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Wall-bounded turbulent shear flow: Analytic result for a universal amplitude
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In the turbulent boundary layer above a flat plate, the velocity profile is known to have theuvform
=vol(1/k)In z+consi. The distance from the wall in dimensionless unitz @nd v, is a uniquely defined
velocity scale. The number is universal, and measurements over several decades have shown that it is nearly
0.42. We use a randomly stirred model of turbulence to derive the above law and=figd08/1257=0.52.
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I. INTRODUCTION nuity (for an incompressible flow implies (du/dx)
+(dw/dz)=0. We look for a situation which ig indepen-
Turbulent flow over a stationary plate has been investi-dent, and hencéw/Jz=0. The resulting constant value wf
gated in great detail for well over a century. One of theis found to be zero since=0 atz=0. In the laminar regime
important quantities studied is the velocity profile, and in(low Reynold’s numberthe velocityu satisfiesV2u=0 and
particular a good deal of attention has been paid to the vesince the only dependence ofis on z, we haved?u/ 9z
locity in the boundary layer. The existence of the boundary=0 or a linear profile fou, i.e.,u=uy(z/a), whereu, anda
layer was first postulated by Prandil,2]. Due to the pres- are constants. This is the usual Couette flow.
ence of viscosity, the flow speed has to be zero on the sur- For high Reynold’s number this flow becomes turbulent
face of the plate. Within a short distance, the velocity has tand the linear profile is restricted to a very small boundary
rise to its bulk value. This small distance in which the veloc-layer. Somewhat away from the plate, the law of the wall
ity experiences a rapid change is called the boundary layeshown in Eq.(1) is found. We explain the basis of our cal-
Prandtl observed that in the boundary layer the velogity cualtion in Sec. Il. The De Dominicis—Martin modél] for
scales with the distancefrom the boundary. Adjoining the homogeneous, isotropic situation is introduced in Sec. IlI
boundary is an extremely thin laminar boundary layer, aftetand a self-consistent calculation is described in Sec. IV. We
which comes a buffer zone and then the turbulent boundargeneralize the model to the anisotropic situation in Sec. V,

layer. In this regime one hdg,3] and obtain the constant in Sec. VI.
v 1
V—= ;[In(z/zo)], (1) Il. BASIC HYDRODYNAMIC EQUATIONS
0

_ In this section, we explain the basis of the calculation.
a result known as the law of the wall, wherg is areference  Qur starting point is the Navier-Stokes’ equation for the ve-

velocity to be defined below, and is an universal constant S A
. X locity field u,
which so far has only been experimentally measurdd
With the coming of Kolmogorov’s theors] of homoge- . .
neous isotropic turbulence, where a simple dimensional ar- au ... VP -
gument yielded remarkable results, dimensional arguments E‘L(U'V)“__?“LVV U, @

were similarly used in this problem to obtain Efj). A more
reful analysi$6,7] of the Navier-Stok tion al - . . . . -
gir?eg ;eagk?oi;/% r]ec;ult,ewh?cheissogee(;Sfetﬂlem::gm(?rgg)ﬁgg iwhereP IS the pressure, Wh'_Ch for an |ncom_pre53|ble f".“(?'_'s
the theory of the turbulent boundary layer. Over the last twd't an mtﬂeeendent quantity. Usmq th(i |rJC(3mpre§S|b|I|ty
decades, much effort has been spent in providing a morgondition V-u, we see thatv?P/p=V-[(u-V)u], which
microscopic justification for Kolmogorov’s scaling in homo- locks the pressure to the velocity field. In the flow over a
geneous isotropic turbulence, thereby enhancing our undeplate that we will consider, the plate will be taken to be in
standing of the energy cascade involved. Analysis of homothe x-y plane with the mean velocity flowing in thedirec-
geneous isotropic turbulence has thus become a problem §Pn under a maintained pressure gradient. It suffices to work
nonequilibrium statistical physid8—14]. In this work, we  With the two-dimensional geometry of thez plane, since all
propose to use techniques from statistical physics to study= const sections should appear identical. As is usual, we
the law of the wall and in the process provide calculationgwill split the velocity field into a mean and a fluctuating
for the universal constarn. field, i.e.,
We begin by explaining the geometry and the traditional
formulation. The flat platdinfinitely large sits atz=0 (in
the x-y plang, and the flow(in the steady laminar situatipn
occurs in thex direction, due to a parallel moving plate some
distance away. We can view this as a two dimensionatith v, the fluctuating part, having zero mean. Substituting
problem—the dynamics occurs only in tRez plane. Conti- Eg. (3) into Eq.(2), and taking averages,

u=U+uv, 3
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a0 Lo . L. VP -
E+(U-V)U+<(U~V)v>=—7+vv u. (4)

In this section we will use;, X5, andx; as coordinates
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U,

V&'_X3 (10)

=(vvg)tC.

Far away from the wall, where the viscous stress is neg-

instead ofx, y, andz and the corresponding components of igible, one can calculate the constantgiving

U andv will be Uy, U,, andU; andv;, v,, andvs, respec-

tively. In the steady state, all average quantities are indepen- v
dent of x; and x,, and, hence, from the incompressibility

condition U4 /dxq)+(dU,/dx5) + (dU3/dx3)=0, we in-
fer thatU; is independent ok; and sinceU;=0 atx;=0

(no-slip condition, it remains zero for alk;. For the 1 com-
ponent of Eq.(4), we have

U (9U1 U 3U1+ al}l " &Ul " &Ul
L ox 3xg |\ Vlx, Y2 9%, Y3 %3
P 1 v2U .
=———+
Xy p v 1 5

and from the 3 component of E¢4), we have

d

X3

P
7"+<v§>) =0, ()

where P=P,+p. The above equation implies thaP{/p)
+(v3) is independent oks. From Eq.(5), we obtain

J 17
721)1 + vlé’_)(lvl
J J
+ U3(9—X301 + 01(9—)(303
i 7
Ula_xsv.?; . (7)
Now,  considering {v3(d/dx3z)vq)+{v1(d/IX3)v1)
=(dloxg)(vivs) and  (vi(d/dxz)vz)=(v1(d/IX1)vy)

+<Ul((9/(?xl)vj_>! and USing&U1/¢9X1=U3=(&/&X1)<vi>
=0, we have

d
03(9—)(301 =

Now (&/&X3)(v3vl)=<v3(z9v1/(9x3))+<(av3/¢9X1)vl>
=(v3(dv1/9%3))— (3 x1)(v2)=(v3(dv,/dx3)), where

JP 1

Xy p

8°U,

v .
2

)

we have used the equation of continuity for the fluctuating

field, and thus, from Eq8),

Uy LLP .
V<9_X3_<Ulv3> S ¢ 9

In writing the above equation we have used the fact fhat
cannot depend omz;—a fact which can be established by
analysing the 3 component of E¢). For a high Reynold’s
number flow, the stress tensor dominates, and we can drop

the pressure term to write

U,

2
—_— +v5. 11
X3 vo (1)

=(vwa)+ 2o
At this stage, following typical dimensional analysis, we pro-
ceed to establish the law of the wall. What the dimensional
argument cannot obtain is the universal amplitude in the law
of the wall. Our contribution is to actually calculate,vs)
from the model of De Dominicis and Martin, and show that,
for largexs,

(v1v3)=0vj (12)

X
1—A—0}.
X3

It should be noted that the above equation is valid only so
long asx; lies within the boundary layer, which means that
there is an upper limit as well as a lower limit to the value of
X5 for which Eq.(12) is valid. The important question for us
is how to accomplish the calculation ¢§,v3). The fluctu-

ating velocityv; satisfies(with V-v=0)

i)i+ Uji)vi=—££+vvzvi+<v-iv->
(?XJ' p X J(?Xj :
J J
_Ujﬁ_vai_vj(?—XjUi. (13)

The last three terms on the right hand side make the cal-
culation virtually impossible. To make analytic work pos-
sible under such circumstances, the randomly stirred model
for fluctuating hydrodynamics was considered by De Do-
minicis and Martin 9] based on the work of Forster, Nelson,
and Stephen8]. In this model, the last three terms on the
right hand side in Eq(13) are replaced by a stochastic force
f;, whose correlation is specified in a manner such that the
Kolmogorov spectruni5] is obtained. For the homogeneous
isotropic situation, we discuss the model in Sec. Ill.

Ill. DE DOMINICIS —MARTIN MODEL

The model for calculating correlation functions in a ho-
mogeneous isotropic situation is then given by

1 0P )
vi=— = —+ ¥V + 1,
p 9%

. J
Ui+ UJ(9_XJ (14)

To transfer the above equation into momentum space, we
introduce the Fourier transforms, following notations as in
Ref.[15],

v(Kw)=Lty 1. v(X,t)elkx—oDgPy
T

(15

Vl/2 Tl/2 v
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and

f(Ro) =Lty 1 — [ f(xpeiti-ongoxgt
OITENT e i T [y o ’
(16)
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where Sy is the surface area of a spherendimensions.
From Egs.(21) and(23), we conclude that

C062/3

dw
f Z(v(k,w)v(—k,—w»:W, (24

whereV andT are the total volumes and times, respectively.where C, is a dimensionless constant. The dimensional

Now, in momentum space, the equation reads

i)i(k)+szvi(k):Mijlvj(p)vl(k_p)+fly (17)
where
i
Miji (k)= 2VTZ_I_l,z[kjF’n(k)JF|<|F’ij(k)], (18)
with the projection operatdP defined as
kik;

The correlation of the random force is specified as

(fi(ky, 01)f;(Kg,w2))=2Dqf (k) Pjj (k1) 8°(Ky +Ky)
X 5((1)1+ (1)2), (20)

whereD is the dimensionality of space, arfi¢k,) is a func-

tion which we need to specify to obtain agreement with the

Kolmogorov spectrum.

Kolmogorov argued on the basis of dimensional analysis

analysis that led to Eq21), also allows us to obtain the form
of the characteristic frequency scale of the fluctuations. If
I'(k) is the relaxation rate, then dimensional analysis shows

I'(k)=T e"%?? (25)

in the inertial region, withI'y a dimensionless constant.
Turning now to Eq(17), the relaxation rate in the absence of
the nonlinear term is easily seen to bgk)=vk?. In the
presence of the nonlinear term(Kk) is changed to th&'(k)
term of Eq.(25) which implies that the constant molecular
viscosity v is changed to an effective viscosity{(k) which
can be written asve1(K) =T o€k *? in order to obtain
agreement with Eq(25). The role of the nonlinear term
3 Mijvi(p)vk(K—p) is to “dress” the nonlinear viscosity
v to the scale dependent viscosity;:(k) appropriate to the
inertial range. An effective linearization of E@17) then
yields

vi(K,) + ver(K) K20 (K) =1 . (26)

The correlation function is easily seen to be

1

vilk,w)vi(k",w'))=
(witk @)y % —iw+verk? —iw' + verk'?

that in the inertial range, i.e., for length scales intermediate

between the system size and the molecular size, the energy

spectrumE(k) is proportional tok >3 If € is the rate at

which energy is supplied to the system, Kolmogorov’s pre-

diction was that
E(k)=Eoe?% " (21)

whereE, is a dimensionless constant . Hfis the total energy
per unit mass of the system, then

1
J E(k)dk=E=5(v(1))

dPrdtv?(r,t)

VT
1 d°k dw

ZEJ 5 2m kO (—k o)),

(22
This identifies
SD d(l) _
E(k)=§(2w)DfZ(v(k,w)v(—k,—w))k'3 L

(23

X(fi(k, o) fj(k",0"))
:2D0Pij(k)f(k)%
0+ viik
X P(K+K)S(w+w'). (27)
The integral of Eq(24) is then given by
Dof(k)  Dof(k)

Ve”(k)kz - Foel/skz/s’
(28)

do B
| vk k= 0) -

and, comparing with Eq.20), we find

f(k)=foek P. (29
This specifies the form of the correlation of the random force
in Eq. (17) that would lead to the Kolmogorov spectrum.

Summarizing the above discussion on the randomly
stirred model, we can say that the Kolmogorov consistent
model is seen to be

vi(K)+ vk?v;(K)= > Myjvj(p)o(k—p)+f;, (30

with
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’ ’ ZFOG DL/ ’
(fitk, ) f(K", )>=k—DPij(k)5 (ktk')d(o+ o), ka~ﬁ- (37)
(31
) ] o ) o The aboveky is the wave number above which viscous
and an equivalent linearization of the equation of motion is gissipation becomes dominant. For wave numbers well be-
. low kp (true in the inertial range 2 (k,w) will dominate
0i(K) + verk2vi(K) =1, . 32 2
The first contributior® (?)(k,w) to 3 (k,w) is obtained at

Analysis of the above model in the Kolmogorov range LN
the one-loop level, and is given by

leads to the universal result

D ’
I3 3 Cp D-1 , ®p do i
Fo 4 2mpDt2 2Ok, w)= 2 My (G (k—p,o— o'
Fo 4 2m)P D+2’ (33 ( (2m)P o ijl (KNG (kK=p )
(0) '
whereCp, is a constant again. In Sec. IV, we discuss various XCi(p, @ )Mimn(K). (38)

features of the randomly stirred model, and explain how the t thi int t this t if istent tion b
effective viscosity is obtained on the basis of a calculatiorfo‘ k'ls pt%'.n we con\{[gr nis Iola Si CO”T'S enTeq(;latlﬁ_n y
starting from Eq(17). These considerations are then used inmaking this an equation INvo ving (k, ) alone. To do this

() _ 0)
Sec. V to extend the model to the situation where there i§/€ replace“(k,») by the full self energyz(libc;;), G
anisotropy due to the presence of the plate. y the dressed Green's functidd(k,) and C'*/ by the
dressed correlation functio@i(k,w). This leads to

IV. SELF-CONSISTENT CALCULATION

d°p de’ ... . . .
In this section, we undertake a self-consis{dr, 16 cal- 2(kw)= (2m)P 5. D(kpk=p)Gk—p,0—w’)
culation starting from Eq(17) to see how av.;; emerges
automatically. We carry out diagrammatic perturbation ex- XC(p,w'), (39

pansions and apply self-consistency at one-loop level to ob-
tain the nonlinear term induced relaxation rét6,17. The  whereb(k,p,k—p) is a factor which depends only on the
quantity of interest is the Green’s functi@; (k, »), which angle betweeik andﬁ. G on the right hand side is given by

is defined as
-1 _
Gij(k,w)=P;;G(k,®) G (ko) =-iot+I(ko), (40)
< ot (K, w) > / 5 and the correlation function by
=\ 6 (kk)d(w,0").
é’Uj(k’,(x),) | |2
(34) Ck,w)= k_D, (42

I V\fe drop_ the(or;onlinear terr_mzeroth ordey, t_hen the which ensures thak (k,w) is self-consistently determined
Green’s functionG'”/(k,w) is easily seen to be given by from Eq.(39). We now ask whethe¥, (k,0)=k?? is indeed a

G(O)(k w)=(—ia)+ sz)_l. (35) solution of Eq(42) We write
The relation between the full Green’s function and the bare o d°p deo ... .
function GO(k, ) is given by Dyson’s equation 2(k)= (2m)P 57 0(k.p.k=p)
G =G, +3(kw)=—iw+rvk?+3(k,w), (36) 1 1 1 w
X— — .
where we have on purpose changed the sign in fro&i(&j. PP iw+3(k—p,w) w’+32(p)

In the above form2 (k,w) is clearly the correction to the

relaxation ratevk?. If 3 (k,0) dominatesyk?, then the bare Dimensional analysis of Eq39) shows that

relaxation rate can be dropped, aBdk) is the relaxation

rate, with the Green's function given bG '=-iw [2(k) ]~k (43
+ 2 (k,w). For the Kolmogorov case, discussed in Sec. lIll, =~ . )

we expect (k,0)=T %2, and this will dominaterk? as which is in accordance with Kolmogorov scaling.

long as we consider wave numbdrsmaller than a critical The power-counting consistency of E@2) satisfies the
ko, given by K(_)Imogorov spectrum, put does not automatically imply that
this is the correct solution. We need to check whether the

Ykp?P~ k3, integral in Eq.(42) is finite or not. A potential problem of

Eq. (42) is in the region ofp=0. In this region of momen-
or tum space, if we perform, frequency integration, the domi-
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nant contribution to the integral will be from the small-

part, where we may replade+ 3 (k—p, o) by 3(k), and Ar =2 A(Kzekr, (47)
then
k2 (dPp 1 wherek andr are two-dimensional vectors in they plane.
32(k)= f — b(k,0Kk). (49 The first ob on th g e is g
(2m)PJ pP 2(p) e first observation that one needs to make is thgisfthe

noise in the equation of motion fok, then in the homoge-
The integral has to be cutoff at a lower linkig for any = (p) neous isotropic situation the correlation @fwould have to

in order that it is finite, and we have be prescribed as
2 (k)ock. (45
’ ’ 2FO€ D ’ ’
This dynamics is different from the Kolmogorov dynam-  (Gi(K,@)g;(K",0"))= KD 2 6ij0"(ktk")o(w+ '),
ics. It represents a sweeping process—a process where two (48)

eddies of very different scales interact, this interaction being

simply a carrying of the smaller eddy by the larger one. The

frequency scale associated with this process is sirkptpe ~ with D=3 in the D-dimensional space.

time is proportional to the size of the ed@aylor’'s hypoth- The boundary imposed a=0 will cause anisotropy in
esig]. The Kolmogorov process, on the other hand, is conthe correlation ofy; andg;. We also note thag; (K, ) will
cerned with interaction between neighboring eddies—thg e to pe replaced bgi(lz,z,w), wherek is now a two-

process that causes the energy to cascade from larger scajfgensional vector, and we keep the coordinate space de-
to shorter scales, and that gives a frequency scale PrOPOLeription in thez variable. We thus write

tional to k. In the problem of fluid flow over the infinite
plate, one essentially has to consider eddies of all sizes in the
two-dimensional plane, and hence the dynamics in the plane (9i(k,z1,0)0i(—k, 2, — ))
will be of the sweeping variety and should be governed by
the frequency scale proportional g i.e., a characteristic

2F06
G(z12)[ 6ij + 6i16j3+ 6i26)3]

frequency[16,17] of ves(K)k? With vesr=vok 2. T
We end this section with the observation that the cross
correlation(v(X)vs(x)) that we are interested in vanishes _ 2Fqe
in the homogeneous isotropic situation, since K [8ij+ bi1djs+ i2djsl, (49)
- - dPk
(v1(X)v3(x))= (2m)P (v1(K)vs(—k)) whereG(z;,) = const is the correct coordinate space descrip-

Tr tion for obtaining the Kolmogorov spectrum. To write the
d°k  Kkiks [ dw equation of motion fol, we use the equivalent linearization

:_fm?f ZC(k,w), (46)  of Eq.(26), and write

and the last integral will vanish on angular integration. This A 92
is a consequence of the translational invariance that allows WJF Verf| K2— - Ai=0i, (50)
us to define the Fourier transform in all directions. In the 9z

presence of the plate, the translational invariance is broken in

the z direction and the above stress tensor is no longer zerQ . .« the correlation ofj; is prescribed in Eq(49), and
I 1

vers= 1ok L, as explained in the Sec. IV. The above equa-
V. RANDOMLY STIRRED MODEL IN THE PRESENCE tions are guaranteed to lead to the correct Kolmogorov de-
OF A BOUNDARY scription for the homogeneous isotropic situationOr- 3.

To set up a model corresponding to E) for the situ- ~ Our model is specified by Eqé50) and(49), and in Sec. VI
ation where the flow is above a plate set on #ke0 plane, will 9be ﬁused to calculate the correlation function
we note that we cannot work with the Fourier transform in{v1(X)vs(x)).
the full three-dimensional space. Consequently the incom-
pressibility condition would be difficult to implement. To
circumvent this problem, we satisfy the incompressibility VI CORRELATION FUNCTION AND UNIVERSAL

condition at the very outset by setting= V X A, and look for AMPLITUDE

the equation of motion of the vectdr. We will work with Our task in this section is to calculate the correlation func-
the Fourier transform in the two-dimensional space, and extion (v,(x)vs(x)) on the basis of our model specified by
pandA,(r,t) as Egs.(50) and (49). Usingv; = €jjx (9/9x;) A, we have
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(a7 00700 [ 2 o 2o —kiz, o)

(2 )2 2

_J‘ d’k dw
) em?2m

J
- EAZ(k,Z,w))[_iKlAz(_k,Z,_(U)

< ( ik2A3(k,Z,ﬂ))

+iko,A(—k,z,— w)]>

f a2k do
Y
(2m)2 2™ 2

XA(—k,z,— w)),

(Az(kz,zw)

(51)

since all the other correlations vanish due to the angular in-

tegrations. We can formally write the solution of E§0) as

G.(k,*w,z,2")

Vett

Ai(k,z,iw)zf F(z')dzZ,

and with this Eq.(51) becomes

d’k do )
(27 2—k2G+(k,z,zl,w)G,

><(—k,Z,Zz,—w)<F3(k,Zl,w)F1
w))dz,dz,

<vl(th)U3(F1t)>: - J

X(—k,zy,—

- Jf d%k dow k3
= — € —_—
0 (2m)2 27 K4

j J +(z, 21)G (z, Zz) dz,dz,.

eff

(52

The Green'’s functiorG. are obtained from the solution of

&2
(——k2+|(2 =8(z—2") (53
Ky
W|th Q: w/veff .
Defining k%, =k?=*i, and working with boundary con-

ditions appropriate to a single platee., G vanishes on the
plate and at infinity, we find[18]

sin(k.z_)e "%

K+

G.(z,2')=

(54

Carrying outz; andz, integrations in Eq(52), we obtain

PHYSICAL REVIEW E 63 016306

(27)2 2T K* k2 k2 Vi

X(1—e +%)(1—e <),

(vva)= _2F0€J’

(59

For large z, the stress tensor tends to the constant value
—v3, which is given by

c f d’k dwcossd 1 1
= € —_—
PoTTOC) amz2m 2

e
. j d’k dw cog 1 56)
=Fge| —5=-—"7""—.
) (2m22m verr Kk
In  the sweeping time dominated situationvgs

=T e 'k, 3, and the above integral needs to be cutoff
at a lower limitk,, leading to

2/3
2 FO €

UO—E @ (57)

It is this vy which sets the scale for the velocity at the
boundary layer. We now need to specify the range ofzhe
space in which we are interested. As already discussed, the
law of the wall in Eqg.(1) holds somewhat away from the
boundary. The relevant length scale kgl= v(ko)/vg
=4I 3% YFY2. Our interest is in the value af for
whiczh kpz>1, and from Eq(55) we find that the correction
tovgis

__ 24 5kp 1 -
(v1v3)=—vg _gk_z, (58
where z, =kpz (note that, for smallk,, e Ko*~1). The

quantityFO/FS is a universal number known from the study
of homogeneous isotropic turbulence, and given by(B0),
which, for D=3, yields

Iy 342 3 5
Fo 4875 2072 9
Using this universal value, we have
_ 2 1 5 /571 60
(v1v3)=—vg 6 \V/ 3z | (60)

Returning to Eq(9), noting thatx; there is ourzin the above
discussion, we obtain

—6\/ > 0.52
K—g a—. .

The experimental values af cluster around 0.42.

The experimental data on the flow near a wall have accu-
mulated since the time of Prandtl, and a comparatively recent
computation was shown in a scaling plot by WHifed]. In
summary, we have extended the randomly stirred model of
De Dominicis and Peliti to an anisotropic situation, to set up
a scheme for calculating an universal amplitude appearing in

(61)
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a shear flow. The calculation is in the spirit of the Kolmog- ACKNOWLEDGMENTS
orov theory[20,21], and corrections to Kolmogorov scaling
[22] which form the main thrust in homogeneous isotropic  One of the authoréA.K.C.) sincerely acknowledges par-

turbulence are absent. tial financial support from C.S.I.R., India.
[1] L. Prandtl, Z. Angew. Math. Meclb, 136 (1925. 3, 879(199).
[2] L. Prandtl, Ergetn. Aerodyn. Versuchsadstl8 (1932. [13] E. Medina, T. Hwa, M. Kardar, and Y.C. Zhang, Phys. Rev. A
[3] T. von Karman,Proceedings of the Third International Con- 39, 3053(1989.
gress on Applied Mechanics, Stockholm, 19@@published [14] A.Kr. Chattopadhyay and J.K. Bhattacharjee, Europhys. Lett.
[4] P. BradshawTurbulence Topics in Applied Physics Vol. 12 42, 119(1998.
(Springer-Verlag, New York, 1976 [15] H.W. Wyld, Ann. Phys(N.Y.) 14, 143(1961).
[5] A.N. Kolmogorov, Dokl. Acad. Nauk SSSBO, 301 (1941). [16] C.Y. Mou and P. Weichman, Phys. Rev. L&, 1101(1993.
[6] J. O. Hinze Turbulence(McGraw-Hill, New York, 1959. [17] R.H. Kraichnan, J. Fluid Mecl, 497 (1959; 62, 305(1974.

[7] H. Tennekes and J. L. Lumley First Course In Turbulance [18] J.K. Bhattacharjee, Phys. Rev. Lett, 1524(1996.

(MIT Press, Cambridge, MA 1972 [19] F. M. White, Viscous Fluid Flow(McGraw-Hill, New York,
[8] D. Forster, D. Nelson, and M. Stephen, Phys. Re\l.6A732 1991)

1976. .
[g]E; Dae Dominicis and P.C. Martin, Phys. Rev. 26, 419 [20] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov
(1'979 o ' ' T (Cambridge University Press, Cambridge, 1995
[10] V. Yakhot and S.A. Orszag, Phys. Rev. Lett.1 (1986. [21] V. NIkOI’é:t, Phys. Rev. Leti83, 734(1999. i .
[11] D. Ronis, Phys. Rev. /86, 3322(1987 [22] V.1. Belnicher, V.S. L'vov, and I. Procaccia, Physica254,
[12] J.K. Bhattacharjee, J. Phys.2Y, L347 (1994, Phys. Fluids A 215(1998.

016306-7



