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Wall-bounded turbulent shear flow: Analytic result for a universal amplitude
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In the turbulent boundary layer above a flat plate, the velocity profile is known to have the formv
5v0@(1/k)ln z1const#. The distance from the wall in dimensionless units isz and v0 is a uniquely defined
velocity scale. The numberk is universal, and measurements over several decades have shown that it is nearly
0.42. We use a randomly stirred model of turbulence to derive the above law and findk5A108/125p.0.52.
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I. INTRODUCTION

Turbulent flow over a stationary plate has been inve
gated in great detail for well over a century. One of t
important quantities studied is the velocity profile, and
particular a good deal of attention has been paid to the
locity in the boundary layer. The existence of the bound
layer was first postulated by Prandtl@1,2#. Due to the pres-
ence of viscosity, the flow speed has to be zero on the
face of the plate. Within a short distance, the velocity has
rise to its bulk value. This small distance in which the velo
ity experiences a rapid change is called the boundary la
Prandtl observed that in the boundary layer the velocityv
scales with the distancez from the boundary. Adjoining the
boundary is an extremely thin laminar boundary layer, a
which comes a buffer zone and then the turbulent bound
layer. In this regime one has@2,3#

v
V0

5
1

k
@ ln~z/z0!#, ~1!

a result known as the law of the wall, whereV0 is a reference
velocity to be defined below, andk is an universal constan
which so far has only been experimentally measured@4#.

With the coming of Kolmogorov’s theory@5# of homoge-
neous isotropic turbulence, where a simple dimensional
gument yielded remarkable results, dimensional argum
were similarly used in this problem to obtain Eq.~1!. A more
careful analysis@6,7# of the Navier-Stokes equation also su
ported the above result, which is one of the cornerstone
the theory of the turbulent boundary layer. Over the last t
decades, much effort has been spent in providing a m
microscopic justification for Kolmogorov’s scaling in homo
geneous isotropic turbulence, thereby enhancing our un
standing of the energy cascade involved. Analysis of hom
geneous isotropic turbulence has thus become a proble
nonequilibrium statistical physics@8–14#. In this work, we
propose to use techniques from statistical physics to st
the law of the wall and in the process provide calculatio
for the universal constantk.

We begin by explaining the geometry and the traditio
formulation. The flat plate~infinitely large! sits atz50 ~in
thex-y plane!, and the flow~in the steady laminar situation!
occurs in thex direction, due to a parallel moving plate som
distance away. We can view this as a two dimensio
problem—the dynamics occurs only in thex-z plane. Conti-
1063-651X/2000/63~1!/016306~7!/$15.00 63 0163
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nuity ~for an incompressible flow! implies (]u/]x)
1(]w/]z)50. We look for a situation which isx indepen-
dent, and hence]w/]z50. The resulting constant value ofw
is found to be zero sincew50 atz50. In the laminar regime
~low Reynold’s number! the velocityu satisfies,2u50 and
since the only dependence ofu is on z, we have]2u/]z2

50 or a linear profile foru, i.e.,u5u0(z/a), whereu0 anda
are constants. This is the usual Couette flow.

For high Reynold’s number this flow becomes turbule
and the linear profile is restricted to a very small bound
layer. Somewhat away from the plate, the law of the w
shown in Eq.~1! is found. We explain the basis of our ca
cualtion in Sec. II. The De Dominicis–Martin model@9# for
homogeneous, isotropic situation is introduced in Sec.
and a self-consistent calculation is described in Sec. IV.
generalize the model to the anisotropic situation in Sec.
and obtain the constant in Sec. VI.

II. BASIC HYDRODYNAMIC EQUATIONS

In this section, we explain the basis of the calculatio
Our starting point is the Navier-Stokes’ equation for the v
locity field uW ,

]uW

]t
1~uW •¹W !uW 52

¹W P

r
1n¹2uW , ~2!

whereP is the pressure, which for an incompressible fluid
not an independent quantity. Using the incompressibi
condition ¹W •uW , we see that¹2P/r5¹W •@(uW •¹W )uW #, which
locks the pressure to the velocity field. In the flow over
plate that we will consider, the plate will be taken to be
the x-y plane with the mean velocity flowing in thex direc-
tion under a maintained pressure gradient. It suffices to w
with the two-dimensional geometry of thex-z plane, since all
y5const sections should appear identical. As is usual,
will split the velocity field into a mean and a fluctuatin
field, i.e.,

uW 5UW 1vW , ~3!

with vW , the fluctuating part, having zero mean. Substituti
Eq. ~3! into Eq. ~2!, and taking averages,
©2000 The American Physical Society06-1

https://core.ac.uk/display/195354378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


o

e
ty

in

t
y

dr

eg-

o-
nal
law

at,

so
at
of
s

cal-
s-
del
o-

n,
e
e
the
s

o-

we
in

AMIT KR. CHATTOPADHYAY AND JAYANTA K. BHATTACHARJEE PHYSICAL REVIEW E 63 016306
]UW

]t
1~UW •¹W !UW 1^~vW •¹W !vW &52

¹W P

r
1n¹2UW . ~4!

In this section we will usex1 , x2, andx3 as coordinates
instead ofx, y, andz, and the corresponding components
UW andvW will be U1 , U2, andU3 andv1 , v2, andv3, respec-
tively. In the steady state, all average quantities are indep
dent of x1 and x2, and, hence, from the incompressibili
condition (]U1 /]x1)1(]U2 /]x2)1(]U3 /]x3)50, we in-
fer that U3 is independent ofx3 and sinceU350 at x350
~no-slip condition!, it remains zero for allx3. For the 1 com-
ponent of Eq.~4!, we have

U1

]U1

]x1
1U3

]U1

]x3
1 K v1

]v1

]x1
L 1 K v2

]v1

]x2
L 1 K v3

]v1

]x3
L

52
]P

]x1

1

r
1n¹2U1 , ~5!

and from the 3 component of Eq.~4!, we have

]

]x3
S P0

r
1^v3

2& D50, ~6!

where P5P01p. The above equation implies that (P0 /r)
1^v3

2& is independent ofx3. From Eq.~5!, we obtain

2
]P0

]x1

1

r
1n,2U15 K v2

]

]x2
v1L 1 K v1

]

]x1
v1L

1 K v3

]

]x3
v1L 1 K v1

]

]x3
v3L

2 K v1

]

]x3
v3L . ~7!

Now, considering ^v3(]/]x3)v1&1^v1(]/]x3)v1&
5(]/]x3)^v1v3& and ^v1(]/]x3)v3&5^v1(]/]x1)v2&
1^v1(]/]x1)v1&, and using ]U1 /]x15U35(]/]X1)^v1

2&
50, we have

K v3

]

]x3
v1L 52

]P

]x1

1

r
1n

]2U1

]x3
2

. ~8!

Now (]/]x3)^v3v1&5^v3(]v1 /]x3)&1^(]v3 /]x1)v1&
5^v3(]v1 /]x3)&2 1

2 (]/]x1)^v1
2&5^v3(]v1 /]x3)&, where

we have used the equation of continuity for the fluctuat
field, and thus, from Eq.~8!,

n
]U1

]x3
5^v1v3&1

1

r

]P

]x1
1c. ~9!

In writing the above equation we have used the fact thaP
cannot depend onx3—a fact which can be established b
analysing the 3 component of Eq.~5!. For a high Reynold’s
number flow, the stress tensor dominates, and we can
the pressure term to write
01630
f

n-

g

op

n
]U1

]x3
5^v1v3&1c. ~10!

Far away from the wall, where the viscous stress is n
ligible, one can calculate the constantc, giving

n
]U1

]x3
5^v1v3&1

1

r

]P

]x1
1v0

2 . ~11!

At this stage, following typical dimensional analysis, we pr
ceed to establish the law of the wall. What the dimensio
argument cannot obtain is the universal amplitude in the
of the wall. Our contribution is to actually calculate^v1v3&
from the model of De Dominicis and Martin, and show th
for largex3,

^v1v3&.v0
2F12A

x0

x3
G . ~12!

It should be noted that the above equation is valid only
long asx3 lies within the boundary layer, which means th
there is an upper limit as well as a lower limit to the value
x3 for which Eq.~12! is valid. The important question for u
is how to accomplish the calculation of^v1v3&. The fluctu-
ating velocityv i satisfies~with ¹W •vW 50)

v̇ i1S v j

]

]xj
D v i52

1

r

]P

]xi
1n¹2v i1 K v j

]

]xj
v i L

2U j

]

]xj
v i2v j

]

]xj
Ui . ~13!

The last three terms on the right hand side make the
culation virtually impossible. To make analytic work po
sible under such circumstances, the randomly stirred mo
for fluctuating hydrodynamics was considered by De D
minicis and Martin@9# based on the work of Forster, Nelso
and Stephen@8#. In this model, the last three terms on th
right hand side in Eq.~13! are replaced by a stochastic forc
f i , whose correlation is specified in a manner such that
Kolmogorov spectrum@5# is obtained. For the homogeneou
isotropic situation, we discuss the model in Sec. III.

III. DE DOMINICIS –MARTIN MODEL

The model for calculating correlation functions in a h
mogeneous isotropic situation is then given by

v̇ i1S v j

]

]xj
D v i52

1

r

]P

]xi
1n¹2v i1 f i . ~14!

To transfer the above equation into momentum space,
introduce the Fourier transforms, following notations as
Ref. @15#,

v~kW ,v!5LtV,T→`

1

V1/2

1

T1/2EV,T
v~xW ,t !ei (kW•xW2vt)dDxdt,

~15!
6-2
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and

f ~kW ,v!5LtV,T→`

1

V1/2

1

T1/2EV,T
f ~xW ,t !ei (kW•xW2vt)dDxdt,

~16!

whereV andT are the total volumes and times, respective
Now, in momentum space, the equation reads

v̇ i~k!1nk2v i~k!5Mi jl v j~p!v l~k2p!1 f 1 , ~17!

where

Mi jl ~k!5
i

2V1/2T1/2
@kj Pil ~k!1kl Pi j ~k!#, ~18!

with the projection operatorP defined as

Pi j ~k!5d i j 2
kikj

k2
. ~19!

The correlation of the random force is specified as

^ f i~k1 ,v1! f j~k2 ,v2!&52D0f ~k1!Pi j ~k1!dD~kW11kW2!

3d~v11v2!, ~20!

whereD is the dimensionality of space, andf (k1) is a func-
tion which we need to specify to obtain agreement with
Kolmogorov spectrum.

Kolmogorov argued on the basis of dimensional analy
that in the inertial range, i.e., for length scales intermed
between the system size and the molecular size, the en
spectrumE(k) is proportional tok25/3. If e is the rate at
which energy is supplied to the system, Kolmogorov’s p
diction was that

E~k!5E0e2/3k25/3, ~21!

whereE0 is a dimensionless constant. IfE is the total energy
per unit mass of the system, then

E E~k!dk5E5
1

2
^v2~r !&

5
1

2VTE dDrdtv2~r ,t !

5
1

2E dDk

~2p!D

dv

2p
^v~k,v!v~2k,2v!&.

~22!

This identifies

E~k!5
1

2

SD

~2p!DE dv

2p
^v~k,v!v~2k,2v!&kD21,

~23!
01630
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whereSD is the surface area of a sphere inD dimensions.
From Eqs.~21! and ~23!, we conclude that

E dv

2p
^v~k,v!v~2k,2v!&5

C0e2/3

kD12/3
, ~24!

where C0 is a dimensionless constant. The dimensio
analysis that led to Eq.~21!, also allows us to obtain the form
of the characteristic frequency scale of the fluctuations
G(k) is the relaxation rate, then dimensional analysis sho

G~k!5G0e1/3k2/3 ~25!

in the inertial region, withG0 a dimensionless constan
Turning now to Eq.~17!, the relaxation rate in the absence
the nonlinear term is easily seen to bev(k)5nk2. In the
presence of the nonlinear term,v(k) is changed to theG(k)
term of Eq.~25! which implies that the constant molecula
viscosityn is changed to an effective viscosityne f f(k) which
can be written asne f f(k)5G0e1/3k24/3 in order to obtain
agreement with Eq.~25!. The role of the nonlinear term
(pW Mi jkv j (pW )vk(kW2pW ) is to ‘‘dress’’ the nonlinear viscosity
n to the scale dependent viscosityne f f(k) appropriate to the
inertial range. An effective linearization of Eq.~17! then
yields

v̇ i~k,t !1ne f f~k!k2v i~k!5 f i . ~26!

The correlation function is easily seen to be

^v i~k,v!v j~k8,v8!&5
1

2 iv1ne f fk
2

1

2 iv81ne f fk82

3^ f i~k,v! f j~k8,v8!&

52D0Pi j ~k! f ~k!
1

v21ne f f
2 k4

3dD~kW1kW8!d~v1v8!. ~27!

The integral of Eq.~24! is then given by

E dv

2p
^v i~k,v!v i~2k,2v!&5

D0f ~k!

ne f f~k!k2
5

D0f ~k!

G0e1/3k2/3
,

~28!

and, comparing with Eq.~20!, we find

f ~k!5 f 0e k2D. ~29!

This specifies the form of the correlation of the random fo
in Eq. ~17! that would lead to the Kolmogorov spectrum.

Summarizing the above discussion on the random
stirred model, we can say that the Kolmogorov consist
model is seen to be

v̇ i~k!1nk2v i~k!5( Mi jl v j~p!v l~k2p!1 f i , ~30!

with
6-3
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^ f i~k,v! f j~k8,v8!&5
2F0e

kD
Pi j ~k!dD~kW1kW8!d~v1v8!,

~31!

and an equivalent linearization of the equation of motion

v̇ i~k!1ne f fk
2v i~k!5 f i . ~32!

Analysis of the above model in the Kolmogorov ran
leads to the universal result

G0
3

F0
5

3

4

CD

~2p!D

D21

D12
, ~33!

whereCD is a constant again. In Sec. IV, we discuss vario
features of the randomly stirred model, and explain how
effective viscosity is obtained on the basis of a calculat
starting from Eq.~17!. These considerations are then used
Sec. V to extend the model to the situation where there
anisotropy due to the presence of the plate.

IV. SELF-CONSISTENT CALCULATION

In this section, we undertake a self-consistent@12,16# cal-
culation starting from Eq.~17! to see how ane f f emerges
automatically. We carry out diagrammatic perturbation e
pansions and apply self-consistency at one-loop level to
tain the nonlinear term induced relaxation rate@16,17#. The
quantity of interest is the Green’s functionGi j (k,v), which
is defined as

Gi j ~k,v!5Pi j G~k,v!

5K ] f i~k,v!

]v j~k8,v8!
L Y dD~k,k8!d~v,v8!.

~34!

If we drop the nonlinear term~zeroth order!, then the
Green’s functionG(0)(k,v) is easily seen to be given by

G(0)~k,v!5~2 iv1nk2!21. ~35!

The relation between the full Green’s function and the b
function G(0)(k,v) is given by Dyson’s equation

G215G0
211S~k,v!52 iv1nk21S~k,v!, ~36!

where we have on purpose changed the sign in front ofS(k).
In the above form,S(k,v) is clearly the correction to the
relaxation ratenk2. If S(k,0) dominatesnk2, then the bare
relaxation rate can be dropped, andS(k) is the relaxation
rate, with the Green’s function given byG2152 iv
1S(k,v). For the Kolmogorov case, discussed in Sec.
we expectS(k,0)5G0e1/3k2/3, and this will dominatenk2 as
long as we consider wave numbersk smaller than a critical
kD , given by

e1/3kD
2/3;nkD

2 ,

or
01630
s
e
n
n
is

-
b-

e

,

kD;
e1/4

n3/4
. ~37!

The abovekD is the wave number above which viscou
dissipation becomes dominant. For wave numbers well
low kD ~true in the inertial range!, S(k,v) will dominate
nk2.

The first contributionS (2)(k,v) to S(k,v) is obtained at
the one-loop level, and is given by

S (2)~k,v!5E dDp

~2p!D

dv8

2p
Mi jl ~k!Glm

(0)~k2p,v2v8!

3Cj
(0)~p,v8!Mimn~k!. ~38!

At this point we convert this to a self consistent equation
making this an equation involvingS(k,v) alone. To do this
we replaceS (2)(k,v) by the full self-energyS(k,v), G(0)

by the dressed Green’s functionG(k,v) and C(0) by the
dressed correlation functionC(k,v). This leads to

S~k,v!5
dDp

~2p!D

dv8

2p
b~kW ,pW ,kW2pW !G~kW2pW ,v2v8!

3C~p,v8!, ~39!

whereb(kW ,pW ,kW2pW ) is a factor which depends only on th
angle betweenkW andpW . G on the right hand side is given b

G21~k,v!52 iv1S~k,v!, ~40!

and the correlation function by

C~k,v!5
uGu2

kD
, ~41!

which ensures thatS(k,v) is self-consistently determine
from Eq.~39!. We now ask whetherS(k,0)}k2/3 is indeed a
solution of Eq.~42!. We write

S~k!5k2E dDp

~2p!D

dv

2p
b~kW ,pW ,kW2pW !

3
1

pD

1

iv1S~kW2pW ,v!

1

v21S2~p!
. ~42!

Dimensional analysis of Eq.~39! shows that

@S~k!#3;k2, ~43!

which is in accordance with Kolmogorov scaling.
The power-counting consistency of Eq.~42! satisfies the

Kolmogorov spectrum, but does not automatically imply th
this is the correct solution. We need to check whether
integral in Eq.~42! is finite or not. A potential problem of
Eq. ~42! is in the region ofp.0. In this region of momen-
tum space, if we perform, frequency integration, the dom
6-4
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nant contribution to the integral will be from the small-v
part, where we may replaceiv1S(k2p,v) by S(k), and
then

S2~k!.
k2

~2p!DE dDp

pD

1

S~p!
b~k,0,k!. ~44!

The integral has to be cutoff at a lower limitk0 for anyS(p)
in order that it is finite, and we have

S~k!}k. ~45!

This dynamics is different from the Kolmogorov dynam
ics. It represents a sweeping process—a process where
eddies of very different scales interact, this interaction be
simply a carrying of the smaller eddy by the larger one. T
frequency scale associated with this process is simplyk @the
time is proportional to the size of the eddy~Taylor’s hypoth-
esis!#. The Kolmogorov process, on the other hand, is c
cerned with interaction between neighboring eddies—
process that causes the energy to cascade from larger s
to shorter scales, and that gives a frequency scale pro
tional to k2/3. In the problem of fluid flow over the infinite
plate, one essentially has to consider eddies of all sizes in
two-dimensional plane, and hence the dynamics in the p
will be of the sweeping variety and should be governed
the frequency scale proportional tok, i.e., a characteristic
frequency@16,17# of ne f f(k)k2 with ne f f5n0k21.

We end this section with the observation that the cr
correlation^v1(xW )v3(xW )& that we are interested in vanishe
in the homogeneous isotropic situation, since

^v1~xW !v3~xW !&5E dDk

~2p!D
^v1~k!v3~2k!&

52E dDk

~2p!D

k1k3

k2 E dv

2p
C~k,v!, ~46!

and the last integral will vanish on angular integration. T
is a consequence of the translational invariance that all
us to define the Fourier transform in all directions. In t
presence of the plate, the translational invariance is broke
the z direction and the above stress tensor is no longer z

V. RANDOMLY STIRRED MODEL IN THE PRESENCE
OF A BOUNDARY

To set up a model corresponding to Eq.~21! for the situ-
ation where the flow is above a plate set on thez50 plane,
we note that we cannot work with the Fourier transform
the full three-dimensional space. Consequently the inco
pressibility condition would be difficult to implement. T
circumvent this problem, we satisfy the incompressibil
condition at the very outset by settingvW 5¹W 3AW , and look for
the equation of motion of the vectorAW . We will work with
the Fourier transform in the two-dimensional space, and
pandAi(rW,t) as
01630
wo
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e
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x-

Ai~rW,t !5( Ai~kW ,z,t !eikW•rW, ~47!

wherekW andrW are two-dimensional vectors in thex-y plane.
The first observation that one needs to make is that ifgW is the
noise in the equation of motion forAW , then in the homoge-
neous isotropic situation the correlation ofgW would have to
be prescribed as

^gi~k,v!gj~k8,v8!&5
2F0e

kD12
d i j d

D~k1k8!d~v1v8!,

~48!

with D53 in theD-dimensional space.
The boundary imposed atz50 will cause anisotropy in

the correlation ofgi andgj . We also note thatgi(kW ,v) will
have to be replaced bygi(kW ,z,v), wherekW is now a two-
dimensional vector, and we keep the coordinate space
scription in thez variable. We thus write

^gi~k,z1 ,v!gj~2k,z2 ,2v!&

5
2F0e

k4
G~z12!@d i j 1d i1d j 31d i2d j 3#

5
2F0e

k4
@d i j 1d i1d j 31d i2d j 3#, ~49!

whereG(z12)5const is the correct coordinate space desc
tion for obtaining the Kolmogorov spectrum. To write th
equation of motion forAW , we use the equivalent linearizatio
of Eq. ~26!, and write

]Ai

]t
1ne f fFk22

]2

]z2GAi5gi , ~50!

where the correlation ofgi is prescribed in Eq.~49!, and
ne f f5 ñ0k21, as explained in the Sec. IV. The above equ
tions are guaranteed to lead to the correct Kolmogorov
scription for the homogeneous isotropic situation inD53.
Our model is specified by Eqs.~50! and~49!, and in Sec. VI
will be used to calculate the correlation functio

^v1(xW )v3(xW )&.

VI. CORRELATION FUNCTION AND UNIVERSAL
AMPLITUDE

Our task in this section is to calculate the correlation fun
tion ^v1(xW )v3(xW )& on the basis of our model specified b
Eqs.~50! and ~49!. Usingv i5e i jk(]/]xj )Ak , we have
6-5
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^v1~rW,t !v3~rW,t !&5E d2k

~2p!2

dv

2p
^v1~k,z,v!v3~2k,z,2v!&

5E d2k

~2p!2

dv

2p K S ik2A3~k,z,v!

2
]

]z
Az~k,z,v! D @2 iK 1A2~2k,z,2v!

1 ik2A1~2k,z,2v!#L
5E d2k

~2p!2

dv

2p
k2

2^A3~kz,zv!

3A1~2k,z,2v!&, ~51!

since all the other correlations vanish due to the angular
tegrations. We can formally write the solution of Eq.~50! as

Ai~k,z,6v!5E G6~k,6v,z,z8!

ne f f
F~z8!dz8,

and with this Eq.~51! becomes

^v1~rW,t !v3~rW,t !&52E d2k

~2p!2

dv

2p
k2

2G1~k,z,z1 ,v!G2

3~2k,z,z2 ,2v!^F3~k,z1 ,v!F1

3~2k,z2 ,2v!&dz1dz2

522F0eE E d2k

~2p!2

dv

2p

k2
2

k4

3E E G1~z,z1!G2~z,z2!

ne f f
2

dz1dz2 .

~52!

The Green’s functionG6 are obtained from the solution o

S ]2

]z2
2k27 iV D G65d~z2z8! ~53!

with V5v/ne f f .
Defining k2

65k26 iV, and working with boundary con
ditions appropriate to a single plate~i.e., G vanishes on the
plate and at infinity!, we find @18#

G6~z,z8!5
sinh~k6z,!e2k6z.

k6
. ~54!

Carrying outz1 andz2 integrations in Eq.~52!, we obtain
01630
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^v1v3&522F0eE d2k

~2p!2

dv

2p

k2
2

k4

1

k1
2 k2

2

1

ne f f
2

3~12e2k1z!~12e2k2z!. ~55!

For large z, the stress tensor tends to the constant va
2v0

2, which is given by

v0
25F0eE d2k

~2p!2

dv

2p

cos2u

k2

1

ne f f
2

1

k1
2 k2

2

5F0eE d2k

~2p!2

dv

2p

cos2u

ne f f

1

k4
. ~56!

In the sweeping time dominated situationne f f
5G0e1/3k21k0

21/3, and the above integral needs to be cut
at a lower limitk0, leading to

v0
25

F0

4p

e2/3

k0
2/3

. ~57!

It is this v0 which sets the scale for the velocity at th
boundary layer. We now need to specify the range of thz
space in which we are interested. As already discussed
law of the wall in Eq.~1! holds somewhat away from th
boundary. The relevant length scale iskD

215n(k0)/v0

5A4pG0
3/2k0

21/F0
1/2. Our interest is in the value ofz for

which kDz.1, and from Eq.~55! we find that the correction
to v0

2 is

^v1v3&52v0
2F12

5

6

kD

k0

1

z1
G , ~58!

where z15kDz ~note that, for smallk0 , e2K0z;1). The
quantityF0 /G0

3 is a universal number known from the stud
of homogeneous isotropic turbulence, and given by Eq.~30!,
which, for D53, yields

G0
3

F0
5

3

4

4p

8p3

2

5
5

3

20p2
. ~59!

Using this universal value, we have

^v1v3&52v0
2F12

5

6
A5p

3

1

z1
G . ~60!

Returning to Eq.~9!, noting thatx3 there is ourz in the above
discussion, we obtain

k5
6

5
A 3

5p
.0.52. ~61!

The experimental values ofk cluster around 0.42.
The experimental data on the flow near a wall have ac

mulated since the time of Prandtl, and a comparatively rec
computation was shown in a scaling plot by White@19#. In
summary, we have extended the randomly stirred mode
De Dominicis and Peliti to an anisotropic situation, to set
a scheme for calculating an universal amplitude appearin
6-6
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a shear flow. The calculation is in the spirit of the Kolmo
orov theory@20,21#, and corrections to Kolmogorov scalin
@22# which form the main thrust in homogeneous isotrop
turbulence are absent.
-
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