the urine of patients with active TB [8, 9].
Promising diagnostic assays to emerge are those that
detect the mycobacterial cell wall lipopolysaccharide
lipoarabinomannan (LAM) using simple immune
capture assays [10]. Testing for LAM in the urine has
proved particularly useful in those with HIV-TB, with
incrementally greater sensitivity with the progression of
immunodeficiency [11–13]. In addition to commercially
available enzyme-linked immunosorbent assays (ELISA),
a simple, low-cost and rapid lateral flow point-of-care
assay has also been developed (Determine TB-LAM;
Alere Inc., Waltham, MA, USA). This is undergoing
impact evaluation as part of the diagnostic algorithms

for HIV-TB in clinical trials in sub-Saharan Africa [14–16],
and WHO have conditionally recommended its use to
assist in TB diagnosis in hospitalised patients with
low (≤100 cells/μl) CD4 cell counts or patients who
are seriously ill [17].
The diagnostic accuracy of urinary LAM detection for

HIV-TB has been extensively studied and is the subject
of a comprehensive Cochrane systematic review and
meta-analysis [18]. However, recent prospective studies
of diagnostic accuracy have also highlighted its prognos-
tic value, demonstrating strong associations between the
detection of urinary LAM and mortality risk during
follow-up on TB treatment; this association persists even
after adjustment for key confounding factors such as
blood CD4 count, blood haemoglobin level and age [19].
Testing for LAM in the urine may therefore be of
additional clinical benefit, over and above the diagnosis
of TB, by identifying patients with the highest mortal-
ity risk who may potentially benefit from closer
follow-up or adjunctive interventions used in combin-
ation with TB treatment, anti-retroviral therapy (ART)
and co-trimoxazole prophylaxis.
We have performed a systematic review and meta-

analysis to summarise the strength of the relationship
between urinary LAM and mortality in adults with
HIV-TB. We also discuss potential mechanisms
underlying these associations and discuss the need for
future research and implications for the implementa-
tion of testing for urinary LAM in this vulnerable
population.

Methods
Search strategy
We searched MEDLINE and Embase databases for
studies reporting urinary LAM status in HIV-infected
adults, and published up until 1 November 2015. The
search strategy involved combining four search ‘sets’
with the Boolean operator ‘AND’. The search sets
included comprehensive terms for ‘tuberculosis’, ‘HIV/
AIDS’ and ‘lipoarabinomannan’, and ‘sub-Saharan Africa’.
References of relevant studies and review articles were
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also searched, and experts in the field contacted to
suggest additional references. The search strategy was
pre-specified in the review protocol (Additional file 1:
Table S1). In addition, abstract books from the Inter-
national Union Against Tuberculosis and Lung Disease
were manually searched, and abstracts from the Confer-
ence of Retroviruses and Opportunistic Infections were
electronically searched (both from 2007 to 2015). The
studies identified were compiled into a database and
screened on title and/or abstract, with duplicates
removed. Full texts of those potentially eligible articles
were reviewed further. This review was conducted and
reported in accordance with the PRISMA checklist [20].
Research ethics permission was not sought because this
was a secondary analysis of published anonymised data.

Study selection
Identified studies were included if they reported mortality
and urinary LAM status in adult patients with HIV-TB
co-infection, if they had at least 10 TB cases with urinary
LAM results and at least five deaths, and if they were
undertaken in sub-Saharan Africa. Studies were excluded
if they did not report mortality outcomes (our primary
outcome of interest), if they related only to paediatric
populations, or if they were studies of particular sub-
populations that were not easily generalisable (e.g., miners
or prisoners). Studies including both HIV-positive and
HIV-negative patients with TB were only included if they
presented disaggregated data based upon HIV status
or if <10 % of the patients with TB were HIV nega-
tive. Non-English-language studies were only included
if adequate data could be extracted from an English
abstract.

Data extraction and analysis
Data were extracted directly into a database by two
reviewers, including study citation, year of publication,
setting (country/healthcare level), number of patients
and TB diagnoses, baseline characteristics, TB reference
standard, method of testing for urinary LAM, number of
LAM-positive and LAM-negative TB cases, mortality in
patients diagnosed with TB (overall and stratified by
urinary LAM status), and risk factors for mortality. The
primary outcome was the risk of mortality in urinary
LAM-positive TB cases compared to LAM-negative TB
cases. Case fatality rates were calculated based on total
number of TB cases with follow-up data and total
number of deaths. The other outcome of interest was
adjusted odds ratio (OR) of mortality for urinary LAM-
positive TB cases (based on a multivariable analysis
including other predictors of mortality). Studies were
included in the analysis if these data were presented. If
adjusted OR of death was not presented, the author was
contacted to ask if those data were available. Study

quality was graded according to a pre-specified checklist,
which was adapted from the QUADAS-2 tool (see
Additional file 1: Table S2) [21].
All analyses was done using Stata 11.0 (StataCorp,

College Station, TX, USA) and were done on study-level
data. Forest plots were generated for mortality risk ratio.
The heterogeneity of study outcomes were calculated
using the I2 statistic. Pooled estimates were calculated
using random-effects modelling, with study weights
assigned based on inverse variance. The source of
heterogeneity was explored using sub-group analyses
(study setting, median CD4 cell count, overall TB
mortality, time at which mortality outcome was
measured). A fixed continuity correction of 0.5 was used
for studies with 0 or 100 % mortality in any group. The
adjusted ORs for mortality from multivariate regression
analyses were also presented in a forest plot and sum-
mary statistics calculated as above. Funnel plots of log
ORs against their standard error and Egger’s test were
used to aid assessment of bias.

Results
A total of 161 citations were identified, 49 studies
selected for full-text review, and 10 studies eligible for
inclusion (Fig. 1). Included studies are summarized in
Table 1. All studies were cohort in design, conducted in
sub-Saharan Africa, enrolled adults ≥18 years of age, and
reported between 2009 and 2015. Three studies were
based in an outpatient setting, six were of hospital inpa-
tients, and one enrolled patients from both settings.
Most studies enrolled patients in whom TB was the
suspected diagnosis based on clinical presentation,
although three studies were done in patients due to start
ART, and one study was restricted to patients with a TB
diagnosis (Table 1). Two studies reported results in
HIV-positive and HIV-negative patients. These were
eligible for inclusion in this review because the number
of HIV-negative cases comprised <10 % of the total TB
cases. Eight studies used the Determine TB-LAM lat-
eral flow assay to test for urinary LAM, and two studies
used the Clearview TB ELISA (Inverness Medical Inno-
vations, UK). All studies used standard first-line TB
treatment and initiated ART in accordance with na-
tional guidelines at the time. This review includes data
from 1172 TB cases and 512 (44 %) urinary LAM-
positive cases in total. Five studies were deemed as
being of good quality, and five of moderate quality
(Table 1).
The proportion of urinary LAM-positive TB cases

varied from 22 % to 65 %, and was higher in studies of
hospital inpatients than those of outpatients (mean 49 %
and 30 % respectively, P = 0.04). Nine of the studies used
microbiological definitions of TB cases, which included
mycobacterial culture and/or the Xpert MTB/RIF assay
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(Cepheid, Sunnyvale, CA, USA). Three studies included
only sputum samples in the reference standard, and six
included at least one non-respiratory sample within the
reference standard for TB diagnosis. Of the eight studies
using the TB-LAM assay, four used the grade 2 cut-off
as a ‘positive’ result, two used a grade 1 or higher
cut-off, and two did not report which cut-off was
used (Additional file 1: Table S3). Median loss to
follow-up was 13.4 % (range 0–43 %, Additional file 1:
Table S3).
Mortality outcomes in TB cases were assessed at

between 2 and 3 months of follow-up for six studies,
at 6 months in three studies, and at 36 months in
one study. Overall case fatality rates among HIV-TB
cases varied between 7 % and 53 %. Median CD4 cell
counts varied between 57 and 210 cell/mm3 (overall
median 114 cells/mm3), indicating severely immuno-
compromised patient populations. Loss to follow-up
rates varied greatly between studies (Additional file 1:
Table S3).
All studies demonstrated an increased risk of mortal-

ity amongst urinary LAM-positive TB cases compared
to LAM-negative cases, with the relative risk (RR)
of mortality varying from 1.2 to 7.5 (median 2.5, inter-
quartile rate 1.8–3.4; Table 1, Fig. 2). A pooled

summary estimate generated using a random-effects
meta-analysis showed a two-fold increased risk of mor-
tality (RR 2.3, 95 % confidence interval [CI] 1.6–3.1;
Fig. 2), but demonstrated moderate heterogeneity (I2 =
37.0 %, P = 0.113).
Sub-group analyses were undertaken to try to explain

the heterogeneity in mortality risk across studies
(Additional file 1: Table S4). Stratifying studies by
healthcare setting removed heterogeneity amongst
studies conducted on hospitalised patients, giving a
pooled summary RR for mortality of 1.9 (95 % CI 1.5–
2.5; Fig. 2). The summary RR of mortality was higher at
3.4 (95 % CI 1.2–9.5, n = 4) for outpatient studies, but
showed greater variation (I2 = 69.2 %). A similar effect
was seen in sub-group analysis by overall TB mortality,
with an almost two-fold increase in mortality risk as-
sociated with LAM-positivity when overall mortality
was >20 % (RR 1.8, 95 % CI 1.4–2.2, n = 5). Studies
with overall mortality risk ≤20 % showed an even
greater RR of mortality for LAM-positive patients (RR
3.7, 95 % CI 2.2–6.2, n = 5). Studies with a median
CD4 cell count >100 cells/μl had a higher RR for
mortality in LAM-positive patients than those with
medians ≤100 cells/μl (RR 2.7, 95 % CI 1.5–4.7, n = 5
and RR 1.9, 95 % CI 1.4–2.6, n = 5 respectively). The

Fig. 1 Flow chart showing study selection process. LAM lipoarabinomannan
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summary RRs were similar when studies were stra-
tified by time at which mortality was measured
(≤3 months RR 2.1, 95 % CI 1.5–2.9, n = 6; >3 months
RR 2.6, 95 % CI 1.3–5.2).
Sensitivity analyses showed that excluding the two

studies reporting a small number of HIV-negative cases
(<1 % of total TB cases included in the meta-analysis)
did not alter the overall effect size. Further sensitivity
analyses excluding studies using a (pre-January 2014)
grade 1 cut-off for TB-LAM or not reporting cut-off
grade, studies using the Clearview TB-ELISA and not
the TB-LAM assay, studies with only respiratory samples
in the TB reference standard, studies of low or moderate
quality, and studies with >20 % loss to follow-up also

resulted in no substantial change in the overall effect
size. Analyses with little heterogeneity were also re-
peated using fixed-effects meta-analysis, which did not
alter the effect size (data not shown). A funnel plot
showed few studies with small or no effect size, which
may suggest publication bias (Egger’s test P = 0.025;
Additional file 1: Figure S1).
Five studies reported results of multivariable regres-

sion analyses for mortality, including urinary LAM de-
tection as a variable. No studies were powered to detect
a difference in mortality by urinary LAM status, but
three studies demonstrated urinary LAM was an inde-
pendent predictor for mortality (adjusted OR varied
from 2.2 to 4.7). Risk factors included in multivariable

.
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Fig. 2 Forest plot showing relative risk (RR) of mortality in urinary lipoarabinomannan (LAM)-positive tuberculosis (TB) cases compared to urinary
LAM-negative TB cases, stratified by (a) study setting and (b) overall mortality in patients with TB

Gupta-Wright et al. BMC Medicine  (2016) 14:53 Page 6 of 11

125



models are outlined in Table 2 and included CD4 cell
count (as a marker of HIV-associated immunosuppres-
sion) in four studies. A pooled summary estimate calcu-
lated using meta-analysis showed an over two-fold
increased odds of mortality (OR 2.5, 95 % CI 1.4–4.5;
Fig. 3) among HIV-TB cases with positive urinary LAM
tests, even after adjustment for other risk factors for
mortality. However, these studies did show a large degree
of heterogeneity in their effect sizes. Studies in which
overall mortality was ≤20 % had a greater summary RR for
mortality in LAM-positive patients (RR 4.4, 95 % CI 2.1–
9.5) compared to studies with a mortality >20 % (1.9, 95 %
CI 1.1–3.3; Fig. 3), although there were few studies in each
sub-group and CIs overlapped.

Discussion
This is the first systematic review and meta-analysis to
assess the association between urinary LAM detection
and mortality during TB treatment in patients with
HIV-TB. The meta-analysis demonstrated a two-fold
greater mortality risk among those patients with urinary
LAM-positive compared to urinary LAM-negative TB.
Five studies reported adjusted OR of mortality in LAM-
positive TB cases, and demonstrated that urinary LAM
is an independent predictor of mortality in TB cases,
even after adjustment for other important risk factors
for mortality, such as degree of immunosuppression.
There are multiple potential mechanisms that may
underlie this association (Table 3).
The strengths of this systematic review and meta-

analysis include the synthesis of data from a large
number of patients enrolled in studies in diverse settings
across sub-Saharan Africa, with data from 1172 patients
with TB, of whom 44 % had LAM detected in their
urine. The selection of patients was well described in all
studies, and was mostly representative of the population
for which urinary LAM testing has been conditionally
recommended in recent WHO policy guidance (patients

suspected of having TB, HIV-positive patients with low
CD4 cell counts, or seriously unwell patients such as
those requiring hospitalisation) [17]. Studies were not
powered to demonstrate a mortality difference based on
urinary LAM detection, but the meta-analysis has
demonstrated a robust association.
Although there effect size varied across studies, het-

erogeneity appeared to be moderate at most (I2 = 39 %).
The most likely sources of variation were in the settings
and patient populations. Studies conducted in hospital
settings, which had higher overall TB mortality and
lower median CD4 cell counts, showed approximately
double the mortality risk in LAM-positive compared to
LAM-negative TB patients. Surprisingly, the association
between LAM-positivity and mortality was even stronger
in outpatient settings, with lower overall TB mortality
and higher median CD4 cell counts, although effect sizes
were more variable. Urinary LAM testing may be an even
better marker of poor prognosis in these settings, although
recent WHO recommendations do not specify its use as
diagnostic for TB in these patient populations [17].
Limitations of this systematic review include the

over-representation of South Africa amongst the study
settings, which is true for HIV-TB research as a
whole. Different methods of detecting LAM in urine were
used, as were different cut-offs for the Determine TB-
LAM lateral flow assay. In addition, although most studies
used mycobacterial culture from sputum as the reference
standard for diagnosing TB, there was some variation in
case definitions for HIV-TB. Although two eligible studies
included a very small number of HIV-negative cases, their
exclusion in a sensitivity analysis did not impact the
overall effect size. All studies were deemed of moder-
ate or good quality. Sensitivity analyses demonstrated
that none of the above issues substantially altered the
overall effect size.
There were some potential sources of bias in this study.

Three studies reported high rates of loss to follow-up

Table 2 Studies reporting adjusted odds ratios for mortality in urinary LAM-positive compared to urinary LAM-negative TB cases,
after adjustment for other predictors of mortality

Study Study setting and population Adjusted odds ratio for mortality in urinary
LAM-positive compared to urinary
LAM-negative TB cases (95 % CI)

Variables included in the multivariable
analysis with urinary LAM status

Talbot et al. (2012) [49] Hospital inpatients;
TB suspected

1.3 (0.9–1.8) CD4 cell count, ART

Drain et al. (2015) [52] Outpatients; confirmed
TB patients

5 (1.1–23.9) CD4 cell count, age, gender,
Karnofsky score

Peter et al. (2015) [53] Hospital inpatients;
TB suspected

4.7 (1.6–15.9) Study site, gender, age,
CD4 cell count

Lawn et al. (2015) [54] Hospital inpatients;
All HIV+ patients

4.2 (1.5–11.8) Age, CD4 cell count

Bjerrum et al. (2015) [55] Hospital inpatients and
outpatients; TB suspected

2.2 (1.1–3.5) Gender, hospitalisation, CD4 cell
count, Medical Early Warning Score

ART antiretroviral therapy, CI confidence interval, LAM lipoarabinomannan, TB tuberculosis
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(>20 %), which may have included a disproportionate
number of unascertained deaths, especially if patients that
died later were more likely to be LAM-negative. A sensi-
tivity analysis showed that excluding studies with high loss
to follow-up did not alter effect size. Many studies were
excluded from the systematic review because they did not
report mortality rates, and assessment for publication bias
revealed a lack of smaller studies demonstrating small,
weak associations or no association at all. Most studies
reporting urinary LAM testing in HIV-TB co-infection
were studies on diagnostic accuracy. It is likely that the
majority of these did not gather mortality data, and studies

included in this review mostly reported mortality as a
secondary outcome. Finally, only five studies reported
adjusted multivariable models for mortality that included
urinary LAM detection as a variable, making exploration
of heterogeneity by sub-group analysis challenging.
The mechanism by which LAM enters the urine has

been an issue of contention, with early literature assuming
LAM antigenuria resulted from free renal glomerular fil-
tration of circulating LAM from the bloodstream [22, 23].
However, some researchers had also speculated that
haematogenous dissemination of TB resulted in renal
involvement and direct shedding into the urine, and this

Fig. 3 Forest plot showing adjusted odds ratio of mortality in urinary lipoarabinomannan (LAM)-positive tuberculosis (TB) cases compared to
urinary LAM-negative TB cases, stratified by overall mortality in TB cases. CI confidence interval, OR odds ratio

Table 3 Potential mechanisms of the association between urinary LAM detection and increased mortality risk

Potential mechanism Evidence References

Urinary LAM is a marker of disseminated
TB and higher mycobacterial burden,
which is associated with a worse prognosis

• Urinary LAM is due to haematogenously
disseminated renal TB

Cox et al. 2015 [26]

• HIV-TB patients with mycobacteraemia have
a higher mortality

Cummings et al. 2015 [56]

• Higher concentrations of urinary LAM are
associated with higher mycobacterial burden

Kerkhoff et al. 2014 [19]

Urinary LAM is a proxy for a low CD4 cell count • HIV-TB patients with positive urinary LAM
tests have lower CD4 cell counts

Minion et al. 2011 [11]

• Mortality is higher in patients with lower
CD4 cell counts

Gupta et al. 2015 [34]

LAM itself contributes to immunosuppression,
impairing host defences against MTB and
other opportunistic infections

• LAM is a virulence factor for MTB Strohmeier et al. 1999 [35]

• LAM inhibits immune responses, with direct
inhibitory effects on macrophage activation
and function

Mishra et al. 2011 [38] Neyrolles et al. 2011 [41]

• LAM inhibits pro-inflammatory cytokines,
e.g. IL-12 and TNF-α

• LAM enhances the secretion of anti-inflammatory
cytokines, e.g. IL-10

LAM lipoarabinomannan, MTB Mycobacterium tuberculosis, TB tuberculosis
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mechanism has now been demonstrated beyond doubt by
multiple lines of evidence, including post-mortem data
[24–27]. Moreover, urinary LAM has also been associated
with mycobacteraemia and other markers of higher myco-
bacterial burden [19, 28–31]. Therefore, urinary LAM
may simply be a marker of more severe, disseminated TB,
explaining its association with mortality. Early studies
of urinary LAM detection in patients with HIV-TB
co-infection also demonstrated an association with TB
immune reconstitution inflammatory syndrome (IRIS)
[32], although this is unlikely to be an important a cause
of increased mortality because TB-IRIS is rarely fatal [33].
Urinary LAM assays are also more sensitive in

patients with lower CD4 cell counts (typically <100
cells/μl) [11, 25], because these patients have the
highest risk of disseminated and renal TB. However,
these are the very patients with the highest mortality
risk [34], and therefore the higher mortality risk
associated with urinary LAM detection may be con-
founded by CD4 cell count. However, of particular
note, we have demonstrated in this meta-analysis that,
even after adjusting for CD4 cell count as well as
other predictors of mortality, urinary LAM remains
an independent marker of mortality. Although mortal-
ity in LAM-negative TB cases is lower than that in
LAM-positive cases, it was still up to 40 % in some
studies. Without post-mortem data, it is difficult to
attribute cause of death to TB or other co-infection
or pathologies.
LAM itself may be on the causal pathway leading to

increased mortality risk. Much in vitro research has
examined the role of LAM as a virulence factor for
Mycobacterium tuberculosis (MTB) [35]. LAM is a
19 kDa glycolipid and is a major constituent of MTB
and the mycobacterial cell wall. It binds to several cell
surface receptors of the immune system, especially mac-
rophages [36, 37]. Through its immunomodulatory
effects, LAM is thought to promote the survival of MTB
in the human host [38] by directly impairing host
immune defences. Its immunological effects include
inhibition of cytokines that are key in the host immune
response to MTB, such as interleukin (IL)-12, tissue
necrosis factor alpha (TNF-α) and other inflammatory
mediators [39–41]. Furthermore, LAM has been shown
to enhance the secretion of anti-inflammatory cytokines
such as IL-10 [42, 43]. LAM contributes to increased
survival of MTB in macrophages, employing mecha-
nisms that include prevention of macrophage phago-
some maturation [44, 45]. These immunosuppressive
effects of LAM could impair host responses to MTB and
also to other opportunistic infections, and thereby
contribute to increased mortality risk amongst patients
who test positive for urinary LAM. In contrast, non-
pathogenic mycobacteria contain structurally different

LAM molecules to MTB that promote strong pro-
inflammatory responses [38, 46].
The diagnostic utility of urinary LAM assays appears

to be limited to HIV-positive patients with advanced
immunosuppression. It is important to note that whilst
we have found that patients with LAM detected in their
urine had a higher mortality risk from the point of diag-
nosis and commencing anti-TB treatment, it is plausible
that the use of urinary LAM assays to expedite the
diagnosis and treatment of TB can also reduce mortality.
This hypothesis and the impact of urinary LAM assays
as a diagnostic tool in HIV-TB are currently being
evaluated [14–16].
However, these assays identify patients at significantly

increased risk of mortality during follow-up on TB treat-
ment, above and beyond that accounted for by advanced
immunosuppression and TB diagnosis. This appears to
be true even in populations in which urinary LAM test-
ing is not recommended for diagnostic purposes. This
finding should prompt further research into whether
interventions, in addition to the timely initiation of anti-
TB therapy and ART, might benefit these patients and
reduce their high mortality risk. Given the potential
immunosuppressive nature of LAM itself, research is
warranted to explore whether patients who are LAM-
positive have altered immune responses compared to
those who are LAM negative. Potential adjunctive inter-
ventions for these patients might be needed.

Conclusions
This systematic review and meta-analysis has shown that
patients with HIV-TB and detectable urinary LAM have
increased mortality risk compared to those patients with
TB without detectable urinary LAM. Urinary LAM is an
independent risk factor for mortality, suggesting this find-
ing is not simply an epiphenomenon detecting patients
with more advanced immunosuppression. We have pre-
sented several plausible biological explanations for this
association, including LAM’s immunosuppressive effects
in vitro. Urinary LAM detection appears to be a feasible
tool to highlight patients at high risk of mortality as well as
identifying potential targets for adjunctive therapeutic in-
terventions for reducing TB deaths over the next 20 years.
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Table S1: Search Strategy 

Search concept Search Terms 

1. HIV/AIDS HIV-1* OR HIV-2* OR HIV* or HIV Infections* OR HIV 

Seropositivity* OR “human immunodeficiency“ OR 

“human immune deficiency virus” OR human immune-

deficiency syndrome OR human immune-deficiency syndrome 

AIDS OR “Acquired Immunodeficiency Syndrome”* OR 

acquired immune deficiency syndrome.mp. 

2. LAM Lipoarabinomannan* OR LAM* 

3. Tuberculosis TB* OR Tuberculosis* OR Mycobacterium tuberculosis* 

TUBERCULOSIS* 

4. Sub-Saharan Africa* “Africa South of the Sahara"* OR Central Africa* OR Western 

Africa* OR Eastern Africa* OR Southern Africa* OR Benin* OR 

Benin* OR Burkina Faso* OR Burundi* OR Central African 

Republic* OR Chad* OR Comoros* OR “Democratic Republic 

of the Congo"* OR Eritrea* OR Ethiopia* OR Gambia* OR 

Guinea* OR Guinea-Bissau* OR Kenya* OR Liberia* OR 

Madagascar* OR Malawi* OR Mali* OR Mozambique* OR 

Niger* OR Rwanda* OR Sierra Leone* OR Somalia* OR 

Tanzania* OR Togo* OR Uganda* OR Zimbabwe* OR 

Cameroon* OR Cape Verde* OR Congo* OR Cote d'Ivoire* OR 

Ghana* OR Lesotho* OR Mauritania* OR Nigeria* OR Atlantic 

Islands* OR Senegal* OR Sudan* OR South Sudan* OR 

Swaziland* OR Zambia* OR Angola* OR Botswana* OR 

Gabon* OR Mauritius* OR Namibia* OR Seychelles* OR South 

Africa* OR Equatorial Guinea* 

 All the above sets (1-4) were combined with “AND” 

All terms were searched as keywords, * denotes also searched as subject heading word and MeSH, 

$ denotes truncation, * based on OVID expert search strategy for ‘countries of sub-Saharan Africa’. 
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Table S2: Quality assessment tool 

QUALITY ASSESSMENT TOOL 

Selection of study participants Score 

Was the spectrum of patients representative of the patients who will undergo 

urine LAM testing? 

0 0.5 1 

Were selection criteria clearly described? 0 0.5 1 

What was the HIV prevalence amongst TB-case (90 to <100%=0.5, 100%=1) 0 0.5 1 

Total  

Testing Score 

Is the reference standard for tuberculosis adequate? 0 0.5 1 

Was the methodology for performing LAM testing adequate? 0 0.5 1 

What cut-off was used for positive LAM test (not described/grade 1= 0.5, grade 

2=1, ELISA=1)? 

0 0.5 1 

Total  

Mortality ascertainment Score 

Was method of ascertaining mortality clearly described? 0 0.5 1 

Was overall mortality rate appropriate for the clinical setting? 0 0.5 1 

Was the loss-to-follow rate appropriate? 0 0.5 1 

Was a multivariate risk factor analysis performed? 0 0.5 1 

Total  

OVERALL TOTAL (out of 10) 

 

<5= poor 

5-7.4= moderate 

>7.4=good 
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Abstract:  

Background: TB is the major killer of people living with HIV globally, with suboptimal 

diagnostics and management contributing to high case-fatality rates.   

Methods: A prospective cohort of confirmed (Xpert MTB/RIF and/or Determine TB-LAM Ag 

positive) TB patients identified through screening HIV-positive inpatients with sputum and 

urine diagnostics in Malawi and South Africa (STAMP trial). Urine was tested prospectively 

(intervention) or retrospectively (standard of care arm). We defined baseline clinical 

phenotypes using hierarchical cluster analysis , and also used Cox regression analysis to 

identify associations with early mortality (≤56 days). 

Results: Of 322 patients with TB confirmed between October 2015 and September 2018, 

78.0% had ≥1 positive urine test.  Antiretroviral therapy (ART) coverage was 80.2% among 

those not newly diagnosed, but with median CD4 count 75 cells/µL and high HIV viral loads. 

Early mortality was 30.7% (99/322), despite near-universal prompt TB treatment.  Older age, 

male sex, ART before admission, poor nutritional status, lower haemoglobin, and positive urine 

tests (TB-LAM and/or Xpert MTB/RIF) were associated with increased mortality in multivariate 

analyses.  Cluster analysis (on baseline variables) defined 4 patient subgroups with early 

mortality ranging from 9.8% to 52.5%.  Although unadjusted mortality was lower 9.3% lower in 

South Africa than Malawi, in adjusted models mortality was similar in both countries (HR 0.9, 

p=0.729). 

Conclusions: Survival following prompt inpatient diagnosis of HIV-associated TB remained 

unacceptably high, even in South Africa. Intensified management strategies are urgently 

needed, for which prognostic indicators could potentially guide both development and 

subsequent use. 
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Introduction 

HIV-associated tuberculosis disease (HIV/TB) is a leading cause of mortality globally, 

accounting for approximately 370,000 deaths globally in 2016 [1]. Much of this burden resides 

in patients admitted to hospitals in high HIV-prevalence settings in Africa [2]. A systematic 

review and meta-analysis of hospital cohort studies estimated that TB caused 24% of hospital 

admissions and 27% of deaths amongst HIV-positive patients, with 30% case fatality from 

HIV/TB [3]. Post-mortem data suggest an even greater burden, as up to half of fatal TB remains 

undiagnosed [4]. However, these data predate widespread access to antiretroviral therapy 

(ART) and improved diagnostics such as the Xpert MTB/RIF assay. 

There is still a scarcity of data on factors associated with mortality in HIV/TB. Post-mortem 

studies suggest TB as the predominant cause of death [4], but substantial co-morbidity from 

other opportunistic infections and non-infectious conditions means that death with confirmed 

TB does not necessarily imply death from TB. Observational cohorts report low baseline CD4 

cell count and older age to be associated with mortality, but these data mainly relate to ART 

naïve individuals, and include patients without bacteriologically-confirmed TB disease [5–7]. 

Disseminated HIV/TB, as indicated by MTB detection in blood or urine, is also common and is 

an independent predictor of mortality [8–10]. 

Understanding factors associated with mortality in hospitalised patients with HIV/TB in the 

context of high ART coverage, rapid TB diagnostics with better diagnostic yield, and prompt TB 

treatment could help develop strategies to identify high-risk patients, and interventions to 

reduce their mortality. Here we describe characteristics of patients diagnosed with 

bacteriologically-confirmed TB from the STAMP (Screening for TB to reduce AIDS related 

Mortality in hospitalised Patients) randomised controlled trial of urine-based TB screening in 

HIV-positive inpatients in Malawi and South Africa.[11] 

Our specific aims were to describe the clinical phenotypes, mortality and risk factors for 

mortality in hospitalised HIV/TB patients; the prevalence and mortality of disseminated TB; 

and the impact of ART and study site on mortality.  
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Methods 

This prospective cohort study was nested within the STAMP trial [11,12], which recruited adult 

HIV-positive patients, irrespective of TB symptoms or clinical presentation, at admission to 

medical wards in two hospitals in Malawi and South Africa. Upon enrolment, patients were 

randomised to TB screening using sputum testing alone (standard of care, SOC), or sputum and 

urine testing (intervention). The primary outcome was all-cause mortality at 2-months, and 

secondary outcomes included TB diagnosis and treatment. Patients were excluded if they were 

taking TB treatment at the time of screening or within the last 12 months, or isoniazid 

preventative therapy (IPT) in the last 6 months, unable to provide informed consent, or had 

been admitted for >48 hours at the time of screening. 

Trial procedures have been detailed previously and are outlined in the Supplementary 

Methods [11,12]. After enrolment, urine and spontaneously expectorated sputum samples 

were obtained and tested for TB according to trial arm. Patients allocated to the intervention 

arm underwent sputum testing (if sputum was produced) with Xpert MTB/RIF assay (Xpert), 

unconcentrated urine was tested with Determine TB-LAM Ag assay (TB-LAM), and 

concentrated urine was tested with Xpert [13]. Patients allocated to the SOC arm had sputum 

Xpert testing only: with unconcentrated and concentrated urine immediately frozen. Clinical 

events during hospital admission were recorded, and patients were followed-up at 56-days 

post enrolment through in-person interview. Patients not attending their follow-up 

appointment were contacted by telephone and/or home visit, with interview of next of kin to 

establish vital status if necessary.  

If patients had been diagnosed with TB in the SOC trial arm (i.e. not had real time urine TB 

testing), TB-LAM and Xpert testing was performed on stored urine (Supplementary Methods). 

Patients were enrolled in this sub-study if they were diagnosed with TB and had a positive 

laboratory test (≥1 positive specimen on microscopy for AFB, Xpert, culture or TB-LAM) on any 

sample. Patients diagnosed or treated with TB without positive diagnostic tests were not 

included. The study was approved by the research ethics committee of the London School of 

Hygiene & Tropical Medicine, and local research ethics committees in Malawi and South Africa. 

Definitions 

Patients were defined as ‘clinically suspected TB’ if TB was recorded in the admitting 

differential diagnosis. Disseminated urinary TB was defined by any positive urine TB assay (TB-

LAM or Xpert), and non-disseminated TB was a positive sputum TB assay with negative urine 

TB assays.  
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A urine ‘TB score’ was calculated based on the number of positive urine TB tests (TB-LAM or 

Xpert, possible values 0-2) [14]. The Supplementary Methods outlines other definitions. 

Statistical analysis 

Mortality risk was calculated 56-days from admission. All baseline demographics, clinical 

variables, laboratory results and physiological measurements were considered for association 

with mortality using Cox proportional hazards models. An explanatory model was built 

excluding the most proximal factors on the causal pathway to mortality (notably, functional 

impairment). Separate models were built to assess associations of recruitment site with 

mortality. Models used step-wise backward elimination (variables with p>0.1 were excluded) 

and were restricted to complete cases. Non-linearity of continuous variables was assessed 

using fractional polynomials.  

Clinical phenotypes of HIV/TB patients were identified using unsupervised (i.e. without the 

mortality outcome) hierarchical cluster analysis, with the number of clusters determined by 

stopping rules. Clusters were then described by comparing means and proportions to the 

overall population, and associations with mortality assessed using Kaplan-Meier curves, and 

Cox regression. Supplementary methods describe the analysis in further detail. 

Results 

Patient characteristics 

Between October 2015 and September 2017, 506 HIV-positive patients were diagnosed with 

TB, of whom 322 were laboratory-confirmed and included in this analysis. Two-thirds (63.7%) 

were clinically suspected to have TB and similar numbers were from Malawi (155, 48.1%) and 

South Africa (167, 51.9%) (Table 1).   

At admission, median CD4 cell count was 75 cells/µL, and 93% had advanced HIV (as defined 

by WHO). 139 (43.2%) patients had at ≥1 WHO danger sign, and 77 (23.9%) had sepsis. Patients 

had substantial functional impairment, with 165 (51.2%) being unable to perform usual 

activities and 74 (23.0%) assessed as severely disabled (Karnofsky score ≤40). Patients also had 

poor nutritional status with low median BMI (18.2). Anaemia was very common, only 30 (9.3%) 

patients had normal haemoglobin and 62 (19.3%) had life-threatening anaemia (haemoglobin 

<6.5 g/dL).  
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Table 1: Baseline characteristics in laboratory confirmed HIV/TB patients, overall and stratified 

by disseminated urinary TB. 

All HIV/TB 

(n=322) 

Disseminated TB 
p-

valuebYes (n=251) No (n=71) 

n %a n %a n %a

Age Mean 37.2 10.5 36.8 10.3 38.7 11.3 0.175 

Gender Male 175 54.3% 131 52.2% 44 62.0% 
0.144 

Female 147 45.7% 120 47.8% 27 38.0% 

Site Malawi 155 48.1% 131 52.2% 24 33.8% 
0.006 

South Africa 167 51.9% 120 47.8% 47 66.2% 

Smoking Current 35 10.9% 26 10.4% 9 12.7% 
0.009 

Former 77 23.9% 51 20.3% 26 36.6% 

Co-morbidity Yes 65 20.2% 49 19.5% 16 22.5% 0.577 

New diagnosis of HIV Yes 55 17.1% 43 17.1% 12 16.9% 0.964 

ART statusd Naïve 34 12.7% 25 12.0% 9 15.3% 

Current 214 80.1% 165 79.3% 49 83.1% 0.167 

Interrupted 19 7.1% 18 8.7% 1 1.7% 

Time on ART (years)e Median 1.5 5.0 0.9 4.2 1.6 5.2 0.962 

Second-line ART e Yes 6 2.8% 2 2.5% 4 4.1% 0.547 

Cough Yes 234 72.7% 175 69.7% 59 83.1% 0.026 

Fever Yes 228 70.8% 182 72.5% 46 64.8% 0.206 

Night Sweats Yes 170 52.8% 136 54.2% 34 47.9% 0.348 

Weight Loss Yes 293 91.0% 227 9.4% 66 93.0% 0.513 

≥1 WHO TB symptom positive 317 98.4% 247 98.4% 70 98.6% 0.911 

Duration of illness 

(days) 
Median 14 21 14 21 14 21 0.873 

Previous TB Treatment Yes 73 22.7% 53 21.1% 20 28.2% 0.21 

EQ5D mobility Some problems 163 50.6% 129 51.4% 34 47.9% 
0.067 

 Confined to bed 77 23.9% 65 25.9% 12 16.9% 

EQ5D self-care Some problems 129 40.1% 107 42.6% 22 31.0% 

<0.001 

 

Unable to 

wash/ dress 
86 26.7% 75 29.9% 11 15.5% 

EQ5D usual activities Some problems 91 28.3% 72 28.7% 19 26.8% 

0.002 Unable to 

perform 
165 51.2% 138 55.0% 27 38.0% 

EQ5D health score Mean 52.1 13.6 48.0 14.2 54.0 11.4 <0.001 

BMI Median 18.2 5.0 18.0 4.6 19.4 6.2 0.049 

MUAC Median 20 5.5 20 4.5 21 6.5 0.039 

Karnofsky score Median 50 10 50 20 60 20 0.001 

≤40 74 23.0% 65 25.9% 9 12.7% 0.019 

Blood pressure Median SBP 102 101 106 0.009 

Median DBP 67 66 70 0.060 

Heart Rate Mean 104.7 20.8 105.5 21.1 101.8 19.5 0.189 
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Respiratory rate Mean 23.3 22.8 23.4 0.265 

Oxygen saturations 

(%) 
Median 96 4 96 4 96 4 0.991 

WHO danger sign Yes 139 43.2% 117 46.6% 22 31.0% 0.019 

Sepsis Yes 77 23.9% 69 27.5% 8 11.3% 0.005 

Haemoglobin (g/dl) Mean 8.8 27.7 8.4 26.1 10.2 28.9 <0.001 

Anaemia Severe 133 41.3% 115 45.8% 18 25.4% 

0.001 Moderate 117 36.5% 91 77.8% 26 22.2% 

Mild 42 13.1% 27 64.3% 15 35.7% 

CD4 count Median 74.5 182 61 157 129 295 0.002 

<100 188 58.4% 155 61.8% 33 46.5% 0.017 

C- reactive protein Median 138 112 141.5 106 117 136 0.619 

WHO stage 1 or 2 35 10.9% 28 11.2% 7 9.9% 

3 111 34.5% 78 31.1% 33 46.5% 0.052 

4 176 54.7% 145 57.8% 31 43.7% 

Clinically suspected TB Yes 205 63.7% 147 58.6% 58 81.7% <0.001 

Data are numbers and % unless otherwise stated. a If variable is median represents interquartile range, if 
variable is mean represents standard deviation. b Comparing disseminated TB yes/no, calculated using 
Chi-squared for proportions, t-test for means and Wilcoxon rank sum for medians. d restricted to 
patients with known HIV diagnosis. e restricted to patients reporting current ART use. Missing data: 1 
missing haemoglobin, 2 missing second-line ART regimen, 93 missing C-reactive protein. ART is 
antiretroviral therapy, WHO World Health Organization, EQ5D EurQol 5 Dimension, BMI Body Mass 
Index, MUAC mid-upper arm circumference, SBP systolic blood pressure, DBP diastolic blood pressure. 
Heart rate and respiratory rate are measured per minute. 

267 (82.9%) HIV/TB patients knew their HIV status before admission, of whom 214 (80.1%) 

were currently taking ART and 19 (7.1%) had interrupted their ART. Median duration taking 

ART was 1.0 year (interquartile range [IQR] 0.3-4.2) and 68 (21.1%) were on ART for <3 

months. Most (58.4% [125/214]) patients reporting current usage had been taking ART for ≥6 

months, although their median CD4 cell count was only 96 cells/µL (IQR 32-319). HIV viral load 

results were available for 97/125 patients on ART for ≥6 months; 48 (49.5%) had >1000 

copies/mL (median 557,000 copies/mL) highly suggestive of ART failure. 

TB characteristics 

TB diagnostic results are outlined in Table 2. Most (242/322, 75.2%) patients could provide 

sputum for Xpert testing. Disseminated urinary TB was common (78.0%, 251/322). When 

restricted to patients in the trial intervention arm, 181/212 (85.4%) patients had disseminated 

TB. One-third (34.2%, 86/251) of disseminated urinary TB patients were positive on both urine 

TB-LAM and Xpert assays.  

Of 197 patients undergoing chest radiography, 107 (54.3%) were interpreted by clinicians as 

consistent with TB. Only four patients (8.9% of those with CSF results) were diagnosed with TB 

meningitis, of whom all had positive urine TB tests (3 Xpert positive, 1 TB-LAM positive). 
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Table 2: TB investigations and results 

TB investigation n=322 % 

Sputum 

Sample sent for TB testing 242 75.2 

Xpert positive 168 52.2 

Urine 

Sample sent for TB testing 

TB-LAM positive 

321 

209 

99.7 

66.1 

Xpert positive 128 40.5 

Any urine TB test positive 251 78.0 

Urine TB score 

0 71 22.0 

1 165 51.2 

2 86 26.7 

Chest radiography 

  Underwent chest radiography 197 61.2 

 Clinicians report as “consistent with TB” 107 33.2 

Cerebrospinal Fluid (CSF)a

Tested 45 14.0 

Consistent with TB 4 1.2 

Rifampicin resistant TB 

Xpert rifampicin result available (sputum or 

urine) 
223 69.3 

Rifampicin resistance detected 11 4.9 

% are based on all patients (n=322) as the denominator. Sputum includes study TB screening and 
routine clinical samples. aCSF testing consistent with TB includes lymphocytes with raised protein or 
positive Xpert. One patient missing data for CSF testing. CSF is cerebrospinal fluid, Xpert is Xpert 
MTB/RIF assay, TB-LAM is Determine TB-LAM Ag assay. TB score calculated based on the number of 
positive urine TB tests (TB-LAM or Xpert, possible values 0-2). 

Patients with disseminated TB were less likely to report a cough or to be clinically suspected of 

having TB. They were predominantly male and had more functional impairment (bedbound, 

unable to perform usual activities or wash/dress, and lower Karnofsky score); worse nutritional 

status (lower BMI and MUAC); were more likely to have WHO danger signs, sepsis and severe 

anaemia at presentation; and were more profoundly immunosuppressed (lower CD4 cell 

count, Table 1).  

Eleven patients died before TB treatment initiation (including two in the SOC arm whose TB 

was diagnosed on chest radiograph and retrospectively confirmed through testing stored 

urine), while for those treated, median time from admission to treatment was 2 days (IQR 1 

day). Four (1%) patients stopped TB treatment during hospitalisation due to treatment side-

effects. Eleven patients were diagnosed with rifampicin-resistant TB: six from sputum Xpert 

only, four from urine Xpert only, and one on both urine and sputum Xpert. 
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Mortality 

Overall, 99 (30.7%) patients died by 56-days. Six patients were lost to follow-up after 

discharge. Mortality in HIV/TB patients did not differ by STAMP trial arm (p=0.30), consistent 

with mortality benefit in the trial being restricted to patients with missed TB diagnoses (and 

therefore not included in this analysis) [11]. Median time to death was 12 days (IQR 5-27), and 

71.7% (71/99) occurred during admission, with 9 (9.1%) within 48 hours and 32 (32.3%) within 

7 days of admission (Supplementary Figure 1). 

Mortality was lowest in patients with negative urine TB tests (19.7% by 56-day), compared to 

disseminated urinary TB with one (30.5%) or two (40.7%) positive urine tests (p=0.018). 

Reduced functional ability (lower Karnofsky score, self-reported reductions in mobility, self-

care and usual activities) and poor nutritional status (MUAC and BMI) were strongly associated 

with mortality (Table 3). Mortality was also associated with lower CD4, haemoglobin and renal 

impairment, although not with WHO danger signs.  

In the multivariable model (n=320, Table 3), mortality was independently associated with 

advancing age, male gender, lower MUAC, lower haemoglobin and higher urine TB test score. 

CD4 cell count was not independently associated with mortality.  

Not currently taking ART was associated with a lower mortality than being on ART (HR 0.6, 

p=0.035, Supplementary Figure 2), despite having lower median CD4 counts than those taking 

ART (39 cells/µL [IQR 13-122] compared to 84 cells/µL [IQR 29-244]). Although unadjusted 

mortality was 9.3% lower in patients from the South African site, in an adjusted model 

mortality was similar to those patients from Malawi (adjusted hazard ratio [HR] 0.9, p=0.729, 

supplementary table). 

Clinical Phenotype 

Cluster analysis identified four distinct groups of patients based on correlation of clinical 

features at admission. Although not informed by outcome data, mortality differed 

substantially between these groups (Figure 1, HR 2.4 for group 2, 4.5 for group 3 and 6.7 for 

group 4 compared to group 1, p<0.001). Group 1 (lowest mortality risk, 9.8% [5/51]) were 

more likely to be ART naïve, have better functional status and nutrition (higher MUAC and 

BMI), less severe anaemia and higher CD4 cell count. Patients in group 2 (moderate mortality 

risk, 22.6% [23/102]) were characterised by a longer time on ART and almost half reporting 

normal physical function.  

Groups 3 and 4 (highest mortality risks, 37.1% [39/105] and 52.5% [31/59] respectively) 

patients all reported problems with usual activities, most had WHO danger signs and severe 

anaemia, and men predominated. Median CD4 counts were 78 and 38 cells/µl respectively. 
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Clinical phenotype was also strongly associated with disseminated TB: groups 3 and 4 had the 

highest proportion of urine-positive patients (83% and 86% respectively compared to 55% in 

group 1, p<0.001). 

Table 3: Factors associated with time to death over 56 days 

Characteristic 
Deaths 

(n=99) 

Mortality 

risk (%) 

Univariable Multivariable 

HR 
Lower 

CI 

Upper 

CI 
p-value HR 

Lower 

CI

Upper 

CI
p-value

Age 1.02 1.00 1.03 0.073  1.03 1.01 1.05 0.003 

Sex     Female 35 23.8 1 1 

Male 64 36.8 1.74 1.15 2.63 0.007  1.77 1.01 2.70 0.008 

Site    Malawi 54 34.8 1 
- 

South Africa 44 25.5 0.78 0.53 1.16 0.217 

ART    Currently taking 80 34.3 1 
* 

Not currently taking 19 21.6 0.60 0.36 0.99 0.035 

Duration of illness 

* <7 days 28 22.6 1 

>7days 71 36.2 1.77 1.14 2.74 0.008 

EQ5D mobility# 

- 
No problems 9 11.0 1 

<0.001 Some problems 51 31.5 3.21 1.58 6.52 

Confined to bed 99 50.7 6.26 3.03 12.93 

EQ5D self-care# 

- 
No problems 10 9.4 1 

<0.001 Some problems 47 36.4 4.63 2.34 9.17 

Unable to wash/dress 42 48.8 6.86 3.44 13.68 

EQ5D usual activities# 

- 
No problems 5 7.6 1 

<0.001 Some problems 29 32.2 5.05 1.96 13.06 

Unable to perform 65 39.4 6.30 2.54 15.65 

EQ5D health score# 0.97 0.96 0.99 <0.001 - 

BMI 0.96 0.91 1.01 0.086 - 

MUAC 0.87 0.82 0.92 <0.001  0.89 0.83 0.94 <0.001 

Karnofsky# 0.96 0.95 0.98 <0.001 - 

WHO danger sign 

- No 51 27.9 1 

Yes 48 34.8 1.34 0.90 1.99 0.146 

Haemoglobin$ (g/dL) 0.86 0.80 0.93 <0.001  0.88 0.81 0.95 0.002 

CD4 count (cells/µL) 0.93 0.88 0.99 0.022 * 

eGFR$ ≥60ml/min 17 25.0 1 - 

 <60ml/min 15 51.7 2.45 1.23 4.93 0.013 

C-reactive protein$ (mg/L) 1.01 1.00 1.01 0.043 - 

WHO clinical stage 
- 

1 or 2 7 20.0 1 
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3 28 25.5 1.36 0.60 3.12 0.031 

4 64 36.4 2.14 0.98 4.66 

Able to produce sputum 

No 32 40.0 1 

Yes 67 27.8 0.66 0.43 1.0 0.061 * 

TB-LAM 

Negative 29 25.9 1 - 

Positive 70 33.5 1.72 1.00 2.95 0.044 

Urine Xpert positive 

Negative 49 25.3 - 

Positive 50 39.4 1.91 1.28 2.87 0.002 

Urine TB score 1.84 1.05 3.24 0.024  1.41 1.03 1.91 0.025 

Hazard ratios (HR) calculated using Cox proportional hazards models. Continuous variables were all 
modelled as linear after checking for departures from linearity. For continuous variables, HR is for every 
unit increase in the variable, except for CD4 count where HR is for every 50 cells/µL increase. Urine TB 
score was modelled as a continuous linear variable. All p-values calculated using likelihood ratio testing.
$Missing data: 1 missing haemoglobin, 93 missing C-reactive protein, 225 missing eGFR. #Variable 
excluded from multivariable model as distal on causal pathway to death. CRP and eGFR were excluded 
from the multivariable model due to >25% missing data. The following variables were excluded due to 
collinearity: BMI was colinear with weight; WHO stage was colinear with CD4 count; TB-LAM and urine 
Xpert were colinear with urine TB score. All other variables with p>0.1 in univariable analysis were 
entered into the multivariable model using backwards stepwise elimination (variables exited the model 
if P>0.1), n=321. *Variables eliminated from the multivariable model. ART is antiretroviral therapy, BMI 
Body Mass Index, CI confidence interval, eGFR estimated glomerular filtration rate, EQ5D EurQol 5 
Dimension, HR Hazard Ratio, MUAC mid-upper arm circumference, WHO World Health Organization. 
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Figure 1: Cluster analysis clinical phenotypes of HIV/TB patients and their mortality risk 

A 

B 

A is a heat map comparing characteristics of clinical phenotype groups (from cluster analysis) to the 

overall population. Overall n=317, group 1 n=51, group 2 n=102, group 3 n=105, group 4 n=59. For 

continuous variables (marked with *), colours represent a ratio of mean or median values for the 

group compared to the overall mean or median. For categorical variables, the ratio is the group 

proportion compared to the overall proportion. Dark purple (    ) represents a ratio >1.6, and white (   ) 

represents a ratio <0.4. Missing data: 1 missing haemoglobin, 2 missing second-line ART regimen, 93 

missing C-reactive protein, 222 missing HIV viral load. EQ5D variables are the proportion reporting ‘no 

problem’. Time on ART and second-line ART are restricted to patients reporting current ART use. 
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B Kaplan-Meier plot of time to death by clinical phenotype group. Grey dashed vertical line represents 
median length of hospital stay (10 days). Hazard ratio (HR) compared to group 1 is 2.4 (95%CI 0.9-6.3) 
for group 2, 4.5 (95%CI 1.8-11.4) for group 3 and 6.7 (95%CI 2.6-17.3) for groups, p<0.001. 

Non-TB management 

Broad-spectrum antibiotics were given to 86.0% (277/322) of patients (at least one dose,) with 

median duration 6 days (IQR 4-7 days), and 45.1% (125/277) receiving two or more different 

drugs. 10.6% (10/94) of patients tested were cryptococcal antigen positive. Median duration of 

hospital stay was 10 days (IQR 5-15 days). Of those surviving to 56-days, 65.2% (45/69) of ART 

naïve patients had commenced ART, median time to starting ART was 19 days (IQR 9-29). 

66.7% (14/21) of those who had discontinued ART had been restarted.  

14.8% (37/250) of patients discharged were readmitted to hospital during the 56-day follow-

up, with readmission associated with higher mortality (24% vs 9%, p=0.006). Outpatient 

attendance was also common, with patients discharged having a median of 2 (IQR 1-4) clinic 

attendances by 56 days. 

Discussion 

The main findings of this study were that two-month mortality in patients with HIV-associated 

TB was substantial (31%) despite good ART coverage and TB screening with prompt TB 

treatment. Urine diagnostic tests (defining disseminated TB) were positive in 78.0% of TB 

patients, and were associated with higher mortality. Despite most patients being knowing their 

HIV status and established on ART, advanced immunosuppression and poor virological control 

were common. Counterintuitively, we report lower mortality in patients not taking ART at TB 

diagnosis. Hierarchical cluster analysis defined four distinct clinical phenotypes with highly 

variable mortality (9.8% to 52.5%), suggesting that baseline risk-profiles could be used to 

prioritise patients for intensified care. The potential to target patients at highest risk of death 

was underscored by risk factors identified, including older age, male sex, ART before 

admission, severity of anaemia, poor performance and poor nutritional status. 

Our observed early mortality is close to that estimated for patients with HIV-associated TB 

from a recent meta-analysis [3], and was high in both South Africa (25.5%) and Malawi 

(34.8%). The 9.3% risk difference between the two countries indicates the magnitude of effect 

that could be attributed to the better resources in South Africa (middle income) compared to 

Malawi (one of the poorest countries globally). 
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Irrespective of cause of admission, HIV-positive patients in hospital do badly, with early 

mortality risks of 20-30% reported consistently for the African region [15]. However, patients 

with TB do consistently worse than other admission categories. In the STAMP trial, for 

instance, HIV-positive inpatients without confirmed TB had early mortality of 16.5%, below 

that of patients with urine-positive TB, although similar to TB diagnosed only through sputum 

[11]. Improving survival of TB patients may, then, require a combination of interventions 

aimed both at TB, for instance high dose rifampicin and host-directed therapies [16,17], and 

more generally at supporting HIV-positive inpatients, such as multiple empirical anti-infective 

agents [18,19] and aggressive management of presumptive virological failure [20]. 

In this context, TB-LAM or urine Xpert positivity, indicative of haematogenous dissemination, 

was associated with a severely ill clinical phenotype, and was independently associated with 

mortality. If we assume that positive urine results provide more rapid, less costly, and more 

sensitive equivalent of mycobacteraemia [21,22], then this simple prognostic marker could be 

used to target the need for intensified TB therapy, as well as for TB screening. 

Moreover, the strong relationship between disseminated TB and immunosuppression also 

suggests that urine-positive TB could serve as an indicator of ART treatment failure. Some 

countries, including Malawi, approach the UNAIDS “90-90-90 targets”, whereby 90% of those 

on ART should be virologically suppressed [23]. With successful global scale-up of HIV-

diagnosis and ART, the case-mix of inpatients has changed from predominantly ART-naïve [24] 

to that reported here: 80% with a known HIV-diagnosis had been on ART for a median of 1.5 

years. Interesting, this appears to correspond with a reversal in the prognostic value of ART 

prior to TB diagnosis, from beneficial [25,26] to a risk-factor for mortality. Urine-positive TB 

patients taking ART ≥6 months had median CD4 count of only 96 cells/µL, with half having high 

viral loads (median 557,000 copies/mL). However, recommendations for viral load testing in 

ART-experienced patients and expedited adherence support and/or switching ART have 

proved prohibitively expensive and slow [18,27]. 

Using both regression and cluster analysis, we found clinical phenotypes with more severe 

functional impairment, worse nutritional status and severe anaemia being associated with 

both higher mortality and disseminated HIV/TB. The remarkably high mortality (50%) in those 

reporting being confined to bed highlights the importance of upstream interventions to 

prevent TB, supporting early diagnosis, and improving recognition of critically ill patients in 

community and clinic settings. Most patients in STAMP reached their critically-ill state despite 

attending HIV care services: improving TB screening at ART initiation and follow-up, expanding 

use of TB preventive therapy, and empowering patients to seek care promptly could each 

contribute to better inpatient outcomes. 

153
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Intervening to avert mortality maybe challenging in critically ill HIV/TB patients (table 4). 

However, only one-third of deaths occurred within 1 week, suggesting a potential window of 

opportunity. Anaemia has previously been associated with poor outcomes in HIV/TB [28], and 

we also found low haemoglobin to be associated with mortality, almost one-fifth had life-

threatening anaemia. There are currently no normative guidelines on blood transfusion in 

HIV/TB, and further research is needed before recommendations can be made [29]. 

The best strategy for supportive care in African hospitals with high HIV-prevalence remains 

unclear, with a recent trial of early fluid resuscitation paradoxically increasing mortality in 

patients with sepsis [30]. Provision of broad-spectrum antibiotics in our cohort was almost 

universal, but resistance to first-line antibiotics is now substantial, especially in Gram-negative 

bacterial isolates [31]. Cryptococcal meningitis is also a common cause of death in advanced 

HIV, and may associated with HIV/TB [32,33]. Despite exclusion of patients with altered 

conscious level, CrAg positivity was over 10%, supporting screening in this population. 

Almost one-third of deaths occurred after discharge, suggesting need to provide more 

intensive follow-up and support at discharge, especially for those with disseminated TB likely 

to imply failing ART [34,35]. Men had almost double the risk of mortality than women, despite 

adjusting for other predictors of death. This gender difference has been reported previously, 

and although potentially an epiphenomenon related to barriers accessing care or confounders, 

it could plausibly be a combination of social and biological differences [36,37]. 

The strengths of this study include its being nested within a TB screening trial, that 

management was undertaken by routine health services, and that these data reflect the high 

ART coverage for the Southern Africa region. Limitations include suboptimal sensitivity of the 

TB screening algorithms, notably for the sputum-only arm of the parent trial. Our definition of 

confirmed TB included some patients who were only TB-LAM positive, and we cannot exclude 

a small number of false positives [38]. Finally, we do not have post-mortem data. 

In summary, we have shown high mortality in hospitalised patients with HIV-associated TB 

despite current public health interventions. Urine diagnostics provide useful prognostic and 

well as diagnostic information, and could be used to guide the development and targeting of 

intensified inpatient management strategies. HIV/TB inpatients in this region now 

predominantly affects patients established on ART with advanced immunosuppression likely to 

indicate ART failure. This population will be important to meet both End TB and UNAIDS 2020 

and 2025 targets for reducing TB deaths. Early diagnosis and management of ART failure is one 

of several potential interventions that could improve survival of patients hospitalized with TB. 
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Implementation is needed in parallel with further research and upstream public health 

interventions. 

Table 4: Implications and potential interventions to reduce HIV/TB mortality 

Issue Evidence for 
association with 
HIV/TB mortality 

Possible interventions Further research/ 
unanswered questions 

ART failure • Higher mortality
in ART
experienced
patients

• Low median CD4
counts and high
viral loads in
patients taking
ART >6 months

• Rapid screening for
virological failure at
admission (eg using
point-of-care HIV viral
load assay)

• Adherence
interventions or switch
to second-line ART

• Integrase inhibitors
(few drug-drug
interactions with TB
medication)

• Prevalence of HIV
drug resistance

• Timing of ART switch
in HIV/TB patients
failing ART

• Optimal regimen for
switching

TB during early 
ART 

• One-fifth of
HIV/TB patients
were within 3
months of ART
initiation

• High mortality

• Improved TB screening
at ART initiation

• Better implementation
of TB preventative
therapy

• Best approach for TB
screening in ART
naïve patients (eg TB-
LAM, Xpert and/or
chest radiography)

• Implementation
research for TB
preventative therapy

Supportive 
care and co-
morbidities 

• WHO danger
signs and sepsis
are common

• 10% cryptococcal
antigenemia

• Life-threatening
anaemia has high
mortality

• 28% of deaths
after discharge

• Screening, treatment

and/or prophylaxis for

co-infection

• Improved supportive

care

• More intensive follow-

up post discharge from

hospital

• Prevalence of

bacterial co-infection

• Evidence for safety

and efficacy of

supportive care (eg IV

fluids and/or blood

transfusion)

• Can enhanced follow-

up improve outcomes

Identification 
of high risk 
patients 

• Clinical
phenotype
associated with
high mortality

• Urine diagnostics
associated with
higher mortality

• Predictive tools to
identify patients at
higher risk of mortality
who may benefit from
interventions (eg
clinical risk score)

• Derivation and
validation of
prognostic score

• Use of score(s) for
implementation of
interventions aimed
at mortality
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Supplementary methods 

Study procedures 

The study was undertaken at Zomba Central Hospital, Southern Malawi, and Edendale 

Hospital, KwaZulu-Natal, South Africa). Data were collected on clinical presentation (including 

TB symptoms), past medical history including HIV status and previous TB, physical examination 

(including vital signs, WHO HIV staging, body mass index (BMI), mid-upper arm circumference 

(MUAC) and Karnofsky functional score) and the EuroQol 5 Dimension (EQ5D) quality of life 

questionnaire. ART status was verified by checking prescriptions or health records. Clinical 

events during admission were recorded, and blood was also collected for CD4 cell count, 

haemoglobin and plasma storage. 

TB screening test results were reported to the attending clinical team (reported as positive, 

negative or not done to maintain masking to trial arm) who made all decisions regarding TB 

treatment and other management. Clinicians could request further investigations (for example 

Xpert testing of sputum, chest radiography or cerebrospinal fluid examination) or prescribe 

empirical TB treatment. The study team were not involved in the management of patients, 

which was done as per local practice and guidelines. First-line TB treatment was the standard 

four-drug regimen and first line antiretroviral therapy (ART) was efavirenz-based using a fixed-

dose combination pill at both sites. Patients were followed-up at 56-days post enrolment 

through in person interview. Patients who did not attend their follow-up appointment 

contacted by telephone and/or home visit, with interview of next of kin to establish vital status 

if necessary.  

All TB assays were performed as per manufacturer’s instructions. A grade-one cut-off defined 

positive TB-LAM tests (using the manufacturers post-2014 reference card) and all TB-LAM 

results were read by a second, blinded, reader for quality assurance. Stored urine was tested 

with TB-LAM by thawing an aliquot of unconcentrated urine at room temperature, and with 

Xpert by thawing an aliquot of frozen concentrated urine (produced by concentrating 

approximately 40-50mls of urine by centrifugation). Stored urine was tested using the same 

procedures for testing urine in real-time, and followed manufacturer’s instructions. 

HIV viral load testing was done retrospectively from frozen plasma using the Xpert quantitative 

HIV viral load assay on a consecutive sub-sample of HIV/TB as part of another sub-study. 

Cryptococcal antigen testing was done using IMMY CrAg LFA (Cryptococcal Antigen Lateral 

Flow Assay) on a random sample of patients in the same sub-study. Serum creatinine was 

measured by the South African National Health Laboratory Service (NHLS). 
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Definitions 

Anaemia was defined using the WHO criteria: no anaemia (haemoglobin [Hb] concentration 

≥13.0 g/dL for males, ≥12.0 g/dL for females), mild anaemia (11.0–12.9 g/dL for males, 11.0–

11.9 g/dL for females), moderate anaemia (8.0–10.9 g/dL for males and females), severe 

anaemia (<8.0 g/dL for males and females), with Hb <6.5g/dl classified as life threatening 1,2. 

Co-morbidity was defined as self-reporting of diabetes or renal, liver or cardiovascular disease. 

WHO danger signs were any one of heart rate >120 beats per minute (bpm), respiratory rate 

>30 per minute, temperature >39 degrees Celsius or being unable to walk unaided. Sepsis was

defined as systolic blood pressure <90 mmHg, oxygen saturations <90%, respiratory rate >30 

per minute or GCS <15 (adapted from Sepsis-3 as some measurements were unavailable) 3. 

WHO TB symptom screen is one of current cough, fever, night sweats or weight loss. Advanced 

HIV is defined as CD4 cell count <200 cells/µl or WHO stage 3 or 4 disease 4. Rifampicin 

resistant TB was defined as the presence of rpoB mutations on Xpert that were confirmed on 

repeat Xpert testing of the same or a repeated sample 5. Estimated glomerular filtration rate 

(eGFR) was calculated using the 4 variable Modification of Diet in Renal Disease (MDRD) 

formula in the subset of patients with serum creatinine levels measured by clinicians 6.  

Statistical analysis 

Patients were characterised using simple descriptive statistics. Proportions were compared 

using Chi-squared, Fisher’s exact and McNemar’s tests as appropriate, medians were 

compared using Wilcoxon rank-sum tests and means using unpaired t-tests. 

Time-to-mortality was calculated using survival analysis and Kaplan-Meier curves. Time was 

censored at 56-days post enrolment, or at the time last seen alive for those lost to follow-up. 

For mortality risk, patients lost to follow-up were assumed to be alive at 56-days. Schoenfeld 

residual plots and were used to identify departure from the proportional hazards assumption. 

If variables were colinear, only one was included in the model.  Variables with >25% missing 

data were excluded from multivariable models and no imputation of missing data was done (C-

reactive protein and estimated glomerular filtration rate [eGFR]). Variables considered too 

proximal to death which were excluded in the multivariable models were: EQ5D mobility, self-

care and usual activities and Karnofsky functional score. Likelihood ratio testing was used to 

compare models and assess for interactions. In the final models, there was no evidence for any 

significant interaction between variables. 
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For the unsupervised analysis of clinical phenotype, all continuous variables were reduced 

using principal components analysis to the smallest number of components which have an 

eigenvalue ≥1 and explain >50% of the variance. Hierarchical cluster analysis was then used on 

the reduced principal components and remaining categorical factors, using Ward’s average 

linkage and selecting the number of clusters based on Duda and Calinski stopping rules 

(stopping at the number of clusters with largest pseudo-F and pseudo-T-squared values) 7. The 

identified clusters were validated using kmeans cluster analysis. To describe the phenotypes of 

the cluster groups, a ratio of mean or median values for the group compared to the overall 

mean or median was calculated for continuous variables, and for categorical variables a ratio 

of the group proportion compared to the overall proportion. 

Supplementary Figure 1: Timing of deaths, stratified by in-patient and out-patient 

Stacked bar chart showing timing of deaths in days after admission, stratified by if death 

occurred as inpatient (green) or as outpatient (white). Total number of deaths is 99. 
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Supplementary Figure 2: ART status and mortality 

Kaplan-Meier plot of survival by ART status. Patients currently taking ART (blue, solid) includes 

all patients reporting current ART use. Hazard ratio 0.6 for mortality in ART naïve compared to 

ART experienced patients (95% confidence interval 0.4-1.0), p=0.035. 
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Supplementary Table 1: Multivariable model for mortality by study site 

Characteristic 
Univariable 

HR Lower CI Upper CI p-value

Site    Malawi 1 

South Africa 0.92 0.56 1.50 0.729 

Age 1.02 1.00 1.04 0.075 

Sex     Female 1 

Male 1.98 1.25 3.11 0.003 

ART    Currently taking 1 

Not currently taking 0.64 0.38 1.08 0.097 

Body Mass Index (BMI) 1.01 0.95 1.07 0.806 

Cough 

No 1 

Yes 1.46 0.91 2.34 0.115 

WHO danger sign 

No 1 

Yes 0.67 0.40 1.14 0.144 

Haemoglobin (g/dL) 0.99 0.98 1.00 0.009 

Urine TB score 1.23 0.90 1.71 0.195 

Karnofsky 0.96 0.94 0.98 0.001 

CD4 count (cells/µL) 1.00 1.00 1.00 0.324 

Clinical TB suspect 

No 1 

Yes 0.83 0.49 1.38 0.468 

Model includes variables that differed between study sites and other 

confounders for mortality. N=321. ART is antiretroviral therapy, BMI Body 

Mass Index, CI confidence interval, HR hazard ratio, WHO World Health 

Organization. 
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Abstract

Background

The prevalence of and mortality from HIV-associated tuberculosis (HIV/TB) in hospital inpa-

tients in Africa remains unacceptably high. Currently, there is a lack of tools to identify those

at high risk of early mortality who may benefit from adjunctive interventions. We therefore

aimed to develop and validate a simple clinical risk score to predict mortality in high-burden,

low-resource settings.

Methods and findings

A cohort of HIV-positive adults with laboratory-confirmed TB from the STAMP TB screening

trial (Malawi and South Africa) was used to derive a clinical risk score using multivariable

predictive modelling, considering factors at hospital admission (including urine lipoarabino-

mannan [LAM] detection) thought to be associated with 2-month mortality. Performance

was evaluated internally and then externally validated using independent cohorts from 2

other studies (LAM-RCT and a Médecins Sans Frontières [MSF] cohort) from South Africa,

Zambia, Zimbabwe, Tanzania, and Kenya. The derivation cohort included 315 patients
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enrolled from October 2015 and September 2017. Their median age was 36 years (IQR 30–

43), 45.4% were female, median CD4 cell count at admission was 76 cells/μl (IQR 23–206),

and 80.2% (210/262) of those who knew they were HIV-positive at hospital admission were

taking antiretroviral therapy (ART). Two-month mortality was 30% (94/315), and mortality

was associated with the following factors included in the score: age 55 years or older, male

sex, being ART experienced, having severe anaemia (haemoglobin < 80 g/l), being unable

to walk unaided, and having a positive urinary Determine TB LAM Ag test (Alere). The score

identified patients with a 46.4% (95% CI 37.8%–55.2%) mortality risk in the high-risk group

compared to 12.5% (95% CI 5.7%–25.4%) in the low-risk group (p < 0.001). The odds ratio

(OR) for mortality was 6.1 (95% CI 2.4–15.2) in high-risk patients compared to low-risk

patients (p < 0.001). Discrimination (c-statistic 0.70, 95% CI 0.63–0.76) and calibration

(Hosmer-Lemeshow statistic, p = 0.78) were good in the derivation cohort, and similar in the

external validation cohort (complete cases n = 372, c-statistic 0.68 [95% CI 0.61–0.74]). The

validation cohort included 644 patients between January 2013 and August 2015. Median

age was 36 years, 48.9% were female, and median CD4 count at admission was 61 (IQR

21–145). OR for mortality was 5.3 (95% CI 2.2–9.5) for high compared to low-risk patients

(complete cases n = 372, p < 0.001). The score also predicted patients at higher risk of

death both pre- and post-discharge. A simplified score (any 3 or more of the predictors) per-

formed equally well. The main limitations of the scores were their imperfect accuracy, the

need for access to urine LAM testing, modest study size, and not measuring all potential

predictors of mortality (e.g., tuberculosis drug resistance).

Conclusions

This risk score is capable of identifying patients who could benefit from enhanced clinical

care, follow-up, and/or adjunctive interventions, although further prospective validation stud-

ies are necessary. Given the scale of HIV/TB morbidity and mortality in African hospitals,

better prognostic tools along with interventions could contribute towards global targets to

reduce tuberculosis mortality.

Author summary

Why was this study done?

• HIV-associated tuberculosis (TB) is very common in hospitals in sub-Saharan Africa,

and is a major cause of morbidity and mortality.

• There is a lack of tools to identify which patients are more likely to die early; therefore,

these patients cannot be targeted for more intensive clinical care or other treatments in

addition to TB antibiotics and antiretroviral drugs.

• A new urine TB diagnostic test (detecting a substance called lipoarabinomannan

[LAM]) can identify patients at higher risk of dying and, along with other simply mea-

sured clinical signs or symptoms, may be useful for predicting which patients are most

likely to do poorly.
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What did the researchers do and find?

• We used data from HIV-positive adults admitted to hospital in Malawi and South Africa

and diagnosed with TB to develop a simple clinical risk score to identify patients with a

50% chance of dying within 2 months.

• The score included 6 factors that can be measured at admission to hospital, including

the results of the urine TB test, presence of anaemia, and some demographic factors.

• We then tested the performance of the risk score using data from studies of different

patients from sub-Saharan Africa, and it performed similarly.

• The score was able to identify patients at higher risk of dying during admission to hospi-

tal, and after discharge from hospital.

What do these findings mean?

• This score could be used to identify patients admitted to hospital and diagnosed with

HIV-associated TB who may benefit most from more intensive clinical care, additional

treatments, and/or closer follow-up after discharge.

• It could also be used as a research tool to study new drugs or strategies aimed at reduc-

ing mortality from with HIV-associated TB.

• This is the first such tool to our knowledge in this patient population, and future studies

could optimise such predictive tools, in particular if appropriate new interventions and/

or diagnostics become available.

Introduction

Tuberculosis (TB) is the leading infectious disease killer globally, causing an estimated 1.7 mil-

lion deaths globally in 2017 [1]. This burden lies disproportionately in people living with HIV,

who account for approximately 1 in 4 TB deaths. The case fatality rate of HIV-associated TB

(HIV/TB) is particularly high in hospitals, estimated at 29% in a recent meta-analysis [2]. This

may be an underestimate, given that post-mortem studies from sub-Saharan Africa have dem-

onstrated that a high proportion of HIV-positive deaths in facilities have evidence of undiag-

nosed TB [3].

Interventional studies aiming to reduce mortality in this patient population have demon-

strated mortality reductions with improved TB diagnostics [4,5] and appropriately timed initi-

ation of antiretroviral therapy (ART) [6,7]. However, mortality remains substantial despite

these interventions, and adjunctive interventions are likely to be needed to further impact

mortality. Currently, predictors for mortality are poorly defined. Being able to identify patients

at the highest risk of mortality could inform the development and assessment of new interven-

tions, and also identify which patients would benefit most from interventions beyond TB ther-

apy and appropriately timed ART [8].

Clinical decision tools and risk scores are used widely in clinical practice to simplify the

identification of patients at highest risk for poor health outcomes. Predictor scores for
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mortality have been developed for HIV-associated cryptococcal meningitis and pneumonia,

and are used to guide management in Pneumocystis jiroveci pneumonia [9–11]. Although

scores have been developed to predict risk of TB disease in various populations, including TB

bacteraemia in hospitalised patients [12], to our knowledge no externally validated scores exist

to predict outcomes of TB disease among hospitalised patients with HIV [13,14]. Scores devel-

oped to predict TB mortality in settings with low HIV prevalence are also of limited use in peo-

ple living with HIV due to differences in clinical presentation, pathogenesis, and outcomes

[15–18]. A recent study from the US developed and internally validated a score to predict mor-

tality in HIV/TB in low-prevalence settings (US), but this would not be applicable to hospital-

ised patients in Africa given that many of the variables are not routinely available [19].

We have previously shown that detection of lipoarabinomannan (LAM) in the urine of

HIV/TB patients using a cheap (approximately US$3) and quick (testing takes 25 minutes) lat-

eral flow assay is independently associated with a 2- to 3-fold increased risk of mortality [20].

We therefore aimed to investigate if urinary LAM detection, along with other clinical variables

readily available in high-burden settings, could be used to predict which HIV-positive patients

admitted to hospital and diagnosed with TB were at high risk of early mortality, and to exter-

nally validate the predictive tool.

Methods

Study design and participants for prediction tool development

We used data from the STAMP (‘rapid urine-based screening for tuberculosis in HIV-positive

patients admitted to hospital in Africa’) trial for the clinical risk score derivation [5,21]. The

STAMP trial recruited HIV-positive adults (aged 18 years or more), irrespective of symptoms

or clinical presentation, who were admitted to medical wards of 2 hospitals in Malawi and

South Africa between 26 October 2015 and 19 September 2017. On admission, patients were

screened for TB using Xpert MTB/RIF (Xpert; Cepheid) on sputum in both study arms, and

Xpert and Determine TB LAM Ag (TB-LAM; Alere) assays on urine in the intervention arm.

Exclusion criteria in the trial were already taking TB treatment and inability to give consent.

The clinical teams managing the patients were masked to which TB tests were positive; there-

fore, management of TB patients should not have differed between arms. The management of

HIV/TB in the study hospitals was representative of their local settings and followed local and

national guidelines, with no input from the study team (beyond TB diagnostic tests).

Patients diagnosed with TB in the standard-of-care arm had stored urine tested with Xpert

and TB-LAM retrospectively. Data were collected at baseline (at or close to admission) on

demographics and clinical characteristics, and subsequently on TB investigations and treat-

ment, and clinical events, including death or discharge from hospital. Patients discharged alive

were followed up at 2 months by outpatient attendance, home visit, or telephone for vital sta-

tus. The derivation cohort included all patients (from both trial arms) with laboratory-con-

firmed TB. The outcome was mortality risk at 2 months after admission. Patients lost to

follow-up were assumed alive at 56 days.

Definitions

Laboratory-confirmed TB was defined as any 1 of a positive smear microscopy, mycobacterial

culture, Xpert from any site, or urinary TB-LAM. TB-LAM assay was positive if recorded as

‘grade 1’ or higher on the manufacturer’s (post-2014) reference card. Ability to walk unaided

was assessed by healthcare workers (not self-reported by patients), and was equivalent to a

Karnofsky functional score below 40 points [22]. WHO danger signs were heart rate> 120

beats per minute, respiratory rate> 30 per minute, temperature > 39˚C, and being unable to
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walk unaided. ‘ART experienced’ was defined as receiving ART at the time of enrolment to the

study.

Score derivation

Candidate predictor variables were identified for inclusion in the predictive model based on a

priori clinical knowledge, previous literature, and the need for variables to be objective, repro-

ducible, and available in resource-constrained settings [23]. We considered variables known to

be associated with mortality in HIV/TB, including age, sex, ART experience, physiological

measurements at admission, weight and/or body mass index, CD4 cell count, functional status

(being unable to walk unaided), and haemoglobin [24–28]. Time on ART was not considered

as not all patients take ART, and because of challenges in accurately ascertaining duration.

Where 2 or more predictors were highly correlated, only 1 was selected, to simplify the prog-

nostic model, as inclusion of all would contribute little additional predictive information [23].

Analyses were planned prospectively (see S1 Appendix) except where indicated as post hoc.

Continuous variables were assessed for non-linearity using fractional polynomials, and cat-

egorised based on previously established cutoffs (e.g., CD4 cell count and haemoglobin) or

associations with mortality (e.g., age and weight, using the fp plot command in Stata). Com-

plete case analysis was chosen for the derivation score as few data (<5%) were missing. We

first performed univariable analyses assessing the association of each variable with mortality

risk using logistic regression. We then used a backward elimination, stepwise approach to cre-

ate a multivariable predictive model, starting with all candidate variables, and excluding vari-

ables sequentially if p> 0.1 using likelihood ratio tests and the Akaike information criterion.

Given that there were 94 deaths, we did not want to estimate more than 9 candidate predictors

(various studies have shown each candidate predictor studied requires a minimum of 10

events) [29]. Interactions were also assessed using likelihood ratio testing. All analyses were

done using Stata version 14, and all p-values were 2-sided.

Regression coefficients from the final multivariable model were multiplied by the smallest

possible constant and then rounded to the nearest integer, and then assigned as ‘points’ to

each variable. The clinical risk score was derived by combining the points based on each

patient’s characteristics. High-, medium-, and low-risk groups for mortality were then arbi-

trarily defined after plotting risk score against observed mortality such that the high-risk

group accounted for most (>50%) deaths and the low-risk group accounted for as few deaths

as possible.

Risk score evaluation and internal performance

Mortality risk at 2 months and 95% confidence intervals (CIs) were calculated for each risk

group, as were odds ratios (ORs) and 95% CI for mortality. In exploratory analyses, inpatient

and outpatient (post-discharge) deaths were also compared between risk groups by restricting

analyses to deaths occurring during hospital admission or to deaths occurring after discharge

in the subset of patients who were discharged alive from hospital. CD4 cell count and

TB-LAM grade were also compared between risk groups. Mortality risk was compared

between groups using chi-squared tests.

We assessed the model discrimination (ability to differentiate patients who would die

within 2 months and those who would survive) by calculating the concordance index (c-statis-

tic) (also known as the area under the receiver operator curve), assuming a c-statistic < 0.6

showed poor discrimination [30]. Model calibration was assessed by plotting the probability of

mortality predicted by the model against observed mortality in the derivation dataset using a

calibration plot and the Hosmer-Lemeshow test, assuming a p< 0.05 indicated poor
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calibration. In post hoc analysis, in response to reviewer request and to better understand the

utility of the score, the sensitivity and positive predictive value of the score were calculated.

External validation

To externally validate the clinical risk score, we used data collected independently from 2 stud-

ies: (1) a multicentre diagnostic clinical trial of adjunctive urine TB-LAM testing in HIV-posi-

tive patients with TB symptoms who were admitted to hospitals in 4 sub-Saharan African

countries (South Africa, Zambia, Zimbabwe, and Tanzania) (LAM-RCT) [31] and (2) a pro-

spective cohort study assessing the diagnostic yield of TB-LAM in HIV-positive patients with

TB symptoms in Kenya (Médecins Sans Frontières [MSF] cohort study) [32]. Patients were

included in the validation cohort if they were adults and had laboratory-confirmed TB (as pre-

viously defined). Patients from the LAM-RCT in the ‘no TB-LAM’ arm were excluded, as were

outpatients (i.e., patients not admitted to hospital) from the MSF cohort study.

The validation cohort sites were all in settings in sub-Saharan Africa with high HIV preva-

lence and TB incidence, but differed from the derivation cohort in that all patients had at least 1

TB symptom (cough, fever, weight loss, or night sweats). The LAM-RCT recruitment occurred

between 1 January 2013 and 2 October 2014, and the MSF cohort recruitment between 22 Octo-

ber 2013 and 20 August 2015. Mortality outcomes were assessed at 2 months in both studies.

The clinical risk score for mortality was calculated by assigning the same ‘points’ to vari-

ables as for the derivation cohort, and the same cutoffs were used to define high-, medium-,

and low-risk groups for mortality. Patients with missing observations were excluded, for a

complete case analysis. However, sensitivity analyses were done for score performance using

multivariate multiple imputation with chained equations for missing data as 42% of patients

had missing data in the validation cohort. Data were assumed to be missing at random, and

were imputed for missing candidate predictor variables using mortality risk, other candidate

predictor variables, and other baseline demographic variables, with 100 imputations.

Evaluation of the score in the validation dataset was done using the same statistical methods

as the internal evaluation, with calculation of mortality risk at 2 months, ORs for mortality,

and survival curves. Discrimination was assessed using the c-statistic, and calibration with a

calibration plot and the Hosmer-Lemeshow test.

The study is reported in concordance with TRIPOD guidance for multivariable prediction

models (see S2 Appendix) [33]. Ethical approval for each of the source studies was obtained

from the relevant ethics committees in the country of data collection and from the trial sponsors

(see S3 Appendix for list of ethics committees). All patients provided informed written consent.

Results

Baseline characteristics

Of 506 HIV-positive patients diagnosed with TB in the STAMP trial derivation cohort, 322

had laboratory-confirmed TB. Seven patients were excluded from the complete case analysis

for missing data (Fig 1). The median age of TB patients included in the derivation cohort was

36 years (interquartile range [IQR] 30–43), 172 (55%) were men, 53 (17%) were newly diag-

nosed with HIV, and the median CD4 cell count was 76 cells/μl (IQR 23–206; Table 1). In all,

209 (65%) patients were positive on urine TB-LAM testing, indicating probable disseminated

TB disease. Anaemia was common and median haemoglobin was 86 g/l (IQR 67–108).

Patients presented with advanced disease: 133 (42%) had 1 or more WHO danger signs, and

71 (23%) were severely disabled or unable to walk unaided.

In the derivation cohort, 94 (30%) patients died within 2 months, with 66 (70%) dying dur-

ing their hospital admission; 29 (31% of deaths) patients died by 1 week, and 52 (55%) by 2
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weeks, after admission. In unadjusted analyses, mortality risk was higher in patients aged 55

years or older, men, ART-experienced patients, those unable to walk, patients with severe

anaemia (haemoglobin < 80 g/l), patients with CD4 cell count < 100 cells/μl, and those with

positive urine TB-LAM tests (Table 2). Six out of 322 (2%) patients were lost to follow-up after

hospital discharge.

Multivariable model and clinical risk score

The final multivariable logistic regression model for mortality at 2 months included age, sex,

ART experience, haemoglobin, functional status (being unable to walk unaided), and urine

TB-LAM result (Table 2). For associations of linear continuous variables with mortality see S1

Table. CD4 count and weight were dropped from the final predictor score model as their rela-

tionship with mortality was mediated by functional status and urine TB-LAM result. We

found no significant interactions between variables in the final model. The c-statistic for the

predictive model in the derivation dataset was 0.70 (95% CI 0.63–0.76), showing moderate dis-

crimination. Calibration of the predictive model was good, as shown by the calibration plot

(see S1 Fig) and a Hosmer-Lemeshow statistic p = 0.78.

The clinical risk score for mortality, based on the regression coefficients, is outlined in Fig

2. Observed and predicted mortality risks for the risk score are reported in S2 Fig. Mortality

risk groups were defined as low risk (10 points or fewer), medium risk (11 to 20 points), or

high risk (more than 20 points) (Fig 3). Therefore, in the derivation cohort, 48 (15%) patients

were deemed low risk, 142 (45%) were deemed medium risk, and 125 (40%) were deemed

high risk. Median risk score was 19 (IQR 13–22, range 0–42). Observed mortality risk by 2

months was 12.5% (95% CI 5.7%–25.4%), 21.1% (95% CI 15.1%–28.7%), and 46.4% (95% CI

37.8%–55.2%) in the low-, medium-, and high-risk groups, respectively (p< 0.001). ORs for

mortality were 6.1 (95% CI 2.4–15.2) in the high-risk group and 1.9 (95% CI 0.7–4.8) in the

medium-risk group compared to low-risk patients (p< 0.001).

Simplified clinical risk score for mortality

As the regression coefficients and points in the clinical risk score were similar for all 6 vari-

ables, we created a simplified version of the score by assigning each variable within the score 1

Fig 1. Study profile. LAM, lipoarabinomannan; MSF, Médecins Sans Frontières; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1002776.g001
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Table 1. Baseline characteristics.

Characteristic Category Median (IQR) or N (%)

Derivation dataset (n = 315) Validation dataset (n = 644)

Demographics

Age (years) 36 (30–43) 35 (30–42)

Sex Female 143 (45.4) 315 (48.9)

Country of enrolment South Africa 162 (51.4) 102 (15.8)

Tanzania — 70 (10.9)

Zambia — 151 (23.5)

Zimbabwe — 139 (21.6)

Kenya — 182 (28.3)

Malawi 153 (48.6) —

HIV history

New HIV diagnosis Yes 53 (16.8) —

Currently taking ART Yes 210 (80.2) 290 (45.0)

Time on ART (years)a 1.0 (0.2–4.4) 0.7 (0.1–3.2)

CD4 cell count (cells/μl)b 76 (23–206) 61 (21–145)

TB history

Cough Yes 228 (72.4) 601 (93.5)

Fever Yes 223 (70.8) 562 (87.3)

Weight loss Yes 286 (90.8) 595 (95.8)

Night sweats Yes 165 (52.4) 531 (82.6)

WHO TB symptom screen Yes 310 (98.4) 644 (100)

Previous history of TB Yes 72 (22.9) 123 (19.1)

Clinical presentation

Weight (kg)c 50 (42–57) 49 (43–55)

BMId 19.1 (16.2–21.0) 17.6 (15.9–20.3)

Heart rate (bpm) 104 (90–118) 102 (90–119)

Respiratory rate (per minute) 22 (20–26) 24 (22–28)

Systolic blood pressure (mm Hg) 102 (92–116) 104 (95–116)

Temperature (˚C) 36.5 (36.1–37.2) 37.0 (36.6–38.0)

Haemoglobin (g/l)e 86 (67–108) 85 (68–100)

WHO danger signf Yes 133 (42.2) 399 (62.0)

Unable to walk unaidedg Yes 71 (22.5) 262 (40.7)

TB diagnosis

Sputum Xpert positive Yes 168 (52.2) 217 (33.7)

Sputum smear microscopy positive Yes — 211 (32.8)

TB culture positive (any site) Yes — 388 (60.3)

Urine LAM positive Yes 209 (64.9) 424 (65.8)

Chest X-ray suggestive of TB Yes 107 (33.2) 336 (52.2)

Outcome

Died by 2 months Yes 94 (29.8) 147 (22.8)

Sputum smear and TB culture were not routinely performed in the STAMP trial (derivation dataset). Missing data are for the validation dataset only.
aTime on ART missing for 19 (3%) patients.
bCD4 cell count missing for 27 (4%) patients.
cWeight missing for 75 (12%) patients.
dBMI missing for 90 (14%) patients.
eHaemoglobin missing for 272 (42%) patients.
fOne of heart rate > 120 bpm, respiratory rate > 30 per minute, temperature > 39˚C, or unable to walk unaided.
gAbility to walk unaided was assessed by healthcare worker and not self-reported.

ART, antiretroviral therapy; BMI, body mass index; bpm, beats per minute; IQR, interquartile range; LAM, lipoarabinomannan; TB, tuberculosis; WHO, World Health

Organization; Xpert, Xpert MTB/RIF.

https://doi.org/10.1371/journal.pmed.1002776.t001
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point if present (age 55 years or over, male sex, ART experienced, severe anaemia, being

unable to walk unaided, or urine TB-LAM positive; see S3 Fig). A high mortality risk was

defined as 3 or more points, medium risk as 2 points, and low risk as 0 or 1 point.

In the derivation cohort, patients with 3 or more points (high risk) had a mortality of

40.0% (70/175, 95% CI 33.0%–47.5%), compared to 19.6% (18/92, 95% CI 12.6%–29.0%)

mortality in those with 2 points and 12.5% (6/48, 95% CI 5.7%–25.4%) in those with 0 or 1

point (p < 0.001) (see Fig 3 and S2 Table). The sensitivity of the risk score for mortality in

was 0.75 (the score correctly identified 70/94 deaths), and the positive predictive value

was 0.4.

The clinical risk score was useful in predicting deaths that occurred during inpatient admis-

sion (50 [28.6%, 95% CI 22.3%–35.8%] in the high-risk group compared to 6 [10.9%, 95% CI

5.9%–19.1%] in the low-risk group, p = 0.001) as well as deaths occurring after discharge (20

[16.0%, 95% CI 10.5%–23.6%] in the high-risk group compared to 0 [0%] in the low-risk

group, p = 0.015; Fig 4). More patients in the high-risk group were TB-LAM positive and had

higher grades of positive result, but CD4 cell count did not differ by risk group (see S4 Fig).

Survival curves by risk group are presented in Fig 5.

Table 2. Univariable and multivariable logistic regression analysis of factors associated with mortality in the derivation cohort (n = 315).

Characteristic Category Dieda (n = 94) Univariable Multivariable Regression (β) coefficient

OR (95% CI) p-Value OR (95% CI) p-Value

Demographics

Age <55 years 82 (28.4) 1 (ref) 0.067 1 (ref) 0.710

�55 years 12 (46.2) 2.2 (1.0–4.9) 2.0 (0.9–4.9) 0.10

Sex Female 32 (22.4) 1 (ref) 0.012 1 (ref) 0.923

Male 62 (36.0) 2.0 (1.2–3.2) 2.5 (1.5–4.3) 0.001

HIV infection

ART experienced No 18 (20.9) 1 (ref) 0.024 1 (ref) 0.621

Yes 76 (33.2) 1.9 (1.1–3.4) 1.9 (1.0–3.5) 0.048

CD4 cell count# �100 cells/μl 31 (23.9) 1 (ref) — — —

<100 cells/μl 62 (33.9) 1.7 (1.0–2.8) 0.040 — — —

Clinical presentation

WHO danger sign No 50 (27.5) 1 (ref) 0.185 — — —

Yes 48 (34.8) 1.4 (0.9–2.2) — — —

Weight <35 kg 10 (43.5) 3.3 (1.2–8.9) 0.054 — — —

35–60 kg 73 (31.5) 1.8 (0.9–3.5) — — —

>60 kg 11 (18.3) 1 (ref) — — —

Haemoglobin (g/l) �80 g/l 44 (23.7) 1 (ref) 0.003 1 (ref) 0.703

<80 g/l 50 (38.8) 2.0 (1.3–3.3) 2.0 (1.2–3.4) 0.008

Unable to walk unaided No 64 (26.2) 1 (ref) 0.004 1 (ref) 0.689

Yes 30 (42.3) 2.2 (1.3–3.8) 2.0 (1.1–3.6) 0.022

TB diagnosis

Urine LAM positive No 24 (22.6) 1 (ref) 0.044 1 (ref) 0.603

Yes 70 (33.5) 1.7 (1.0–2.9) 1.8 (1.0–3.2) 0.040

The constant (intercept) was −2.8. p-Values were calculated by likelihood ratio tests. There was no evidence of interaction between urine LAM positivity, being unable

to walk, and haemoglobin < 80 g/l in the multivariable model (likelihood ratio test p-values all >0.1). Weight and being unable to walk were strongly associated.
aData are number of patients in category who died (%).

ART, antiretroviral therapy; LAM, lipoarabinomannan; OR, odds ratio; TB, tuberculosis.

https://doi.org/10.1371/journal.pmed.1002776.t002

Clinical risk score to predict mortality in inpatients with HIV-associated tuberculosis

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002776 April 5, 2019 9 / 20

177

https://doi.org/10.1371/journal.pmed.1002776.t002
https://doi.org/10.1371/journal.pmed.1002776


External validation

The external validation cohort included 644 HIV-positive patients with laboratory-confirmed

TB, of whom 372 (58%) patients had no missing data for the risk score and were therefore

included in the complete case analysis (Fig 1). Baseline characteristics were similar between

cohorts, although fewer patients reported taking ART and more patients presented with severe

functional impairment and 1 or more WHO danger signs in the validation cohort (Table 1). A

similar proportion of patients were positive on urine TB-LAM testing (65% in the derivation

cohort compared to 66% in the validation cohort). Mortality at 2 months was lower in the vali-

dation cohort (22.8%) compared to the derivation cohort (29.8%). Loss to follow-up was 4% in

the validation cohort (15/372).

In complete case analysis (n = 372), the observed mortality risks in the validation cohort

were 8.7% (95% CI 4.6%–16.0%) in the low-risk group, 19.1% (95% CI 13.2%–26.8%) in the

medium-risk group, and 35.5% (95% CI 27.9%–43.9%) in the high-risk group (see Fig 4).

Median risk score was 16 (IQR 10–22, range 0–42). The ORs for mortality by risk group were

similar to those in the derivation cohort (5.8 [95% CI 2.7–12.3] for the high-risk group and 2.5

[95% CI 1.1–5.5] for the medium-risk group compared to the low-risk group). The risk score

was also useful in predicting both inpatient and post-discharge deaths (the high-risk group

had a 20% risk of post-discharge death compared to 5% in the low-risk group). The simplified

risk score performed similarly to the full score in the validation cohort.

The predictive model had similar calibration and discrimination in the validation cohort as

in the derivation cohort: the c-statistic was 0.68 (95% CI 0.61–0.74; see S3 Table), and the Hos-

mer-Lemeshow statistic had p = 0.13 (see S5 Fig for the calibration plot). In a sensitivity analy-

sis using multiple imputation for missing data in the validation dataset (n = 644), the c-statistic

for the predictive model was 0.64 (95% CI 0.60–0.69), and the Hosmer-Lemeshow statistic had

p = 0.67. ORs for mortality were 5.3 (95% CI 2.2–9.5) for the high-risk group and 2.1 (95% CI

1.0–4.6) for the medium-risk group compared to low-risk patients (p< 0.001).

Discussion

In this study, we developed and externally validated a pragmatic clinical risk score to predict

early mortality in HIV-positive patients admitted to hospital and diagnosed with laboratory-

confirmed TB. Our score used 6 clinical and laboratory factors that could be readily collected

at admission to hospital in settings with high HIV and TB burden. The score was able to

Fig 2. Risk score calculation to predict mortality. TB, tuberculosis; TB-LAM, Determine TB LAM Ag.

https://doi.org/10.1371/journal.pmed.1002776.g002
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categorise patients into 3 risk groups. One-third of the high-risk group died during hospital

admission, and almost 50% had died by 2 months. A simplified ‘3 of 6 predictors’ version of

the score performed similarly. This is the first study to our knowledge to derive and externally

validate a risk score to predict mortality in this patient population.

We found older age, being male, being ART experienced, having severe anaemia, being

severely disabled or unable to walk unaided, and being urine TB-LAM positive were all risk

Fig 3. Distribution of risk scores and mortality in the derivation dataset. Distribution of risk scores for mortality

stratified by outcome at 2 months (stacked bar chart) and mortality risk (percent, shown by blue line) for (A) the full

risk score (based on the regression coefficients) and (B) the simplified risk score. Mortality risks and absolute numbers

in each category are presented in S2 Table.

https://doi.org/10.1371/journal.pmed.1002776.g003

Clinical risk score to predict mortality in inpatients with HIV-associated tuberculosis

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002776 April 5, 2019 11 / 20

179

https://doi.org/10.1371/journal.pmed.1002776.g003
https://doi.org/10.1371/journal.pmed.1002776


Clinical risk score to predict mortality in inpatients with HIV-associated tuberculosis

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002776 April 5, 2019 12 / 20

180

https://doi.org/10.1371/journal.pmed.1002776


factors for mortality. These factors have been established as being associated with outcome in

HIV/TB in previous studies [24–28], and most likely reflect more advanced HIV-related

immunosuppression, late presentation to healthcare services, and/or poorer underlying physi-

ological reserve. Positive urine diagnostic tests (including LAM detection and Mycobacterium
tuberculosis nucleic acid detection) in the context of HIV infection are thought to represent

haematogenously disseminated renal TB with high mycobacterial burden, which may explain

why it is associated with a worse prognosis [34]. Interestingly, clinical signs and symptoms

(such as WHO danger signs) were not predictive of mortality.

In contrast to previously published data, ART-experienced patients had a higher mortality

risk in our study [28,35]. This likely reflects a high burden of unrecognised ART failure, due to

either poor adherence or drug resistance among patients admitted to hospital. Another poten-

tial cause is immune reconstitution inflammatory syndrome (IRIS) in patients who have

recently started ART. The relationship between ART and mortality is likely to be more com-

plex, representing different groups of patients with different mortality risks, but for this prag-

matic tool we have not been able to explore this further. CD4 cell count, which has been

previously shown to be associated with mortality in HIV-positive patients, dropped out of our

final multivariable predictive model due to mediation by other variables. Furthermore, in the

era of test and treat for HIV and use of quantitative HIV viral load for monitoring, CD4 testing

services are being scaled back, and are often not available in resource-limited settings.

Mechanisms and causes of mortality in advanced HIV/TB are still not well understood. Co-

pathologies, including other opportunistic infections and bacterial pneumonia or sepsis, are

commonly detected post-mortem [36,37]. High-risk patients could be prioritised for screening

for co-infections, for example using cryptococcal antigen point-of-care tests, or empirical pro-

phylactic treatment with antibacterial agents, an approach that has been shown to reduce mor-

tality in advanced HIV infection [38].

Whilst this clinical risk score can identify patients with the highest risk of mortality, there

remains an absence of proven interventions (beyond TB therapy and appropriately timed

ART) to reduce mortality in this population. Therefore, we propose this score could be used as

a clinical tool to alert clinicians to patients at high risk of mortality who should be reviewed

before discharge and/or flagged for early clinical follow-up in settings where urine TB-LAM

scale-up is occurring. The score could also be used as a research tool to aid evaluation of inten-

sified or optimised TB treatment regimens or adjunctive interventions aimed at reducing high

mortality in this population.

Possible interventions include rapid viral load testing with ART adherence support and

early switching for those with virological failure. Host-directed therapies, which target host

immune responses, are in clinical trials for TB, including some specifically for HIV/TB

[39,40]. Patients identified as being at highest risk for mortality could also be offered more

intensive monitoring or supportive care, for example better management of severe anaemia

[41], although optimal strategies of supportive care are not clear [42]. Enhanced treatment and

prophylaxis for co-infections have been shown to reduce early mortality in patients with

Fig 4. Observed mortality risk by risk score category in the derivation and validation cohorts. Observed mortality

risk (A) at 56 days, (B) during inpatient stay, and (C) post-discharge in the derivation and validation cohorts, stratified

by risk score category (derivation and validation cohorts) and simplified risk score category (derivation cohort).

Numbers on bars represent absolute mortality risk; error bars represent 95% confidence intervals. For the full risk

score, low risk was defined as 10 points or fewer, medium risk as 11 to 20 points, and high risk as more than 20 points.

For the simplified risk score, the low-risk group had a predictor score of 0 or 1 point, the medium-risk group had a

predictor score of 2 points, and the high-risk group had predictor score of�3 points. p-Values based on chi-squared

tests between groups for derivation and validation cohorts, respectively, are (A) p< 0.001 and p< 0.001, (B) p = 0.001

and p = 0.001, and (C) p = 0.015 and p = 0.003.

https://doi.org/10.1371/journal.pmed.1002776.g004
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advanced HIV initiating ART [38], and may also benefit those with HIV/TB disease. Interven-

tions will likely need to be instituted rapidly after TB diagnosis to alter outcomes.

The risk score was able to highlight patients at highest risk of death post-discharge, in addi-

tion to those at high risk of death during hospitalisation, and could be used to prevent too

early discharges. Enhanced community support, including home visits, has been shown to

reduce mortality after starting ART in advanced HIV [43], and could have a similar impact for

HIV/TB patients. Current services in high-burden settings take a public health approach to

service delivery, whereas prognostic risk scores can identify patients suitable for differentiated

care [8].

The main aim of this risk score was to detect patients at high risk of early mortality who

may benefit from interventions in addition to TB treatment. Although the discrimination of

the model was not perfect, the sensitivity of the simplified score was 75%; the score did not

identify 25% of patients who died within 2 months, and such patients would still receive stan-

dard-of-care management of HIV/TB. Proposed interventions to reduce mortality would have

limited adverse events, so those deemed as ‘high risk’ by the score but surviving to 2 months

are unlikely to come to significant harm from such interventions. However, if adjunctive inter-

ventions are found to reduce early mortality, better predictive biomarkers or more accurate

predictive tools would allow more efficient use of resources through targeting of patients.

Limitations of our study include the potential for selection bias. In the STAMP trial stan-

dard-of-care arm, only patients started on TB treatment for clinical/radiological criteria or fol-

lowing a positive sputum Xpert result had stored urine retrieved for TB testing. Patients with

otherwise undiagnosed TB who would have been urine test positive if they had been tested

were not included in this study. Patients unable to provide consent, mostly due to being

severely unwell and having altered consciousness, were also excluded. Although our risk score

did not have optimal discrimination and calibration, performance was adequate and similar to

that of other prognostic scores widely used in clinical practice (e.g., the Framingham cardio-

vascular risk score) [15,44]. Performance may have been reduced by categorising continuous

variables for simplicity. TB drug resistance was not a predictor of mortality in this cohort;

however, prevalence of rifampicin resistance was low in these settings. Not all established risk

factors for mortality were characterised, leaving potential to improve on performance. Future

studies could assess more detailed markers of physiology, as well as social and more distal risk

factors.

Whilst the score is pragmatic and its constituent factors are widely available in hospitals in

African regions with high HIV and TB burdens, it does rely on access to the TB-LAM lateral

flow assay. There is now good evidence to support mortality reductions with the use of

TB-LAM in HIV-positive patients admitted to hospital [4,5], and its use as a screening test has

been incorporated into the latest guidelines in Malawi and South Africa. The assay has also

been scaled up nationally in eSwatini, Kenya, and Uganda [45]. Missing data were common in

the validation cohort. However, sensitivity analyses using multiple imputation gave similar

results as the complete case analysis. We assumed patients lost to follow-up were alive at 2

months, although only 2% in the derivation cohort and 4% in the validation cohort were not

followed up after hospital discharge. Our cohort did not include patients treated for TB with-

out a positive diagnostic test, which remains common in HIV-positive patients admitted to

hospital, and this patient group may be an important group for whom to apply risk

Fig 5. Survival curves stratified by clinical risk score category in the derivation dataset. Survival curves and risk tables with

number at risk for the (A) derivation cohort and (B) validation cohort stratified by risk group using the simplified clinical risk score.

The low-risk group (blue line) had a risk score of 0 or 1 point, the medium-risk group (red line) had a risk score of 2 points, and the

high-risk group (green line) had a risk score of�3 points. Log-rank test p< 0.001.

https://doi.org/10.1371/journal.pmed.1002776.g005
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stratification and predictive scores. The biomarkers studied are imperfect predictors of mortal-

ity, and further research is needed to focus on better biomarkers to predict outcome.

Strengths of this study include that the derivation cohort and the LAM-RCT external vali-

dation cohort were nested within randomised controlled trials. Our predictive model had sim-

ilar discrimination and calibration in the validation cohort, and was able to identify groups of

patients with similarly increased odds of mortality. This was despite the validation cohort

being from geographically distinct locations, collected at different times by different investiga-

tors, and with a lower overall mortality risk at 2 months. The factors required for the score can

be obtained rapidly after admission.

In conclusion, we have developed and externally validated a clinical risk score capable of

identifying, among patients admitted to hospital in settings with high HIV/TB burden, those

with the highest risk of early mortality. This score could be a useful clinical and research tool,

and could prove beneficial in identifying patients who would gain most from adjunctive inter-

ventions to reduce mortality. Further work to assess the impact of such risk scores, and to

identify which interventions could potentially reduce mortality, is urgently needed if ambi-

tious global targets to reduce TB mortality are to be met by 2025.
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S1 Table. Univariable analysis of continous variables and assocations with mortality. 

Fitted f 
ractional polynomial function 

Odds ratio (OR), 95% 
confidence interval 

p-value

Age (years)a 

Linear 1.02 (1.00 – 1.05) 0.0485 

Age^3 
Age^3 

1.00 (1.00 – 1.00) 
1.00 (1.00 – 1.00) 

0.0526 

Weight (kgs)b 

Linear 0.98 (0.96 – 1.00) 0.0486 

Weight^-2 
Weight^-2 

0 
0 

0.0897 

CD4 countc 

Linear 1.00 (1.00 – 1.00) 0.0158 

CD4 count^-2 
CD4 count 

16.7 (0.65 – 430.71) 
1.00 (1.00 – 1.00) 

0.0055 

Haemoglobin (g/L)d 

Linear 0.98 (0.97 – 0.99) 0.0002 

Haemoglobin^3 
Haemoglobin^3 

1.00 (1.00 – 1.00) 
1.00 (1.00 – 1.00) 

0.0001 

a This function has a small increase to 55 years, then a steeper increase 
b This gives a “U-shaped” function and has an increase until 35kg, then a sharper decrease until 60kg, 

and then a less steep increase 
c This function has a sharp peak in the low values (<20 cell/microL), followed by a linear decrease 
d This is a “U-shaped” function and has a decrease until about 150 g/L, followed by an increase. 
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S2 Table. Risk score and mortality data 

Number of survivors, patients dying, observed and predicted mortality risk for A) ‘full’ mortality 

predictor score (based on the regression coefficients) and B) simplified mortality risk score. 

A) 

Risk score 
category 

Proportion 
of patients Survived Died 

Observed 
mortality 

Predicted 
Mortality 

0-5 1.3 4 0 0.0 7.7 

6-10 14.0 38 6 13.6 12.1 

11-15 27.3 68 18 20.9 18.4 

16-20 17.8 44 12 21.4 27.0 

21-25 17.8 36 20 35.7 37.8 

26-30 17.8 27 29 51.8 49.9 

31-35 3.2 3 7 70.0 62.0 

>35 1.0 1 2 66.7 72.8 

Low 15.2 42 6 12.5 9.7 

Medium 45.1 112 30 21.1 23.0 

High 39.7 67 58 46.4 45.3 

Mortality risk groups were defined as low risk (10 points or fewer), medium risk (11 to 20 points) or 

high risk (more than 20 points) 

B) 

Risk score 
or risk 
score 

category 
% of 

patients Survived Died 
Observed 
mortality 

Predicted 
Mortality 

0 1.3 4 0 0.0 5.6 

1 14.0 38 6 13.6 10.7 

2 29.2 74 18 19.6 19.5 

3 33.7 74 32 30.2 32.7 

4 17.8 27 29 51.8 49.5 

5 3.8 4 8 66.7 66.3 

6 0.3 0 1 100.0 79.9 

Low 15.2 42 6 12.5 10.5 

Medium 29.2 74 18 19.6 21.7 

High 55.6 105 70 40.0 39.5 

Mortality risk groups were defined as low risk (1 point or fewer), medium risk (2 points) or high risk 

(more than 2 points) 
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S3 Table. C-statistic, 95% confidence intervals and Hosmer-Lemshow test for final model and risk 

scores in derivation and validation cohorts. 

Cohort/model C-statistic 95% Conf. Interval Hosmer-Lemshow test 
p-value

Derivation cohort full 
model 

0.7299 0.66957 - 0.79015 0.4527 

Derivation cohort full 
score 

0.6968 0.63280 - 0.76077 0.7813 

Derivation cohort 
simple score 

0.6471 0.59337 - 0.70092 0.4956 

Validation cohort full 
model 

0.6659 0.60062 - 0.73123 0.2334 

Validation cohort full 
score 

0.6770 0.61307 - 0.74083 0.1315 

Validation cohort 
simple score 

0.6605 0.59756 - 0.72336 0.2269 
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S1 Fig. Performance of mortality prediction score in derivation cohort. (A) Receiver operator curve of the 
predictive model, area under the curve= 0.70 (95% CI 0.63 – 0.76). (B) Calibration plot of observed 
probability of mortality plotted against predicted probability of mortality by the mortality score 
multivariable regression model, with variables grouped into deciles based on predicted probability, and 95% 
CIs. Blacked dashed line shows perfect prediction. Hosmer-Lemeshow statistic p=0.78
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S2 Fig. Observed and predicted mortality risk for predictor score values in the derivation cohort. 
The size of the blue circles representing observed mortality risk are proportional to the number 
of patients with that score. Predicted mortality risk is represented by the green line/triangles.

S3 Fig. Risk score calculation (simplified score) to predict mortality

S4 Fig. Urine TB-LAM grade and CD4 cell strata stratified by mortality risk score for the derivation cohort 
(n=315)
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S5 Fig. Calibration plot for predictive model in external validation dataset (n=372). Plot shows 
observed compared to expected probability of risk for external validation cohort as deciles based on 
predictor score, with 95% CIs. Hosmer-Lemeshow statistic p=0.13. C-index (or area under receiver-
operator curve) was 0.677 (95% CI 0.61–0.74). Dotted line represents perfect prediction.

Revision to discussion section 

Although the mortality score predicted mortality during hospital admission and after discharge, the 
underlying pathophysiological mechanisms leading to death may differ in those who die very early 
(eg within the first few days), compared to those who die later (eg after several weeks, or after 
discharge). Thus, risk factors for mortality may also differ between these groups. This warrants 
further research to determine if a more accurate predictor score can be derived for very early 
deaths, and if factors measured at discharge may be more accurate at predicting early out-patient 
mortality. These groups are likely to benefit from different interventions to prevent mortality.
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Functional Analysis of Phagocyte 
Activity in Whole Blood from hIV/
tuberculosis-Infected Individuals 
Using a Novel Flow Cytometry- 
Based Assay
Ankur Gupta-Wright1,2*†, Dumizulu Tembo3†, Kondwani C. Jambo1,4, Elizabeth Chimbayo1, 
Leonard Mvaya1, Shannon Caldwell3, David G. Russell3* and Henry C. Mwandumba1,4

1 College of Medicine, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi, 2 Clinical Research 
Department, London School of Hygiene and Tropical Medicine, London, United Kingdom, 3 Department of Microbiology and 
Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States, 4 Department of Clinical Sciences, 
Liverpool School of Tropical Medicine, Liverpool, United Kingdom

The accurate assessment of immune competence through ex vivo analysis is paramount 
to our understanding of those immune mechanisms that lead to protection or suscepti-
bility against a broad range of human pathogens. We have developed a flow cytometry- 
based, whole blood phagocyte functional assay that utilizes the inflammatory inducer 
zymosan, coupled to OxyBURST-SE, a fluorescent reporter of phagosomal oxidase 
activity. The assay measures both phagocytic uptake and the superoxide burst in the 
phagocyte populations in whole blood. We utilized this assay to demonstrate impaired 
superoxide burst activity in the phagocytes of hospitalized HIV-positive patients with  
laboratory-confirmed tuberculosis. These data validate the use of the assay to assess the 
immune competence of patients in a clinical setting. The method is highly reproducible 
with minimal intraindividual variation and opens opportunities for the rapid assessment 
of cellular immune competence in peripheral blood in a disease setting.

Keywords: phagocytosis, zymosan, inflammation, monocytes, neutrophils, hIV, tuberculosis, whole blood assay

INtRodUCtIoN

Bacterial killing assays in whole blood are well established and allow ex vivo assessment of immune 
function in patients, particularly in the context of assessing response to vaccines or evaluating new 
bactericidal therapies (1–4). The main read out of these assays is microbial killing measured via 
culture and colony counting, or fluorescence if reporter strain organisms are used.

Potential problems of these microbiological killing assays include difficulties in standardizing 
the number of microbes and their multiplication rate. The tendency of the microbes to aggregate 
inconsistently during assays may also result in misrepresentation of the actual numbers of microbes 
measured at the end of the assay. In addition, there are other factors that can result in microbial loss 
that are not dependent on the host immune response or antimicrobial therapy (5). Finally, because 
the read out is simply bacterial survival, these assays lack the ability to differentiate mechanisms of 
killing and the relative contributions of the different phagocyte lineages present in the blood.

Phagocytosis is an important mechanism in the microbial killing pathway of phagocytes. 
Deficiencies in phagocyte function likely predispose individuals to acquire or succumb to infec-
tious diseases. An extensive range of dynamic assays of phagosome function have been developed 
that are capable of providing a broad range of physiological readouts from the phagosome (6, 7). 
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These assays have mostly utilized inert beads derivatized with 
different fluorescent reporters and focused on human alveolar 
macrophages or murine bone marrow-derived macrophages 
in culture (8–10). By removing cells from whole blood or their 
usual tissue fluid, we are unable to assess the potentially impor-
tant influence of soluble proteins such as cytokines, chemo-
kines, or antibodies on phagocytosis and phagosomal behavior.  
We therefore sought to develop an assay using a reporter particle 
more suitable for probing phagocyte biology in whole blood. 
The assay is designed to provide reproducible, unbiased, real-
time analysis of phagosomal function of immune cells and 
potentially identify patients with impaired immune responses.

We utilized zymosan derivatized with the oxidation-sensitive 
fluorescent reporter, OxyBURST-SE, to quantify phagosomal 
oxidase activity in peripheral blood phagocytes in situ. Zymosan 
is a preparation of a cell wall glucan from Saccharomyces cerevisiae 
that has been used as a model microbial particle in immune assays 
for over half a century (11). Zymosan is highly mannosylated 
and linked to β-glucan, making it susceptible to phagocytosis by 
monocytes, polymorphonuclear leukocytes, and macrophages 
through various receptors, including C-type lectin receptors 
such as dectin-1 and mannose receptors (12, 13). Phagocytosis 
of zymosan can occur independent of opsonization, of which 
complement factor 3 (C3) predominates with immunoglobulin 
G (IgG) being of minor importance (14). Zymosan also stimulates 
an inflammatory cytokine response via toll-like receptors (TLR) 
2 and 6, although activation of these receptors is not required for 
internalization by phagocytes (12). We had demonstrated previ-
ously how inert particles coupled to OxyBURST-SE can be used to 
quantify the superoxide bust of murine macrophages in vitro (15).

Superoxide burst is one of the key enzymatic activities 
involved in killing microbes during the process of phagocytosis. 
The generation of oxygen radicals via nicotinamide adenine 
dinucleotide phosphate (NADPH) oxidase leads to the pro-
duction of noxious compounds such as hydrogen peroxide 
with potent antimicrobial activity (16, 17). Superoxide burst’s 
importance is clearly demonstrated by the greatly increased risk 
of bacterial, fungal, and mycobacterial infection in patient with 
chronic granulomatous disease due to mutations in NADPH oxi-
dase (18). It has also been shown to be suppressed in individuals 
with HIV infection (19) and by Mycobacterium tuberculosis (TB) 
infection in vitro (20).

In this study, we report the application of this novel reporter 
platform to quantify the phagocytic and superoxide burst func-
tions of phagocytes in whole blood obtained from individuals in 
a clinical setting. First, we detail the information generated by 
application of the assay in whole blood from healthy controls.  
We then present data showing the utility of this assay in demon-
strating the perturbation of phagocyte function in the blood from 
HIV- and TB-coinfected patients in Malawi.

MAteRIALs ANd Methods

study Population
Adult patients with HIV and tuberculosis coinfection (HIV-TB) 
were recruited as part of a sub-study examining immune responses 

in the Malawi arm of the rapid urine-based screening for TB to 
reduce AIDS-related mortality in hospitalized patients in Africa 
(STAMP) (21). Healthy HIV-negative adults with no evidence 
of active TB were also recruited as controls. 5 ml of blood was 
collected from both patients and controls in sodium heparin 
tubes. All samples were processed and analyzed by flow cytom-
etry at the Malawi-Liverpool-Wellcome Trust Clinical Research 
Programme in Blantyre, Malawi within 2 h of blood draw. The 
study has been approved by the London School of Hygiene & 
Tropical Medicine Research Ethics Committee and the College 
of Medicine Research Ethics Committee, Malawi.

Zymosan Reporter Particles
To quantify both phagocytic activity and the magnitude of the 
superoxide burst we utilized zymosan particles coupled to both 
a calibration fluorochrome (Alexa Fluor 405-SE, Invitrogen) and 
an oxidation-sensitive fluorescent reporter (OxyBURST® Green 
H2DCFDA-SE, Invitrogen). Zymosan reporter particles were 
prepared by washing 6  mg of zymosan (Sigma-Aldrich) three 
times in 1× phosphate-buffered saline (PBS) by centrifugation 
at 10,000  rpm for 1  min. Particles were resuspended in 950  µl 
coupling buffer (0.1 M boric acid to pH 8.0 with NaOH) contain-
ing 10 µl of 25 mg/ml OxyBURST-SE/DMSO stock solution and 
5 µl of 5 mg/ml Alexa Fluor 405-SE/DMSO solution. The particles 
were mixed well and incubated on a tube rocker in the dark for 1 h 
at room temperature and washed with 1 ml of coupling buffer. The 
1 h coupling with OxyBURST-SE and calibration fluorochrome 
was repeated twice. Finally, particles were washed three times 
with PBS and stored in 1  ml of PBS containing 0.01% sodium 
azide in the dark at 4°C generating a final stock concentration of 
approximately 5 × 106 particles/ml.

Whole Blood Assay
Zymosan reporter particles were prepared for the whole blood 
assay by washing 50  µl of stock Zymosan particle suspensions 
three times with 1 ml of RPMI-1640 to remove sodium azide and 
resuspended in 250 µl RPMI-1640 to give a 1:6 dilution and a final 
concentration of approximately 8 × 105 particles/ml.

Whole blood was diluted 1:1 with warm RPMI-1640. 20 µl of 
washed and diluted reporter particles (containing approximately 
2 × 104 particles) were added to 1 ml of diluted blood and incu-
bated at 37°C with rocking to ensure particles and cells remain 
in suspension. Diluted blood without zymosan reporter particles 
was also processed in parallel as control. Phagocytosis of zymosan 
reporter particles and superoxide burst was assessed at 10, 30, 60, 
90, and 180 min after the addition of reporter particles.

100  µl of diluted blood was harvested from the zymosan 
reporter and biological control tubes 10  min before each time 
point for cell surface staining (as phagocytosis continues during 
cell surface staining of live cells). Once harvested, the diluted 
blood was stained with appropriately titrated concentrations 
of antibodies (anti-CD45 PerCP 1:33, anti-CD66b APC 1:50, 
and anti-CD14 PE-Cy7 1:100; all from BioLegend) for 10 min. 
Biological activity was arrested, red blood cells were lysed, and 
leukocytes fixed by adding 3  ml of BD FACS lysing solution  
(BD Biosciences), containing formaldehyde and diethylene gly-
col, to each tube and incubating at room temperature for 10 min.  
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The cells were washed once with 1× PBS by centrifugation at 
500 g for 10 min then resuspended in 500 µl 1× PBS. Counting 
beads (Countbright, Life Technologies) were added per the 
manufacturer’s instruction before acquisition on a CyAn ADP 
flow cytometer (Beckman Coulter, USA). The phagocytosis 
assay was performed in triplicate on the whole blood samples 
from healthy, HIV-negative adults. Data were analyzed using 
FlowJo version 10 (Treestar, USA).

In addition to the zymosan reporter assay, for HIV/TB- 
coinfected patients, immunophenotyping of monocytes in 
fresh whole blood was undertaken to investigate the association 
between monocyte phenotype and phagocytosis. In brief, 100 µl 
of fresh whole blood was stained with anti-CD45 Pacific Orange 
(Invitrogen), anti-HLA-DR PE-Cy7, anti-CD14 PE, and anti-
CD16 FITC (all from BioLegend) for 10  min. Red blood cells 
were lysed, and leukocytes fixed with BD FACS lysing solution, 
washed once with 1× PBS by centrifugation at 500 g for 10 min 
then resuspended in 300 µl PBS for flow cytometry acquisition.

electron Microscopy (eM)
In parallel, 2 ml of whole blood from a healthy HIV-negative con-
trol was incubated with approximately 8 × 104 zymosan reporter 
particles to confirm the zymosan particles were internalized by 
whole blood phagocytes. White blood cells were harvested after 
10, 60, and 180 min by centrifugation at 500 g for 10 min and 
carefully pipetting out the buffy coat layer in buffered glutaral-
dehyde fixative solution (2.5% glutaraldehyde in 0.1 M sodium 
cacodylate, 5 mM CaCl2, 5 mM MgCl2, 0.1 M sucrose, pH 7.2). 
The samples were processed and stained for EM as described 
previously (22).

Calculations and statistical Analysis
The proportion of cells that had phagocytosed reporter particles 
was calculated based on expression of calibration fluorochrome, 
and absolute cell numbers calculated using counting beads. 
An “activity index” of phagocytosis and superoxide burst was 
calculated by subtracting the median fluorescence intensity of 
the negative cells from the positive cells, and dividing this by 
two times the robust SD of the negative cells (23). This method 
accounted for variations in auto fluorescence between cells from 
different individuals.

Statistical analysis was performed using GraphPad Prism 7 
(GraphPad Software, USA) and Stata 11 (StataCorp, USA). Peak 
activity index (AI) was calculated and mean AI was compared 
between groups. The AI at each time point was also used to 
calculate the area under the curve. Means were compared using 
paired t-tests and median using Wilcoxon rank-sum.

ResULts/dIsCUssIoN

Zymosan Uptake by Whole Blood 
Phagocytes
We used whole blood from four healthy HIV-negative controls to 
measure phagocytosis and superoxide burst of phagocytes ex vivo 
using zymosan-reporter particles. We first sought to determine 
the kinetics of zymosan uptake by whole blood phagocytes. 

The flow cytometry gating strategy to identify neutrophils and 
monocytes is outlined in Figure 1. Cells that had phagocytosed 
zymosan-reporter particles were identified and quantified through  
measurement of the calibration fluor, Alexa Fluor 405.

Zymosan particles were avidly internalized by both neutro-
phils and monocytes in blood from healthy controls. Uptake was 
rapid, with a mean of 26% of neutrophils phagocytosing the par-
ticles compared with 12% of monocytes by 30 min (Figure 2A). 
The proportion of neutrophils phagocytosing zymosan did not 
increase substantially between 30 and 180 min, whereas the per-
centage of monocytes associated with zymosan-reporter particles 
increased gradually during the assay. This pattern of uptake was 
consistent across all healthy controls.

The uptake of zymosan reporter particles by both monocytes 
and neutrophils is dose dependent as shown in the dose–response 
curve generated for 0.5  ×  104–8  ×  104 zymosan particles/ml 
(Figure  2B). The abundance of the phagocytic cells in whole 
blood also influences the overall proportion of cells phagocytos-
ing zymosan particles (Figure 2C). The higher the concentration 
of cells, the lower the proportion of cells carrying the zymosan-
reporter signal, shown for both neutrophils and monocytes 
(Figures 2D,E). This relationship persists throughout the assay 
and demonstrates the importance of the phagocyte to particle ratio 
in the kinetics of phagocytosis. Relying solely on internalization 
of particles to assess phagocytic function is a potential limitation 
of the assay, as the magnitude of phagocytosis may be influenced 
by a function of cell concentration and/or cell to particle ratio, 
rather than cellular deficiencies in phagocytic capacity.

Electron microscopy of white blood cells from a healthy con-
trol whole blood incubated with zymosan particles demonstrates 
phagocytosis of zymosan particles by peripheral blood phago-
cytes (Figure 3). The EM images support the assumption that the 
zymosan reporter signal detected by flow cytometry originates 
from phagocytosis rather than the association of zymosan par-
ticles with the phagocyte surface. Almost without exception, the 
zymosan particles were observed inside the phagocyte.

Cell Loss Associated With Zymosan
To examine the effect of the zymosan particles on cell loss, we 
compared the samples containing zymosan reporter particles and 
control samples from the same healthy individuals. The mean 
concentration of neutrophils and monocytes declined during the 
assay more rapidly in the presence of zymosan than in control 
samples, with the largest decline occurring between 90 and 
180 min (Figures 4A,B).

Furthermore, the concentration of neutrophils associated 
with zymosan-reporter signal peaked at 60  min, followed by a 
decline (Figure 4A). By contrast, the concentration of zymosan-
associated monocytes plateaus at 30 min (Figure 4B). However, 
in both cell types the peak in zymosan uptake coincided with cell 
loss, suggesting that zymosan plays a role in inducing cell death. 
This is also supported by increased cell loss at higher concentra-
tions of zymosan in the assay (Figure 2B).

These observations are consistent with neutrophil and 
monocyte biology. Neutrophils are known to have a short half-
life in vitro, estimated to be 6–12 h, and do not proliferate (24). 
Programmed cell death of neutrophils occurs rapidly following 
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FIGURe 1 | Gating strategy for identification of phagocytes with zymosan reporter particles and quantitation of intraphagosomal oxidation. (A) Gating strategy 
displaying forward scatter (FSC), side scatter (SSC), CD45 PerCP, CD66b APC, and CD14 PE-Cy7 to identify neutrophils and monocytes. The gating strategy 
illustrated is from one representative healthy volunteer. (B) Zymosan-induced superoxide burst activity in neutrophils and monocytes in a healthy control. The 
OxyBURST fluorescence increases after intraphagosomal oxidation of the zymosan-reporter particles (Alexa Fluor 405-labeled) after 10 and 60 min compared with 
control sample with no zymosan-reporter particles. (C) Overlay histogram demonstrating the shift in fluorescence of cells with zymosan reporter particles due to 
oxidation after 10 min (red), 30 min (orange), and 60 min (blue) compared with cells without zymosan-reporter particles (green) for both neutrophils and monocytes.
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phagocytosis of inflammatory particles, and reactive oxygen spe-
cies may be important triggers for induction of apoptosis (20). 
In neutrophils that have not phagocytosed zymosan particles, 
activation via direct binding of zymosan to TLR2 and TLR6 or in 
response to inflammatory cytokine and chemokine production 
may also contribute to cell death (12). By contrast, monocytes 
have an estimated half-life of <20 h in vivo, although this may be 
shorter ex vivo (25). Monocytes also undergo programmed cell 
death, unless they migrate to tissues and undergo differentiation 
into tissue macrophages (26). However, in contrast to neutrophils, 
inflammatory cytokine production and stimulation via TLR2 can 
promote survival by blocking programmed cell death (27). This 

may explain why monocytes that had phagocytosed zymosan 
reporter particles did not substantially decrease in number dur-
ing the assay.

Phagocytosis and superoxide Burst
Superoxide burst activity was measured at 10, 30, 60, 90, and 
180 min by comparing fluorescence of cells that had internalized 
zymosan reporter particles (calibration fluor-positive cells) with 
the cell population without zymosan (calibration fluor-negative 
cells) through measurement of the OxyBURST, superoxide sensor 
signal. The proportion of cells and intensity of superoxide reporter 
fluorescence increased over the time course of the assay in both 
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FIGURe 2 | Phagocytosis of zymosan reporter particles by monocytes and neutrophils. (A) Proportion of cells that have phagocytosed zymosan over time using 
blood from healthy individuals incubated with approximately 2 × 104 zymosan particles/ml. Data represent mean values, and the error bars indicate SEM. 
Concentration of neutrophils (B) and monocytes (C) that have internalized zymosan reporter particles over time, with varying concentrations of particles. 
Relationship between the proportion of cells internalizing zymosan reporter particles (at an approximate concentration of 2 × 104 zymosan particles/ml) and absolute 
cell concentration for neutrophils (d) and monocytes (e) after 60 min. Each data point represents one sample from each individual done in triplicate. Four healthy 
volunteers in triplicate are shown in panels (A,d,e), and one health volunteer is shown in panels (B,C).
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monocytes and neutrophils (Figures 1B,C). The intensity of the 
calibration fluorochrome signal did not increase over time, sug-
gesting the increase in superoxide reporter signal was not due to 
cells internalizing greater numbers of zymosan-reporter particles 
but was specific to the oxidase activity (Figure 1B).

Both peripheral blood monocytes and neutrophils showed 
rapid oxidation within 30–60  min (Figures  4C,D). The kinet-
ics of oxidation in neutrophils and monocytes were similar to 
macrophages in other studies, with rapid oxidation before an 
equilibrium being reached, which likely represents cessation of 
NADPH oxidase activity (6, 15).

When the concentration of zymosan reporter particles was 
varied, the AI remained constant despite the concentration and 
proportion of cells taking up zymosan changing. This indicates 

the assay is able to measure physiological changes in the intensity 
and duration of phagocytosis and superoxide burst within the 
phagosome at an individual cell level. This is a significant advance 
over existing assays, which measure the extracellular accumula-
tion of products of oxidation that is dependent on the summation 
of phagocytosis and superoxide burst (28). Moreover, because 
this assay has cellular resolution, the relative contribution of the 
different phagocyte subsets can be accurately measured. We have 
also demonstrated that the assay is reproducible with minimal 
intraindividual variation.

Assays using OxyBURST coupled to IgG coated beads have 
previously been used to investigate oxidation within macrophage 
phagosomes (6, 15), and more recently in whole blood (29). The 
current assay exploiting zymosan as a reporter particle is an 
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FIGURe 4 | Cell concentrations and activity index (AI) of superoxide burst over time. The concentration of neutrophils (A) and monocytes (B) at different time points 
from HIV-negative control samples without zymosan (green), and samples incubated with zymosan reporter beads that had internalized zymosan (blue) or did not 
internalize zymosan (red). In (C) neutrophils and (d) monocytes, each color represents the superoxide AI data from different individuals. The AIs are from four 
healthy, HIV-negative individuals, each performed in triplicate.

FIGURe 3 | Assessment of phagocytosis of zymosan reporter particles by 
electron microscopy. An electron micrograph illustrating zymosan particles (Z) 
inside a neutrophil 60 min post incubation of the reporter particles with whole 
blood. A red blood cell (R) can be seen to the right of the neutrophil. This 
image is representative and indicates that the zymosan particles are 
effectively internalized by cells in suspension. The scale bar = 1 µm.
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important addition to the range of phagocyte functional assays 
and offers considerable practical and technical advantages in 
the functional interrogation of whole blood direct from human 
subjects of interest.

Assessment of Whole Blood Phagocyte 
Function in Patients with hIV/tB 
Coinfection
The zymosan reporter assay was performed on blood samples 
obtained from 18 hospitalized HIV-positive patients with labora-
tory confirmed TB disease to compare phagocytic and superoxide 
respiratory burst activity in the phagosome between patients and 
healthy, HIV-negative, controls. The HIV/TB patients had a mean 
age of 41.4 years, a median CD4 cell count of 108.5 cells/mm3 
and 13/18 were taking antiretroviral therapy at the point of hos-
pital admission. The HIV/TB-coinfected patients demonstrated 
marked variation in phagosomal oxidation activity compared 
with healthy controls. The kinetics were similar to healthy 
controls with peak activity occurring at 30 min, although overall 
mean intensity of superoxide burst was significantly reduced 
throughout the assay (paired t-test, all p < 0.0001) (Figure 5A). 
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There was also a strong association between increased monocyte 
superoxide burst activity and the presence of a higher propor-
tion of “classical” CD14++CD16− monocytes (Figure 5B, linear 
regression coefficient 0.0014, 95% CI 0.0005–0.0024, p = 0.006). 
This association is consistent with the suggestion that classical 
monocytes are thought to specialize in phagocytosis compared 
with other monocyte subsets (30). However, the superoxide 
activity in monocytes was not related to the overall concentration 
of monocytes in patient’s blood (linear regression slope 0.0002, 
95% CI −0.0002 to 0.0005, p = 0.19), supporting the contention 
that the superoxide AI was not simply a function of phagocyte 
abundance.

These data demonstrate that the whole blood assay with 
zymosan reporter particles is a robust tool for assessing phago-
cyte function in a clinical setting. The time required to run the 
assay once the reporter particles have been made is minimal, 
with the processing of the sample through to acquisition by flow 

cytometry taking less than 4 h. We also demonstrated this assay 
can show marked differences between individuals and groups 
of patients based on clinical phenotype. It is interesting to note 
that the reduced superoxide burst in the phagocytes from HIV/
TB-coinfected individuals observed in this study is consistent 
with a recent report of impaired innate immune function of 
monocytes from HIV/TB-coinfected patient cohort in South 
Africa (31).

CoNCLUdING ReMARKs

We present a new method for studying whole blood phagocyte 
functional capacity ex vivo. This technique uses fluorescent-
tagged zymosan-reporter particles and whole blood, preserving, 
at least in part, the physiological in vivo conditions. It offers several 
advantages over standard microbiological killing assays because 
of its speed and simplicity, and its increased resolution whereby 

FIGURe 5 | Phagocytosis, superoxide burst, and monocyte phenotypes in peripheral blood phagocytes of HIV/tuberculosis (TB)-coinfected patients. (A) The 
superoxide burst activity index (AI) over time comparing cells from healthy individuals (blue) with cells from HIV/TB-coinfected patients (red). Lines represent means, 
and error bars are 95% CI. Mean AIs were lower in the HIV/TB patients at all time points analyzed (paired t-tests, all p < 0.0001). (B) The association between the 
proportion of HLA-DR+ monocytes that are CD14++CD16− (classical), CD14+CD16+ (intermediate), and CD14−CD16+ (non-classical), and monocyte phagocytosis 
and superoxide burst AI (measured as “area under the curve”). There is a strong association between higher proportions of classical monocytes and increased AI 
(p = 0.006) (n = 18). The data in panel (A) are from four health volunteers in triplicate, and the data in panel (B) are from 18 HIV/TB patients.
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cellular responses such as phagocytic capacity and superoxide 
burst, can be quantified at the level of the individual cell.

We have demonstrated that the assay can be used to charac-
terize immune function and to detect perturbation of cellular 
function in patients with severe immunological impairment  
(in HIV/TB-coinfected individuals). This assay is easily adaptable 
to standard immunological assays based on cell surface marker 
expression measured by flow cytometry and has the capacity 
to provide direct functional readouts of immune cell activities. 
Previously, we have used inert reporter particles to measure 
rates of phagosomal acidification, intraphagosomal proteolytic 
and lipolytic activities, as well as superoxide burst in tissue mac-
rophages in culture. These activities are differentially modulated 
by immune status and infection (7–9). The use of zymosan as an 
alternative, biologically active carrier particle for whole blood-
based assays brings these complex biological readouts into a 
clinical setting for functional interrogation of patient-derived 
samples linked to disease status.
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zymosan (Figure 2D, E) did not account for clustering of data due to observations being repeated in 
triplicate for individuals. Therefore, the linear regression analysis was repeated accounting for clustering 
amongst the same individuals. The association between concentration of phagocytic cells and proportion 
of cells taking up zymosan reporter particles remained, albeit the associations were less robust (p=0.049 
for monocytes and p=0.046 for neutrophils). 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/j.it.2010.05.006
https://doi.org/10.1016/j.it.2010.05.006
https://doi.org/10.1084/jem.128.3.415
https://doi.org/10.1084/jem.128.3.415
https://doi.org/10.1177/1087057109359687
https://doi.org/10.1177/1087057109359687
https://doi.org/10.1177/1087057109359687
https://doi.org/10.1177/1087057109359687
https://doi.org/10.1097/SHK.0000000000000715
https://doi.org/10.1097/SHK.0000000000000715
https://doi.org/10.1097/SHK.0000000000000715
https://doi.org/10.1097/SHK.0000000000000715
https://doi.org/10.1007/s12026-012-8297-3
https://doi.org/10.1007/s12026-012-8297-3
https://doi.org/10.1093/cid/cix254
https://doi.org/10.1093/cid/cix254
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


208 
 

  



209 
 

Chapter 8. Soluble and cell surface markers of 

immune response in hospitalised patients with 

HIV-associated TB  



210 
 

Chapter 8. Soluble and cell surface markers of immune response in hospitalised 

patients with HIV-associated TB 

 

Summary 

Understanding whether patients with poor outcomes have altered immune responses can help 

inform urgently needed strategies to reduce the high mortality from HIV/TB. Therefore I 

sought to measure cytokines, chemokines and markers of inflammation in plasma, as well as 

cell immunophenotype and activation, in patients with HIV-associated TB (HIV/TB) and 

compare patients who died with those who survived. I also compared HIV/TB patients with 

and without positive urine-diagnostic tests (a marker of disseminated TB). Patients with poor 

outcomes had higher concentrations of cytokines responsible for innate and pro-inflammatory 

signalling, and markers of inflammation such as CRP and hepcidin. They also had evidence of 

more marked monocyte activation and non-classical monocyte phenotype. There were no 

differences between HIV/TB patients with positive and negative urine diagnostic tests. 

 

 

8.1 Introduction (chapters 8 and 9) 

 

Despite sustained public health efforts, HIV-associated TB (HIV/TB) remains a leading cause of 

morbidity and mortality in sub-Saharan Africa. HIV/TB is the most common reason for 

admission to hospital, and is estimated to cause around one in four HIV-associated deaths 

[1,2]. This high mortality persists despite starting appropriate therapy for both HIV and TB, and 

the mechanisms of death are not clearly defined. Post-mortem studies demonstrate that 

disseminated TB is common [3], as are other bacterial and/or opportunistic infections [4,5], all 

of which are likely to contribute to poor outcomes, and may reflect a failure of host immune 

responses to control infection.  

Few studies have characterised and compared immune responses in HIV/TB patients with 

differing clinical outcomes. There is some evidence of innate immune activation with 

inflammation characterised by raised inflammatory biomarkers and plasma or serum cytokines 

involved in the innate immune response (eg IL-6 and TNFα) in patients who died compared to 

survivors [6]. However, studies examining immune responses to stimulation have also found 

hypo-responsiveness and dysfunction, particularly of monocytes [7,8].  

This type of intense immune activation accompanied by dysfunction, dysregulation and 

subsequent ‘immune suppression’ has been described in acute bacterial sepsis, and associated 

with mortality [9]. In HIV/TB co-infection, immune responses may be also be further perturbed 
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by the presence of HIV, which is only in part restored by antiretroviral therapy (ART) [10]. I 

therefore hypothesised that HIV/TB patients with poor outcomes have high levels of 

inflammatory cytokines and biomarkers (chapter 8), yet impaired functional responses 

indicative of immunosuppression (presented in chapter 9).  

I was able to identify patients with disseminated disease by detecting nucleic acids  of 

Mycobacterium tuberculosis complex (MTB, using the Xpert MTB/RIF assay), or 

lipoarabinomannan (LAM, using TB-LAM lateral flow assays) in urine, a sign of 

haematogenously disseminated renal TB [11,12]. Given that these patients have a higher 

mycobacterial burden, and poorer outcomes [13,14], I also sought to compare immune 

responses in patients with and without disseminated disease, hypothesising that dissemination 

would also be associated with similar immunological profiles to sepsis. 

Understanding whether patients with poor outcomes have altered immune responses can help 

inform urgently needed strategies to reduce the high mortality from HIV/TB, for example host-

directed or immune-modulatory treatments. Furthermore, simple rapid point-of-care urinary 

tests may help identify patients who may benefit from such adjunctive interventions. 

 

8.2 Aims (chapters 8 and 9) 

The overall aim of these investigations was to characterise immune responses in patients with 

microbiologically confirmed HIV/TB, and assess associations with mortality and/or 

disseminated TB.  

Specific aims were to characterise the following aspects of the peripheral (whole blood) 

immune response and compare them between HIV/TB patients by outcome (died or survived), 

and evidence of urine diagnostic test-positive disseminated diseased (see table 8.1): 

1. Cytokine, chemokine and inflammation soluble biomarker concentrations (both pro- 

and anti-inflammatory) and networks (chapter 8) 

2. Immune activation markers, and markers of exhaustion or senescence (chapter 8) 

3. Functional responses of the innate (phagocytosis and superoxide burst) and adaptive 

(T-cell cytokine production following stimulation) immune systems (chapter 9) 

Secondarily, I aimed to compare HIV/TB immune responses to those of hospitalised HIV-

positive (control) patients without evidence of TB to understand the contribution of TB to 

immune dysfunction. Finally, I sought to use the above immunological parameters to 

determine whether particular immune signatures were independently associated with 

mortality and/or disseminated disease (chapter 9).  
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Immune response Analysis of cell population 
and/or features 

Assay methods Results 

Pro-inflammatory 
signalling 

 

Multiplex-bead assays 

 

Innate Plasma IL-1, IL-6, IL-8, IL-
12p70, IFN-γ, TNF-α, MIP-
1, MCP-1, IP-10 

Table 8.7 
and 8.8; 
Figure 8.6 
and 8.7 

Adaptive Plasma IL-2, IL-4, IL-13, IL-
17A, IL-22 

 

Anti-inflammatory 
signalling  
 

Plasma IL-10, IL1-RA Multiplex-bead assays Table 8.7 
and 8.8; 
Figure 8.6 

Inflammation markers 
 

C-reactive protein, 
hepcidin 

ELISA Table 8.3; 
Figure 8.8  

Immune activation 
 

 
 

 

Innate 
 
 
 

Monocyte HLA-DR, 
monocyte phenotype, 
sCD14, sCD163, 
Neutrophil CD66b and 
Cd11b expression 

Flow cytometry 
immunophenotyping 

Table 8.9; 
Figure 8.8 

Adaptive T-cell HLA-DR and CD38 
expression 
 

Table 8.10 

Immune exhaustion T-cell PD-1 and CD57 
expression 

Flow cytometry 
immunophenotyping 
 

Table 8.10 

Immune cell function    

Innate 
 

Phagocytosis and super 
oxide burst 

Whole blood zymosan 
phagocytosis assay  

Figure 9.2 
to 9.4; 
Table 9.1 

 Monocyte cytokine 
response to stimulation 

Intracellular cytokine 
stimulation assays 

 

Adaptive T-cell response to 
stimulation 

Intracellular cytokine 
stimulation assays 
 

Table 9.2 
and 9.3; 
Figure 
9.8-9.12 

Table 8.1 Summary of analysis of immune responses. Abbreviations: IL interleukin, IFN interferon, TNF 
tissue necrosis factor, MIP macrophage inflammatory protein, MCP monocyte chemoattractant protein, 
IP interferon-gamma induced protein, ELISA enzyme-linked immunosorbent assay, CD cluster of 
differentiation, HLA-DR human leucocyte antigen – antigen D related, PD programmed cell-death 
receptor  
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8.3 Methods 

 

Study design and participants 

The study was a prospective cohort study of patients with HIV-associated TB nested within the 

STAMP trial at the Zomba Central Hospital site in Malawi. The hospital setting, procedures and 

eligibility criteria for the STAMP trial have been described previously (see chapters 2 and 3) 

[15,16]. 

Participants were eligible for the immunology sub-study if they were enrolled in the STAMP 

trial and had a laboratory confirmed TB diagnosis (positive with a STAMP study Xpert MTB/RIF 

or TB-LAM test, or a non-study Xpert MTB/RIF result or positive mycobacterial culture). 

Patients who started TB treatment in the absence of a confirmatory diagnostic test were not 

included. There were no additional inclusion or exclusion criteria. Patients were approached 

about the immunology sub-study and asked to provide written informed consent to 

participate. All eligible patients and reasons for not enrolling were documented. 

An additional group of ‘control’ patients without TB disease who were enrolled in the STAMP 

trial and matched by baseline CD4 cell count to enrolled HIV/TB patients were also recruited. 

These patients were approached if their STAMP TB screening test results were negative. ‘TB-

negative’ control patients were excluded if they were diagnosed with TB during the study 

period, or had clinical signs or symptoms of TB at the 56-day follow-up visit.  

 

Immunological laboratory assays 

Laboratory procedures have been summarised in figure 8.1. 

 

Flow cytometry 

Immunophenotyping assays were undertaken using a CyAn ADP flow cytometer (Beckman 

Coulter). This flow cytometer has three lasers which excite fluorochromes at the following 

wavelengths: 488nm (blue laser), 405nm (violet laser) and 640nm (red laser) and has nine 

detection filter channels. Intracellular cytokine staining assays (chapter 9) were acquired on an 

LSR Fortessa (BD Biosciences) flow cytometer. This also has three lasers but has eleven 

detection filter channels. 

Antibody staining panels were constructed so that brighter fluorochromes were paired with 

antibodies to less commonly expressed markers, and markers on the same cell were selected 

from different lasers to minimise spectral overlap and spill over. Titration of antibody 

concentrations was first done  
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Figure 8.1 Summary of immunological procedures. Procedures in white boxes were done in real time, 

procedures in blue boxes were done in batches on stored frozen samples. 

 

individually and then tested as part of the panel. The lowest antibody concentrations that gave 

maximum separation of positive and negative populations were chosen.  

Flow cytometers were maintained as per manufacturer’s recommendations, and as per local 

protocols, and including regular cleaning and calibration. Standard protocols for each panel 

were constructed and used for all experiments. Each day the flow cytometer was used, 

standardised beads with known fluorescence (8 peak Rainbow Calibration Beads, Sphero for 

the CyAn and Cytometer Setup & Tracking Beads, BD biosciences, for the LSR Fortessa) were 

used to adjust and standardise photomultiplier tube (PMT) voltages. 

Compensation for spectral overlap was done by acquiring unstained and single-stained 

samples. Single-stained samples used compensation beads (AbC Total Antibody Compensation 

Bead Kit, Thermo Fisher Scientific) bound to antibody and with negative controls. 

Compensation matrices were automatically generated and applied for each panel by flow 

cytometry acquisition software (Summit for the CyAn, Beckam Coutler, and FACS Diva for the 

LSR Fortessa, BD Biosciences). All flow cytometry data were analysed using FlowJo version 10 

(TreeStar). For analysis, gating strategies for markers without clear positive and negative 
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populations were validated using fluorescence minus one (FMOs) experiments, meaning that 

cells were stained with antibodies except for the one of interest (figure 8.2). 

 

 

 

Figure 8.2 Fluorescence minus one control. Top row represents controls without the antibody to the 
marker of interest, which was used to identify the negative population and draw the gate for the 
positive population. The bottom row is the full antibody panel. The same results were achieved using 
internal negative controls. Abbreviations: CD cluster of differentiation, PD programmed cell death, SS 
side-scatter, FMO fluorescence minus one. 

 

 

Immunophenotyping assays 

Immunophenotyping of monocytes and T-lymphocytes was undertaken using antibody cell 

surface staining followed by flow cytometry. 200µL of fresh heparinised whole blood was 

incubated with 1:200 concentration of fixable violet viability stain (Thermo Fisher Scientific) for 

30 minutes at room temperature, followed by staining with one of two antibody panels (see 

table 8.2, one panel predominantly for monocytes, the other for T-cells) for 10 minutes. Red 

blood cells were lysed, and leukocytes fixed with BD FACS lysing solution, washed once with 1 

× PBS by centrifugation at 500 g for 10 min then resuspended in 300 µl PBS for flow cytometry 

acquisition. 

A separate panel was used to assess exhaustion and senescence of T-lymphocytes. After 

excluding doublets, dead cells and debris, lymphocytes were identified based on CD45 

expression and side-scatter. CD8 and CD4 expressing T-lymphocytes were then assessed for 

expression of PD-1 and CD57 (figure 8.3C). 
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Antibody Fluorochrome Panel Concentration Clone Company 

Viability 405/450 1,2,3,4 1:100  Thermo Fisher 
Scientific 

CD66b APC 1 1:100 G10F5 IgM Biolegend 

CD14 PE-Cy7 1 2:100  M5E2 IgG2a Biolegend 

CD16 FITC 2 1:100 3G8 IgG1  Biolegend 

CD14 PE 2 1:100  M5E2 IgG2a Biolegend 

CD38 PE-Dazzle 594 2 1:100 HIT2 IgG1 Biolegend 

HLA-DR PECy7 2 1:100 L243 IgG1  Biolegend 

CD45 Pacific Orange 2,4 1:100 HI30 IgG2a Invitrogen 

CD3 APC-H7 2,3,4 1:100  SK7 IgG1 Biolegend 

CD45 PerCP 1,3 3:100 HI30 IgG1 Biolegend 

CD8 PE-Dazzle  3,4 1:100 SK1 IgG1 Biolegend 

CD4 BV421 3 1:100 SK3 IgG1 Biolegend 

CD57 APC 3 2:100 HNK-1 IgM Biolegend 

PD-1/ 
CD279 

PECy7 3 2:100 EH12.2H7 
IgG1 

Biolegend 

CD69 BV510 3 1:100 FN50 IgG1 Biolegend 

CD66b PE 3 1:100 G10F5 IgM Biolegend 

CD11b AF700  3 1:100 M1/70 IgG2b Biolegend 

CD14 BV605 4 5:100 M5E2 IgG2a Biolegend 

CD4 PerCPCy5.5 4 1:100 SK3 IgG1 Biolegend 

IL-22 PE-Cy7 4 5:100 4S.B3 IgG1 eBioscience 

IFN-γ PE 4 5:100 Mab11 IgG1 Biolegend 

TNF-α FITC 4 5:100 MQ2-13A5 
IgG1 

Biolegend 

IL-6 AF700 4 5:100 JES3-9D7 
IgG1 

eBioscience 

IL-10 APC 4 5:100 22URTI IgG1 Biolegend 
Table 8.2 Antibodies used for flow cytometry. Panels: 1 was used for phagocytosis assay (chapter 9), 2 
was immunophenotyping of monocytes, 3 was immunophenotyping of T-cells, 4 was for intracellular 
cytokine staining. Abbreviations: CD cluster of differentiation, HLA-DR human leucocyte antigen – 
antigen D related, IL interleukin, IFN interferon, TNF tissue necrosis factor, PD programmed cell death, 
APC Allophycocyanin, PE Phycoerythrin, FITC fluorescein isothiocyanate, Cy cyanine, AF Alexa fluor, 
PerCP peridinin-chlorophyll. 

 

Standardised gating strategies were used for all panels (illustrated in figure 8.3). After 

excluding doublets, dead cells and debris, CD45+ leukocytes were selected. Monocytes were 

gated based on side-scatter and HLA-DR staining, and then divided into three subsets based on 

expression of CD14 and CD16 (figure 8.3A)- classical (CD14+CD16-), intermediate (CD14+CD16+) 

and non-classical monocytes (CD14-CD16+) [17].  

Lymphocytes were identified based on CD45 and side-scatter, and then T-lymphocytes gated 

based on CD3 expression. CD3+ T-cells were then assessed for activation based on expression 

of HLA-DR and CD38 (figure 8.3B), with activated cells defined as expressing HLA-DR or CD38. 

HLA-DR and CD38 expression can be continuous (rather than binary), therefore gating was 
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done using CD3- T-lymphocytes (which show distinct positive or negative populations) as 

internal negative controls.  

 

Plasma cytokines and chemokines 

Plasma was harvested from whole blood and immediately frozen at -80°C. I undertook enzyme 

linked immunosorbent assays (ELISAs) in batches for measurement of plasma concentrations 

of soluble CD14 (sCD14), soluble CD163 (sCD163, both Quantikine kits, R&D systems) and 

hepcidin (DRG International) as per manufacturers’ instructions. In brief, titration experiments 

were undertaken to determine the optimal dilution of plasma for each ELISA assay. An 

automated microplate washer (Biochrom) was used to optimise processing, and plates were 

read using a microplate reader at 450nm. All samples were processed in duplicate, and 

standard curves were constructed by generating a four-parameter logistic curve fit. 

The levels of 34 cytokines and chemokines (IL-12, IL-23, IL-27, monocyte chemoattractant 

protein (MCP)-1 (CCL2), regulated on activation, normal T cell expressed and secreted 

(RANTES, or CCL5), GRO-α (CXCL1), stromal cell-derived factor (SDF)-1α (CXCL12), interferon-γ-

inducible protein (IP)-10 (CXCL10), Eotaxin, granulocyte–macrophage colony-stimulating factor 

(GM-CSF), IFN-α, IFN-γ, IL-1α, IL-1β, IL-1RA, IL-10, IL-13, IL-15, IL-17A, IL-18, IL-2, IL-21, IL-22, IL-

31, IL-4, IL-5, IL-6, IL-7, IL-8 (CXCL8), IL-9, macrophage inflammatory protein (MIP)-1α, MIP-1β, 

TNF-α and TNF-β) were also measured from stored plasma using a magnetic-bead multiplex 

assay (ProcartaPlex 34-plex Human Cytokine and Chemokine Panel 1A, eBioscience). Samples 

were tested in duplicate according to the manufacturer’s protocols, and reported as 

concentrations per mL based on standard curves generated by Procarta Analyst v1.0 software 

(eBioscience). Concentrations below the limit of detection were recorded as half of the lower 

limit. Analytes were excluded from analysis if not detected in over 50% of the samples tested. 

 

Other laboratory assays 

C-reactive protein (CRP) was measured from frozen plasma using the Beckman Coulter AU 

Analysers by staff at the MLW diagnostics laboratory. HIV-1 viral load was also measured from 

frozen plasma using HIV-1 Quantitative assay on the GeneXpert platform (Cepheid), with a 

lower limit of detection of 40 copies/mL. Cryptococcal antigen (CrAg) was measured using the 

qualitative CrAg lateral flow assay (Immy) as per manufacturer protocol, and LAM in frozen 

plasma was measured using the Determine TB-LAM assay (Alere, plasma is a non-validated 

specimen for the TB-LAM assay). 
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Figure 8.3 Flow cytometry gating strategy for monocyte and T-lymphocyte immunophenotyping. A. 
Monocytes were identified after exclusion of dead cells, doublets and debris, and after identifying 
leucocytes based on side-scatter (SS) and CD45 expression. Monocytes were defined as moderate SS 
and expressing HLA-DR, and then subdivided based on expression of CD14 and CD16. B. In the same 
panel as A, lymphocytes were identified based on low SSC and high CD45 expression, then T-
lymphocytes identified based on CD3 expression. Gating for activated T-cells was based on HLA-DR and 
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CD38. C. In a separate panel, after exclusion of dead cells, doublets and debris, granulocytes were gated 
on high SSC and lower CD45 expression, and assessed for CD66b and Cd11b. Lymphocytes were 
identified based on low SSC and high CD45 expression, then CD4 and Cd8 T-cells gated and assessed for 
senescence based on CD57 and exhaustion based on PD-1 expression. Abbreviations: CD cluster of 
differentiation, HLA-DR human leucocyte antigen – antigen D related, PD programmed cell death, SS 
side-scatter, FS forward scatter. 

 

 

Statistical methods 

Preliminary data review was done for all variables with basic descriptive statistics, including 

graphical displays to identify distributions, spread and maximum and minimum values. Outliers 

were reviewed for evidence of contamination, operator error or mechanical failure. All 

analyses were performed based on existing data; it was assumed that any missing data was 

missing at random and no data imputation was done.  

Simple descriptive statistics were done for continuous variables by calculating means or 

medians, standard deviations and interquartile ranges, and comparing groups using parametric 

tests (t-test) or non-parametric tests (Wilcoxon rank sum or Kruskal Wallis tests) depending on 

the distribution. Categorical data were summarised with proportions (and 95% confidence 

intervals if appropriate), and compared using χ² or Fisher’s exact tests. All statistical tests were 

two-sided at α value of 0.05.  

For plasma cytokine and soluble protein analysis, mean (and standard deviation, SD) or median 

(and interquartile range, IQR) concentrations were compared between patients who died and 

survived, and those with disseminated and non-disseminated disease. P-values were corrected 

using the Benjamini-Hochberg procedure for multiple-testing, assuming a 10% false-discovery 

rate. Data were log transformed and Cox regression modelling was also used to calculated 

hazard ratio (HR) for mortality of plasma cytokines and chemokines, with the HR representing 

a doubling of concentration. Any variables with >25% missing data were excluded. 

Cytokine networks were assessed by constructing pairwise correlation matrices for all 

cytokines and chemokines using Spearman’s rank correlation. The number of correlations for 

each patient group (controls and HIV/TB patients, HIV/TB patients who died or survived and 

disseminated and non-disseminated HIV/TB) were reported, and Rho values and p-values for 

pairwise correlations were displayed using heatmaps for each group. 

Analyses were done using Stata version 14 and GraphPad version 7.0. 
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8.4 Results 

 

Between 22 June 2016 and 28 August 2017, we recruited 66 consecutive laboratory-confirmed 

HIV/TB patients for the immunology cohort study (figure 8.4). One patient died before blood 

samples could be taken and was therefore excluded. No other patients were excluded or 

declined participation. Sixteen HIV-positive control patients enrolled in the STAMP trial with 

negative TB screening tests and not subsequently diagnosed with TB were also recruited 

during the same period. None of the control patients had signs or symptoms consistent with 

TB, nor were diagnosed with TB during the study follow-up. 

 

 

 

Figure 8.4 Study patient flow diagram 

 

Baseline characteristics 

The mean age of HIV/TB patients was 38.0 years and 57% of patients were female (table 8.3). 

14% of patients were newly diagnosed with HIV at admission. Of those who knew their HIV 

status, 88% were currently taking ART for a median duration of 1.1 years (IQR 0.1 to 4.6), 5% 

were ART-naïve and 7% had interrupted their ART. In those on ART for at least six months 

(n=27), 44% had viral loads greater than 1000 copies/mL (median 281,500 copies/mL, IQR 

31,195 – 590,000). The overall median CD4 cell count was 79 cells/µL (IQR 35-194), showing 

advanced immunosuppression. 

 

One-third (33%) presented with one or more WHO danger signs (heart rate >120 beats per 

minute, respiratory rate >30 breaths per minute, temperature >39°C or unable to walk 

unaided), and 26% had sepsis criteria. There was evidence of poor nutritional state: median 

BMI was 18.0 (57% were underweight), and median MUAC was 20.6 cm. Median CRP was 117 

and median haemoglobin was  
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 TB 
negative 
control 
patients  

 HIV/TB patients   

Characteristic All Disseminated  
urinary TB 

Died Survived 

 Yes No 

n=16 n=65 n=54  n=11  n=23 n=42  

Age, mean, years 
(SD) 

43.6 
(15.7) 

38.0 
(9.4) 

38.4  
(8.9) 

36.4 
(11.6) 

39.2 
(9.8) 

37.4  
(9.2) 

Sex, % female 62.5 56.9 61.1 36.4 43.5 64.3 

Cough, % Yes 62.5 69.9 64.8 90.9 65.2 71.4 

Length of illness, 
median weeks 
(IQR) 

1  
(0-4) 

2  
(1-4) 

2  
(1-4) 

2  
(1-2) 

2  
(1-4) 

2.0  
(0-4) 

ART status, % 
      

New HIV Dx 18.8 13.9 16.7 0.0 17.4 11.9 

ART naïve 0.0 4.6 1.9 18.2 0.0 7.1 

Currently taking 81.3 75.4 75.9 72.7 78.3 73.8 

Interrupted 0.0 6.1 5.6 9.1 4.4 7.1 

Time on ART, 
median, years 
(IQR) 

6.1  
(4.9-8.1) 

1.1  
(0.1-4.7) 

1.9  
(0.1-6.7) 

0.4  
(0.0-1.0) 

2.2  
(0.1-9.1) 

1.0  
(0.1-4.2) 

Weight, median, 
kg (IQR) 

50.0  
(41-52) 

47.3 
(40-52) 

47.2 
(40-53) 

51.0 
(38-52) 

45.0 
(40-50) 

46.6 
(39-53) 

BMI, mean (SD) 19.3 (2.8) 18.0 
(3.2) 

18.0 (3.2) 17.7 (3.3) 17.8 
(2.8) 

18.1 (3.4) 

MUAC, mean, cm 
(SD) 

21.5 (2.9) 20.6 
(3.2) 

20.6 (3.1) 20.4 (3.5) 19.8 
(2.6) 

21.0 (3.4) 

Blood Pressure, 
mean 

      

SBP 114.8 103.4 102.6 107.6 102.2 104.1 

DBP 78.1 70.8 71.0 70.0 69.7 71.3 

Heart Rate, mean, 
bpm 

95.0 100.0 99.1 104.0 98.5 100.8 

Oxygen 
saturation, mean, 
% 

95.5 95.0 95.3 94.0 95.2 95.0 

Temperature, 
mean, °C 

36.6 36.1 36.6 36.5 36.5 36.7 

Respiratory rate, 
mean, bpm 

22.7 23.3 23.2 23.5 23.7 23.0 

Karnofsky score , 
mean 

56.0 50.0 50.0 51.0 44.8 52.6 

WHO danger 
signs, % Yes 

18.8 33.9 35.2 27.3 39.1 31.0 

Sepsis criteria, % 
Yes 

12.5 26.2 27.8 18.2 21.7 28.6 

CD4 count, 
(median, cells/µL 
(IQR) 

92.5  
(39-207) 

79.0 
(35-194) 

76.5  
(29-180) 

112.0 
(67-243) 

37 
(22-115) 

113 
(54-245) 

HIV VL, log 
copies/ml 

5.2 3.0 3.0 3.5 3.8 3.1 
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HIV VL >1000 
copies/ml, % Yes 

62.5 53.9 51.9 63.6 60.9 50.0 

Haemoglobin, 
mean, g/dL (SD) 

8.4 (3.5) 7.9 (2.4) 7.7 (2.5) 9.0 (1.5) 7.6 (2.1) 8.0 (2.6) 

CRP, median, 
g/mL* 

33.8 117.1 122.1 74.1 132.7 56.7 

CrAg positive, % 
Yes 

0.0 14.8 15.7 10.0 23.8 10 

Table 8.3 Baseline characteristics. Numbers are either means, medians or proportions. Median ART 
duration is only presented for patients currently reporting ART use. *missing CRP values for 12 patients. 
Abbreviations: ART antiretroviral therapy, BMI body mass index, MUAC mean upper arm circumference, 
VL viral load, CRP C-reactive protein, CrAg cryptococcal antigen. 

 

7.9 g/dL, with 40% having severe anaemia (haemoglobin <8 g/dL). 28% (18/65) had life-

threatening anaemia (haemoglobin <6.5 g/dL). 14.8% of patients were CrAg positive on 

plasma. Baseline characteristics of the control patients were similar to the HIV/TB patients, 

although the mean age was slightly older, median time on ART was longer and they were less 

likely to have WHO danger signs or sepsis at presentation. 

TB diagnosis 

All patients were able to provide urine, and 60% of patients produced a sputum sample for TB 

testing. 45% of patients were sputum Xpert positive, 48% were urine Xpert positive and 65% 

were urine LAM positive (figure 8.3). Disseminated TB was very common, with 83% (54/65) of 

patients having evidence of urinary TB on either LAM or Xpert testing, and only 17% having 

non-disseminated TB. Median time from admission to TB treatment was 2 days (IQR 2-3 days). 

 

18 (28%) of 65 patients with TB were positive on urine and sputum diagnostics, 10 (15%) of 

patients were positive on all three tests and 26 (40%) patients were only positive on urine tests 

(figure 8.5). 34 (52%) of patients were positive on one urine diagnostic test (urine TB score = 

1), and 20 patients (31%) were positive on both urine test (urine TB score =2). Of those who 

were urine LAM positive, 51% were grade 1 positive, 16% were grade 2 positive and 33% were 

grade 3 or more positive. Patients with disseminated TB were more likely to be female, have a 

lower median CD4 cell count and higher CRP than those without dissemination. 
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Figure 8.5 HIV/TB patients by sputum and urine diagnostic test status. All patients were positive 

using at least one assay. LAM is Determine TB-LAM assay, urine Xpert is Xpert MTB/RIF on 

concentrated urine, sputum Xpert is Xpert MTB/RIF. n=65 

Outcomes 

Despite TB screening and prompt TB treatment, mortality in the HIV/TB patients was high. 

35.4% (23/65) patients died within 2 months, with no patients lost to follow-up. 74% (17/23) 

of deaths were during inpatient admission, and median time to death was 13 days (IQR 5-35 

days). 26% (6/23) of deaths were within 1 week of admission. 

HIV/TB patients who died were more likely to be male, have a lower Karnofsky score 

(p=0.002), lower CD4 cell counts (p=0.025), and higher CRP (p=0.043, table 8.4). TB diagnostic 

test results strongly predicted outcome (table 8.4 and 8.5). Patients with disseminated TB (any 

positive urine test) had a four-fold increase in mortality compared to non-disseminated TB 

(p=0.029). Mortality was also strongly associated with urine TB score (table 8.4, p= 0.005).  

HIV/TB patients were admitted to hospital for a median of 10 days (IQR 5-20 days) overall, and 

16 days (IQR 15-27 days) if discharged alive. Control patients without TB had a lower mortality 

(18.8% at 56-days) than HIV/TB patients. Their median length of stay was also much shorter (5 

days). 



224 

 Characteristic 
Hazard ratio 
(unadjusted) 

Lower 95% 
CI 

Upper 95% CI p-value

Age (years) 1.02 0.97 1.07 0.435 

Gender (female) 0.51 0.22 1.16 0.106 

Cough 1.34 0.57 3.17 0.507 

Length of illness (weeks) 0.99 0.87 1.12 0.843 

ART naïve 0.82 0.28 2.42 0.717 

Time on ART (year) 1.11 0.99 1.25 0.098 

weight (kg) 0.99 0.95 1.03 0.594 

BMI 0.98 0.87 1.11 0.762 

MUAC (cm) 0.90 0.80 1.03 0.125 

Karnofsky score 0.93 0.90 0.97 0.002* 

WHO danger signs 1.43 0.50 4.15 0.507 

Sepsis 0.69 0.21 2.30 0.545 

CD4 count (cells/µL) 1.00 0.99 1.00 0.025 

HIV VL (log) 1.09 0.90 1.32 0.361 

HIV VL >1000 copies/ml 1.34 0.58 3.10 0.489 

Haemoglobin (g/dL) 0.99 0.98 1.01 0.466 

CrAg postive 1.92 0.70 5.26 0.231 

TB diagnostics 

Sputum Xpert +ve (%) 2.11 0.37 11.86 0.432 

Urine Xpert 5.67 1.83 17.55 0.002* 

Urine LAM +ve (%) 1.93 0.72 5.20 0.170 

Urine TB score 

1 3.36 0.43 26.56 
0.005* 

2 9.72 1.27 74.52 
Table 8.4 Clinical baseline variables and associations with mortality. Hazard ratios are for every on unit 

increase in continuous variables. P-values are calculated by likelihood ratio testing. *indicated p-values 

that remained significant after correction with the Benjamini-Hochberg procedure for multiple 

comparisons.  Abbreviations: CI confidence interval 

N Survived Died Mortality 
(%) 

Mortality 95% CI 

Sputum Xpert +ve 29 19 10 34.5 18.9 - 54.3 

Urine Xpert +ve 31 14 17 54.8 36.4 - 72.0 

Urine LAM +ve 43 25 18 41.9 27.6 - 57.5 

Pulmonary TB only* 11 10 1 9.1 0.9 - 53.7 

Disseminated urinary TB 54 32 22 40.7 28.1 - 54.6 

Urine TB score – 1 34 25 9 26.5 14.1 – 44.2 

Urine TB score – 2 20 7 13 65.0 40.4 - 83.6 
Table 8.5 Outcome and TB diagnostic results. Data are number of patients. Urine score is calculated by 

the sum of positive urine TB assays. *only sputum assay(s) were positive for TB, urine assays were 

negative, equivalent to urine TB score=0.   
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Cell types 

There were no differences in leucocyte differentials (based on flow cytometry data) between 

patient groups, other than HIV/TB patients who died having a lower proportion of lymphocytes 

than survivors (p=0.036), which is consistent with the lower CD4 cell count and more advanced 

HIV in this group. CD4:CD8 ratios were universally decreased consistent with low absolute and 

relative CD4 cell counts in this population. Similarly, HIV/TB patients with disseminated TB had 

a higher proportion of CD8+ lymphocytes and lower proportion of CD4+ lymphocytes than 

those without disseminated disease (54.3% compared to 30.9% CD8+, 8.6% compared to 13.8% 

CD4+, p=0.03) (table 8.6). 

characteristic 

TB 
negative 
control 
patients 

HIV/TB patients 

All Disseminated urinary TB Died Survived 

Yes No 

n=16 n=65 n=54 n=11 n=23 n=42 

Monocytes (% of 
leucocytes) 

5.0 (3 - 8) 5.3 (3.2 - 
11.7) 

4.8 (2.7 - 
11.7) 

8.6 (5.3 - 
19.1) 

3.8 (2.6 - 
11.7) 

5.5 (3.5 - 
11.7) 

Neutrophils (% of 
leucocytes) 

52.7 (39.2 
- 69.2)

55.6 (37.5 - 
72.2) 

55.1 (36.8 - 
74.4) 

58.3 (37.5 - 
68.3) 

64.6 (42.9 - 
74.4) 

54.7 (37 - 
69.5) 

Neutrophils 
(x109/L) 

8.5 (4.3 - 
14.2) 

4.5 (1.6 - 
11.2) 

4.5 (1.8 - 
10.8) 

5.1 (1.6 - 
11.7) 

3.5 (1.3 - 
25.2) 

6.7 (2.1 - 
11.2) 

Monocytes 
(x109/L) 

0.6 (0.2 - 
1) 

0.3 (0.1 - 
0.7) 

0.3 (0.1 - 
0.7) 

0.3 (0.2 - 
0.8) 

0.2 (0.1 - 
0.9) 

0.3 (0.2 - 
0.7) 

Lymphocytes (% 
of leucocytes) 

21 (10.3 - 
30.8) 

17.4 (7.6 - 
29.2) 

16.0 (7.6-
29.2) 

17.7 (7.1-
41.5) 

11.9 (6.7-
18.6) 

20.7 (8.4-
40.4) 

T-cells (% of all
lymphocytes)

74.1 (58.1 
- 83.9)

67.5 (59 - 
76.1) 

67.7 (60.4-
78.0) 

63.9 (58.5-
73.3) 

64.3 (55.5-
72.2) 

68.4 (61.9-
78.75) 

CD4+ T- cells (% of 
T-lymphocytes)

4.7 (3.1 - 
10.2) 

10 (3.6 - 
17.2) 

8.6 (3.6 - 
13.2) 

10.3 (3.6 - 
19.7) 

8.6 (3 - 
14.5) 

13.8 (10 - 
23.8) 

CD8+ T- cells (% of 
T-lymphocytes)

33.6 (15.1 
- 46.4)

52 (29.8 - 
63.9) 

51.4 (32.7 - 
60) 

52.2 (29.3 - 
65) 

54.3 (31.9 - 
65.7) 

30.9 (14.4 - 
52.3) 

CD4:CD8 ratio 0.2 (0.1 - 
0.4) 

0.2 (0.1 - 
0.5) 

0.2 (0.1 - 
0.3) 

0.5 (0.2 - 
0.9) 

0.1 (0.1 - 
0.3) 

0.2 (0.1 - 
0.6) 

Table 8.6 White cell differentials. Abbreviations: CD cluster of differentiation. 

Plasma cytokines and chemokines 

We assessed concentrations of cytokines and chemokines in plasma, and compared patients 

by disseminated disease status (table 8.7) and outcome (table 8.8). Levels of all proteins were 

in the detectable range other than IL-27, IL-9, IFN- and TNF-, which were therefore 

excluded. IFN- levels were higher in patients who died than those who survived, however 

TNF- levels were not. 
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Cytokine or 
chemokine 

Disseminated HIV/TB  
p-valueYes (n=10) No (n=51) 

IFN- 369.8 (173.4 - 867.8) 188.8 (188.8 - 148.7) 0.173 

IL-12p70 21.6 (10.9 - 56.7) 30.2 (30.2 - 6.5) 0.938 

IL-13 39.3 (11.4 - 64.9) 37.9 (37.9 - 24.1) 0.711 

IL-1beta 35 (19.9 - 67.4) 50.2 (50.2 - 11.6) 0.370 

IL-2 62.3 (29.1 - 104.5) 87.6 (87.6 - 53.5) 0.360 

IL-4 667 (287 - 1317) 1001.9 (1001.9 - 524.1) 0.173 

IL-5 128.8 (34.5 - 246.7) 262.2 (262.2 - 89.7) 0.096 

IL-6 314.5 (182.2 - 540.5) 318.9 (318.9 - 290.2) 0.340 

TNF- 93.9 (44.1 - 154.5) 90.7 (90.7 - 60.2) 0.907 

GM-CSF 91 (32.9 - 179.7) 148 (148 - 76.5) 0.170 

IL-18 407.6 (102.4 - 803.2) 183.5 (183.5 - 79.9) 0.381 

IL-10 29 (10.1 - 67.9) 35.1 (35.1 - 6.9) 0.969 

IL-17A 72.9 (35.5 - 116.9) 55.5 (55.5 - 34.1) 0.800 

IL-21 200.4 (80.2 - 290.6) 172.2 (172.2 - 81.9) 0.846 

IL-22 378.5 (219.2 - 542.4) 512.4 (512.4 - 237.8) 0.311 

IL-23 121.9 (72.5 - 227.2) 233.5 (233.5 - 136.6) 0.025 

IL-15 74.2 (43.4 - 107.3) 94.7 (94.7 - 67.4) 0.284 

IL1- 13.7 (4.2 - 54.2) 19.9 (19.9 - 2.7) 0.869 

IL1-RA 3751 (991.2 - 7215.3) 2290.1 (2290.1 - 1234.3) 0.293 

IL-7 18 (4.3 - 45.6) 36.5 (36.5 - 16) 0.250 

Eotaxin 32.2 (8.4 - 58.2) 44.9 (44.9 - 17.3) 0.533 

GRO- 49.9 (14.2 - 99.5) 124.8 (124.8 - 58.1) 0.012 

IL-8 54.8 (31.5 - 102.9) 72.5 (72.5 - 48.5) 0.424 

IP-10 99.1 (41.8 - 317.5) 171.8 (171.8 - 41.3) 0.599 

MCP-1 156.8 (68.1 - 352.1) 91.2 (91.2 - 57.1) 0.320 

MIP-1 67 (39.1 - 111.5) 85 (85 - 65.4) 0.302 

MIP-1β 238.4 (139.6 - 324.2) 141.2 (141.2 - 106.4) 0.025 

SDF-1 491.8 (277 - 665.2) 489.1 (489.1 - 263.2) 0.907 

RANTES 45.5 (20 - 75.1) 77.3 (77.3 - 46.5) 0.070 

Table 8.7 Plasma cytokine and chemokine concentrations in HIV/TB patients with and without 
disseminated TB disease. P-values calculated by Wilcoxon rank sum test. *indicates p-values that 
remained significant after correction with the Benjamini-Hochberg procedure for multiple comparisons. 
Data missing for 4 individuals. Abbreviations: CD cluster of differentiation, IQR interquartile range, CI 
confidence interval, IL interleukin, IFN interferon, TNF tissue necrosis factor, MIP macrophage 
inflammatory protein, MCP monocyte chemoattractant protein, IP interferon-gamma induced protein, 
SDF stromal cell-derived factor, RANTES regulated on activation, normal T cell expressed and secreted. 



227 

Cytokine or 
chemokine  

Died (n=21) 
median pg/mL (IQR) 

Survived (n=40) 
median pg/mL (IQR) 

Hazard Ratio 
(95%CI) 

p-value

IFN- 400.7 (209 - 1255) 291.4 (291.4 - 148) 1.28 (0.99 - 1.66) 0.047 

IL-12p70 21.6 (10.9 - 42.5) 23.8 (23.8 - 10) 0.87 (0.68 - 1.12) 0.291 

IL-13 36.2 (13.4 - 59.3) 43.4 (43.4 - 17.4) 0.93 (0.73 - 1.2) 0.598 

IL-1β 50.9 (26.1 - 68.2) 36.1 (36.1 - 16.5) 1.23 (0.93 - 1.65) 0.132 

IL-2 55 (33.4 - 104.5) 71.9 (71.9 - 31.7) 0.86 (0.68 - 1.08) 0.212 

IL-4 406.1 (224 - 791.3) 970.4 (970.4 - 522.4) 0.69 (0.53 - 0.91) 0.01* 

IL-5 114.8 (37 - 550.7) 149 (149 - 47.3) 0.93 (0.78 - 1.1) 0.397 

IL-6 540.5 (283.1 - 656.3) 294.9 (294.9 - 189.2) 1.77 (1.23 - 2.54) 0.002* 

TNF- 124.2 (58.5 - 189.6) 81.1 (81.1 - 42.7) 1.13 (0.88 - 1.45) 0.335 

GM-CSF 100.7 (32.9 - 194.1) 94.9 (94.9 - 39.9) 0.9 (0.74 - 1.09) 0.31 

IL-18 299.7 (121.6 - 803.2) 368.5 (368.5 - 89.1) 1.12 (0.92 - 1.36) 0.247 

IL-10 25.2 (15.4 - 71.5) 36.2 (36.2 - 8.9) 1.11 (0.9 - 1.36) 0.325 

IL-17A 51.5 (15.5 - 95.6) 78.8 (78.8 - 45.4) 0.93 (0.8 - 1.09) 0.364 

IL-21 225.7 (72.7 - 290.6) 166.8 (166.8 - 82.2) 1.09 (0.87 - 1.35) 0.458 

IL-22 381.3 (258.2 - 461.5) 386.8 (386.8 - 196.8) 0.93 (0.69 - 1.24) 0.608 

IL-23 91.6 (63.6 - 165.9) 177.7 (177.7 - 102.8) 0.88 (0.72 - 1.07) 0.199 

IL-15 82.5 (51.5 - 107.3) 77.3 (77.3 - 52.1) 0.99 (0.77 - 1.28) 0.967 

IL1-α 13.2 (2.9 - 62.9) 14.6 (14.6 - 4.8) 0.97 (0.84 - 1.13) 0.704 

IL1-RA 4730.4 (3751 - 
8510.3) 

2277.9 (2277.9 - 
879.6) 

1.35 (1.05 - 1.72) 0.009* 

IL-7 18.2 (8.1 - 57.1) 20.9 (20.9 - 4.7) 1 (0.86 - 1.16) 0.99 

Eotaxin 33.6 (8.4 - 67.5) 29.7 (29.7 - 14.3) 0.96 (0.79 - 1.16) 0.672 

GROα 51.3 (16.8 - 104.7) 63.8 (63.8 - 22.8) 1 (0.85 - 1.17) 0.961 

IL-8 84.7 (56 - 126.6) 48.3 (48.3 - 33.4) 1.22 (0.95 - 1.56) 0.099 

IP-10 158.3 (70.9 - 381.2) 66 (66 - 35.9) 1.06 (0.98 - 1.14) 0.192 

MCP-1 300.3 (178.6 - 632.8) 95.8 (95.8 - 47.4) 1.68 (1.28 - 2.19) <0.001* 

MIP-1α 95.1 (54.6 - 125.9) 65.6 (65.6 - 42.3) 2.14 (1.24 - 3.7) 0.002* 

MIP-1β 304.5 (183.7 - 366.3) 199.4 (199.4 - 130.9) 2.03 (1.19 - 3.47) 0.002* 

SDF-1α 611.8 (297.1 - 718.6) 426.5 (426.5 - 269.1) 1.21 (0.88 - 1.66) 0.22 

RANTES 50.3 (21.2 - 75.1) 59.1 (59.1 - 30.8) 1.1 (0.86 - 1.41) 0.443 

Table 8.8 Plasma cytokine and chemokine concentrations in HIV/TB patients who died and survived. 
Hazard ratios are for a doubling of concentration. P-values calculated by likelihood ratio testing. 
*indicates p-values that remained significant after correction with the Benjamini-Hochberg procedure
for multiple comparisons. Data missing for 4 individuals.  Abbreviations: CD cluster of differentiation,
IQR interquartile range, CI confidence interval, IL interleukin, IFN interferon, TNF tissue necrosis factor,
MIP macrophage inflammatory protein, MCP monocyte chemoattractant protein, IP interferon-gamma
induced protein, SDF stromal cell-derived factor, RANTES regulated on activation, normal T cell
expressed and secreted.

After accounting for multiple comparisons, disseminated HIV/TB disease did not have any 

significant associations with plasma cytokine and chemokine concentrations (table 8.7). Six 

soluble proteins were found to be associated with mortality, with hazard ratios >1.0 (table 8.8 

and figure 8.6). These included chemokines important in signalling in the innate immune 

response such as MIP-1, MIP-1 and MCP-1, and pro-inflammatory cytokines that are 

produced by or promote innate immune responses (IL-6). Two anti-inflammatory proteins 
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were also associated with mortality, although IL-1RA levels were increased whilst IL-4 levels 

were decreased.  

Cytokine networks were also assessed by testing for correlations (defined as Rho≥0.6 and p-

value <0.05) between different cytokines and chemokines (figure 8.7). HIV-positive patients 

without TB had more correlations between cytokines (n=92) than HIV/TB patients (n=32, figure 

8.7). However, amongst HIV/TB patients, those who died had more cytokine correlations than 

those who survived, and these seem to be mostly driven by innate cytokines and chemokines. 

 

Figure 8.6 Hazard ratios for mortality of plasma chemokines and cytokines in HIV/TB patients. Hazard 
ratios are for a doubling of concentration. n=61. Abbreviations: CD cluster of differentiation, IQR 
interquartile range, CI confidence interval, IL interleukin, IFN interferon, TNF tissue necrosis factor, MIP 
macrophage inflammatory protein, MCP monocyte chemoattractant protein, IP interferon-gamma 
induced protein, SDF stromal cell-derived factor, RANTES regulated on activation, normal T cell 
expressed and secreted. 

 

  



229 
 

 

Figure 8.7 Heat-map of correlations between cytokines by patient TB status and outcome. Bottom left 

side of the heat maps indicate rho values for correlations (green are positive correlations, and red are 

negative correlations). The upper right side of the heat-map is the p-value for the same correlations. 

HIV-positive TB negative control patients had 92 correlations (defined as rho>0.6 and p-value <0.05), 

and overall HIV/TB co-infected patients had 32 correlations. Amongst the HIV/TB patients, those who 

died had 94 correlations, whereas those who survived had 50. n=61 (21 patients died). 

 

Hepcidin 

Plasma hepcidin concentrations were raised in all patient groups. Hepcidin concentrations 

were higher in HIV/TB patients who died compared to survivors (117ng/ml versus 69ng/ml, 

hazard ratio 1.5 for a doubling of hepcidin concentration, p=0.021, figure 8.8). However, 

hepcidin concentrations were similar in HIV/TB patients and controls without TB, and in 

HIV/TB patients with disseminated and non-disseminated disease. In exploratory analyses, 

hepcidin levels were lower in patients with mild anaemia or normal haemoglobin compared to 
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those with moderate or severe anaemia (p=0.001, figure 8.8), and a strong correlation with 

CRP (p<0.0001). 

 

 

 

 

 

 

 

 

 

 

Figure 8.8 Hepcidin concentrations by patient group and anaemia. A. Hepcidin concentration by 
patient group. B. median hepcidin concentrations for patients with mild or no anaemia (dark red) and 
those with moderate to severe anaemia (green). Data points represent concentration for each patient, 
horizontal bar represents median concentration for that group and error bars represent the 
interquartile range. * indicates p-value <0.05 

  

A. 

B. 
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Immune activation and exhaustion 

Monocyte phenotype and activation 

In all patient groups the proportion of classical monocytes was lower than in ‘healthy’ 

individuals. HIV/TB patients who died had a lower proportion of classical monocytes 

(p=0.0018) and a higher proportion of non-classical monocytes (p=0.0051) compared to 

HIV/TB patients who survived (figure 8.9). There was also evidence of lower proportions of 

classical monocytes and higher proportions of non-classical monocytes in disseminated 

compared to non-disseminated HIV/TB (p=0.028 and 0.015 respectively). However, monocyte 

phenotype did not differ substantially between HIV/TB patients and the HIV-positive controls 

(table 8.9). There was high surface expression of HLA-DR on monocytes throughout , but no 

differences between patient groups. Similarly, MFI of HLA-DR and CD11b surface markers did 

not differ between groups. 

Soluble markers of monocyte activation were strongly associated with patient groups. sCD163 

concentrations were substantially higher in HIV/TB patients compared to control patients 

(p=0.0002), and there was also evidence of higher concentrations in HIV/TB patients who died 

and those with disseminated disease (p=0.013 and p=0.028 respectively). sCD14 

concentrations were also higher in HIV/TB patients (p<0.0001), and HIV/TB patients who died 

compared to survivors (p<0.0001) (figure 8.9). 
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Monocyte 
characteristic 
  

 
TB negative 

control patients 
(n=16) 

 
HIV/TB patients  

 

All (n=65)  Disseminated  
Died 

(n=23) 
Survived 

(n=42) 
Yes 

(n=11) 
No  

(n=54) 
CD14+ CD16- 
(%) 

77.6 (69.9 - 85.1) 82 (75.8 - 
87.95) 

73.8 
(57.5 - 
79.6) 

79.65 
(75.4 - 
85.5) 

76.2 
(68.2 - 
83.5) 

85.2 
(76.2 - 
89.4) 

CD14+ CD16+ 
(%) 

10.49 (6.02 - 
16.5) 

11.75 
(8.555 - 
14.25) 

12.3 
(6.26 - 
24.8) 

9.545 (6 - 
14.6) 

10.595 
(6.02 - 
16.5) 

8.38 
(3.45 - 
18.4) 

CD14- CD16+ 
(%) 

9.85 (4.6 - 15.2) 5.245 
(3.775 - 
10.45) 

15 (9.87 
- 18.06) 

7.895 
(3.74 - 
14.3) 

10.8 
(6.14 - 
17.7) 

7.36 
(2.92 - 

8.2) 

HLA-DR 
expression 
(%) 

95.1 (86.6 - 98.1) 93.3 (87.3 
- 97.1) 

91.2 
(81.1 - 
97.3) 

96.8 (89.8 
- 98.3) 

92.5 
(85.5 - 
98.1) 

96.45 
(90 - 
98.7) 

HLA-DR 
(median MFI) 

51.4 (30.3 - 88.7) 55.15 
(41.55 - 

72.2) 

49.9 
(30.3 - 
116) 

51.55 
(32.5 - 
86.95) 

50.8 
(29.4 - 
88.7) 

60.7 (43 
- 178) 

CD11b 
(median MFI) 

46.7 (27.1 - 61.3) 41.3 (25.9 
- 51.65) 

39.2 
(27.1 - 
52.1) 

53.95 
(26.75 - 
65.75) 

45.3 
(27.1 - 
60.4) 

51.55 
(17.3 - 
65.1) 

sCD14 
(median 
pg/mL X106) 

2.1 (1.8 - 3.1) 1.2 (1.0 - 
1.6) 

3.2 (2.7 
- 4.0) 

1.8 (1.5 - 
2.4) 

2.5 (1.8 - 
3.2) 

1.8 (1.6 
- 2.1) 

sCD163 
(median 
ng/mL X103) 

1.2 (0.9 - 1. 8) 0.7 (0.6 - 
1.1) 

1.8 (0.9 
- 2. 9) 

1.1 (0.9 - 
1.5) 

1.3 (0.9 - 
1.9) 

0.9 
 (0.3 

 - 1.1) 
Table 8.9 Monocyte phenotype and activation markers by patient group. Monocyte phenotype and 

HLA-DR expression and is the median % and interquartile ranges of all monocytes. MFI is median 

fluorescence intensity (on a log10 scale). sCD14 and sCD163 are median concentrations and interquartile 

ranges. sCD is soluble cluster of differentiation.  
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Figure 8.9 Monocyte phenotype and soluble monocyte activation markers by patient group 
A. % of monocytes in each phenotypic group by outcome in HIV/TB patients. B. Soluble CD14 
concentration and C. median soluble CD163 concentration by patient group. Data points represent 
concentrations or percentages for each patient, horizontal bar represents medians for that group and 
error bars represent the interquartile range. * indicates p-value <0.05 

 

 

A. 

B. 
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T-cell immunophenotyping 

Lymphocyte activation was high in all patient groups and was strongly correlated with HIV viral 

load (p=0.0001) but not TB status or outcomes (table 8.10 and figure 8.10). T-cell exhaustion 

(defined as PD1 expression) and senescence (defined as CD57 expression) also did not differ 

substantially between patient groups (table 8.10). Senescence of CD8+ T-cells was weakly 

correlated with age (p=0.06). 

 

T-cell characteristic 
  

TB negative 
control 
patients 
(n=16) 

 
HIV/TB patients  

 

  Disseminated 

All  
(n=65) 

Died 
(n=23) 

Survived 
(n=42) 

Yes 
(n=11) 

No 
(n=42) 

CD38+  
(% CD3+ T-cells) 

31.6 (20.5 - 
44.1) 

34.6 (19.4 
- 42) 

31.2 (19.4 
- 37.8) 

34.8 (20.7 - 
47.3) 

35 (18.5 
- 44.1) 

26.7 (22.5 
- 36.8) 

HLA-DR+  
(% CD3+ T-cells) 

11.2 (6.1 - 
26.3) 

9.2 (4.7 - 
15.1) 

8.6 (6.4 - 
14.6) 

9.2 (4.1 - 
15.4) 

8.6 (4.6 
- 14.6) 

10.4 (5.7 - 
16.9) 

% activated CD38+ OR 
HLA-DR+ T-cells  
(% CD3+ T-cells) 

39.2 (26 - 
51.7) 

34.5 (17.2 
- 48.9) 

35.5 (24.2 
- 43.3) 

33.3 (12.4 - 
50.3) 

35.5 (14 
- 48.9) 

27.6 (17.2 
- 65.5) 

CD57+ CD4+ cell 
exhaustion  
(% CD4+ T-cells) 

2.4 (0.6 - 9.6) 3.3 (1.3 - 
9.8) 

2.4 (0.9 - 
7.4) 

4.6 (2.3 - 
14.9) 

2.8 (1 - 
9.8) 

4.1 (2.8 - 
14.1) 

CD57+ CD8+ cell 
exhaustion (% CD8+ T-
cells) 

3.1 (1.7 - 8.2) 14.5 (5.6 - 
25.2) 

10.5 (6.1 - 
23.3) 

15.3 (5.5 - 
26.4) 

15 (5.4 - 
24.5) 

9.3 (5.6 - 
37.1) 

PD-1+ CD4+ cell 
senescence  
(% CD4+ T-cells) 

3.7 (1 - 8.5) 9 (3 - 
14.4) 

3.1 (0.9 - 
7.8) 

3.9 (1.8 - 
9.5) 

3.9 (1.7 
- 10.5) 

2.5 (0.2 - 
6.4) 

PD-1+ CD8+ cell 
senescence  
(% CD8+ T-cells) 

4.1 (3.4 - 6.6) 4.8 (1.7 - 
8.5) 

5.9 (3.1 - 
9.6) 

3.1 (1.7 - 
7.8) 

4.8 (1.9 
- 7.9) 

4.8 (0.5 - 
9.5) 

Table 8.10 T-cell activation, exhaustion and senescence. All data are median % and interquartile ranges 

of the parent T-cell population (denoted in brackets). 
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Figure 8.10 HIV viral load and T-cell activation. Graph shows correlation between HIV viral load and 
proportion of T-cell activated (defined as expression of HLA-DR or CD38), with regression line (green) 
and 95% CIs (grey lines). P=0.0001. n=65 

 

 

 

8.5 Discussion 

 

Despite widespread coverage of ART, patients admitted to hospital and diagnosed with HIV-

associated TB mostly had advanced HIV, with a very high prevalence of disseminated urinary 

TB and high early mortality risk (35% by two months). Mortality risk was substantially higher 

than in HIV-positive patients without evidence of TB and matched for CD4 count. The case 

fatality of HIV/TB in this cohort was similar to that reported in meta-analyses, although higher 

than expected given the high ART coverage, TB screening and prompt initiation of TB therapy 

[2]. The prevalence of disseminated disease was also very high, and may have been 

underestimated given that some patients with only positive urine tests would have been 

missed from the SOC arm of the trial. Mortality was also strongly associated with urinary 

disease- those with 2 positive urine TB tests had a 65% risk of death. 

The main findings from this study of soluble immunological biomarkers was that patients with 

poor outcomes had higher concentrations of cytokines responsible for innate and pro-

inflammatory signalling, and markers of inflammation such as CRP and hepcidin. They also had 

evidence of more marked monocyte activation and non-classical monocyte phenotype. I found 

no differences between HIV/TB patients with positive and negative urine diagnostic tests. 

I demonstrate increased plasma concentrations of innate and inflammatory cytokines (MCP-1, 

MIP-1 and IL-6), supporting findings from recent studies in HIV-positive outpatients and early 
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studies from the pre-ART era [18,19]. These cytokines are mainly produced by monocytes and 

macrophages, highlighting the importance of these cells in MTB control [20]. Previously, similar 

cytokine profiles have also been noted at sites of infection, but not in the systemic circulation 

[21]. The presence of such changes in plasma support the finding that most patients had 

disseminated disease, likely involving mycobacteraemia and haematogenous spread [11]. 

I also found very high levels of IL-1RA (especially in patients with early mortality), a soluble 

inhibitor of IL-1 which is important in tightly regulating and preventing excessive tissue-

damaging inflammation [22]. However, I did not find increased concentrations of other anti-

inflammatory or T-helper 2 cytokines (eg IL-4, IL-10 or IL-13) in patients who died or those with 

disseminated disease as hypothesised. Successful containment of TB most likely requires 

tightly balanced pro- and anti-inflammatory responses. It is clear that, whilst activation and 

inflammation are necessary in the host response, disruption of either TNF-α and IFN-γ 

pathways leads to overwhelming TB disease [23,24]. Excessive inflammation is also 

detrimental, for instance in TB immune reconstitution inflammatory syndrome [25]. Similarly, 

removing inhibitory pathways in mice exacerbates TB disease [26], whilst excessive anti-

inflammatory responses can promote latency and dissemination [25]. 

Indeed, cytokines exist and function in complex integrated networks, and we have uniquely 

demonstrated differences in correlations between cytokines in HIV/TB patients compared to 

TB-negative HIV-positive patients, and according to outcome. Cytokine environment and 

networks are crucial in the immune response and cellular function, and HIV has been 

associated with their disruption [27]. Cytokine profiles in this patient population resembled 

those found in sepsis, which is not surprising given the prevalence of sepsis features and 

danger signs, and the overlap of disseminated MTB and sepsis [28–30]. Similar cytokine 

profiles have also been associated with severity of organ dysfunction and outcome in sepsis 

[31,32]. 

Immune activation and inflammation may also drive immunoregulatory mechanisms, for 

example production of T-helper 2 type cytokines (which I did not see in this cohort), or 

expansion of regulatory cells (eg T-regulatory cells) [33–35]. Activation and inflammation may 

directly lead to exhaustion of the immune response. I did not find differences in exhaustion 

(PD-1) or senescence (CD57) markers on CD4+ or CD8+ T-cells. However the mechanism of 

exhaustion or anergy in HIV/TB may not lead to expression of these markers, but may still 

impair host defences against MTB and other pathogens. Tolerance to endotoxins has been 

demonstrated in the context of challenge with lipopolysaccharide (LPS), which can affect T-

cells in addition to monocytes and may play a role in HIV/TB [36,37]. MTB antigens themselves 

can also downregulate the host immune response [38–40]. 
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The acute-phase marker of inflammation, hepcidin, which also has antimicrobial properties 

and a role in the innate response to MTB, was also associated with mortality in this study. 

Hepcidin also has an important role in driving anaemia of chronic disease through serum iron 

restriction and iron retention in macrophages and lymphocyte, often in response to IL-6 [41–

43]. I show that patients with moderate or severe anaemia also had substantially higher 

plasma concentrations of hepcidin. It has previously been associated with high mycobacterial 

load, dissemination and mortality in HIV/TB patients [44], although it is unclear whether 

hepcidin plays a part in or is a consequence of severe HIV/TB disease.  

I found an expanded population of non-classical (CD16+CD14-) monocytes, which have 

previously been associated with reduced phagocytosis compared to classical monocyte, 

although studies conflict on the exact function and role of classical, intermediate and non-

classical monocyte subsets [17,45,46]. The association between reduced phagocytic responses 

and monocyte phenotype in our study supports the hypothesis that classical monocytes have a 

more inflammatory and phagocytic role, which may be driven by MTB itself [47].  

In summary, I report increased plasma concentrations of inflammatory cytokines and markers 

of inflammation in HIV/TB patients who died compared to those who survived, but few 

differences by TB urine-diagnostic status. Strengths and weaknesses of this study, as well as 

further implications are discussed in chapter 9 alongside the data on functional immune 

responses.  
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Chapter 9. Functional immune responses in hospitalised patients with HIV-associated 

TB 

 

Summary 

This chapter assesses functional responses of the innate and adaptive immune systems, 

including whole blood phagocyte function and T-lymphocyte and monocyte cytokine responses 

to stimulation. These responses are then compared between patients according to outcome 

(death or survival by two months), and disease dissemination. The main findings are that 

patients with poor outcomes had impaired ex vivo functional responses, including monocyte 

and neutrophil phagocyte superoxide function, and T-cell and monocyte cytokine production 

in response to antigenic stimulation. Data reduction techniques identified distinct 

immunological phenotypes/signatures that were strongly associated with both disseminated 

TB score based on urine diagnostics and outcome. 

 

9.1 Methods 

Study design, flow cytometry, immunophenotyping and other laboratory assays are described 

in chapter 8. 

Immunological laboratory assays 

Phagocytosis and superoxide burst assay 

The preparation of zymosan phagocytosis reporter particles and the phagocytosis whole blood 

assay have been described previously (chapter 7). In brief, 0.5mL of whole blood (kept warm 

after venepuncture) was diluted 1:1 with warmed (37°C) RPMI to which 20µL of washed and 

diluted particles (1:6 in RPMI, approximately 8 × 105/ml) were added. A biological control of 

1mL of diluted whole blood without zymosan particles was also prepared. Samples were 

incubated at 37°C with rocking. Phagocytosis and superoxide burst were assessed at 10, 30, 60 

and 90 minutes after the addition of reporter particles.  

100µL of blood from zymosan reporter and control tubes were harvested 10 minutes before 

each time point for antibody staining of cell surface markers (as phagocytosis will continue 

during staining). Antibody concentrations were previously titrated for maximum separation 

between positive and negative populations, and staining was for 10 minutes at room 

temperature. Antibodies used were anti-CD45 PerCP 3µL, anti-CD66b APC 1µL and anti-CD14 

PE-Cy7 2µL (all Biolegend, see table 8.2 for full panel). 

Following 10 minutes incubation at room temperature with antibodies, biological activity was 

arrested, and red cells lysed by incubating for 10 minutes with BD FACS lysing solution (BD 
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Biosciences, containing formaldehyde and diethylene glycol). Cells were washed once with 1 x 

PBS solution by centrifugation at 500g for 10 minutes then resuspended in 500µL of PBS.  

Counting beads (Countbright, Life Technologies) were added per the manufacturer’s 

instruction to allow determination of cell concentration before acquisition on a CyAn ADP flow 

cytometer (Beckman Coulter, USA). The gating strategies to identify neutrophils, monocytes, 

and cells phagocytosing zymosan-reporter particles and undergoing superoxide burst are 

outlined in chapter 7 (figure 1) and in figures 8.2 to 8.3.  

 

Intracellular cytokine staining assays 

Intracellular cytokine staining (ICS) was done using whole blood that was cryopreserved and 

fixed after stimulation. This method was chosen over peripheral blood mononuclear cell 

(PBMC) based assays due to smaller blood volume requirements, less processing leading to 

less cell death and ability to immediately stimulate cells. Cryopreservation was chosen over 

real time analysis as it was more efficient (staining and analysis was done in batches) and 

reduced day-to-day variations in the flow cytometer. Long-term cryopreservation has been 

well validated for whole blood ICS [1].  

Whole blood was diluted 1:1 with warmed (37°C) RPMI. 1mL of diluted whole blood was 

stimulated in FACS tubes with culture filtrate proteins (CFP) of H37Rv Mycobacterium 

tuberculosis (10μg/ml, BEI resources), phorbol 12-myristate 13-acetate (PMA, 10ng/ml, Sigma) 

plus ionomycin (1μg/ml, Sigma-Aldrich), or left unstimulated for 2 hours. Concentrations of 

antigens were based on previous studies and piloted prior to use [2–4]. Brefeldin A (5μg/ml, 

BD Bioscience) was added after 2 hours, and the cells were incubated for a further 16 hours at 

37°C in 5% C02.  

Cells were then stained with violet viability dye and then red cells lysed and leucocytes fixed 

using BD FACS lysing solution. Cells were washed once with BD FACS lysing solution followed 

by centrifugation at 500 g for 10 min then resuspended in BD FACS lysing solution and frozen 

at -80°C for later staining and acquisition in batches [1,5]. 

Samples were later thawed in a 37°C water bath and stained for surface markers by incubation 

with anti-CD45 PO (Invitrogen), anti-CD14 BV605, anti-CD3 APC-H7, anti-CD4 PerCPCy5.5 and 

anti-CD8 PE/Dazzle 594 (all Biolegend) for 15 minutes (table 8.2). Next, cells were 

permeabilised using 2mLs of FACS Perm/Wash buffer (diluted 1:10 with distilled water, BD 

Biosciences) for 15 minutes as per manufacturer’s instructions [6], and intracellular proteins 
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stained by incubating with anti-IFN- PE, anti-TNF- FITC, anti-IL-10 APC (all Biolegend),  

anti-IL-6 AF700 and IL-22 PECy7 (both eBiosciences) for 30 minutes.  

Cells were then washed with 2mL Perm/Wash buffer, resuspended in 500µL PBS and acquired 

by flow cytometry. For analysis, dead cells, doublets and debris were gated out (figure 9.1). 

Granulocytes and lymphocytes were identified on CD45 expression and side-scatter, and 

monocytes gated based on CD14 expression. T-lymphocytes were identified based on CD3 

expression, and subdivided into CD8 and CD4 T-lymphocytes. Intracellular cytokine expression 

was then done by gating on the cells of interest from unstimulated samples (monocytes, CD8 

and CD4 T-lymphocytes), using Boolean gates to identify cells producing single or multiple 

cytokines. 

 

 

 

Figure 9.1 Flow cytometry gating strategy for intracellular cytokine staining assays. 
Granulocytes were identified after exclusion of dead cells, doublets and debris based on high SS. 
Monocytes were then identified based on CD14 expression. Lymphocytes were gated on SS, and T-cell 
based on CD3 expression. T-cells were then subdivided based on CD4 and CD8 expression. Cells were 
identified as expressing the intracellular marker of interest, with gates drawn based on the unstimulated 
samples. Abbreviations: CD cluster of differentiation, PD programmed cell death, SS side-scatter, IL 
interleukin, IFN interferon, TNF tissue necrosis factor. 
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Statistical methods 

In the phagocytic function assay, the proportion of cells that had phagocytosed reporter 

particles was calculated. All analyses were stratified by phagocyte type- monocyte or 

neutrophil. This was based on expression of calibration fluorochrome (AF405). Absolute cell 

numbers and cell concentrations were calculated using counting beads (based on a known 

concentration of counting beads in the assay). An ‘activity index’ (AI) of phagocytosis and 

superoxide burst was calculated by subtracting the median fluorescence intensity (MFI) of the 

cells not taking up reporter particles from the cells that did take up the zymosan reporter 

particles (thereby expressing AF405) and undergoing superoxidation (thereby positive for 

FITC), and dividing this by two times the robust standard deviation of the negative cells (this 

was based on the ‘staining index’ as method of assessing separation between two populations) 

[7].  

This method also accounted for variations in auto fluorescence between cells from different 

individuals. AI at each assay timepoint and peak AI was compared between groups. 

Furthermore, pharmacokinetic analysis was used to calculate the ‘area under the curve’ (AUC) 

for the time-versus-activity index analysis for each patient (using Stata’s pkexamine command 

and the trapezoidal rule). Mean or median AUCs were then compared for monocytes and 

neutrophils between patient groups. 

For ICS assays, the proportion of cells producing each cytokine under each stimulation 

condition was calculated for monocytes, CD4+ T-cells and CD8+ T-cells. Increases in cytokine 

production on stimulation were calculated by subtracting the proportion of cells producing 

cytokine in the unstimulated sample. Polyfunctionality (defined as production of more than 

one cytokine) for TNF- and IFN- was calculated for T-cells based on the proportion of cells 

produced each cytokine alone, or in combination. The median proportion of polyfunctional 

cells and IQR were calculated for each patient group and compared using Wilcoxon rank sum 

tests. 

All immunological variables were standardised (such that mean represented zero and the SD 

was 1) after appropriate transformation, and reduced using principal components analysis 

(PCA). The number of principle components (PC) selected was based on Eigen values (>1.0), 

scree plots and the degree of variance explained. The PC(s) explaining the greatest degrees of 

variation were characterised by looking at the variables that contributed most to that PC using 

variable loading waterfall plots.  

Scoring plots for PCs 1 and 2 were constructed and assessed for clustering based on mortality 

outcome or urine TB score. PCs were assessed for associations with mortality using Cox 
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regression, and PCs associated with mortality were entered into a multivariable model to 

adjust for confounders (including HIV viral load, CD4 cell count and age a priori). PCs were also 

assessed for association with urine TB score using linear regression modelling. Analyses were 

done using Stata version 14 and GraphPad version 7.0. 

 

9.2 Results 

Functional immune responses 

Phagocytosis and superoxide burst  

Zymosan particles were rapidly taken up by whole blood phagocytes, and kinetics over 90 

minutes were similar to healthy controls (see Chapter 7) and did not differ between HIV/TB 

patients and TB negative controls, or by disseminated TB status or outcome in HIV/TB patients 

(figure 9.2). The proportion of whole blood phagocytes taking up zymosan particles varied 

greatly and was associated with the abundance of the phagocytic cell in peripheral whole 

blood- a higher concentration of phagocytes was associated with a smaller proportion taking 

up reporter particles (p=0.037 for monocytes and p=0.002 for neutrophils), as demonstrated 

for healthy volunteers previously (see [8], Chapter 7 and figure 9.3).  
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Figure 9.2 Phagocytosis of zymosan reporter particles by patient outcome in HIV/TB patients. Data 
represent the proportion of all neutrophils (A, solid markers) or monocytes (B, hollow markers) that 
have phagocytosed zymosan reporter particles at each timepoint of the assay by patient outcome. Data 
points are values for individual patients, horizontal lines are medians for that group, and error bars are 
95% CIs for that group. There was no significant difference in neutrophil or monocyte phagocytosis 
between patients who died or survived at any timepoint. n=65 
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Figure 9.3 Concentration of whole blood phagocyte and proportion phagocytosing zymosan reporter 
particles. Phagocytosis, as measured by % of cells taking up zymosan particles, was strongly correlated 
with the concentration of A. monocytes and B. neutrophils. Each data point represents a single patient. 
Lines represent fitted regression line (green) and 95% confidence interval (grey). Regression coefficients 
were A. -4.14 (95%CI -8.02 to -0.26), p= 0.037 and B. -0.63 (95%CI -1.02 to -0.25), p= 0.002. 
 

Phagocyte superoxide burst activity was reduced for monocytes in both HIV/TB patients 

compared to controls and in HIV/TB patients who died compared to survivors (figure 9.4). 

Disseminated HIV/TB was not associated with impaired superoxide burst function (although 

this comparison was underpowered due to small numbers of non-disseminated TB cases). 

Phagocyte superoxide function remained associated with mortality after adjusting for age, 

gender, baseline CD4 cell count and HIV viral load (HR 0.24 for every 1x104 increase in AI for 

monocytes, p=0.006; HR 0.34 for every 1x104 increase in AI for neutrophils, p=0.004).  
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Figure 9.4 phagocytosis and superoxide burst function by patient TB status and outcome.  
A. Data represent the activity index for neutrophils (solid markers) or monocytes (hollow 
markers) at four timepoints in different groups of patients. Data points are values for individual 
patients, horizontal lines are medians for that group, and error bars are interquartile ranges for 
that group. B. Area under the curve of phagocyte superoxide activity index for monocytes (hollow 
symbols) and neutrophils (solid symbols). Superoxide activity was reduced in HIV/TB patients 
compared to TB-negative controls (p=0.002 for monocytes and p=0.02 for neutrophils), and in 
HIV/TB patients who died compared to HIV/TB patients who survived (p=0.01 for monocytes and 
p=0.004 for neutrophils). 
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In monocytes, phagocyte superoxide burst function was correlated with monocyte phenotype 

(r=0.32, p=0.0084). Patients with higher proportion of monocytes expressing the ‘classical’ 

phenotype (CD14+CD16-) had increased superoxide burst function (figure 9.5).  

 

 

 

Figure 9.5 Classical monocyte phenotype (CD14+CD16-) and phagocytic function in HIV/TB patients. 
Proportion of classical monocytes and monocyte phagocytosis and superoxide burst activity. Each data 
point represents a single patient. Lines represent fitted regression line and 95% confidence interval.  

 

 

Monocyte cytokine production in response to stimulation 

Intracellular cytokine staining showed that lower percentages of whole blood monocytes 

produced IL-6 and TNF-α in HIV/TB patients who died compared to survivors in response to TB 

antigens (Mycobacterium tuberculosis culture filtrate protein) (p=0.001 and p=0.01 

respectively) and PMA/ionomycin (p=0.025 and p=0.005 respectively, table 9.1 and Figure 9.6). 

Similarly, a greater proportion of monocytes produced no cytokines after stimulation with TB 

antigens for patients who died compared to survivors (p=0.006), and disseminated HIV/TB 

compared to non-disseminated TB (unstimulated sample, p=0.01).  

Higher proportions of monocytes produced IL-10 in HIV/TB patients compared to controls after 

stimulation with TB antigens (p=0.008), but there were no differences in IL-10 production by 

outcome or disseminated TB status (table 9.1). Pro-inflammatory cytokine production (IL-6 and 

TNF- α) did not differ significantly between HIV/TB patients and controls (Figure 9.7). 
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   TB 
negative 
control 
patients 
(n=16) 

HIV/TB patients  
Cytokine Stimulatio

n 
All (n=61) 

  Disseminated 

Died 
(n=21) 

Survived 
(n=40) 

Yes 
(n=10) 

No  
(n=51) 

  
IL-6 
  

Un-
stimulate
d 

10.1 (5.5 - 
18.2) 

19.4 (10.2 
- 25.2) 

15.8 (7.4 
- 23.6) 

20.4 
(10.4 - 
27.7) 

19.4 
(10.2 - 
25.2) 

19.4 (8.4 
- 26.8) 

TB 
antigens 

38.7 (28.1 
- 48.1) 

34.1 (17.5 
- 65.5) 

18.4 
(12.6 - 
27.4) 

50.9 (30 
- 69.1) 

33.1 
(15.9 - 
65.5) 

52.8 (25.7 
- 66.1) 

PMA/ 
ionomyci
n 

12.8 (5.2 - 
17.8) 

9.8 (6.6 - 
17) 

7.8 (5.6 - 
12.7) 

11.3 (7.4 
- 20.2) 

9.5 (6.5 - 
17.3) 

13.3 (8.6 
- 17) 

  
TNF-α 
  

Un-
stimulate
d 

3.7 (1.7 - 
6.3) 

4.9 (3.1 - 
9.2) 

4.2 (3 - 
8.2) 

4.9 (3.4 - 
9.8) 

4.4 (2.7 - 
9.2) 

5.5 (4 - 
30.3) 

TB 
antigens 

32.9 (25.8 
- 43.5) 

20.4 (10.9 
- 44.3) 

11.9 (6 - 
26) 

26.3 
(15.3 - 
50.1) 

19.4 
(10.6 - 
44.3) 

26.5 (12.1 
- 54.2) 

PMA/ 
ionomyci
n 

36.9 (23 - 
43.7) 

17.8 (12 - 
35.4) 

13.6 (7 - 
17.4) 

27.9 
(14.1 - 
44.6) 

17.5 (9.9 
- 35.4) 

23.1 (14.9 
- 50.8) 

  
IFN-γ 
  

Un-
stimulate
d 

5 (3.6 - 
7.3) 

6.4 (3.6 - 
10.9) 

6.5 (3.5 - 
10.4) 

6.2 (3.7 - 
11.1) 

6.5 (3.6 - 
10.4) 

6.2 (3.9 - 
21.2) 

TB 
antigens 

8.3 (4.6 - 
15.1) 

12.2 (7.2 - 
16.6) 

8.7 (6.2 - 
13.9) 

13.9 (7.8 
- 19.9) 

12.1 (7.1 
- 17.2) 

13.6 (9.1 
- 16.6) 

PMA/ 
ionomyci
n 

17.8 (12.7 
- 38) 

18.1 (11.3 
- 26.3) 

15.5 (7.7 
- 18.2) 

20.8 
(13.7 - 
30.2) 

18.1 
(10.3 - 
27.1) 

18.9 (14.1 
- 25.3) 

  
IL-10 
  

Un-
stimulate
d 

8 (6.1 - 
11) 

13.4 (8.1 - 
22.6) 

13.4 (8.1 
- 23.3) 

13.5 (8.4 
- 21.9) 

13.1 (8 - 
21.1) 

18.2 (9.6 
- 37.4) 

TB 
antigens 

13 (5.6 - 
19.6) 

22.2 (11.7 
- 40.8) 

20 (14.4 
- 32.2) 

27.7 (8.6 
- 41.3) 

20.7 (9.9 
- 41.2) 

30.4 (12.7 
- 39.6) 

PMA/ 
ionomyci
n 

6 (3.1 - 
10.2) 

7.9 (4.9 - 
12.5) 

6.6 (3.6 - 
9.3) 

8.3 (5.3 - 
14.3) 

7.3 (4.5 - 
10.3) 

19.8 (8.3 
- 26.1) 

  
No 
cytokine
s 
  

Un-
stimulate
d 

72.4 (66.3 
- 78.7) 

62.4 (53.1 
- 69.6) 

66 (60.9 
- 73.6) 

58 (45.1 
- 69.1) 

64 (54.7 
- 70.7) 

48 (34.1 - 
62) 

TB 
antigens 

46.8 (35.2 
- 59.8) 

36.9 (19.1 
- 57.9) 

54 (32 - 
65.3) 

28.7 
(17.2 - 
49.4) 

40 (20.3 
- 59.6) 

21.1 (17.8 
- 47.6) 

PMA/ 
ionomyci
n 

43.3 (34.5 
- 50) 

55.5 (42.7 
- 67.9) 

66.2 
(59.9 - 
75.8) 

48.3 
(37.6 - 
58.7) 

57.7 
(44.4 - 
71.8) 

49.2 (29 - 
52.6) 

Table 9.1 Intracellular cytokine production by stimulated monocytes. Data are median % and 
interquartile range of cells expressing each cytokine intracellularly by patient group. Abbreviations: IL 
interleukin, IFN interferon, TNF tissue necrosis factor. 

 

 



253 
 

Figure 9.6 Pro-inflammatory cytokine production by monocytes in HIV/TB patients by outcome.  

Data represent the proportion of monocytes expressing IL-6 (A, circles or squares) or TNF- (B, 

triangles) intracellularly for patients who died or survived. Horizontal lines are medians for that group, 

and error bars are interquartile ranges for that group. * represents p<0.05. 

 

 

 

 

 

 

A. 

B. 
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Figure 9.7 IL-10 production in HIV/TB patients and TB negative controls. Data represent the proportion 

of monocytes expressing IL-10 intracellularly for patients who were HIV-positive TB negative controls or 

HIV/TB patients. Horizontal lines are medians for that group, and error bars are interquartile ranges for 

that group. * represents p<0.05. 

 

T-cell cytokine production in response to stimulation 

We assessed antigen-specific CD4+ T cell responses to TB antigens and to the mitogens 

PMA/ionomycin. Amongst HIV/TB patients, those who died had a lower proportion of cells 

producing TNF-α (19.9% compared to 38.5%, p=0.0002) and IFN-γ (20.0% compared to 41.2%, 

p=0.0003) than survivors in response to PMA/ionomycin (table 9.2, Figure 9.8). Similarly, 

patients who died had a lower intracellular pro-inflammatory cytokine response to TB antigens 

(p=0.032 for TNF-α and p=0.0065 for IFN-γ, table 5.12, Figures 5.19 and 5.20). When 

comparing cytokine responses in disseminated and non-disseminated TB, those with 

disseminated disease had lower proportions of CD4+ T cells producing TNF- (p=0.006) and 

IFN- (p=0.02) in response to TB antigens.   

Control patients had a substantially higher frequency of CD4+ T cells produce both TNF-α and 

IFN-γ than HIV/TB co-infected patients in response to PMA/ionomycin (table 9.2, Figure 9.9). 

Responses to TB antigens did not differ. IL-22 production on stimulation did not differ by 

patient group or outcome. In exploratory analysis, CD4+ T cell responses were not associated 

with HIV viral load, absolute CD4 cell concentration or presence of danger signs at admission. 

The proportion of CD4+ T-cells producing IFN- or TNF- alone, or both cytokines in response 

to PMA/ionomycin differed between HIV/TB patients and controls (29.1% compared to 44.9% 

respectively, although not statistically significant, p=0.059) and HIV/TB patients who died and 

survived (20.1% compared to 37.5%, p=0.005, figure 9.10). Polyfunctionality (production of 

more than one cytokine) after TB antigen stimulation did not differ by patient group. 
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   TB 
negative 
control 
patients 
(n=16) 

HIV/TB patients  
Cytokine Stimulation 

All  
(n=61) 

  Disseminated 

Died 
(n=21) 

Survived 
(n=40) 

Yes 
(n=10) 

No  
(n=51) 

  
TNF-α 
  

Un-
stimulated 

0.7 (0.1 - 
1.6) 

0.1 (0 - 
1.2) 

0.3 (0 - 
1.2) 

0.1 (0 - 
0.8) 

0.1 (0 - 
1.2) 

0.3 (0 - 
4.6) 

TB 
antigens 

1.1 (0.1 - 
2.5) 

1.1 (0.2 - 
3.4) 

0.5 (0 - 
1.5) 

1.6 (0.4 - 
4.1) 

0.7 (0.2 - 
2.8) 

4 (1.8 - 
7.9) 

PMA/ 
ionomycin 

59.5 (47.6 
- 64.1) 

32.5 (17.7 
- 46.2) 

19.9 
(12.1 - 
29.6) 

38.5 (27 
- 52.8) 

32 (17.3 
- 44.1) 

46.5 
(22.2 - 
66.6) 

  
IFN-γ 
  

Un-
stimulated 

1 (0.5 - 
2.7) 

0.5 (0.2 - 
3) 

2.1 (0.2 - 
4.4) 

0.4 (0.1 - 
2.2) 

0.4 (0 - 
3) 

1.8 (0.3 - 
4.9) 

TB 
antigens 

1.5 (0.7 - 
3) 

1.9 (0.8 - 
4.6) 

1.3 (0.7 - 
3.3) 

2.6 (0.9 - 
6.6) 

1.7 (0.7 - 
4.1) 

4.9 (3.9 - 
9) 

PMA/ 
ionomycin 

60.4 (49.7 
- 68.3) 

28.6 (19.2 
- 47.8) 

20 (10.1 
- 26.3) 

41.2 
(23.5 - 
54.1) 

28.5 
(17.9 - 
46.8) 

43 (21.4 - 
72.4) 

IL-22 
  

Un-
stimulated 

0.2 (0.1 - 
0.5) 

0.3 (0 - 
0.7) 

0.4 (0.1 - 
0.6) 

0.3 (0 - 
1.2) 

0.2 (0 - 
0.6) 

0.7 (0.2 - 
1.4) 

TB 
antigens 

0.2 (0.1 - 
0.7) 

0.5 (0.2 - 
1) 

0.5 (0.1 - 
1) 

0.5 (0.2 - 
1.1) 

0.5 (0.2 - 
1) 

0.6 (0.3 - 
0.8) 

PMA/ 
ionomycin 

1.8 (1.4 - 
3.2) 

1.5 (0.8 - 
2.4) 

1.2 (0.8 - 
1.9) 

1.6 (0.8 - 
2.7) 

1.4 (0.7 - 
2.7) 

1.7 (1.5 - 
2.1) 

Table 9.2 Intracellular cytokine production by stimulated CD4+ T-cells. Data are median % and 
interquartile range of cells expressing each cytokine intracellularly by patient group. Abbreviations: IL 
interleukin, IFN interferon, TNF tissue necrosis factor. 
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Figure 9.8 Change in intracellular cytokine expression upon stimulation in CD4+ T-cells.  

Data show % of cells expressing IFN- or TNF- in unstimulated or stimulated conditions by outcome or 
disseminated TB in HIV/TB patients. Lines connect data points for the same individual. 
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Figure 9.9 Pro-inflammatory cytokine responses to stimulation by CD4+ T-cells.  
Data represent the proportion increase of CD4+ T-cells expressing TNFa (left) or IFNg (right) 
intracellularly upon stimulation compared to unstimulated samples by patient group. Horizontal lines 
are medians for that group, and error bars are interquartile ranges for that group. * represents p<0.05. 
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Figure 9.10 Polyfunctionality of CD4+ T-cells in production of pro-inflammatory cytokines by patient 

group. A. Pie charts presents the median proportion of total stimulated cytokine response that was 

composed of cells producing both TNF- and IFN- (blue, polyfunctional cells), or cells producing IFN- 

alone (red) or TNF- alone (green). B. Data points represent the median proportion of total stimulated 

cytokine response and errors bars are the interquartile range. * denotes p=0.06, ** denotes p<0.05. 

 

 

Next, we compared CD8+ T-cell pro-inflammatory cytokine production in response to TB 

antigens and PMA/ionomycin (table 9.3). CD8+ T-cells from HIV/TB patients who died differed 

from survivors in their ability to produce cytokines on stimulation. A lower proportion of cells 

from HIV/TB patients who died compared to survivors produced TNF- in response to both TB 

antigens (0.1% versus 0.7%, p=0.003) and PMA/ionomycin (13.6% versus 23.8%, p=0.005). 

Similarly, IFN- was produced by a lower proportion of cells from HIV/TB patients who died 

B. 

A. 
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compared to survivors in response to TB antigens (0% versus 0.5%, p=0.002) and 

PMA/ionomycin (57.3% versus 76.4%, p=0.024, figure 9.11). Patients with disseminated HIV/TB 

also had a lower increase in the proportion of CD8+ cells producing TNF- (0.1% versus 2.1%, 

p=0.002) and IFN- (0.3% versus 2.8%, p=0.0003) than patients with non-disseminated TB 

(figure 9.12). 

HIV/TB patients had a lower proportion of CD8+ cells producing TNF- in response to 

PMA/ionomycin compared to HIV-positive but TB-negative controls (12.5% versus 21.2%, 

p=<0.0001), but not IFN- or either cytokine in response to TB antigens.  

 

 

   TB 
negative 
control 
patients 
(n=16) 

HIV/TB patients  
Cytokine Stimulatio

n  
All 

(n=61) 

  Disseminated 

Died 
(n=21) 

Survived 
(n=40) 

Yes 
(n=10) 

No  
(n=51) 

  
TNF-α 
  

Un-
stimulate
d 

0.7 (0.1 - 
1.6) 

0.3 (0.2 - 
0.8) 

0.3 (0.2 - 
0.8) 

0.3 (0.1 - 
0.8) 

0.3 (0.1 - 
0.8) 

0.4 (0.3 - 
2) 

TB 
antigens 

1.1 (0.1 - 
2.5) 

0.8 (0.3 - 
1.8) 

0.3 (0.1 - 
1) 

1.1 (0.4 - 
2.1) 

0.5 (0.2 - 
1.4) 

3.2 (0.5 - 
6.1) 

PMA/ 
ionomyci
n 

59.5 (47.6 
- 64.1) 

21.2 (12.5 
- 30.5) 

13.6 (6.4 
- 19.4) 

24.9 
(15.6 - 
33.6) 

20.3 
(12.5 - 

30) 

28.9 (1.9 
- 31.8) 

  
IFN-γ 
  

Un-
stimulate
d 

1 (0.5 - 
2.7) 

1.1 (0.6 - 
1.8) 

1.3 (0.9 - 
2.7) 

1 (0.5 - 
1.8) 

1.1 (0.5 - 
1.8) 

1.3 (0.8 - 
2.7) 

TB 
antigens 

1.5 (0.7 - 
3) 

1.6 (1 - 
2.7) 

1.3 (0.9 - 
1.8) 

1.8 (1 - 
3) 

1.4 (0.9 - 
2) 

3.5 (2.3 - 
8.8) 

PMA/ 
ionomyci
n 

60.4 (49.7 
- 68.3) 

73.9 (47.5 
- 85.6) 

58.2 
(40.8 - 
73.9) 

78.6 (58 
- 90.1) 

73.7 
(46.4 - 
85.6) 

80.5 (47.5 
- 87) 

Table 9.3 Intracellular cytokine production by stimulated CD8+ T-cells. Data are median % and 
interquartile range of cells expressing each cytokine intracellularly by patient group. Abbreviations: IL 
interleukin, IFN interferon, TNF tissue necrosis factor. 
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Figure 9.11 Change in intracellular cytokine expression upon stimulation in CD8+ T-cells. Data show % 

of cells expressing IFN- or TNF- in unstimulated or stimulated conditions by outcome or disseminated 
TB in HIV/TB patients. Lines connect data points for the same induvial. 
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Figure 9.12 Pro-inflammatory cytokine responses to stimulation by CD8+ T-cells.  

Data represent the proportion increase of CD8+ T-cells expressing TNF- (left) or IFN- (right) 

intracellularly upon stimulation compared to unstimulated samples by patient group. Horizontal lines 

are medians for that group, and error bars are interquartile ranges for that group. * represents p<0.05. 
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Immunological signature 

PCA reduced 39 immunological parameters to ten components which explained 71% of the 

variance. Principal component (PC) 1 was characterised by unstimulated pro-inflammatory 

cytokine concentrations such as IFN-, TNF-, IL-8, IL-6, MIP-1 and MCP-1 (figure 9.13). PC2 

was characterised predominantly by anti-inflammatory cytokines (IL-4, IL-10 and IL-13) as well 

as inflammation markers (sCD163 and hepcidin) and T-cell and monocyte TNF- and IFN- 

responses to TB antigen and mitogen stimulation. Patients with HIV/TB who died clustered 

together when PC1 and PC2 values were plotted (mortality was associated with higher value 

PC1 and lower value PC2, figure 9.14).  

PC1 and PC2 were also strongly associated with mortality in HIV/TB in adjusted and unadjusted 

models (table 9.4). PC5 (characterised by CD4+ T-cell responses to stimulation) was associated 

with mortality in a model adjusted for PC1 and PC2, however, no other components were 

associated with mortality. PC1 (p=0.0001) and PC2 (p=0.038) were also associated with TB 

urine score, with patients with urine score 2 grouped together on the score plot of PC1 and 

PC2 (figure 9.14).   

Hazard ratio 
Lower 95% 

CI 
Upper 95% 

CI 
p-value

Unadjusted/univariable 

PC1 1.3 1.1 1.6 0.0029 

PC2 0.6 0.4 0.7 <0.0001 

Multivariable 

PC1 2.3 1.5 3.4 <0.0001 

PC2 0.4 0.3 0.5 <0.0001 

PC5 1.4 0.9 2.0 0.141 

HIV viral load 0.8 0.6 1.4 0.160 

CD4 cell count 1.0 0.7 1.4 0.862 

Urine TB Score 0.75 0.3 1.7 0.488 

Age 1.1 1.0 1.20 0.004 
Table 9.4 Cox regression model illustrating association between immune signature and mortality. 

Hazard ratios are for every one unit increase in continuous variables, except HIV and CD4 count where 

it is for a doubling (log2). P-values are calculated by likelihood ratio testing. Abbreviations: CI 

confidence interval. n=61 
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Figure 9.13 Bar chart showing loadings of variables for principle component (PC) 1 and 2. Variables in 
red were associated with mortality, whereas those in grey were not found to be significantly associated 
with mortality. 

In exploratory analysis, immune responses in HIV/TB patients were not associated with HIV 

viral load (no correlation with PC1 or PC2, r= 0.21, p=0.11 and r=-0.11 and p=0.40 respectively). 

PC1 was correlated with baseline CD4 cell count (r=-0.48, p=0.001), but not PC2 (r=0.16, 

p=0.23). Immune responses were also weakly associated with urine TB-LAM grade (r=0.25, 

p=0.032 for PC1 and r=-0.26, p=0.024 for PC2). There was no association with cycle time 

threshold for urine or sputum Xpert. 
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Figure 9.14 Principal component analysis demonstrating differences in baseline immune response 
between HIV/TB patients by outcome and disseminated TB. Data show principal component (PC)1 and 
PC2 for baseline immune response plotted for HIV/TB patients by A. their outcome (orange represents 
patients who survived, and blue patients who died), B. urine TB score representing a degree of 
dissemination based on number of positive urine tests. C. shows PC1 and PC2 values for HIV/TB patients 
and TB negative control patients. Clustering is seen most clearly for patients who died (blue) and those 
with urine TB score 2 (pink). n=61 

A. 

B. 

C.
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9.3 Discussion  

The main findings of this study were significantly altered immune responses in HIV/TB patients 

who died compared to those surviving. Patients with poor outcomes had impaired ex vivo 

functional responses, including monocyte and neutrophil phagocyte superoxide function, and 

T-cell and monocyte cytokine production in response to antigenic stimulation. Data reduction

techniques identified distinct immunological phenotypes/signatures that were strongly 

associated with both disseminated TB score based on urine diagnostics and outcome. 

This is one of the first studies assessing immune responses in relation to point-of-care 

diagnostic tests (most studies to date have focussed on TB-IRIS or differentiating latent and 

active TB disease). This was also one of few studies to assess plasma and intra-cellular cytokine 

production. Previous studies have suggested monocytes to be the major source of TNF- [9], 

however, we show CD8+ T-cells are also an important source (especially given the low absolute 

numbers of CD4+ T-cells in advanced HIV) [10].  

The role of CD8+ T-cells in HIV/TB co-infection is poorly studied. Whilst, in active TB disease, 

CD4+ T-cells are preferentially involved in antigen presentation and immune activation, CD8 

responses are also elicited [11]. This includes cytotoxic roles through granzyme and perforin 

expression [12,13], but also production of pro-inflammatory cytokines (eg IFN-γ , IL-2 and TNF-

α) which orchestrate host responses against MTB [14]. This maybe even more important in the 

context of HIV-associated CD4+ T-cell depletion, where CD8+ T-cell populations are expanded. 

HIV may also promote the exhaustion of the CD8+ T-cell response to MTB [15]. 

These findings demonstrate broad functional immune impairments in HIV/TB patients with 

poor outcomes. Whilst two recent studies have shown monocyte dysfunction and 

hyporesponsiveness in TB or HIV/TB co-infected patients who died early [16,17], I also 

demonstrate dysfunction of T-cells and impairment of monocyte and neutrophil phagocyte 

function. The pro-inflammatory cytokine profile and raised markers of innate activation 

(soluble CD14 and CD163) strongly suggest a more activated immunological state, somewhat 

paradoxically to the impaired functional responses. Possible explanations include anergy, 

exhaustion or overactivated immunoregulatory pathways, and this finding is consistent with 

other studies of TB and/or HIV [16,17], and other severe infections such as sepsis and or 

cryptococcal meningitis [18–20]. 

Phagocytosis and superoxide production is an important mechanism of killing MTB and other 

pathogens [21]. Whole blood phagocyte superoxide burst was impaired in HIV/TB patients 

who died. Impaired phagocytic responses have been reported in lung macrophages of HIV-

infected patients in the presence and absence of TB co-infection [22,23], and in whole blood of 
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patients with severe sepsis [24], but not in relation to outcome or disease severity in HIV/TB. 

In blood, this impairment was seen in neutrophils as well as monocytes, which has not been 

previously demonstrated in this population. MTB antigens, including mannosylated LAM, have 

been associated with impaired phagocytosis in vitro, thought to be an important in the survival 

of MTB within macrophages [25,26]. I was unable to show association between urine-positivity 

and impaired phagocyte function ex vivo, possibly due to too few HIV/TB patients without 

disseminated disease in our cohort (thereby our comparisons were underpowered). 

Neutrophils have only recently been recognised as important in the host responses in HIV/TB 

co-infection, mostly through their ability to phagocytose MTB bacilli and other defence 

mechanisms (including oxidative burst, apoptosis, antimicrobial peptides and cytokine 

production) [27,28]. Neutrophils predominate in gene expression signatures of MTB, are 

crucial in defence against bacterial superinfection or sepsis, and are putative targets for host-

directed therapies [29]. HIV-infection has been shown to impair activation, phagocytosis, 

oxidative burst and microbial killing ability of neutrophils, although few data exist on the 

impact of TB on neutrophil function. The consequence of impaired neutrophil killing of MTB 

maybe the induction of anti-inflammatory responses and subsequent persistence and/or 

propagation of infection [27,30]. 

Principle component analysis demonstrated a blood immune response at hospital admission 

that was associated with urine TB score (and therefore disseminated TB), and differed 

between patients who survived or died. Patients who died clustered based on their values for 

PC1 and PC2, which were characterised by higher levels of pro-inflammatory cytokines IFN-, 

TNF-α, IL-8, IL-6, MIP-1 and MCP-1 (PC1), and reduced anti-inflammatory (IL-4, IL-10, IL-13) and 

T-cell and monocyte responses to stimulation (PC2). This immune profile remained strongly

associated with outcome even after adjustment for other predictors of mortality, including HIV 

viral load and CD4 cell count.  

PC1 was more strongly associated with disseminated TB, suggesting a more activated and 

inflammatory immune response in this patient group. A recent study in hospitalised HIV/TB co-

infected patients from South Africa found a similar immunological signature associated with 

mortality, characterised by impaired cytokine responses to stimulation despite high 

unstimulated proinflammatory cytokine production [17]. Similar signatures have also been 

reported in severe HIV-associated cryptococcal meningitis [31]. This immunological 

dysfunction could be due to advanced HIV-infection. However, I found that baseline HIV viral 

load and absolute CD4 cell count were not strongly associated with the immune signature 

whilst TB dissemination was, suggesting that TB may be a more important driver of this 

immune dysfunction than HIV. 
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In addition to impairing anti-tuberculosis host defences, this immune profile may impair 

responses to bacterial or other co-infections in HIV/TB patients, which may be important in the 

pathway to mortality. Although we did not look for bacterial co-infections in this cohort it is 

possible that they were present since 15% of the patients also had circulating cryptococcal 

antigen. Furthermore, previous post-mortem studies suggest that bacterial superinfection is 

common [32,33]. 

The strengths of this study include being nested within a TB screening trial, therefore this 

cohort was not restricted to patients with TB symptoms or suspected of TB by clinical teams. In 

addition, we assessed a broad range of immune responses beyond simply profiling cytokines 

levels, incorporating several functional responses of multiple cell types. Our phagocytosis and 

superoxide burst assay measured function at an individual cellular level, and was not biased by 

cell counts or concentrations [8]. The high mortality risk in this cohort meant that the study 

was well powered to compare immune responses between patients with good and poor 

outcomes. The cohort was well characterised clinically, and had high ART coverage reflecting 

contemporary HIV/TB patient cohorts in sub-Saharan Africa. There were few missing data from 

this study. 

There are, however, several limitations to the study. Due to the high prevalence of 

disseminated TB disease, the study was underpowered to detect differences between patients 

with disseminated and non-disseminated TB. Measuring multiple immunological mediators 

and pathways led to multiple testing, which increases risks of false positive hypothesis tests. 

Methods used to reduce the risks of false positive associations may also increase the risk of 

missing associations. In addition, due to the cross-sectional design and measuring immune 

responses at only one timepoint, we are unable to say if the immune profiles associated with 

mortality are causal, or they are markers of more severe illness, which could be associated 

with a worse prognosis through other mechanisms. Similarly, it is not possible to say if innate 

activation, inflammation and anergy promote dissemination of MTB or are a consequence of 

disseminated disease. 

I have described exhaustion or anergy causing impaired production of the inflammatory 

cytokines TNF-α and INF-γ from whole blood T-cells and monocytes recovered and stimulated 

ex vivo. This does not explain which cells are responsible for high in vivo concentrations in the 

same patients. Ex vivo experiments may also not reflect in vivo conditions, although I chose to 

use whole blood instead of peripheral blood mononuclear cells (PBMCs) to better reflect in 

vivo conditions and reduce alterations in cell function caused by processing and isolating 

PBMCs [3]. Fixing, freezing and storage of cells prior to intracellular cytokine staining may have 

impacted the results, although this method likely improves reliability by reducing day-to-day 
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variations in flow cytometry. T-cell responses to CFP overall were poor. However, monocyte 

responses and healthy volunteer responses (data not shown) were good suggesting this was 

not due to a problem with the antigen. 

The differences in immune parameters between TB-negative controls and HIV/TB patients, and 

the lack of associations between altered immune responses and HIV viral load and CD4 cell 

count suggest that MTB may be a stronger contributor than persistent/chronic HIV. However, 

we did not elucidate the mechanisms underlying altered immune responses in HIV/TB co-

infection. Specifically, it is not clear if altered phagocyte functions are due to cellular defects or 

alterations in soluble immune mediators. I only measured one aspect of phagocyte function 

(super oxide burst) – the same assay could be adapted to measure lysosomal pH and/or 

proteolysis. Other aspects of killing could be assessed, for example granzyme B and perforin in 

CD8+ T-cells and neutrophils [34]. 

Since some HIV/TB patients were diagnosed based on TB-LAM alone, we cannot exclude a 

small number of false positive results, although the specificity of TB-LAM is >99% in 

hospitalised cohorts when appropriate reference standards are used [35]. I did not ascertain 

the cause of death in patients who died, although cause of death is difficult to interpret in the 

absence of post-mortem examination. Finally, we could not exclude coexistent bacterial 

infection influencing the immune profile. Blood cultures were not performed. However, given 

that almost all patients received broad-spectrum anti-bacterial agents at or very soon after 

admission, cultures will have had greatly reduced sensitivity. 

Despite these limitations, this study provides important insights into the immune profile of 

hospitalised patients with HIV-associated TB, a subset of patients with high mortality risk who 

need to be prioritised for adjunctive interventions to reduce mortality. Our findings show 

extensive inflammation and immune activation in disseminated HIV/TB, but simultaneously 

associated with altered and dysregulated cellular and soluble immune responses. This may 

lead to impaired defence against MTB, but also a predisposition or impaired ability to clear co-

infections, and is similar to those seen in bacterial sepsis and severe cryptococcal disease. They 

also suggest that urine diagnostics may be a useful method of identifying patients with higher 

mortality risk, and immune dysfunction. Although further work investigating mechanisms and 

pathways will be needed, these findings support ongoing studies of immunomodulatory 

interventions, in addition to TB treatment and ART, to reduce mortality. 
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Chapter 10: Discussion, implications and future directions 

 

10.1 Summary of findings 

This section summarises the findings presented in chapters 3 to 9, in relation to the thesis aim 

and specific research questions. 

Research question 1: Are positive urine-based diagnostics associated with increased mortality? 

The systematic review and meta-analysis presented in chapter 3 found a pooled 2.3 (95% CI 

1.6-3.1) fold increase in mortality risk for urine LAM positive compared to urine LAM negative 

patients with HIV-associated TB across 10 studies with 1,172 participants. Importantly, there 

was also a pooled 2.5 (95% CI 1.4-4.5) fold increase in odds ratio for mortality in LAM positive 

compared to LAM negative in multivariable analyses adjusted for other risk factors. 

Prospectively collected data presented in chapter 5 showed that a positive urine LAM assay 

was associated with a 1.7 (95% CI 1.0-3.0) fold increase in mortality risk at 2-months in 

patients with confirmed TB disease. Two-thirds of patients had a positive LAM test. Data from 

two cohorts of hospitalised patients with HIV-associated TB published after the systematic 

review was conducted (but presented in chapter 6 and used to validate the clinical score) also 

demonstrated increased mortality risk in LAM-positive patients [1,2]. Chapter 5 also reported 

an increased mortality risk associated with positive urine Xpert (OR 1.9, 95% CI 1.3-2.9 

compared to urine Xpert negative TB).  

Together, these findings provide strong evidence that positive urine diagnostic tests are 

associated with increased mortality risk in HIV-associated TB. This suggests urine testing can 

provide valuable prognostic as well as diagnostic uses, and may identify vulnerable patients 

who could benefit from adjunctive interventions to reduce mortality. 

 

Research question 2: What is the mortality risk and timing of mortality in HIV-associated TB? 

Chapter 5 reported a 31% mortality risk by 2 months among 322 inpatients with 

microbiologically-confirmed TB, despite high antiretroviral therapy (ART) coverage, TB 

screening and near-universal prompt TB treatment. Mortality during hospital admission was 

23%. The mortality risk from TB in HIV-positive patients admitted to hospital in sub-Saharan 

Africa remains similar to those reported in the review of the literature (see section 1.10,  

chapter 1), and in a published systematic review and meta-analysis (Ford et al 2015) [3]. Earlier 

studies predated high population coverage of ART and access to improved diagnostics such as 

Xpert, suggesting these interventions have not had substantial impact on mortality in the 
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hospitalised population with confirmed TB-disease. However, the numbers of patients 

admitted, and therefore diagnosed with TB, may have reduced over time. 

Only 9% of deaths occurred within 48 hours of admission and 32% within one week of 

admission. 28% occurred after discharge from hospital. These findings show the substantial 

burden of mortality in hospitals attributable to HIV-associated TB, and that mortality in HIV-

positive patients with TB is higher than in patients without TB (chapter 8 and [4]). They also 

imply a potential window to intervene and improve outcomes in the majority of patients, and 

a need for better evaluation of patients prior to discharge with more intensive follow-up for 

the sickest patients.  

 

Research question 3: What are the risk factors for mortality and clinical phenotypes of patients 

with high mortality risk? 

Systematic review and meta-analysis in chapter 3 described five studies reporting predictors of 

mortality, including CD4 cell counts, age, ART status, gender and functional ability. Analysis of 

risk factors for mortality presented in chapter 5 found older age, male sex, being ART-

experienced prior to admission, having poor nutritional status (measured by weight), severe 

anaemia and positive urine diagnostic tests as factors associated with mortality after adjusting 

for confounders in a multivariable model. Being positive on both urine LAM and Xpert assays 

was associated with the highest mortality. Cluster analysis, conducted without reference to the 

outcome of interest, was also able to identify distinct clinical phenotypes associated with a 

high (>50%) mortality risk, and included reporting functional problems with activity/mobility, 

severe anaemia, male gender and positive urine-diagnostics. 

High mortality was underscored by disseminated TB, advanced HIV-associated 

immunosuppression, and/or poor virological control of HIV. These findings present several 

possible areas for interventions to reduce mortality, including intensified inpatient 

management strategies, and earlier diagnosis and management of ART failure. Effective 

upstream public health interventions such as earlier diagnosis of both HIV and TB (using 

targeted screening as well as passive case finding) and TB prevention with preventative 

treatment will reduce the burden of patients with advanced HIV-associated TB. 
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Research question 4: Can a pragmatic clinical score (including urine diagnostic results) be 

developed and validated? 

Chapter 6 reports a clinical score derived from the cohort of microbiologically confirmed TB 

patients from the STAMP trial using multivariable predictive modelling. Six variables were 

identified to be included in the score (age 55 years or older; male gender; being ART 

experienced; severe anaemia (haemoglobin <8g/dL); being unable to walk unaided; and having 

a positive urine LAM test). The model had good discrimination (c-statistic = 0.70) and 

calibration (Hosmer-Lemeshow statistic p=0.78). 

The score was able to identify a group of patients with a 46% mortality risk, and 6.1 (95% CI 

2.4-15.2) fold increase in odds compared to the low mortality risk group. External validation in 

an independent cohort of patients from two other studies found similar performance of the 

score. A simplified score using ‘any three of six’ factors also performed well enough to provide 

a simple tool that can be implemented in settings moving forward with urine LAM scale-up (eg 

Malawi and South Africa).  

The score shows potential to identify patients who could benefit from enhanced clinical care 

and follow-up, and as a research tool for assessing new interventional strategies. For example, 

the score could be delivered at admission for patients diagnosed with TB. It could also be used 

alongside urine LAM to recruit high risk patients into clinical trials of adjunctive therapies for 

HIV-associated TB. This score is unlikely to useful in outpatient or community settings, 

although future research could look to derive and validate such a score for less acute settings. 

 

Research question 5: Can an immunological assay to classify/assess functional immune 

responses be developed for use in high HIV/TB burden settings? 

Work developing a functional whole blood phagocytosis assay using a fluorescent zymosan 

reporter particle and flow cytometry is reported in chapter 7. The assay assesses superoxide 

burst function of monocytes and neutrophils. Kinetics and reproducibility were determined in 

a cohort of healthy (HIV-negative) volunteers. The readout from the superoxide burst was 

independent of changes in cell or particle concentration, indicating that the assay was 

measuring physiological changes in the phagocyte at an individual cell level: this is a significant 

methodological advance over existing assays, and allows interrogation of this important 

cellular immune pathway in a range of disease settings. 

Assessment of peripheral blood phagocyte function using this assay showed that phagosomal 

superoxide burst activity of monocytes and neutrophils was substantially and significantly 
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depressed in a cohort of patients with HIV-associated TB compared to HIV-negative ‘healthy’ 

volunteers, and that this was also in relation to monocyte phenotype. The assay showed 

marked differences between groups based on TB disease phenotype, was highly reproducible 

and allowed the rapid assessment of functional immune competence of phagocytes in 

peripheral blood. 

 

Research question 6: Do immune responses differ according to TB disease dissemination 

(based on urine diagnostic tests) and in relation to mortality? 

Immune responses, including soluble plasma immune mediators, peripheral blood cell 

phenotypes and functional innate and adaptive responses were measured in a cohort of 

Malawian patients with confirmed HIV-associated TB, and are reported in chapters 8 and 9. 

Patients dying by 2-months had higher concentrations of cytokines responsible for innate and 

pro-inflammatory signalling, and markers of inflammation such as C-reactive protein and 

hepcidin. They also had more marked monocyte activation, but impaired ex vivo functional 

responses, including cytokine production and phagocyte function. CD8+ T-cell function was also 

impaired. 

Although the cytokine profiles or functional immune responses were not significantly different 

in patients with urine-positive disseminated TB compared to urine negative TB patients when 

comparing individual assay results, the statistical power was limited by the small number of 

patients with urine-negative TB disease.  

However, principle component analysis incorporating 39 immunological parameters identified 

a blood immune signature at hospital admission that differed by urine TB score (based on 

urine LAM and urine Xpert) as well as mortality.  

The results suggest not only impairment of anti-TB host defences in patients with poor 

outcomes and/or disseminated disease, but potentially also those against bacteria or other co-

infections in patients with HIV-associated TB. Similar profiles have been reported in bacterial 

sepsis and severe cryptococcal disease [5,6]. The findings also support research into 

immunomodulatory and adjunctive interventions focusing on reversing immune cell anergy or 

exhaustion. Urine diagnostics are then a promising method to identify patients with abnormal 

immune responses who could be targeted for host directed immunotherapies. 
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10.2 Study limitations 

Limitations are discussed in the individual research papers and results chapters (chapters 3-9). 

Here, overall limitations of the study are discussed. 

The studies of mortality were cohort studies nested within a randomised clinical trial of a TB 

screening strategy [4]. Overall TB prevalence and mortality was lower than anticipated, likely 

reflecting ART scale-up. Therefore, there were fewer patients in the clinical mortality studies 

than planned, although sample sizes still had adequate statistical power. 

The urine-based (intervention) arm of the study diagnosed significantly more patients with TB. 

Some TB patients in the sputum only (standard of care, SOC) screening arm will have remained 

undiagnosed (ie those with negative sputum tests and not diagnosed clinically or 

radiologically), which will have introduced some selection bias into these studies. In Malawi, 

only one-third of patients produced sputum samples for TB testing, much lower than in South 

Africa [4], and making the SOC cohort in Malawi especially vulnerable to under-diagnosis of TB. 

The TB diagnostic strategy of the trial did not include a culture reference standard. Therefore, 

whilst studies with adequate reference standards have shown very high specificity of urine 

LAM, ‘false-positive’ TB diagnoses cannot be excluded. The strategy did not include extensive 

extra-pulmonary sampling (beyond testing urine), and therefore may have missed some TB 

disease that could have been ‘microbiologically confirmed’: we estimate that the diagnostic 

yield of the STAMP screening strategy will have identified approximately 80% of all culture-

confirmed TB [7–9]. If false-positive TB patients were included in the sub-studies which form 

part of this thesis, I will have overestimated the proportion of TB patients detectable by urine 

diagnostics (‘urine-positive’) and potentially underestimated group differences between HIV-

positive inpatients with and without confirmed TB. Patients diagnosed with TB without any 

microbiological confirmation were not included. 

The study was nested in a clinical trial. Whilst the management of patients was undertaken by 

routine health systems, the turnaround time for TB diagnosis may have been better than 

under routine hospital conditions, which may have impacted outcomes. 

When assessing factors associated with mortality, I was unable to account for all factors, and 

there may be residual confounding that was unaccounted for in the association between 

mortality and disseminated urine-positive TB disease. In particular, I did not collect data on the 

presence of bacterial co-infection, and data on renal function were collected only from South 

Africa. TB immune reconstitution syndrome (IRIS) was also not considered as a factor 

associated with mortality in this study. Given the low proportion of ART naïve patients, low 

mortality associated with IRIS and difficulty with diagnosis, IRIS was thought not to be a 
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significant risk factor for mortality [10,11]. Ultimately, detailed post-mortem and ante-mortem 

data are required to accurately determine causes of death.  

Although missing data was minimal for the STAMP trial participants and sub-studies, there was 

considerable loss to follow-up and missing explanatory data in the cohorts used to externally 

validate the clinical score for predicting mortality. My sensitivity analyses using multiple 

imputation suggests, however, that this is unlikely to have had a major impact on the overall 

findings. 

The study of immune responses was underpowered to detect differences between urine-

positive and urine-negative TB patients, due to the small number of patients with urine-

negative disease. Whilst the immunology studies detected differences in immune responses 

between patients with differing mortality outcomes, the exact mechanisms cannot be 

elucidated from this study. I cannot assign causality to the association between immune 

responses and mortality. There are many important aspects of the immune response that were 

not assessed, which may be important. Immune responses were assessed ex vivo. Whilst using 

whole blood is more representative of in vivo conditions than isolating peripheral blood 

mononuclear cells, which can have a substantial impact on phenotype and function, it may not 

represent how cells behave in the host. 

 

10.3 Implications of findings 

Ending TB  

The findings from the studies presented in this thesis (see table 10.1) are relevant to the World 

Health Organization’s End TB Strategy, which aims to eliminate TB as a public health issue by 

2035 [12]. Although most TB is thought to be acquired at the community level, HIV-related TB 

diagnoses and deaths occur disproportionately at secondary care level [13], making prevention 

and better management of HIV-associated TB in hospitals is a prerequisite for reaching targets 

for TB mortality reductions.  

Disseminated disease is a relatively common manifestation of HIV-related TB, making up an 

increasing proportion of all TB disease as immunosuppression increases [14,15].  Importantly, 

the clinical manifestations and rate of progression of disseminated HIV-related TB are very 

different from localised pulmonary or extrapulmonary TB, with disseminated disease less easy 

to diagnose as outpatients and tending to have a relatively fulminant presentation with 

progressively severe systematic illness leading to prompt hospitalisation or death.   



280 
 

Key finding(s) / 
identified problem 

Implications for HIV-
associated TB 

Future research 
directions 

Relevant other 
research 

Urine-diagnostics 
(especially urine-LAM 
LFA) increase TB 
diagnosis/ treatment 
in HIV+ inpatients, and 
reduce mortality in 
‘high risk’ subgroups 
(low CD4 count, 
severe anaemia, 
clinically suspected 
TB) 

Screening of all HIV+ 
inpatients for TB with 
urine LAM and sputum 
Xpert (in high prevalence 
settings) 

-Operational research as 
urine screening is 
implemented in Malawi 
+/- South Africa 
 
-Interventional studies 
using new/more accurate 
LAM assays 
 
-Studies of screening 
strategies in outpatient 
settings (STAMP results 
cannot be extrapolated 
to outpatient settings) 
 

STAMP trial [4]; 
LAM RCT [2] 

HIV-associated TB is 
still common in 
hospitals in SSA, and 
presents with 
advanced disease with 
a high mortality risk 

Better implementation 
of public health 
interventions, including: 
-prevention and early 
diagnosis of HIV 
-early initiation of 
effective ART 
-screening for TB at ART 
initiation and regularly 
thereafter 
TB prevention in PLHIV 
(eg IPT) 

-Research/modelling to 
describe the proportion 
of all HIV-associated TB 
that is diagnosed in 
hospitals, and the 
proportion of all TB 
mortality that occurs in 
hospitals 
 
-Clinical trials of 
interventions to reduce 
mortality in HIV/TB (eg 
prophylactic treatment 
for co-infections, 
antibiotics, high dose 
rifampicin, supportive 
care)  

Studies of TB 
screening at 
ART initiation 
[16]; IPT 
[17,18]; early 
ART [19–21]; 
other public 
health 
interventions 
[22]; REALITY 
study of 
enhanced 
prophylaxis in 
HIV [23] 

Urine diagnostics have 
prognostic as well as 
diagnostic utility 

Use to identify patients 
with highest mortality 
risk, to be targeted for 
additional care: 
-supportive care 
-enhanced follow-up (eg 
lay HCW, telephone 
follow-up, early clinic 
appointments) 

-Evaluation of 
implementation of 
clinical prognostic score 
for mortality 
 

REMSTART 
(enhanced 
follow-up in 
advanced HIV) 
[24] 

High prevalence of 
ART failure, with 
worse outcomes for 
those on ART 
(compared to ART 
naïve) 

-Screening for virological 
failure, and/or empirically 
switching HIV/TB patients 
on ART to new/better 
regimens  
-Better quality of ART 
services 

-Studies of HIV drug 
resistance to establish 
aetiology of ART failure 
 
-Interventional trials of 
POC viral load testing 
and/or empirical 
switching 
 

Meta-analyses 
of HIV drug 
resistance 
[25,26]; 
Dolutegravir 
PK/PD studies 
in HIV/TB 
[27,28]; 
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Table 10.1 Summary of key findings, implications, future research directions 

 

As such, disseminated disease is the dominant form of TB among HIV-positive inpatients, and 

by far the most common form of fatal TB diagnosed at post-mortem in patients dying as 

inpatients [31]. This also makes the findings from this thesis (and the STAMP trial) difficult to 

extrapolate outside the hospital context. 

Furthermore, no contemporary data describe the proportion of HIV-positive TB notifications 

that are diagnosed in hospitals. Data from the STAMP trial and Malawian National TB 

Programme indicates in 2016, 66% (95% CI 60% – 71%) of all TB notifications in HIV-positive 

patients in Zomba District were from inpatients on medical wards. 

 

Screening for TB in hospitals 

The WHO four symptom screen for HIV-associated TB (any one of cough, fever, night sweats or 

weight loss) has high sensitivity, although only moderate specificity in outpatient settings [15]. 

However, data from STAMP and other inpatient hospital cohorts show imperfect sensitivity for 

bacteriologically confirmed HIV-associated TB in hospitals, as well as poor specificity (90% of all 

HIV-positive patients admitted were positive) [4,7,32]. Thus, this screen has no role within TB 

testing algorithms in hospitals. A simple clinical diagnostic score with good accuracy in hospital 

has proven challenging to establish. 

Empirical TB treatment is an alternative approach to screening. A recent trial of extensive 

screening compared to systematic empirical treatment in ART naïve patients with HIV/TB and 

advanced immunosuppression found no decrease in mortality and more adverse events with 

empirical treatment, suggesting intensive TB screening should be the preferred approach [33].  

 

-studies of newer ART 
regimens in HIV/TB  
 

studies of 
timing of ART 
initiation in 
HIV/TB [19–21]  

Impaired immune 
protective immune 
mechanisms in HIV/TB 
patients with poor 
outcomes 

Patients at high risk of 
poor outcomes may 
benefit from adjunctive 
interventions to address 
co-infections and/or 
immunomodulatory 
therapies 

-Clinical trials of high-
dose rifampicin, empirical 
antibiotics and 
preventative therapies 
for infections  
 
-Development of HDTs 
for HIV/TB 
 

High dose 
rifampicin is 
safe and has 
better 
outcomes 
[29,30] 
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Use of urine-diagnostic tests 

Findings from the STAMP trial [4], in addition to the diagnostic clinical trial of LAM use (LAM 

RCT) [2] support the implementation of urine-based TB diagnostics to test all HIV-positive 

admissions to medical wards for TB in high HIV and TB prevalent settings (see table 10.2) [34]. 

This approach would likely substantially improve diagnosis of HIV-associated TB. It could also 

reduce mortality, at least in patients with more advanced disease such as low CD4 cell counts. 

Cost-effectiveness analyses from the STAMP trial indicate the approach is cost-effective, 

although using urine LAM alone (without urine Xpert) was more cost-effective and affordable 

with only a small reduction in diagnostic yield [34]. These data have led to incorporation of 

urine LAM screening for HIV-positive patients in hospitals as part of the latest guidelines for 

Malawi (personal communication Malawi National TB Programme) and in South Africa (plenary 

presentation at the SA TB conference, Durban 2018). 

This thesis delivers evidence that urine diagnostics provide prognostic as well as diagnostic 

benefit. As urine LAM is implemented for screening/diagnosis in hospitals, patients with 

detectable urine LAM (and/or other high risk factors as highlighted in the clinical score) can be 

targeted for additional care in view of their increased risk of mortality. Whilst STAMP data did 

not support routine screening with urine Xpert, it is a useful additional diagnostic in patients 

who are sputum Xpert negative (or sputum scarce), and urine LAM negative, and can also 

provide prognostic information. 

 

Reducing mortality in advanced HIV-associated TB 

I have shown that, despite early TB diagnosis and TB treatment initiation based on screening 

HIV-positive inpatients, mortality in HIV-associated TB remains substantial (31% by 2 months). 

Therefore, interventions adjunctive to TB treatment and appropriately timed ART will be 

needed to further reduce mortality. Findings presented in this thesis support various 

interventions aimed at reducing mortality, although further studies may be required to 

confirm findings and prior to implementation.  

Firstly, patients with the worst outcomes present with advanced disease, therefore ‘upstream’ 

public health interventions (ie prevention and early diagnosis of both HIV and TB) need to be 

better implemented. Such interventions (see table 10.1) include those described in Chapter 1 

of the thesis, especially prevention of TB in PLHIV (eg isoniazid preventative therapy), early 

diagnosis of HIV-associated TB (eg TB screening at ART initiation and follow-up), early HIV 

diagnosis and ART initiation and better HIV and TB service integration.  
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LAM RCT (Peters et al, Lancet 

2016) [2] 

STAMP Trial [4] 

Setting/Sample Size 2,569 randomised in South 

Africa, Tanzania, Zambia, 

Zimbabwe. 2013-2014 

2,600 randomised in South 

Africa, Malawi. 2015-2017 

Intervention TB-LAM in addition to routine 

diagnostics 

TB-LAM & Urine Xpert & 

Sputum Xpert (no sputum 

induction) 

Comparator group Routine diagnostics (not defined, 

varied by site, included sputum 

induction and culture) 

Sputum Xpert + routine 

diagnostics (no sputum 

induction or routine 

culture) 

Population Hospitalised HIV+ patients 

‘presumed to have TB’ 

Hospitalised HIV+ patients 

irrespective of 

presentation or TB 

symptoms 

Outcomes 1. Mortality at 56-days 

2. TB score/Karnofsky 

performance score 

1.   Mortality at 56-days 

2.   TB diagnosis and 

treatment 

Exclusions -1074 unable to consent 

-2569 started TB treatment 

between admission and 

screening 

-654 unable to consent 

-150 started TB treatment 

between admission and 

screening 

Patient Characteristics Median CD4 cell count: 84 (IQR 

26-208) 

Taking ART at baseline: 48% 

Median CD4 cell count: 

230 (IQR 78-438) 

Taking ART at baseline: 

72.3% 

56-day mortality (INT vs 

SOC) 

24.9% vs 20.8%, p=0.012 

Absolute ↓4% (1-7), Relative ↓ 

17% (4-28) 

21.1% vs 18.3% p=0.073 

Absolute ↓2.8% (-0.3 to 

5.8), Relative ↓ 13% (0-27) 

TB diagnosis & 

treatment 

(INT vs SOC) 

52% vs 47% (treatment), 

p=0.024 

Absolute ↑5%, Relative ↑ 10% 

21.9% vs 14.9% (diagnosis) 

20.8% vs 14.1% 

(treatment)  

Absolute ↑7%, Relative ↑ 

50% 

LAM yield in 

microbiologically  

confirmed TB*  

250/460 (60%)  158/210 (75%) 

Only LAM positive 94/1254 87/1287 

Table 10.2 Comparison of STAMP and LAM RCT trials. *Microbiologically confirmed TB was described as 
Xpert, mycobacterial culture or urine LAM positive. INT intervention arm (urine screening in STAMP, 
LAM testing in LAM RCT); SOC standard of care/non-intervention arm; IQR interquartile range.  
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Mortality was higher in patients on ART compared to ART naïve patients, which is a novel 

finding, and patients on ART had high prevalence of ART failure. Rapid diagnosis of ART failure 

(for example, using point of care HIV viral load assays) followed by adherence interventions 

and/or adherence or switching of regimens could improve outcomes. Dolutegravir, an 

integrase inhibitor, is a promising antiretroviral for such settings as it has a high barrier to 

resistance and has few interactions with TB drugs [27,28]. Switching TB patients to 

dolutegravir based regimens without viral load testing is one option, however recent concerns 

about teratogenicity (specifically associations with neural tube defects) may limit the 

applicability in women of childbearing age [35]. 

In addition to interventions aimed directly at TB and HIV, TB is highly immunosuppressive and 

can disrupt innate pulmonary defences leaving patients at increased risk of concurrent 

opportunistic infections, notably Cryptococcus and bacterial infection. Furthermore, these 

patients also have advanced HIV-related immunosuppression which also increases risks of 

concurrent infections. High prevalence of cryptococcal antigenaemia supports screening of TB 

patients for cryptococcal disease followed by treatment or prophylaxis. Current guidelines 

recommend CD4 count based cryptococcal screening, and do not account for programmes 

where CD4 testing has been phased out (eg Malawi, where spending on CD4 counts was 

instead used for virological testing), and thus many TB patients would not currently be tested 

for cryptococcus. 

Bacterial infections are common in HIV-positive patients admitted to hospital, as shown by 

post-mortem data [31,36,37], and studies doing blood culture [38–40] and more sensitive PCR 

based methods [41]. Diagnosis in routine settings is challenging, and empirical prophylaxis 

and/or treatment has been shown to reduce mortality in advanced HIV by 25% in the REALITY 

trial [23]. Therefore, empirical anti-infectives should be considered in patients with HIV-

associated TB, keeping in mind the increasing prevalence of antimicrobial resistance, especially 

in gram-negative organisms [42]. 

Supportive care in high HIV-prevalence and resource limited settings remains challenging. 

Interventions for patients with sepsis tend to generalise poorly from high-resource to low-

resource settings: for example, ‘early-goal directed therapy’ (intravenous fluid boluses with 

monitoring of physiological response, vasopressors for refractory hypotension, and blood 

transfusions for life-threatening anaemia), paradoxically led to increased mortality in sub-

Saharan Africa [43]. Given the high prevalence of severe anaemia and renal dysfunction in HIV-

associated TB, interventions to improve supportive care such as blood transfusion and 

intravenous fluid are of high importance but also high risk. Finally, over one-quarter of deaths 
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occurred after discharge, therefore enhanced follow-up and support strategies that can reduce 

mortality in advanced HIV [24][44] should also be considered for HIV-associated TB. 

 

Host-directed therapies 

Adjunctive host-directed therapies (HDTs) are in development primarily for shortening TB 

treatment duration, targeting lung immunopathology, and treating drug resistant TB disease 

[45]. They work by promoting effector mechanisms against MTB, for instance cytokine 

production, antimicrobial peptide production (eg reactive oxygen species), phagolysosome 

fusion and autophagy. I found impairment in several protective immune functions in patients 

with poor outcomes, including production of inflammatory cytokines to stimulation, monocyte 

function and phagocytic killing through oxidative burst. These findings support the 

development of HDTs for HIV-associated TB, as they have the potential to improve outcomes. 

Potential host therapeutic targets supported by the findings of this thesis are outlined in figure 

10.1. 

 

 

Figure 10.1 Potential host directed therapy targets. Pathological processes are in yellow boxes, host 
directed therapies (HDTs) are in blue boxes. Lipoarabinomannan (LAM) inhibits phagolysosome fusion 
and other aspects of phagocytosis to promote MTB intracellular survival. Some agents can overcome 
this, or circumvent it through promoting autophagy. TNF tissue necrosis factor, MTB Mycobacterium 
tuberculosis, ROS reactive oxygen species, IFN interferon, IFNR interferon receptor, PRR pattern 
recognition receptor. Adapted from Wallis et al [45] and Kolloloi et al [46]. 
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Several agents are in clinical trial for TB treatment [46]. However, few include patients with 

HIV-associated TB. Prednisolone is being considered for TB and TB-IRIS [46]. Although short 

courses of prednisolone increased the rate of sputum MTB clearance (thought to be through 

reduction in immune activation and increasing CD4+ T-cell responses), the adverse effects of 

steroids outweighed the benefits [47,48]. TNF-α blockers such as etanercept are being 

considered for HIV-associated TB [49], as are cytokine supplementation (eg INF-γ) [46]. LAM 

itself is a potential target of anti-MTB antibodies [50,51]. 

 

10.4 Future research 

The findings presented in this thesis, and the STAMP trial within which it was nested, can 

inform future research targeting mortality in HIV-associated TB and/or urine-diagnostics (table 

10.1). 

The prevalence of TB and associated mortality in hospitalised HIV-positive patients has now 

been well described. However, the absolute numbers of TB diagnoses and proportion of total 

incident TB that are diagnosed in hospital in high prevalence settings has not been described 

or modelled. These data, in addition to data on proportions of total TB deaths occurring in 

hospitals, are vital to direct interventions and resources to this population in efforts to ‘end 

TB’. Scaling up of urine LAM screening in PLHIV in hospitals is already occurring: 

implementation and operational research should accompany scale-up to measure ‘real-life’ 

impact and outcomes, as well as strategies to improve uptake. More accurate LAM detection 

techniques are in the pipeline [52,53], including a more accurate LAM lateral flow assay [54]. 

Diagnostic accuracy and validation studies are needed before interventional studies. 

ART failure was shown for a high proportion of TB patients, and in HIV-positive patients in the 

STAMP trial more broadly. The aetiology is not clear (poor adherence versus HIV drug 

resistance), and studies on stored plasma from the STAMP trial are being undertaken to 

describe the prevalence of drug resistance mutations. Potential strategies to tackle ART failure 

include viral load testing with early switching to second line therapy, or switching high risk 

patients without measuring viral load. Further research is needed to establish the virological, 

TB and mortality outcomes of these strategies.  

Higher dose rifampicin (up to 35mg/kg compared to current dosing of 10mg/kg) has shown 

promising results in early clinical trials, being safe and leading to more rapid culture conversion 

[29,30] and better outcomes for TB meningitis [55]. The impaired host responses 

demonstrated in this thesis and association between mortality and urine-positivity strongly 

support trial of high dose rifampicin for urine-positive HIV-associated TB. Other potential 
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interventions that should be trialled include: empirical broad-spectrum antimicrobials, 

packages of supportive care such as intravenous fluids and/or blood transfusion if these can be 

provided with sufficiently intensive monitoring, as well as enhanced follow-up (for example, 

early clinic appointments, lay health care worker visits or telephone calls) for patients 

discharged alive but with ongoing high mortality risk.  

The confirmation that outcomes and clinical features are associated with immune responses 

also warrants further mechanistic studies. It was unclear if defects in phagocyte function were 

driven by cellular factors or soluble proteins. Further experiments assessing phagocyte 

responses in healthy control cells incubated with plasma from HIV-associated TB patients with 

impaired phagocytic responses could help delineate this. Assessment of other antimicrobial 

pathways, for example perforin and granzyme expression are also being undertaken from 

stored samples in this cohort. 

 

10.5 Conclusion 

The studies presented in this thesis demonstrate the unacceptably high mortality of HIV-

patients admitted to hospital with TB, and that positive urine-diagnostic tests (indicative of 

disseminated TB disease) are associated with increased mortality. Urine-diagnostics, 

particularly urine LAM lateral flow assays, provide a simple and easily implementable method 

to predict which patients are at highest risk of poor outcomes, either alone or when used in a 

simple score with other easily obtained variables.  

Reliance on TB therapy alone, even in the context of screening and rapid initiation of 

treatment is unlikely to be enough to meet global targets for mortality reduction. Adjunctive 

interventions targeting advanced HIV-immunosuppression, advanced TB disease and impaired 

immune responses will be needed to further reduce mortality, in addition to better 

implementation of existing upstream public health interventions. Research and 

implementation should consider both these approaches together, and address the TB disease 

burden in hospitals in sub-Saharan Africa as part of the ‘End TB’ movement. 
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Rapid urine-based screening for tuberculosis in HIV-positive 
patients admitted to hospital in Africa (STAMP): 
a pragmatic, multicentre, parallel-group, double-blind, 
randomised controlled trial
Ankur Gupta-Wright, Elizabeth L Corbett, Joep J van Oosterhout, Douglas Wilson, Daniel Grint, Melanie Alufandika-Moyo, Jurgens A Peters, 
Lingstone Chiume, Clare Flach, Stephen D Lawn*, Katherine Fielding

Summary
Background Current diagnostics for HIV-associated tuberculosis are suboptimal, with missed diagnoses contributing 
to high hospital mortality and approximately 374 000 annual HIV-positive deaths globally. Urine-based assays have a 
good diagnostic yield; therefore, we aimed to assess whether urine-based screening in HIV-positive inpatients for 
tuberculosis improved outcomes.

Methods We did a pragmatic, multicentre, double-blind, randomised controlled trial in two hospitals in Malawi and 
South Africa. We included HIV-positive medical inpatients aged 18 years or more who were not taking tuberculosis 
treatment. We randomly assigned patients (1:1), using a computer-generated list of random block size stratified by 
site, to either the standard-of-care or the intervention screening group, irrespective of symptoms or clinical 
presentation. Attending clinicians made decisions about care; and patients, clinicians, and the study team were 
masked to the group allocation. In both groups, sputum was tested using the Xpert MTB/RIF assay (Xpert; Cepheid, 
Sunnyvale, CA, USA). In the standard-of-care group, urine samples were not tested for tuberculosis. In the 
intervention group, urine was tested with the Alere Determine TB-LAM Ag (TB-LAM; Alere, Waltham, MA, USA), 
and Xpert assays. The primary outcome was all-cause 56-day mortality. Subgroup analyses for the primary outcome 
were prespecified based on baseline CD4 count, haemoglobin, clinical suspicion for tuberculosis; and by study site 
and calendar time. We used an intention-to-treat principle for our analyses. This trial is registered with the ISRCTN 
registry, number ISRCTN71603869.

Findings Between Oct 26, 2015, and Sept 19, 2017, we screened 4788 HIV-positive adults, of which 2600 (54%) were 
randomly assigned to the study groups (n=1300 for each group). 13 patients were excluded after randomisation from 
analysis in each group, leaving 2574 in the final intention-to-treat analysis (n=1287 in each group). At admission, 
1861 patients were taking antiretroviral therapy and median CD4 count was 227 cells per µL (IQR 79–436). Mortality 
at 56 days was reported for 272 (21%) of 1287 patients in the standard-of-care group and 235 (18%) of 1287 in the 
intervention group (adjusted risk reduction [aRD]  –2·8%, 95% CI –5·8 to 0·3; p=0·074). In three of the 12 prespecified, 
but underpowered subgroups, mortality was lower in the intervention group than in the standard-of-care group for 
CD4 counts less than 100 cells per μL (aRD –7·1%, 95% CI –13·7 to –0·4; p=0.036), severe anaemia (–9·0%, –16·6 to 
–1·3; p=0·021), and patients with clinically suspected tuberculosis (–5·7%, –10·9 to –0·5; p=0·033); with no difference 
by site or calendar period. Adverse events were similar in both groups.

Interpretation Urine-based tuberculosis screening did not reduce overall mortality in all HIV-positive inpatients, but 
might benefit some high-risk subgroups. Implementation could contribute towards global targets to reduce 
tuberculosis mortality.

Funding Joint Global Health Trials Scheme of the Medical Research Council, the UK Department for International 
Development, and the Wellcome Trust.

Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 
license. 
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Introduction
Tuberculosis remains the single major cause of mortality 
in patients with HIV globally, accounting for an estimated 
374 000 deaths in 2016.1 In many parts of sub-Saharan 
Africa, most admitted medical inpatients are HIV-positive 
and tuberculosis is the major cause of both admission 

(18–29%) and in-hospital death (21–33% in cohort studies 
and 32–67% in autopsy studies).2,3

Suboptimal diagnostics are an important contributor 
to poor outcomes from HIV-associated tuberculosis. 
Tuberculosis is commonly disseminated, presents with 
non-specific clinical features, and is only diagnosed 
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before death in half of cases with a fatal outcome.3,4 
Mycobacterial culture, the current gold standard, is too 
centralised and slow to be clinically useful. Both culture 
and chest radiography are often unavailable in many 
African settings. The Xpert MTB/RIF assay provides 
robust and rapid detection of Mycobacterium tuberculosis 
nucleic acids from sputum and has been widely scaled-
up and decentralised, but patients with HIV-associated 
tuberculosis tend to have relatively low mycobacterial 
concentrations in pulmonary secretions and difficulty 
expectorating.5 Despite improved sensitivity (79% in 
patients with HIV),6 randomised trials comparing 
clinical outcomes between sputum Xpert MTB/RIF 
and microscopy have largely shown scant effect because 
of empiric tuberculosis therapy, other than systematic 
screening in HIV-positive outpatients with advanced 
disease.7,8

Urine can be readily obtained from patients admitted 
to hospital and is suitable for rapid tuberculosis diagnosis 
using either a lateral flow assay for lipoarabinomannan 
(LAM; a mycobacterial cell wall glycolipid) or Xpert 
MTB/RIF. Although urine is not a sample recom-
mended by WHO for Xpert, studies report high 
specificity for tuberculosis in HIV-positive patients.9,10 

Diagnosis using urinary LAM, reflecting frequent renal 
involvement from disseminated HIV-associated tubercu-
losis, is comple mentary to sputum testing, and identifies 
a subgroup of patients with poor prognosis.11,12 Current 
commercial LAM kits have a specificity of 98% or more 
and sensitivity of 40–70% in HIV–tuberculosis-coinfected 
patients with CD4 counts less than 100 cells per μL.13–15 
Combined testing with urine LAM, plus urine and 
sputum Xpert, can rapidly diagnose about 80% of all 
culture-positive tuberculosis in unselected HIV-positive 
admissions to medical wards in high HIV burden 
settings.15,16

Urine-based screening might provide more complete, 
timely, and potentially life-saving diagnosis of tubercu-
losis among HIV-positive hospital inpatients.7 We, 
therefore, aimed to investigate the effect of adding urine 
to sputum tuberculosis screening on early mortality, and 
its effect on diagnosis and treatment of tuberculosis in 
unselected HIV-positive hospital admissions.

Methods
Study design and patients
We did a pragmatic, multicentre, parallel-group, double-
blind, randomised controlled trial. We enrolled patients 

Research in context

Evidence before the study
We searched MEDLINE for studies that investigated the effect of 
urine lipoarabinomannan assay (LAM) or Xpert MTB/RIF assay 
(Xpert) on mortality or tuberculosis diagnosis in HIV-positive 
patients published from Jan 1, 2000, to Sept 30, 2016. We 
combined search terms for LAM (“lipoarabinomannan”, “LAM”, 
“TB LAM”, or “urine LAM”) or Xpert (“urine Xpert” or “urinary 
Xpert”) with HIV (“HIV”, “HIV-1”, “AIDS”, or “human 
immunodeficiency virus”) and mortality (“mortality”, “adult 
mortality”, or “death”), or tuberculosis diagnosis or screening 
(“diagnosis”, “diagnostic”, or “screening”). We identified 
14 observational studies, mostly done in antiretroviral therapy 
naive outpatients or hospital inpatients, which assessed the 
diagnostic accuracy of urine LAM or Xpert for tuberculosis or their 
association with mortality, or both. These studies showed 
moderate-to-good diagnostic yield of urinary assays in patients 
with advanced immunosuppression and in hospital inpatients, 
and an association with higher disease severity, poor prognosis, 
and mortality. Since undertaking our trial, one randomised trial 
has assessed adjunctive urine LAM testing in HIV-positive 
inpatients suspected of tuberculosis and found a reduction in 
8-week mortality. However, whether systematic urine-based 
screening for tuberculosis (using urine LAM and Xpert) for all
HIV-positive hospital inpatients (irrespective of tuberculosis 
symptoms) could reduce mortality compared with sputum 
tuberculosis testing remained unclear.

Added value of this study
The findings from this randomised trial suggest that 
urine-based tuberculosis screening of HIV-positive hospital 

inpatients might reduce 56-day mortality in defined clinical 
subgroups (low CD4 count, severe anaemia, or clinically 
suspected tuberculosis). Moreover, wider application 
(screening all HIV-positive inpatients) could substantially 
reduce the risk of being discharged from hospital with 
undiagnosed tuberculosis in all patient groups. The major 
incremental diagnostic benefit was from urine LAM.

Implications of all the available evidence
These data support implementation of urine LAM-based 
screening of all HIV-positive inpatients for tuberculosis in 
hospitals in high HIV and tuberculosis burden settings, 
because the reliance on a combination of sputum-based 
diagnosis and clinically guided empirical treatment left 
patients at unacceptably high risk of discharge and death 
from undiagnosed tuberculosis. Collectively, current evidence 
supports international policy change to scale-up and broaden 
the use of urine-LAM testing in patients admitted to hospital 
(currently only recommended as an additional diagnostic in 
inpatients with symptoms of tuberculosis and CD4 counts 
<100 cells per µL or danger signs). Incremental gain was too 
limited to support urine Xpert. Because screening efficiency is 
dependent on prevalence, these results cannot be 
extrapolated to outpatients. Urine LAM screening could 
contribute towards reducing mortality and morbidity from 
HIV-associated tuberculosis and meeting global targets for 
tuberculosis mortality reduction.
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who were admitted to medical wards at Zomba Central 
Hospital in Malawi (a district and referral hospital 
covering urban and rural populations) and Edendale 
Hospital in South Africa (a large referral hospital 
covering a mostly urban population), irrespective of 
tuberculosis symptoms or admitting presentation. The 
study design has been previously described in detail,17 
and additional methods are provided in the appendix. 
We obtained ethical approval from the relevant 
committees in Malawi, South Africa, and from the trial 
sponsor in the UK, and the study was approved by 
the relevant national regulatory bodies (appendix). 
Deviations from the study protocol are described in the 
appendix.

All admissions to the medical wards were screened for 
eligibility by study nurses or clinicians. Screening 
occurred during office hours on weekdays, with patients 
enrolled as close to admission as possible. All patients 
with an unknown HIV status were offered point-of-care 
rapid HIV testing as per local guidelines (appendix). We 
included patients that were HIV positive and aged 18 years 
or older. We excluded those that were currently taking 
tuberculosis treatment, had been treated for tuberculosis 
in the preceding 12 months, taken isoniazid preventive 
therapy in the preceding 6 months, were unable or 
unwilling to provide informed consent, had been admitted 
to hospital for longer than 48 h at the time of screening, or 
lived outside the predefined hospital catchment area 
(appendix). We obtained written informed consent from 
all eligible patients.

Randomisation and masking
We randomly assigned eligible patients on enrolment 
(1:1) to either the standard-of-care tuberculosis screening 
group or the intervention screening group. Randomisation 
was stratified by site and a randomisation list of unique 
patient identifiers was generated by the study statistician 
using a computer-generated random block size. On 
enrolment, study nurses or clinicians took a consecutive 
sealed opaque envelope containing the unique patient 
identifier but not the study group, to which they remained 
masked. A paired set of sealed envelopes were kept in a 
locked cabinet in the study laboratory, labelled with the 
unique patient identifier and containing the study group 
allocation. These were opened by the laboratory 
technician on receipt of study tuberculosis screening 
specimens. Investigators, all study staff (other than the 
laboratory technician and statistician), hospital attending 
clinical teams, and patients were masked to the study 
group allocation.

Procedures
Following enrolment, 50 mL of urine and a single, 
spontaneously expectorated sputum sample were 
collected by the study team for tuberculosis screening. 
Failure to produce a specimen was not an exclusion 
criterion. The patient’s attending clinical team had the 

option of sending additional samples for routine 
tuberculosis investigations available at the study hospital; 
the appendix provides further details of the tests available 
at each hospital.

Tuberculosis screening samples (ie, sputum or urine, 
or both) were processed according to study group 
allocation by the study laboratory technician, and assays 
were run during office hours and processed as soon as 
possible after arrival of a specimen in the laboratory. In 
both groups, sputum was tested using the Xpert 
MTB/RIF assay (Xpert; Cepheid, Sunnyvale, CA, USA). 
In the standard-of-care group, urine samples were not 
tested for tuberculosis. In the intervention group, 
60 µL of unconcentrated urine was tested with the 
Alere Determine TB-LAM Ag assay (TB-LAM; Alere, 
Waltham, MA, USA) as per the manufacturer’s 
instructions, and 40–50 mL of urine was concentrated 
by centrifugation for testing with Xpert. Urine Xpert 
and TB-LAM were processed simultaneously. We 
deemed TB-LAM positive using the grade 1 cutoff on 
the manufacturer’s post-2014 reference card, which was 
referred to as the grade 2 cutoff before 2014. The 
appendix provides further details of the laboratory 
methods used in this study.

Once all the tuberculosis specimens received had been 
processed, tuberculosis screening results were reported 
to the attending clinical team as positive, negative, or not 
done to maintain masking, with neither study group 
nor individual test results communicated to attending 
clinical or study teams. Rifampicin resistance results, if 
available, were also reported (appendix). Clinical manage-
ment, including tuberculosis treatment decisions and 
management of antiretroviral therapy (ART), relied on 
the attending clinical team according to local and national 
guidelines and was independent of study nurses, 
clinicians, or investigators.

The study team documented patients’ clinical events 
during hospital admission, including but not limited to 
tuberculosis investigations and diagnosis, commence-
ment of tuberculosis treatment and any side-effects, 
management of HIV (including stopping or starting 
ART), and discharge or death. Follow-up at 56 days for 
those discharged from hospital alive was done in person 
by outpatient attendance. Those who did not attend were 
contacted by telephone or a home visit, or both, with 
interview of next of kin to establish vital status if required.

Outcomes
The primary outcome was the cumulative risk of all-cause 
mortality at 56 days from enrolment. Subgroup analysis 
for the primary outcome was prespecified in populations 
with higher risk of tuberculosis, mortality, or both (ie, low 
baseline CD4 cell count, low haemoglobin, or clinical 
suspicion for tuberculosis); and by study site and calendar 
time. Secondary outcomes were time to mortality, 
proportions of patients with microbiologically confirmed 
tuberculosis and clinically diagnosed tuberculosis, time 
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from randomisation to tuberculosis diagnosis and to start 
of tuberculosis treatment, time from tuberculosis 
diagnosis to treatment initiation, prescription of 
antimicrobials, ART initiation (if ART naive at hospital 
admission), duration of hospitalisation, and hospital 
readmission events.

Microbiologically confirmed tuberculosis was defined 
as one or more positive specimens for acid fast bacilli, 
Xpert, mycobacterial culture, or TB-LAM. Clinically 
diagnosed tuberculosis was defined by the decision to 
treat for tuberculosis in the absence of microbiological 
confirmation. Patients with any tuberculosis diagnosis 
(microbiologically confirmed or clinically diagnosed) 
were also reported. We recorded for all patients whether 
tuberculosis was included in the admitting differential 
diagnoses by attending clinicians, referred to as clinically 
suspected tuberculosis.

Statistical analysis
The sample size calculation was based on the assumption 
that 56-day mortality risk would be 25% in the standard-
of-care group, and loss to follow-up would be 10% or less. 
We therefore calculated that enrolling 1300 patients 
per group would provide at least 80% power to detect 
a 5% absolute mortality reduction in the intervention 
group, with a two-sided type 1 error of 5% (appendix).

We used an intention-to-treat principle for all our 
analyses, including all eligible patients that were randomly 
assigned. For the primary outcome, we calculated a risk 
difference with 95% CIs for mortality at 56 days comparing 
the standard-of-care group with the inter vention group 
with the following: using a generalised linear model with 
identity link function and binomial family, adjusting for 
study site, using a fixed effect, and assuming participants 
lost to follow-up had not died. An odds ratio adjusted for 
site with 95% CIs was also calculated using logistic 
regression. Prespecified subgroup analyses were done for 
the primary outcome. These subgroups were study site 
(Malawi or South Africa), baseline CD4 counts (<100 cells 
per μL or ≥100 cells per μL), severe anaemia (haemoglobin 
<8 g/dL or ≥8 g/dL), whether tuberculosis was clinically 
suspected at admission, and calendar time (by 6 monthly 
intervals from Oct 1, 2015, to Sep 30, 2017). A sensitivity 
analysis was also done assuming all losses to follow-up 
had died.

Secondary outcomes were compared between the study 
groups using adjusted risk difference and adjusted odds 
ratio (aOR) for binary outcomes, Cox proportional hazards 
regression for time-to-event outcomes, and Kaplan-Meier 
curves for time to mortality. 95% CI were calculated for all 
analyses. In exploratory post-hoc analyses, tuberculosis 
diagnoses were also compared between study groups 
using the same subgroups as the primary outcome (study 
site, baseline CD4 cell count, severe anaemia, and 
clinically suspected tuberculosis) to investigate whether 
the absence of mortality benefit was accompanied by a 
lack of difference in tuberculosis diagnosis. Diagnostic 

yields of urine-based tuberculosis tests were calculated 
post hoc as a proportion of all microbiologically confirmed 
tuberculosis to better understand the respective 
contributions of TB-LAM and urine Xpert.

We did all the analyses using SAS (version 9.4). This 
study is registered with the ISRCTN registry, number 
ISRCTN71603869.

Role of the funding source
The funder of the study had no role in study design, data 
collection, data analysis, data interpretation, or writing of 

Figure 1: Trial profile
Patients could have more than one reason for exclusion. Data stratified by site are shown in the appendix.

1300 standard-of-care group 

13 excluded
12 recruited twice

1 HIV negative

1287 included in intention-to-treat analysis 

12 444 adult medical admissions  

7310 excluded
5934 HIV negative
1376 HIV status unknown

346 not screened
41 died or discharged before screening

285 already enrolled in STAMP trial
20 unknown reason

2188 excluded
1928 not eligible

94 aged <18 years
654 unable to give consent
346 live outside study area
920 taking tuberculosis treatment

70 taking isoniazid preventative 
therapy

109 admitted >48h
260 eligible but did not consent

5134 HIV-positive medical admissions 

4788 screened for eligibility 

2600 randomly assigned

1300 intervention group 

13 excluded
13 recruited twice

1287 included in intention-to-treat analysis 

Endpoints
272 died

13 lost to follow-up
1002 completed study and are alive

Endpoints
235 died

14 lost to follow-up
2 withdrew consent

1036 completed study and are alive
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the report. The corresponding author had full access to all 
the data in the study and had final responsibility for the 
decision to submit for publication.

Results
Between Oct 26, 2015, and Sept 19, 2017, we screened 
4788 HIV-positive adult medical admissions. Of these 
admissions, 1928 (40%) patients were ineligible, 
260 (5%) did not provide consent to participate, and 
2600 (54%) were randomly assigned to the study groups 
(n=1300 for each group; figure 1). The appendix shows 
those who were excluded by site. 26 patients were 
excluded after randomisation because of ineligibility, 
leaving 2574 in the final intention-to-treat analysis 
(n=1287 in each group). 27 (1%) of 2574 patients were 
lost to follow-up at 56 days after hospital discharge 
(figure 1).

Baseline characteristics were balanced between the study 
groups (table; appendix). Mean age was 39·6 years 
(SD 11·7 years) and 1461 (57%) of 2574 participants were 
women. 2168 (84%) patients already knew their HIV 
diagnosis before admission, of whom 1861 (86%) were 
currently taking ART. Median CD4 count was 227 cells 
per μL (IQR 79–436), 748 (29%) of 2574 patients had a CD4 
count of less than 100 cells per μL, and 587 (23%) had 
severe anaemia (haemoglobin <8 g/dL). 1332 (52%) patients 
reported a cough, 2316 (90%) had one or more WHO 
tuberculosis symptoms (ie, cough, fever, weight loss, or 
night sweats), and 996 (39%) were clinically suspected of 
tuberculosis at admission. Differences between sites 
included higher ART coverage, fewer patients reporting 
cough, fewer able to expectorate sputum, and fewer having 
clinically suspected tuberculosis at admission in Malawi 
than in South Africa (table).

By 56 days, 507 (20%) of 2574 patients had died: 
272 (21%) of 1287 in the standard-of-care group and 
235 (18%) of 1287 in the intervention group, giving an 
adjusted risk difference of –2·8% (95% CI –5·8 to 0·3; 
p=0·074; figure 2). The aOR for mortality in the inter-
vention group compared with the standard-of-care group 
was 0·83 (95% CI 0·69–1·01; p=0·068; appendix). 
Mortality in the intervention group was significantly lower 
than in the standard-of-care group for the three prespecified 
high-risk subgroups: adjusted risk difference –7·1% 
(95% CI –13·7 to –0·4) in patients with base line CD4 
counts less than 100 cells per µL, –9·0% (–16·6 to –1·3) in 
patients with severe anaemia, and –5·7% (–10·9 to –0·5) in 
patients with clinically suspected tuberculosis at admission 
(figure 2). p values for interaction between the subgroup 
and study group are reported in figure 2. 1567 (61%) of 
2574 patients were in one or more high-risk subgroups 
(low CD4 count, severe anaemia, or clinically suspected 
tuberculosis). Sensitivity analysis assuming losses to 
follow-up had died did not alter overall or subgroup 
mortality risk differences (appendix).

Overall, 36 patients would need to be screened with 
the study intervention (ie, TB-LAM and urine Xpert) 
to prevent one death (appendix). Median duration of 
hospital stay was 6 days (IQR 2–11), and did not differ 
between the two groups (appendix). Although 273 (54%) of 
507 deaths occurred during hospital admission, overall 
and high-risk subgroup survival curves did not sub-
stantially diverge until after day 21 (figure 3). Among 
patients discharged alive from hospital, 134 (12%) of 
1146 patients died in the standard-of-care group and 
100 (9%) of 1150 died in the intervention group. In time-
to-mortality analysis, the adjusted hazard ratio (aHR) for 
intervention compared with standard of care was 
0·86 (95% CI 0·72–1·02; p=0·086; figure 3A).

Of the study’s tuberculosis screening samples at 
baseline, urine was provided by 2548 (99%) of 
2574 patients, whereas only 1464 (57%) produced 
sputum (518 [39%] of 1316 in Malawi and 946 [75%] of 
1258 in South Africa). Chest radiographs as part of 

Standard-of-care 
group (n=1287)

Intervention 
group (n=1287)

Malawi 
(n=1316)

South Africa 
(n=1258)

Age (years) 39·6 (11·9) 39·7 (11·6) 40·1 (11·7) 39·1 (11·7)

Sex

Women 734 (57%) 727 (56%) 829 (63%) 632 (50%)

Men 553 (43%) 560 (44%) 487 (37%) 626 (50%)

New HIV diagnosis 212 (16%) 194 (15%) 208 (16%) 198 (16%)

ART status*

Never 93 (9%) 121 (11%) 57 (5%) 157 (15%)

Currently taking 935 (87%) 926 (85%) 1021 (92%) 840 (79%)

Interrupted 47 (4%) 46 (4%) 30 (3%) 63 (6%)

Time on ART (years)† 3·0 (0·7–6·7) 3·0 (0·8–6·7) 3·4 (0·8–7·4) 2·6 (0·6–5·8)

TB symptoms reported

Cough 681 (53%) 651 (51%) 611 (46%) 721 (57%)

Fever 747 (58%) 753 (59%) 761 (58%) 739 (59%)

Night sweats‡ 540 (42%) 497 (39%) 488 (37%) 549 (44%)

Weight loss‡ 875 (68%) 906 (70%) 863 (66%) 918 (73%)

Any WHO TB symptom 1164 (90%) 1152 (90%) 1187 (90%) 1129 (90%)

Clinically suspected TB§ 495 (38%) 501 (39%) 353 (27%) 643 (51%)

Previous TB treatment 309 (24%) 335 (26%) 202 (15%) 442 (35%)

Body-mass index (kg/m²) 21·7 (5·8) 21·6 (5·8) 20·0 (4·1) 23·3 (6·7)

Morbidity at admission

WHO danger sign¶ 275 (21%) 277 (22%) 337 (26%) 215 (17%)

Karnofsky score 60 (50–70) 60 (50–70) 60 (50–70) 60 (50–70)

CD4 cell count§

Median (cells per µL) 222 (80–436) 231 (78–438) 219 (86–431) 236 (70–445)

<100 cells per µL 377 (29%) 371 (29%) 365 (28%) 383 (30%)

Haemoglobin||

Median (g/dL) 10·4 (8·1–12·9) 10·8 (8·3–12·7) 10·4 (7·8–12·4) 113 (8·8–13·1)

<8 g/dL 298 (23%) 289 (22%) 355 (27%) 232 (18%)

Data are mean (SD), n (%), or median (IQR). TB symptoms are reported if present for any duration. ART=antiretroviral 
therapy. TB=tuberculosis. *ART status denominator is the number of patients with a known HIV diagnosis (n=1075 for 
standard-of-care group and n=1093 for intervention group). †Missing data for 26 patients in Malawi and 26 in South 
Africa. ‡Missing data for one patient in South Africa. §Missing data for three patients in Malawi and six in South Africa. 
¶WHO danger signs are one or more of the following: heart rate more than 120 beats per minute, respiratory rate more 
than 30 breaths per minute, temperature more than 39°C, or being unable to walk unaided. ||Missing data for five patients 
in South Africa. 

Table: Patient characteristics at enrolment by study group and country
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routine care were taken in 1231 (48%) of 2574 patients 
during in patient stay (300 [23%] of 1316 in Malawi and 
931 [74%] of 1258 in South Africa; appendix). Overall, 
tuberculosis was diagnosed during hospital admission 
in 474 (18%) of 2574 patients, with 282 (22%) diagnoses 
in the intervention group and 192 (15%) in the standard-
of-care group (appendix). The adjusted risk difference 
for tuberculosis diagnosis between the two groups was 
7·3% (95% CI 4·4–10·2; p<0·0001). The intervention 
group also had more microbiologically confirmed tuber-

cu losis diagnoses than the standard-of-care group 
(210 [16%] of 1287 vs 85 [7%] of 1287; adjusted risk 
difference 9·9% [95% CI 7·5–12·4]; p<0·0001) and 
fewer clinically diagnosed tuberculosis (77 [6%] vs 
114 [9%]; adjusted risk difference –3·1% [–4·9 to –1·4]; 
p=0·0004; figure 2). 14 patients would need to be 
screened with the study intervention to prevent one 
missed tuberculosis diagnosis (appendix).

Time from randomisation to tuberculosis diagnosis was 
marginally shorter in the intervention group than in the 

Figure 2: Primary outcome and predefined subgroup analyses (A), and secondary outcomes (B)
All analyses are adjusted for study site. (A) The primary outcome is mortality at 56 days after randomisation. Risk differences are the risk in the intervention group 
minus the risk in the standard-of-care group. (B) Secondary outcomes are measured at the end of hospital admission except for those who started ART, which is 
measured at 56 days. Antibacterial treatment excludes anti-TB medications. ART=antiretroviral therapy. *Interaction between study group and subgroup.
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standard-of-care group (median 0 days [IQR 0–1] vs 
1 day [0–6]; appendix). 450 patients were started on 
tuberculosis treatment during admission, 268 in the 
intervention group and 182 in the standard-of-care group 
(aHR 1·56, 95% CI 1·29–1·88; p<0·0001; appendix). Time 
from diagnosis to tuberculosis treatment was universally 
short (median of 1 day, IQR 0–1) and was similar in both 

groups. Adverse events related to tuberculosis treatment 
were similar in both groups; the appendix summarises 
these adverse events. Antibacterial treatment and ART 
initiation did not differ by group (figure 2), although time 
to ART initiation was shorter in the intervention group 
than in the standard-of-care group (appendix). Of the 
24 patients diagnosed with tuberculosis but not started on 

Figure 3: Time to 56-day mortality overall and stratified by high-risk subgroups
All aHRs were adjusted for study site. (A) Survival analysis over 56 days in the standard-of-care group and intervention group. (B) Survival analysis stratified by 
CD4 counts less than 100 cells per µL in both groups. (C) Survival analysis stratified by CD4 counts of 100 cells per µL or more in both groups. (D) Survival analysis 
stratified by haemoglobin of less than 8 g/dL in both groups. (E) Survival analysis stratified by haemoglobin of 8 g/dL or more in both groups. aHR=adjusted hazard ratio.
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treatment during hospital admission, ten (42%) had died 
and 14 (58%) had been prematurely discharged. Only 
27 other patients were started on tuberculosis treatment 
between discharge and day 56, with no difference between 
groups (appendix). Hospital readmission, losses to follow-
up, adverse events (tuberculosis treatment discontinuation 
and side-effects), and rifampicin resistance detection did 
not differ between groups (appendix).

In post-hoc exploratory analyses, the increases in 
tuberculosis diagnoses in the intervention group versus 
the standard-of-care group were not confined to high-risk 
subgroups, unlike mortality, with an adjusted absolute risk 
increase of 7·0% (95% CI 4·1–10·0) in tuberculosis 
diagnoses in patients with CD4 counts of 100 cells per µL 
or more, and 8·0% (5·0–11·1) in those not clinically 
suspected of tuberculosis at admission (appendix). 
Increased tuberculosis diagnoses were more pronounced 
in Malawi than South Africa, although there was no 
evidence for an interaction between group and country 
(p=0·19). The largest increase in tuberculosis diagnoses in 
the intervention group was in the severe anaemia group, 
with an adjusted risk increase of 18·6% (95% CI 11·5–25·6; 
interaction p=0·0002). There were 93 extra patients on 
treatment for confirmed tuberculosis who were discharged 
alive and 34 fewer post-discharge deaths in the intervention 
group than in the standard-of-care group. Sputum Xpert 
diagnosed a similar number of patients with tuberculosis 
in both groups (appendix). In the intervention group, 
TB-LAM provided the highest diagnostic yield (158 [75%] of 
210 patients with microbiologically confirmed tubercu-
losis), compared with 74 (35%) patients positive with urine 
Xpert and 85 (40%) positive with sputum Xpert (appendix). 
The incremental diagnostic yield from urine Xpert as the 
only positive assay was only 13 (6%) patients, compared 
with 87 (41%) patients from TB-LAM and 30 (14%) patients 
from sputum Xpert.

Discussion
Although the 56-day all-cause mortality showed no 
significant differences between the standard-of-care and 
intervention groups, the addition of urine-based tubercu-
losis screening using TB-LAM and Xpert to sputum-
based screening in all HIV-positive medical inpatients 
significantly reduced mortality at 56 days in prespecified 
high-risk subgroups, and substantially increased tubercu-
losis diagnoses and treatment across all patients. Fewer 
patients were on tuberculosis treatment at discharge in the 
standard-of-care group than in the intervention group, and 
more patients died after discharge, suggesting discharge 
with undiagnosed and untreated active tuberculosis as the 
main underlying mechanism. For every ten extra patients 
with confirmed tuberculosis discharged on treatment in 
the intervention group, there were 3·7 fewer deaths after 
discharge, supporting high individual risk of rapid 
progression to death in undiagnosed HIV-associated 
tuberculosis that could have been detected and treated 
through urine-based screening.

Morbidity and mortality from HIV-associated tuber-
culosis are slowly decreasing in Africa, mainly reflecting 
the expansion of HIV diagnosis and ART programmes 
rather than tuberculosis-specific diagnostic and pre-
vention interventions.18,19 Although these trends are 
encouraging, we found disturbingly high risk of death or 
microbiologically confirmed tuberculosis, or both, within 
56 days of admission, despite high ART coverage and 
median CD4 cell count. We report substantial mortality 
reductions from urine-based tuberculosis screening in 
prespecified high-risk subgroups, consistent with current 
recommendations for diagnostic LAM testing, but no 
significant effect on overall mortality at 56 days between 
groups (adjusted risk difference –2·8%, 95% CI 
–5·8 to 0·3). However, our study was underpowered to
detect small (<5%) absolute reductions in mortality at
56 days.

Our findings are consistent with the 4% (95% CI 1–7) 
mortality reduction in HIV-positive inpatients with 
clinic ally suspected tuberculosis reported from a diag-
nostic (not screening) randomised trial of urine LAM 
testing.20 The participant profile in the diagnostic trial 
differed notably from this study, with lower ART coverage 
and CD4 counts (median 84 cells per µL vs 227 cells 
per µL), and a greater proportion of participants had 
tuberculosis (intervention groups: 51·6% vs 21·8%), 
reflecting different inclusion criteria (clinical suspicion 
of tuberculosis compared with an unselected population 
in our STAMP trial), as well as underlying population 
trends in ART coverage. Early survival benefit from 
these two trials underscores the fulminant course of 
undiagnosed tuberculosis in highly immunosuppressed 
patients, and the higher yield of urinary diagnostics 
and difficulty diagnosing tuberculosis among groups of 
hospitalised HIV-positive patients by other means.13,15

Uniquely, STAMP recruited considerable numbers of 
less immunosuppressed or critically ill patients who fall 
outside current recommendations for urinary tuber-
culosis diagnostic assays.21 We show differences between 
groups in tuberculosis diagnosis, although with a 
corresponding mortality benefit only for predefined high-
risk groups (ie, low CD4 cell counts, low haemoglobin, 
or clinically suspected tuberculosis). The absence of 
detectable survival benefit in patients with less profound 
immunosuppression might then simply reflect a slower 
time-course if median survival following discharge with 
undiagnosed tuberculosis is considerably longer than 
56 days. If so, increases in tuberculosis treatment through 
early urine-based diagnosis will still have averted months 
of morbidity and contributed to reduced transmission, 
particularly in health-care settings.22 An alternative 
explanation is a higher proportion of false-positive urinary 
screening results in patients with CD4 counts of 100 cells 
per µL or more, which we consider unlikely given high 
specificity (≥99%) shown else where.14,15,23

Better clinical acumen and alternative investigations 
such as radiology leading to early empirical tuberculosis 
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treatment can mitigate the effect of new diagnostic tests, 
as observed in relatively well resourced inpatient and 
outpatient settings, for example in South Africa.24 We saw 
little evidence of this effect for urine-based screening in 
either Malawi or South Africa in our STAMP trial, and 
also showed no difference in routine management 
between groups, for instance in the use of broad-spectrum 
antibiotics to treat presumed bacterial infections. Both 
urine LAM (point-of-care lateral flow assay) and Xpert 
(approximately 2 h after urine centrifugation) are rapid, 
as was initiation of tuberculosis treatment in this trial, 
which are crucial to affect mortality and potentially 
transmission.

The least costly and easiest urine test (TB-LAM) had 
major incremental diagnostic benefit in this trial, with 
urine Xpert (which is more complex because of urine 
centrifugation) contributing few additional diagnoses. 
This finding argues for the use of LAM alone as the 
urinary diagnostic for screening, an approach supported 
by STAMP’s cost-effectiveness projections being reported 
separately.25 Urine Xpert might still have a place alongside 
other diagnostic modalities for urine LAM-negative 
patients with high clinical suspicion for tuberculosis.16 
Sputum Xpert is already a recommended standard of 
care for HIV-positive individuals with tuberculosis 
symptoms (although not uniformly implemented), and 
was included for all patients able to expectorate in both 
trial groups.9 Our data support this approach, because 
sputum provided the only microbiological diagnosis for 
14% of patients with tuberculosis in the intervention 
group.

Despite the qualified mortality benefits, we consider 
our results to be supportive of routine implementation of 
systematic screening with urinary LAM, in addition to 
sputum Xpert, for all HIV-positive inpatients, given that 
LAM screening provides a substantial increase in 
diagnosis of a treatable but frequently fatal condition 
(disseminated tuberculosis). Systematic screening on 
admission to hospital is a simple strategy that avoids 
expense and delay from identifying high-risk groups 
(including by CD4 count testing, which might not be 
routinely available).26 Tuberculosis symptoms were 
present in 90% of patients yet only 39% were considered 
to have tuberculosis by clinicians, who would have 
missed a substantial number of diagnoses. Notably, 
61% of inpatients in STAMP were in one or more high-
risk groups with a mortality benefit. Pronounced 
differences in short-term mortality and underlying 
prevalence of disseminated tuberculosis between HIV-
positive inpatients and outpatients also means that 
current WHO policy (specific recommendation against 
use for screening, with use of TB-LAM indicated only for 
diagnostic purposes in patients with tuberculosis 
symptoms and CD4 counts <100 cells per µL or signs of 
severe illness) should remain in use for outpatients.21

There are limitations to our study. In sample size 
calculations, we assumed a higher mortality and burden 

of tuberculosis than we observed, possibly because of the 
success of ART scale-up. We did not include a culture 
reference standard, as this reference is neither standard 
of care nor routinely available in Malawi, and would have 
presented ethical dilemmas or affected generalisability. 
Relatively few participants in Malawi produced sputum. 
This difficulty in expectorating sputum is, however, 
typical of unselected HIV-positive outpatient and 
inpatient cohorts in resource-constrained settings, and is 
a major barrier to implementation of sputum-based 
tuberculosis screening.15,27 Generalising the true effect of 
this intervention might be compromised by un-
characteristically prompt specimen collection and results 
reporting in the study setting, and masking of routine 
clinicians to exactly which tests had been done might 
have altered their clinical decision making.28 Conversely, 
because both urine assays were run in a laboratory, we 
might have underestimated the effect on outcomes from 
TB-LAM if used at the bedside with faster turnaround 
times. Patients excluded because of their inability to 
consent will have introduced bias to the study towards the 
less critically ill, potentially affecting generalisability.

In conclusion, we report a survival benefit from 
urine-based tuberculosis screening of HIV-positive hos-
pital admissions in high-risk subgroups, and a broader 
benefit through substantially increased predischarge 
tuber culosis diagnosis and treatment in all patients. 
Tuberculosis screening with urine-LAM lateral flow 
assays is inexpensive and easily implementable, requiring 
minimal infrastructure and training. Tuberculosis diag-
nosed through urine-based screening was complemen tary 
to tuberculosis diagnosed through standard clinical 
investigations in both countries, with inferred higher risk 
of discharge with undiagnosed tuberculosis in the 
standard-of-care group than in the intervention group. 
Anticipated improvements in analytical performance of 
next-generation LAM assays might add to the diagnostic 
yield from systematic urine screening.29 Current WHO 
guidelines on the diagnostic use of TB-LAM in HIV-
positive inpatients have been insufficient to motivate 
widespread implementation within African hospitals.30 
These results support changes to current policy and 
guidelines for routine inclusion of urine-based tuberculosis 
screening using TB-LAM in a package of interventions for 
HIV-positive patients admitted to hospital in high-burden 
settings, aiming to reduce short-term morbidity and 
mortality.31–33 Such new strategies need to be urgently 
implemented to achieve WHO’s End TB Strategy targets 
of a 75% reduction in tuberculosis mortality by 2025.
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