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Abstract 

Objectives To investigate the effect of experimental diabetes and metabolic control on 

intramembranous bone healing following guided bone regeneration (GBR). 

Material and methods Ninety-Three Wistar rats were allocated to three experimental groups, 

healthy (H), uncontrolled diabetes (D) and controlled diabetes (CD). 21 days following diabetes 

induction, a standardised 5-mm defect was created at the mid portion of each parietal bone. In 75 

animals (25H, 25D, 25CD), one defect was treated with an intracranial and extracranial membrane 

according to the GBR principle, and one defect was left empty (control); five animals per group 

were then randomly sacrificed at 3, 7, 15, 30 and 60 days and processed for decalcified histology. 

In 18 animals (6H, 6D, 6CD), both defects were treated according to the GBR principle; three 

animals from each group were then randomly sacrificed at 7 and 15 days of healing and employed 

for gene expression analysis. 

Results Application of the GBR therapeutic principle led to significant bone regeneration even 

in the D group. However, at 15 and 30 days, the osteogenesis process was impaired by 

uncontrolled diabetes, as shown by the significant reduction in terms of defect closure (38%-

42%) and newly formed bone (54%-61%) compared to the healthy group. The comparison of 

the D versus H group at 15 days of healing yielded the largest number of genes with 

significantly differential expression, amongst which various genes associated with the 

ossification process (bmp4, ltbp4, thra and cd276) were identified. 

Conclusions Uncontrolled diabetes seems to affect early phases of the bone regeneration 

following GBR. A misregulation of genes and pathways related to cell division, energy 

production, inflammation and osteogenesis may account for the impaired regeneration process 

in D rats. Further studies are warranted to optimise the GBR process in this medically 

compromised patient population. 
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Introduction 

Diabetes mellitus is defined as a “group of metabolic diseases characterised by hyperglycaemia 

resulting from defects in insulin secretion, insulin action, or both” (American Diabetes 

2014)and it is the most common chronic metabolic disease, affecting 8.5% of adults over 18 

years of age (Global report on diabetes. World health organization  2016). The number of 

people with diabetes has risen from 108 million in 1980 to 422 million in 2014 (Global report 

on diabetes. World health organization  2016) and it has been estimated that between 2010 and 

2030, there will be a 69% increase in the number of adults with diabetes in developing countries 

and a 20% increase in developed countries (Shaw, et al. 2010).  The vast majority of diabetic 

cases falls in one of the following categories: a) Type 1 Diabetes Mellitus (T1DM), a condition 

characterised by absolute deficiency of insulin secretion, resulting from autoimmune 

destruction of the insulin producing beta cells of the pancreas; b) Type 2 Diabetes Mellitus 

(T2DM), a condition characterised by impaired insulin function, i.e. resistance to insulin 

action, combined with inadequate compensatory insulin secretion response (American 

Diabetes 2014). 

T1DM is the result of a complex interaction between genes and environmental factors. The 

genetic component in T1DM aetiology is predominantly associated with high risk and/or 

protective HLA haplotypes, residing on the DR and DQ genotypes (Pociot & Lernmark 2016). 

Diabetes mellitus has been associated with the occurrence of a series of complications 

involving the skeletal system, collectively referred to as “diabetic bone disease” or “diabetic 

osteopathy” (Bouillon 1991). The diabetic skeletal phenotype presents the following features: 

i) diminished linear bone growth during the pubertal growth spurt in adolescents with diabetes 

(Bizzarri, et al. 2014, Salerno, et al. 1997); ii) reduction of bone mineral density and increased 

risk for occurrence of osteopenia and osteoporosis (Vestergaard 2007); iii) increased fracture 

risk (Janghorbani, et al. 2007); iv) poor osseous healing characteristics and impaired bone 

regeneration potential (Choi, et al. 2014, Cozen 1972, Liuni, et al. 2015). 

A meta-analysis by Vestergaard et al (Vestergaard 2007) has shown that, although the relative 

risk for hip fracture is moderately increased in T2DM patients (1.38, 95% CI: 1.25–1.53), the bone 

mineral density in the hip and the spine is increased. On the contrary, T1DM is clearly associated 

with a significantly increased fracture risk (RR=6.94, 95% CI: 3.25–14.78) and a decreased bone 

density. Since hyperinsulinaemia is associated with increased bone mineral density, it has been 

hypothesised that the observed clinical dichotomy may be accounted for by the discrepancy in 

systemic insulin concentration between T1DM and T2DM populations, i.e. insulinopenia vs 

hyperinsulinaemia respectively (Thrailkill, et al. 2005). Hence, the T1DM skeletal phenotype may 
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represent a more straightforward system, in order to understand the effect of suppressed insulin 

signalling and hyperglycaemia on the regulation of bone mass and on the osseous healing process 

(McCabe 2007).  

Suppressed differentiation, proliferation and bone forming capacity of osteoblastic cells during 

the critical early healing period have been implicated as plausible pathogenetic mechanisms 

underlying poor bone formation in T1DM (Jiao, et al. 2015, Kalaitzoglou, et al. 2016). The 

hyperglycaemic wound healing milieu and the accumulation of advanced glycation end-products 

(AGEs) have been directly implicated in the impaired ossification potential of diabetic bone 

(Kume, et al. 2005, McCarthy, et al. 2001, Santana, et al. 2003). Although it has been documented 

that abnormal bone repair in experimental diabetes is insulin dependent, because the deficient 

osseous healing process is reversed by insulin treatment (Goodman & Hori 1984, Hou, et al. 1993, 

Suzuki, et al. 2003), it is at present unclear whether this effect is primarily due to the insulin 

deficiency or to the hyperglycaemia characterising the diabetic status (Thrailkill, et al. 2005). 

Guided Bone Regeneration (GBR) was introduced as a therapeutic modality aiming to achieve 

bone regeneration, via the use of barrier membranes in 1988 (for review see (Retzepi & Donos 

2010)). The GBR concept is based on the Guided Tissue Regeneration principle, according to 

which the regeneration of a certain type of tissue is achieved when cells with the capacity to 

regenerate the particular type of lost tissue are allowed to selectively repopulate the defect during 

healing (Gottlow, et al. 1984, Nyman, et al. 1982). The GBR therapeutic protocol involves the 

surgical placement of a rigid, cell occlusive membrane facing the bone surface, in order to 

physically seal off the skeletal site in need for regeneration (Dahlin, et al. 1990, Dahlin, et al. 

1988, Retzepi & Donos 2010). The membrane creates and maintains a secluded space, thus 

providing an environment that is permissive for the proliferation, differentiation and expression 

of osteoprogenitor cells. GBR, in association or not with different bone grafts, has been 

successfully applied for the treatment of critical size defects (CSDs) (Al-Kattan, et al. 2016, 

Calciolari, et al. 2016, Donos, et al. 2011a, Donos, et al. 2004), for the regeneration of peri-implant 

defects (Donos, et al. 2008), for socket preservation (Cardaropoli, et al. 2012, Mardas, et al. 2010) 

and de novo bone formation (neo-osteogenesis) (Hammerle, et al. 1996, Lundgren, et al. 1995, 

Mardas, et al. 2003), in healthy and medically compromised conditions (Donos, et al. 2015). The 

calvarial CSD has been widely used in bone regeneration research since it is easy to reproduce 

and standardize, and the presence of the dura mater and overlaying skin provide enhanced support 

and stabilization to biomaterials (Gomes & Fernandes 2011, Vajgel, et al. 2014). It is considered 

a very challenging model since in calvarial CSD the regeneration is supported only by the 
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proliferation and differentiation of osteopogenitor cells coming from the periphery of the defect 

(Mardas, et al. 2008). 

The GBR model has been previously applied to study the effect of uncontrolled and systemically 

insulin-controlled streptozocin-induced diabetes on bone healing in rat calvarial CSDs (Shyng, et 

al. 2001) and on de novo bone formation in the mandible (Retzepi, et al. 2010) and calvaria  of 

rats (Fuegl, et al. 2011, Lee, et al. 2013).  

In the attempt to gain a better understanding of the pathogenic mechanisms of deficient osseous 

healing in T1DM, the aims of this project were to explore the effect of experimental diabetes 

and metabolic control on the histological features characterising the different stages of 

intramembranous bone healing following GBR and to correlate them to genes differentially 

expressed at early stages of bone healing. 

 

Materials and Methods 

Ninety-three male Wistar rats, weighing 250±20 g and approximately 8-10 weeks in age were 

used in this experimental study. In vivo procedures were conducted in accordance with the 

Animals Scientific Procedures Act 1986, UK and under licensure from the Home Office. 

ARRIVE guidelines for reporting in vivo animal experiments were followed. The rats were 

observed in the animal facility for at least one week preoperatively and were kept at a constant 

temperature of 22C. They were maintained with a light cycle of 12 hours (6 am to 6 pm), they 

had ad libitum access to drinking water and to a standard laboratory diet and their body weight 

was weekly monitored.  

Experimental diabetes induction, glycaemic control and characterisation 

The animals were allocated into three experimental groups, as follows (Figure 1): 

Group H: group with healthy (non-diabetic) controls; 

Group D: group with uncontrolled diabetes; 

Group CD: group with controlled diabetes. 

At baseline, diabetes was induced in the animals of the D and CD groups, via a single 

intraperitoneal injection of streptozotocin (STZ) (Sigma-Aldrich, UK) dissolved in citrate buffer 

(0.01 M; pH 4.3) at a dose of 65 mg/kg of body weight (Bolzan & Bianchi 2002). The blood 

glucose levels were monitored enzymatically in tail-nicked samples via the glucose-oxidase 

method (Accu-Check Advantage; Roche Diagnostics, Indianapolis, US) at the following time 

points: prior to diabetes induction, seven days after the injection of streptozotocin (in order to 
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confirm diabetes onset), prior to surgical procedure (21 days after baseline) and at sacrifice. Rats 

with serum glucose concentrations greater than 270mg/dl (15mmol/l) were considered as diabetic. 

Following diabetes confirmation, the animals in the CD group were treated with subcutaneous 

applications of a sustained-release insulin implant using a trocar/stylet (LinplantTM ©Linshin 

Canada INC., Scarborough, Ontario, Canda), which was aseptically placed in the dorsal neck. The 

sustained release insulin implant contains bovine insulin in an erodible palmitic acid matrix (14% 

bovine insulin, 86% palmitic acid; weight 26±2 mg/implant) and provides constant insulin release 

at a rate of 2 IU/day for approximately 30 days (Follak, et al. 2004).  The subcutaneous placement 

of the systemic insulin delivery device was repeated at 30 and 60 days following the initial 

delivery. 

Experimental Guided Bone Regeneration (GBR) model 

21 days following baseline, GBR was performed. General anesthesia of the animals was 

accomplished by means of halothane inhalation (3% during induction; 1.5% during maintenance). 

Following a midline sagittal incision through the skin and the periosteum from the occipital to the 

frontal region of the calvarium, the cranial vertex was exposed. One standardised, bicortical, 

defect was created at the mid portion of each parietal bone, by means of a trephine bur (No KB-

227A.204.050, General Medical, UK). The external diameter of the drilled defect was 5.0 mm, 

which is considered as a Critical Size Defect (CSD) in rats (Vajgel, et al. 2014). The mid-sagittal 

suture was not included in the bone defect, in order to preclude its contribution to the bone healing 

process and to limit the risk of damaging the superior sagittal sinus (Bosch, et al. 1995, Donos, et 

al. 2004). In 75 randomly selected animals (25 per group) the defects were treated as follows: 

• test site, one defect was covered at both the extracranial and intracranial aspect with an 

ePTFE non-resorbale membrane (Gore-Tex regenerative membrane, Gore Medical, Arizona, 

US); 

• control site, the contralateral defect was left untreated. 

In the remaining 18 animals (6 per group) both calvarial defects were treated with intracranial and 

extracranial ePTFE non-resorbale barriers according to the GBR principle. 

The wound was closed in layers using a resorbable suture (Vicryl 5.0, Ethicon, Germany). 

Buprenorphine hydrochloride (Vetergesic, 0.3 mg/mL, Reckitt Benckiser Healthcare, UK) was 

administered subcutaneously at a dose of 0.04 mg/kg, and enrofloxacin (Baytril, Bayer, 

Leverkusen, Germany) was administered subcutaneously at a dose of 2.5 mg/kg and continued 

per os at a dose of 2.5 mg/kg per day for 7 days. 
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Out of the 75 animals treated with a test and control defect, five animals from each experimental 

group (H, D and CD) were randomly sacrificed at 3, 7, 15, 30 and 60 days of healing via CO2 

asphyxiation and processed for histology and histomorphometry evaluations. Out of the 18 rats 

where GBR was applied in both defects, three animals from each experimental group (H, D and 

CD) were randomly sacrificed at 7 and 15 days of healing via CO2 asphyxiation and employed 

for gene expression analysis. 

Histological analysis 

After euthanasia, block biopsies of 75 animals (25 per group) were prepared and the specimens 

were fixed in 10% formol saline, followed by decalcification in 5.5% EDTA for at least 2 weeks. 

Fixed and decalcified samples were dehydrated in a graded series of increasing ethanol 

concentrations up to 100%, transferred to xylene and embedded into paraffin. Serial sections of 5 

μm were obtained perpendicularly to the cranial vertex and in anterior-posterior direction and 

mounted on poly-L-lysine coated slides. The sections were stained with haematoxylin and eosin. 

Histological examination of the specimens was performed using a Leitz DM-RBEs microscope 

(Leica, Heidelberg, Germany) equipped with the Image-Pro Plus v.4.5 Imaging System (Media 

Cybernetics, Wokingham, UK). Digital photomicrographs were obtained using a CoolsnapPRO-

cf digital camera (Media Cybernetics, Marlow, Bucks, UK) connected to the microscope. 

Qualitative assessment of the healing outcome was performed and classified as follows (Bosch, 

et al. 1995, Donos, et al. 2004):  

 no closure; specimens in which the bone defect remained open, with the exception of minor 

new bone apposition at the margins of the defect;  

 partial closure; specimens in which new bone formation had taken place from the margins 

of the bone defect, without establishing a complete bone continuity; 

 complete closure; specimens in which complete osseous continuity was present between the 

margins of the defect. 

Three central sections of the mid-portion of each defect were used for planimetric analysis. The 

following linear measurements were performed using the Image Pro Plus Imaging System: 

 residual defect size; the distance between the margins of the newly formed bone in the 

anterior-posterior dimension excluding any isolated bone spicules present along the 

central axis; 

 initial defect size; the distance delineated by the defect borders in the anterior-posterior 

dimension. 
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The percentage of defect bridging was also calculated as the ratio of the difference between the 

initial and residual defect size to the initial defect size (Bosch, et al. 1995). The mean value of the 

measurements performed in the three central sections was used for statistical analysis. 

All linear measurements were performed by one previously calibrated examiner (MR) at a 

magnification x20. The reproducibility of the measurements was tested by randomly duplicating 

10% of above mentioned measurements following a minimum two-week interval period. Intra-

examiner reproducibility was confirmed via calculation of the intra-class correlation coefficient 

(ICC=0.864, 95%CI 0.779-0.876). 

Morphometric evaluation was performed using the Image Pro Plus Imaging System v4.5 (Media 

Cybernetics, Marlow, Bucks, UK) on one section of the central portion of each specimen, at the 

marginal and central defect area. Three histomorphometric fields of 100 m2 (i.e. one central and 

two marginal fields) were considered and morphometric point counting was performed at original 

magnification of X400. The results obtained from the two marginal histomorphometric fields were 

averaged for each section (Bosch, et al. 1995) 

In particular, the composition of the tissue within each area was analysed with respect to its content 

in osteoblasts, fibroblast-like mesenchymal cells, adipocytes, erythrocytes, leukocytes (including 

polymorphonuclear cells, lymphocytes and plasma cells), monocytes/macrophages, vascular 

structures, mineralised tissue components and unidentified structures (residual tissue).  

 

Gene expression analysis using Genechip Microarrays 

18 animals were used for gene expression analysis, where both calvarial defect were treated 

according to the GBR principle. On day 7 and 15 of healing, 3 animals per experimental group 

were sacrificed and the tissue within each defect was harvested and immediately submerged in 

1.0ml of RNAlater RNA Stabilization Reagent (#AM7024, Applied Biosystems/Ambion, Austin 

TX, USA) and stored at 4°C for a minimum of 24 h and a maximum of 72 h and eventually 

transferred to -20oC until RNA isolation. The details of Genechip microarray analysis are 

described elsewhere (Al-Kattan, et al. 2016). Briefly, after RNA isolation, quality and quantity 

assessment, a Two-Cycle Eukaryotic Target Labeling Assay was performed, in order to obtain 

sufficient amounts of labeled cRNA target for analysis with arrays, according to the 

manufacturer’s instructions 

(http://www.affymetrix.com/support/technical/manual/expression_manual.affx). 

The 18 samples were prepared and the cRNA was hybridised to Affymetrix GeneChip® Rat 

Genome 230 2.0 Arrays (Rat 230 2.0, Affymetrix, Santa Clara, CA, USA), as previously 

http://www.affymetrix.com/support/technical/manual/expression_manual.affx
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described (Al-Kattan, et al. 2016). Following 16 hours of hybridisation, the microarrays were 

stained and washed on an Affymetrix GeneChip® Fluidics Station 450. The arrays were 

scanned on an Affymetrix GeneChip® Scanner 7G and image files called dat files were created. 

Based on these image files, the GeneChip® Operating Software (GCOS) computed cell 

intensity data (.cel files), which were analysed and saved as chp files containing data analysis 

information for each probe set on the arrays. 

The Affymetrix MAS 5.0 software was used in order to scale the data to a target intensity of 

1500 and to calculate transcript abundance. The following quality control plots were used to 

evaluate the Affymetrix data quality: 

 boxplots in order to identify outliers by comparing medians and intensity ranges between 

samples; 

 reproducibility between biological replicates based on density plots comparing the intensity 

distributions among the arrays;  

 histograms of perfect match (PM) versus mismatch (MM) comparing the intensity 

distributions values of the PM versus the MM probes for each chip; 

 RNA degradation slopes indicating potential RNA degradation and/or inefficient labeling 

among arrays. Genes and transcripts are represented on Affymetrix chips as a series of 

oligonucleotide probes. These are numbered 0-10, with probe 0 being the most 5' sequence 

and probe 10 the most 3' sequence. RNA degradation plots show average intensity of the 

probes as a function of their 5'-3' position of probes; 

 MvA plots with a view to check the reproducibility of biological replicates and to indicate 

whether large differences in genes expression between groups should be expected in these 

graphs, M-values, i.e. log-2 fold change between the intensity value of each probeset in the 

two samples, are plotted against the A-values, i.e. the average intensity of each probeset across 

all the chips; 

 correlation plot, a heatmap of the array-array Spearman rank correlation coefficients, has been 

used to detect outliers. 

 

Statistical analysis 

Statistical analysis was performed using the SPSS statistical software (SPSS 14.0, Chicago, IL, 

USA). The significance of differences among experimental groups in histological bone 

bridging and in area of regenerated bone per bone length was evaluated using the General 

Linear Model (GLM) univariate test, after the assumptions of homogeneity of variance and 
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normality of the residuals distribution were tested. The Least Significant Differences post-hoc 

test for multiple comparisons was used, in order to evaluate the differences between 

experimental groups within each treatment type and healing time-point. The level of statistical 

significance was set at 0.05. Data are reported as mean ±standard error of mean (SEM). The 

composition of the tissue within each area of interest in terms of osteoblasts, fibroblast-like 

mesenchymal cells, adipocytes, erythrocytes, leukocytes, monocytes/macrophages, vascular 

structures, mineralised tissue components and unidentified structures was qualitatively described 

and presented as 100% stacked bar charts. 

Differential gene expression between experimental groups was statistically tested by using the 

Linear Models (LIMMA) in the Bioconductor package v1.9 and R version 2.4.0. LIMMA 

applies a modified t-test, which uses a Bayesian approach to make the analysis stable even for 

small sample numbers. Three pairwise comparisons were performed on GC Robust Multi-

Array Analysis (GCRMA)-normalised data at 7 and 15 days of healing: (1) Diabetic versus 

healthy; (2) Controlled diabetic versus diabetic; (3) Controlled diabetic versus healthy. 

Summary statistics were compared for each gene and for each paired comparison performed. 

The data p-values were corrected using the Benjamini-Hochberg test to control the false 

discovery rate (FDR) following multiple testing. An adjusted p-value cut-off of 0.05 was used 

to select differentially expressed genes, which means that all genes with an FDR-adjusted 

value<0.05 were considered as differentially expressed and that the expected proportion of 

false discoveries was controlled to be less than 5%.  

Probe set annotations were derived from the NetAffx website (www.affymetrix.com). Supervised 

hierarchical clustering was performed using all the probesets with FDR<0.05 in any of the pair-

wise statistical comparisons. The Manhattan distance metric and average linkage were used for 

the clustering. 

Gene ontology and pathway analyses 

Biological interpretation of the GeneChip® expression data was performed via pathway and 

Gene Ontology analysis by using the GenMAPP 2.1 software (Gene Map Annotator and 

Pathway Profiler), as previously described (Al-Kattan, et al. 2016). For each paired 

comparison, a dataset of significantly altered genes (p<0.05) presenting at least twofold change 

was entered into GenMAPP. The MAPPFinder and the annotations from the Gene Ontology 

(GO) Consortium, were used to identify underlying processes or mechanisms and global 

biological trends in gene expression data. More specifically, MAPPFinder calculated the 

relative amount of differentially expressed genes present within each MAPP/GO term and a 

statistical z-score of the association of gene expression changes with a particular MAPP/GO 
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term (Doniger, et al. 2003). A positive z- score indicates that there are more genes linked to a 

MAPP/ GO term than would be expected by random chance. In our analysis MAPPs with z-

score>1.96 (which corresponds to a p-value<0.05) were considered as significantly 

overrepresented in the differential gene list. In order for a MAPP to be considered for further 

analysis, it had to include a minimum of five differentially expressed genes. 

Results 

Healing progressed uneventfully in all animals. 

Diabetes induction and characterisation 

Blood glucose measurements indicated that diabetes developed by day 7 in groups D and CD, 

reaching a mean value of 24.4±1.4 mmol/l and 22.3±0.9 mmol/l, respectively. The threshold 

level of 15mmol/l was reached in all the animals that received streptozotocin, whereas diabetes 

did not develop in the control animals, as expected. Hyperglycaemia was consistent and not 

transient, as confirmed by the blood glucose measurements during the follow-up period. 

Delivery of insulin pellets in the CD group led to reduction of the blood glucose values from 

22.3±0.9 mmol/l at day 7, to 9.8±0.6 and 8.0±0.9 at day 21 and at sacrifice, respectively.  

 

Histological analysis 

3 days of healing 

In the control sites, at 3 days of healing a blood clot occupied the original defect area, while 

organization of a fibrin network throughout the entire defect length was observed in all 

experimental groups. Numerous erythrocytes were entrapped in the fibrin mesh, while necrotic 

bone remnants were visible proximally to the original defect borders in some specimens. In 

addition, few polymorphonuclear cells (PMN) and fibroblastic cells had invaded the fibrin clot 

(Figure 2, a-b). 

 

7 days of healing 

At 7 days of healing, the coagulum remnants had been largely replaced by granulation tissue in 

both the control and test sites in all experimental groups. In the control sites of all experimental 

groups, neutrophils and macrophages were sparsely distributed throughout the entire defect 

length, engulfing damaged tissue. The average defect closure was 19.58±9.10%, 16.02±3.81% 

and 24.56±3.17% while the regenerated area was 0.89±0.42 mm2, 1.27±0.57 mm2 and 

2.73±0.34 mm2 per mm of defect length in the healthy, uncontrolled diabetic and controlled 

diabetic animals, respectively (Table 1).  
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In the GBR-treated samples, at 7 days of healing the granulation tissue formation differed in 

comparison to the control sites, in that it characteristically outgrew solely from the marginal bone 

diploe. The newly formed granulation tissue proximally to the parent bone border presented 

inflammatory cells and numerous fibroblast-like mesenchymal cells in a provisional, richly 

vascularised collagenous matrix. However, the central part of the secluded defect space presented 

only few fibrinous remnants, erythrocytes and scattered inflammatory cells (Figure 2, c-d). 

Within the GBR-treated animals, the D group showed a reduced number of PMNs (0.8%), less 

vascular structures (1.8%) and more abundant haematoma remnants (11.2%) proximally to the 

defect borders in comparison to group CD. Moreover, the central portion of the GBR treated sites 

in the D group presented a less organised fibrin network, with abundant erythrocytes and limited 

PMN (1%) (Figure 2, c-d). Morphometric analysis indicated that the provisional granulation 

tissue matrix in the test specimens of the CD group had a higher proportion of spindle-shape 

fibroblast-like cells (25.8%) and vascular structures (6%) and similar counts of inflammatory cells 

(1.2%) compared to the D group (Figure 2, c-d). At 7 days of healing, the average defect closure 

amounted to 8.78±2.31%, 5.18±1.68% and 4.35±2.50% in the healthy, uncontrolled diabetic and 

diabetic test animals, respectively, whereas the area of new bone was 1.04±0.56 mm2, 0.41±0.17 

mm2 0.47±0.27 mm2 per mm of defect length, respectively (Table 1). A significant difference in 

terms of defect closure (p<0.05) was found between the D and CD of the test and control groups. 

 

15 days of healing 

The control sites in the H and CD groups presented significant woven bone formation extending 

from the defect margins (28.3% and 43.1%, respectively), while the centre of the defect was filled 

by dense connective tissue featuring collagens fibers oriented in parallel to the long axis of the 

defect. The D control specimens presented limited woven bone formation, with reduced 

osteoblastic cells (4.9%) and vascular structures (10%) in comparison to the healthy control 

specimens (Figure 2, e-f). The average defect closure was 50.94±9.23%, 13.40±3.14% and 

22.67±4.18% in the H, D and CD control groups, respectively, whereas the area of new bone was 

8.67±1.47 mm2, 1.63±0.41 mm2 and 3.72±0.90 mm2 per mm of defect length, respectively. The 

healthy controls presented a significantly increased defect closure and area of new bone in 

comparison to the controlled and uncontrolled diabetes groups (p<0.05) (Table 1). 

At 15 days, the GBR-treated healthy (H) and controlled diabetic (CD) animals presented intense 

appositional bone growth originating from the defect borders and spreading towards the centre of 

the defect (Figure 3, a). Only limited inflammatory cells were detected, while osteoblasts, 

fibroblast-like cells and vascular structures were significantly observed. In five out of four GBR-
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treated uncontrolled diabetic (D) rats significant new bone formation was noticed. However, the 

woven bone scaffold appeared as less mature in the D compared to the H group, with fewer 

spindle-shape fibroblast-like cells (10%) and a higher number of leucocytes (0.6%) adjacent to 

the defect border (Figure 2, e-f). Remarkably, in the central part of the defect, mineralised tissue 

was substantially decreased in the D compared to the H rats (Figure 2, e-f and Figure 3, b). 

The average defect closure amounted to 44.49±6.39%, 25.48±6.00% and 35.08±2.48% in the H, 

D and CD test groups, respectively, whereas the area of new bone was 9.41±2.07 mm2, 4.30±1.19 

mm2 and 7.03±1.29 mm2 per mm of defect length, respectively (Table 1). A statistically 

significant reduction in both defect closure and area of new bone was found only in the D 

compared to the H group (p<0.05). 

 

30 days of healing 

Both the defect closure and the area of newly formed bone were significantly higher in the GBR-

treated compared to the control animals (Table 1). 

Limited new bone formation was observed in all control groups. While mineralized tissue was 

observed at the periphery of the defects, the central part was mainly occupied by well-organised 

connective tissue rich in fibroblasts. The percentage of defect closure was 26.03±5.71% in the H, 

23.89±8.24% in the D and 20.68±10.88% in the CD group, while the area of regenerated bone 

amounted to 4.29%±0.85 mm2, 2.73±0.60 mm2 and 3.32±1.77 mm2 per defect length, 

respectively. 

All the GBR-treated sites of H and CD groups presented significant new bone formation, with 

clear remodeling of the woven bone into parallel fibered lamellar bone (Figure 4, a). Complete 

osseous union had occurred in 2 H and 1 CD specimen.  

At 30 days, the GBR-treated sites in the D group presented not statistically significant reduced 

amounts of newly formed bone compared to the H group, with lower remodeling of the primary 

spongiosa into lamellar bone (Figure 4, b). Morphometric evaluation indicated that in D 

specimens the newly formed mineralised tissue occupied 58.2% of the defect borders and 1.7% 

of the central part, versus 74.8% and 26% in the H group, respectively (Figure 2, g-h). While no 

inflammatory cells were detected in the H specimens, in the D specimens they occupied 1.3% of 

the defect borders and 1% of the centre of the defect (Figure 2, g-h). The average defect closure 

amounted to 83.91±7.32%, 51.90±5.50% and 71.69±9.56% in the H, D and CD test groups, 

respectively, whereas the area of new bone was 28.22±7.85 mm2, 11.18±1.49 mm2 and 

22.65±5.03 mm2 per mm of defect length, respectively (Table 1). The defect closure in the D 

group was significantly lower than in the H group (p<0.05). 
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60 days of healing 

In all control groups limited new bone formation was observed. While in the periphery of the 

defects mineralised tissue with a few osteocytes, vascular structures and fibroblast-rich connective 

tissue was observed, the central parts were mainly filled with well-organised fibrous connective 

tissue, with collagen fibers running in parallel to the long axis of the defect. The average defect 

closure amounted to 30.21±9.64%, 15.43±4.43% and 11.27±2.94% in the H, D and CD control 

groups, respectively, whereas the area of new bone was 5.59±1.99 mm2, 1.45±0.44 mm2 and 

2.68±0.87 mm2 per mm of defect length, respectively. 

Likewise observed at 30 days, also at 60 days the percentage of defect closure and the area of 

newly formed bone were significantly higher in the GBR-treated compared to the control animals 

(Table 1). In the H group, marked new bone formation occupied the area between the two 

membranes, with obvious signs of remodeling. Two H specimens presented a complete bridge of 

regenerated bone (Figure 5, a). Mineralised tissue occupied 81% of the area adjacent to the defect 

borders and 58.8% of the central area, thus indicating a significant increase in comparison to day 

30. The histology features of the CD group were similar to the H group and complete defect 

closure was observed in three specimens (Figure 5, b). The mineralized tissue significantly 

increased both in the periphery and central part of the defects (79.4% and 48.6%, respectively) 

(Figure 2, i-j).  

Four out of five GBR treated uncontrolled diabetic (D) rats presented substantial new bone 

formation and complete osseous union had occurred in one specimen. Proximally to the defect 

border, the mineralized tissue was comparable to the healthy specimens (71.1%), although the 

newly mineralized tissue appeared less mature compared to the H group, it had fewer osteocytes 

(1.6% vs. 3%) and more abundant vascular structures (6.4% vs. 5.2%) and inflammatory cells 

(0.3% vs. 0%) (Figure 2, i-j and Figure 5, c). In the centre of the defect, increased new bone 

formation had occurred compared to 30 days, as indicate by the morphometric evaluation of 

mineralized tissue (26.4% vs. 1.7%) (Figure 2, i-j). 

The average defect closure amounted to 82.17±5.24%, 72.00±11.66% and 77.64±14.23% in the 

H, D and CD test groups, respectively, whereas the area of new bone was 33.63±10.87 mm2, 

20.53±4.53 mm2 and 50.54±15.94 mm2 per mm of defect length, respectively (Table 1). The 

differences between the three groups for both parameters were not statistically significant. 

 

RNA quality assessment 



 15 

All 18 samples featured good RNA quality, with well-resolved ribosomal 18S and 28S RNA 

peaks and 28S/18S band ratio 1.8, although slight degradation was observed in some samples. 

All RNA samples were therefore considered reliable and utilised for transcriptomic analysis. 

Quality control 

Following GCRMA normalization, all box plots examining the distribution of cell intensities 

overlapped fairly well, thus showing that there was no large variation in the intensity values among 

the GeneChips and no outlier arrays were identified. 

M versus A (MvA) plots showed that, although the spread of M values was large, the loess curve 

did not deviate significantly from the M = 0 axis, which indicated good replicate reproducibility. 

The intensity distributions of the PM and MM values for each GeneChip were assessed with 

PMvsMM histograms. All samples had typical PM and MM distributions with the cRNA binding 

to the MM probes less strongly then to the PM probes in all chips, thus confirming a high signal-

to-noise ratio. Finally, the RNA degradation plots were used as a diagnostic tool in order to 

evaluate RNA quality among samples. Although the RNA degradation slopes and profiles 

presented limited viability among the chips, the RNA quality was similar among samples, and as 

such, all the samples were retained in the dataset utilised for analysis. 

Differential gene expression 

The number of genes with significantly differential adjusted p-value (FDR<0.05) for each 

pairwise comparison, are shown in Table 2. The up- and down-regulated genes for each paired 

comparison at 7 and 15 days of healing are presented in Table 3. The comparison of the diabetic 

versus the healthy group at 15 days of healing yielded the largest number of genes with 

significantly differential expression and was characterised by downregulation of various genes 

associated with the ossification process, such as bmp4, ltbp4, thra and cd276. 

Hierarchical clustering 

Supervised hierarchical clustering was performed on a dataset consisting of 2451 probe sets 

presenting an FDR value less than 0.05 (data not shown). The analysis showed a clear 

separation between the 7- and 15- days specimens, indicating a characteristic genetic profile 

related to each stage of intramembranous healing. Overall the samples of different 

experimental groups were separated between 7 and 15 days in terms of gene expression. 

Furthermore, the clustering suggested a clear separation between the D and CD specimens 

versus the H specimens at 15 days of healing. Similarly, at 7 days, the D and CD specimens 

clustered separately versus the H specimens, even though the separation was less clear.  

Gene ontology  
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Uncontrolled diabetes versus Healthy 

At day 7, 534 probes were upregulated and 230 probes were downregulated in the D versus the 

H group at 7 days of healing, which corresponded to 272 upregulated genes and 127 

downregulated genes in the uncontrolled diabetic status, which were linked to GO terms.  

At day 15, 602 probes were upregulated and 1423 probes were downregulated in the D group, 

which corresponded to 190 upregulated genes and 966 downregulated genes in the diabetic 

status, which were linked to GO terms. 

A list of selected GO terms is presented in Table 4. For instance, immune response, 

inflammatory response, cytokine production, chemokine activity and metabolic processes (e.g. 

cell proliferation, regulation of cell cycle) were downregulated in the D status at day 7. 

Conversely, biological processes related to negative regulation of signal transduction, 

including negative regulation of the Wnt receptor family, were overexpressed in the D versus 

the H group.  

At 15 days, the regulation of developmental process, regulation of cell morphogenesis, 

regulation of angiogenesis, humoral immune response and complement activation, as well as 

cell division, cellular component organization and biogenesis, actin cytoskeleton organization 

and biogenesis were downregulated in the D versus the H group. Positive signal transduction 

was also downregulated in the D group, including downregulation of the I-kappaB kinase/NF-

kappaB cascade and the regulation of the Wnt receptor signalling pathway. Certain biological 

processes such as leucocyte activation, lymphocyte activation, T-cell activation, mononuclear 

cell proliferation and lymphocyte proliferation presented as upregulated in the D compared to 

the H group at 15 days of healing (Table 4). 

 

Controlled diabetes versus Uncontrolled diabetes 

At 7 days, 79 probes were upregulated and 76 probes were downregulated in the CD compared 

to the D group, which corresponded to 51 upregulated genes and 34 genes in the insulin 

controlled group, which were linked to GO terms.  

At 15 days, insulin mediated glycaemic control was associated with upregulation of 182 probes 

and downregulation of 187 probes, which corresponded to 84 upregulated genes and 120 

downregulated genes in the CD compared to the D group, which were linked to GO terms 

A list of selected GO terms is presented in Table 4. For instance, at 7 days, insulin mediated 

glycaemic control was associated with significant upregulation of several GO terms related to 

biological processes, including cellular organisation and biogenesis, cell surface receptor 

linked signal transduction, establishment of localization and transport, protein localization, 
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protein transport and vesicle mediated transport. Conversely, post-translational protein 

modification and phosphate metabolic process were downregulated in the CD versus the D 

group at 7 days of healing.  

At 15 days, leucocyte activation, lymphocyte activation and regulation of apoptosis were 

downregulated in the CD versus the D group. On the contrary, insulin mediated glycaemic 

control was related to upregulation of multicellular organismal development, regulation of 

developmental process and anatomical structure development (Table 4). 

 

Controlled diabetes versus Healthy 

At 7 days, 911 probes were upregulated and 384 probes downregulated in the CD compared to 

the H group, which corresponded to 536 upregulated genes and 200 downregulated genes that 

linked to GO terms in the controlled diabetic status. 307 probes were upregulated and 1120 

probes were downregulated in the CD versus the H group at 15 days of healing, which 

corresponded to 95 upregulated genes and 770 downregulated genes in the diabetic status, 

which were linked to GO terms. 

At 7 days, numerous biological processes were upregulated in the CD compared to the H group, 

such as cell adhesion, cellular component organization and biogenesis, cell growth and cell 

maturation, cellular localization, intracellular transport, nuclear transport protein transport, 

anion transport. In terms of signal transduction, the transmembrane receptor protein 

serine/threonine kinase signalling pathway, the TGFb receptor signalling pathway and the Wnt 

receptor signalling pathway were upregulated in the CD group. Furthermore, the GO terms of 

developmental process, tissue remodelling, skeletal development, ossification and osteoblast 

differentiation were upregulated in the CD versus the H group at 7 days of healing. Conversely, 

the biological processes of immune response, cytokine activity, leucocyte activation, leucocyte 

migration, angiogenesis, blood vessel morphogenesis, cell activation and response to 

wounding were underexpressed in the CD group compared to the H group.  

At 15 days, numerous GO terms related to biological processes were downregulated in the 

controlled diabetic compared to the healthy group. These included negative regulation of 

apoptosis, cellular localization, cellular component organization and biogenesis, actin 

filament-based process, microtubule-based process, ribonucleoprotein complex biogenesis 

and assembly, protein transport and proton transport. Regulation of angiogenesis, regulation 

of hydrolase activity and protein kinase cascade were also underexpressed in the CD group. 

 

Pathway analysis 
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Day 7 

The pathways differentially expressed between the three groups at 7 days are presented in Table 

5. Seven pathways were significantly enriched in genes differentially expressed in the D vs. H 

group at 7 days of healing (z score ≥1.96). The D group presented significant downregulation 

of the cytokines and inflammatory response pathway, the inflammatory response pathway and 

the IL-1 NetPath 13, whereas the focal adhesion was upregulated in uncontrolled diabetes 

(Table 5). 

Seven pathways were significantly enriched in genes differentially expressed in the CD vs/ D 

group at 7 days (z score ≥1.96). Particularly, the TGF beta receptor pathway, the IL-5 pathway 

and the T-cell receptor pathway were upregulated in the insulin treated group (Table 5). 

Five pathways were significantly enriched in genes differentially expressed in the CD versus 

the H group at 7 days of healing (z-score≥1.96). The insulin treated group presented significant 

upregulation of the focal adhesion pathway and downregulation of the IL-1 pathway compared 

to the healthy group (Table 5). 

Day 15 

At 15 days, six pathways were significantly enriched in genes differentially expressed in the D 

versus the H group (z-score≥1.96). Experimental uncontrolled diabetes was associated with 

significant downregulation of the TNFa NF-kB pathway, the electron-transport chain pathway, 

the glycolysis and glyconeogenesis pathway, the proteasome degradation pathway and the 

complement activation classical pathway (Table 5).  

Four pathways were significantly enriched in genes differentially expressed in the CD versus 

the D group at 15 days of healing (z-score≥1.96), including the T-cell receptor pathway, which 

was significantly down-regulated in the insulin treated diabetic group (Table 5). 

Finally, eleven pathways were significantly enriched in genes differentially expressed in the 

CD versus the H group at 15 days of healing (z-score≥1.96). The CD group was associated 

with significant downregulation of several pathways, including the electron transport chain, 

the glycolysis and glyconeogenesis, the ribosomal proteins, the Krebs TCA cycle and the 

nucleotide metabolism pathway (Table 5).  

Discussion  

This study showed that considerable bone regeneration following GBR can be obtained even 

in an experimental uncontrolled diabetic status, and it has provided new insights into genes and 

signalling pathways differently regulated in uncontrolled and insulin-controlled diabetes.  

The classic model of streptozotocin-induced experimental diabetes was employed, which 

characteristically presents diminished insulin production and severe hyperglycaemia, thus 
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mimicking the human form of T1DM (Bolzan & Bianchi 2002). A model of T1DM condition 

was selected because T1DM is clearly associated with suppressed bone formation and may 

therefore serve as a more straightforward system to investigate the impact of the 

hyperglycaemic state and impaired insulin signalling on the bone formation process (McCabe 

2007) 

The GBR treated critical size rat calvarial defect model served as a “gold standard” basic model 

for evaluating GBR application. This model presents the advantages of being a standardised, 

reproducible defect and of providing a physically well defined in vivo chamber for 

investigating the intramembranous bone regeneration process following GBR treatment 

(Bosch, et al. 1995, Donos, et al. 2015, Donos, et al. 2004, Hammerle, et al. 1995, Vajgel, et 

al. 2014).  

It is noteworthy that at 7 days the defect closure was higher in the control versus the test sites, 

whereas at 15 days, it was similar between the test and control sites in all experimental groups. 

We interpreted these findings of comparable or even inferior new bone formation in the GBR 

versus the control sites during the first two weeks of healing as a result of the contribution of 

osteogenic populations from the dura and the periosteum in the control sites, which were 

excluded in the membrane treated sites. It is well established that the dura mater in young 

animals contains mesesenchymal stem cells, whose differentiation into osteoprogenitor cells 

promotes osseous repair of calvarial defects (Hobar, et al. 1993, Wang & Glimcher 1999). In 

addition, preservation of the periosteum has been reported to enhance the regenerative capacity 

of bone by providing vascular resources and osteoprogenitor cells (Eyre-Brook 1984). Hence, 

although GBR treatment eventually ensures the selective population of the defect by cells 

originating from the parent calvarial bone, the intracranial and extracranial GBR barrier 

membranes may also exclude osteogenic tissue resources, which potentially contribute to the 

osteogenesis process during the initial healing stages. In line with these considerations, the 

initial increase in defect closure in the healthy control specimens, was found to drop at later 

healing periods, where the lack of a barrier membrane allowed the migration of non-bone 

forming soft tissues inside the defect.  

Our histological and morphometric evaluations indicated that the uncontrolled diabetic status 

compromised the initial stages of the intramembranous bone regeneration process following 

GBR application in critical size rat calvarial defects. This is supported by histological 

observations of impaired formation of the fibrin meshwork, followed by suppressed 

inflammatory cell populations and diminished presence of mesenchymal cells in the osseous 

wound milieu at the end of the first postoperative week (Figure 2).  
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In the GBR treated sites, at 15 and 30 days of healing, the osteogenesis process was impaired 

in the presence of uncontrolled diabetes, which was demonstrated by a significant reduction of 

38-42% in terms of defect closure and 54-61% in terms of newly formed bone surface 

compared to the systemically healthy group. However, the effect of diabetes on the bone 

regeneration potential at the membrane treated sites was less distinct at 60 days, as opposed to 

15 and 30 postoperative days, since the defect closure values in the D group (72±11.7%) were 

no longer significantly different to the H group (82.2±2.9%) (Table 1). In other terms, this 

experiment indicated that, in the presence of uncontrolled diabetes, the sustained application 

of the GBR principle partially “rescued” the osteogenesis potential during the later stages of 

the GBR healing process. These findings are in agreement with previous histometric data on 

GBR in diabetic conditions (Lee, et al. 2013, Retzepi, et al. 2010) and confirmed the potential 

of the GBR application to promote bone regeneration in the presence of uncontrolled 

experimental diabetes.  

 

It could be suggested that the sustained exclusion of non-osteogenic cell populations from the 

osseous wound via GBR application maintained an environment permissive for bone formation 

during the later healing stages of the diabetic osseous wound healing process. Nonetheless, the 

diabetic status was characterised by diminished influx and/or proliferation of the cells 

orchestrating the critical early osseous healing events, i.e. inflammatory, osteoprogenitor and 

endothelial progenitor cells, in areas distally from the osseous wound margins. Improved 

glycaemic control achieved via systemic insulin treatment was associated with enhanced 

granulation tissue formation adjacent to the parent bone margins, as indicated by the increased 

counts of MSCs and newly formed vascular structures at the end of the first week of healing 

following GBR application (see Figure 2). In the GBR treated sites, at 30 and 60 days of 

healing, systemic insulin mediated glycaemic control promoted the defect closure values by 

32-37% and the newly formed bone surface by 63-89% compared to the uncontrolled diabetic 

condition, thus conferring comparable bone regeneration potential to the healthy animals 

(Table 1). 

Further to the histologic observations of deficient granulation tissue formation and 

osteogenesis during the critical initial phases following GBR application in the diabetic status, 

we sought to explore on a molecular level the potentially implicated pathways and to gain 

insight into the mechanisms via which insulin mediated glycaemic control improves the early 

osseous wound healing parameters. Gene expression analysis was performed only at 7 and 15 

days of healing because previous studies indicated that these early time points are critical for 
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skeletogenesis and guided bone regeneration, since they are located in the stage where the 

initial inflammation is gradually overlapped by a progressive maturation of the granulation 

tissue into woven bone (Donos, et al. 2011b, Ivanovski, et al. 2011). 

At 7 days of healing, the uncontrolled diabetic status was characterised by under-representation 

of pathways associated with the inflammatory and immune responses (Table 5). More 

specifically, gene expression profiling indicated impaired expression of genes encoding 

chemoattractants, such as pro-inflammatory cytokines (Il1a, Il1b, Il6, TNF), chemokines 

(Ccl20, Cxcl1, Cxcl2, Cxcl10), chemokine receptors (Ccr2, Ccr5, Ccr6), and cell adhesion 

molecules (Vcam1 and Icam1), all of which are implicated in the migration and activation of 

inflammatory and mesenchymal cells (Tanaka, et al. 1995, Yellowley 2013). Moreover, a 

downregulation of the NF-kB signalling cascade was found in the D group at 7 and 15 days of 

healing. The NF-kB family of transcription factors regulates the transcription of genes 

encoding key effector molecules for immune and inflammatory responses, such as cytokines, 

adhesion molecules and chemokines (Hayden, et al. 2006, Li & Lin 2008). Hence, it may be 

suggested that deficient NF-kB signalling and concomitantly reduced concentrations of 

chemoattractants in the diabetic osseous healing chamber during early granulation tissue 

formation may be implicated in aberrant recruitment of inflammatory and mesenchymal cells 

and therefore account for their diminished presence in the central parts of the osseous wound. 

It may be further suggested that these observations could relate to the increased risk for 

infectious complications following GBR treatment in the presence of uncontrolled diabetes. 

At 15 days of healing, the inflammatory response was more prominent in the D compared to 

the H group. More specifically, the T-cell receptor pathway, the leucocyte activation, the 

lymphocyte activation, the T-cell activation, the mononuclear cell proliferation and the 

lymphocyte proliferation were overexpressed in the uncontrolled diabetic animals versus the 

healthy controls. Therefore, our results indicated that a delayed and prolonged inflammatory 

response characterised the osseous wound healing events in the diabetic status, which is in 

accordance with evidence from Lee et al (Lee, et al. 2016), who have shown that experimental 

T1DM significantly increases the expression of pro-inflammatory cytokines during the 

regeneration of calvarial CSDs according to the GBR principle. Furthermore, our observations are 

in accordance with a recent clinical study demonstrating that pro-inflammatory cytokines and 

chemokines were upregulated in T2DM patients with bone fracture, as well as in osteoblasts 

subjected to high glucose stimulation (Sun, et al. 2016). 
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An anti-inflammatory effect of insulin treatment on the gene profile expressed was evidenced 

by downregulation of the T-cell receptor pathway, the IL-6 pathway, the leucocyte activation 

and the lymphocyte activation in the CD compared to the D group at 15 days of healing. These 

data are in line with previous evidence that insulin downregulates the production of pro-

inflammatory cytokines (IL-1, IL6, TNFα) via NF-kB inhibition (Dandona, et al. 2001, Sun, et 

al. 2014), while other studies did not confirm this finding (Pradhan, et al. 2009). 

Furthermore, our gene expression analysis results are in agreement with our histomorphometric 

observations that the GBR treated sites in the CD group presented fewer inflammatory cells in 

the newly formed woven bone proximally to original defect margins at 15 days of healing 

compared to the uncontrolled diabetic animals. 

The diabetes effect on the gene profiles expressed by the cells populating the osseous wound 

chamber was most prominent at 15 days and characteristically featured downregulation of cell 

division and of several energy-producing metabolic pathways. These results correlate with our 

histological observations of reduced numbers of MSCs and osteoblastic cells in the central 

parts of the GBR treated defects in the diabetic group at 15 days of healing (Figure 2, e-f). 

Remarkably, a series of genes implicated in the osteogenic process were identified as 

significantly downregulated in uncontrolled diabetes, including bone morphogenetic protein 4, 

latent transforming growth factor beta binding protein 4, thyroid hormone receptor alpha and 

CD276 antigen. Misregulation of these osteogenesis related genes may be directly implicated 

in the histologically observed impaired osteogenesis potential observed at 15 days of healing 

following GBR application. Furthermore, Wnt signalling pathway, which plays a major role in 

osteoblast commitment and differentiation and skeletogenesis (Glass, et al. 2005, Monroe, et 

al. 2012), was misregulated in the diabetic status at 7 and 15 days and, as such, it may be also 

implicated in the deficient expression of genes involved in the cell division pathway in the 

diabetic status. Notably, Anagnostou and Shepherd (Anagnostou & Shepherd 2008) have also 

provided evidence indicating that the Wnt/beta-catenin system is a glucose-responsive 

signalling system and suggested that the Wnt signalling cascade could be misregulated in the 

hyperglycaemic status. The Wnt-Frizzled signal transduction may therefore constitute a 

plausible molecular link between uncontrolled diabetes and aberrant cell proliferation during 

the intramembranous bone healing process following GBR application. 

This study presents with some limitations. This animal model allowed to investigate only short-

term effects of insulin deficiency, without taking into account potential consequences on bone 

healing related to the long-term consequences of uncontrolled diabetes (e.g. vasculopathy). 

Although genome-wide transcriptomic analyses provide important data about the molecular 
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mechanisms associated to a biological process, the levels of mRNA are not directly 

proportional to the expression level of the proteins they code for. The future step will be to 

combine these results with proteomic data, to have a broader and more precise picture of the 

mechanisms involved in bone regeneration and of the effect of diabetes at the different stages. 

In an attempt to extrapolate our results to a clinical setting, one should consider the higher 

variability of the treatment outcome in the uncontrolled diabetic status, which is probably 

related to aberrations during the early phases of the osseous healing process. Consequently, 

further studies are warranted aiming to optimise the GBR process in this medically 

compromised patient population. In this context, investigation of the benefits from the use of 

biomaterials with enhanced osteoinductive or osteoconductive properties for the reconstruction 

of osseous defects in diabetic patients is necessary. 

Carefully designed studies addressing the impact of T2DM and the related higher bone mineral 

density, insulin resistance and obesity to the pathophysiology of the healing process following 

GBR application are also warranted. 
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Figure legend 

Figure 1 The flow chart describes the study design and the number of animals used. CD, 

controlled diabetes; D, uncontrolled diabetes; H, healthy controls; GBR, guided bone 

regeneration. 

 

Figure 2 Results of the morphometric analysis of the GBR treated sites. Assessments were 

performed in areas located proximally to the defect margins and in the centre of the defect on 

postoperative days 3 (a-b), 7 (c-d), 15 (e-f), 30 (g-h) and 60 (i-j). Data are presented as 100% 

stacked bar charts. 

 

Figure 3 Photomicrographs of GBR treated specimens at 15 days of healing. a, Detail of a 

healthy specimen. Trabecular bone scaffold with evident formation of primary osteons and 
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numerous osteocytes embedded in the mineralised tissue in the area proximally to the defect 

border. Remodelling activity is observed proximally to the defect border. b, Detail of an 

uncontrolled diabetes specimen. Immature woven bone and sinusoidal capillaries (black 

arrows) present proximally to the defect border. The original defect borders are demarcated by 

the black arrowheads. PO, primary osteons; VS, vascular structures. Stained with H&E, 

original magnification X400. 

 

Figure 4 a, Detail of GBR treated healthy specimen at 30 days of healing. Maturation of woven 

bone into lamellar bone and formation of secondary osteons (SO) are observed at the periphery 

of the defect. b, Detail of a GBR treated uncontrolled diabetes specimen at 30 days of healing. 

Connective tissue (CT) is still present among the islands of new bone in the area proximally to 

the defect border. The original defect borders are demarcated by arrows. Stain H&E, original 

magnification X400. 

 

Figure 5 Photomicrographs of GBR treated specimens at 60 days of healing. a, healthy 

specimen. Complete osseous union has occurred; the newly formed bone has largely 

remodelled into lamellar bone especially at the peripheral areas of the defect. b, uncontrolled 

diabetes specimen. Substantial bone regeneration is observed leading to partial defect closure 

in the presence of uncontrolled diabetes. c, controlled diabetes specimen. complete defect 

bridging has occurred along the original defect margins. The regenerated bone has substantially 

remodelled into lamellar bone. The original defect borders are demarcated by arrows. Original 

magnification x20. Stained with H&E. 

 

Table legend 

Table 1 Planimetric measurements of % defect closure and new bone surface per mm of defect 

length at 3, 7, 15, 30 and 60 days of healing in all experimental groups. Data presented as mean 

(standard error, SE). ┼ P<0.05 versus the non-GBR treated (control) site; a P<0.05 versus the 

healthy group. 

 

Table 2 Number of genes significantly up and down-regulated in pairwise comparisons at 7 

and 15 days of healing (FDR<0.05). 

 

Table 3 Genes with significantly (FDR<0.05) differential expression in pairwise comparisons 

at 7 and 15 days of healing. FC, fold change. 
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Table 4 Selected GO terms significantly overrepresented at 7 and 15 days of healing. In red are 

the downregulated GO terms in uncontrolled diabetes (D), while in green are the upregulated 

GO terms in controlled diabetes (CD). 

 

Table 5 Significantly enriched pathways (z-score>1.96) with genes presenting significantly 

differential expression (p<0.05) and minimum two-fold change at the 7 and 15 days of healing. 

A criterion of minimum 3 genes with significantly differential expression was applied for 

pathway selection. The percentage of differentially expressed genes (% changed), the 

percentage of genes present in each specific pathway (% present) and the Z score are presented. 

CD, controlled diabetes; D, uncontrolled diabetes; H, healthy controls; GBR, guided bone 

regeneration. Green is upregulated in D, orange is downregulated in D, blue is upregulated in 

CD and pink is downregulated in CD. 
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EXPERIMENTAL GROUP DEFECT CLOSURE (% )  NEW BONE SURFACE PER mm (mm) 

3 days   

Control   

Healthy - - 
Diabetes - - 

Controlled Diabetes - - 
Test   

Healthy - - 
Diabetes - - 
Controlled Diabetes - - 

7 days   

Control    

Healthy 19.58 (9.10) 0.89(0.42) 

Diabetes 16.02 (3.81) 1.27 (0.57) 
Controlled Diabetes 24.56 (3.17) 2.73 (0.34) a 

Test   

Healthy 8.78 (2.31) 1.04 (0.56) 
Diabetes 5.18 (1.68) ┼ 0.41 (0.17) 

Controlled Diabetes 4.35 (2.50) ┼ 0.47 (0.27) ┼ 

15 days   

Control   

Healthy 50.94 (9.23) 8.67 (1.47) 
Diabetes 13.40 (3.14) a 1.63 (0.41) a 
Controlled Diabetes 22.67 (4.18) a 3.72 (0.90) a 

Test   

Healthy 44.49 (6.39) 9.41 (2.07) 

Diabetes 25.48 (6.00) a 4.30 (1.19) a 
Controlled Diabetes 35.08 (2.48) ┼ 7.03 (1.29) 

30 days   

Control   
Healthy 26.03 (5.71) 4.29 (0.85) 
Diabetes 23.89 (8.24) 2.73 (0.60) 

Controlled Diabetes 20.68 (10.88) 3.32 (1.77) 
Test   
Healthy 83.91 (7.32) ┼ 28.22 (7.85) ┼ 

Diabetes 51.90 (5.50) ┼ a 11.18 (1.49) ┼ 
Controlled Diabetes 71.69 (9.56) ┼ 22.65 (5.03) ┼ 

60 days   

Control   

Healthy 30.21 (9.64) 5.59 (1.99) 

Diabetes 15.43 (4.43) 1.45 (0.44) a 
Controlled Diabetes 11.27 (2.94) 2.68 (0.87) 
Test   

Healthy 82.17 (5.24) ┼ 33.63 (10.87) ┼ 
Diabetes 72.00 (11.66) ┼ 20.53 (4.53) ┼ 
Controlled  77.64 (14.23) ┼ 50.54 (15.94) ┼ 

Table	1	
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 7 Days 15 Days 

 D vs H CD vs D CD vs H D vs H CD vs D CD vs H 

Downregulated 2 0 5 12 7 3 

No change 31097 31099 31091 31077 31090 31093 

Upregulated 0 0 3 10 2 3 

Table	2	

 

 ID Symbol Description 
Fold 

Change 

                      7 days 

D vs H 

 

1378172_at Phactr2 phosphatase and actin regulator 2 -1.92 

1393933_at Sorl1_predicted 
sortilin-related receptor, L(DLR class) A repeats-

containing (predicted) 
-5.74 

CD vs H 

 

1378172_at Phactr2 phosphatase and actin regulator 2 -1.94 

1390757_at RGD1566355_predicted similar to cell division cycle 2-like 1 (predicted) -5.9 

1393933_at Sorl1_predicted 
sortilin-related receptor, L(DLR class) A repeats-

containing (predicted) 
-6.15 

1385605_at LOC688730 similar to G protein-coupled receptor 84 -21.1 

1386346_at Tmem19 transmembrane protein 19 2.36 

1379072_at LOC678739 similar to phosphorylase kinase alpha 2 2.06 

1375669_at Fkbp2_predicted FK506 binding protein 2 (predicted) 1.79 

1375228_at Brd2 bromodomain containing 2 -1.48 

                      15 days 

D vs H  

 

1379530_at LOC316052 eomesodermin 4.23 

1397563_at   1.8 

1397854_at   1.93 

1397384_at LOC499124 mouse zinc finger protein 14-like 1.69 

1390757_at 
RGD1566355_ 

predicted 
similar to cell division cycle 2-like 1 (predicted) 4.53 

1371056_at Neo1 Neogenin -2.31 

1387232_at Bmp4 Bone morphogenetic protein 4 -5.66 

1387874_at Dbp D site albumin promoter binding protein -13.4 

1381477_at   3.39 

1368346_at B3galt4 
UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, 

polypeptide 4 
-4.53 

1379222_at Ltbp4 latent transforming growth factor beta binding protein 4 -2.17 

1372617_at RGD1566094_predicted similar to BTB (PO)Z domain containing 2 (predicted) -2.16 

1396145_at Sept6_predicted septin 6 (predicted) -3.18 

1380313_at Klre1 killer cell lectin-like receptor, family E, member 1 2.08 

1373539_at   -1.88 

1371017_at Gpam glycerol-3-phosphate acyltransferase, mitochondrial -2.28 

1367726_at Thra thyroid hormone receptor alpha -4.03 

1388333_at Rbx1 Ring-box 1 -1.67 

1394627_at Snx19_predicted sorting nexin 19 (predicted) -2.89 

1386495_at RGD1311624 similar to KIAA0339 protein 1.34 

1387194_at Centa1 centaurin, alpha 1 1.86 
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1395737_at Cd276 CD276 antigen -4.38 

CD vs D  

 

1394571_at   1.99 

1379530_at LOC316052 eomesodermin 4.08 

1394578_at Gria2 glutamate receptor, ionotropic, AMPA2 3.07 

1397563_at   -1.76 

1397384_at LOC499124 mouse zinc finger protein 14-like -1.8 

1397854_at   -1.86 

1371017_at Gpam glycerol-3-phosphate acyltransferase, mitochondrial -2.58 

1395048_at   -1.95 

1384764_at RGD1563574_predicted similar to Hypothetical protein MGC30332 (predicted) -2.68 

CD vs H 

 

1394571_at   2.13 

1394578_at Gria2 glutamate receptor, ionotropic, AMPA2 3.76 

1390757_at RGD1566355_predicted similar to cell division cycle 2-like 1 (predicted) 6.77 

1387232_at Bmp4 bone morphogenetic protein 4 -7.62 

1371056_at Neo1 Neogenin -2.41 

1388333_at Rbx1 Ring-box 1 -1.81 

Table 3 

UNCONTROLLED DIABETES vs HEALTHY UNCONTROLLED DIABETES vs CONTROLED DIABETES 

7 DAYS 15 DAYS 7 DAYS 15 DAYS 

Cellular localization Cellular localization Establishment of localization and transport Regulation of developmental process 

Positive regulation of signal transduction  

 I-kappaB kinase/NF-kappaB cascade 

Transport Cellular component organisation and 

biogenesis 

GTP binding 

Cell proliferation Cellular component organization & biogenesis  Cell surface receptor linked signal 

transduction  

Calcium ion binding  

Cell migration  Cell division Cellular metabolic process Proteinaceous extracellular matrix 

Lymphocyte activation  Positive regulation of signal transduction  

 I-kappaB kinase/NF-kappaB cascade 

 Wnt receptor signalling pathway 

Immune system process Immune system process 

Immune response Cellular respiration Nucleotide binding Lymphocyte activation 

Inflammatory response Carbohydrate metabolic process Cytoplasmic part Regulation of apoptosis 

Positive regulation of metabolic process 

 Positive regulation of nucleotide 

metabolic process 

 Positive regulation of protein 

metabolic process) 

Nucleotide metabolic process Protein complex  Hydrolase activity  

Binding 

 Chemokine receptor binding 

 GTP binding 

Humoral immune response  Cell projection Endopeptidase activity 

Cell growth Regulation of developmental process Cytoskeleton  

Negative regulation of signal transduction Regulation of cell morphogenesis Extracellular part  

Skeletal development Catalytic activity   

 Intracellular organelles 

 Mitochondrion 

 Golgi apparatus 

 Endoplasmic reticulum 

 Cytoskeleton 

 

 

 

 

 Protein complex   

 Lymphocyte activation   

 Lymphocyte proliferation   

 RNA metabolic process   

 Ribonucleoprotein complex   

Table 4 
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7 DAYS  

MAPP Name % changed % present Z Score 

D
 v

s.
 H

 

Rn Cytokines_and_Inflammatory_Response_Biocarta 21.7 92 3.737 

Rn Adipogenesis 10.7 91.7 3.025 

Rn Inflammatory_Response_Pathway 16.2 92.5 3.191 

Rn Matrix_Metalloproteinases 17.4 82.1 2.77 

Rn Eicosanoid_Synthesis 17.6 94.4 2.427 

Rn IL-1_NetPath_13 13.9 97.3 2.498 

Rn Focal_adhesion_KEGG 9.3 87.5 2.656 

C
D

 v
s.

 D
 

Rn Cytokines and Inflammatory Response Biocarta 17.4 92 6.497 

Rn IL-5 NetPath 17 7.6 98.5 4.28 

Rn Oxidative Stress 11.1 96.4 4.275 

Rn Fas Pathway and Stress Induction of HSP Regulation Biocarta 8.3 94.7 3.527 

Rn TGF beta Signalling Pathway 7 95.6 3.103 

Rn TGF beta Receptor NetPath 7 3.9 94.9 2.419 

Rn MAPK signalling pathway KEGG 3.8 95.6 2.399 

C
D

 v
s.

 H
 

Rn Cytokines and Inflammatory Response Biocarta 30.4 92 3.373 

Rn Complement Activation Classical 35.7 100 3.296 

Rn Adipogenesis 18.2 91.7 3.231 

Rn IL-1 NetPath 13 22.2 97.3 2.555 

Rn Focal adhesion KEGG 14.3 87.5 2.032 

15 DAYS  

D
 v

s.
 H

 

Rn Glycolysis and Gluconeogenesis 40.0 97.2 4.285 

Rn Electron Transport Chain 30.8 89.7 3.337 

Rn Androgen-Receptor NetPath 2 25.5 97 3.122 

Rn Proteasome Degradation 27.5 96.2 2.626 

Rn TNF-alpha NFkB NetPath 9 21.1 95.6 2.327 

Rn Complement Activation Classical 35.7 100 2.243 

C
D

 v
s.

 D
 Rn GPCRDB Other 7.7 62.9 2.74 

Rn T-Cell-Receptor NetPath 11 5.2 95.1 2.736 

Rn Wnt Signaling 7.3 93.2 2.63 

Rn IL-6 NetPath 18 5.3 97.9 2.532 

C
D

 v
s.

 H
 

Rn Proteasome Degradation 31.4 96.2 4.51 

Rn Electron Transport Chain 28.8 89.7 3.977 

Rn Ribosomal Proteins 24.7 100 3.801 

Rn Glycolysis and Gluconeogenesis 31.4 97.2 3.734 

Rn Krebs-TCA Cycle 32 96.2 3.239 

Rn Wnt NetPath 8 22 92.9 3.209 

Rn Wnt Signaling 26.8 93.2 3.114 

Rn Nucleotide Metabolism 33.3 88.2 2.666 

Rn Androgen-Receptor NetPath 2 19.4 97 2.514 

Rn S1P Signaling 27.8 100 2.18 

Rn Complement Activation Classical 28.6 100 2.015 

Table 5 
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Figure 1 
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