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Abstract

Achieving accurate judgment (‘judgmental achievement’) is of utmost importance in daily life across multiple domains. The
lens model and the lens model equation provide useful frameworks for modeling components of judgmental achievement
and for creating tools to help decision makers (e.g., physicians, teachers) reach better judgments (e.g., a correct diagnosis,
an accurate estimation of intelligence). Previous meta-analyses of judgment and decision-making studies have attempted to
evaluate overall judgmental achievement and have provided the basis for evaluating the success of bootstrapping (i.e.,
replacing judges by linear models that guide decision making). However, previous meta-analyses have failed to
appropriately correct for a number of study design artifacts (e.g., measurement error, dichotomization), which may have
potentially biased estimations (e.g., of the variability between studies) and led to erroneous interpretations (e.g., with
regards to moderator variables). In the current study we therefore conduct the first psychometric meta-analysis of
judgmental achievement studies that corrects for a number of study design artifacts. We identified 31 lens model studies
(N = 1,151, k = 49) that met our inclusion criteria. We evaluated overall judgmental achievement as well as whether
judgmental achievement depended on decision domain (e.g., medicine, education) and/or the level of expertise (expert vs.
novice). We also evaluated whether using corrected estimates affected conclusions with regards to the success of
bootstrapping with psychometrically-corrected models. Further, we introduce a new psychometric trim-and-fill method to
estimate the effect sizes of potentially missing studies correct psychometric meta-analyses for effects of publication bias.
Comparison of the results of the psychometric meta-analysis with the results of a traditional meta-analysis (which only
corrected for sampling error) indicated that artifact correction leads to a) an increase in values of the lens model
components, b) reduced heterogeneity between studies, and c) increases the success of bootstrapping. We argue that
psychometric meta-analysis is useful for accurately evaluating human judgment and show the success of bootstrapping.
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Introduction

Improving judgment and decision making is of utmost

importance across multiple domains of life, as even minor

inaccuracies can sometimes have a major impact. For example,

within the medical domain, if a physician is able to accurately

diagnosis cancer, the patient will likely receive early treatment and

has a greater chance to survive. Within other domains such as

business or education, individuals (e.g., managers, teachers) must

make important decisions over the use of human and financial

resources based on their judgment of ambiguous situations (e.g.,

the payoff of a certain strategy, the intelligence of a student).

Hence, it is no wonder that judgmental achievement and decision-

making has for many years been an important area of research as

reflected in the considerable number of studies which have

evaluated the success of human judgment across multiple fields

(e.g., [1–3]). Within judgment and decision-making approaches,

the lens model ([4], see below) provides a useful framework for

understanding and modeling components of judgmental achieve-

ment. Previous meta-analyses of lens model studies have indicated

that estimates of judgmental achievement vary widely across

studies (see [5]). Because previous meta-analyses [5], [6] have not

corrected for methodological artifacts (e.g., measurement error),

previous estimates of judgmental achievement are likely biased.

Furthermore, there is ambiguity with regards to the extent to

which heterogeneity in estimates of judgmental achievement

across studies stems from methodological artifacts as opposed to

‘substantial’ differences due to underlying moderators (e.g.,

decision domain, judge expertise).

To address the problems with previous meta-analyses, we

conduct a psychometric meta-analysis of lens model studies across

a number of decision-making domains (e.g., business, medicine,

education, psychology). We correct for multiple study design

artifacts (e.g., sampling error, measurement error, dichotomiza-

tion). We compare results of a traditional meta-analytical

approach with the psychometric approach to examine how

methodological artifacts bias estimates and may lead to erroneous
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interpretations. Furthermore, we examine the extent to which

judgmental achievement varies by domain (e.g., if physicians judge

more accurately than teachers), level of expertise (i.e., if experts

judge more accurately than novices), and whether the effect of

expertise differs by domain (i.e., if expertise leads to better

accuracy in some domains but not in others).

Finally, a further goal of the current paper is to contribute to the

development of better decision making tools. Researchers have

used the lens model equation to build linear models to ‘bootstrap’

judges (that is, replace human judges by equations to guide

decision making) to increase judgment accuracy. For example,

researchers have built models that physicians can use to make

important medical judgments (see for example [7]). Previous meta-

analyses have suggested that bootstrapping judges generally results

in a slight increase in judgmental achievement relative to human

judgment, although there seems to be high heterogeneity in its

success (e.g., [2], [6]). However, it is possible that failure to correct

for methodological artifacts may have led to an over- or

underestimation of the potential success of bootstrapping relative

to human judges. We therefore examine whether psychometrical-

ly-corrected linear models for decision making can increase the

success of bootstrapping.

The Lens Model Framework
The lens model [4] identifies multiple components of judgment

(in) accuracy. In a typical lens model study, a ‘judge’ must make a

number of decisions based on different pieces of information (‘cues’).

Judgmental achievement is measured by the extent to which the

judge’s judgment matches (i.e., correlates) with an indicator of the

actual outcome or situation (‘criterion’). Einhorn (second study, [8])

provides an example of a typical lens model study (see Figure 1). In

this study, physicians evaluated the severity of Hodgkin’s disease

(cancer) based on patient’s biopsy slides (see the right side of

Figure 1, Ys). Physicians made a judgment with regards to the

estimated survival time, which was compared with the actual

number of months of survival (see the left side of Figure 1, Ye). A

high correlation between physicians’ judgments and the actual

months of survival indicated high judgmental achievement.

The lens model is the basis for the lens model equation (LME;

see [9–11]; for more background information on the LME, see

[12]). As shown in Equation 1, the LME mathematically describes

judgmental achievement (ra, i.e., the correlation between a

person’s judgments and a particular criterion) in terms of four

components. Namely, judgmental achievement is equal to a linear

knowledge term (G) multiplied by task predictability term (Re) term

multiplied by a consistency term (Rs) plus a non-linear knowledge term (C).

The linear knowledge component (G) refers to the correlation

between the predicted human judgment and the predicted criterion

(e.g., the predicted physician’s judgment about survival time, the

predicted actual months of survival). Task predictability (Re) refers to

the multiple correlation of the cues with the criterion (e.g., the extent

to which characteristics of the biopsy slide correlate with the months

of survival), or in other words, the extent to which a decision can be

made based on the information available. Consistency (Rs) refers to

the reliability of judgments, that is, the extent to which a judge

reliably reaches the same decision based on the same pieces of

information (e.g., the extent to which a physician reaches the same

diagnosis based on biopsy slides with the similar characteristics), or

in other words, the multiple correlation of the cues with the person’s

estimates. The non-linear knowledge component (C) represents the

correlation between the variance not captured by the environmental

predictability component or the consistency component (i.e., the

correlation between the residuals from the above predictions).

Previous research has revealed that the non-linear knowledge

component is generally quite small (average C = .08, [13], p. 129);

hence we exclude it from our analysis.

The definitions of the single components in detail are:

ra = the achievement index (i.e., the correlation between a

person’s judgments and the criterion),

Re = the task predictability index (i.e., the multiple correlation of

the cues with the criterion),

Rs = consistency (i.e., the multiple correlation of the cues with a

judge’s estimate),

G = a knowledge index that reflects achievement (i.e., the

correlation between the predicted levels of the criterion and the

predicted judgments), and

C = an unmodeled knowledge component that signifies the

correlation between the variance not captured by the environ-

mental predictability component or the consistency component

(i.e., the correlation between the residuals from the above

predictions).

ra~G RsRezC

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{R2

s

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{R2

e

q
ð1Þ

The success of bootstrapping judges with a linear model
The lens model can be used to create linear judgment models

(i.e., equations) that can be used to support judgment and decision

Figure 1. The lens model applied to physicians’ diagnosis of cancer (see [8]).
doi:10.1371/journal.pone.0083528.g001
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making, essentially by ‘correcting’ for the inconsistency with which

human judges use cues to reach a judgment. The process (and

success) of replacing a human judge with a judgment model is

referred to as ‘bootstrapping’ (see [6], [14]) and is also discussed

under the topic of ‘man versus model of man’ (see [8]). The idea of

creating such judgment models can be traced back to Meehl’s [15]

evaluation of whether clinical psychologists reach more accurate

judgments about a patient relative to an equation.

Linear judgment models are defined with the same linear

knowledge (G) and task predictability (Re) terms as in the lens

model (see Equation 1), but with the assumption that there is

perfect consistency in how a judge uses a particular piece of

information (Rs = 1), which is of course never the case with a

human judge. As displayed in Equation 2, the success of a linear

judgment model relative to a human judge can be estimated by the

difference between the linear judgment model on the one hand

and human judgmental achievement ra on the other hand (for

details, see [2], p. 413):

D~GRe{ra ð2Þ

Previous Meta-Analyses of Judgmental Achievement
Previous meta-analyses of lens model studies have revealed a

large heterogeneity of judgmental achievement estimates across

studies [5], [6] and that the success of bootstrapping judges with a

linear judgment model generally results in only a slight increase in

judgmental achievement (e.g., [2], [6]). However, to the best of our

knowledge, no previous meta-analysis has followed a psychometric

approach that appropriately corrects for multiple methodological

artifacts. When left uncorrected, methodological differences

between the studies included in the meta-analyses such as varying

sample sizes (sampling error), varying reliability of the measure-

ments used in different studies (measurement error), and

dichotomization of a continuous variable can lead to biased

estimations. Two previous meta-analyses of lens model studies

(e.g., [5], [6]) applied ‘bare-bones meta-analysis’ (i.e., only correct

for sampling error; [16], p. 132), but they did not control for other

methodological artifacts. In the current study, we build on the

results of previous bare-bones meta-analyses and follow the

psychometric Hunter-Schmidt approach (see below) to correct

for multiple study design artifacts and thus, we argue, arrive at less

biased estimates of the LME components. We also check the

robustness of our results by estimating the potential effect of

publication bias, that is, the phenomenon for studies with

significant results to be published more often relative to studies

with non-significant results. In our case, it could be that studies

with zero correlations are probably reported less frequently than

studies with at least moderate correlations. Publication bias may

thus threaten the representativeness of the studies included in the

meta-analysis. We describe a new method for estimating potential

publication bias (see below).

In the current study, we also extend previous research and

investigate whether judgmental achievement varies according to

judge expertise and decision domain. Karelaia and Hogarth [6]

found that expertise is negatively related to judgmental achievement;

however the authors did not control for decision domain. The

authors concluded that expertise in some domains may be

particularly difficult to develop and hence only weakly related to

judgmental achievement (see also [17], [18]). Kaufmann and

Athanasou [5] considered different decision domains, but they

neglected to simultaneously consider judges’ expertise. In the

current psychometric meta-analysis, we therefore simultaneously

investigate both expertise and decision domain as well as expertise

within domains as potential moderators of judgmental achieve-

ment. Does expertise matter more in some domains relative to

others? Finally, we also compare the success of bootstrapping (see

Equation 2) with linear judgment models based on estimates of the

LME components generated from bare-bones meta-analysis with

the success of bootstrapping with linear judgment models based on

estimates generated from psychometric meta-analysis.

Methods

Description of the Database
The flowchart in Figure 2 depicts the five literature search

strategies used in the current study (see Figure 2, point A). To find

studies, we searched relevant databases (e.g. PsycINFO, Psyndex,

Web of Science) using different keywords (e.g., ‘lens model’, ‘lens

model equation’, ‘judgmental achievement’) as well as key articles

and books in the area of research and activated a Google alert to

notify us of any new relevant publications. We then cross-checked

the database with sources found in other reviews (e.g., [19], see

point B in the flowchart).

Point C lists the exclusion criteria. To prevent any aggregation

bias, we only considered studies on judgment that had aggregated

results across individuals, thus excluding those with aggregated

results across cues (e.g., [20]). We included data derived from lens

model studies of individual judges and of aggregated data across

judges. We observe that the idiographic approach is often

neglected in lens model studies [21]. Hence, mostly aggregated

judgments made by multiple judges as opposed to judgments of

single judges are reported in lens model studies.

In the current study we were interested in evaluating

judgmental achievement without any feedback opportunities as would

be the case in naturalistic, everyday settings. Business managers,

for example, receive little feedback on the accuracy of their

judgments. Moreover, they often can have no idea whether the

feedback they do in fact receive is accurate or not (see [22]).

Likewise, physicians frequently do not get any feedback about the

accuracy of their judgments, as patients fail to return or are

referred elsewhere, or diagnoses remain uncertain [23]. We

therefore excluded studies in which judges received ongoing

feedback on the accuracy of their decisions and/or had the

opportunity to learn during the tasks. We argue that studies that

included feedback and/or learning opportunities do not adequate-

ly represent the daily life of participants and could thus have

biased our results.

Further details on the construction of our database, such as our

search protocol, are available in Kaufmann [13].

A total of 31 studies met our inclusion criteria [8], [14], [23–51].

The studies were coded based on certain characteristics (e.g., year

of publication, sample size) or possible moderator variables

(judges’ level of expertise, decision domain). Tables 1 and 2

summarize the characteristics of the included studies. Decision

domain was coded as medicine, business, psychology, education,

or as miscellaneous. With the exception of the medical domain, all

other domains included both experts and non-experts (i.e.,

students) as judges. The database included 49 judgment tasks

with 1,151 judgments made by 1,055 participants. Of the 1,055

participants, 68 participated in more than one task. Compared to

the database by Kaufmann and Athanasou [5] our database is

slightly different due to improved analysis tools and additional

studies (e.g., [51]).

A Critical Meta-Analysis
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The Psychometric Meta-Analytical Approach
Several studies contributed to the eventual development of

various meta-analytical approaches in the 1970s (e.g., [15], [52],

[53]). For example, Eysenck [52] concluded from a narrative

review that psychotherapy was ineffective, prompting a response

from the experienced therapist Glass, who statistically compared

the outcomes of psychotherapy and refuted Eysenck’s conclusion

([54], see also [55]). Since then, researchers have used meta-

analysis to systematically summarize the outcomes of multiple

studies to increase the generalizability of results (e.g., regarding the

effectiveness of psychological, pedagogical and behavioral inter-

ventions [56]; regarding predictors of student achievement [57]).

The meta-analytical approach has undergone continuous

development, resulting in a number of approaches such as the

Hedges-Olkin [58], the Rosenthal-Rubin [59] and the Hunter-

Schmidt [16] approach (for an overview, see [60], [61]; for a

critical discussion, [62]). Field [63], [64] evaluated different

traditional meta-analytical approaches and favored the random-

effect model of the Hunter-Schmidt approach. The random-effect

model takes into account that the studies included in a meta-

analysis are drawn from a greater ‘population’ of studies. Hence,

differences in effect sizes across studies arise from sources within as

well as between studies. The traditional, ‘bare bones’ Hunter-

Schmidt approach (as evaluated by Field) corrects for sampling

error: Since meta-analysis is generally based on many studies with

different sample sizes, sampling error is inherent in the data (larger

for smaller sample sizes). The Hunter-Schmidt approach has since

been additionally modified to correct for up to 11 other

methodological artifacts (‘psychometric Hunter-Schmidt ap-

proach’; [16], p. 35). Since multiple methodological artifacts

threaten the estimations of the LME parameters, we argue that the

psychometric Hunter-Schmidt is the most appropriate approach

for the current study, since it is the only meta-analytical approach

that corrects for multiple differences in study design.

With regards to potential bias due to measurement artifacts, the

knowledge component (G) is attenuated by the unreliability of the

estimate of the judge, the unreliability of the criterion and the

restriction of range in both. Therefore, the bias inherent in

estimates of the knowledge component (G) can be corrected when

S (restriction or enhancement of range), the reliability of the judge

(see rtt
Rs) and the reliability of the criterion (see rtt

Re) are known.

The knowledge component can thus be described as in Equation

3:

G~S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rRs

tt |rRe
tt

q
)|Gtrue ð3Þ

Neglecting the nonlinear knowledge term (C) in Equation 1 and

considering it as an error term e, substituting Equation 3 into

Equation 1 results in Equation 4:

ra~S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rRs

rr |rRe
tt )

q
|GtrueRsReze ð4Þ

Figure 2. The process of identifying relevant studies for the meta-analysis.
doi:10.1371/journal.pone.0083528.g002
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Therefore the unbiased estimate of the knowledge component (G)

corrected for attenuation and restriction of range would be

Equation 5:

Gtrue~
(ra{e)

S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(rRs

tt |rRe
tt

p
)|RsRe

ð5Þ

In Equation 5, the psychometric Hunter-Schmidt approach

incorporates the estimation of the population parameter according

to Wittmann [65], [66]. This equation serves as an illustration of

how to psychometrically meta-analyze the LME in our study. The

psychometrically-corrected component (e.g., G) is called ‘‘true’’

and is an approximation of the value without any study design

artifact. The ‘‘true’’ value is for example the actual judgmental

achievement or the knowledge component without any artifacts

introduced by the study design. Put simply, Equation 5 can be

divided into three parts.

Firstly, the numerator of the fraction, the term e, represents

sampling error. Meta-analysis carried out for the purpose of

population estimation is often based on different studies including

different numbers of participants, which results in sampling errors.

Such a sampling error is larger for smaller sample sizes and can be

positive or negative. It should be noted that traditional bare-bones

meta-analysis corrects only for sampling error, although several

additional study design artifacts (as introduced) are known. Due to

the bias related to sampling error, there is a risk to over- or to

underestimate the particular component.

Second, the first part in the denominator describes psychomet-

ric concepts of the reliability associated with judges and tasks.

Failure to correct for the reliability of tasks or judges introduces two

dangers that may result in an underestimation of the component.

In addition, failure to correct for selection problems, known either

as restriction or as enhancement of range might lead to under- or

overestimation of for example judgmental achievement as maybe

an extremely easy or difficult task.

Third, in the second part in the denominator, the term RsRe, can

be traced back to Brunswik’s research and the LME (see Equation

2) and represents construct reliability. Wittmann [67], [66], further

extended Hunter-Schmidt’s psychometric approach by adding the

symmetry concept. Judgmental achievement increases if both the

judgment and the criterion are measured at the same level of

Table 3. Comparison of estimations of judgmental achievement (ra) with different meta-analytical approaches ordered by domain
and experience level.

Bare-bones meta-analysis Psychometric meta-analysis

Credibility
interval

Credibility
interval

Domains, experience levels k N ra varcorr 75% .10 .80 ra varcorr 75% .10 .80

Medical sciencea 10 258 .40 .00 157.00 .40 .40 .53 .00 170.93 .53 .53

Business science 9 239 .50 .07 24.45 .16 .83 .55 .09 24.45 .16 .93

Publication bias 13 332 .22 .31 13.56 2.50 .93

Experts 6 116 .36 .00 87.73 .36 .36 .40 .00 87.73 .40 .40

Publication bias 9 136 .27 .05 60.24 2.01 .55

Students 3 123 .63 .10 8.52 .22 1.00 .70 .11 8.52 .27 1.12

Education science 4 156 .39 .00 177.89 .39 .39 .51 00 355.11 .51 .51

Publication bias 5 176 .41 .02 74.99 .22 .59

Experts 2 40 .57 .00 975.69 .57 .57 .62 .00 975.69 .62 .62

Students 2 116 .33 .00 27,143 .33 .33 .55 .00 82,558 .55 .55

b 2 116 .36 .00 27,136 .36 .36

Psychology 14 249 .22 .00 448.50 .22 .22 .24 .00 448.54 .24 .24

Experts 4 59 .10 .00 975.77 .10 .10 .11 .00 975.77 .11 .11

Students 10 190 .26 .00 606 .26 .26 .29 .00 607.07 .29 .29

Miscellaneous 12 249 .44 .02 67.55 .25 .62 .49 .02 67.55 .31 .67

Experts 5 15 .65 .00 401.61 .65 .65 .68 .00 401.61 .68 .68

Publication bias 7 23 .31 .00 158.46 .31 .31

Students 11 234 .43 .00 86.40 .43 .43 .48 .00 86.55 .48 .48

Publication bias 16 276 .35 .07 53.59 .01 .68

Overall 49 1,151 .39 .02 69.42 .21 .57 .45 .02 74.55 .27 .63

Experts 27 488 .37 .00 129.00 .37 .37 .47 .00 135.00 .47 .47

Students 26 663 .40 .02 58.94 .21 .58 .46 .02 64.20 .27 .64

Note. k = Number of correlations (tasks) according to Hunter and Schmidt [16]. N = Total sample size according to Hunter and Schmidt [16]. ra = mean true score
correlation according to Hunter and Schmidt [16]. varcorr = corrected variation according to Hunter and Schmidt (2004, variance of true score correlation). 75%
rule = Percentage variance of observed correlations due to all artifacts, if below 75%, it indicates moderator variable. – mean true score correlation increased the value of
1.
aIn medical science only experts are included.
bwe reran the analysis and substituted the .09 value with a .90 value.
doi:10.1371/journal.pone.0083528.t003
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aggregation (i.e., they are ‘symmetrical’). For example, if a

physician is asked to judge whether cancer is present and the

criterion is whether a cancer tumor was detected, then the

judgment is not symmetrical, as cancer can exist without a

detectable tumor. In contrast, if a physician is asked to judge

whether there is cancer only when a cancer tumor has been

detectable, then the judgment and the criterion are said to be

symmetrical. We did not control for symmetry in the current

analysis. Neglecting symmetry may lead to two additional risks of

potentially underestimating the components.

To summarize, due to the potential for different methodological

artifacts, there is a tendency to over- or underestimate the ‘‘true

value’’ of each component as illustrated by Equation 5. Based on

Equation 5, the odds of underestimating the component with a

bare-bones meta-analysis are 6 (sampling error, reliability of tasks

or judges, selection effects, symmetry of tasks, judges) to 2

(sampling error, selection effects) as compared with estimates

generated from a psychometric meta-analysis.

In our psychometric Hunter-Schmidt meta-analysis, we weight-

ed each judgment task by the number of judges to correct for

sampling error. To correct for measurement error with regards to

both the criterion and human judgment, we used an artifact

distribution compatible with the Hunter-Schmidt approach ([16],

p. 137). To correct for measurement error on the judgment side

within medicine and business, we use the studies’ reliability values

(e.g., [36]) or, otherwise, the retest reliabilities provided by Ashton

[68] who reported retest reliability values across and within

different domains. For example, when a study within the medical

domain did not report measurement reliability, we used the mean

of the reported test-retest reliability of .73 to correct for

measurement error. No area specific retest-reliability values were

available for measurement error correction by judges in the areas

of education, psychology or miscellaneous professions. We

therefore used the Reliability Generalization approach [69] to

correct the measurement error of judges in these areas. In line with

the Reliability Generalization theory, we estimate a retest-

reliability value for our measurement error corrections, namely

.90, as an upper bound of the reliability distributions, as the

averaged retest-reliability of professional judgments across do-

mains is .78 (see [68]). Hence, our assumed measurement-error

may have led to an underestimation of all components as we

assume a smaller measurement error relative to the average

reported by Ashton [68]. With regards to the measurement

reliability values on the ecological side of the lens model (i.e., the

criterion for against which human judgment is compared), we

distinguished between three types of criteria. First, for subjective

judgments, e.g., a physician’s judgment (see [25]); we used the

same approach as with the judgment side of the model as

previously described. Second, for test criteria (e.g., MMPI), we

used the test-specific retest-reliability value as available in the

Table 4. Comparison of estimations of the linear knowledge component (G) with different meta-analytical approaches ordered by
domain and experience level.

Bare-bones meta-analysis Psychometric meta-analysis

Credibility
interval

Credibility
interval

Domains, experience levels k N G varcorr 75% .10 .80 G varcorr 75% .10 .80

Medical sciencea 10 258 .61 .02 50.72 .42 .79 .82 .02 68.47 .64 1.00

Business science 9 239 .66 .07 15.85 .32 .99 .73 .08 15.85 .37 1.09

Experts 6 116 .55 .05 33.56 .26 .83 .60 .06 35.56 .28 .91

Students 3 123 .78 .05 6.95 .49 1.0 .86 .06 6.95 .54 1.17

Education science 4 156 .73 .01 35.62 .60 .85 .81 .01 35.62 .66 .85

Experts 2 40 .89 .00 313.80 .89 .89 .98 .00 313.80 .98 .98

Students 2 116 .68 .00 51.03 .68 .68

Psychology 9 105 .38 .02 73.77 .19 .56 .42 .03 73.77 .19 .64

Publication bias 11 121 .27 .13 45.46 2.19 .73

Experts 4 59 .17 .00 444.93 .17 .17 .18 .00 444.93 .18 .18

Students 5 46 .65 .03 57.65 .42 .87 .72 .04 57.65 .46 .97

Publication bias 7 62 .41 .21 35.14 2.17 .99

Miscellaneous 12 249 .68 .07 19.26 .34 1.00 .75 .08 19.27 .38 1.11

Publication bias 17 313 .54 .20 17.90 2.03 1.11

Experts 5 15 .92 .00 768.55 .92 .92 .96 .00 768.55 .96 .96

Students 11 234 .66 .06 24.15 .34 .97 .74 .08 24.15 .37 1.1

Overall 44 1,007 .63 .05 24.91 .34 .91 .77 .07 37.11 .43 1.1

Experts 27 488 .57 .04 43.69 .31 .82 .71 .06 49.80 .39 1.0

Students 21 519 .69 .04 21.81 .43 .95 .77 .06 22.00 .45 1.0

Note. k = Number of correlations (tasks) according to Hunter and Schmidt [16]. N = Total sample size according to Hunter and Schmidt [16]. G = mean true score
correlation according to Hunter and Schmidt [16]. varcorr = corrected variation according to Hunter and Schmidt ([16]., variance of true score correlation). 75%
rule = Percentage variance of observed correlations due to all artifacts, if below 75%, it indicates moderator variable. – mean true score correlation increased the value of
1.
aIn the medical science only experts are included.
doi:10.1371/journal.pone.0083528.t004
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literature. Third, we did not correct objective criteria (e.g., an

angiography; see [24]), as we assumed that there is only minimal

measurement error with objective criteria. Finally, we considered

further artifacts, such as the dichotomization of a continuous

variable (see [38]).

Forest plots (see Figure 3) provide an overview of the results of

the included studies and psychometrically corrected confidence

intervals (see [16], p. 207). We also report credibility intervals as an

indication of the existence of moderators of judgmental achieve-

ment. In contrast to confidence intervals, credibility intervals are

calculated with standard deviations after removing artifacts. If the

credibility interval includes zero or is sufficiently large, then there is

a higher potential for moderator variables relative to when the

credibility interval is small and excludes zero. Hunter and Schmidt

[16] also recommend a simple 75% rule to detect moderator

variables, which is typically more accurate than significance tests

used to assess homogeneity. According to this rule, if the variance

after correcting for artifacts accounts for less than 75% of the

uncorrected variance (i.e., when artifacts account for less than 25%

of the total variance, moderator variables are suspected). It should

be noted that the variance remaining after artifact correction

represents the upper boundary of any potential moderator effects, as

it is impossible to correct of all potential artifacts. We emphasize that

we do not apply Fisher-Z transformations, in line with the

recommendations of Hunter and Schmidt [16].

Finally, we apply the trim-and-fill method introduced by Duval

and Tweedie [70] to estimate a possible publication bias in order

to check the robustness of our estimations. By applying the trim-

and-fill method, we estimated the effect sizes of potentially missing

studies and included them in a further psychometric meta-analysis

corrected for publication bias. In the following, we refer to this

approach that to our knowledge is hereby introduced to the

literature for the first time as the psychometric trim-and-fill method. We

use the retest-reliability values to correct for judgment reliability,

as in the case of education and psychology, and we assume no

measurement error on the criterion side.

Results

Tables 3 to 6 and Figure 3 display the results of the meta-

analyses. The results of the bare-bones meta-analysis for each

research area are displayed first, followed by the results of the

Table 5. Comparison of estimations of the consistency component (Rs) with different meta-analytical approaches ordered by
domain and experience level.

Bare-bones meta-analysis Psychometric meta-analysis

Credibility
interval

Credibility
interval

Domains, experience level k N Rs varcorr 75% .80 .10 Rs varcorr 75% .80 .10

Medical sciencea 10 258 .81 .00 74.95 .81 .81 .96 .00 126.87 .96 .96

Business science 9 239 .81 .01 28.60 .68 .93 .89 .02 28.60 .70 1.0

Experts 6 116 .62 .00 268.23 .62 .62 .69 .00 108.29 .69 .69

Students 3 123 .77 .03 12.68 .54 .99 .85 .03 12.68 .62 1.00

Education science 4 156 .73 .00 43.52 .60 .85 .93 .00 554.87 .93 .93

Publication bias 6 196 .67 .20 22.80 .09 1.25

Experts 2 40 .92 .00 1,241 .92 .92 .96 .00 1,241 .96 .96

Students 2 116 .66 .00 422.27 .66 .66 1.00 b

Psychology 12 150 .79 .01 71.34 .66 .91 .83 .01 71.34 .07 .96

Experts 4 59 .85 .01 48.83 .72 .98 .89 .01 48.83 .76 1.0

Students 8 91 .74 .00 107.28 .74 .74 .78 .00 107.28 .78 .78

Publication bias 11 115 .59 .09 35.15 .21 .97

Miscellaneous 12 249 .71 .00 90.86 .71 .71 .75 .00 90.92 .75 .75

Publication bias 17 272 .67 .05 34.01 2.23 1.5

Experts 5 15 .95 .00 1,724 .95 .95 .98 .00 1,724 .98 .98

Publication bias 6 19 .78 .06 66.77 .46 1.09

Students 11 234 .69 .00 148.50 .69 .69 .73 .00 148.50 .73 .73

Overall 47 1,052 .77 .00 53.34 .64 .90 .85 .00 100.63 .85 .85

Publication bias 58 1,260 .66 .14 17.31 .18 1.13

Experts 27 488 .83 .00 89.61 .83 .83 .92 .00 138.60 .92 .92

Publication bias 29 496 .90 .01 52.26 .77 1.02

Students 24 564 .71 .01 75.37 .63 .80 .78 .00 139.48 .78 .78

Publication bias 33 664 .61 .11 24.43 .18 1.18

Note. k = Number of correlations (tasks) according to Hunter and Schmidt [16]. N = Total sample size according to Hunter and Schmidt [16]. Rs = mean true score
correlation according to Hunter and Schmidt [16]. varcorr = corrected variation according to Hunter and Schmidt ([16]., variance of true score correlation). 75%
rule = Percentage variance of observed correlations due to all artifacts, if below 75%, it indicates moderator variable.
aIn medical science only experts are included.
bmean true score correlation increased the value of 1.
doi:10.1371/journal.pone.0083528.t005
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psychometric meta-analysis. Whenever the psychometrical trim-

and-fill method did not match the psychometric results with

regards to the indication of moderators, the suggested values are

reported as publication bias in the tables.

Judgmental Achievement
Table 3 and Figure 3 show the meta-analytic results of

judgmental achievement. Correcting for sampling error (bare

bones approach) only results in an estimated judgmental

Figure 3. Forest plots of judgmental achievement and the underlying components.
doi:10.1371/journal.pone.0083528.g003
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achievement of .39. Correcting for additional artifacts with the

psychometric approach resulted in an increased estimate of .45.

That is, across all included lens model studies, human judgment

correlated .45 with the given criterion.

Domain and Expertise as Moderators
The relatively small reduction in variability resulting from the

psychometric approach relative to the bare bones approach

suggested the existence of moderator variables under the

Table 6. Comparison of estimations of the task-predictability component (Re) with different meta-analytical approaches ordered
by domain and experience level.

Bare-bones meta-analysis Psychometric meta-analysis

Credibility
Interval

Credibility
Interval

Domains, experience level k N Re varcorr 75% .10 .80 Re varcorr 75% .10 .80

Medical sciencea 10 258 .67 .00 105.89 .67 .67 .92 .00 198.55 .92 .92

Business science 9 239 .71 .02 34.97 .52 .89 b

Experts 6 116 .62 .00 108.29 .62 .62 b

Students 3 123 .79 .02 13.91 .60 .97 b

Education science 4 156 .70 .00 257.26 .70 .70 .74 .00 257.26 .74 .74

Experts 2 40 .68 .00 1,690 .68 .68 .72 .00 1,690 .72 .72

Students 2 116 .71 .00 145.93 .71 .71 .75 .00 145.93 .75 .75

Psychology 14 249 .68 .00 77.79 .68 .68 .72 .00 78.62 .72 .72

Publication bias 16 265 .64 .05 32.73 .35 .92

Expertsb 4 59 .80 .00 256.36 .80 .80 b

Students 10 176 .63 .00 91.12 .63 .63 .68 .00 91.12 .68 .68

Publication bias 13 220 .54 .09 27.90 .15 .94

Miscellaneous 12 249 .88 .01 23.75 .75 1.00 .93 .01 23.74 .80 1.00

Expertsb 5 15 .69 .00 356.44 .69 .69 b

Students 11 234 .89 .00 39.67 .89 .89 .94 .00 39.67 .94 .94

Overall 49 1,151 .73 .01 44.21 .60 .85 .81 .01 66.00 .69 .93

Experts 27 488 .68 .00 126.13 .68 .68 .76 .00 157.52 .76 .76

Publication bias 32 23 .59 .06 36.54 .27 .90

Students 26 663 .77 .02 31.23 .18 .58 .81 .02 31.45 .62 .99

Note. k = Number of correlations (tasks) according to Hunter and Schmidt [16]. N = Total sample size according to Hunter and Schmidt [16]. Re = mean true score
correlation according to Hunter and Schmidt [16]. varcorr = corrected variation according to Hunter and Schmidt ([16], variance of true score correlation). 75%
rule = Percentage variance of observed correlations due to all artifacts, if below 75%, it indicates moderator variable. – mean true score correlation increased the value of
1.
aIn medical science only experts are included.
bsee bare-bones meta-analysis, no correction because this category includes only objective criterions.
doi:10.1371/journal.pone.0083528.t006

Table 7. Comparison of the success of bootstrapping judges with a linear judgment model (GRe) based on different meta-
analytical approaches (bare-bones vs. psychometric approach).

Research area k N
Bare-bones
(GRe) Psychometric (GRe)

Estimated success
(Bare-bones)

Estimated success
(Psychometric)

Medical 10 258 .41 .76 .01 .36

Business 9 239 .47 .52b 2.03 .02

Educational 4 156 .51 .72 .12 .22

Psychologicala 9 105 .26 .30 .04 .08

Miscellaneous 12 249 .60 .70 .16 .26

Overalla 44 1007 .46 .62 .07 .23

a = there are 5 more Re values of studies included having 144 participants;
b = component Re is not corrected.
doi:10.1371/journal.pone.0083528.t007
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assumption of no measurement error on the criterion side for

objective criteria. We therefore re-ran the analyses within each

domain (medicine, business, education, psychology, miscella-

neous), for experts versus novices, and for expertise within domain

(e.g., expert teachers versus novice teachers). These subsequent

analyses revealed that judgmental achievement depended on

decision domain. Specifically, judgmental achievement was lowest

in psychology (ra = .22) and higher in education (ra = .39), medicine

(ra = .40), miscellaneous professional domains (ra = .44), and highest

in business (ra = .50). The results from the psychometric meta-

analysis confirmed this pattern of results.

Against our expectation, results indicated that students reached

a slightly higher judgmental achievement than experts. The 75%

rule and the credibility intervals indicated the existence of

moderator variables among student’s judgmental achievement.

We therefore reran our analysis, separating expertise within domains.

This analysis revealed that the potential for moderator variables

(once again as indicated by the 75% rule as well as by the

credibility intervals) amongst experts runs not across all domains.

In contrast, the analysis indicated the existence of moderator

variables amongst business science students only.

Inspection of the scatter plots of students’ judgmental achieve-

ment within the business domain indicated that Wright’s study

[32] had low values of judgmental achievement and might have

influenced our results. Excluding this study from the sample

increased estimated judgmental achievement (ra = .97, varcorr = .00),

but still indicated the presence of moderator variables according to

the 75% rule (30.51%).

Finally, the application of the psychometric trim-and-fill method

generally confirmed our results. However, estimates of judgmental

achievement among business experts dropped to a low value (no

publication bias was indicated in studies using business students).

Likewise, experts’ judgments in other research domains decreased

from .68 to .31. The application of the psychometric fill-and-trim

method to judgmental achievement in the field of education

indicated the existence of moderator variables. The potential for

moderator variables according to the credibility intervals and the

75% rule decreased after we separated the analysis by experience

level in the education domain. We therefore assume that

experience level is a moderator variable within education. The

judgment-achievement values for students in other domains

remained stable after correcting for potential publication bias.

Components of Judgmental Achievement
Tables 4 to 6 and Figure 3 present the estimates of the LME

parameters. As seen in Table 4, our results indicated high values of

the knowledge component (G) in nearly every domain/experience-

level except among experts in psychology. In addition, the results

from the psychometric trim-and-fill method suggested a lower

value for students’ knowledge components. Hence, it seems that

our analysis overestimated the knowledge component (G) among

students, although the knowledge component for students was

lower relative to experts.

Table 5 displays estimates of the consistency component (Rs).

The results from the bare-bones and psychometric meta-analyses

both suggest high values and generally indicate no moderator

variables for all analyses across domains and expertise-level. All of

the estimated consistency components (Rs) remain high when using

the psychometric fill-and-trim method. In addition, the results

from the psychometric fill-and-trim method indicated the

existence of moderators within education science, among experts

in the miscellaneous domain, and aggregated cross all domains.

Finally, Table 6 presents estimates for the task predictability

component (Re). All values were above .68 in each and every

analysis across domains and experience-level. The 75% rule

indicated moderator variables across all domains, mainly based on

students’ task predictabilities in business science and the miscel-

laneous domain. In addition, the psychometric trim-and-fill

method suggested that task predictabilities were overestimated

amongst psychology students, as the 75% rule suggested the

existence of moderators.

The Success of Bootstrapping Judges with a Linear
Model

Table 7 compares the success of bootstrapping judges with a

linear judgment model (see Equation 2) based on corrected versus

uncorrected estimates of LME parameters. Failure to correct the

component estimates for various artifacts clearly lead to underes-

timations of bootstrapping success. Indeed, the current results with

corrected parameters indicate that the linear judgment models are

actually more successful than previous studies have suggested (see

[2], [6]). Hence, using corrected estimations of the LME

components (e.g., G, Re) has practical consequences for the success

of bootstrapping with linear judgment models. We therefore argue

that corrected parameter estimates should be used to evaluate the

success of bootstrapping.

Discussion

The major finding of our study is that bare-bones meta-analysis

(e.g., [5], [6], see one-trial category), clearly underestimates true

judgmental achievement values relative to psychometric meta-

analysis, which more appropriately corrects for study design

artifacts. Consequently, we argue that a psychometric meta-

analysis is needed to more accurately evaluate judgment accuracy

and can help researchers to more efficiently detect moderators. So

far, previous meta-analyses of lens model studies have neglected

the need to correct for multiple artifacts, although even minor

increases in judgmental achievement may have a high practical

impact at the individual level, for example, in life or death

decisions in the medical domain. Our results indicate that failure

to correct for artifacts (as with a bare-bones meta-analysis) leads to

underestimations of all LME parameters across and within

expertise domains, and the potential for moderator variables is

generally overestimated. Parameter estimates from psychometric

meta-analysis can be used to improve linear judgment models and

hence bootstrapping, especially in areas where the price of false

decision-making is high.

With regards to specific moderators of judgmental achievement,

the present study confirms the pattern previously found for

comparisons between different domains [5], namely, that judgmen-

tal achievement varies greatly across the medical, educational,

psychological, business and other professional domains. In line

with the meta-analysis of Aegisdottir et al. (p. 368) [1], we found

low judgmental achievement in psychological science, for example,

in the prediction of violence. Our analysis revealed that such low

judgmental achievement within psychology may be explained by a

moderate knowledge component. Hence, the question arises

whether judgmental achievement in psychology can be improved

by increasing the knowledge component, meaning that psychol-

ogists would need to expand their relevant knowledge for linear

information integration. The success of psychometrically-corrected

linear judgment models was higher than the low human

judgmental achievement in psychology. Therefore, it might be

particularly worthwhile to bootstrap judges within this domain (for

further information, see [71]).

Against our expectation, the results of the meta-analyses suggest

that experts do not make much better judgments than non-experts
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at the aggregated level. However, the effect of expertise appears to

depend on domain. Specifically, within the business and psychol-

ogy domains, students had higher judgmental achievement than

experts. This surprising result may imply situations of learning and

feedback (see also [22]). That is, higher judgmental achievement

among experts relative to students may indicate higher feedback

and learning in the respective domain. It seems possible to

improve judgmental achievement through feedback and learning.

There is only one study [47], however, that directly compares

experts and students in four different tasks. Our results and

conclusions regarding this point should therefore be taken with

caution.

An innovative aspect of the current study was that we estimated

publication bias using a psychometric trim-and-fill method,

potentially leading to better estimates. To the best of our

knowledge, calculation of publication bias has previously only

been applied within bare-bones meta-analyses (see [72]), and we

are not aware of any previous psychometric meta-analysis that has

corrected for publication bias in this way. We recommend that

researchers check the robustness of the results of future psycho-

metric meta-analyses by using the psychometric trim-and-fill

method described in this paper. We caution, however, that the

psychometric trim-and-fill method used in the current study may

need improvement and replication, because the underlying data

were heterogeneous, which can potentially be problematic.

Indeed, Rothstein [73] asserted that disentangling the effects of

publication bias from other sources of heterogeneity can be

difficult.

As common in meta-analytical research, the studies included in

the analyses did not always report all of the data needed to

calculate ‘‘true’’ judgmental achievement values (e.g., measure-

ment reliability). Indeed, researchers interested in conducting

psychometric meta-analyses often face the problem of missing

data. Based on the Reliability Generalization theory [69], we

suggest estimating a measurement error with an rr = .9 to check the

robustness of the data as a possible solution. We also emphatically

recommend that future researchers thoroughly and consequently

report all relevant information on study method and results (e.g.,

reliability values, dichotomizations) in order to enhance the

accuracy of further meta-analyses (and hence their usefulness).

We would also like to encourage researchers to report more

idiographic data in lens model studies (see [21]). For instance,

multi-level analysis (see [74]) could be applied to gain further

knowledge about judges’ strategies within and between tasks.

In the current study, we corrected for a number of methodo-

logical artifacts (sampling error, measurement error, and dichot-

omization). Importantly, there may well be additional artifacts for

which we did not correct. On this note, we heartily agree with

Hunter and Schmidt [16] that, ‘‘all quantitative estimates are

approximations. Even if these estimates are quite accurate, it is

always desirable to make them more accurate, if possible’’ (p. 168).

For instance, Wittmann [66], [67], further extended Hunter-

Schmidt’s psychometric approach by adding the symmetry

concept. We did not control for symmetry in the current analysis.

Hence, we may have underestimated overall judgmental achieve-

ment, although our analyses rarely indicated any moderator

variables, suggesting that there is not much variance left for further

artifact correction.

In the current study, we focused on the evaluation of the success

of bootstrapping with only linear judgment models. However, we

did not consider experience within domains in detail. Further

analyses are needed to shed light on this topic (see [75]).

As linear judgment models are often criticized for lack of user

friendliness, we also see our analysis as an inspiration for the

development of new judgment models (see [76]). The true power

of psychometrically corrected linear judgment models should

urgently be evaluated against new kinds of judgment models.

In sum, our study demonstrates that psychometric meta-analysis

is useful for evaluating judgmental achievement and for construct-

ing better linear judgment models for bootstrapping. This first

psychometric meta-analysis of lens model studies confirms and

extends previous results from bare-bones meta-analysis: Judgmen-

tal achievement clearly varies across domains. Our analysis also

extended previous research on the potential moderating role of

expertise within and between decision domains. The current

analysis revealed that failure to correct for methodological artifacts

can lead to underestimations of judgmental achievement and

overestimations of heterogeneity between studies. Consequently,

the success of bootstrapping with linear judgment models is also

underestimated if LME parameters are not corrected for

methodological artifacts. We therefore recommend that future

researchers follow a psychometric approach in order to arrive at

less biased estimations and more successful linear judgment

models. If the relevant data for psychometric analyses (e.g., data

on measurement error) are not immediately available, researchers

can conduct robustness analysis with estimated values.

Supporting Information

Checklist S1 PRISMA Checklist for systematic review
and meta-analysis.

(DOC)

Acknowledgments

We are grateful to Lars Sjödahl, James A. Athanasou, Franz Eberle and

Stephan Schumann as well as the Graduate School of Economics & Social

Sciences at the University of Mannheim (Germany) and the Brunswik

Society. We thank also two anonymous reviewers to comments and

improvement of this paper. Finally, we thankfully acknowledge support for

publication fees from University of Zurich.

Author Contributions

Analyzed the data: EK UR WWW. Contributed reagents/materials/

analysis tools: EK UR WWW. Wrote the paper: EK UR WWW.

References

1. Aegisdottir S, White MJ, Spengler PM, Maugherman AS, Anderson LA, et al.

(2006) The meta-analysis of clinical judgment project: Fifty-six years of

accumulated research on clinical versus statistical prediction. Couns Psychol

34: 341–382. doi: 10.1177/0011000005285875

2. Camerer C (1981) General conditions for the success of bootstrapping models.

Organ Behav Hum Perform 27: 411–422. doi:10.1016/0030-5073(81)90031-3

3. Grove WM, Zald DH, Lebow BS, Snitz BE, Nelson C (2000). Clinical versus

mechanical prediction: A meta-analysis. Psychol Assess 12: 19–30. doi:10.1016/

0030-5073(78)90011-9

4. Brunswik E (1952) The conceptual framework of psychology. International

encyclopedia of unified science. Chicago, IL: University of Chicago Press.

5. Kaufmann E, Athanasou JA (2009) A meta-analysis of judgment achievement

defined by the lens model equation. Swiss J Psychol 68: 99–112. doi: 10.1024/

1421-0185.68.2.99

6. Karelaia N, Hogarth R (2008) Determinants of linear judgment: A meta-analysis

of lens studies. Psychol Bull 134: 404–426. doi:10.1037/0033-2909.134.3.404

7. Jenny MA, Pachur T, Williams SL, Becker E, Margraf J (2013) Simple rules for

detecting depression. J Appl Res Mem Cogn 2: 149–157. doi:10.1016/

j.jarmac.2013.06.001

8. Einhorn HJ (1974) Cue definition and residual judgment. Organ Behav Hum

Perform 12: 30–49. doi:10.1016/0030-5073(74)90035-X

A Critical Meta-Analysis

PLOS ONE | www.plosone.org 14 December 2013 | Volume 8 | Issue 12 | e83528



9. Hammond KR, Hursch CJ, Todd FJ (1964) Analyzing the components of
clinical inference. Psychol Rev 71: 438–456. doi:10.1037/h0040736

10. Hursch CJ, Hammond KR, Hursch JL (1964) Some methodological
considerations in multiple-cue probability learning studies. Psychol Rev 71:

42–60. doi:10.1037/h0041729

11. Tucker LR (1964) A suggested alternative formulation in the developments by

Hursch, Hammond and Hursch and by Hammond, Hursch and Todd. Psychol
Rev 71: 528–530.

12. Hammond KR, Stewart TR (2001) The essential Brunswik: Beginnings,
explications, applications. Oxford, UK: University Press.

13. Kaufmann E (2010) Flesh on the bones: A critical meta-analytical perspective of
achievement lens studies. (Doctoral dissertation, MADOC: University of

Mannheim). Available: http://madoc.bib.uni-mannheim.de/madoc/volltexte/
2010/2892/. Accessed 22 November 2013.

14. Goldberg LR (1976) Man versus model of man: Just how conflicting is that
evidence? Organ Behav Hum Perform 16: 13–22. doi:10.1037/h0029230

15. Meehl P (1954) Clinical versus statistical prediction: A theoretical analysis and a
review of the evidence. Minneapolis, MN: University of Minnesota Press.

16. Hunter JE, Schmidt FL (2004) Methods of meta-analysis: Correcting error and
bias in research findings. Newbury Park, CA: Sage.

17. Dawes RM, Faust D, Meehl PE (1989) Clinical versus actuarial judgment.
Science 243: 1668–1674. doi:10.1177/0093854890017004004

18. Shanteau J (2002) Domain differences in expertise. Working paper. Kansas State
University, KS: Manhattan.

19. Armstrong JS (2001) Judgmental bootstrapping: Inferring experts’ rules for

forecasting. In: Armstrong JS, editor. Principles of forecasting. Philadelphia,

Pennsylvania, USA: Springer. p. 171

20. Cooksey RW, Freebody P, Wyatt-Smith C (2007) Assessment as judgment-in-

context: Analysing how teachers evaluate students’ writing. Educ Res Eval 13:
401–434. doi: 10.1080/13803610701728311

21. Kaufmann E, Sjödahl L, Mutz R (2007) The idiographic approach in social
judgment theory: A review of components of the lens model equation

components. International Journal of Idiographic Science, 2.

22. Hogarth RM (2006) Is confidence in decisions related to feedback? Evidence

from random samples of real-world behavior. In: Fiedler K, Juslin P (editors),
Information sampling and adaptive cognition. Cambridge, UK: Cambridge

University Press. pp. 456–484.

23. Lichtenstein S, Fischhoff B, Phillips DP (1981) Calibration of probabilities: The

state of the art to 1980. Technical Report PTR-1092-81-6. Available: http://
www.dtic.mil/cgi-bin/GetTRDoc?AD = ADA101986&Location = U2&doc = Get

TRDoc.pdf. Accessed: 22 Nov 2013

24. Nystedt L, Magnusson D (1975) Integration of information in a clinical

judgment task, an empirical comparison of six models. Percept Mot Skills 40:
343–356.

25. LaDuca, A Engel JD, Chovan JD (1988) An exploratory study of physicians’
clinical judgment: An application of social judgment theory. Eval Health Prof

11: 178–200. doi:10.1177/016327878801100203

26. Smith L, Gilhooly K, Walker A (2003) Factors influencing prescribing decisions

in the treatment of depression: A social judgment theory approach. Appl Cogn

Psychol 17: 51–63. doi:10.1002/acp.844

27. Speroff T, Connors AF, Dawson NV (1989) Lens model analysis of

hemodynamic status in the critically ill. Med Decis Making 9: 243–261.
doi:10.1177/0272989X8900900403

28. Ashton AH (1982) An empirical study of budget-related predictions of corporate

executives. Journal of Accounting Research 20: 440–449.

29. Roose JE, Doherty ME (1976) Judgment theory applied to the selection of life

insurance salesmen. Organ Behav Hum Perform 16: 231–249. doi:10.1016/

0030-5037(76)90015-5

30. Kim CN, Chung HM, Paradice DB (1997) Inductive modeling of expert

decision making in loan evaluation: A decision strategy perspective. Decis
Support Syst 21: 83–98. doi:10.116/S0167-9236(97)00022-5

31. Mear R, Firth M (1987) Assessing the accuracy of financial analyst security

return predictions. Accounting Organizations and Society 12: 331–340.

doi:10.1016/0361-3682(87)90022-5

32. Wright WF (1979) Properties of judgment models in a financial setting. Organ

Behav Hum 23: 73–85. doi:10.1016/0030-5073(79)90047-3

33. Harvey N, Harries C (2004) Effects of judges’ forecasting on their later

combination for forecasts for the same outcomes. Int J Forecast 20: 391–409.

34. Singh H (1990) Relative evaluation of subjective and objective measures of

expectations formation. Q Rev Econ Bus 30: 64–74.

35. Cooksey RW, Freebody P, Davidson GR (1986) Teachers’ predictions of
children’s early reading achievement: An application of social judgment theory.

Am Educ Res J 23: 41–64. doi:10.3102/00028312023001041

36. Wiggins N, Kohen ES (1971) Man versus model of man revisited: The

forecasting of graduate school success. J Pers Soc Psychol 19: 100–106.

37. Athanasou JA, Cooksey RW (2001) Judgment of factors influencing interest: An

Australian study. Journal of Vocational Education Research 26: 1–13.

38. Szucko JJ, Kleinmuntz B (1981) Statistical versus clinical lie detection. Am

Psychol 36: 488–496.

39. Cooper RP, Werner PD (1990) Predicting violence in newly admitted inmates: A

lens model analysis of staff decision making. Crim Justice Behav 17: 431–447.
doi:10.1177/0093854890017004004

40. Werner PD, Rose TL, Murdach AD, Yesavage JA (1989) Social workers’
decision making about the violent client. Soc Work Res Abstr 25: 17–20.

41. Werner PD, Rose TL, Yesavage JA (1983) Reliability, accuracy, and decision-

making strategy in clinical predictions of imminent dangerousness. J Consult
Clin Psychol 51: 815–825. doi:10.1037/0022-006X.51.6.815

42. Gorman CD, Clover WH, Doherty ME (1978) Can we learn anything about

interviewing real people from ‘‘interviews’’ of paper people? Two studies of the

external validity of a paradigm. Organ Behav Hum Perform 22: 165–192.

43. Reynolds DAJ, Gifford R (2001) The sounds and sights of intelligence: A lens

model channel analysis. Pers Soc Psychol Bull 27: 187–200.

44. Bernieri FJ, Gillis JS, Davis JM, Grahe JE (1996) Dyad rapport and the accuracy

of its judgment across situations: A lens model analysis. J Pers Soc Psychol 71:

110–129.

45. Lehman HA (1992) The prediction of violence by lay persons: Decision making

by former psychiatric inpatients. Unpublished doctoral dissertation, The

California School of Professional Psychology Berkeley/Alameda.

46. Stewart TR (1990) Notes and correspondence: A decomposition of the

correlation coefficient and its use in analyzing forecasting skill. Weather and

Forecasting 5: 661–666.

47. Stewart TR, Roebber PJ, Bosart LF (1997) The importance of the task in

analyzing expert judgment. Organ Behav Hum Decis Process 69: 205–219.

doi:10.1006/obhd.1997.2682

48. Steinmann DO, Doherty ME (1972) A lens model analysis of a bookbag and

poker chip experiment: A methodological note. Organ Behav Hum Perform 8:

450–455. doi:10.1016/0030-5073(72)90062-1

49. MacGregor D, Slovic P (1986) Graphic representation of judgmental

information. Int J Hum Comput Interact 2: 179–200.

50. McClellan PG, Bernstein ICH, Garbin CP (1984) What makes the Mueller a

liar: A multiple-cue approach. Percept Psychophys 36: 234–244.

51. Trailer JW, Morgan JF (2004) Making ‘‘good’’ decisions: What intuitive physics

reveals about the failure of intuition. The Journal of American Academy of

Business 3: 42–48.

52. Eysenck HJ (1952) The effects of psychotherapy: An evaluation. J Consult

Psychol 16: 319–324.

53. Pearson K (1904) Report on certain enteric fever inoculation statistics. Br Med J

3: 1243–1246.

54. Smith ML, Glass GV (1977) Meta-analysis of psychotherapy outcome studies.
Am Psychol 32: 752–760.

55. Wittmann WW, Matt GE (1986) Meta-Analyse als Integration von Forschung-

sergebnissen am Beispiel deutschsprachiger Arbeiten zur Effektivität von

Psychotherapie [Meta-analysis as an integration of research exemplified for

German studies on the effect of psychotherapy]. Psychol Rundsch 27: 20–40.

56. Lipsey MW, Wilson DB (1993) The efficacy of psychological, educational, and

behavioral treatment: Confirmation from meta-analysis. Am Psychol 48: 1181–

1209.

57. Hattie J (2009) Visible learning: A synthesis of over 800 meta-analyses relating to
achievement. London, New York: Routledge.

58. Hedges LV, Olkin I (1985) Statistical methods for meta-analysis. Orlando, FL:

Academic Press.

59. Rosenthal R (1991) Meta-analytic procedures for social research. Newbury Park,

CA: Sage.

60. Bangert-Drowns RL (1986) Review of developments in meta-analytic method.

Psychol Bull 99: 388–399. doi: 10.1037/0033-2909.99.3.388

61. Rosenthal R, DiMatteo MR (2001) Meta-analysis: Recent developments in

quantitative methods for literature reviews. Annu Rev Psychol 52: 59–82.

doi:10.1146/annurev.psych.52.1.59

62. Ioannidis JPA (2010) Meta-research: The art of getting it wrong. Res Synth

Methods 1: 169–184. doi: 10.1002/jrsm.19

63. Field AP (2001) Meta-analysis of correlation coefficients: A Monte Carlo

comparison of fixed- and random-effects methods. Psychol Methods 6: 161–180.

64. Field AP (2005) Is the meta-analysis of correlations accurate when population

correlations vary? Psychol Methods 10: 444–467.

65. Wittmann WW (1988) Multivariate reliability theory. Principles of symmetry

and successful validation strategies. In: Nesselroade JR, Cattell RB, editors.

Handbook of multivariate experimental psychology. New York: Plenum Press.

pp. 505–560.

66. Wittmann WW (2009) Evaluationsmodelle. In: Holling H, editor. Enzyklopädie
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