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Non-Fermi-Liquid Fixed Point for an Imbalanced Gas of Fermions in 1þ � Dimensions
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We consider a gas of two species of fermions with population imbalance. Using the renormalization

group in d ¼ 1þ � spatial dimensions, we show that for spinless fermions and 2> �> 0 a fixed point

appears at finite attractive coupling where the quasiparticle residue vanishes, and identify this with the

transition to Larkin-Ovchinnikov-Fulde-Ferrell order (inhomogeneous superconductivity). When the two

species of fermions also carry spin degrees of freedom we find a fixed point indicating a transition to spin

density wave order.

DOI: 10.1103/PhysRevLett.104.190403 PACS numbers: 03.75.Ss, 74.40.Kb, 75.10.Lp

Experiments on ultracold atomic gases allow fermionic
pairing phenomena to be investigated with a degree of
control and purity hitherto unknown in solid state systems.
The preeminent example is the observation of the cross-
over from Bose-Einstein condensation (BEC) to Bardeen-
Cooper-Schreiffer (BCS) superfluidity effected by tuning
the scattering length between two atomic components us-
ing a Feshbach resonance [1–4].

It is standard lore that pairing between two components
at equal densities—hencewith equal Fermi wave vectors—
occurs for arbitrarily weak interactions in the ground state,
though the transition temperature may become very small.
By contrast, an imbalance in the two populations requires a
sufficiently strong attraction before pairing takes place [5].
The first experiments on the imbalanced system [6–9]
confirmed this picture, together with the expectation that
the transition between the normal and BEC superfluid
states is first order, leading to phase separation.

An alternative route to pairing in the imbalanced case
was introduced in Refs. [10,11]. The Larkin-Ovchinnikov-
Fulde-Ferrell (LOFF) state, as it is now called, is formed
from pairs with center-of-mass momentum equal to the
difference in Fermi momenta. Within mean-field theory the
LOFF phase occupies a rather small part of the phase
diagram in terms of imbalance and interaction strength
[12] (see Fig. 1). In lower spatial dimension, the LOFF
phase is expected to be more prominent [13]. Experi-
mentally, there is some evidence that the LOFF state occurs
in the heavy fermion superconductor CeCoIn5 [14,15].

In distinction to the normal-BCS transition, the normal-
LOFF transition is expected to be continuous at low tem-
peratures. It is therefore somewhat surprising that to date
there has been no attempt to understand the nature of the
quantum phase transition out of the Fermi liquid state that
occurs with increasingly attractive interaction. It is the
purpose of this Letter to provide that understanding for
general dimension.

Our main findings can be summarized as follows. Along
the line in d > 1 that forms the phase boundary between
the normal and LOFF states in a diagram of polarization
versus interaction strength (solid red line in Fig. 1) the

critical state is characterized by a singular interaction
between fermions of the two species with antiparallel
momenta. This leads to an incoherent spectral function
for particles at the Fermi surface

AsðjKj ¼ KF;s; !Þ �!��1; (1)

where s ¼ a, b labels the species, with an exponent � that
varies continuously along the critical line as a function of
the polarization P ¼ ðna � nbÞ=ðna þ nbÞ. This line is a
higher dimensional analog of the Luttinger liquid in one
dimension. For weak polarization, P � 1, this result re-
mains true for d < 3, including the interesting case d ¼ 2.
As the transition is approached from the normal phase, the
quasiparticle residue vanishes continuously. It is our hope
that some of these predictions can be probed in an ultracold
gas by the recently developed technique of momentum-
resolved rf spectroscopy [16,17]. Towards the end of this
work we present an extension to the problem of spin
density wave ordering in systems with particle and hole
Fermi surfaces, which may be of relevance to the recently
discovered iron-based pnictide superconductors [18].
In what follows we assume na > nb and hence the Fermi

wave vectors obeyKF;a > KF;b. The energy of a fermion of
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FIG. 1 (color online). Schematic phase diagram showing the
continuous quantum phase transition between the normal Fermi
liquid and LOFF states as a function of interaction strength and
imbalance. The LOFF-BCS transition is first order, leading to
phase separation. Inset: vanishing of the quasiparticle residue in
the Fermi liquid as the transition is approached along the bold
horizontal arrow. Note that the exponent varies continuously
with P .
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species s is given by �sðKÞ ¼ �sðKÞ ��s, where �sðKÞ ¼
K2=2ms and �s ¼ K2

F;s=2ms, with mass ms. Near their

respective Fermi surfaces, where we expect the important
physics to occur, the fermions have an approximately
linear dispersion: �sðKÞ ¼ vF;skþOðk2Þ, where vF;s ¼
KF;s=ms is the Fermi velocity and k ¼ K � KF;s is the

momentum relative to the surface. The effective fermionic
Hamiltonian we will work with is

H ¼ X

K;s

�sðKÞc y
s ðKÞc sðKÞ

þ V
X

KK0Q
c y

b ðQ�KÞc y
a ðKÞc aðK0Þc bðQ�K0Þ;

(2)

with a point interaction V that acts only between the differ-
ent components and where we have set @ ¼ 1.

Cooper’s problem.—Consider a pair of fermions of ei-
ther species, above their respective Fermi seas. The two
fermions interact only with each other, with the Fermi seas

serving only to block states below the Fermi level [19].
Solving the two-particle Schrödinger equation and impos-
ing the restrictions due to Pauli blocking leads to the
condition

� 1

V
¼

Z
jQ�Pj>KF;a
jPj>KF;b

ddP

ð2�Þ2
1

�aðQ� PÞ þ �bðPÞ � E
: (3)

where Q is the center-of-mass momentum. A bound state
corresponds to E ¼ �a þ�b þ Eb for some Eb < 0, and
to find such a solution for V small requires that the mo-
menta of the two particles are close to antiparallel. Setting
jQj ¼ KF;a � KF;b and imposing a momentum shell cutoff

of thickness � around each Fermi surface, we see that the
angle between P and Q is limited as P� KF;b ! 0 by the

condition (see Fig. 2)

� <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KF;aðP� KF;bÞ

QKF;b

s
:

Setting Eb ¼ 0 to find the threshold for bound state forma-
tion, the right-hand side of Eq. (3) becomes for ��KF;s

Sd�1

ð2�Þdðd� 1Þ
�
2KF;aKF;b

Q

�ðd�1Þ=2 Z KF;bþ�

KF;b

dP
ðP� KF;bÞðd�1Þ=2

2 �vFðP� KF;bÞ ¼ 2S�
ð2�Þd�2

�
2KF;aKF;b

Q

�
�=2 ��=2

2 �vF

; (4)

where Sd ¼ 2�d=2=�ðd=2Þ is the area of the unit sphere in
d dimensions and �vF ¼ ðvF;a þ vF;bÞ=2. For small � �
d� 1, S� � �, Eq. (3) becomes

� 1

V
¼ 1

2� �vF

�
2KF;aKF;b

Q

�
�=2 ��=2 ���=2

�
; (5)

where we have introduced a small infrared cutoff �. In the
limit � ! 0 there is a logarithmic singularity logð�=�Þ,
leading to a logarithmically small bound state energy for
arbitrary negative V. This divergence in the particle-
particle (PP) scattering channel is a consequence of
Fermi surface nesting, �aðQ� PÞ þ �bðPÞ ¼ 0, for anti-

parallel fermions of the two species, familiar from the
usual Cooper problem and the BCS theory. The feature
that we wish to emphasize is that in the presence of
imbalanced Fermi surfaces, the interaction of antiparallel
fermions only produces a logarithm in d ¼ 1. In the renor-
malization group (RG) sense it is marginal in d ¼ 1,
becoming irrelevant with dimension �=2 for d > 1. The
above calculation neglects however the particle-hole (PH)
contribution to scattering, which motivates the following
more careful RG analysis. Previous RG studies with � � 0
have focused on the case P ¼ 0 [20,21].
RG calculation.—The scattering behavior is encapsu-

lated by the four point vertex function, �, the only con-
tributions to which at one loop order are the bubble
diagrams shown in Fig. 3, corresponding to PP and PH
excitations. For pair momentum Q ¼ KF;a � KF;b and

vanishing external frequency, ! ! 0, these may be eval-
uated for small angles. The result for the PP bubble is

� V2 4S�
ð2�Þd�2

�
2KF;bKF;a

Q

�
�=2 ��=2

2 �vF

: (6)

Here the factor of 2 relative to Eq. (5) is due to an equal
contribution from pairing below the Fermi surfaces. A
comparable treatment results in a similar expression for
the PH bubble, but with the opposite sign and Q ! Q0 ¼
KF;a þ KF;b. Combining the terms, we have for scattering

of an antiparallel pair at the Fermi surface

� ¼ V � V2
2S�ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KF;bKF;a

p Þ�=2
ð2�Þ1þ� �vF�

2
��=2X þ . . . ; (7)

with

FIG. 2 (color online). Pairing of majority (blue [dark gray])
and minority (red [medium gray]) fermions. Left: jQj ¼ KF;a �
KF;b leads to allowed values of fermion momentum indicated by

the dash bounded region. Right: jQj � KF;a � KF;b yields

smaller allowed regions (cf. the P ¼ 0 case [22]).
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X ¼ Q��=2 �Q0��=2

ðKF;aKF;bÞ��=4
: (8)

The ��=2 dependence of the one-loop correction at Q ¼
KF;a � KF;b, should be contrasted with the � dependence

of the correction at other momenta (see Fig. 2). Dropping
these corrections in the scaling limit �=KF;a=b ! 0 gives

the Fermi liquid state characterized by the Landau func-
tions, as in Ref. [22]. Hence the LOFF coupling describes
the most important corrections to the Fermi liquid for � <
2 or d < 3.

By demanding cutoff independence, � d
d�� ¼ 0 and

defining a dimensionless coupling, g, via

g ¼ S�ð2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KF;bKF;a

p Þ�=2
ð2�Þ1þ�� �vF

V; (9)

we obtain the beta function

�ðgÞ ¼ ��
d

d�
g ¼ � �

2
g� Xg2 þ . . . (10)

Hence there is a nontrivial fixed point g? ¼ � �
2X , which is

unstable as illustrated in Fig. 4. Notice the difference from
the more familiar situation, typified by the Wilson-Fisher
fixed point, in which the interacting and free fixed points
merge as the critical dimension is approached. In this case,
the vanishing of X as � ! 0means that� vanishes, leaving
the fixed point at finite coupling. The � ¼ 0 cancellation
extends to all orders (this may be shown, for example,
using Ward identities [23]) and hence �ðgÞ ¼ 0 for a range
of g, indicating the existence of a Luttinger liquid critical
phase.

For � > 0 and weak imbalance, KF;a � KF;b, the PP

contribution to Eq. (8) dominates and the fixed point occurs
at weak coupling

g? ¼ � �

2

�
KF;a � KF;bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KF;aKF;a

p
�
�=2

: (11)

Integrating the flow for jgj � jg?j yields g ¼

g0ð�=�0Þ�=2, where g0 and �0 are the initial conditions
for the scaling. Consequently V is independent of �. This
is the expected result for couplings when P ¼ 0 and Q �

0 [22]. In contrast, when g ¼ g? we find V �����=2 so
that the coupling becomes increasingly attractive as �
decreases. The situation for P � 1 corresponds to a mi-
croscopic perturbation theory in which the vertex is given
as a geometric sum of PP bubbles.
For strong imbalance we may expand X as a power

series in KF;b=KF;a, X � �KF;b=KF;a. As a result � is

given by

�ðgÞ ¼ � �

2
g� �

KF;b

KF;a

g2 þ . . . (12)

The fixed point is now at strong coupling, independent of �,
and higher order contributions should then be taken into
account. As such it is not possible to make quantitative
statements about the strongly imbalanced case, P � 1
using this method.
We now turn to the fermion self-energy. The one-loop

contribution produces a routine frequency independent
shift which may be absorbed by the chemical potential,
so as to keep KF;s fixed. The first significant behavior is

found by calculating the two loop ‘‘rising sun’’ diagram,
yielding

@Re�R
s ðjKj ¼ KF;s; !Þ

@!

��������!¼0
¼ �g2Cs;�

4�
þOðg3Þ: (13)

Though the coefficientCs;� depends on the ratioKF;a=KF;b,

it goes to unity in the limit � ! 0. Note that Eq. (13) arises
from scattering of almost antiparallel particles of the two
species.
� independence of the physical correlation functions

necessitates the introduction of a multiplicative field re-

normalization c phys
s ¼ Z1=2c s. Z is fixed by demanding �

independence of the physical Greens function

G
phys
s ðjKj ¼ KF;s; !Þ ¼ Z

!� �R
s ðjKj ¼ KF;s; !Þ : (14)

This implies

d lnZ

d ln�
¼ �Cs;�

g

2�
�ðgÞ ¼ Cs;�

g2

4
þOðg3Þ; (15)

so that at g ¼ g?, Z ! 0 as � ! 0. At the fixed point the
scaling behavior of the propagator is given by

Gphys
s ðjKj ¼ KF;s; !Þ �!��1; (16)

where the critical exponent � ¼ Cs;�g
2
?=4 ¼ Cs;��

2=16X2.

Hence, the quasiparticle pole is replaced by a branch cut
with attendant power law divergent spectral function. It is
also enlightening to determine the dependence of Z on the
coupling as it approaches g?. By linearizing the flow
equations near the fixed point we may derive the following
relation between the start and end points of the flow, (Z0,
g0) and (Z, g), respectively,

FIG. 3. The two diagrams contributing to the vertex at one loop
order. Dashed and solid lines indicate majority (a) and minority
(b) propagators, respectively. The notation is explained in the
text.

FIG. 4. Flow diagram for the spinless case, indicating Fermi
liquid (FL) and LOFF phases.

PRL 104, 190403 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
14 MAY 2010

190403-3



Z� Z0

�
g0 � g?
g� g?

�
2�=�

: (17)

Using the above we may extract the value of the Fermi
liquid quasiparticle residue, Z, due to an initial coupling
g0. If we take g0 > g? so that the coupling flows to g ¼ 0,

the final value of Zwill depend on g0 as Z� ðg0 � g?Þ2�=�
(see inset to Fig. 1).

It is possible to extend the calculation above to treat
components that themselves have internal degrees of free-
dom. In the case that a and b are both spin half particles,
the quartic part of the Hamiltonian becomes

H int ¼
X

�;�0
½ðVek	�;�0 þ Ve?	�;��0 Þc y

b;�c
y
a;�0c a;�c b;�0

þ ðVdk	�;�0 þ Vd?	�;��0 Þc y
b;�c

y
a;�0c a;�0c b;��;

(18)

where we have suppressed momentum labels. Clearly there
is no discernible difference between processes due to Vek
and those due to Vdk. Therefore we define Vk ¼ Vek þ Vdk.
If Vk ¼ �Vd? Eq. (18) is equivalent to an anisotropic

Heisenberg interaction, with Jz ¼ 4Vk and Jxy ¼ 2Ve?.
Focusing on this case, we define dimensionless couplings,
gl ¼ JlA, where

A ¼ 2S�ðQ��=2 þQ0��=2Þ
� ð2KF;aKF;b�Þ�=2=ð� �vFð2�Þ1þ�Þ:

Keeping only the lowest order terms in (so that X ¼ 0) one
finds

�ðgzÞ ¼ � �

2
gz þ 1

4
g2xy þ . . . ; (19)

�ðgxyÞ ¼ � �

2
gxy þ 1

4
gxygz þ . . . (20)

We discern that there is a nontrivial fixed point at gz? ¼
gxy? ¼ 2�. Concomitantly, and in terms of the Heisenberg

exchange couplings, there is a transition to spin density
wave order at antiferromagnetic exchange Jz? ¼ Jxy? ¼
2�=A.

An experimentally relevant scenario is that of interacting
electron and hole pockets [24]. Such systems have been
investigated extensively in the context of excitonic transi-
tions and antiferromagnetism (see for example [25]) and
recently because of interest in the high temperature super-
conductivity of iron pnictides [26]. In the calculation pre-
sented here, switching one of the components from par-
ticlelike to holelike alters the dispersion as �K;s ! �K;h ¼
�vF;hk and changes the pairing wave vector to jQj ¼
KF;e þ KF;h where the subscripts e and h indicate electrons

and holes, respectively. In terms of Eqs. (19) and (20) the
effect is to flip the sign of the Oðg2Þ terms. Again taking
Vk ¼ �Vd?, the fixed point is at gz? ¼ �gxy? ¼ �2� or

equivalently, for ferromagnetic exchange Jz? ¼ �Jxy? ¼
�2�=A.
In this Letter we have applied the renormalization group

to polarized two species fermi gases in 1 � d < 3 dimen-
sions. The central result for spinless fermions is the ap-
pearance of a non-Fermi-liquid fixed point, characterized
by finite pairing wave vector ( center of mass momentum)
and power law spectral function, with an exponent that
depends on the polarization. For fermions that carry spin,
we have shown that there are nontrivial fixed points that
describe magnetic ordering of the spin density wave type.
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