
University of Huddersfield Repository

Georgiou, Michalis

SEMANTIC HYPERCAT

Original Citation

Georgiou, Michalis (2019) SEMANTIC HYPERCAT. Masters thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/34861/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or notforprofit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

SEMANTIC HYPERCAT

MICHALIS GEORGIOU

A thesis submitted to the University of Huddersfield in partial

fulfilment of the requirements for the degree of Master of Science

by Research

January 2019

1

Abstract
The rapidly increasing number of sensor networks and smart devices contributed to the generation of

a huge number of information. Information that is generated by several sources and is available in

different formats highlights interoperability as one of the key preconditions for the success of the

Internet of Things (IoT). Hypercat is a specification defining a JSON-based catalogue, designed to

serve the needs of the industry. In this thesis, I extend the existing work on semantic enrichment of

Hypercat by defining a JSON-LD based catalogue. The proposed JSON-LD specification offers a

mapping mechanism among JSON and JSON-LD catalogues, while highlighting the fact that JSON-

LD could be seamlessly adopted by the Hypercat community.

2

Acknowledgements

First of all, I would like to thank my supervisor Professor Grigoris Antoniou of the School of

Computing and Engineering at the University of Huddersfield. His office was always open for me

when I needed him or had a question regarding my research or writing. Professor Antoniou was always

happy to discuss with me anything about my master or my daily life outside the University.

Furthermore, I would like to express my gratitude to my co-supervisor Dr. Ilias Tachmazidis for

introducing me to the topic from the beginning of my Master and helping me every time I run into

trouble with the programming part of my master. Without his help this Master, and thesis would not

have been possible.

I would also like to thank both of my above supervisors who gave me the opportunity to write with

them a research paper for the MIWAI Conference 2018.

In the end, I want to thank my parents, my grandparents and my girlfriend for providing me with

constant support and encouragement throughout this year and all of my years of study.

Thank you.

Author

Michalis Georgiou

3

Table of Contents
Abstract ... 1

Acknowledgements ... 2

Chapter 1 ... 5

Introduction ... 5

Research Contribution ... 7

Thesis Structure ... 7

Chapter 2 ... 8

Background .. 8

Semantic Web .. 8

BT Hypercat Data Hub .. 10

Hypercat 3.00 Specification ... 10

Hypercat Ontology ... 12

BT Hypercat Ontology ... 14

JSON-LD - JSON for Linking Data .. 16

JSON and JSON-LD .. 18

Linked Open Data (LOD) and Internet of Things (IoT) ... 18

Linked Open Data (LOD) and Sensors ... 19

Linked Open Data (LOD) for Smart Cities ... 20

Summary .. 21

Chapter 3 ... 22

Related Work ... 22

Chapter 4 ... 24

Hypercat JSON to Hypercat JSON-LD .. 24

Hypercat BT JSON-based to JSON-LD based .. 28

Example from JSON to JSON-LD based catalogue .. 36

Hypercat JSON-based to JSON-LD based catalogue parser .. 43

Chapter 5 ... 47

Hypercat JSON-LD Specification ... 47

Chapter 6 ... 55

Semantic Search ... 55

Chapter 7 ... 59

Conclusion .. 59

References ... 60

4

List of Figures
Figure 1: The Hypercat Ontology: Retrieved from (Tachmazidis et al, 2016). 14

Figure 2: The BT Hypercat Ontology: Retrieved from (Tachmazidis et al, 2017). 14

Figure 3: JSON-LD Example with @context: Retrieved from (W3C, 2018). 16

Figure 4: Sample JSON-LD document using full IRIs instead of terms: Retrieved from (W3C, 2018).

 ... 17

Figure 5: A Linked Data graph: Retrieved from (Lanthaler & Gült, 2012). 17

Figure 6: Linked open data cloud: Retrieved from The Linked Open Data Cloud. (2018). 19

Figure 7:Linking raw data stream to virtual RDF graph: Retrieved from (Phuoc & Hauswirth, 2009)

 ... 20

Figure 8: Service Architecture of the RDF Translator: Retrieved from (Stoltz et al, 2013). 22

Figure 9: Semantic Search Implementation's Design ... 58

List of Tables
Table 1: Hypercat Core properties mapped to existing JSON properties .. 13

5

Chapter 1

Introduction

In 2014, eight industry-led projects were sponsored through Innovate UK (the UK's innovation agency)

as part of the Internet of Things Ecosystem Demonstrator programme to deliver IoT `clusters', where

every cluster is based on a data hub that aggregates and exposes data feeds from numerous sensor

devices (Tachmazidis et al, 2016). Addressing interoperability was the main objective of the

programme leading to Hypercat, a hypermedia standard which represents and exposes Internet of

Things data hub catalogues through web technologies, to increase further the discoverability and

interoperability of data (Davies & Fisher, 2015). Hypercat facilitates the combined usage of distributed

data repositories (hubs), thus allowing applications to search (query) the hubs' catalogues in machine

understandable format, in order to discover and retrieve the needed data. According to Hypercat

Specification (Beart, 2016), interoperability is based on similar principles on which the web and linked

data are made. Such principles include information accessibility over standard web protocols and types

(HTTPS, JSON, REST), the proof of identity of resources over URIs, and the establishment of

common, shared semantics for the descriptors of datasets. From this kind of view, Hypercat can be a

practical beginning to solve the problems of working on several data sources, combined inside

numerous data hubs, over linked-data and web methods. Hypercat includes a lightweight, JSON-based

approach based on a technology which is popular to the developers (Tachmazidis et al, 2016). Every

Hypercat catalogue has a list and a description on every URI that points a data source, with a set of

relation-value pairs (metadata) connected with it. Thus, a given server has the ability to supply a set of

semantically annotated resources using Hypercat. In addition, there is a small group of core

compulsory metadata relations-value pairs that a Hypercat catalogue should contain, but developers

have also the choice to define any group of annotations they need (Beart, 2016). There is also a

Hypercat community with free to use tools available in Github with the link

“https://hypercatiot.github.io/”. Dealing with the problems of complexity and diversity of IoT data sets

emphasised that linked data and Semantic Web technologies as the key to tackle the problem (Antoniou

& Harmelen, 2008). The linked data allows the inclusion of data inside a shared, browsable and

approachable knowledge graph while letting the data allocated and managed in dissimilar systems,

controlled by different contributors (Tachmazidis et al, 2016). The effective usage of linked data

technologies in numerous different cases, such as collecting data from different sources to place them

together in a generic way, can allow a diversity of applications, with no need of encoding the

restrictions of the applications inside the data model. To meliorate the data analysis and the

interoperability among systems, the semantic web technologies apply the ability to add important data

6

models such as ontologies (Lecue et al, 2014). Therefore, it is reasonable to start thinking and start

studying of how the Hypercat standard and its specification could be serialised in a semantic

language/form and to examine the advantages that could happen from such a materialization, this is

the aim of this research to develop a semantically-enriched Hypercat system. Thus, a Hypercat

catalogue can be considered as a more demonstrative and descriptive catalogue where data policies

and their corresponding data flows (d'Aquin et al, 2014) are provided as machine readable information.

Additionally, it would be helpful to investigate on how a Hypercat specification could be parsed and

serialized in a semantic language such as JSON-LD. There is also a previous work of a semantically

enriched Hypercat catalogue which is developed in RDF, but the Hypercat RDF-based catalogue has

not been adopted because is making transition to whole different format. On the other side JSON-LD

can be easily adopted by the developers and Hypercat Community because of the similarity of the

JSON-LD’s syntax and JSON’s syntax. Their basic difference is the two keywords “@context” and

“@id”. Specifically, JSON-LD is 100% compatible with JSON and can add the needed semantics to

the catalogue, in addition, JSON-LD can support ontologies directly (Su et al, 2015). There is a full

explanation of JSON-LD specification to the following section. According to the W3C documentation

about JSON-LD syntax, JSON-LD is designed to store Linked Data into databases that support JSON

and meanwhile use the JSON libraries or parsers that are currently available. It is also designed to be

usable as RDF and use the semantic web technologies like SPARQL (W3C, 2017). As specified by

(Sporny, 2014) one of the primary JSON-LD creators, in his blog, he discusses that JSON-LD is based

on a technology that most developers use today. There is also another data format which supports

semantic web technologies and can be compatible with RDF and Ontology language like JSON-LD,

is the Entity Notation (EN) (Su et al, 2015). The idea to serialise and parse Hypercat from JSON to

EN will be the same as the previous work of (Tachmazidis et al, 2016) RDF(N-triples) because is also

making transition to a different syntax. Throughout the research that has been taken finding of how

the Hypercat system can be semantically-enriched, and adopted easily by the developers and

community, it is worth take the advantages of JSON-LD and create a Hypercat JSON-LD based

catalogue. Therefore, the existing JSON-based catalogues can be replaced by JSON-LD based

catalogues with minimum effort and without changing the existing database. Moreover, the current

JSON-based Hypercat developers can embrace the change easily and translate their current JSON-

based Hypercat catalogues to JSON-LD based catalogues. Consequently, introducing the new

Hypercat JSON-LD based catalogue, the Semantic Search can be proposed. With the help of Semantic

search, a user can query a semantically enriched Hypercat catalogue through SPARQL-like queries.

In this research thesis, I propose a new version of semantically enriched Hypercat catalogue based on

JSON-LD as well as the Hypercat specification that can raise the interoperability. The new catalogue’s

7

data is available based on an existing ontology which can be found in the work of (Tachmazidis et al,

2016) providing a mapping mechanism among the current JSON and proposed JSON-LD properties.

A systematic translation of an existing Hypercat JSON catalogue into a Hypercat JSON-LD catalogue

is presented. In addition, various aspects of the proposed Hypercat JSON-LD specification are studied

in comparison to the existing Hypercat JSON specification.

Research Contribution

The aim of this research is to develop a semantically-enriched Hypercat system, and the objectives are

to:

1. Establish familiarity with the Hypercat standard (JSON and RDF).

2. Establish familiarity with the JSON-LD.

3. Develop a JSON-LD equivalent for the Hypercat specification.

4. Develop a parser translating Hypercat JSON-based catalogue to Hypercat JSON-LD based

catalogue.

5. Design and propose a Semantic Search mechanism.

Thesis Structure

The rest of the thesis is organized as follows. Chapter 2 delivers a background on the Semantic Web

technologies, an explanation of BT Hub, it also provides the current Hypercat 3.00 specification,

descriptions of the Hypercat Ontology and BT Hypercat ontology, it introduces the JSON-LD, and in

the end it provides the LOD (Linked Open Data). Chapter 3 provides the related work, a description

of the current converters and why this work can be different. Chapter 4 describes the translation of a

JSON-based catalogue to JSON-LD based catalogue, as long with an example of the translation of BT

Hypercat JSON-based catalogue with each properties and aspects to a JSON-LD catalogue and a

description of the Hypercat JSON-based to Hypercat JSON-LD based catalogue parser. There is also

a small sample of how a BT Hypercat JSON based catalogue can be translated into a BT Hypercat

JSON-LD based catalogue. At the end of Chapter 4 it can be seen a description of how the parser from

a BT Hypercat JSON to BT Hypercat JSON-LD is working. Chapter 5 presents the Hypercat JSON-

LD specification, while Chapter 6 describes the Semantic Search. The conclusion is in Chapter 7,

following by the references.

8

Chapter 2

Background

Semantic Web

The need to present Web information to a form that machines can understand and process it, pushed

the Web to evolve to the Semantic Web. Nowadays, the web content, is written in HTML programming

language, and it can be captured using the search engines which are easy to use and read by humans.

Meanwhile, the information which is generated automatically from a database, is displayed without

the prototype structure of a database (Antoniou & Harmelen, 2008). Machines encounter problems to

understand data which is in format where humans can understand it, such as HTML. Although the

Web can help the machines to find data, it does not provide enough help for them to find the right data.

The ability of the machines to find the data is based on a keyword match and its alternatives. In contrast

with humans, machines do not understand the meaning of the search keywords. There are also several

Artificial Intelligence scientists who believe that a way to tackle the problem of machine understanding

is the Machine Learning. Nevertheless, this solution is based on statistical analysis and mathematical

equations and also Machine Learning can be extremely expensive even to achieve small tasks such as,

recognising a picture (Ismail & Shaikh, 2016). The Semantic Web challenges the problem from the

Web page side. Assuming that HTML is changed by further suitable and machine-understandable

languages, then the Web pages could bring their information content together. Thus, the key idea is to

use machine-processable Web information (Antoniou & Harmelen, 2008). JSON format is used to

structure the data, and to enable the machines to parse it or generate it (JSON, N/A). Nevertheless, not

even this kind of formats can solve the next problem: "the meaning of web content is not machine-

accessible" (Tachmazidis et al, 2016). Next, there is a description of the Semantic Web technologies

and standards. These technologies can make the Web information more machine-understandable and

help to the implementation of intelligent approaches such as reasoning or make the users jobs easier

by automate their tasks. Nowadays, the automation of tasks is more significant for the growth of

connected devices that are part of the Internet of Things (IoT) (Tachmazidis et al, 2016). The RDF

(Resource Description Framework), is a W3C standard that lets the information to be represented and

combined from numerous knowledge domains. With this, the Semantic Web develops a Semantic

Network with the information inside the network is characterised as directed labelled graphs (RDF

graphs). In the graphs there are nodes that represent either a concept or object and can be identified

through a Unique Resource Identifier (URI). The information is understandable and usable by both

humans and machines because the information is described in interlinked directed labelled graphs thus,

they achieve a uniform representation of information. The RDF graphs can be represented and

9

serialized in the following formats: RDF/XML(.RDF), Turtle(.TTL), N-Triples(.N_T), and Notation-

3(.N3). The RDF Schema (RDFS) is the vocabulary which contains the most basic elements who

describe the ontologies. Theses ontologies are improving the semantic structure of the RDF graphs.

RDFS vocabulary is comprised by classes, subclasses, comments and data-types (Pauwels et al, 2017).

Using Semantic Web standards, a developer can define the machine-understandable semantics of

meanings of an application domain. Especially, the ontology represents a clear and formal specification

of a conceptualization and describes formally a domain discourse. The ontology can be described by

the OWL Web Ontology and has the ability to contain definitions of classes of the domain and relations

among these classes such as (class hierarchies). The latest version of OWL (Ontology Web Language)

which is also a W3C standard is OWL 2 (W3C, 2012). Ontologies can also deliver a common

understanding of the domain, but with such a common understanding is essential to differ in the

terminology. For example, the zip code of an application might be similar to other application’s source

code. The next issue is when two programmes might use the similar term but with dissimilar concepts.

This kind of issues can be solved by mapping the specific terminology to a common ontology or by

defining straight mappings among the ontologies. Nevertheless, ontologies can support semantic

interoperability (Antoniou & Harmelen, 2008). Ontologies can be used for the organization and the

navigation of Web sites. Most of the Web sites exposed to the page’s top levels of a concept hierarchy

of terms, and the user can use them to expand the subclasses. In addition, ontologies are usable for

meliorating the precision of Web Searchers. The search engines can find pages that mention the

specific concept in an ontology rather than gathering all pages that are not certain and where the

keywords occur (Antoniou & Harmelen, 2008). The data about the application domain objects and

their relationships can be supported in JSON-LD website. Moreover, Web resources represented in

OWL could allow for automatically interfering implied facts about these resources. Turtle stands for

the ‘Terse RDF Triple Language’ and is another syntax which represents data in RDF model. Turtle

represents RDF graphs in which are made up of triples having subject, predicate and object in a

compact form. It also offers short-hand forms of public usage patterns, and different datatypes. Turtle

provides similarity with both N-Triples and Notation 3 syntaxes, both are also RDF serializations. It

also has similar triple design syntax with SPARQL (W3C, 2014). Another W3C standard is SPARQL,

this is a query language which belongs to the category of the Semantic web. SPARQL is almost

identical with the SQL (Structured Query Language) for the RDBMS (Relational Database

Management System). This query language can be used to query RDF files. The results of SPARQL

queries can be a set of graphs because the RDF files are described and portrayed in labelled triples, so

this lets a graph representation of RDF files. A query result set can be a literal (value) or a URI. The

result set can be used easily and straight by the applications because SPARQL can bring the literal or

10

transform the URI into their labels (Ismail & Shaikh, 2016). A characteristically hypothesis of the

Internet of Things (IoT) scenarios, is the importance of automatic inference and retrieval when there

is a huge amount of data that change fast (such as streaming data) (Gubbi et al, 2013).

BT Hypercat Data Hub

BT Hypercat Data Hub is a platform which makes accessible the information from a large range of

sources and presents them to the users or developers in a reliable way. The data hub’s portal delivers

an interface to the user who can use the specific data, where they can browse a data catalogue and then

choose or subscribe to the data feeds they need. Additionally, both of JSON-based and RDF-based

Hypercat catalogues are offered, with the RDF-based catalogue proposed and defined by (Tachmazidis

et al, 2016). An API authorizes admission to data feeds, protected by API keys, whilst a relational,

GIS capable, database allows complicated queries that information can be filtered based on a huge

number of standards. A range of last technology sensors allows the data to insert into the data hub and

to be converted to a typical format for usage into the platform’s core. The data hub offers a steady

method for inclusion among information retrieved by devices, systems, and people through

transmission networks and the software that may need this information to advance decision making,

such as, in control systems. The group of sensors which are included in the hub are for input and output.

These sensors are used for specified information resource or application feed and might be carried out

in different cases. The data among arbitrary exterior formats and the interior data formats must be

decoded. While using web technologies, the Hypercat standard, is able to represent and expose Internet

of Things data hub catalogues, to boost the data interoperability and discoverability. Of course, the

main idea is to allow dispersed data repositories (data hubs) to be used combined by several

programmes and make possible to search into their catalogues in a machine-understandable format.

This allows the build of knowledge graphs of the datasets via numerous hubs that specified applications

query and access the wanted information (data), this can be done in any datahub in which they are

maintained. Considering this, Hypercat represents the beginning of solving the problems of controlling

numerous data sources, aggregated into numerous data hubs, thru semantic web methods and linked

data (Tachmazidis et al, 2017).

Hypercat 3.00 Specification

In this subsection, it can be found the basic description of the Hypercat 3.00 specification discussed

by (Tachmazidis et al, 2016). Hypercat is a lightweight JSON-based hypermedia catalogue format for

presenting large groups of URIs, with every URI carrying numerous RDF-like triple statements about

it. The Hypercat catalogue is a document which exposes an unclassified collection of information on

11

the web, with the help of its URI, every catalogue item points out to a unique resource. Therefore, each

Hypercat catalogue can reveal a list of data like data feeds and deliver different links (URIs) to other

Hypercat catalogues. However, it is not permitted to define a catalogue inside a catalogue, so

catalogues can be linked by mentioning to other catalogue URIs. Additionally, a catalogue can supply

meta-data about every catalogue item and itself (Tachmazidis et al, 2016). The Catalogue object which

is a JSON object, is the base of the Hypercat catalogue’s structure. The Catalogue object must include

the next parameters:

i. "items", which is the list of items with a property value of a "JSON array containing zero or

more Item Objects".

ii. "catalogue-metadata", represents an array of Metadata Objects defining the catalogue object

with the property value of a "JSON array of Metadata Objects".

A single Item Object which comes from the items array, is a JSON object and must include the next

properties:

i. "href", the identifier of the resource item with a property value of a “URI as a JSON string”.

ii. "item-metadata", a single array of Metadata Objects which outlines the resource item with a

property value of a "JSON array of Metadata Objects".

The arrays, catalogue-metadata and item-metadata must include at least one metadata object for every

of the mandatory Metadata Object relationships. Both of the aforementioned arrays may include

several metadata objects with the same "rel" and "val" properties (multisets of features). The Metadata

Object is a JSON object and represents a single relationship among the source object (whether is

catalogue or catalogue item), and some further entity or concept declared by a URI, this kind of

relationship is practicable to every catalogue item to the catalogue itself. A Metadata Object has the

next properties:

i. "rel", is the relationship among the source object and a focus noun, declared as a predicate

with the property value of a "URI of a relationship as a JSON string".

ii. "val", is the object (noun) to which the rel property applies with the property value of a "JSON

string, it can also be the URI of a concept or entity".

There are also two compulsory metadata relationships which must be included in all catalogues such

as:

i. "rel": "urn:X-hypercat:rels:hasDescription:en" meaning that the resource has human readable

explanation in English language ("Description as a JSON string").

12

ii. "rel": "urn:X-hypercat:rels:isContentType" which means that the data which is provided by

resource is of the given MIME type (the "val" of this relationship:

"application/vnd.hypercat.catalogue+json").

The second relationship (ii) must be included in every top-level of the catalogue-metadata objects

(describing the catalogue object) (Tachmazidis et al, 2016). The above Hypercat structure which has

been described, composes only the basic core of any given Hypercat catalogue. Yet, the whole

Hypercat 3.00 Specification supplies a full description of the model related to the above explanation.

Thus, in the next chapters of this thesis, there is a definition of every aspect of the Hypercat 3.00

specification while giving a commensurable semantically enriched service supported by an OWL

ontology, which is stated in RDF.

Hypercat Ontology

In this subsection, there is a definition of the Hypercat ontology (Tachmazidis et al, 2016), which

captures the above-mentioned Hypercat structure, therefore delivering a translation mechanism from

JSON-based catalogue to a JSON-LD based. The Hypercat ontology is accessible with the uri:

 "http://portal.bt-hypercat.com/ontologies/hypercat"

and includes the main properties that would make possible the development of JSON-LD based

catalogue. Each namespace of the Hypercat ontology must be written by prefixing concepts and

properties with "hypercat:", this is why the uri look like this "http://portal.bt-

hypercat.com/ontologies/hypercat". At the moment, this ontology is only part of an IoT Data Hub

"https://portal.bt-hypercat.com/", whilst as a future plan, there will be a suggestion to the Hypercat

community to standardise it. Having semantically enriched catalogues such as JSON-LD or RDF, and

supported by a well-designed ontology, it believed that it would boost up the interoperability, offer

intelligence reasoning capabilities and implement structured data to the catalogue (Tachmazidis et al,

2016). Figure 1 portrays the class hierarchy which is used to create the Hypercat Ontology, and a range

of properties it is included in Table 1 (Tachmazidis et al, 2016). The Table 1 which retrieved from

(Tachmazidis et al, 2016), in the second column demonstrates the properties as RDF-based but the

same properties can be used to the JSON-LD based translation. The core hierarchy collects all of the

JSON-based catalogue structure and at the same time it can provide pliability for additional extensions.

The Hypercat ontology consists of class MetadataAnnotator (having two subclasses, Catalogue and

Items) and class Search. It can be seen below that; a Metadata Object is practicable to the catalogue

itself and every catalogue item. It can be seen that; the class Metadata Object can be applied to every

13

catalogue item and to the catalogue itself. Note that (Tachmazidis et al,2016), defined the new class

MetadataAnnotator, this class can capture every metadata property which is practicable to both of Item

Objects and Catalogue Objects. Hypercat 3.00 Specification describes that there are some properties

that are only practicable to the one of the following: Item Objects or Catalogue Objects. This kind of

properties are not part of the class MetadataAnnotator's definition. Afterwards, there are two classes,

the class Catalogue which models a Catalogue Object describing properties that are practicable only

to catalogue's metadata, and the class Item which models the Item Object describing properties that are

only practicable to an item's metadata. Both of the aforementioned classes are subclasses of the class

MetadataAnnotator. However, to be able to develop a semantically enriched catalogue, the property

hasItem must be added on top of the catalogue to show the connection between class Catalogue and

class Item. This can also show that a Catalogue contains a list of Items. Additionally, the class Search

models the numerous search types that can be available from the Catalogue, and the property

supportsSearch can connect these two classes (Tachmazidis et al,2016). The collection of the available

searcher types is described over individuals of class Search. A more detailed description of the

available search types will be explained to Chapter 4.

JSON-based RDF-based

urn:X-hypercat:rels:hasDescription:en https://www.w3.org/2000/01/rdf-

schema#comment

urn:X-hypercat:rels:supportsSearch hypercat:supportsSearch

urn:X-hypercat:rels:isContentType hypercat:isContentType

urn:X-hypercat:rels:hasHomepage hypercat:hasHomepage

urn:X-hypercat:rels:containsContentType hypercat:containsContentType

urn:X-hypercat:rels:hasLicense hypercat:hasLicense

urn:X-hypercat:rels:acquireCredential hypercat:acquireCredential

urn:X-hypercat:rels:eventSource hypercat:eventSource

urn:X-hypercat:rels:hasRobotstxt hypercat:hasRobotstxt

urn:X-hypercat:rels:accessHint hypercat:accessHint

urn:X-hypercat:rels:lastUpdated hypercat:lastUpdated

urn:X-hypercat:search:simple hypercat:SimpleSearch

urn:X-hypercat:search:geobound hypercat:GeoboundSearch

urn:X-hypercat:search:lexrange hypercat:LexrangeSearch

urn:X-hypercat:search:multi hypercat:MultiSearch

urn:X-hypercat:search:prefix hypercat:PrefixSearch

urn:X-hypercat:search:semantic hypercat:SemanticSearch

Table 1: Hypercat Core properties mapped to existing JSON properties: Retrieved from (Tachmazidis

et al, 2016).

14

Figure 1: The Hypercat Ontology: Retrieved from (Tachmazidis et al, 2016).

BT Hypercat Ontology

BT Hypercat Ontology is an ontology which extends the core of the Hypercat specification. Thus, this

is an example of how the ontologies extent to the Hypercat core ontology and specification. This

ontology will be also an example to the translator for JSON-LD based Hypercat catalogue to the

following chapter. In the BT Hypercat Data Hub, the data can be enriched by representing the

information in RDF using properties and concepts that are well-defined in an OWL ontology

(Tachmazidis et al, 2017).

Figure 2: The BT Hypercat Ontology: Retrieved from (Tachmazidis et al, 2017).

15

In Figure 2 there is a demonstration of the BT Hypercat Ontology. It can be seen that; the Feed is the

main class for every data feed that is declared in the knowledge base. The class Feed has the semantic

properties of feeds such as, feed_tag, feed_id, feed_creator, feed_email, feed_title, feed_status,

feed_description, feed_location_name and feed_domain (Tachmazidis et al, 2017). Moreover, there

are also three subclasses of class Feed:

i. "SensorFeed" subclass which represents the feeds.

ii. "EventFeed" subclass which represents the events.

iii. "LocationFeed" subclass which represents the locations.

The modelled data has been incorporated into the BT Hypercat Data Hub and it can be one of the next

feed types:

i. "SensorFeed"

ii. "EventFeed"

iii. "LocationFeed"

In brief, every data source can present their available information over the BT Hypercat Data Hub by

delivering a single feed. A feed is a resource coming either from sensors, events or locations. Inside

every feed, there is data which is available over datastreams, and it is defined by the class Datastream.

The class Datastream has two subclasses:

i. "SensorStream" subclass which represents datastreams from sensors.

ii. "EventStream" subclass which represents datastreams from events.

Therefore, a feed can also deliver a set of datastreams that are related to each other, for example a

data feed which provides information about weather, can also deliver datastreams for temperature,

pressure, or wind speed. Information for the locations can be provided by a feed type of

"LocationFeed".

The BT Hypercat Ontology has been created and is available online with the uri:

"http://portal.bt-hypercat.com/ontologies/bt-hypercat"

There are also BT Hypercat online catalogues both in JSON and RDF (a work by Tachmazidis et al,

2016-2017). These catalogues are available with the uris "http://portal.bt-hypercat.com/cat" and

"http://portal.bt-hypercat.com/cat-rdf " respectively. These catalogues contain details about the feeds

and information sources sideways with extra metadata like tags, which let better-quality search and

discovery (Tachmazidis et al, 2017).

16

JSON-LD - JSON for Linking Data

JSON-LD is attempting to create a simple technique to express Linked Data in JSON and at the same

time enhance semantics to JSON files. The designing of JSON-LD is very simple and human

understanding. The main goal was to be very easy for the developers to understand it and translate

their JSON documents to semantically JSON-LD. Thereafter, a triple-centric approach was followed,

and it was looking like a straight conversion from Turtle to JSON. For this reason, to the latest versions

of JSON-LD, the syntax was transformed and allows the serialization of data to be more indiscernible,

from traditional JSON. The only thing that a developer needs to know to develop a simple JSON-LD

document is plain JSON and two keywords which are "@context" and "@id" to use the basic

functionality of JSON-LD. The "@context" is the keyword which is used to describe briefly the names

that are part of the JSON-LD file. This kind of small names are the terms, and the developers used

them to express detailed identifiers in a compact manner. The keyword "@id" identifies the unique

node objects that are being defined in the file with IRIs (W3C, 2018). In the Figure 3 there is an

example of a JSON-LD document.

Figure 3: JSON-LD Example with @context: Retrieved from (W3C, 2018).

17

Next in the Figure 4 there is an example of a JSON-LD document without the "@context" keyword.

Figure 4: Sample JSON-LD document using full IRIs instead of terms: Retrieved from (W3C, 2018).

While JSON-LD is 100% compatible with plain JSON, can let the developers use their current libraries

and tools. This can also be very helpful and important for businesses because it let them enhance the

meaning of their existing JSON files without causing troubles to them or to their customers.

Meanwhile, JSON-LD can support every major RDF concept (Lanthaler & Gült, 2012).

Figure 5: A Linked Data graph: Retrieved from (Lanthaler & Gült, 2012).

Figure 5 demonstrates a JSON-LD’s data model, which is a Linked Data graph. It can be seen that the

nodes inside the data graph are named subjects and objects while the edges are named properties

(predicates in RDF). The node which has at least one leaving edge is the subject while the object is the

node which has at least one received edge. This means that a node can be a subject and an object

simultaneously. A subject to be identified and referenced easily should be labelled with an IRI.

Fortunately, this requirement is not mandatory because JSON-LD can support unlabelled nodes too.

Although, unlabelled nodes, do not meet the demands of Linked Data, they are supported because they

18

let specific use cases, which need only local data. Again, the same goes for the properties (edges): if

they are labelled by IRI then they are referenceable and makes them Linked Data; if not they are just

JSON properties that have only sense in the particular file. On the other hand, for the objects is

different, if the object is labelled by an IRI, then it is called object, but if it is labelled by something

else that is not IRI such as numbers, it is called value, for example, RDF’s literal (Lanthaler & Gült,

2012).

JSON and JSON-LD

As it mentioned above, JSON (JavaScript Object Notation) format is used to structure the data, and to

enable the machines to parse it or generate it. Moreover, is very simple and it derives from JavaScript.

JSON can be built on two structures, the first one is, pairs of value and name and the second one is, a

list of values (arrays) (JSON, N/A). JSON does not have the ability to support native hypermedia,

namespaces or semantic annotations. The JSON Schema has been proposed as an example to tackle

this problem and add hypermedia support to the JSON through the ‘$ref’ keyword to represent a

hyperlink. In addition, more proposals have been proposed to solve the JSON’s lack of abilities above,

ending to the JSON-LD project. The key ability of JSON-LD is to give semantic meanings to the JSON

files (Lanthaler & Gült, 2012). Both JSON and JSON-LD serializations are the same syntactically and

the only difference is the JSON-LD’s keywords (Bradley, 2014).

Linked Open Data (LOD) and Internet of Things (IoT)

The Hypercat can be the key for delivering semantically enriched data, this can be extended by

permitting the specific identification (unique ID) of the current source. The interoperability over

several domains and the extra enrichment can be allowed by merging the local stored data with the

Linked Open Data cloud (LOD) (Tachmanzidis et al, 2017). The Linked Open Data (LOD) is a web

approach of the Semantic Web to connect data that are accessible through several dissimilar sources.

Inside this cloud can be found structured and unstructured sources both letting to the rise of an

adaptable model of data utilization. In this crowd source plan (LOD) there are over 31 billion facts in

the cloud since 2014 (Ismail & Shaikh, 2016).

The Figure 6 represents the Linked Open Data Cloud diagram, and the dataset has 1,231 datasets with

16,132 links since June 2018 (The Linked Open Data Cloud, 2018). According to (Tachmanzidis et al,

2017) the LOD can be used to enable federated queries over the BT SPARQL Endpoint they present

in their work.

19

Figure 6: Linked open data cloud: Retrieved from The Linked Open Data Cloud. (2018).

In the LOD cloud there are SPARQL endpoints such as, DBPedia, FactForge, OpenUpLabs, and the

European Environment Agency. In addition, the external datasets of LOD can be combined with the

reasoning capabilities and spatiotemporal queries for the information retrieval, which is not displayed

straight into the BT Hypercat Data Hub (Tachmanzidis, et al, 2017). Describing about Linked Open

Data and Internet of Things it is very natural to describe how the Linked Open Data can work with IoT

Sensors.

Linked Open Data (LOD) and Sensors

Nowadays there is a huge number of sensors around us, each of them producing a sequence of data

items over time for example, a data stream (Phuoc & Hauswirth, 2009). There are sensors inside every

mobile phone or any normal personal computer, like, WLAN ,GPS, Bluetooth. There are also

numerous sensors working for the environmental domain, for recording the traffic or even logistics

20

(Phuoc & Hauswirth, 2009). For example, the Hypercat’s sensors are used for the environmental

domain, collecting data from weather, or traffic and much more. The real data which is taken by sensors

and then linked to the Web must be converted into a form of Web resource. When this happens, a URI

is assigned for the sensor’s data which also allows the construction of links to further Web entities.

The same approach can be done to the Stream Feeds, a URL is assigned to every sensor which captures

the streaming real-time data or a historical data. This method can also contain the semantic descriptions

of every sensor (Phuoc & Hauswirth, 2009). The Figure 7 shows how the URI identifier of each sensor

is linked into a virtual RDF graph. The entire graph is not materialized and stored inside a triple storage

that’s why it is called ‘virtual graph’, and it is established by several interlinked subgraphs which are

controlled by sensor mashups. In order to describe how the raw data coming from a sensor in a data

stream data and linked to a domain knowledge or external linked data the mashup’s metadata must be

stored into a metadata repository (Phuoc & Hauswirth, 2009). A list of ontologies is used to take the

facts and the data models of the sensors. SensorMasher is an approach from (Phuoc & Hauswirth, 2009)

following the linked open data principles. This approach can share the data captured by the sensor as

a Web data source in order to combined with ease with additional linked-data sources or sensor data.

Figure 7:Linking raw data stream to virtual RDF graph: Retrieved from (Phuoc & Hauswirth, 2009)

Linked Open Data (LOD) for Smart Cities

The rapid growth of the population around the world, forced the evolution of cities into Smart Cities.

This evolution took the advantage to develop and upgrade the services around the cities, and to improve

the way of life into a Smart City. The huge quantity of information accessible helps the better decision-

making procedure, evolving the city into a smart and intelligent area to serve its citizens (Murelo et al,

21

2017). Note that, numerous Open/Closed data sources are accessible through data hubs, this data is a

range of structural, statistical and real-time data. This kind of data can be integrated into a unique

knowledge base, LOD provides an easier access to the data and supplies a better and more steady

expansion of new services and applications. The new Smart City services can retrieve data such as:

parking status, traffic status, weather, real-time sensors, transport, different hotels and restaurants, even

parks or monuments of the specified city and much more. For example, a Smart city application can

help a citizen who is going home by bus, identify the closest supermarket near the bus stops of its bus

route. A better example is a service which helps a citizen find the car park which is closer to him and

it has empty spaces (Bellini et al, 2014).

Summary

 Semantic web has a huge impact in our lives, transforming the data of the Internet into machine-

readable data using its technologies, such as Ontologies, RDF and the JSON-LD.

 JSON-LD is 100% compatible with plain JSON, both serializations are the same syntactically and

the only difference is the JSON-LD’s keywords.

 There is data that can be retrieved by Sensors using IoT technologies and can be stored into data

hubs such as the BT data hub.

 This kind of data can also be added in the LOD cloud to be accessible through several dissimilar

sources.

 Using this data, cities can evolve into smart cities, with the help of specific IoT services, for

example the usage of the Hypercat specification.

 Therefore, it is very useful to utilize the semantic web description languages to enhance the

interoperability of the data into these data hubs and evolve the services such as Hypercat into

Semantic services.

22

Chapter 3

Related Work

There are already some useful tools in the web that translate Semantic web formats, for example

RDF/XML to N-Triples or N-triples to JSON-LD. These existing tools are using powerful libraries to

parse and serialise syntax and transform the preferred syntax to another. In their work (Stoltz et al,

2013) “RDF Translator: A RESTful Multi-Format Data Converter for the Semantic Web”, they discuss

of some popular tools including their tool. For example, Any23 is a translator that translate anything

to triples using a Java library and a command-line, used by Sindice Semantic Web search engine.

Omninator is a HTML service that intends to be a translator for formats having schema.org terms into

other syntaxes such as JSON, Turtle or RDF/XML. Nevertheless no one of the above services can

support the conversion of traditional RDF formats to RDF embedded inside Web files format. Even in

their own project (Stoltz et al, 2013), they discuss of how to parse and serialize RDF syntax to several

Semantic web syntaxes such as RDFa, Microdata, RDF/XML, N3, N-Triples, RDF-JSON and JSON-

LD. The tool offers the option to upload the file of the syntax and translate it to the preferred syntax

or use the website’s textbox to paste a part of the syntax and next translate it to the preferred syntax

with the help of powerful libraries. They tackle the problem by implementing their converter to work

like a Google AppEngine Web service and expand to several aligned requests. The tool uses the

RDFLib library to parse, manipulate and serialise RDF graphs. In order to cover a complete conversion

cycle, the current RDFLib was lagged of having serializers for Microdata and RDFa. Thus, they tried

to use the RDF2RDFa and RDF2Microdata converters, unfortunately the maintenance of these services

was stop so their conversions were unsatisfied. In the end they create two plugins well-suited with

RDFLib and published them online (Stoltz et al, 2013).

Figure 8: Service Architecture of the RDF Translator: Retrieved from (Stoltz et al, 2013).

23

In figure 8, there is a description of the architecture of RDF Translator. The REST API is in the centre

of the Web service and can handle every received request, such as, directed requests from client

applications, browser bookmarklets or any indirect requests through the Web user interface. Both

HTTP GET and HTTP POST request methods are supported by the REST API. The Web service can

help the users by offering them two very easy to use options, the first one is by providing the URI of

the contents which are going to be changed, and a text box input to copy and paste their contents and

translate them to their preferred syntax (Stoltz et al, 2013). Although this is a very useful tool to parse

and serialize different Semantic web syntaxes, this tool does not cover the translation of plain JSON

to JSON-LD. The aforementioned tools do not have the option to parse and serialize JSON syntax to

JSON-LD syntax. The problem here is even having a translator from JSON to JSON-LD the translator

needs to contain the specific Ontology (in our case the Hypercat Ontology) so it can enhance it to the

JSON-LD syntax. Another worth mentioning work is the work of (Tachmanzidis et al, 2016), in their

work they translate JSON to RDF(N-Triples) so they give a clear answer of how to work and translate

a JSON syntax to another Semantic web syntax. They parse and serialise the plain JSON syntax and

by adding the specific Ontology, they transform it to RDF(N-Triples). They use a JavaScript based

Web service working with apache Tomcat to load the JSON-based Hypercat calatague and convert it

to RDF (N-Triples). The service collects the JSON syntax by the JavaScript function “JSON.parse”

and then with call back functions converts the JSON properties to RDF properties adding the ontology

and the precise data types. Additionally, there is another function which converts the “in mind” JSON

triples to RDF (N-triples), finalizing the conversion. In the end, the final RDF (N-triples) syntax

appears in the HTML Web page of the service. Having their point of view, their work of how to collect

the JSON syntax and add the Ontology it is very helpful for the conversion of the JSON to JSON-LD

syntax. Summarizing these services of how a Semantic web syntax can be converted to a JSON-LD

syntax or how a JSON syntax can be converted to a Semantic web syntax shows that this work can be

the link between them. However, there is no parser or converter that serializes the transformation of a

given Hypercat catalogue from JSON syntax into valid JSON-LD based on a given ontology. What it

is needed, is a converter which takes the ontology and convert the JSON-based catalogue into a JSON-

LD based one, adding the given ontology and the correct data types to the values. It is also a unique

work because it targets the Hypercat Specification and translates the JSON-based Hypercat catalogue

to a valid JSON-LD Hypercat catalogue.

Next, in this thesis, there is an explanation of how a clear and valid translation from JSON syntax to

JSON-LD syntax can be produced adding the specific Hypercat Ontology, and how the translator

works to parse and serialise the JSON syntax to JSON-LD syntax.

24

Chapter 4

Hypercat JSON to Hypercat JSON-LD

In this chapter, there is a description of the translation of every aspect of Hypercat specification from

JSON to JSON-LD. Remember that, JSON-LD is equivalent to JSON and it can support every major

RDF concept (Lanthaler & Gült, 2012). The mapping of the JSON properties has already been

provided by a previous translation of Hypercat JSON to RDF (Tachmazidis et al, 2016). The Table 1

was used to develop a translator from a JSON-based catalogue to a JSON-LD based catalogue. The

core idea behind the translation follows the same rational as for RDF, while the transformation of

subjects, predicates and objects follows the JSON-LD format. For instance, for the JSON-based

catalogue with the following uri:

 "http://portal.bt-hypercat.com/cat"

the catalogue-metadata, namely metadata about the catalogue itself:

 "rel": "urn:X-hypercat:rels:isContentType"

 "val": "application/vnd.hypercat.catalogue+json"

will be translated in JSON-LD, using Table 1:

 "@id": "http://portal.bt-hypercat.com/cat-json-ld",

 "http://portal.bt-hypercat.com/ontologies/hypercat#isContentType": "application/ld+json"

It is worth noting that, the MIME type of the JSON-LD based catalogue is "application/ld+json". The

keyword "@id" identifies the unique node objects that are being defined in the file with IRIs (W3C,

2018). Thus, each Item Object is translated from "href": "http://api.feed" to "@id": "http://api.feed".

Similar translation should be applied to most of the properties in Table 1, with several exceptions that

include supportsSearch, which is a property where, the rel and val are both URIs. Moreover, note that

class Search represents semantically the numerous types of searches as named individuals, which in

JSON-LD should be translated using the keyword "@id".

Therefore, for the JSON-based catalogue "http://portal.bt-hypercat.com/cat", the next catalogue-

metadata:

 "rel": "urn:X-hypercat:rels:supportsSearch"

 "val": "urn:X-hypercat:search:simple"

25

will be translated in JSON-LD, using Table 1:

 "@id": "http://portal.bt-hypercat.com/cat-json-ld",

 "http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": {

 "@id": "http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch"}

The translation of the property "https://www.w3.org/2000/01/rdf-schema#comment" needs to include

both the language of the current document, using the keyword "@language", and the text of the

description, using the keyword "@value". The "@language" keyword is to specify the language of the

string value which the description is typed, and the "@value" keyword is the text of the description

(W3C, 2018).

Therefore, for the JSON-based catalogue "http://portal.bt-hypercat.com/cat", the next catalogue-

metadata:

 "rel": "urn:X-hypercat:rels:hasDescription:en"

 "val": "Hypercat DataHub Catalog"

will be translated in JSON-LD, using Table 1:

 "@id": "http://portal.bt-hypercat.com/cat-json-ld",

 "http://www.w3.org/2000/01/rdf-schema#comment" : {

 "@language": "en",

 "@value": "Hypercat DataHub Catalog"}

The translation of the property hypercat:lastUpdated needs to include both datatypes, using the

keyword "@type", and relevant data, using the keyword "@value".

The "@type" keyword is used to set the datatype of a node or typed value. In this situation, the type

information is the "http://www.w3.org/2001/XMLSchema#dateTime". The "@value" keyword is used

again to specify the data that is related to the actual property (W3C, 2018).

Thus, the next Item Object (in items):

 "href": "http://api.bt-hypercat.com/sensors/feeds/UUID"

and "item-metadata" containing:

 "rel": "urn:X-hypercat:rels:lastUpdated"

26

 "val": "2018-05-08T00:00:00Z"

will be translated in JSON-LD, using Table 1:

 "@id": "http://api.bt-hypercat.com/sensors/feeds/UUID",

 "http://portal.bt-hypercat.com/ontologies/hypercat#lastUpdated": {

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime",

 "@value": "2018-05-08T00:00:00Z"}

The keyword "@graph" must be added to the top of the file. The document itself is expanded, which

means all prefixes and terms are in full IRIs. The use of this mechanism is very useful since the amount

of nodes that exist at the file's top level share the similar context (W3C, 2018). The entire catalogue

must be included into a graph's array ({@graph:[Hypercat JSON-LD catalogue]}). Note that the

keyword "@context" is optional, thus it can be omitted within a given catalogue.

For the translation of the BT Data Hub’s JSON-based catalogue, the BT Hypercat Ontology has been

used as an extension of the core ontology, and is available with the uri:

"http://portal.bt-hypercat.com/ontologies/bt-hypercat"

The namespaces for the BT Hypercat ontology can be written with "bt-hypercat:". Thus, the “item-

metadata” containing:

 "rel": "urn:X-bt:rels:feedTitle",

 "val" : "Met Office Datapoint Observations"

this property will be translated to JSON-LD using the BT Hypercat ontology and not the core Hypercat

ontology:

 "@id": "http://api.bt-hypercat.com/sensors/feeds/UUDI",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_title":

 "Met Office Datapoint Observations"

One more change which must take place from the JSON-based BT Hypercat to JSON-LD-based is

the type class:

 "rel": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

27

The above class shows the type of each feed, so for the JSON-LD must change to the keyword

“@type”. Again, for the item-metadata containing :

 "rel": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",

 "val": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#sensors"

will be translated to the following:

 "@id": "http://api.bt-hypercat.com/sensors/feeds/UUDI",

 "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#sensors"

Duplicate keys are not allowed in JSON-LD. In order to avoid such duplicates in any given JSON-LD

based catalogue, catalogue's and items' descriptions must be stored as a separate JSON object (one per

unique subject), while each property must be included once with multiple values being added into an

array.

For example, if we get the following supportsSearch:

 {"rel": "urn:X-hypercat:rels:supportsSearch",

 "val": "urn:X-hypercat:search:simple" },

 {"rel": "urn:X-hypercat:rels:supportsSearch",

 "val": "urn:X-hypercat:search:geobound" }

will be translated in JSON-LD: (storing supported searches into an array): the searches must be entered

into an array and the property must be provided once, like the following:

 "@id": "http://portal.bt-hypercat.com/cat-json-ld",

 "http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": [

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch"},

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#GeoboundSearch"}]

the same goes for every property that is repeated in a given Catalogue such as hypercat:isContentType:

 {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "application/json"},

 {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "application/xml"},

28

 {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "text/xml"},

 {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "text/csv"}

and the translation is the following:

"http://portal.bt-hypercat.com/ontologies/hypercat#isContentType": [

 "application/json",

 "application/xml",

 "text/xml",

 "text/csv"

]

For properties that are not provided in Table 1, a Hypercat JSON-LD developer is encouraged to create

his own OWL ontology by extending the ontology defined by (Tachmazidis et al, 2016) in this paper:

“Hypercat RDF: Semantic Enrichment for IoT”. Therefore, the brand-new ontology has the ability to

catch the concept of a developer’s catalogue, by supplying new properties, and would make possible

for the complete conversion of the developer’s current JSON-based catalogue into a JSON-LD based

catalogue. Otherwise, Hypercat JSON-LD developers could develop and translate only the main

properties, using Table 1. Although in this occasion, the JSON-LD based catalogue would have less

data in contrast to the JSON-based catalogue, it would not stop being a minimal yet valid Hypercat

JSON-LD catalogue.

Hypercat BT JSON-based to JSON-LD based

The following examples are the JSON-based properties from the core Hypercat and how with the help

of Table 1, a developer can translate them from JSON property to RDF property, and then use them

for the JSON-LD translation with the full ontology uri:

Table 1.

1) "rel":"urn:X-hypercat:rels:hasDescription:en",

 "val":"Test Hypercat Catalogue"

to :

29

 "https://www.w3.org/2000/01/rdf-schema#comment ": {

 "@language": "en",

 "@value": "Test Hypercat Catalogue"}

2) { "rel":"urn:X-hypercat:rels:isContentType",

 "val":"application/vnd.hypercat.catalogue+json"}

to:

"http://portal.bt-hypercat.com/ontologies/hypercat#isContentType":

"application/vnd.hypercat.catalogue+json"

3) {"rel":"urn:X-hypercat:rels:hasHomepage",

 "val":"http://home.page.com"}

to:

"http://portal.bt-hypercat.com/ontologies/hypercat#hasHomepage": {

 "@id": "http://home.page.com"}

4) {"rel":"urn:X-hypercat:rels:containsContentType",

 "val":"text/xml"}

to:

"http://portal.bt-hypercat.com/ontologies/hypercat#containsContentType": "text/xml"

5) {"rel": "urn:X-hypercat:rels:hasLicense",

 "val": "http://licence.html"}

to:

"http://portal.bt-hypercat.com/ontologies/hypercat#hasLicense": {

 "@id": "http://licence.html"}

6) {"rel": "urn:X-hypercat:rels:acquireCredential",

 "val": "http://request.credentials.html"}

to:

"http://portal.bt-hypercat.com/ontologies/hypercat#acquireCredential": {

 "@id": "http://request.credentials.html"}

7) {"rel": "urn:X-hypercat:rels:eventSource",

 "val": "http://event.source.html"}

to:

"http://portal.bt-hypercat.com/ontologies/hypercat#eventSource": {

 "@id": "http://event.source.html"}

8) { "rel": "urn:X-hypercat:rels:hasRobotstxt",

 "val": "http://catalogue/robots.txt"}

30

to:

"http://portal.bt-hypercat.com/ontologies/hypercat#hasRobotstxt": {

 "@id": "http://catalogue/robots.txt"}

9) {"rel": "urn:X-hypercat:rels:accessHint",

 "val": "http://access.hint.html"}

to:

"http://portal.bt-hypercat.com/ontologies/hypercat#accessHint": {

 "@id": "http://access.hint.html"}

10) {"rel": "urn:X-hypercat:rels:lastUpdated",

 "val": "2017-12-01T00:00:00Z"}

to:

"http://portal.bt-hypercat.com/ontologies/hypercat#lastUpdated": {

 "@type": "xsd:dateTime",

 "@value": "2017-12-01T00:00:00+00:00"}

The following are the search individuals of the catalogue. To avoid the duplicate key found the search

individuals must be entered into an array with a single key (predicate).

11) {"rel":"urn:X-hypercat:rels:supportsSearch",

 "val":"urn:X-hypercat:search:simple"},

12) {"rel":"urn:X-hypercat:rels:supportsSearch",

 "val":"urn:X-hypercat:search:geobound"},

13) {"rel":"urn:X-hypercat:rels:supportsSearch",

 "val":"urn:X-hypercat:search:lexrange"},

14) {"rel":"urn:X-hypercat:rels:supportsSearch",

 "val":"urn:X-hypercat:search:multi"},

15) {"rel":"urn:X-hypercat:rels:supportsSearch",

 "val":"urn:X-hypercat:search:prefix"},

16) {"rel":"urn:X-hypercat:rels:supportsSearch",

 "val":"urn:X-hypercat:search:semantic"}

 to:

31

"http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": [

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch"},

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#GeoboundSearch"},

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#LexrangeSearch"},

 {"@id": http://portal.bt-hypercat.com/ontologies/hypercat#MultiSearch"},

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#PrefixSearch"},

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#SemanticSearch"}]

Next, we have all BT Hypercat JSON-based catalogue properties where we use again the ontology

from the RDF translation, to translate them to JSON-LD. The following are template examples with

every possible translation from BT Hypercat JSON-based catalogue to BT Hypercat JSON-LD-based

catalogue.

For the first template the property is defined in a full URI and an object that is a string value:

Example : JSON to JSON-LD.

JSON Property: {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "application/vnd.hypercat.catalogue+json"}

JSON-LD Property: "http://portal.bt-hypercat.com/ontologies/hypercat#isContentType":

 "application/ld+json"

Core Hypercat

1. "http://portal.bt-hypercat.com/ontologies/hypercat#isContentType": "application/ld+json",

2. "http://portal.bt-hypercat.com/ontologies/hypercat#containsContentType": "text/xml",

Class: Feed

1. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_id": "feedId",

2. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_creator": "feedCreator",

3. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_title": "feedTitle",

4. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_status": "feedStatus",

5. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_private": "feedPrivate",

6. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_description": "feedDescription",

7. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_email" : "feedEmail",

8. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_tag": "feedTag",

32

9. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_location_name":

"feedLocationName",

10. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_exposure": "feedExposure",

11. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_domain" : "feedDomain",

12. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_disposition": "feedDisposition",

13. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_the_geom": "feedTheGeom",

Class: DataStream

1. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_id": "datastreamId",

2. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag": "datastreamTag",

3. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_max_value":

"datastreamMaxValue",

4. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_min_value":

"datastreamMinValue",

5. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_symbol":

"datastreamUnitSymbol",

6. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text":

"datastreamUnitText",

The second template is where the object is a string/dateTime, so the "@type" keyword must be added

with the "http://www.w3.org/2001/XMLSchema#dateTime" to define the dateTime type:

Example : JSON to JSON-LD.

JSON Property: {"rel": "urn:X-hypercat:rels:lastUpdated",

 "val": "2018-05-08T00:00:00Z"}

JSON-LD Property: "http://portal.bt-hypercat.com/ontologies/hypercat#lastUpdated": {

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime",

 "@value": "2018-05-08T00:00:00Z"}

Core Hypercat

- "http://portal.bt-hypercat.com/ontologies/hypercat#lastUpdated": {

"@type":"http://www.w3.org/2001/XMLSchema#dateTime",

"@value": "2018-05-08T00:00:00Z"},

33

Class: Feed

- "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_updated": {

"@type":"http://www.w3.org/2001/XMLSchema#dateTime",

"@value": "2018-05-08T00:00:00Z"},

Class: DataStream

- "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_current_time": {

"@type":"http://www.w3.org/2001/XMLSchema#dateTime",

"@value": "datastreamCurrentTime"},

The third template is where that is necessary to add the object as a string/anyURI , so the "@type"

keyword must be added with the "http://www.w3.org/2001/XMLSchema#anyURI" to define the

anyURI type.

Example : JSON to JSON-LD.

JSON Property: {"rel":"urn:X-bt:rels:feedUrl",

 "val":"/feed/uri"}

JSON-LD Property: "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_url": {

 "@type":"http://www.w3.org/2001/XMLSchema#anyURI",

 "@value": "/feed/uri"}

Class: Feed

1. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_url": {

"@type":"http://www.w3.org/2001/XMLSchema#anyURI",

"@value": "/feed/uri"},

2. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_icon": {

"@type":"http://www.w3.org/2001/XMLSchema#anyURI",

"@value": "/feed/icon"},

3. "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_website": {

"@type":"http://www.w3.org/2001/XMLSchema#anyURI",

"@value": "feed/website"},

The following template is the one where the object is a URL and must come with the keyword "@id"

and the following are the properties where their values should be translated with this template:

34

Example : JSON to JSON-LD.

JSON Property: {"rel": "urn:X-hypercat:rels:hasLicense",

 "val": "http://licence.html"}

JSON-LD Property: "http://portal.bt-hypercat.com/ontologies/hypercat#hasLicense": {

 "@id": "http://licence.html"}

Core Hypercat

1. "http://portal.bt-hypercat.com/ontologies/hypercat#hasHomepage": {

"@id": "http://home.page.com"},

2. "http://portal.bt-hypercat.com/ontologies/hypercat#hasLicense": {

"@id": "http://licence.html"},

3. "http://portal.bt-hypercat.com/ontologies/hypercat#acquireCredential": {

"@id": "http://request.credentials.html"},

4. "http://portal.bt-hypercat.com/ontologies/hypercat#eventSource": {

"@id": "http://event.source.html"},

5. "http://portal.bt-hypercat.com/ontologies/hypercat#hasRobotstxt": {

"@id": "http://catalogue/robots.txt"},

6. "http://portal.bt-hypercat.com/ontologies/hypercat#accessHint": {

"@id": "http://access.hint.html"},

Class: EventStream

- "http://portal.bt-hypercat.com/ontologies/bt-hypercat#hasEventStream": {

"@id": "http://api.test.datastream"},

Class: EventFeed

- "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToEventFeed": {

"@id": "http://api.test.feed"},

Class: SensorStream

- "http://portal.bt-hypercat.com/ontologies/bt-hypercat#hasSensorStream": {

"@id": "http://api.test.datastream"},

35

Class: SensorFeed

- "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed": {

"@id": "http://api.test.feed"},

The “@id” template must also be used for the supportSearch property, but if there are more than one

search types then they must be entered in an array just like the following example:

 "http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": [

{"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch"},

{"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#GeoboundSearch"},

{"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#LexrangeSearch"},

{"@id": http://portal.bt-hypercat.com/ontologies/hypercat#MultiSearch"},

{"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#PrefixSearch"},

{"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#SemanticSearch"}]

The last template is for the property of types of each class and comes with the keyword "@type" this

comes for each JSON-based (href) where in the JSON-LD changes to "@id" and it defined the type of

each "@id":

Example : JSON to JSON-LD.

JSON Property: {"rel":"http://www.w3.org/1999/02/22-rdf-syntax-ns#type",

 "val":"http://portal.bt-hypercat.com/ontologies/bt-hypercat#EventFeed"}

JSON-LD Property: "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#EventFeed"

Class: EventFeed

For every "EventFeed" should have the following JSON-LD @type:

"rel":"http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

"val":"http://portal.bt-hypercat.com/ontologies/bt-hypercat#EventFeed"

to: "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#EventFeed"

Class: LocationFeed

Every "LocationFeed" should have the following JSON-LD @type:

36

"rel":"http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

"val":"http://portal.bt-hypercat.com/ontologies/bt-hypercat#LocationFeed"

to: "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#LocationFeed"

Class: SensorFeed

Every "SensorFeed" should have the following JSON-LD @type:

"rel":"http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

"val":"http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorFeed"

to: "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorFeed"

Class: EventStream

Every "EventStream" should have the following JSON-LD @type:

"rel":"http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

"val":"http://portal.bt-hypercat.com/ontologies/bt-hypercat#EventStream"

to: "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#EventStream"

Class: SensorStream

Every "SensorStream" should have the following JSON-LD @type:

"rel":"http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

"val":"http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"

to: "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"

Example from JSON to JSON-LD based catalogue

This is an example from a BT Hypercat JSON based catalogue to a BT Hypercat JSON-LD based

catalogue to help the readers of the above translation understand how it works. It starts with the

introduction of a BT Hypercat JSON-based catalogue sample, with several search types into the

catalogue following by items. The full catalogue can be found here: "https://portal.bt-

hypercat.com/cat". In the example there are some explanatory comments to help the readers.

37

{ "catalogue-metadata":[

 {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "application/vnd.hypercat.catalogue+json"},

 {"rel": "urn:X-hypercat:rels:hasDescription:en",

 "val": "BT Hypercat DataHub Catalog"},

 {"rel": "urn:X-hypercat:rels:supportsSearch",

 "val": "urn:X-hypercat:search:simple"},

 {"rel": "urn:X-hypercat:rels:supportsSearch",

 "val": "urn:X-hypercat:search:prefix"},

 {"rel": "urn:X-hypercat:rels:supportsSearch",

 "val": "urn:X-hypercat:search:multi"},

 {"rel": "urn:X-hypercat:rels:supportsSearch",

 "val": "urn:X-hypercat:search:lexrange"},

 {"rel": "urn:X-hypercat:rels:supportsSearch",

 "val": "urn:X-hypercat:search:geobound"}],

(In the catalogue-metadata it can be seen the document’s type at the top, followed by the various

search types of the catalogue. The items follow with their unique “href” and each item has its

“item-metadata” (The Items’s Information). The item-metadata describes the data of each

“href” and it seems like a small list. Each item will have different colour to help the reader

identify them into this example.)

 "items":[

 {"href": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2",

 "item-metadata":[{

 "rel": "urn:X-hypercat:rels:hasDescription:en",

 "val": "Met Office Datapoint UK hourly site-specific observations for Killowen as recorded in real time

by the Met Office UK Monitoring System. Parameters reported are based on the instrumentation installed at

each site."},

 {"rel": "urn:X-bt:rels:feedTitle",

 "val": "Met Office Datapoint Observations - 99015 (Killowen)"},

 {"rel": "urn:X-bt:rels:feedTag",

 "val":"weather"},

 {"rel": "urn:X-bt:rels:hasSensorStream",

 "val":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/0"},

 {"rel": "urn:X-bt:rels:hasSensorStream",

38

 "val":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/1"},

 {"rel": "urn:X-bt:rels:hasSensorStream",

 "val":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/2"},

 {"rel": "urn:X-bt:rels:hasSensorStream",

 "val":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/3"},

 {"rel": "http://www.w3.org/2003/01/geo/wgs84_pos#lat",

 "val":"54.067"},

 {"rel": "http://www.w3.org/2003/01/geo/wgs84_pos#long",

 "val":"-6.183"},

 {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "application/json"},

 {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "application/xml"},

 {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "text/xml"},

 {"rel": "urn:X-hypercat:rels:isContentType",

 "val": "text/csv"},

 {"rel": "urn:X-hypercat:rels:hasLicense",

 "val": "http://reference.data.gov.uk/id/open-government-licence"},

 {"rel": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",

 "val": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorFeed"},

 {"rel": "urn:X-hypercat:rels:lastUpdated",

 "val": "2017-02-22T17:36:32Z"}

]},

 (The ‘href’ bellow (Green) is an item coming from the item above, this ‘href’ is a datastream

which belongs to the above item (Red). Thus, each datastream again will have its own metadata.

Every ‘href’ below will have its metadata described like a list and all of them are part of the first

item.)

 {"href": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/0",

 "item-metadata":[{

 "rel": "urn:X-bt:rels:belongsToSensorFeed",

 "val": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 {"rel": "urn:X-bt:rels:datastreamMaxValue",

39

 "val": "max_value=50"},

 {"rel": "urn:X-bt:rels:datastreamMinValue",

 "val": "min_value=-30"},

 {"rel": "urn:X-bt:rels:datastreamUnitText",

 "val": "degrees Celsius"},

 {"rel": "urn:X-bt:rels:datastreamUnitSymbol",

 "val":"degrees Celsius"},

 {"rel": "urn:X-bt:rels:datastreamUnitType",

 "val":"derivedSI"},

 {"rel": "urn:X-bt:rels:datastreamTag",

 "val":"temperature"},

 {"rel": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",

 "val": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"}

]},

{"href": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/1",

 "item-metadata":[{

 "rel": "urn:X-bt:rels:belongsToSensorFeed",

 "val": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 {"rel": "urn:X-bt:rels:datastreamUnitText",

 "val": "16 point compass"},

 {"rel": "urn:X-bt:rels:datastreamUnitType",

 "val": "contextDependentUnits"},

 {"rel": "urn:X-bt:rels:datastreamTag",

 "val": "winddirection"},

 {"rel": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",

 "val": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"}

]},

 {"href": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/2",

 "item-metadata":[{

 "rel": "urn:X-bt:rels:belongsToSensorFeed",

 "val": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 {"rel": "urn:X-bt:rels:datastreamUnitText",

 "val": "miles per hour"},

 {"rel": "urn:X-bt:rels:datastreamUnitSymbol",

40

 "val":"mph"},

 {"rel": "urn:X-bt:rels:datastreamUnitType",

 "val":"derivedUnits"},

 {"rel": "urn:X-bt:rels:datastreamTag",

 "val":"windspeed"},

 {"rel": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",

 "val": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"}

]},

 {"href": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/3",

 "item-metadata":[{

 "rel": "urn:X-bt:rels:belongsToSensorFeed",

 "val": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 {"rel": "urn:X-bt:rels:datastreamUnitText",

 "val": "miles per hour"},

 {"rel": "urn:X-bt:rels:datastreamUnitSymbol",

 "val": "mph"},

 {"rel": "urn:X-bt:rels:datastreamUnitType",

 "val": "derivedUnits"},

 {"rel": "urn:X-bt:rels:datastreamTag",

 "val":"windspeed"},

 {"rel": "urn:X-bt:rels:datastreamTag",

 "val":"gust"},

 {"rel": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",

 "val": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"}

]}

]}

Furthermore, it continues with the same Hypercat catalogue sample but in JSON-LD based translation.

It can be seen that the whole catalogue now is inside a graph, the MIME type of the catalogue has

changed to JSON-LD and there are also changes to the properties showing their full URI by following

the ontology’s changes of namespaces. In addition, a new property bt-hypercat:hasItem took place into

the beginning of the catalogue having all items in an array (@id/ subject, ID’s). This is happening to

serve the ontology’s property “hasItem”.

41

{"@graph" : [{

 "@id": "http://localhost:8080/Hypercat-jsonld-full1/cat/Test1.json",

 "http://portal.bt-hypercat.com/ontologies/hypercat#isContentType" : "application/ld+json",

 "https://www.w3.org/2000/01/rdf-schema#comment": {"@language" : "en",

 "@value": "BT Hypercat DataHub Catalog"},

"http://portal.bt-hypercat.com/ontologies/hypercat#hasItem": [

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/0"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/1"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/2"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/3"}

],

 "http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch" : [

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch"},

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#PrefixSearch"},

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#MultiSearch"},

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#LexrangeSearch"},

 {"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#GeoboundSearch"}]

 },

(Above, it can be seen the catalogue’s metadata translation. Everything now looks more

structured. First there is a small description of the document with the name and type. Then there

is a hasItem property with a list of the items and then there is the supportSearch property with

the list of the various search types. The items follow each item-metadata and are inside the same

curly-bracket so the ‘href’ now is translated into ‘@id’ and the metadata are following in the

same curly-bracket. Each item will have different colour to help the reader identify them into

this example.)

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2",

 "https://www.w3.org/2000/01/rdf-schema#comment" : {"@language" : "en",

 "@value": "Met Office Datapoint UK hourly site-specific observations for Killowen as recorded in real

time by the Met Office UK Monitoring System. Parameters reported are based on the instrumentation installed

at each site."},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_title":"Met Office Datapoint Observations -

99015 (Killowen)",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_tag" : "weather",

42

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#hasSensorStream" : [

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/0"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/1"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/2"},

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/3"}

],

 "http://www.w3.org/2003/01/geo/wgs84_pos#lat" : "54.067",

 "http://www.w3.org/2003/01/geo/wgs84_pos#long" : "-6.183",

"http://portal.bt-hypercat.com/ontologies/hypercat#isContentType" : [

 "application/json",

 "application/xml",

 "text/xml",

 "text/csv"],

 "http://portal.bt-hypercat.com/ontologies/hypercat#hasLicense" : {

 "@id": "http://reference.data.gov.uk/id/open-government-licence"},

 "@type" : "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorFeed",

 "http://portal.bt-hypercat.com/ontologies/hypercat#lastUpdated" : {

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime",

 "@value": "2017-02-22T17:36:32Z"}

 },

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/0",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed" : {

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_max_value":"max_value=50",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_min_value":"min_value=-30",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text": "degrees Celsius",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_symbol":"degrees Celsius",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_type": "derivedSI",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag": "temperature",

 "@type" : "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"},

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/1",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed" : {

43

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2" },

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text":"16point compass",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_type": "contextDependentUnits",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag": "winddirection",

 "@type" : "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"},

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/2",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed" : {

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text": "miles per hour",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_symbol": "mph",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_type": "derivedUnits",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag": "windspeed",

 "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"},

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/3",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed" : {

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text": "miles per hour",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_symbol": "mph",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_type": "derivedUnits",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag" : [

 "windspeed",

 "gust"],

 "@type" : "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"}

]

}

Thus, following the above example of the BT Hypercat JSON to JSON-LD based catalogue and the

ontology, anyone can translate its catalogue easily without any problems.

Hypercat JSON-based to JSON-LD based catalogue parser

For the complete translation of a given Hypercat JSON-based catalogue to JSON-LD based catalogue

two parsers have been developed using the JavaScript programming language. The parsers are running

through the Apache Tomcat server. The parsers collect the text from the JSON file where the catalogue

is inside, then with the help of specific functions, it sets (in mind) the href, the properties and the

44

objects of the JSON-based catalogue to a triple-centric text. For example, the JSON-based Hypercat

will look like the following in the JSON file:

{"href": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/1",

 "item-metadata":[{

 "rel": "urn:X-bt:rels:belongsToSensorFeed",

 "val": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"

 },{

 "rel": "urn:X-bt:rels:datastreamUnitText",

 "val": "16 point compass"

 },{

 "rel": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type",

 "val": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"}

]}

The triple-centric will look like the following, the first line is the subject following by the predicate

and in the end is the object:

(SUBJECT)http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/1

(PREDICATE) urn:X-bt:rels:belongsToSensorFeed

(OBJECT) http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2

(SUBJECT)http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/1

(PREDICATE)urn:X-bt:rels:datastreamUnitText

(OBJECT) 16 point compass

(SUBJECT)http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/1

(PREDICATE) http://www.w3.org/1999/02/22-rdf-syntax-ns#type

(OBJECT) http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream

Additionally, the JSON-LD text can be created by JavaScript tables, so each table can have a unique

subject/href following with the predicates/rels and objects/vals of the specified subject/predicate just

like the JSON-LD. The following example it is how the (in mind) process of the parser works. It can

be seen that in the first row there is the Subject-1 following by Predicate-1 and Object-1, but in the

second row the Subject-1 is deleted. This is because is the same subject, so it does not need to be

45

shown in the JSON-LD syntax again. Then the Predicate-2 and Object 2 follows. The same goes for

the predicates. If a predicate is the same for the same subject just like the Subject-2, then the parser

deletes the predicate and shows only the object. To be more precise, the Object-2 and Object-3 of

Subject-2 will be set into an array to avoid the ‘duplicate key’ of JSON-LD.

SUBJECT PREDICATE OBJECT

SUBJECT-1 PREDICATE-1 OBJECT-1

SUBJECT-1 PREDICATE-2 OBJECT-2

SUBJECT-1 PREDICATE-3 OBJECT-3

SUBJECT-2 PREDICATE-1 OBJECT-1

SUBJECT-2 PREDICATE-2 OBJECT-2

SUBJECT-2 PREDICATE-2 OBJECT-3

SUBJECT-2 PREDICATE-3 OBJECT-4

Meanwhile, it transforms the plain properties to full URIs following the specified ontology. This triple-

centric text is now the subjects, predicates and objects of the JSON-LD based catalogue, but without

the correct keywords, it reminds of TURTLE. Then with another function, the parser sets the specific

JSON-LD keywords such as “@id”, “@type” and “@value” to complete a valid translation. In the

end, the parser prints the JSON-LD based catalogue to the HTML page. The following is an example

of JSON-LD based:

{"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/1",

"@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream",

"http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed": {

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2" },

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text":"16 point compass"}

The parsers also collect the unique subjects of every item into the catalogue to add them into an array

to the beginning of the catalogue to serve the ontology’s property hasItem. Thus, every catalogue will

have a hasItem property in the beginning just like the following example:

"http://portal.bt-hypercat.com/ontologies/hypercat#hasItem": [

{"@id": "http://api.bt-hypercat.com/events/feeds/ee9d9cd9-6953-4584-a59f-ea6fe5156ebb"},

46

{"@id": "http://api.bt-hypercat.com/events/feeds/ee9d9cd9-6953-4584-a59f-ea6fe5156ebb/datastreams/1"},

{"@id": "http://api.bt-hypercat.com/events/feeds/ee9d9cd9-6953-4584-a59f-ea6fe5156ebb/datastreams/2"},

{"@id": "http://api.bt-hypercat.com/events/feeds/ee9d9cd9-6953-4584-a59f-ea6fe5156ebb/datastreams/3"},

{"@id": "http://api.bt-hypercat.com/events/feeds/ee9d9cd9-6953-4584-a59f-ea6fe5156ebb/datastreams/4"},

{"@id": "http://api.bt-hypercat.com/sensors/feeds/a78d4c54-15ec-4a60-a7e8-492fc36143d0"}]

The second parser does the same job with the first one but with slight differences. It can translate every

JSON-based catalogue to ‘extended’ JSON-LD based catalogues, this means that every object it is into

an array for the developers who want the fully expanded form of their Hypercat catalogues.

A future function that will be added to the parsers is to download the catalogue to a JSON-LD file.

The parsers have been also uploaded to the Github’s website to encourage the large community of

developers to use them and translate their Hypercat JSON-based catalogues to JSON-LD based. This

is the link to the Github repository which includes the parsers “https://github.com/Mikegeo/hypercat-

json-ld-parser”.

{"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/1",

"@type": ["http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"],

"http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed": [{

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2" }],

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text": ["16 point compass"]}

47

Chapter 5

Hypercat JSON-LD Specification

In this chapter, there is the inspection of every feature of the Hypercat JSON-LD specification by

following the structures and the examples of the (Tachmazidis et all, 2016) and (Beart, 2016). Most of

them might be same because there were not many differences between the search types or parameters

and their meaning.

Hypercat File Format Specification: In the previous chapter, the details of how to create or translate

a JSON-LD based catalogue, with all core semantic properties and their equivalent to JSON properties

have been presented. Nevertheless, additional aspects need to be covered as well. For example, every

instance of class MetadataAnnotator requires the mandatory property

"https://www.w3.org/2000/01/rdf-schema#comment" and might contain the non-compulsory

properties such as "hypercat:containsContentType", "hypercat:hasHomepage",

"hypercat:isContentType" and "hypercat:supportsSearch". Moreover, the compulsory property

"hypercat:isContentType" must be included in all instances of the Catalogue. However, according to

the previous chapter, each JSON-LD based catalogue has been defined in JSON-LD format with the

MIME type to “application/ld+json”. The same terms of extensibility are followed along the lines of

the Hypercat 3.00 specification: (a) when a metadata relationship is unidentified should be ignored,

(b) new search type can be added but only when a catalogue server supports it, (c) a different language,

for human readable descriptions can be added, (d) old version catalogues can point to a new version,

and the opposite, without type ambiguity, and (e) the catalogue can also have any amount of other

properties and classes, if the developers want to fit in, but firstly they need to define them into an

ontology (Tachmazidis et all, 2016).

Hypercat Server API Specification: Any server who supports a JSON-LD based Hypercat should

follow the JSON-based Hypercat server specification with slight differences. Any JSON-LD based

catalogue server should deliver a “/cat-json-ld” endpoint which is easily readable to the public, and

serves a Hypercat file declared in JSON-LD. The features such as update, insert and delete in the

JSON-LD based Hypercat server, can be executed in the similar method as for a JSON-based Hypercat

server, but the result will be a JSON-LD based catalogue, not a JSON-based catalogue. The search

mechanisms, such as simple or multi can be performed in the same technique, on the top of the JSON-

LD based catalogues. In a JSON-LD based catalogue with the given url of "http://portal.bt-

hypercat.com/cat-json-ld", the simple search mechanism can be included like the following:

48

"@id": "http://portal.bt-hypercat.com/cat-json-ld",

"http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": {

"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#SimpleSearch"}

Every query parameter must be in URL form and each of them are optional. For several search

parameters, the server must return the crossing of items where the search parameters match in an item,

merging parameters with boolean AND (Tachmazidis et all, 2016). The Simple search provides the

next parameters:

i. "s", which represents the JSON-LD subject into the linked data graph.

ii. "p", which represents the property (predicate in RDF).

iii. "o", which represents the JSON-LD object or value.

Take notice that, if the (c) "o", is labelled by an IRI, then it is called object, but if it is labelled by

something else that is not IRI such as numbers, it is called value (Lanthaler & Gült, 2012). The

following is an example of how we can query a given catalogue. Note that every query parameter must

be in URL form and each of them are optional.

The following query:

?s= http://api.bt-hyperat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/2

will return any item matching the search criteria:

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/2",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed" : {

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text": "miles per hour",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_symbol": "mph",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_type": "derivedUnits",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag": "windspeed",

 "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"}

49

The following query:

?p=http://portal.bt-hypercat.com/ontologies/ hypercat#hasLicense

 &o= http://reference.data.gov.uk/id/open-government-licence

will return any item matching the search criteria:

{"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2",

 "https://www.w3.org/2000/01/rdf-schema#comment" : {"@language" : "en",

 "@value": "Met Office Datapoint UK hourly site-specific observations for Killowen as recorded in real

time by the Met Office UK Monitoring System. Parameters reported are based on the instrumentation installed

at each site."},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_title":"Met Office Datapoint Observations -

99015 (Killowen)",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_tag" : "weather",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#hasSensorStream" : [

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/0"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/1"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/2"},

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/3"}

],

 "http://www.w3.org/2003/01/geo/wgs84_pos#lat" : "54.067",

 "http://www.w3.org/2003/01/geo/wgs84_pos#long" : "-6.183",

"http://portal.bt-hypercat.com/ontologies/hypercat#isContentType" : [

 "application/json",

 "application/xml",

 "text/xml",

 "text/csv"],

 "http://portal.bt-hypercat.com/ontologies/hypercat#hasLicense" : {

 "@id": "http://reference.data.gov.uk/id/open-government-licence"},

 "@type" : "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorFeed",

 "http://portal.bt-hypercat.com/ontologies/hypercat#lastUpdated" : {

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime",

 "@value": "2017-02-22T17:36:32Z"}

 }

50

The following query:

?o=2017-02-22T17:36:32Z

will return any item matching the search criteria:

{"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2",

 "https://www.w3.org/2000/01/rdf-schema#comment" : {"@language" : "en",

 "@value": "Met Office Datapoint UK hourly site-specific observations for Killowen as recorded in real
time by the Met Office UK Monitoring System. Parameters reported are based on the instrumentation installed

at each site."},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_title":"Met Office Datapoint Observations -

99015 (Killowen)",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#feed_tag" : "weather",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#hasSensorStream" : [

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/0"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/1"},

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-

0076292fd4a2/datastreams/2"},

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/3"}

],

 "http://www.w3.org/2003/01/geo/wgs84_pos#lat" : "54.067",

 "http://www.w3.org/2003/01/geo/wgs84_pos#long" : "-6.183",

"http://portal.bt-hypercat.com/ontologies/hypercat#isContentType" : [

 "application/json",

 "application/xml",

 "text/xml",

 "text/csv"],

 "http://portal.bt-hypercat.com/ontologies/hypercat#hasLicense" : {

 "@id": "http://reference.data.gov.uk/id/open-government-licence"},

 "@type" : "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorFeed",

 "http://portal.bt-hypercat.com/ontologies/hypercat#lastUpdated" : {

 "@type": "http://www.w3.org/2001/XMLSchema#dateTime",

 "@value": "2017-02-22T17:36:32Z"}

 }

51

The following query:

?p=@type&o=http://portal.bt-hypercat.com/ontologies/bt-hypercat#Datastream

will not return any item since no item is of type Datastream. Note that simple search cannot extract

information from the underlying ontology, thus ignoring items of type SensorStream and EventStream

(classes SensorStream and EventStream are subclasses of Datastream).

Hypercat Subscription: The specification of "Hypercat 3.00" defines a straightforward subscription

service, delivering an API for polling catalogues. The client with the subscription of a Hypercat server

which provides a stream of events, will obtain a stream of events and every event will contain an event

body and name. Firstly, by fetching a catalogue and then accumulate the events that are in the

catalogue, a client can keep a synchronized version of the given catalogue. A given JSON-LD based

catalogue can use the same Hypercat subscription mechanism with the JSON-based but with slight

changes. A JSON-LD based catalogue that can be use subscription, must have the property

"hypercat:eventsource". For events of a specific catalogue item in the catalogue, the event name is the

(unique) JSON-LD's subject (coming with the keyword @id) for the stipulated item. Furthermore, the

event body for an item update event is the nest of JSON-LD properties that are associated to the

specified item, whereas, the event body is a blank string for an item deletion event.

Hypercat Resource Subscription: The link to resources over URIs is one of the capabilities of

Hypercat. This kind of resources might include real-time data compulsory for numerous applications.

In the field of IoT, there are numerous use-cases where client applications required real-time data feeds

from devices (sensors), hubs (Datahubs) and further services. A previous option was to place all data

directly into Hypercat catalogues, but the idea was unsuitable because of the plain data model of a

JSON-based catalogue. In contrast, a JSON-LD based catalogue could solve the problem of inserting

data straight inside the Hypercat catalogue, assuming that the entered data is semantically enhanced

and is provided in JSON-LD syntax.

Hypercat Signing: Hypercat Signing for a JSON-LD based catalogue can be done in an analogous

way to a JSON-based catalogue, since JSON-LD is fully compatible with plain JSON (Lanthaler &

Gült, 2012). For each item in the JSON-LD based catalogue, the signature may be added after the

unique item’s @id. In this case, the digest can cover the @id and the item. For the entire Hypercat

JSON-LD based catalogue, the signature may be added to the top of the document under the

catalogue’s @id. In this case, the digest covers both catalogue and all items. A detailed description of

signing and verification is referred to future work.

Hypercat Security Access Hints: The systems that support Hypercat must deliver open data with

crossed links when is achievable. However, there are numerous systems that will possibly deliver data

only when the client is authenticated. Furthermore, where data such as resources or catalogues are

52

discoverable, but without the authentication the data are not accessible. The authentication information

can be presented to the clients by the property "hypercat:accessHint". This property should point to

either machine or human readable description. A related point to consider is that, if there are multiple

"hypercat:accessHint" statements, the client must presume that the data can be retrieved using multiple

verification systems.

Hypercat Security Credential Acquisition: To have the opportunity to use data such as, catalogues

and resources, a Hypercat catalogue can support numerous methods of acquiring access credentials.

Consequently, a catalogue or item, can use the property "hypercat:acquireCredential" to point a

webpage which can describe itself or a resource that will help the client to acquire credentials. A related

point to consider is that if there are multiple "hypercat:acquireCredential" declarations, the client must

presume that credentials can be acquire-able in several ways.

Hypercat Geographic Bounding Box Search: The geographic bounding box search gives the

permission to filter the items that fall inside a geographic area, which can be defined by a bounding

box. The JSON-LD properties that a JSON-LD based catalogue can use again are:

"http://www.w3.org/2003/01/geo/wgs84pos#lat"

"http://www.w3.org/2003/01/geo/wgs84pos#long"

and are well-defined by an exterior ontology. Additionally, a client gets the signal that the specified

Hypercat JSON-LD based catalogue can support the geographic bounding box search, only with the

following information:

"@id": "http://portal.bt-hypercat.com/cat-json-ld",

"http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": {

"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#GeoboundSearch"}

The following parameters are supported by the geographic search:

i. "geobound-minlat", which represents the lower limit of the latitude of the bounding box.

ii. "geobound-maxlat", which represents the higher limit of latitude of the bounding box.

iii. "geobound-minlong", which represents the lower limit of longitude of the bounding box.

iv. "geobound-maxlong", which represents the higher limit of longitude of the bounding box.

Geographic search can be executed by presenting the above-mentioned parameters.

53

Hypercat Lexicographic Range Search: The lexicographic search gives the permission and the

opportunity to search for items which, (when organised lexicographically), fall among a minimum and

maximum. Additionally, a client gets the signal that the specified Hypercat JSON-LD based catalogue

can support the lexicographic range search, only with the following information:

"@id": "http://portal.bt-hypercat.com/cat-json-ld",

"http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": {

"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#LexrangeSearch"}

Moreover, the property "hypercat:lastUpdated" is available for dates and time. The following

parameters are supported by the lexicographic search:

i. "lexrange-p", which represents the JSON-LD's property to search on.

ii. "lexrange-min", which represents the lower limit of range to return (inclusive).

iii. "lexrange-max", which represents the higher limit of range to return (non-inclusive).

Lexicographic search can be executed by presenting the aforementioned parameters.

Hypercat Robots Exclusion Search: A Hypercat JSON-LD catalogue has also the ability to provide

information to the client for a related "robots.txt" file, by applying the property

"hypercat:hasRobotstxt". This can be used by websites to connect with web crawlers and additional

web robots. Take notice that, if a catalogue has a robots exclusion document, then the document must

be placed at the BASE URL with the name "robots.txt", and the value (JSON-LD’s object) must be a

URL with the following form "\[BASE URL]/robots.txt".

Hypercat Multi-Search: The Hypercat has the ability to support numerous search extension types.

These extensions are mostly alternative forms of the simple search, and they can only permit for simple

connections with the catalogue. In order to combine geographic search and lexicographic range search

two independent queries can be submitted and their results can be merged manually by the client,

resulting in an inefficient solution. The multi-search lets the client to put together simple or multi

search mechanisms and capture the wanted items. Additionally, a client gets the signal that the

specified Hypercat JSON-LD based catalogue can support the multi-search, only with the following

information:

"@id": "http://portal.bt-hypercat.com/cat-json-ld",

"http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": {

"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#MultiSearch"}

54

A multi-search query takes a single JSON object. The following parameters are supported by the multi-

search:

i. "query", which represents a JSON object, which holds a URL query string as passed to

underlying search mechanism,

ii. "intersection", which represents a JSON array of objects containing query, intersection or

union.

iii. "union", which represents a JSON array of objects containing query, intersection or union.

All searches can be nested to allow a complex combining of intersection and union.

Hypercat Prefix Match Search: The prefix search permits the search for items where the search

parameter is a prefix match of a catalogue item. Additionally, a client gets the signal that the specified

Hypercat JSON-LD based catalogue can support the prefix match search, only with the following

information:

"@id": "http://portal.bt-hypercat.com/cat-json-ld",

"http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": {

"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#PrefixSearch"}

If there are several search parameters, the server must return the connection of items where search

parameters match with a single item, mixing parameters with boolean AND. The following parameters

are supported by the prefix match search:

i. "prefix-s", which represents a prefix of the JSON-LD's subject.

ii. "prefix-p", which represents a prefix of the JSON-LD's property.

iii. "prefix-o", which represents a prefix of JSON-LD's object.

Hypercat Linked Data rel: To define that the Hypercat JSON rel item is an instance of RDF class,

the keyword @type must be added. Thus, no new property needs to be added.

Hypercat License rel: Hypercat catalogues or linked resources can be accessible under a precise

license. Moreover, the property "hypercat:hasLicense" inside a catalogue lets the clients to specify the

license under which the data is released. This property must show a machine or human understandable

form of the license. When there are numerous "hypercat:hasLicense" declarations, the client should

expect that there are numerous licences for the specified resource.

55

Chapter 6

Semantic Search

Semantic search lets the client use SPARQL-like queries to the semantically enriched Hypercat

catalogues, delivering a search type that detects the underlying semantic hierarchy. As mentioned

above, JSON-LD can support every RDF major concept that’s why SPARQL can be used to query

every JSON-LD based catalogue. Any valid JSON-LD catalogue is semantically enriched, thus

supporting queries that return all catalogue items belonging to a specific class or its subclasses. When

a query has the rel (or JSON-LD predicate) which is "@type" (rdfs:type) and val (or JSON-LD object)

which is "bt-hypercat:SensorFeed", and with the BT catalogue’s ontology mapping that the "bt-

hypercat:SensorFeed" is a subclass of "bt-hypercat:Feed", semantic search will return all catalogue

items that are instances of the two "bt-hypercat:Feed" and "bt-hypercat:SensorFeed". For example, it

can return the "bt-hypercat:belongsToSensorFeed", "bt-hypercat:feed_title", "bt-hypercat:feed_tag"

of each catalogue items and help the searcher find relatively items with the same "bt-

hypercat:SensorFeed" of the given query. This would not be able to be done without the use of the

Hypercat JSON-LD to code the subclass ontology and work with it. Additionally, a client gets the

signal that the specified Hypercat JSON based catalogue can support the semantic search, only with

the following rel, val information:

"rel": "urn:X-hypercat:rels:supportsSearch"

"val": "urn:X-hypercat:search:semantic"

whilst a JSON-LD based catalogue should contain the following:

"@id": "http://portal.bt-hypercat.com/cat-json-ld",

"http://portal.bt-hypercat.com/ontologies/hypercat#supportsSearch": {

"@id": "http://portal.bt-hypercat.com/ontologies/hypercat#SemanticSearch"}

If there are many search parameters, the server has to put these parameters into a single triple pattern

and run a SPARQL-like query, with reasoning based on the both catalogue's ontology and catalogue

itself. The following parameters are supported by the Semantic search for JSON-based and JSON-LD

based catalogues:

i. "sem-href" ("sem-s" for JSON-LD), which represents the resource URI (the subject for

JSON-LD).

56

ii. "sem-rel" ("sem-p" for JSON-LD), which represents the semantic metadata relation (the

predicate for JSON-LD).

iii. "sem-val" ("sem-o" for JSON-LD), which represents the semantic metadata value (the

object for JSON-LD) (Tachmazidis et all, 2016).

The Semantic search can be important and a useful addition to the Hypercat catalogue. This kind of

search aims to accurate and make better the search experience of the user by understanding the user’s

intention on a given query (Lashkari et al, 2017). This search type can find relative items to the one

the user search for and show them to the results. For Hypercat Semantic search can also find relative

sensors, datasreams and events to the one the user search for, and then show a results list not only of

the item the user search and its meta-data but also every single item and its meta-data which has a

relative connection. For example, searching for any datastream in the Hypercat catalogue:

 ?sem-p=@type&sem-o=http://portal.bt-hypercat.com/ontologies/bt-hypercat#Datastream

the result will not only show items of type Datastream but also any subclass of the class Datastream,

namely it will get items with “@type”:

 "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"

"@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#EventStream"

and return any item matching the search criteria:

 {"@id":"http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/0",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed" : {

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_max_value":"max_value=50",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_min_value":"min_value=-30",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text": "degrees Celsius",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_symbol":"degrees Celsius",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_type": "derivedSI",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag": "temperature",

 "@type" : "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"},

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/1",

57

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed" : {

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2" },

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text":"16point compass",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_type": "contextDependentUnits",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag": "winddirection",

 "@type" : "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"},

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/2",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed" : {

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text": "miles per hour",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_symbol": "mph",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_type": "derivedUnits",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag": "windspeed",

 "@type": "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"},

 {"@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2/datastreams/3",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#belongsToSensorFeed" : {

 "@id": "http://api.bt-hypercat.com/sensors/feeds/fa899552-044a-48e2-bdbe-0076292fd4a2"},

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_text": "miles per hour",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_symbol": "mph",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_unit_type": "derivedUnits",

 "http://portal.bt-hypercat.com/ontologies/bt-hypercat#datastream_tag" : [

 "windspeed",

 "gust"],

 "@type" : "http://portal.bt-hypercat.com/ontologies/bt-hypercat#SensorStream"}

The implementation of the semantic search has not been tested yet in a real server because of the lack

of time, but the following paradigm of the design, shows how a semantic search can work with a

Hypercat JSON-LD based catalogue. The MongoDB is used to achieve SPARQL-like queries of JSON

data and the reasoning of the ontology can be achieved applying the reasoners Pellet and HermiT. The

Hypercat JSON-LD catalogue can be stored into a MongoDB following the instructions of (Kellogg,

2012) telling that MongoDB can work and query perfectly with JSON-LD because MongoDB

document model is a normal fit for JSON-LD. The Figure 9 shows the Semantic search workflow from

58

the JSON to JSON-LD, then following the ontology to the reasoners additionally from the reasoners

to Mongo-DB and at the end to the front-end webpage.

Figure 9: Semantic Search Implementation's Design

Another paradigm of the semantic search is once the JSON-LD and the Ontology pass from the

reasoner the JSON-LD will be stored into the MongoDB and will stay there to be queried. There will

be no more reasoning after the first time because then it will get all the details and information from

the subclass hierarchy. In addition, when a user gives a query then the query will go only to the database

and then return with the results in the front-end webpage. Thus, for a given query where the user

searches for all of the Datastreams into the catalogue, the Semantic search through MongoDB it returns

not only the directed Datastreams, but all of the derived Datastreams (through reasoning), such as

SensorStream and EventStream.

59

Chapter 7

Conclusion

In this thesis, a semantic enrichment for the Hypercat specification has been presented, which allows

the description of a JSON-LD based catalogue. Moreover, it was displayed how existing JSON-based

catalogues can be translated into JSON-LD based catalogues in an automatic way. It is worth noting

that, the Hypercat system its written in JSON language so it is easier for a JSON developer to assimilate

and translate or even create the catalogue to JSON-LD and having all the semantic features, instead of

translating it to any other language. The challenge was to create a Semantic Hypercat system which

has the ability of high interoperability, without losing everything from the main Hypercat specification

and JSON syntax. Additionally, to enchase the catalogues with semantic search and to complete the

whole translation from a JSON-based catalogue to JSON-LD based catalogue with the minimum

requirements, such as removing the ‘context’ from the JSON-LD and develop the catalogue in a more

extended form. In future work, there is a plan to standardize the Hypercat JSON-LD specification by

working closely with the Hypercat community and apply it in the world. There will be also an

implementation of the Semantic search mechanism with real IoT data in a real Datahub, and an

investigation of how Semantic Hypercat can be more impactful in any company or organization. In

this way, rich Hypercat catalogues will deliver a high degree of interoperability.

60

References

Antoniou, G. & Harmelen, F. v. (2004). Web Ontology Language: OWL. 67-92.

Antoniou, G. & Harmelen, F. v. (2008). A semantic web primer (2nd ed.). Cambridge, Mass: MIT

Press.

Beart, P. (2016). Hypercat 3.00 Specification.

Bellini, P., Nesi, P., & Rauch, N. (2014). Smart City data via LOD/LOG Service. Retrieved from

https://www.researchgate.net/publication/262487273_Smart_City_data_via_LODLOG_Service.

Bradley, A. (2014). What is JSON-LD? A Talk with Gregg Kellogg. Retrieved from

http://www.seoskeptic.com/what-is-json-ld/.

d'Aquin, M., Adamou, A., Daga, E., Liu, S., Thomas, K., & Motta, E. (2014). Dealing with Diversity

in a Smart-City Datahub. 68-82.

Davies, J. & Fisher, M. (2015). Internet of things - Why now?. 9. 35-42.

Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. (2013). Internet of things (IoT): A vision,

architectural elements, and future directions. Future Generation Comp. Syst., 29(7), 1645-1660.

Ismail, S., & Shaikh, T. (2016). A Literature Review on Semantic Web–Understanding the Pioneers’

perspective. In The Sixth International Conference on Computer Science, Engineering and

Applications (Vol. 6, No. 11, pp. 15-28).

JSON. (N/A). Introducing JSON . Retrieved from http://www.json.org/.

Kellogg, G. (2012). JSON-LD and MongoDB, NoSQL Now! 2012, San Jose, CA, USA. Retrieved

from https://www.slideshare.net/gkellogg1/jsonld-and-mongodb.

Lanthaler, M. & Gült, C. (2012). On Using JSON-LD to Create Evolvable RESTful Services. In

Proceedings of the Third International Workshop on RESTful Design, Lyon, France, Retrieved from

https://json-ld.org/learn.html.

Lashkari, F., Ensan, F., Bagheri, E., & Ghorbani, A. A. (2017). Efficient indexing for semantic

search. Expert Systems with Applications, 73, 92-114. doi:10.1016/j.eswa.2016.12.033

Lecue, F., Tucker, R., Bicer, V., Tommasi, P., Tallevi-Diotallevi, S., & Sbodio, M,L.(2014).

Predicting Severity of Road Traffic Congestion Using Semantic Web technologies. 611-627.

Murelo, R., Almeida, A., Azkune, G., Mainetti, L., Mighali, V., Patrono, L. ... Sergi, I. (2017). An

AAL system based on IoT technologies and linked open data for elderly monitoring in smart cities. In

2017 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech),

Split, Retrieved from https://morelab.deusto.es/media/publications/2017/conferencepaper/an-aal-

system-based-on-iot-technologies-and-linked-open-data-for-elderly-monitoring-in-smart-cities.pdf.

Pauwels, P., Zhang, S., & Lee, Y. (2017). Semantic web technologies in AEC industry: A literature

overview. Automation in Construction, 73, 145-165. doi:10.1016/j.autcon.2016.10.003

61

Phuoc , D. & Hauswirth, M. (2009). Linked Open Data in Sensor Data Mashups. In Proceedings of

the 2nd International Workshop on Semantic Sensor Networks (SSN09). 522. , Retrieved from

https://www.researchgate.net/publication/230745492_Linked_Open_Data_in_Sensor_Data_Mashups

.

Sporny, M. (2014, January 21). JSON-LD and Why I Hate the Semantic Web [Web log post].

Retrieved from http://manu.sporny.org/2014/json-ld-origins-2/.

Stolz, A., Rodriguez-Castro, B., & Hepp, M. (2013). RDF Translator: A RESTful Multi-Format Data

Converter for the Semantic Web. Retrieved from http://www.stalsoft.com/publications/rdf-translator-

TR.pdf.

Su, X., Riekki, J., Nurminen, J. K., Nieminen, J., & Koskimies, M. (2015). Adding semantics to

internet of things. Concurrency and Computation: Practice and Experience, 27(8), 1844-1860.

doi:10.1002/cpe.3203

Tachmazidis, I., Davies, J., Batsakis, S., Antoniou, G., Duke, A., & Stincic Clarke, S.

(2016). Hypercat RDF: Semantic Enrichment for IoT.

Tachmazidis, I., Davies, J., Batsakis, S., Antoniou, G., Duke, A., & Stincic Clarke, S. (2017). A

Hypercat-enabled Semantic Internet of Things Data Hub: Technical Report.

The Linked Open Data Cloud. (2018). About the diagram. Retrieved from https://lod-cloud.net/.

W3C. (2012). OWL 2 Web Ontology Language Document Overview (Second Edition). Retrieved

from https://www.w3.org/TR/owl2-overview/.

W3C. (2014). RDF 1.1 Turtle Terse RDF Triple Language. Retrieved from

https://www.w3.org/TR/turtle/.

W3C. (2017). JSON-LD Primer. Retrieved from https://json-ld.org/primer/latest/.

W3C. (2018). JSON-LD 1.1 A JSON-based Serialization for Linked Data. Retrieved from

https://w3c.github.io/json-ld-syntax/.

http://www.stalsoft.com/publications/rdf-translator-TR.pdf
http://www.stalsoft.com/publications/rdf-translator-TR.pdf

	Abstract
	Acknowledgements
	Chapter 1
	Introduction
	Research Contribution
	Thesis Structure

	Chapter 2
	Background
	Semantic Web
	BT Hypercat Data Hub
	Hypercat 3.00 Specification
	Hypercat Ontology
	BT Hypercat Ontology
	JSON-LD - JSON for Linking Data
	JSON and JSON-LD
	Linked Open Data (LOD) and Internet of Things (IoT)
	Linked Open Data (LOD) and Sensors
	Linked Open Data (LOD) for Smart Cities
	Summary

	Chapter 3
	Related Work

	Chapter 4
	Hypercat JSON to Hypercat JSON-LD
	Hypercat BT JSON-based to JSON-LD based
	Example from JSON to JSON-LD based catalogue
	Hypercat JSON-based to JSON-LD based catalogue parser

	Chapter 5
	Hypercat JSON-LD Specification

	Chapter 6
	Semantic Search

	Chapter 7
	Conclusion

	References

