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We describe an algorithm for studying the entanglement entropy and spectrum of two-dimensional (2D)
systems, as a coupled array of N one-dimensional chains in their continuum limit. Using the algorithm to study
the quantum Ising model in 2D (both in its disordered phase and near criticality), we confirm the existence of
an area law for the entanglement entropy and show that near criticality there is an additive piece scaling as
ceff log(N )/6 with ceff ≈ 1. Studying the entanglement spectrum, we show that entanglement gap scaling can be
used to detect the critical point of the 2D model. When short-range (area law) entanglement dominates we find
(numerically and perturbatively) that this spectrum reflects the energy spectrum of a single quantum Ising chain.
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In the past decade concepts borrowed from information
theory have become important tools in analyzing the properties
of many-body quantum systems.1 The preeminent quantity
in this regard is the bipartite entanglement entropy SE .
This measure of nonlocal quantum entanglement can be
used to characterize quantum critical points,2–4 access hidden
topological order,5–8 and provides a simple measure for the
applicability of the density matrix renormalization group
(DMRG), one of the most commonplace numerical techniques
in low dimensions.3,9,10

Most is known about SE in one spatial dimension (1D). In
1D SE signals the onset of criticality through an associated
universal logarithmic divergence with system size L.2,4 Both
the coefficient of this divergence (i.e., the central charge of
the theory’s conformal algebra) and its subleading corrections
in L (determining the theory’s operator content11,12) serve to
uniquely specify the underlying critical theory.

There is less certainty above 1D. Regardless of criticality,
SE possesses a term scaling as the area of the boundary
separating the bipartite region.13 Beyond this “area law”
term, there can be subleading, universal contributions to SE .
Generalizing the results in 1D, the anti-de Sitter/conformal
field theory correspondence suggests that SE in all odd
spatial dimensions will be characterized by universal logs.14,15

Universal terms have also been argued for in the set
of theories in two dimensions (2D) known as conformal
quantum critical points (CQCP)7,16–21 as well as systems
with spontaneously broken symmetries.22–25 Recent studies
of gapless states on the torus21,26,27 have confirmed the
existence of apparently universal terms that depend on system
shape.

In this Rapid Communication we demonstrate an algorithm
for investigating the behavior of SE in 2D systems. The
algorithm works by treating the model in an anisotropic limit
as a mixture of continuum and discrete degrees of freedom,
making it amenable to a 1D-like DMRG algorithm. A major
strength of the DMRG approach is that it works directly
with the eigenvalues of the reduced density matrix ρr , the
distribution of which governs the entanglement content. This
allows us to simultaneously probe a variety of entanglement
measures in 2D. Alternative techniques, such as quantum

Monte Carlo, that do not have direct access to ρr , are more
restricted.

As a case study, we consider the quantum Ising model
(or transverse field Ising model) in two spatial dimensions: a
paradigmatic model for strongly correlated physics. We find
that SE in 2D shares a number of characteristics with 1D—
including logarithmic scaling at criticality, in agreement with
other studies21,26,27—and propose a scaling form to explain
our results.

Furthermore, we analyze the entanglement spectrum (ES).
While the ES was first studied as a means to understand
the efficacy of the DMRG algorithm28–30 and then as a
means of detecting topological order,31 it is now explored in
nontopological systems in attempts to elucidate a connection
between it and an excitation spectrum.32–36 We find that the
scaling of the entanglement spectrum can be used to detect
the critical point of the 2D system (a significant numerical
advantage over calculating the energy gap), a result previously
suggested only in 1D.37,38

Model and DMRG algorithm. We study the 2D quantum
Ising model as a set of 1D quantum Ising chains (QICs), each
with periodic boundary conditions and of length R, coupled
through their spin operator:

H =
∑

i

H
1D QI
i + J⊥

∑
〈ij〉

∫ R

0
dx σi(x)σj (x), (1)

where i is a sum over chain index. The Hamiltonian H
1D QI
i

is taken in its continuum limit, that of a massive Majorana
fermion, H

1D QI
i = ∫

dx(iψ̄∂xψ̄ − iψ∂xψ + i�ψ̄ψ), where
ψ̄/ψ are right- and left-moving components of the Majorana
fermion. In lattice notation, H 1D QI = −J

∑
j σ z

j σ z
j+1 + (g +

1)σx
j , and we identify σ z → σ , � = gJ . In this Rapid

Communication we focus on systems built from chains with
negative mass (� < 0), as in this case one can drive the
system to the critical point by increasing the magnitude of
the interchain coupling J⊥ (see Fig. 1). We employ a DMRG
algorithm adapted to studying coupled 1D chains as described
in Ref. 39, treating individual chains as equivalent to individual
lattice sites in a conventional DMRG algorithm. As with
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(a)

(b)

FIG. 1. (Color online) (a) An array of continuum chains of length
R, with interchain coupling J⊥. Each chain is a single site in our
DMRG algorithm. (b) The phase diagram of coupled QICs.

all DMRG algorithms, this allows us to readily extract the
entanglement entropy and spectrum.

This methodology is based in part on the truncated
spectrum approach (TSA) to studying perturbed conformal
and integrable field theories.40 In the TSA the underlying
conformal or integrable theory provides a particularly apt basis
in which to study relevant (in the renormalization group sense)
perturbations. With such perturbations, the low energy sector
of the full theory can be understood as a mixing of the low
energy sector of the unperturbed theory (even if the two energy
spectra are dramatically different). Thus the high energy part
of the theory can be neglected by imposing an energy cutoff or
taken into account in a variational scheme borrowed from the
numerical renormalization group.41 In the following we use a
cutoff � on the chains.

As with perturbations in the TSA, our DMRG trades on the
ability to compute matrix elements of the interchain coupling
exactly, i.e., 〈s|σjσj+1|s ′〉, where |s〉,|s ′〉 are two states on
a pair of neighboring chains. Using integrable or conformal
1D chains means we are able to incorporate much of the
strongly correlated physics before the numerical analysis has
even begun.

DMRG algorithms in 2D are limited relative to 1D because
SE grows with the length of boundary between blocks (in
this implementation, R, the chain length).9,10 Approaching the
thermodynamic limit then requires extrapolation and judicious
choices of aspect ratio and boundary conditions.42 Our use
of continuum chains plays an important role in allowing the
DMRG algorithm to work successfully. In continuum field
theories, the finite size errors are exponentially suppressed in
system size R.43 This means that the chains can be in the ther-
modynamic limit for certain quantities, even for comparatively
small R.44 Keeping R small allows for smaller SE and hence an
efficient DMRG implementation. As a corollary to this we find
we need to keep comparatively few eigenstates of the reduced
density matrix, ranging from tens deep in the ordered phase to
∼200 close to the critical point in order to obtain truncation
errors on the order of 10−5 (for additional details see Ref. 44).
Thus while the Hilbert space of the individual sites (i.e., the
chains) can involve many hundreds of states, we need to keep
far fewer states from the reduced density matrix.

The algorithm has been shown to successfully analyze
various conventional properties of large arrays of coupled
QICs.39 It was able to reproduce the scaling form (in terms of
the dimensionless combination J

4/7
⊥ �−1) of the first excited

gap in the disordered phase. For this system it is possible

to analytically compute the finite chain R corrections, and
an excellent match with the DMRG numerics was found.
Most significantly, the exponent ν governing the vanishing
of the mass gap �2D as the critical coupling is approached,
i.e., �2D ∼ |J⊥ − Jc|ν , was computed. It was found to be
ν = 0.622 ± 0.019, in good agreement with the accepted
value ν = 0.630 and with a tensor based method,45,46 for
the three-dimensional classical Ising model, demonstrating
that the method successfully captures the physics of the 2D
quantum system.

Entanglement entropy. We couch our results for SE in terms
of a scaling form applicable in the vicinity of criticality. This
scaling form must take into account the universal and the
nonuniversal (i.e., cutoff � dependent) contribution to the area
law as well as a subleading universal logarithmic contribution
that we believe we have detected in our numerics. We allow
this logarithm to be dependent on the system aspect ratio (akin
to that for 2D CQCP21)—a necessity if we insist on matching
perturbation theory away from criticality. The scaling form we
adopt is then

SE = αR� + c

6
log

N

|�|R + R

ξ‖
f

(
N

ξ⊥
,
R

ξ‖
,

ξ⊥
|�|ξ‖

)
, (2)

where α is a nonuniversal constant, ξ‖ and ξ⊥ are the correlation
lengths parallel and perpendicular to the chains, respectively,
and f is a scaling function. This form is chosen so that near
criticality, where the scaling function is f (0,0,const.), we
obtain

SE ∼ αR� + c

6
log

N

|�|R + const. (3)

Here � serves as an effective inverse lattice spacing. Far from
criticality a perturbative calculation44 shows

SE = 1

8

|�|R
ξ⊥

exp

(
− 2

|�|ξ‖
ξ⊥

)
, (4)

indicating that the nonuniversal contribution has vanished
(i.e., α = 0) and that in this limit we can identify f ∼
−(cξ‖/6R) log[N/(|�|R)] + g[ξ⊥/(|�|ξ‖)].

In presenting our numerical results we start with disordered
chains � = −1, � = 8.0 and display in Fig. 2 the behavior of
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FIG. 2. (Color online) SE as a function of the number of chains
N in the disordered phase and near criticality. Inset: SE for the same
phase as a function of R, the chain length.
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FIG. 3. (Color online) SE closer to criticality for a block of length
N/2 as a function of the chain circumference R. For J⊥ = 0.187 and
0.195 the data sets are improved using truncation error extrapolation.
Inset: The effective value of c extracted. A power-law fit for R > 7
yields c(R) = 1.04(5) − [R/5.4(2)]−3.0(7).

SE as a function of J⊥,R, and N , both deep in the disordered
phase and close to criticality. At very small J⊥, SE displays
an area law SE ∼ R as expected, and is nearly constant
with N for values greater than ∼10. On increasing J⊥ with
fixed R, the value of N at which SE saturates increases, and
eventually a logarithmic dependence on N becomes evident.
At J⊥ = 0.195, R = 10 this SE ∼ log N behavior extends up
to systems of N ∼ 100.

In Fig. 3 we show the emerging log N behavior as a
function of R. For J⊥ = 0.187,0.195 the gradient becomes
N dependent, indicating a crossover as ξ⊥ grows. Also visible
is a crossover with R between limiting forms of f . At these
values of J⊥ we find considerable improvement in our results
on performing truncation error extrapolation,47 to compensate
for the effect of the maximum DMRG correlation length.42,48

For J‖ = 0.195, where the logarithm behavior extends over
the largest range, we can subtract Eq. (3) at varied N and fixed
R to estimate c. Using data for N = 4, 12, and 20 we find the
behavior in the inset of Fig. 3: the extracted value of c tends
to a constant for large R. A power-law fit yields c → 1.04(5).

Prompted by the logarithmic piece and in analogy with the
1D case, we look for “chord” scaling near criticality:

SE = c

6
log

[
sin

(
πx

N

)]
+ · · · . (5)

In our DMRG calculations x corresponds to the number of
chains in the “system” block, while there are N − x chains in
the “environment” block (Fig. 1). In Fig. 4 we plot SE versus
the “chord length” at J⊥ = 0.195 for a variety of aspect ratios;
there is a clear linear relation. The extracted values of c are
given in Table I. Similar scaling behavior in 2D was observed
in Ref. 27 although recent analytical results for 2D CQCPs21

suggest that for 2D CQCPs this chord scaling is merely an
excellent first approximation.

Entanglement spectra. In principle, much more information
is encoded in the full spectrum of the reduced density matrix
ρr than in the number SE = −Tr ρr log ρr alone. The ES
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FIG. 4. (Color online) SE/R for J⊥ = 0.195 as a function of
block length.

is usually defined in terms of a fictitious Hamiltonian ρr =
exp(−HE) so that the ES “energies” are ω = − log ρr . We
first consider the entanglement “gap” �ES, the difference
between the two lowest lying values of the ES. In Refs. 37
and 38 it was proposed that ES scaling in 1D can detect
critical points. However, these works do not find agree-
ment with the scaling relation found by Calabrese and
Lefevre49,50 for a 1D conformal system of finite length N ,
�ES ∼ const./ log(N/π ).49,50

In Fig. 5 we plot �ES log(N/π ) against J⊥ for a variety
of 2D systems with the same aspect ratio (R/N) but different
sizes. Tellingly, the curves cross at a single point Jc = 0.186(2)
indicating that we can use this finite size scaling of the
entanglement spectrum to discern the critical point of the
2D system. To support this claim we also perform finite size
scaling on the true energy gap (E1 − E0) in our system (right
panel of Fig. 5) and find Jc = 0.185(2). This also agrees well
with the renormalization group improved value Jc = 0.184(3)
in Ref. 39. We note that calculating E1 − E0 is considerably
more difficult than �ES, as the former requires targeting the
first excited state with the DMRG algorithm. Using �ES to
find Jc therefore offers a significant numerical advantage.

Finally, we consider the ES as a function of the momentum
k along the chain direction. It has been shown that the ES
of spin ladders closely resembles the true energy spectrum of
a single spin chain.32–34 The spectrum of the QIC separates
into two sectors: Neveu-Schwarz (NS) and Ramond (R).44 For
a � < 0 chain these correspond to even and odd numbers
of solitons along the chain, respectively. Similarly the ES
splits into two sectors, depending on whether the state has
an even or odd number of chains in the NS sector (assuming
N/2 is even). Figure 6 shows that at J⊥ = 0.13, far from
criticality and where short-range (area law) entanglement at
the boundary dominates, the low-lying ES resembles that of
a single QIC, where the one- and two-soliton sectors are
mimicked by ES states with odd and even numbers of NS

TABLE I. Values of c from data in Fig. 4.

R

N 10 11 12 13

12 0.76 0.76 0.77 0.77
20 0.78 0.80 0.83
40 0.80 0.84 0.87
100 0.80 0.86
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FIG. 5. (Color online) Finite size scaling of both (left) the
entanglement gap and (right) the real gap for DMRG calculations
in which eigenvalues of ρr are kept if they are �5 × 10−7.

chains. Closer to criticality, at J⊥ = 0.18, the ES does not
resemble that of a disordered QIC, in particular, �ES → 0.
A perturbative calculation for weak intrachain coupling gives
ω = 2 log(�2 + k2) + const. for the lowest “band” in the ES
(see Ref. 44). The good agreement between this prediction
(with � = −1) and the J⊥ = 0.13 spectrum is shown in Fig. 6.

The 1D-like features that we see in our 2D system suggest
the following interpretation. Using the intuition that comes
from our anisotropic treatment of a 2D system, any 2D system
can be thought of as a set of coupled continuum chains. At
a critical point, this anisotropic representation does not affect
the critical properties (provided the critical point is a point and
not a line where a lattice vs continuum treatment might control
where along the line one ends up). If at the 2D critical point,
a finite number of chains become critical with the remaining
chains massive with a gap of at least �min, one would expect
to see 1D scaling.
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FIG. 6. (Color online) Plot of the entanglement spectra both away
from criticality (left), J⊥ = 0.13 and closer to criticality (right), J⊥ =
0.18. N = 160. In both cases the ES is measured relative to its lowest
eigenvalue. The two sectors of the energy spectrum of a QIC are also
plotted, rescaled so that the lowest band overlaps the lowest ES band
at k = 0. The curve labeled “theory” is a perturbative calculation in
Ref. 44.

In summary, we have shown that an unconventional DMRG
technique can be used to study the entanglement content of
strongly correlated 2D quantum systems. Using this technique
we have established the existence of an additive logarithmic
piece in SE with a universal coefficient c ≈ 1 for the 2D
quantum Ising model. We have also shown that the ES gap can
be used to efficiently find a critical point in 2D and that when
this gap is large and short-range entanglement is dominant, the
ES reflects the spectrum of a single Ising chain.

Acknowledgments. This research was supported by the
US Department of Energy (DE-AC02-98CH10886). We are
grateful to P. Calabrese, F. Essler, J.-M. Stéphan, and P. Fendley
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