
Open Research Online
The Open University’s repository of research publications
and other research outputs

Initialisation Problems in Feature Composition
Thesis
How to cite:

Nhlabatsi, Armstrong (2009). Initialisation Problems in Feature Composition. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2009 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

U, n. (2 --S'7RLcl

Initialisation Problems
in Feature Composition

Armstrong Nhlabatsi
(B. Eng, MSc.)

A thesis submitted in partial fulfilment of the requirements for
the degree of Doctor of Philosophy in Computer Science

Department of Computing
Faculty of Mathematics, Computing, and Technology

The Open University

2009
S ýCdt. -

e
D)- JUAC Z oo(c

Abstract

Composing features that have inconsistent requirements may lead to feature interactions that

violate requirements satisfied by each feature in isolation. These interactions manifest

themselves as conflicts on shared resources. Arbitration is a common approach to resolving

such conflicts that uses prioritisation to decide which feature has access to resources when

there is a conflict. However, arbitration alone does not guarantee satisfaction of the

requirement of the feature that eventually gains access to a resource. This is because

arbitration does not take into account that the resource may be in a state that is inconsistent

with that expected by the feature. We call this the initialisation problem.

In this thesis we propose an approach to addressing the initialisation problem which combines

arbitration with contingencies. Contingency means having several specifications per feature

satisfying the same requirement, depending on the current resource state. We illustrate and

validate our approach by applying it to resolving conflicts between features in smart home

and automotive domains. The validation shows that contingencies complement arbitration by

enabling satisfaction of the requirement of the feature that eventually gains access to a shared

resource, regardless of the current state of the resource.

The main contribution of this thesis is an approach to analysing initialisation concerns in

feature composition. At the core of our approach is an explicit consideration of all possible

states of a resource as potential initial states. Given each initial state we then derive

corresponding specifications that would enable a feature to satisfy its requirement in those

states. We show that our approach to initialisation problems is relevant to addressing the

feature interaction problem by characterising some types of conflicts as initialisation

concerns.

111

Acknowledgements

My journey to the research reported in this thesis has been intellectually enriching. For this

benefit I owe gratitude to a number of people who have helped me through this experience.

First and foremost, I thank my supervisors; Prof Bashar Nuseibeh and Dr Robin Laney, for

their support throughout and for their constructive criticism which helped me focus on an

interesting research problem. I am very grateful to Prof Michael Jackson for his valuable

feedback on early ideas that eventually lead to this thesis.

I am thankful to my colleagues in the Computing Department at the Open University;

Mohammed Salifu, Yijun Yu, Michel Wermelinger and Thein Than Tun, for the helpful

discussions that enriched the ideas in the thesis. I also thank Kurt Schneider for introducing

me to the Instrument Cluster specification and the engineers at DaimlerChrysler. I gratefully

acknowledge the Open University for providing structured research training and the EPSRC

for the financial support.

Finally, I am very grateful to my family and friends (especially Rosena Chiumia) for being

supportive, encouraging, and understanding through this exciting and sometimes stressful

adventure.

iv

Author Declaration

I hereby declare that the material presented in this thesis, except where references are made to

related work, is original.

Armstrong Nhlabatsi.

Table of Contents

Abstract ».......... » ... ». ».. »». »»»»»»»»»»»»"". »»"»"""
iii

Acknowledgements...... »». »»»""»"»"»""»"»»""»»»»«»»»""""""""»"«""""". """.. """«"""""»""""~«
IV

Author Declaration».... ».. »»»». »»». ». »».. ». ». ». »»... «"«.. »». ».... «»«».. ». ». ««. «»».. «............ »......... «... v

Table of Contents......... ».. »»»». ». »» »»... » ».... ».. »»""»-»"""" vi

Table of Figures »». «. «».. »»"».. »»»""«»"»". ""»»«»"»»»"»"»""»»"»"»""«»""»»"»»»"»"""»"«"»""»"--""--. """"" ix

Chapter 1. Introduction..... ««««. » «». «...... ». »» «.... «. » «. «. ««».. ».. «...... »......... «.. «. «.. ». «»....... »..... 1

1.1 The Feature Interaction Problem ..
1

1.2 Arbitration as a Feature Interaction Resolution Technique .. 2

1.3 The Initialisation Problem ..
3

1.4 Importance of Addressing Initialisation Problems in Feature Composition
...................................

5

1.4.1 Initialisation Concerns for Feature in Isolation
...

7

1.4.2 Initialisation Concerns for Features in Composition
...

7

1.5 Using Contingencies to Address Initialisation ... 12

1.6 Thesis Contribution .. 13

1.7 Research Methodology ... 14

1.8 Thesis Structure .. 14

Chapter 2. Background__....... - ».......... 17

2.1 Features and Requirements .. 17

2.1.1 What is a feature? ... 18

2.1.2 Deriving features from Requirements ... 22

2.1.3 Requirements Cluster Consistency ... 25

2.2 Problem Frames ... 25

2.2.1 The Philosophy of Problem Frames ... 26
2.2.2 Modelling Features as Problem Descriptions .. 28

2.3 Smart Home Problem Descriptions .. 29
2.4 The Composition Controller Approach .. 31

2.5 The Event Calculus .. 32

2.5.1 Basic Constructs of the Event Calculus .. 33
2.5.2 Event Calculus Predicates .. 33
2.5.3 Event Calculus Meta-Rules .. 34

2.6 Chapter Summary
.. 35

Chapter 3. Related Work ... ».. 37
3.1 Feature Interaction as a context sharing problem ... 39

3.1.1 Formalisation of Feature Interaction through the Entailment Relation 40

3.1.2 Sources of Feature Interactions in Requirements .. 42

3.1.3 Feature Interaction Taxonomies .. 45

3.1.4 Summary ...
55

vi

3.2 Design-time Approaches ... 55

3.2.1 Feature Behavioural Description Languages .. 55

3.2.2 Limitations of Formal Approaches to Feature Interaction Detection 61

3.3 Runtime Approaches ... 62

3.3.1 Negotiation Approaches ..
63

3.3.2 Arbitration Approaches ... 65

3.4 Chapter Summary .. 71

Chapter 4. Complementing Arbitration with Contingency Planning ... 73

4.1 The Initialisation Problem - Revisited ... 74

4.2 The Need for Domain Descriptions in Addressing Initialisation
...

76
4.3 Contingency Planning as an Approach to Addressing Initialisation Problems 77
4.4 Determining the Current State of a Shared Resource .. 78
4.5 Previous Attempts at Addressing Initialisation Problems

... 81
4.6 Chapter Summary .. 83

Chapter 5. Using Contingency Planning and Arbitration to Resolve Runtime Conflicts......... 85
5.1 Contingency Analysis .. 86

5.1.1 Problem Analysis ... 86
5.1.2 Resource Dynamic Behaviour Modelling .. 87
5.1.3 Contingent Specification Derivation

.. 88
5.2 Selecting Contingent Specifications for Composition through an Arbitrator

.............................. 89
5.3 Worked Example: Composing Smart Home Features

.. . 92
5.3.1 Domain Description of DVD-R

... . 92
S. 3.2 Deriving Smart Home Contingent Specifications

... . 93
5.3.3 Selecting Smart Home Contingencies for Composition

.. . 98
5.4 Chapter Summary 98

Chapter 6. Tool Support for Deriving Contingent Specifications
... 101

6.1 Deriving Specifications through Abductive Reasoning on Directed Graphs 102
6.1.1. Converting Event Calculus Descriptions to Directed Graphs .. 102
6 1.2 Using Abduction to Ident jy Paths through a Graph ... 106
6.1.3 Expressing Paths as Specifications

.. 106
6.3. Comparison to the Event Calculus Planner

.. 109
6.4 Chapter Summary .. 110

Chapter 7. Evaluation ... 111
7.1 Evaluation on Smart Home Features

. 111 ..
7.1.1 Smart Nome Specification Simulation Results ... 111
7.1.2 Discussion of Smart Home Evaluation Results .. 114

7.2 Industrial Validation: Instrument Cluster Case Study ... 118
7.2.1 Requirements for Activating and Deactivating Instrument Cluster 119
7.2.2 Features of the Instrument Cluster .. 120
7.2.3 Dynamic Behaviour of Instrument Cluster Display ... 123

VII

7.2.4 Instrument Cluster Contingent Specifications .. 124

7.2.5 Feature Interaction between Permanent and Temporal features
....................................... 126

7.2.6 Composing Specifications with a Composition Controller ... 127

7.2.7 Validity and Implications of Case Study Results .. 128

7.3 Chapter Summary .. 128

Chapter 8. Conclusions and Further Work ».. ».. 131
8.1 Summary of Thesis Contributions .. 131
8.2 Further Work .. 133

8.2.1 Problem Reduction as a source of Feature Interaction .. 133
8.2.2 Problem Decomposition with Minimal Conflicts .. 134
8.2.3 Arbitration for Distributed Resources .. 135
8.2.4 Arbitration with Dynamic Priority Assignment

.. 136

8.2.5 Arbitration/Contingency as a Conflict Resolution Pattern ... 136
8.2.6 Satisfying Failed Requirements by Retrying Rejected Events .. 137
8.2.7 Termination Problems in Feature Composition

... 138
8.2.8 Initialisation Problems in Aspect Weaving ... 138

8.3 Conclusion ... 140
APPENDIX 1- DVD-R Domain Descriptions encoded in ECharts .. 142

viii

Table of Figures

Figure 1.1 State Machine Description of DVD-R Behaviour ..
4

Figure 2.1 Office Security Problem Diagram ..
28

Figure 2.2 Problem Diagram of Burglary Capture Feature ...
29

Figure 2.3 Problem Diagram for Burglar Deterrence Feature ...
30

Figure 2.4 Composition of Burglary Capture and Deterrence Features ..
30

Figure 2.5 Composition of Capture and Deterrence Features with a Composition Controller
31

Figure 2.6 Domain Description of a Door ...
33

Figure 3.1 Feature interaction expressed using the entailment relation ...
40

Figure 3.2 Problem Diagram of Office Security Feature ..
41

Figure 3.3 Problem Diagram of Office Climate Control Feature ..
41

Figure 3.4 Composite Problem Diagram of Office Security and Climate Control Features
42

Figure 3.5 Generic Composition of Features through an Arbitrator
65

Figure 3.6 Conceptual FIM Approach (Adapted from [Tsang and Magill 1998], p 824) 66
Figure 4.1 Composition of two machines with an arbitrator .. . 75

Figure 4.2 Creating and Maintaining Model Subproblem (Adapted from [Jackson 2001])
79

Figure 4.3 Arbitrator with Shared Resource State Tracking Mechanism .. 80

Figure 5.1 Steps Involved in Applying the Proposed Approach ... 85

Figure 5.2 Domain Description of DVD-R expressed in Event Calculus ... 93

Figure 6.1 High-level Architecture of the Contingent Specification Generator (CSG) tool 101

Figure 6.2 Directed Graph Description of DVD-R Behaviour .. 103

Figure 6.3 Directed Graph description of DVD-R represented as Transitions
103

Figure 6.4 Automatically Generated Contingent Specifications for Security Feature
108

Figure 7.1 Photo of Instrument Cluster for a Mercedes S-Class S63 AMG Vehicle
118

Figure 7.2 Context Diagram of Instrument Cluster Activation/Deactivation
120

Figure 7.3 Problem Diagram of Permanent Activation Feature ..
121

Figure 7.4 Problem Diagram of Temporal Activation Feature ..
122

Figure 7.5 Dynamic Behaviour of Instrument Cluster ..
123

Figure 7.6 Illustration of Potential Conflict between Temporal and Permanent Activation 127

ix

Chapter 1. Introduction

A common approach to managing the complexity of developing large software systems is to

decompose their functionality into features. A feature is a set of logically-related

requirements and their specifications, intended to deliver a particular behavioural effect

[Turner et al. 1999; Zave 2001; Calder et al. 2003; Bredereke 2004]. Our use of the terms

`requirement' and ̀ specification' is taken from Zave and Jackson [Zave and Jackson 1997]. A

requirement is a statement of what behaviour a system is expected to exhibit. A specification

is a description of how the behaviour that would satisfy a requirement will be accomplished.

The responsibility of developing individual features may be allocated to different

development teams [Palmer and Felsing 2002].

1.1 The Feature Interaction Problem

The individually developed features are then composed, to create a feature-based application.

However, the composition of features with inconsistent requirements may lead to feature

interactions [Keck and Kuehn 1998; Calder et al. 2003] -a phenomenon where features

interfere with each other's behaviour in the composition. Such interference often leads to the

violation of the requirements each feature satisfied in isolation. Feature interactions manifest

themselves as conflicting actions of features on a shared resource [Bisbal and Cheng 2004].

The feature interaction problem is how to detect and resolve feature interactions.

The feature interaction problem has been studied in depth in the telecommunications domain.

This is evidenced in the conference proceedings [Calder and Magill 2000; Reiff-Marganiec

and Ryan 2005] and special issue journals [Logrippo 1998; Akyildiz et al. 2000; Amyot and

Logrippo 2004; Reiff-Marganiec and Ryan 2007] documenting research results on proposed

approaches to addressing this problem. A common characteristic of feature interactions is that

1

they result from sharing of context. By context we mean the properties of the world (such as

resources) that features need to satisfy their requirements. This suggests that feature

interaction is a context sharing problem. For example, for reactive systems such as

telecommunication switching [Keck and Kuehn 1998] and flight control [Cortellessa et al.

2000] software, the feature interaction problem involves conflicts on the shared control of

devices. Left unresolved, such conflicts often lead to incorrect operation and reduction in

reliability for these systems.

When a feature interaction is detected at design time, features can be redesigned to eliminate

it [Stafford and Wallnau 2001; Blair and Turner 2005; Calder and Miller 20061. However,

managing feature interactions at runtime is more challenging for two reasons: (1) feature

redesign may not be possible; (2) runtime conflicts often have to be resolved with minimal

manual intervention and within relatively short time limits. On the other hand, resolving

feature interactions at runtime has the advantage of dealing with actual rather than potential

conflicts. Moreover, postponing resolution to runtime avoids over-restricting the requirements

to be satisfied by the specification of each feature. Despite the benefits of runtime resolution,

current research has not advanced enough to resolve a majority of known types of feature

interaction [Cameron et at. 1993; Kolberg et al. 2003; Shehata et al. 2007b].

1.2 Arbitration as a Feature Interaction Resolution Technique

A common approach to resolving runtime conflicts is to introduce an arbitrator (Tsang and

Magill 1998; Hay and Allee 2000; Laney et al. 2007]. When two parties are in conflict, one

way to resolve the dispute is to refer it to a third party, called an arbitrator. The arbitrator

considers the arguments of both parties and makes a binding decision on how the dispute

should be resolved. In legal terminology this conflict resolution approach is called arbitration

[Bonn 1972). The concept of arbitration has been applied in a similar way in resolving feature

interactions where an arbitrator intercedes between competing features and the shared

resource.

2

Examples of arbitrators include the Feature Interaction Manager (FIM) [Tsang and Magill

1998], Composition Controller(CC) [Laney et al. 2007], Modular Supervisory Control with

Priorities (MSCP) [Chen et al. 1995; Wong et al. 2000], and Conflict-and-Violation Free

(CVF) composition operator [Hay and Atlee 2000]. Actions issued by features have to be

approved by the arbitrator before they can be passed on to the resource. Arbitration alone

resolves only conflicts resulting from non-deterministic compositions by prioritising features.

Non-determinism occurs when two or more features require a shared resource to engage in

different behaviours simultaneously, when the resource can engage in only one of the

behaviours at a time [Cameron and Velthuijsen 1993]. For example, in a smart home [Kolberg

et al. 2003], a climate control feature may require a window to be opened, while a security

feature requires the window to be closed.

Arbitration ensures that in the event of a conflict a higher-priority feature is given exclusive

control of the shared resource. However, this conflict resolution technique does not guarantee

that the requirement of the feature that eventually gains control of the resource will be

satisfied. This is because its model of the shared resource may be inconsistent with the actual

shared resource state, due to the state having been changed by another feature that used the

resource previously. This may result in its requirement not being satisfied even if granted

access to the resource. We call this the initialisation problem. In this thesis we address the

initialisation problem in feature composition.

1.3 The Initialisation Problem

In illustrating the initialisation problem consider the composition of two security features

(burglary capture and burglar deterrence) in a smart home [Kolberg et al. 2003] which share

a Digital Versatile Disc Recorder (abbreviated DVD-R). A DVD-R is an optical disc

recording device that records onto a writable DVD media. We will use this as our running

example in the rest of the thesis. The dynamic behaviour of the DVR is as shown in the state

3

machine in Figure 1.1. A dynamic behavioural description maps event occurrences to state

changes. Depending on the current state, the occurrence of an event may result in change of

state. It is this change of state of a resource in response to the occurrence of an event that

enables a feature to satisfy its requirement. For example, if the current state is Stopped, the

occurrence of a play event results in transition to a Playing state. Behavioural descriptions

help in reasoning about how events issued according to specifications result in state changes

on the resource which would eventually lead to the satisfaction of a requirement.

Features interacting with the DVD-R issue events from the set (play, record, stop, pause) to

satisfy their requirements. In response to the occurrence of an event, and depending on its

current state, the DVD-R may be in one of the following states: Playing, Recording, Stopped,

Paused Recording, Paused Playing.

plc'/ Stopped
ý}ýecord/

stop/
Playing Recording

pause/ II play/ stop/ record/

Paused Paused
Playing Recording

Figure 1.1 State Machine Description of DVD-R Behaviour

The burglary capture requirement is to record burglary footage from a security camera on the

DVD-R. Its post-condition is that the DVD-R is in the Recording state. Meanwhile the

burglar deterrence requirement is to play a movie on the DVD-R when the home owner is

away to give the impression that someone is home. Similarly, its post-condition is that the

DVD-R is in the Playing state. According to Figure 1.1, the burglary capture and burglar

deterrence requirements can not be satisfied at the same time. This is because the DVD-R

4

cannot be playing and recording simultaneously. This is a non-deterministic conflict and is

resolved with arbitration.

Specifications satisfy their requirements based on assumptions about the initial state of the

resource. A specification that assumes a fixed state as its initial state may not always satisfy

its requirement. This is because such a state can not be guaranteed to be true when the

resource is shared. This is due to the possibility of other features changing the state. Such

interference may lead to inconsistency between the actual state of the resource and that

assumed by a feature about to engage with the resource.

For example, consider a scenario in which the burglar deterrence feature leaves the DVD-R in

the Playing state. If the burglary capture feature assumes instead that the DVD-R is in the

Stopped state then the capture requirement will not be satisfied if a burglar breaks-in. The

burglar deterrence feature is said to have bypassed the burglary capture feature and this type

of conflict is called a bypass feature interaction [Shehata et al. 2007b]. This conflict is due to

the inability of the burglary capture feature to address initialisation concerns. Arbitration

alone is insufficient in resolving this type of feature interaction. The above example

demonstrates that initialisation is a significant problem as the initial state of the context

determines whether a requirement will be satisfied or not.

1.4 Importance of Addressing Initialisation Problems In Feature Composition

When designing a software application that satisfies its requirements by changing the state of

a physical resource (such as a device), it is often necessary to model the behaviour of the

resource. The model acts a foundation on which reasoning about the behaviour and state of

the resource is based. We use models in everyday life for documenting abstractions about the

physical world. For example, a street map of a city is a useful tool for guiding visitors to

places of interest in the city. Depending on the nature of the real-world phenomena being

modelled, models can range from simple to complex. The street map example represents a

5

simpler model compared to models for complex systems such as those used in weather

forecasting.

A model (normally) focuses on a particular aspect of the physical world, depending on the

intended purpose. For example a city street map shows streets in relation to positions of

landmarks. A meteorologist may be interested in a different kind of map - one showing air

pressure patterns in the city. Similarly, a requirements analyst developing the specification of

a scheduler to control a lift car in a building is interested in a model (such as a state machine)

showing how the lift system responds to external control events. For example what events

will make the lift start going up, stop at a floor, and open doors.

In this thesis we will be concerned about the latter types of models (those relevant to

requirement analysts), that is, models of behaviour of resources that show events, states, and

relations between event occurrence and state changes. We will focus on using these models in

reasoning about conflicts instead of how they are created. We will assume that they have been

created and they accurately capture the behaviour of a real-world resource.

Models about the behaviour of resources play an important role in the design of software

systems since most reasoning about resource behaviour is based on the model. For this reason

the correct operation of a control application and whether it eventually satisfies its

requirements heavily relies on models of the resources being controlled. Models also have a

profound implication for the initialisation problem in feature composition. This is because the

genesis of initialisation problems is mismatch between state represented in a model and the

actual state in the real world.

In this section we motivate the initialisation problem by making a case for why it is an

important problem to address in requirements engineering. We explore possible consequences

of ignoring initialisation concerns for two cases: (1) a feature executing in isolation and (2)

6

features in composition sharing resources. For each case we identify specific initialisation

concerns and illustrate these problems with examples from real-life incidents.

1.4.1 Initialisation Concerns for Feature in Isolation

For a feature executing in isolation - having sole control of a resource - the initialisation

problem involves addressing at least two concerns: determining safe start-up state and model

synchronisation. Determining safe start-up state involves analysing the characteristics of both

the world and the machine in order to determine when it is safe for the machine to engage

with the world? For example before a lift scheduler can be executed for the first time it is

important to consider at which floor the lift car should be initially so that it is safe to start

interaction with it? Should it be in the ground floor or top floor? Having determined the initial

floor position of the lift car, the installation technician should also initialise the model of the

lift position in the scheduler accordingly.

Model synchronisation involves ensuring that the model is accurately synchronised with the

actual current state of the real-world resource and continues to be synchronised for the rest of

the execution time of a feature. For example for the scheduler to continue to serve lift service

requests it is essential that its model is always correctly synchronised with the actual position

of the lift car. At the least a mismatch between the position in the model and the actual lift

position may result in the car stopping at the wrong floors. At worst, this may result in the lift

car crashing to the ground floor!

1.4.2 Initialisation Concerns for Features in Composition

The initialisation problem for features in composition is more challenging than that of a

feature executing in isolation because of the possibility of interference. In addition to the

issues discussed in section 1.4.1, initialisation problems for features in composition involves

7

addressing the following concerns: safe stoppage, safe start-up and resumption, and

continuous model synchronisation. We discuss these issues in detail below.

Safe Stoppage: At what state will it be safe to stop a feature currently using a resource so

that another feature can take over the use of the resource? How might stopping a feature

currently executing affect the satisfaction of requirements of machine that uses a shared

resource later?

In illustrating stoppage concerns consider the composition of the burglary

capture feature and a broadcast capture feature such that the two features

share the DVD-R whose behaviour is shown in figure 1.1. Assume that the

broadcast capture requirement is to record a TV programme at a certain time

and the burglary capture requirement is to record a burglary. In the following

discussion assume that the burglary capture has a higher priority over

broadcast capture. Consider a scenario in which the broadcast capture

feature is set to record news from CNN between 7pm and 8pm. If a thief

breaks into the house at 7: 55pm, the recording of the news will have to stop

to allow the burglary capture feature to capture a record of the burglar

activity. Terminating the execution of the broadcast capture feature involves

analysing the consequences of doing so on the satisfaction of both the

broadcast and burglary requirements.

A first consideration is what state does the burglary capture feature expects the DVD-R to be

before it can engage with it. Assume the burglary capture feature perceives the DVD-R to be

in the Stopped state. Since there is a state mismatch we need to synchronise the model in the

burglary capture feature with the actual state of the DVD-R. Can the DVD-R be forced to the

desired Stopped state? What would be the consequences of doing so?

8

According to Figure 1.1, the DVD-R can be forced to the Stopped state by the occurrence of a

stop event. However, abnormally aborting the news recording process in this way may result

in a damaged DVD media. This additional concern arises from characteristics of the DVD

media. By abnormal termination we mean stopping the recording without closing the session.

Closing a recording session may take some time and this may give the thief enough time to

get away. On the other hand, damaged DVD media can neither be read nor written on. Hence,

the implication of a damage DVD is that both burglary capture and broadcast capture

requirements may not be satisfied. Playback of the news recorded in the past 55 minutes may

not be possible and the burglar activity may not be recorded.

A second consideration concerns how urgent is it that we should satisfy the burglary capture

requirement. This involves answering the question: how important is the last five minutes of

the news compared to the first five minutes of a burglary. Perhaps the last five minutes of the

news is a summary and perhaps the first five minutes of burglary is the most useful. It may

also be possible that the burglary capture feature may have been triggered but the burglar is

not yet inside the house where he may be captured by the surveillance camera.

As the example illustrates, addressing stoppage issues in initialisation is a complex problem

and involves a consideration of the characteristics of the shared resource.

Safe Start-up and Resumption: If a machine was suspended it is likely that the world could

have been changed by another machine. How do we ensure that it resumes correctly? At

which state can it be safe for the machine of a feature to engage with the world? How could

the restarting/resumption of one machine affect machines of other features? We illustrate safe

resumption issues with an incident reported in the Washington Post news website.

9

In March 2008 a nuclear power plant in Georgia (USA) was forced into an

emergency shutdown for 48 hours' [Krebs 2008]. The plant has an

automated safety system that shuts it down when a drop in water reservoirs

that cool radioactive fuel rods is detected. An investigation into the cause of

the incident revealed that it occurred after a software update was installed on

a computer used for monitoring chemical and diagnostic data for one of the

plant's control systems. The software update was meant to synchronise data

on both the monitoring and safety systems. When the updated computer was

rebooted, it reset the data on the control system. The automated safety

systems incorrectly interpreted the lack of data to mean that cooling water

reservoirs had drop below accepted levels - triggering an emergency

shutdown of the plant as a result.

Both systems satisfied their requirements. The monitoring and control application initialised

data on cooling water reservoirs level and the automated shutdown safety system triggered

emergency shutdown when it detected unacceptable water levels. However, the combined

behaviour of the two systems produced undesirable results. There are inherent design flaws in

both systems which if addressed could have avoided this incident.

Firstly, the design of the monitoring and control system seems to have assumed that when it is

initialised the cooling reservoirs would be empty hence the reset of the water level data value.

In this instance this assumption was not true as the water levels were not initially empty when

the monitoring application was started. More importantly, it appears the composition of the

two subsystems did not consider how would starting the monitoring machine affect other

machines already executing which share the reservoir water level data

Secondly, on the design of the automated safety system, it seems the implications of

delegating the update of the water levels data monitoring to another application were not

1 We thank Emmanuel Letier for bringing this example to our attention.

10

taken into account. If the safety system was directly reading the water levels, the possibility of

reading a false value could have been minimised. Both of these design flaws may have been

avoided had the engineers analysed initialisation concerns in the design of the systems in

isolation and in their composition.

Continuous Model Synchronisation: When a feature is composed with other features, such

that a resource is shared, there is a possibility that (with time) it may become out of sync with

the true state of the resource even if it was initially in sync. This raises two closely related

issues. (1) How to ensure that all features have a correct view of the current state of a resource

they share? (2) If all features use a shared model of a resource state how should they be

composed so as to safeguard against one feature changing the state in the shared model such

that it is not consistent with the true state of the shared resource? We illustrate the

consequences of a mismatch between the model and the real-world by the incident below.

Aeroperu Flight 603 was a scheduled flight from Peru to Chile which crashed

in October 1996 [Anderson and Bambrick 200712. The plane took-off at after

midnight. A few seconds later, the cockpit emergency warning system was

generating numerous alarms warning that the plane was flying too low.

Contrary, the altimeter indicated that the plane had climbed to a safe altitude

of approximately 9700 feet. The crew declared emergency and requested

immediate return to the airport for emergency landing.

Initially they believed that the reading on the altimeter was the correct one.

However, as the plane started to descend they discovered that the reading

on the altimeter was not decreasing despite the drop in altitude. Making

matters worse was that they had no visual reference since it was a night.

Extremely confused about their true altitude, the crew requested help from air

traffic control (ATC). ATC told them that they were flying at 7000 feet. It

2 Broadcasted on National Geographic channel

11

turned out that both the ATC and altimeter information were wrong as they

soon realised they were flying much lower. They attempted to climb but it

was too late. The plane crashed into the ocean killing everyone onboard (9

crew members and 61 passengers).

An investigation revealed that the crash was caused by a piece of masking tape accidentally

left covering static ports after cleaning the aircraft. Static ports are sensory devices for all

flight instruments providing basic flight data such as airspeed and altitude to the pilots. As a

result of the blocked static ports the altimeter relayed incorrect altitude. ATC also relayed

incorrect altitude because the design was such that the information they had was calculated by

onboard systems which relied on static ports. Consequently, the pilots did not know their true

altitude and airspeed. Since it was at night, with no visual references, they could not navigate

the plane - they were flying blind. This example illustrates the importance of having a model

being always in correct synchrony with the real-world. The results of a mismatch can be

tragic.

1.5 Using Contingencies to Address Initialisation

Contingencies complement arbitration by enabling satisfaction of the requirement regardless

of the current state of the resource. Based on this observation, in this thesis we propose an

approach to addressing the initialisation problem which ensures that in the event of a conflict

the requirements of conflicting features are eventually satisfied. Our proposed approach

combines arbitration with contingency planning.

Contingency planning is a concept from management science [Umanath 2003; Sousa and

Voss 2008]. In management, contingency entails explicit a-priori statements about various

situations which are not certain to happen but are nevertheless possible in the operations of an

organisation. These situations are not part of the normal operations of the organisation and

they are regarded as disruptions. Contingency planning is a risk management strategy aimed

12

at designing corresponding alternatives to how the satisfaction of organisational goals will be

maintained should those situations arise.

In this thesis we use the term contingency to mean having several specifications per feature,

satisfying the same requirement, depending on the current state of the shared resource. Our

proposed approach involves deriving contingent specifications corresponding to each state of

the shared resource at design time. Each specification satisfies the requirement of a feature

given a particular state of the shared resource as an initial state. At run-time the specifications

are composed through an arbitrator and selected for execution depending on the current state

of the shared resource.

1.6 Thesis Contribution

Arbitration resolves conflicts by prioritising features contesting for a shared resource.

However, arbitration alone is not sufficient as it does not guarantee that the requirement of the

feature that eventually gains access to the shared resource will be satisfied - implying that the

effort of applying arbitration could be futile. This is because arbitration does not address the

initialisation problem. In order to ensure that the effort of applying arbitration is not wasted, it

is therefore important that the initialisation problem is addressed.

The main contributions of this thesis are both conceptual and methodical. Conceptually, we

propose an approach to analysing initialisation problems using the concept of contingency

planning. We characterise bypass feature interactions as initialisation problems. This enables

us to use our approach to addressing initialisation concerns to resolve bypass feature

interactions. We then show that our approach to the initialisation problem can be combined

with arbitration approaches. The result is a novel approach to feature interaction resolution

which ensures that in the event of a non-deterministic conflict the requirement of a feature

that is granted access to a resource is eventually satisfied.

13

Methodically, we present a method showing how our proposed conceptual approach can be

applied in practical feature-driven software development using existing techniques and

notations. We also provide a tool that automates the derivation of contingencies. Finally, we

evaluate the proposed approach through its application to a case study of a practical problem.

1.7 Research Methodology

Our claim is that combining arbitration with contingencies aids the runtime resolution of non-

determinism and bypass feature interactions. We substantiated this claim by applying the

proposed approach to an example we have constructed and to a case study based on a

practical problem. We created the laboratory constructed example such that it had

characteristics that enabled us to evaluate essential attributes and demonstrate feasibility of

our approach. However, although our example helped us to illustrate the concepts proposed in

our approach in their simplest form, it is not representative of a real-life practical problem. As

a result, the example was not enough to validate the practical relevance of our approach.

We used a case study to validate the practical relevance of our approach. Evaluation through

the practical problem helped us in validating that the problem being solved by the proposed

approach is a real problem, that is, it exists in real-life and it is not just a laboratory thought

experiment. We found the practical case study very useful as a ̀ reality-check' as it allowed us

to gauge the practical relevance our approach. It also revealed limitations of the approach

which were otherwise not visible in the constructed example.

1.8 Thesis Structure

In Chapter 2 we present some background on the concept of `feature' and how it fits in

Requirements Engineering by exploring its relation to `requirement' and `specification'.

Context is important in reasoning about feature interactions as conflicts manifest themselves

on the context. We present the problem frames notation as a way of modelling features that

makes context explicit. The derivation of specifications requires reasoning about the effects of

14

actions on the context that would bring about changes that satisfy the requirement. We

introduce the Event Calculus as a language for reasoning about the effects of actions on

context and automating the derivation of specifications.

Chapter 3 reviews approaches to detecting and resolving feature interactions with a focus on

context sharing as a source of conflicts between features. We advance the argument that

feature interaction is a context sharing problem by providing supporting evidence from the

literature in the form of taxonomies and sources of feature interactions. Our review shows that

the limitation of current approaches to feature interaction resolution is that they lack

mechanisms for explicitly dealing with initialisation concerns and hence are insufficient in

addressing conflicts resulting from the initialisation problem.

Our approach to resolving non-determinism and bypass feature interactions combines the

concepts of arbitration and contingency planning. Chapter 4 presents the conceptual basis for

our approach by motivating how the combination of the concepts of arbitration and

contingencies are relevant to feature interaction resolution. Contingency planning enables

features to deal with initialisation concerns. This is achieved by equipping each feature with

contingent specifications corresponding to each state of the shared resource. Depending on

the current state, one of the contingencies is selected to enable a feature to satisfy its

requirement. Although contingencies may be sufficient in dealing with the initialisation

problem, they are insufficient in resolving non-determinism as features may still conflict as

they concurrently attempt to access a shared resource. In order to resolve non-determinism we

argue that arbitration is necessary in feature composition to intercede between feature

specifications and the shared resource. We show that arbitration is relevant to the resolution

of non-determinism while contingencies resolve bypass interactions. We argue that a

combination of the two concepts resolves both types of feature interactions.

15

Chapter 5 illustrates how the proposed approach can be used in practice by showing how an

existing arbitration approach can be extended with contingencies. We present the steps

involved in developing a feature-based application that makes use of the two concepts to

resolve feature interactions. We identify two main steps such a development process could

entail, namely: (1) building contingencies into specifications and (2) composing the

contingent specifications through arbitration. The first step involves deriving contingent

specifications. The derivation of contingent specifications can be erroneous and time-

consuming if done manually. Chapter 6 presents a tool, called Contingency Specification

Generator (CSG), which automates this task (derivation of contingent specifications).

In chapter 7 we report on an evaluation of the proposed approach through its application to a

practical problem. Our evaluation shows that combining arbitration with contingencies

ensures that in the event of a conflict the requirements of the features involved are eventually

satisfied. Based on the evaluation we document limitations of the approach and possible

alternatives to how they can be addressed. Finally, chapter 8 presents a summary of our work

on feature specification and runtime composition, considers the application of the proposed

approach to a much wider and general context, and suggests future directions for this

research.

16

Chapter 2. Background

The concept of a `feature' is central to the study of the feature interaction problem. However,

in the feature interaction literature there is no generally agreed definition of what a feature is.

Based on this observation, in section 2.1, we explore how this concept fits into Requirements

Engineering by exploring its relation to the notion of a `requirement'. Conflicts between

features manifest themselves on shared resources. For this reason, we structure individual

features and their compositions using the Problem Frames [Jackson 2001] approach to

analysing and structuring software development problems. Problem Frames allow us to

structure problems in a way that makes context and composition concerns explicit. We

introduce the Problem Frames notation in section 2.2.

Section 2.3 presents the smart home feature interaction example introduced in section 1.3 in

detail. We use this example in the rest of thesis to illustrate initialisation problems. A

common approach to resolving conflicts on shared resources is arbitration. In this thesis we

will use a Composition Controller [Laney et al. 20071 to illustrate arbitration and so a brief

introduction to this approach is presented in section 2.4. Making shared context explicit is

insufficient for reasoning about feature interactions because detection of conflicts requires

knowledge about the dynamic behaviour of shared resources. In section 2.5 we introduce the

Event Calculus [Shanahan 1999; Mueller 2006b] notation -a logic system that we use to

express domain descriptions of shared resources.

2.1 Features and Requirements

Although the concept of a feature is commonly used in the feature interaction literature there

is no generally agreed definition of what a feature is, beyond that it is `additional,

incremental, client-valued, and optional functionality'. More importantly, with the exception

17

of [Laney et al. 2007; Classen et al. 2008], there is little evidence of work that explores how

the concept of a feature relates to a requirement and context in Requirements Engineering. In

this section we explore the different notions of a feature and propose a definition of a feature

which is grounded on the entailment relation [Zave and Jackson 1997].

2.1.1 What is a feature?

Considering the functionality of a software system in terms of features is useful for two

reasons. (1) It forms a common way of communicating user needs to application developers

[Kang et al. 1998]. (2) It provides a means for grouping of system functionality which

reduces complexity and eases maintenance [Zave and Jackson 2002; Bredereke 2004;

Bredereke 2005]. However, in the feature interaction literature, there is no generally agreed

definition of what is a feature. In this section we review the different definitions of a feature

by considering the notion of a feature as an optional or incremental unit of functionality, a

client-valued function, and a functionality structuring concept. We then propose a definition

of a feature from an RE perspective.

Feature as Optional or Incremental Unit of Functionality: The feature interaction problem

has been studied extensively in telecommunications. In this domain a feature is viewed as an

optional or incremental unit of functionality [Keck and Kuehn 1998; Zave 2001; Calder et al.

2003], that provides additional functionality to an existing system [Braithwaite and Atlee

1994; Siddiqi and Atlee 2000b] - thereby extending the scope of its functionality [Fu et al.

2000]. The existing system consists of other features and the basic functionality of the

application. This view of a feature stems from the fact that the basic functionality in a

telephone switching system is essential (and necessary) to every feature that is added. This

basic functionality satisfies the primary requirement of providing voice and data connections

between caller and callee. Features such as Call Forwarding, provide variations of this basic

18

functionality by introducing additional (or incremental) constraints on call behaviour like re-

routing a call to a different number when the called subscriber is busy.

Feature as a Client Valued Function: Sochos et al. (2004) [Sochos et al. 2004] defines a

feature as a client-valued function. This definition seems to be influenced by a product

marketing perspective. In marketing the distinct characteristics of a product (those that make

it stand out from competing products) are those mostly highlighted by a salesperson [Shaw et

al. 1989]. This is consistent with the general definition of a feature as being a distinct

characteristic of an object. Consumers of software products normally think of a software

system in terms of the functionality that it offers. Based on this notion a feature is a user

accessible or visible unit of functionality [Blair et al. 2002; Bisbal and Cheng 2004] or

capability that is distinguishable and relevant to some stakeholders [Pang and Blair 2002;

Pulvermueller et al. 2002].

Feature as a Functionality Structuring Concept: Turner et al. (1999) [Turner et al. 1999]

argues that a feature should be considered as a functionality organising concept. Such a

concept helps a system designer structure a software system into logically related chunks of

functionality that makes system maintenance easier to comprehend. A similar view is also

shared by Sochos et al. (2004) [Sochos et al. 2004] and Maccari and Heie (2005) [Maccari

and Heie 2005] where a feature is defined as a logical unit of behaviour specified by a set of

functional and quality requirements.

This notion considers a feature as a self-contained subset of system behaviour ; designed as a

conceptual and cohesive chunk of functionality [Hall 2000a] ; packaged as incremental or

additional functionality [Cameron et al. 1993; Areces et al. 2000] of usefulness [Hsi and Potts

2000] to system users and added to the basic system [Bond et al. 2004]; and encapsulates both

functional and quality requirements [Sochos et al. 2004]. From a software designer's point of

view this notion of a feature is likely to be more useful. However it fails to distinguish a

19

feature from other functionality organising concepts such as modules, functions, procedures,

and classes.

A feature from a Requirements Engineering Perspective: The three notions of a feature

discussed above are not very useful for reasoning about conflicts between features. This is

because they are not explicit about what actually makes a feature. In Maccari and Heie (2005)

[Maccari and Heie 2005] a feature is regarded as a unit of behaviour that is specified by a set

of logically related requirements whose implementation has a tangible value to the user.

Logically-related means requirements that are very much dependent on each other in such a

way that it makes sense to have them implemented together.

Zhang et al. (2005) [Zhang et al. 2005b] makes a distinction between the intension and

extension definition of a feature. Intension describes the intrinsic properties of a feature, in

which a feature is viewed as a cohesive set of logically-related requirements. The extension

view of a feature characterises the external embodiment of a feature by characterising it from

a user's perspective. A concurrent view of these two concepts is in agreement with Maccari

and Heie (2005) [Maccari and Heie 2005] that a feature is a set of logically-related

requirements whose implementation is intended to deliver some tangible end-user value.

From the preceding discussion, a feature can be defined as a self-contained subset of system

behaviour, designed as a cohesive chunk of functionality, which is user-accessible, and

packaged as incremental or additional functionality intended to deliver a particular

behavioural effect [Turner et al. 1999; Zave 2001; Calder et al. 2003]. This definition is

overloaded and fuzzy. In this thesis we define a feature as a set of related requirements and

their specifications intended to deliver a particular behavioural effect in a given context. Our

definition of the concept of a feature is grounded on the entailment relation [Zave and Jackson

19971. The entailment relation relates three sets of descriptions: requirement, specification,

and context. It states that a specification satisfies a requirement given some assumption about

20

the behaviour of the context (W). While we do not claim the definition of a feature we have

given above to be complete, we believe that it is more useful (than others given in the

literature) when considering the feature interaction problem in a Requirements Engineering

context. We elaborate on this in section 2.2. Our definition is also consistent with the

clarification of the notion of feature given in Classen et al. (2008) [Classen et al. 2008].

Our view is similar to the concept of a requirements module proposed in Bredereke (2004)

[Bredereke 2004] except that their definition does not explicitly consider the specification and

context. They present a comprehensive comparison between the concept of a feature and that

of a requirements module. A requirements module is described as a set of properties that are

likely to change together. Meanwhile a feature is said to consist of properties selected to

satisfy needs of a given stakeholder. Such properties need not have any similarities in terms of

when they change.

Our definition makes explicit the specification and context of a feature - which we consider

essential components in reasoning about conflicts. In being implicit about specification and

context, the concept of a requirements module falls short when it comes to reasoning about

conflict between requirements. Conflicts observed between requirements can be explained in

terms of properties of the context and actions issued according to the specification. For

example consider two requirements: (1) to regulate the temperature in a room by opening and

closing the door; (2) to secure the room by ensuring that the door is closed and locked at

night. These two requirements cannot be said to conflict until it is certain they are both

referring to the same door. Even if we establish that they are referring to the same door, the

conflict may not occur since it is dynamic - only certain to occur if both requirements need to

be satisfied at the same time. This example illustrates the role of context in reasoning about

conflicts between requirements.

21

The notion of a feature that we have adopted above raises another question: Given a set of

requirements, how do we structure them into features? We discuss this in the next section.

2.1.2 Deriving features from Requirements

Given a set of requirements, what relationship should they have among themselves to be

considered to belong to a particular feature? In this section we review requirements clustering

-a common technique for deriving features from requirements.

Requirements Clustering: The idea of structuring requirements into clusters was first

proposed by Hsia and Yaung (1988) [Hsia and Yaung 1988] and further developed by Hsia et

al. [Hsia and Gupta 1992; Hsia et al. 1996] . Their main aim was to decompose a software

system into manageable components delivered as system increments, thereby reducing the

complexity of system development. They stated that clustering enables the sub-division of a

large system's functionality "into user-recognisable components where each component can

be used, almost independently, to satisfy part of the user's needs" [Hsia and Yaung 1988;

Hsia et al. 1996]. Turner et al. (1999) [Turner et al. 1999] present a more detailed review of

techniques on requirements clustering.

Requirements clusters may be regarded as features since features are also meant to support the

paradigm of incremental functionality delivery [Keck and Kuehn 1998]. In Hsia and Gupta

(1992) [Hsia and Gupta 1992] requirements clusters are formed based on similarities in the

requirements generalised by Abstract Data Types (ADT). Turner et al. (1999) [Turner et al.

1999] argued that clustering requirements around ADT is a solution space concern and should

not be encouraged as it forces design decisions very early in the problem space. They instead

suggested that clustering should be done based on logical relations between the requirements

which contribute to the properties of the feature to be realised. However, in Svahnberg et al.

(2005) [Svahnberg et al. 20051 it is argued that identification of dependencies and

22

relationships between requirements and their subsequent grouping into features can in itself

be considered as the first step towards a solution while in the problem space.

Awareness of the interdependencies between requirements is an important factor in the

detection of feature interactions. This is because feature interactions often arise because of

dependencies between requirements that a developer has not known in advance. Dahlstedt and

Persson (2003) [Dahlstedt and Persson 2003] proposed a reference model of requirements

interdependencies. They identify two broad interdependencies: structural and cost/value.

Structural interdependencies group requirements according to hierarchical relationships and

horizontal relationships. These include requires, explains, similar to, conflicts with, and

influences. Cost/value interdependencies are concerned with the cost or value of

implementing a requirement in relation to the impact of the implementation of that

requirement on the cost or value for the user of another requirement. These include

increases/decreases cost of and increases/decreases value of.

In the increases/decreases cost of relationship, choosing to implement one requirement over

another may either increase or decrease the cost of implementing the remaining

requirement(s). For example, the cost of implementing subsequent requirements may decrease

if a lot of functionality can be reused from previous implementations of other requirements.

Hence the cost of implementation dependency is concerned with identifying requirements that

should be implemented as a group since that would decrease the cost of their

implementations. Similarly, in the increases/decreases value of dependency, the

implementation of one requirement may either decrease or increase its value to the user of

another requirement. For example a requirement whose implementation improves the

accuracy and speed of web search may have increased performance value to a user of a

requirement that makes use of the web search results. Using the dependency relationships

between requirements in order to determine the optimal order in which they should be

implemented is the subject of software release planning [Ruhe and Saliu 2005].

23

While the model proposed by Dahlsted and Persson (2003) [Dahlstedt and Persson 2003] is

useful as a starting point, it is not practical due to its higher level of abstraction. In particular

it does not give practical guidance on: (1) how to identify and (2) how to describe/model

requirements dependencies. Chen et al. (2005) [Chen et al. 2005] proposed a classification of

requirements relationships based on resource and functional dependencies. Requirements

have a resource relation if they share access to modification of the same property. Two

requirements are said to have a functional relation if the satisfaction of one requirement

depends on the correct behaviour of the other. Table 2.1 presents a summary of these

requirements relationship classifications.

Table 2.1: Requirements Relationships Classification

BASIS FOR REQUIREMENTS CHARACTERISTICS EXAMPLE SOURCE
CLASSIFICATION RELATIONSHIP
Resource or Object Strong Resource Occurs between Both Edit and Format (Chen at at. 2005]
Relation Relationship requirements that features In a word and (Hsia and

modify the same processor modify the Yaung 1988; Hsia

resource or share the same document and Gupta 1992]

same object.
Weak Resource Occurs between Cut and Paste features [Chen at at. 2005]

Relationship requirements that of a text editor. Cut

access the same writes text to the

resource but only one clipboard. Paste reads
of them modifies it. the text from the

clipboard.
Functional Necessity, The satisfaction of The functionality of (Chen et al. 2005],

Dependency Availability Require one requirement Parameter Steering In 11-Isla and Yaung

and Restrictive depends on the modem cars depends 1988; Hsia and

Relationships correct behaviour of on Speed Measurement. Gupta 19921, [Yoo

the other, i. e., there is Parameter Steering Is a et al. 20041, and
a functional speed-dependent [Ferber et al.. 2002]

connection between steering system that
the requirements. reduces the steering

effort required at lower

speeds (e. g. during
parking) and Increases it

at higher speeds.

24

In summary, creating requirements clusters depends on a number of factors which include

functional, structural, cost, and value dependencies. Interesting questions arising from these

classifications are: (a) What criteria can aid a requirements analyst in deciding which of these

dependencies to apply in creating requirements clusters? (b) If more than one dependency is

chosen to create a cluster, how do we balance between these dependencies?

2.1.3 Requirements Cluster Consistency

With respect to the feature interaction problem, the notion of a feature as a set of logically-

related requirements raises the issue of consistency between clusters. More specifically, how

should the structuring of requirements into features be done in such a way that feature

interactions are minimised? According to [Gibson 1997; Gibson et al. 1999], one of the

contributing factors to feature interactions is poor clustering of requirements into features.

There is a lack of documented guidelines for creating requirements clusters (features) in such

a way that the effects of the feature interaction problem are minimised. The proposed

requirements clustering techniques by [Hsia and Yaung 1988], [Chen et al. 2005], and [Yoo

et al. 2004] do not address this problem.

We noted in the discussion above that current definitions of a feature do not distinguish

between the requirement, specification, and context - and are thus insufficient in reasoning

about conflicts. In the next section we present the problem frames notation which we use to

structure a feature in terms of the definition we proposed in section 2.1. We chose the

problem frames notation due to its ability to explicitly distinguish between requirement,

specification, and context.

2.2 Problem Frames

In section 2.1 we characterised a feature as having a requirement, specification and context. In

chapter 1 we argued that context is important in reasoning about conflicts between features

25

because feature interactions manifest themselves on the shared context. In this section we

introduce the problem frames notation which we will use to identify and analyse the

relationship between the three sets of descriptions in a feature. Problem frames is based on the

entailment relation and this makes it suitable for modelling features considering the definition

of a feature stated in section 2.1.

2.2.1 The Philosophy of Problem Frames

Problem frames are an intellectual tool for analysing and structuring software development

problems. The philosophy of problem frames is that some software development problems are

recurring. Based on this premise, the idea is to document structures of commonly recurring

problems and their solutions in problem-solution patterns. When a problem that matches a

well known problem structure is encountered, the solution part of the pattern can then be re-

used to solve the problem at hand.

Using the problem frames approach, we model a feature as a relation between three sets of

descriptions: requirement (R), specifications (S), and problem domains (W) [Laney et al.

2007; Classen et al. 2008]. Problem domains represent properties that are part of the problem

world such as resources. For example in a problem to design a controller to regulate the

freshness of air in a room, a window would be a problem domain as opening it would allow

fresh air into the room. We use the term context to mean a set of problem domains in a single

feature. The behaviour of a problem domain is called its domain description [Jackson and

Zave 19931. Domain descriptions are indicative in that they express static relationships

between the occurrence of events and the resulting effects in terms of state changes in the

problem domain. In essence a domain description is a model of the dynamic behaviour of a

real-world problem domain. For example pushing a window towards its frame would lead to

it being eventually closed.

26

A requirement is stated in optative mode and describes desired states and behaviour of the

problem world [Zave and Jackson 1997]. For example the window should be opened between

6 am and 6 pm. A specification satisfies a requirement by issuing actions which effect

appropriate state changes on the problem domain. A specification is executed by a machine

[Jackson 2001] such as the computer hardware on which an application is installed. In the

problem frames approach, the argument that a specification satisfies a requirement is

expressed through Jackson and Zave's entailment relation [Zave and Jackson 1997]. The

entailment relation is: a specification satisfies a requirement given assumptions about the

behaviour of the problem context. Formally, this relation is expressed as:

S, Wý- R (2a)

WHERE "F-" is the entailment operator.

Using 2a we would express the security problem description as:

Ssec, Waec I- Rae,, (2b)

The entailment relation as expressed in 2a and 2b does not prescribe languages for expressing

the three artefacts. This absence of prescription has the advantage of giving the requirements

analyst freedom to choose a language of their choice for representing details of the three

descriptions. In order to support the argument that 2b holds we need to know the details about

the specific behaviour of S,,, and W. One way to describe the three artefacts (S, W, and R)

is in terms of events and state changes.

27

2.2.2 Modelling Features as Problem Descriptions

The relationship between the descriptions of the requirement, specification, and context is

called a problem description [Jackson 2001]. A problem description can be represented

graphically in a problem diagram. Figures 2.1 is a problem diagram documenting a problem

description of securing a laptop on a desk in an office [Haley et al. 2008]. The security

requirement, shown in the dotted oval, states that the office door and windows should be

locked at all times except when unlocked by the office owner. The security machine, shown

in the rectangle with double bars, describes the events that should be issued to the door and

windows domains to satisfy the security requirement. Note that, for simplicity, we only

project the Door and a Security Card problem domains in the diagram.

SM! (CloseDoor, OpenDoor, Door

LockDoor, UnlockDoor) Doorl (Closed, Opened,
Cocked, Unlocked)

Security Secure
Machine Room

F

SRI (GrdVdi
.' SRI (Vdhd,

CudNotVdid � Invalid) Security

Card

Figure 2.1 Office Security Problem Diagram

The Security Card problem domain represents an identity card which is validated by the

Security Machine before opening the door. Labels on the interfaces between domains show

the phenomena shared. The label also indicates which of the two domains (at either side of the

interface), control the phenomena. For example, the label SM! {OpenDoor, CloseDoor,

LockDoor, UnlockDoor) means that the events OpenDoor, CloseDoor, LockDoor, and

UnlockDoor are controlled by the Security Machine. On the requirements interface the

corresponding phenomena observed is whether the door is Closed, Opened, Locked, or

Unlocked.

28

2.3 Smart Home Problem Descriptions

Figures 2.2 and 2.3 are examples of problem diagrams for burglar deterrence and burglary

capture features, respectively. This example is drawn from the smart home domain. We use

these features in the rest of the thesis to illustrate our approach. The burglary capture

requirement (Rcap), shown in the dotted oval, is to "record intruder images". This requirement

is satisfied by the burglary capture machine (BCD), shown in the rectangle with double bars,

executing the capture specification (Sap). The ability of the BCM to satisfy the capture

requirement depends on assumptions about the behaviour of the three problem domains:

burglar sensors, surveillance camera, and DVD-R. On detecting a burglary through the

sensors, BCM instructs the DVD-R to record images of the intruders captured by the

surveillance camera.

The problem diagram in Figure 2.2 also shows the interfaces between the machine, problem

domain, and requirement. Interface a shows the phenomena that are shared between the

burglary capture machine and the burglar sensors. The phenomena in this interface are

Movement Signals. The domain name before the "! " symbol indicates the domain that

controls the phenomena. In this example Movement Signals is controlled by the burglar

sensors domain.

Burglar
Sensors

Burglary b Surveillance
Capture Camera

Machine

c yt

DVD-R

17 Record
Intruder
Images

a: BS! (Movement_Signals)
b: BCM! {startCapture, stopCapture)
C: BCMI{start, stop, pause, play)

DVD-R! (isRecording, isStopped, isPaused, isPlaying)
d: BS! (Movements)

e: SC! (isCapturing, isStopped)
f: DVD-R! (Recording, Stopped, Paused, Playing)
g: SC! (Video Signals)

Figure 2.2 Problem Diagram of Burglary Capture Feature

29

Clock

ac

Burglar
Deterrence Play Movie

Machine

DVD-R -ý d

a: F-M! tcurrent time request)
CL! (current_time_report)

b: BDM! (start, stop, pause, play)

DVD-R! (isRecording, isStoped, isPaused, isPlaying)
c: CL! (currenttime)
d: DVD-R! (Recording, Stopped, Paused, Playing)

Figure 2.3 Problem Diagram for Burglar Deterrence Feature

The burglar deterrence requirement (Rd, 1) is to playback a movie from DVD media when the

house owner is away to give the impression that someone is home - thus deter potential

thieves from breaking-in. Composition of the two features is shown by the problem diagram

in Figure 2.4. The two features share control of the DVD-R. This composition is expected to

satisfy both the burglary capture and deterrence requirements. However, the DVD-R cannot

record and playback at the same time, as shown by the state transition diagram in Figure I. I.

Hence, the deterrence and burglary capture requirements may not both be satisfied

simultaneously. One scenario where these features can conflict is when a thief breaks-in at a

time when a movie is playing.

Burglar
Sensors

Burglary Surveillance
Record

I Intruder Capture Camera ,% Images Machine `

DV D-R

Burglar
-iý Play

Deterrence
Movie

Machine --
Clock ----

Figure 2.4 Composition of Burglary Capture and Deterrence Features

30

The inconsistency between these two features occurs because they are both trying to use the

same DVD-R. Therefore, these features are inconsistent with respect to the DVD-R domain

because they are trying to engage it in behaviours that are incompatible. Incompatible here

means that due to the nature of the shared domain the two behaviours cannot happen

simultaneously. This problem would not occur if each feature had its own DVD-R, or if the

shared DVD-R used some time-division technique which enabled it to record and playback at

the same time. This example illustrates that feature interaction is a context sharing problem

[Nhlabatsi et al. 2008].

2.4 The Composition Controller Approach

The problem of sharing the DVD-R can be solved by composing the contingent specifications

through an arbitrator. The arbitrator intercedes between the specifications of the features and

the shared domain. In our approach we used a Composition Controller as an arbitrator. Using

prioritisation, a Composition Controller filters events issued by the capture and deterrence

machines. This prevents conflicts in the sharing of the DVD-R. Figure 2.5 shows a

composition diagram of the burglary capture and burglar deterrence features with a

Composition Controller.

Burglar
5.

ý
Sensors

Burglary _"-
''

Record '
Maclvne Seveillance -----1 nie

Camera ý` Images
Composition

Controller
l

-1 DVD-R
Beg1e

r

Deterrence -- -- . ` Machine y
Play Movie ý.

Clock -------------

Figure 2.5 Composition of Capture and Deterrence Features with a Composition Controller

The Composition Controller approach makes the following assumptions:

31

i. Specifications are expressed in terms of events that cause state changes in the

problem domain.

ii. The specification of each feature includes not only events that should occur for the

requirement to be satisfied. It also includes events that should be rejected for the

satisfaction of the requirement to persist over a given period.

The semantics of the Composition Controller are as follows: Requirements are prioritised and

events issued by specifications with lower priority requirement are rejected in favour of

higher priority requirements. With these properties a Composition Controller is able to

resolve inconsistencies resulting from sharing a resource.

2.5 The Event Calculus

A problem diagram captures the scope of the problem to be solved by showing a static

relationship between the requirement, specification and context. Such a static relationship is

insufficient in facilitating a systematic derivation of a specification because it does not show

the dynamic interactions between the specification and context that result in the satisfaction of

the requirement. The entailment relation states that a specification assumes certain given

properties about the behaviour of the context projected in a problem diagram. Therefore, to

facilitate the derivation of a specification and to argue (formally) that the resulting

specification satisfies the requirement, the dynamic behavioural properties of the context

should be made explicit.

The Event Calculus (EC) is a logic system for reasoning about how the occurrence of events

change the state of the world. We use the EC in this thesis to express domain descriptions and

to facilitate the automation of deriving specifications. In this section we introduce the

concepts of the EC that we use in the rest of the thesis.

32

2.5.1 Basic Constructs of the Event Calculus

The EC consists of three basic constructs: events, fluents, and timepoints [Mueller 2006a]. An

event represents an action which may occur to a problem domain. For example, pushing the

door towards its frame is represented as a CloseDoor event in the security problem shown in

Figure 2.1. A fluent is a time-varying property describing the state of a problem domain such

as the door is closed. A timepoint is an instant of time, for example 08: 05: 45 pm.

2.5.2 Event Calculus Predicates

A fluent is either true (holds) or false (does not hold) at a timepoint or over an interval. The

occurrence of an event at a timepoint may change the truth value of a fluent. When an event
results in a fluent being true it is said to initiate the fluent. Figure 2.6 is a domain description

of the door in the security example given in section 2.2. According to WD, the occurrence of
an OpenDoor event results in the Opened fluent being true. If the occurrence of an event
means a fluent will be false then that event is said to terminate the fluent. For example,
according to WD5, a CloseDoor event terminates the Opened fluent. This results in the door
being closed.

Initiates (OpenDoor, Opened, t) [WD,]
Initiates (ClosedDoor, Closed, t) [WD2]
Initiates (LockDoor, Locked, t) [WD3]
Initiates (UnLockDoor, UnLocked, t) (WD4]
Terminates (CloseDoor, Opened, t) [WD5]
Terminates (OpenDoor, Closed, t) (WD8]
Terminates (UnLockDoor, Locked, t) (WD,]
Terminates (LockDoor, UnLocked, t) [WD8]
Initially (Closed) [WD9]

Figure 2.6 Domain Description of a Door

A domain description models a real-world domain and forms a basis for reasoning about the

behaviour of the modelled domain. It is therefore important that its behaviour is consistent

with the actual state of the problem domain. In the EC all reasoning about future states is

based on current states. The initial state of a problem domain is expressed with InitiallyO

clauses. These state which fluents are assumed to be true when the problem domain is

33

initialised. For example, the domain description in Figure 2.6 assumes that the door is initially

closed (WD9). All other fluents not captured in the initially clause are assumed to be false

(initially) and changes in their truth values are subject to the commonsense law of inertia. The

commonsense law of inertia states that a fluent remains false until initiated and remains true

until terminated. Table 2.2 shows the predicates of the EC we will use and their meanings.

Table 2.2 Event Calculus Predicates

Fluent Description

Initiates(e, f, t) Fluent f starts to hold after event e at time t.

Terminates(e, f, t) Fluent f ceases to hold after event e at time t.

Initially(f) Fluent f holds at time 0

Happens(e, t) Event e occurs at time t.

HoldsAt(f, t) Fluent f holds at time t.

Clipped(tl, f, t2) Fluent f Is terminated between times ti and Q.

2.5.3 Event Calculus Meta-Rules

Based on initial conditions, events that have happened, and rules that state how fluents are

changed when events happen (domain descriptions), it is possible to determine which fluents

hold. This is summarised in the EC rules below.

HoldsAt(f, tl) E- Initially(f) A -Clipped(O, f, tl) (EC1J

HoldsAt(f, t2) E- Happens(a, tl) A Initiates(a, f, tl) A (t1 < t2) A' Clipped(tl, f, t2) [EC21

Clipped(tl, f, t2) E- 3a, t1 [happens(a, t) A terminates(a, f, t1) A (t1<t<t2)] [EC3]

EC1 states that a fluent holds if it held initially and no event has occurred to stop it holding.

EC2 states that a fluent holds if an event happened that makes it hold and no event has

happened to stop it holding. EC3 states that if an event happens in the period between tl and

t2, and that event terminates fluent f, then f becomes false during that period. These three

rules are referred to as meta-rules since they form the foundation of all reasoning about

occurrence of events and resulting effects in the Event Calculus language.

34

2.6 Chapter Summary

This chapter has explored the concept of a feature from a Requirements Engineering

perspective. We have defined a feature as a triplet; structured in terms of requirement,

specification and context. Our definition of `feature' is grounded on the entailment relation.

The problem frames approach is also based on the entailment relation. For this reason we use

the problem frames approach in modelling the structure of a feature.

In the entailment relation, it can be argued that a specification satisfies a requirement by

showing that the dynamic behaviour of the specification changes the state of the context to

that desired in the requirement. Hence deriving a specification involves taking into account

the indicative properties of the context. The indicative properties describe the dynamic

behaviour of context in terms of how the occurrence of events results in state changes. We

have introduced the Event Calculus, a language for modelling the behaviour of the context

and reasoning about the effects of events. In chapter 5 we show how to use this reasoning

capability to derive contingent specifications.

35

36

Chapter 3. Related Work

The feature interaction problem has been studied in depth in the telecommunications domain.

This is evidenced in the conference proceedings [Calder and Magill 2000; Reiff-Marganiec

and Ryan 2005] and special issue journals [Logrippo 1998; Akyildiz et al. 2000; Amyot and

Logrippo 2004; Reiff-Marganiec and Ryan 2007] documenting research results on proposed

approaches to addressing this problem. In recent work examples of feature interactions have

been documented in other domains.

In general feature interaction is a conflict between features. As a result, approaches to

addressing the feature interaction problem are similar to those proposed for analysing

conflicts between goals [van Lamsweerde et al. 1998; van Lamsweerde and Willemet 1998],

policies [Lupu and Sloman 1999; Dunlop et al. 2003; Reiff-Marganiec and Turner 2004; Blair

and Turner 2005; Turner and Blair 2007], viewpoints [Easterbrook 1993; Easterbrook and

Nuseibeh 1996], aspects [Rashid et al. 2002; Baniassad et al. 2006], and requirements

[Robinson and Pawlowski 1999] in inconsistency management.

Approaches addressing this problem can largely be divided into three categories: design-time,

run-time, and hybrid [Keck and Kuehn 1998; Hall 2000a; Calder et al. 2003; Hall 2005;

Wilson et al. 2005; Nhlabatsi et al. 2008]. A common characteristic of feature interactions is

that they result from sharing of context and are often subtle in nature. As an illustration

consider the following example from the automobile domain:

Consider a car which has an alarm system (security feature) and a crash

protection system with air bags (safety feature). The alarm system enforces

security of the car occupants and their valuables. When activated it ensures

37

that the doors and windows are locked; and monitors the state of the doors;

and reports any burglary activity by activating the siren. Meanwhile, the

safety feature ensures that in case of a crash, there is minimal loss of life. It

achieves this by unlocking all doors in the event that an impact occurs on the

front bumper.

Let us consider a scenario where these features could interact. Assume the

car is stationery at a traffic intersection with all doors locked by the Security

feature. If a thief hits the front bumper with a big hammer, the Safety feature

will unlock the doors allowing the thief to gain entry into the car.

This conflict demonstrates the subtle nature of the feature interaction problem. This feature

interaction may not be obvious to detect until a scenario such as the one above occurs. In this

example we have assumed that safety has a higher priority than security. Without such

priority a non-deterministic behaviour would result as both features try to gain control of the

doors.

The example highlights two problems. The first problem is how to detect, during composition,

that satisfying the safety requirement will compromise the security requirement and vice

versa? How do we detect during composition that having both security and safety features

share control of the doors would lead to an undesirable interaction?

In the event of a genuine crash it is desirable for safety to compromise security as this may

enable emergency personnel to get to the passengers in time. However, this is undesirable in

the case of a crash ̀ simulated' by a burglar. Thus, the second problem is, once we know that

safety compromises security, how to redesign the safety feature so that it is possible to

differentiate between a real and faked accident. The redesign may involve taking into account

38

contextual properties that were not considered initially. This thesis does not deal with this

kind of problems.

Approaches addressing the feature interaction problem can largely be divided into two

categories: offline [Calder and Miller 2001; Felty and Namjoshi 2003; Calder and Miller

2006] and run-time [Velthuijsen 1993; Tsang and Magill 1998; Pang and Blair 2002; Kolberg

and Magill 2007; Laney et al. 2007]. In this chapter we review these approaches from a

Requirements Engineering perspective, with a focus on context sharing as a source of conflict

between features.

In section 3.1 we advance the argument (introduced in chapter 1) that feature interaction is a

context sharing problem by providing supporting evidence from the literature in the form of

taxonomies and sources of feature interactions. Section 3.2 reviews approaches to managing

conflicts offline while section 3.3 reviews runtime approaches. In section 3.4 we conclude the

chapter by summarising the limitations of current approaches in addressing the initialisation

problem.

3.1 Feature Interaction as a context sharing problem

In this section we show that context is at the core of reasoning about the feature interaction

problem. We support this argument using the entailment relation, feature interaction sources,

and feature interaction taxonomies. In chapter 2 we characterised a feature as a set of related

requirements and their specifications intended to deliver a particular behavioural effect in a

given context. Using this characterisation we show, in section 3.1.1, that when features are

composed they enter into a relationship which is established through the context they share.

We review sources of feature interactions that have been documented in the literature in

section 3.1.2. Our review concludes that: a conclusion that two requirements are in conflict is

reached through a consideration of the behaviour of the context they share. In section 3.1.3 we

39

conclude our argument on the role of context by reviewing proposed taxonomies of feature

interactions with respect to context. Finally, we present a summary of the discussion on

feature interactions as a context sharing problem in section 3.1.4.

3.1.1 Formalisation of Feature Interaction through the Entailment Relation

When a feature interaction occurs, at least one of the requirements satisfied in isolation by the

features in the composition may be violated. Figure 3.1 expresses the relationship two

interacting features using the entailment relation [Jackson 2001] and the parallel composition

notation[Abadi and Lamport 1993]. This is similar to the formal framework for feature

interaction proposed in Godskesen (1995) [Godskesen 1995].

S1, W, rR, (1)
S2, W2 R2 (2)
S, IIS2, W, I-R, AR2 (3)

WHERE
Wa°{W1, W2}, W1EW,, andW2EA
"{.. }" is the set operator
"II" is the parallel composition operator
"A' represents the logical AND operator

Figure 3.1 Feature interaction expressed using the entailment relation

The basic idea is that if a feature specification S1 satisfies a requirement R1, assuming context

W1 (1), and a feature specification S2 satisfies a requirement R2, assuming context W2 (2);

then it is desirable that their parallel composition satisfy the conjunction of Ri and R2 (3).

Feature interaction occurs when there are shared properties between W, and W2 whose

relationship is such that (3) is not true. In general we call such properties the shared domain

(W.). When considered together the relations expressed in (1), (2), and (3) state that if each

feature behaves correctly and satisfies certain properties in isolation, then it is desirable that it

behaves correctly and continue to satisfy its requirements in composition with other features

[Abadi and Lamport 1993].

40

In illustrating the concept of a shared domain we use an example adapted from [Laney et al.

2007]. Consider the office security example presented in Chapter 2. Recall that the security

requirement is to control access to the office by opening the door only when a legitimate

security card is presented. Assume that we now have a new requirement for a climate control

feature. The climate control feature maintains the office at a cool temperature by opening the

door when the temperature outside the office is cooler than that inside and closing it

otherwise. Figures 3.2 and 3.3 show problem diagrams for the security and climate control

features, respectively. Composition of the two features is shown in Figure 3.4.

SM (OpenDoor, CloseDoor,
LockDoor, UnlockDoo

Door? (Closed, Opened,
Locked, Unbcked)

Secure
Room

' SRI (Valid,
- Invdtd)

Figure 3.2 Problem Diagram of Office Security Feature

CCMI {OpenDoor, CbseDoor,
LockDoor, UnbckDoor

Climate TMI(Seffemp)

Control
Machine

TMI (CurrentTamp)

Door
. Doorl (Closed, Opened,

Locked, Unlocked)

Temp. rMl(sore) . 'ý Cool ` Control "-""""" "r Office
Console , `

.' THERM (Cunentre)
Thermo
meter

Figure 3.3 Problem Diagram of Office Climate Control Feature

41

SIu(Cudvaia, J Security
CadNotVelid)/ I Card

Security
Machine SMi(oannoor, CbxDoor,

LockDoor, UnlockDoor)

CCM' (OpenDoor, CbxDoor,
Door

LockDoor, UnbckDoor)

Climate "(""PI Temp.
Control Control

Machine Console

TM! (CuventTenp)

Thermo
meter

SRI (Valid,
Invalid)

' Secure
Room

T-
.

Doorl (Closed, Opened,
- Locked, Unlocked)

TMI(setTam) . 'ý
"

Cool'
Office

.' THERMI (CmremTemp)

Figure 3.4 Composite Problem Diagram of Office Security and Climate Control Features

The two features share control of the door. Their composition is expected to satisfy both the

security and climate control requirements. However, satisfaction of both requirements may

not always be possible. For example satisfying the security requirement will be violated when

climate control opens the door if a thief enters the room. According to the security

requirement the door should only be opened upon presentation of a valid and legitimate

security card. However, climate control opens the door without such security authorisation.

This is a loophole in the security of the room. The conflict illustrated in this example arises

because the two features share control of the door. We discussed the implications of the

feature interaction problem for security requirements in Nhlabatsi et al. [Nhlabatsi et al.

2008].

3.1.2 Sources of Feature Interactions in Requirements

Feature interactions can be characterised by their causes. Table 3.1 shows a summary of some

causes of feature interactions that can be attributed to relationships between requirements.

This is based on a taxonomy of feature interaction sources proposed by Cameron et al.

42

[Cameron et al. 19931. These include overlapping pre-conditions, requirements inconsistency,

conflicting goals, violation of assumptions, and resource contention.

The way the sources of interactions are discussed in Cameron et al. [Cameron et al. 1993]

gives the impression that they are independent. We argue that they should not be viewed in

isolation. They are dependent on each other and they are parts of one whole. Only when they

are considered together can the characteristics of feature interaction be fully appreciated.

Table 3.1: A Summary of sources of feature interactions (from [Cameron et aL 1993])
Source Examples

Overlapping Pre- Call Waiting (CW) with Call Forwarding on Busy (CFB) and Voice Mail when Busy (VMB): All
Conditions three features are triggered by the same pro-conditions (busy subscriber) but they perform

(non- different and contradictory actions on behalf of the same user. Note: features without
determinism) overlapping pre-conditions could also Interact during their execution because of

inconsistencies in their post-conditions.

Requirements Security (anti-theft system) and Safety (door un-locking In case of crash): Similar to above.
Inconsistency Both security and safety share the same sensors and are hence triggered by the same

conditions, but the actions they perform as a result are inconsistent with each other.

Conflicting Goals Calling Line Identity Presentation (CLIP) and Calling Line Identity Restriction (CLIR): CLIP

delivers the calling subscribers Identity, while CLIR does the opposite. This manifests itself as

conflicting goals when used by two subscribers.

Violations of Calling Number Delivery (CND) and Unlisted Number (UN): Similar to the interaction between

assumptions CLIR and CLIP. CND delivers the number of the calling subscriber to the called subscriber for
Identification, while UN prevents an unlisted subscriber number from being delivered to a

called subscriber - an example of violation of data availability assumptions.

Resource Burglary capture and burglar deterrence features in a smart home. The capture feature

Contention records Images of the intruder on the VCR when a burglar is detected. The deterrence

feature records Channel 4 news from 7: 00pm to 8: 00pm on the VCR. If a burglar breaks-in at
7: 30pm the capture feature will not be able to record the Intruder images since the VCR is

already being used by the deterrence feature.

For instance, Overlapping Pre-Conditions means that the features involved are triggered

concurrently. However, that they are triggered concurrently is a necessary but not a sufficient

condition for a conflict. We need to take into account whether they have Conflicting Goals or

(and) Inconsistent Requirements. To reach the conclusion that two goals are conflicting or two

43

requirements are inconsistent the behaviour of the context should have been taken into

account.

As an illustration, the conflict between Burglary Capture and Burglar Deterrence (introduced

in chapter 1) is due to the nature of the DVD-R being incapable of recording and playback

concurrently. The conflict on the DVD-R is a classic example of resource contention [Bisbal

and Cheng 2004]. If the DVD-R had the capability to record and playback concurrently then

overlapping preconditions of the two features would not lead to a conflict. Similarly,

inconsistency between the two features would not be realised if they had no overlapping pre-

conditions.

Composition may also violate assumptions made about the context when each feature is

considered in isolation. For example in the office security and cooling problem discussed in

section 3.1.1 the designer of each feature may have thought that the feature will have sole

control of the door. This example illustrates how assumptions about the context made in

isolation can be made invalid by composition - resulting in violation of feature requirements.

The preceding discussion illustrates that context is at the core of the feature interaction

problem.

In section 3.1.3 we discuss different taxonomies of feature interactions characterised (in part)

in terms of the feature interaction sources discussed. The aim of feature interaction

taxonomies is to establish relationship between sources and types of feature interactions

[Kolberg et al. 2003; Hamed and Al-Shaer 2006; Shehata et at. 2007a; Shehata et al. 2007b].

Such relationships support detection of feature interactions through inspection of the

correlation between their requirements and the nature of the context they share. For example

if there is an overlap between the preconditions of two features then a non-deterministic

feature interaction may occur (see second row in Table 3.1). Documentation and formalisation

of these relationships provide information for early detection of feature interactions and aids

44

automation of the detection techniques [Braithwaite and Atlee 19941 [Lin and LIN 1994]

[Sefidcon and Khendek 2000].

3.1.3 Feature Interaction Taxonomies

The current trend in feature interaction research is to study the problem in specific domains

by applying generic feature interaction detection approaches. This has led to the creation of

feature interaction taxonomies of the respective domains. Examples can be seen in reports on

feature interaction in smart homes [Kolberg et al. 2003; Nakamura et al. 2004a], electronic

mail systems [Hall 2000b], SIP services [Bond et al. 2004; Chi and Hao 2007; Kolberg and

Magill 2007; Wu and Schulzrinne 2007], web services [Weiss and Esfandiari 2004; Weiss et

al. 2007], embedded systems [Metzger and Webel 2003; Metzger 2004], policy-based

systems [Dini et al. 2004; Reiff-Marganiec and Turner 2004; Blair and Turner 2005; Hamed

and Al-Shaer 2006; Turner and Blair 2007], and product lines [Thiel et al. 2001; Bredereke

2005].

Although there are similarities between the feature interactions detected in these domains,

each domain presents unique challenges. This has made it necessary to extend standard

approaches to deal with specific types of feature interactions. For example, it has been shown

that a consideration of the environment when addressing feature interactions in embedded

systems is important [Kolberg et al. 2003; Metzger 2004]. This is because the environment

creates dependencies between features which otherwise seem independent.

One of the earliest feature interaction type taxonomies was proposed by Cameron and

Velthuijsen [Cameron and Velthuijsen 1993]. They identified four types of feature

interactions that could occur in the telephony domain. Studies on feature interactions in other

domains have resulted in the refinement of this taxonomy. A notable example is the taxonomy

of feature interactions in smart homes proposed by Kolberg et al. [Kolberg et al. 2003].

45

Recently, these two taxonomies have been synthesised by Shehata et al. [Shehata et al.

2007b] to a generic taxonomy which the authors claim to be applicable to most domains. This

taxonomy consists of 9 feature interaction types (shown in Table 2a).

This thesis uses a reduced version of the taxonomy proposed in Shehata et al. [Shehata et al.

2007b]. We merged S2, S3, S5, and S8 (see Table 3.2a) to form a bypass category. All these

categories involve a conflict in which the execution of one feature fails due to an undesirable

change of state (or failure to change state) of the shared context by another feature. S4 was

merged with S6 to form a single negative impact category. Both categories refer to a case in

which two features execute to completion but their post-conditions negatively interfere with

each other.

Table 3.2a Shehata et al's Taxonomy
Interaction Types Short Description

[Si) Non- Occurs when two features have the same pre-conditions but different post-conditions.
Determinism

[S21 Dependence The execution of one feature depends on the correct execution of another.
[S3] Override Occurs when two features that have the same pre-conditions have post-conditions for one
(Same pre- feature that change the state of the context in such a way that the other feature does not

conditions) finish executing.
[S4] Negative Occurs when two features with the same pre-conditions but with post-conditions that
Impact (Same pre- diminish each other.

conditions)
[S5] Override Occurs between features that have linked trigger events but where the post-conditions of
(Linked trigger one feature change the state of the context In such a way that the other feature does not

events) finish executing.
[S6] Negative Occurs between features that have linked trigger events with post-conditions that diminish

impact (Linked each other.
trigger events)
[S7] Invocation The behaviour of execution of the features in one sequential composition Is different from
Order behaviour when the sequential composition is changed.
[S8] Bypass The execution of one feature prevents the execution of another by putting the context In a

state that is different from the pre-conditions of latter feature.
[S9] Infinite Occurs when features execute Indefinitely by continuously triggering each other.
Looping

The reduction leaves 5 categories, namely: Non-determinism, Negative Impact, Invocation

Order, Bypass, and Infinite Looping (shown in Table 3.2b). We consider these categories to

46

represent conflicts that are at the core of the feature interaction problem. This thesis does not

add any new categories to this taxonomy. It provides illustrations of the role of context in

characterising these types of feature interaction.

Table 3.2b Reduced Taxonomy

Interaction Types Short Description

Non-Determinism Same as Si
Negative Impact Merged S4 and S6

Invocation Order Same as S7

Bypass Merged S2, S3, S5 and S8

Infinite Looping Same as S9

In doing so we use the concepts of pre-condition, prestate, trigger event and post-condition as

used in [Shehata et al. 2007b]. Pre-conditions describe the conditions that should be true

before a feature can execute. A pre-condition consists of sets of prestates and trigger events.

A prestate describes what the state of the context should be before a feature can execute.

When a trigger event occurs and the prestates are true, a feature is executed. Post-conditions

describe the state of the system after the execution of the given feature. In essence, a post-

condition describes the effect of executing a given feature. For this reason it is stated in

optative mode [Zave and Jackson 1993]. For example Call Forwarding on Busy (CFB) in

telephony is executed when there is an incoming call (trigger event) while the subscriber is

engaged on another call (pre-state) and forwards the incoming call to a pre-specified number

(post-condition).

Non-determinism: Non-determinism occurs when two or more feature specifications require

a shared domain to engage in different behaviours simultaneously, when the domain can

engage in only one of the requested behaviours at a time [Cameron and Velthuijsen 1993]. By

domain we mean a property of the environment that a specification of a feature uses to satisfy

the requirement(s) e. g. the Door in Figures 3.2 to 3.4. It becomes non-deterministic as to

which of the required behaviours the domain should engage in. Non-determinism results from

47

overlapping pre-conditions with inconsistent post-conditions. As stated in section 3.1.2,

overlapping pre-conditions makes it possible for features to be activated at the same time.

Such overlaps may either be exactly or partially matching pre-states and trigger events.

The inconsistency of post-conditions can mean one or both of two things: a logical

inconsistency between the individual feature requirements; and (or) inconsistency of the

actions being performed on the problem domain. To illustrate this point, consider a DVD-R

that is designed in such a way that it does not allow the functions of recording and playback to

happen simultaneously.

Two features, Fl and F2, with requirements to record and playback, respectively, cannot be

said to be inconsistent until we can ascertain that they are both trying to use the same DVD-R.

Therefore, these features are inconsistent with respect to the shared context because they are

trying to engage it in behaviours that are incompatible. This problem would not occur if: each

feature had their DVD-R; or if the shared DVD-R used some time-division technique which

enabled it to record from more than one video source at the same time. This highlights the

feature interaction problem as a "context sharing problem" as illustrated in section 3.1.1

Negative Impact: Similar to a non-deterministic interaction, in this type of interaction,

features have overlapping pre-conditions. The difference is that in this case both features are

executed but the impact of their post-conditions are inconsistent [Cameron and Velthuijsen

1993]. The post-conditions of one feature diminish the effects of the post-conditions of the

other feature. This type of interaction can manifest as a resource contention [Bisbal and

Cheng 2004] or inconsistent state changes on a shared resource (such as device in a smart

house [Kolberg et al. 2003]).

For example, consider two features: AirFreshMonitoring and ClimateControl. The

requirements for the AirFreshMonitoring is that when the air quality in the room is poor and it

48

is day time the windows should be opened to refresh the room. The requirement of the

ClimateControl feature is that during daytime the temperature in the room should be

maintained at 25°C at all times by opening and closing the windows. Consider a scenario in

when the air quality in the room is poor, the room temp is currently at 25°C, and it is too cold

(or too hot outside the room). In response to the poor air quality, AirFreshMonitoring will

open the window and this will either decrease or increase the room temperature. This has a

negative impact on the requirement to maintain the room temperature at 25°C. Note that in

this example satisfaction of the requirement is not immediate. The conflict arises when one of

the features immediately close or open the windows while the requirement of the other feature

is in the process of being satisfied.

Invocation Order: An invocation order interaction occurs when the sequential composition of

two or more features result in different system behaviours under different sequential

compositions [Shehata et al. 2007b; Weiss et al. 2007]. Two features Fi and F2 are said to be

sequentially composed if at the end of the execution of Fl, the execution of F2 is started.

Sequential composition can be either implicit or explicit.

With implicit sequential composition the sequence of feature execution results from linked

trigger events. Two events, el and e2, are linked if the occurrence of one event leads to the

occurrence of the other. For example, consider two features associated with the control of an

automated door, a DoorOpenClose feature and a DoorLocking feature. The DoorOpenClose

feature controls the opening and closing of the door. When the door is opened and a close

event occurs, the door starts closing and eventually generates a closed event when fully

closed. If an open event occurs while the door is closed it starts opening and generates an

open event when the door is fully opened.

The DoorLocking feature controls the locking and unlocking of the door. It locks the door 3

seconds after the occurrence of a closed event and locks the door immediately when a lock

49

event occurs. Similarly, this feature unlocks the door immediately when an unlock event

occurs. Open, Close, Lock and Unlock events are generated by the user intending to enter the

house where the door is mounted. This relationship between the events means that the

execution of the DoorOpenClosed feature eventually leads to the execution of the

DoorLocking feature. Hence the features have an implicit sequential composition. An

invocation order interaction between the two features is illustrated below:

Consider a scenario in which the door is initially opened. Assume the door

has close and open buttons which generate close and open events,

respectively. When the user presses a close button the door is closed by the

DoorOpenClose feature and eventually locked by the DoorLock feature.

Define 131 to be this system behaviour.

Assume a second scenario in which the door is initially opened and the user

issues a lock command which attempts to lock the door. This does not have

an effect on locking the door since it is opened. If we assume that the type of

lock used is mechanical then we can imagine the locking bar of the mortise

lock protruding after the lock event is issued. If the user presses the close

button the door will start closing but will not be able to fully close because of

the protruding locking bar. Define B2 to be this system behaviour.

In the former scenario both features have executed properly and satisfied their requirements.

However, in the latter scenario although both features have executed, none has satisfied their

requirements. In B1 the door is properly closed and locked, but in B2 the door is left

unclosed! Since B1# B2, then the composition of the safety and security features exhibits an

execution order interaction.

Explicit sequential composition is the type of composition in which the preceding feature in a

sequential composition is designed in such a way that it directly starts the execution of the

50

next feature. For example a security feature that automatically alerts the police through a

phone call when a break-in is detected in a smart house is explicitly sequentially composed

with a communications feature.

Bypass: One feature (F,) bypasses another feature (F2) if it changes the state of a shared

context in such a way that F2 is prevented from executing or completing execution (if already

started). The new state of the context does not match that expected by F2. As a result its

requirements are never satisfied. To illustrate a bypass consider a scenario in which features

F, and F2 have linked trigger events. Assuming F, is triggered and executes to completion.

Also assume that its post-conditions are different from the prestates of F2. This means that

when the trigger event of F2 occurs, F2 will not be executed since the current state of the

shared context does not meet its prestates because of the execution of F,.

For example consider a Power Management feature and a Security feature. The Power

Management feature controls power consumption. It has parameters for monitoring the total

power consumed and the rate of consumption. The total amount of power, measured in

Kilowatts has a monthly limit. This feature has adaptive power control which ensures that

power consumption does not exceed the monthly limit. Adaptive power control achieves this

by monitoring and adapting power consumption by `greedy' appliances. When an appliance

consumes power at a rate higher than the average rate then that appliance is switched-off to

ensure a steady consumption of power. On detecting a burglary, the Security feature raises an

alarm by sounding a motorised siren. Assume a burglar is detected and the security feature

starts the motorised siren which consumes power at a rate higher than the average rate. On

detecting this, the power management feature switches off the power to the siren. As a result

the security requirement is not satisfied and the power management feature is said to have

bypassed the security feature.

51

Infinite Looping: Infinite looping feature interactions are unique in the sense that they defy

the general notion of feature interaction. In this type of feature interaction individual feature

requirements are not violated. A looping interaction occurs when two features are reciprocally

linked in their post-conditions and trigger events [Cameron and Velthuijsen 1993; Kolberg et

al. 2003; Shehata et al. 2007b]. Two features, F, and F2, are reciprocally linked if the post-

conditions of F, create the trigger events of F2 and vice versa. To illustrate a looping

interaction, assume that F1 is triggered and starts executing and creates the trigger events of

F2. Feature F2 starts executing and in turn creates trigger events for Fl. This process is

repeated indefinitely - creating infinite looping.

For example consider a Cooling feature and a Security feature. When the temperature inside a

house is higher than that outside, the Cooling feature opens the windows and starts the fan.

On detecting movements in the house the security feature raises an alarm by sounding the

siren and secures windows to ensure that the burglar does not get away. Consider a scenario

in which the temperature in the house is hotter than outside. This triggers the Cooling feature

which by starting the fan creates movements in the house which are interpreted by the

Security feature as being caused by a burglar. The security feature shuts the windows. This

makes the room warm again and triggers the Cooling feature, which again starts the fan and

opens the windows. This cycle continues indefinitely.

The unconventional and subjective nature [Hall 2000a] of looping interactions has led to

some researchers working on the feature interaction problem to argue that the general notion

of feature interaction as presented in Figure 3.1 is not sufficient. Hall [Hall 2005] showed that

in email systems the assertion that feature interactions only occur as a violation of individual

feature requirements does not hold. He showed that feature interactions in this domain can

occur without violation of individual feature requirements. For example:

52

Consider the interaction between AutoResponder and GroupMail features.

The AutoResponder feature enables automatic response to incoming email

messages when the addressee is away. The GroupMail feature enables the

creation of a virtual group of email users in a domain. For example

'PostGraduateStudents" could be a group of email addresses of all post

graduate students in an institution. Let the email address of this group be

Dostgraduatestudents(aD-oDen. ac. uk. When a message is sent to the group

address, it is forwarded to each of the affiliated addresses. Now let

Armstrong be a member of the above group.

Consider a scenario where Armstrong is on vacation and an email is

delivered to the group. The GroupMail feature sends this email to all

addresses in the group. The AutoResponder feature replies by sending a

response to the group email (not the originating address). When the

GroupMail feature receives this message it forwards it to all the affiliated

members. The cycle is repeated indefinitely. Note that both features have

satisfied their individual requirements. However, the resulting behaviour is

clearly undesirable as it ends up sending repeated messages.

Hall's view suggests the need for an approach to the feature interaction problem that can

detect non-binary interactions. In such an approach feature interaction detection would

involve an analysis of the compositional effects of two features relative to a third

requirement. The purpose of the third requirement would be to prevent the undesirable

behaviour resulting from the composition of the first two features from occurring. Note that

this does not necessarily render invalid the framework proposed in Figure 3.1.

In his earlier work [Hall 2000a], Hall noted that combined properties resulting from such

compositions are often "..... inconsistent with natural individual feature correctness

properties, leading to non-monotonic behaviour that requires design changes after feature

53

combination. " This suggests that the framework proposed in Figure 3.1 needs to be extended

with an iterative approach. An iterative approach would be useful as a systematic way of

eliciting the third requirement whose implementation would counteract the negative

compositional effects. A challenge of such an approach is that the third requirement is not

always explicit and known prior to observation of compositional effects.

Requirements Interaction Management: Robinson et al. [Robinson et al. 2003] proposed

three properties of requirements interactions: Basis, Degree and Direction, and Likelihood.

The basis specifies the basic elements of the feature interaction, that is, the minimum set of

conditions that imply an interaction between features. This is similar to the five feature

interaction types we have discussed above. The degree specifies the impact of the interaction

on the operation of the system and the direction specifies whether the interaction is negative

(undesired) or positive (desired) with respect to the satisfaction of system composition

requirements. The degree and direction is a measure of the interaction level of a given set of

features and may help in prioritising the resolution of undesirable feature interactions.

Negative interactions with a high negative impact should be given a higher priority than those

with a lower negative impact. The likelihood of a feature interaction determines its probability

of occurrence.

These properties seem a valuable criterion for evaluating feature interactions. However, there

are no systematic methods that put these criteria into practice. For example, there is no

evidence of approaches for measuring degree and likelihood of feature interactions. Based on

characteristics of feature interaction taxonomies, current approaches can only detect that an

undesirable feature interaction may occur but can not tell us what the impact is (beyond that a

requirement will be violated) and how likely it is that the feature interaction would occur.

54

3.1.4 Summary

We have argued that it is impossible to have feature interaction unless there is shared context

between features and hence feature interaction is a context sharing problem. We have

advanced this argument by illustrating the role of context in: (1) formalisation of feature

interaction using the entailment relation, (2) documented sources of feature interactions, and

(3) taxonomies of feature interactions. The characterisation of feature interactions through the

taxonomies discussed in section 3.1.3 forms the basis for detection. In the next section we

review current approaches to feature interaction detection, using design-time approaches.

3.2 Design-time Approaches

Typically, design-time approaches to addressing the feature interaction problem are based on

formal methods. Formal methods are precise languages and techniques for specifying and

analysing software systems. Due to their rigour, precision, and systematic treatment they are

highly desirable in the development of software systems where a high standard of safety and

integrity is essential [Yu and Dias 1993]. Such is the case with critical systems.

The application of formal methods in the detection of feature interactions involves describing

feature behaviour using formal languages such as Temporal Logic [Felty and Namjoshi

2003]. The compositions of the feature behavioural descriptions are then analysed for

conflicts by applying appropriate reasoning mechanisms such as model checking [Calder and

Miller 2001]. In section 3.2.1 we review formal feature behavioural description languages and

discuss corresponding conflict analysis mechanisms. Section 3.2.2 presents a summary and

limitations of design-time approaches used in feature interaction detection.

3.2.1 Feature Behavioural Description Languages

Languages used for describing the behaviour of features in formal approaches addressing the

feature interaction problem can be classified into Logic Based, State-Based, Algebraic, and

55

Structural. This classification is based on classifications proposed in Liu et al. [Liu et al.

1997], Turner et al. [Turner et al. 2004], and Kryvyi and Matveyeva [Kryvyi and Matveyeva

2003]. Following is a brief summary of the features of each formal language class.

Logic: This approach involves the use of logics to describe system desired properties.

Validity of properties is checked using the associated axiom system of the used logic. The

commonest type of logic systems used for specifying features and reasoning about their

compositional behaviours are Modal Temporal Logic and the Event Calculus. Modal

Temporal Logic expresses how the system behaviour evolves over time, making it possible to

make statements about future states of the system. It can be used to reason about qualitative

and quantitative temporal properties.

Qualitative properties include safety properties (such as mutual exclusion and absence of

deadlocks) and liveness properties (such as termination and responsiveness). Examples of

quantitative properties include periodicity, deadline, and delays. Temporal logic has been

used for specifying the behaviour of telecommunications features with the model checking

tool SPIN to automate the process of detecting interactions [Felty and Namjoshi 2003; Calder

and Miller 2006].

As introduced in Chapter 2, the Event Calculus [Shanahan 1999] is a logical language for

representing and reasoning about actions and their effects. It is also being used for specifying

and analysing feature-based system behaviour [Laney et al. 2007]. An Event Calculus

description relates initiating and terminating events to system states called f uents. A fluent is

a property of the system that holds after it is initiated by an event and ceases to hold when

terminated by another. An event el is said to initiate a fluent f if upon occurrence of el, f

becomes true. Meanwhile an event e2 is said to terminate fluent f if its occurrence makes f

false. This logic system has been used for analysing conflicts between policy specifications

[Bandara et al. 2003], avoiding feature interactions resulting from inconsistent smart home

56

features [Laney et al. 2007], and real-time monitoring of requirements satisfaction in service-

based systems [Spanoudakis and Mahbub 2006].

Yokogawa et al. [Yokogawa et al. 2003] proposed using bounded model checking for the

detection of feature interactions. In this approach, the problem of feature interaction is

reduced to that of the propositional satisfiability decision problem [Bordeaux et al. 2006]. The

idea of propositional satisfiability is to determine if a specification exists that can satisfy a

conjunction of requirements given some properties of the context. If no such specification

exists, then the conjunction of the requirements is considered unsatisfiable in the given

domain descriptions.

Mueller [Mueller 2006b] presents a comprehensive comparison between Event Calculus and

Temporal Action Logic(TAL) [Gelfond and Lifschitz 1993] which could be useful as

guidance in deciding which logic system to use for a given application. Giannapoulou and

Magee [Giannakopoulou and Magee 2003] proposed an approach of translating event-based

specifications into fluent propositions which makes them amenable to analysis with model-

checking tools.

Features have also been specified as constraints on system behaviour and feature interactions

defined as violation of such constraints. Accorsi et al. [Accorsi et al. 2000] proposed an

approach in which features are specified as constraints and model checking tools are then

used to analyse the specifications for feature interactions. In Elfe et al. [Elfe et al. 1998] a

constraint-based approach for performing avoidance, detection, and resolution of feature

interactions is proposed.

Hay and Atlee [Hay and Atlee 2000] proposed a transitions synchronisation technique called

Conflict Free-Synchronisation. This technique allows features to simultaneously react to a

57

particular situation (such as a trigger event), but disables transition combinations that conflict.

Two features conflict if the combination of their transitions violates relevant assertions.

State-Based: State-based languages are used to model the behaviour of a feature-based

system in terms of abstract machines with sets of states and transitions between the states. The

machine changes from one state to another depending on the input and may produce some

output in response. Some notable examples of state-based languages include the Specification

and Description Language (SDL) [Turner 2000; Kaindl 2005], and Message Sequence Charts

(MSC) [Fu et al. 2000; Lorentsen et al. 2002; Uchitel and Chechik 2004; Damas et al. 2005].

The basic idea of feature interaction detection with state-based approaches is determining

state reachability [Pomakis and Atlee 1996; Siddiqi and Atlee 2000a], i. e. whether all the

states reachable in isolation are reachable in composition. A given state is associated with the

satisfaction of certain properties; hence if the given state is not reached the satisfaction of

these properties is violated.

SDL is an ITU z. 100 standard language for analysing specifications for completeness and

correctness, determining conformance of implementation to specifications, and determining

consistency between specifications. It is intended for specification of complex, event-driven,

real-time, and interactive applications which involve concurrent processes that communicate

using discrete signals.

MSCs model system behaviour using scenario-based specifications and they focus on

messages exchanged between features. A comprehensive survey of scenario-based notations

in telecommunications systems development is documented in [Amyot and Eberlein 2003].

While it is relatively easy to communicate system functionality with scenarios, it is generally

accepted that it is difficult to guarantee that complete system behaviour has been captured.

58

Algebraic: Algebraic approaches are similar to stated-based approaches. The only difference

is that with algebraic approaches the consideration of state information is implicit and the

focus is on actions that cause transitions between states. A feature-based system is modelled

as a set of communicating processes with each process modelling a single feature. Each

feature process describes the order in which events can occur (sequentially or concurrently).

An example of an Algebraic language is Language Of Temporal Ordering of Specification

(LOTOS). In Fu et al. [Fu et al. 2000], LOTOS is used for describing feature specifications

and these specifications are then translated into a state transition model that describes

properties that should hold either globally or locally. These properties describe required

feature behaviour and their violations are considered as feature interactions. State transitions

that do not lead to property violations are encoded as Message Sequence Charts.

In [Gorse et al. 2006], a two-stage approach to detecting feature interactions in LOTOS

specifications is proposed. The first stage is filtering in which possible interactions are

detected by considering feature prestates, trigger events, post-conditions, and constraints.

Nakamura et al. [Nakamura et al. 2000; Nakamura et al. 2002] proposed heuristics for

filtering based on features specified with Use Case Maps.

The second stage is testing. At this stage suspect interactions identified in the filtering stage

are further analysed to ascertain if they can actually occur. It is generally accepted that testing

does not guarantee the absence of feature interactions [Godskesen 1995]. Since this approach

is based on testing, it follows that it does not guarantee that all possible interactions have been

detected.

Structural: With structural approaches the organisation of the system is defined in terms of

its components - the features. Structural approaches are useful as visual notation for

representing sequences of actions and the causality among them, e. g. Use Case Maps (UCM)

59

[Amyot 2001]. Structural approaches are not formal in themselves and consequently they are

often accompanied by a formal underpinning which describes rules of valid connections

between components. This is demonstrated in [Nakamura et al. 2000] where a formal link is

provided from UCM to LOTOS.

Architecture-centric methods to handling feature interactions such as the DFC [Jackson and

Zave 1998] and the Feature Stack Architecture [Pomakis and Atlee 1996] demonstrate the use

of structural approaches. Both of these methods resolve non-deterministic feature behaviour

by prioritising features, ensuring that they execute in a deterministic way. Practical

application of the DFC (initially developed for Plain Old Telephone System (POTS)) has

been demonstrated through its implementation in an IP telephony platform called BoxOS

[Bond et al. 2004].

Petri Nets provide a graphical representation with formal semantics of system behaviour and

they can deal with concurrency, non-determinism, and casual connections between events. In

the approach proposed in Lu et at. [Lu et al. 2001], feature functionality is represented as a

temporal formula and the behaviour of the featured-based system is represented as the set of

all firing sequences. Feature interactions are detected by inspecting whether or not the

temporal formula is violated when executing some of the firing sequences. The CHISEL

notation [Turner 2000] is an informal graphical notation describing telecommunications

features and services. Its graphical descriptions are supported by LOTOS and SDL.

Summary: Table 3.3 presents a summary of the combination of formal languages and

reasoning mechanisms discussed above. For each category of formal language the table shows

the specific notations used for feature behaviour description, the type of feature interaction

detected, the feature interaction detection mechanism used, the application domain, and tool

60

support (where available). This table shows no evidence of approaches that address the

detection of looping interactions.

Table 3.3. A summary of formal approaches
Approach Feature Type of Approach to Application Tool Support References

Specification Interaction Feature Domain(s)
Notation (s) (s) Detected Interaction

Detection
State / Procedural Negative Constraint Intelligent ISAT [Hall 2000a], [Elfe et a!.
Model- Event-Based Impact, and Satisfaction, Networks LTSA 1998], [Kaindl 2005],
Based Formalism Bypass, Reachability (IN) services, [Giannakopou [Turner 2000], [Fu et al.

(P-EBF), Analysis, and POTS and lou and 2000], [Damas et al.
Traces of Simulation Distributed Magee 2003] 2005], [Lorentsen eta!.
Finite State SIP Services. 2002], and [Uchitel and
Automata, Chechik 2004]
MSC, and
SDL

Logic- Linear Non- Model POTS, Smart SPIN and [Calder and Miller
Based Temporal Determinism Checking, Homes, Event 2006], [Felty and

Logic and Invariant Constraints Policies Calculus Namjoshi 2003], [Laney
Formulas and Violation Satisfaction, Planner et a!. 2005], [Bandara et
Event (Bypass) and Logic a!. 2003], [Accorsi et a!.
Calculus Deduction. 2000], [Shanahan 1999],
Descriptions and [Dini eta!. 2004;

Reiff-Marganiec 2004;
Blair and Turner 2005]

Algebraic LOTOS Bypass, Constraint POTS ELUDO, [Fu eta!. 2000], [Gorse
Override, and Satisfaction CADP, and eta!. 2006], and
Negative LOLA [Fu et [Nakamura et al. 2000;
Im act al. 2000 Nakamura et al. 20021,

Structural Petri-nets and Non- Simulation POTS and DESIGN/CP [Amyot 2001],
Use Case determinism and User N [Albert et [Nakamura et aL 2000],
Maps reachability Interfaces for al. 1989] [Jackson and Zave
(UCMs) analysis Mobile 1998], [Pomakis and

Phones Atlee 1996], [Kryvyi
and Matveyeva 20031,
[Lu et al. 2001], and
[Lorentsen et al. 20021.

3.2.2 Limitations of Formal Approaches to Feature Interaction Detection

Formal specifications of features help improve clarity and precision [Calder and Miller 2006]

in modelling feature behaviour. Formal analysis of feature compositions allows for rigour in

the detection of feature interactions [Calder et al. 2003]. However, although the application of

formal approaches has proven valuable in understanding feature interactions, especially in the

telecommunications domain, the main challenges for their applicability concern end-user

programming. The main goal of end-user programming is to equip end-users (rather than

developers) with tools for designing and composing their features [Kolberg and Magill 2007].

This is different from current practice in which features are designed and composed by

experienced developers.

61

Such a development paradigm raises two issues: (1) how can formal approaches be used to

capture and formalise user intentions, and (2) how to handle feature interactions between end-

user defined features. Some feature interactions can be traced to the way user intentions are

interpreted [Stepien and Logrippo 1994; Xu et al. 2007]. Composition of features from

different users will require user intentions to be captured and formalised and such information

may aid accurate detection. For example, a looping interaction can be desirable or

undesirable. Whether an interaction has a negative or positive impact depends on the

composition requirement [Laney et al. 2007]. A composition requirement states what the

desirable behaviour of the combination should be and is based on intentions of the

composition. Hence, explicit knowledge of user intentions of the composition is important as

it may minimise false detection of conflicts.

Formal approaches have so far been used for offline detection and resolution of feature

interactions. Resolving feature interactions offline often involve re-specifying features such

that the conflict is designed away [Hay and Atlee 2000; Calder and Miller 2006]. This implies

customising the behaviour of features involved in a conflict to each other. Such customisation

breaks the modularity of individual features [Hall 2005] and very often these resolutions are

over-restrictive on the composition requirement [Laney et al. 2007]. Offline approaches are

mostly suitable when the development of features and their composition is undertaken within

constraints of well defined standards.

3.3 Runtime Approaches

The distribution of the development of features without well-defined standards among

designers requires runtime approaches to detecting and resolving feature interactions. Such is

the case with the internet telephony domain where users are able to create their own features

[Nakamura et al. 2004b; Amyot et al. 2005; Wu and Schulzrinne 2007]. The basic idea for

detecting feature interactions is to characterise them in terms of taxonomies such as those

62

discussed in section 3.1.3. This is analogous to the approach used in medicine for diagnosing

diseases. Diseases are characterised in terms of their symptoms. These symptoms are then

used to recognise an instance of the disease when it affects a particular patient. Similarly,

characterising feature interactions in terms of taxonomies supports the detection of the feature

interactions should they occur later, as demonstrated in Shehata et al. [Shehata et al. 2007b].

This idea for detection, as explained above, seems to apply in both design-time and runtime

approaches. However, this is not true for resolution approaches. A major difference is that in

resolving runtime feature interactions the option of redesigning features is not available. More

importantly, at runtime, resolution has to be performed within relatively short time limits with

minimal manual intervention. This implies the need for an approach that allows for generic

resolutions techniques associated with known types of feature interactions. The resolutions

can then be chosen at runtime when the corresponding feature interaction occurs. Offline

approaches are not suitable for addressing this problem. In the following subsections we

review two main classes of runtime approaches to feature interaction resolution: negotiation

and arbitration.

3.3.1 Negotiation Approaches

Negotiation is a dialogue between features intended to find strategies to satisfy their

requirements without causing a conflict [Velthuijsen 1993]. Each feature is implemented as a

negotiating agent. The dialogue consists of proposals and counterproposals. In turn each

proposal or counterproposal consists of strategies. A negotiation starts by one agent

generating a proposal acceptable to it and sending the proposal to its counterpart (another

agent). One receiving the proposal the second agent accesses it to determine if it is acceptable.

A proposal is acceptable if it will lead to the satisfaction of the agent's requirements. If the

proposal is not acceptable, a counterproposal is generated and sent to the originating agent.

This dialogue continues until an acceptable proposal is agreed between the agents or it is

63

determined that it is impossible to have a proposal that can satisfy the requirements of both

agents without a conflict.

Velthuijsen [Velthuijsen 1993] identified three configuration of negotiation schemes: direct,

indirect, and arbitrated negotiation. In direct negotiation agents exchange proposals and

counterproposals directly without a mediator. The multistage negotiation for distributed

constraint satisfaction approach proposed in [Conry et al. 1991] is an example of a direct

negotiation approach. Such direct dealings between agents have some disadvantages. (1) It

increases the possibility that, in the course of resolving a conflict, they (agents) may reveal to

each other confidential information. For example a subscriber to a Terminating Call

Screening (TCS) may not want it revealed to a caller that a call has failed because the calling

number is in their screening list. (2) There is a potential for deadlock if the agents fail to find

a proposal they can both agree on.

With indirect negotiation, agents negotiate through a negotiator whose role include routing

messages between agents, monitoring the progress of the dialogue, and suggesting proposals

to the agents which may lead to a successful negotiation. Arbitrated negotiation is a form of

indirect negotiation where the negotiator is an arbitrator. The arbitrator examines the

requirements of the negotiating agents and imposes a binding proposal on how the conflict

should be resolved.

There is no evidence in the literature which suggests that negotiation has been successfully

applied to resolving types of feature interactions other than non-determinism. This does not

necessarily mean that negotiation is limited to resolving non-deterministic feature

interactions. For non-deterministic conflict, negotiation is about reaching an agreement on

which feature can have access of the contested resource. Therefore resolving non-

deterministic feature interactions using negotiation means reaching a mutually agreed

prioritisation between the features agents.

64

3.3.2 Arbitration Approaches

Current approaches to managing feature interactions at runtime are based on the concept of

arbitration. As stated in chapter 1, arbitration is a legal technique for dispute resolution

outside courts, in which the parties to a dispute refer to one or more persons (the arbitrators),

whose decision on how the dispute should be resolved is binding [Bonn 1972]. Feature

specifications satisfy associated requirements by issuing actions which effect changes on the

shared context [Jackson 2001]. An arbitrator is placed between feature specifications and the

real world context they interact with to satisfy their requirements, and hence intercedes

between feature specifications and shared resources. This is illustrated in Figure 3.5. S, and S2

are specifications which satisfy requirements R, and R2, respectively. The specifications

satisfy their requirements by interacting with the shared resource (WS).

ED-

Shared
Arbitrator Resource

R2

Figure 3.5 Generic Composition of Features through an Arbitrator

Actions issued according to the specifications have to be approved by the arbitrator before

they can be passed on to the shared resource. In this section we review three arbitration

approaches: the Feature Interaction Manager (FIM) [Tsang and Magill 1998], Composition

Controller [Laney et al. 2007], and the Modular Supervisory Control with Priorities (MSCP)

[Chen et al. 1995].

The Feature Interaction Manager Approach: A Feature Interaction Manager has two modes

of operation: learning and management. In learning mode each feature is executed in a test

environment and its external behaviour, viewed in terms of event sequences, is recorded as

the feature's behavioural signature. In management mode actual feature behaviour is

65

compared against the previously recorded behavioural signatures. Deviation of actual feature

behaviour from recorded behaviour is reported as a feature interaction. Detected feature

interactions are resolved through error recovery and prioritisation techniques.

Figure 3.6 shows a FIM in the context of a telecommunications switching system. A Service

Logic Program instance (SLPi) implements a single feature. The FIM is positioned between

the Basic Call Manager (BCM) and the SLPis such that information flowing in and out of an

SLPi passes through the FIM. SLPi input information include trigger events and network

resource status, while output information include resource manipulation requests.

Service Control Function (SCF)
CED CED

SCF
Information

SCF
Information

Flow Flow

Feature
Interaction

BCM Event BCM Control
Indicaton Request

Basic Call
Manager
(BCM)

Events from Events to
network network

V

Figure 3.6 Conceptual FIM Approach (Adapted from [Tsang and Magill 1998], p 824).

The capture of feature behaviour in terms of behavioural signatures facilitates flexibility in

the approach as conflicts can be detected without prior knowledge of the requirements of a

feature. However, the learning phase introduces an overhead and limits the application of the

approach when features need to be composed dynamically at run-time. In studies reported in

[Tsang and Magill 19971, the use of signatures was demonstrated to lead inaccurate detection

of feature interactions since not all deviations are necessarily conflicts.

66

In the FIM conflicts are allowed to occur and error recovery techniques (such as roll-back) are

used to bring the system to a consistent state. Roll-back techniques are not appropriate for

systems where satisfaction of the requirement include physical changes. With the exception of

recent work by [Kolberg et al. 2001; Kolberg et al. 2003; Kolberg and Magill 2007], the

feature interaction problem has so far been studied in the context of violation of requirements

where such violation does not lead to a physical damage. For example if the occurrence of a

feature interaction in a telecommunications switching system leads to the disconnection of a

voice call, the connection can be restored (re-initialised) with a fresh call attempt. On the

contrary, when satisfying a requirement requires a physical change then the effects of

violation by a feature interaction may be irreversible. For example, in an automobile, if a

feature interaction results in failure of brakes and the car hits a pedestrian, roll-back cannot

reverse the resulting effects.

The Composition Controller Approach: The Composition Controller (CC) approach

addresses some of the limitations of the FIM approach. As introduced in Chapter 2, the CC

approach is based on the Problem Frames approach to software development. It generalises

the FIM approach by considering an SLPi as a specification of a feature and the BCM as a

shared problem domain. In this approach feature interaction detection and prior knowledge of

feature behaviour are not necessary. This is because the CC approach assumes that feature

specifications do not only specify the events that should occur for a requirement to be

satisfied but they also specify events whose occurrence may violate the requirement. In this

approach a feature interaction occurs if one feature issues an event that is currently prohibited

by another feature.

Violating events are specified in prohibit(...) clauses which instruct the composition

controller to disallow events that have a potential to violate requirements. These events are

prevented from passing to the shared domains within a given period of time to allow

satisfaction of the requirement to be upheld. Unlike in the FIM approach, through event

67

prohibition, the CC approach minimises the possibility of a domain being in an inconsistent

state, hence there is no need for error recovery. In essence the CC approach is proactive in the

sense that it prevents the occurrence of conflicts. In contrast the FIM is reactive in that it

allows conflicts to occur and then take measures to recover from the consequences.

Modular Supervisory Control Approach: The modular supervisory control with priorities

(MSCP) [Chen et al. 1995] approach for discrete event systems arbitrates between supervisors

controlling the same process (or plant). The approach is based on Brandin and Wonham's

Supervisory Control Theory for discrete event systems [Brandin and Wonham 1994]. Given a

process the objective of this theory is to design a supervisor in such a way that the process

coupled with the supervisor behaves according to various constraints [Charbonnier et al.

1999]. The conceptual structuring in this approach is similar to Problem Frames [Jackson

2001]. The process is the problem domain, the constraints are the requirements, and the

supervisor is the specification.

In Chen et al. [Chen et al. 1995], the importance of addressing initialisation concerns is

recognised. They recognise that to ensure that when a higher priority feature pre-empts a

lower priority feature, the lower priority feature is able to resume its control on the resource

correctly, each feature must be equipped with mechanisms to keep track of the current state of

the resource. This addresses part of the problem as mechanisms to monitor state changes on

the shared domain are part of the initialisation problem. The other part of the problem is that

on resumption the feature needs a way of engaging the correct behaviour in order to satisfy its

requirement. However, similar to other run-time approaches [Tsang and Magill 1997; Hay

and Atlee 2000; Blair et al. 2002; Laney et al. 2005], the MSCP approach defers the latter

part of the initialisation problem to the solution space. This limits the scope of solutions

available to resolve a conflict [Tsang and Magill 1998; Jia and Atlee 2004].

68

In the conflict resolution scheme proposed in [Wong et al. 2000], a suspended feature can

resume control only when the states of the shared resource and other supervisors have

(voluntarily) returned to what they were at the point of suspension. This scheme ensures that a

suspended feature can resume control only when the shared resource is in a safe state.

However, this also implies that if the resource has not been returned to the safe state then the

suspended feature will wait for its chance indefinitely even if the resource is free.

This suggests a need for an approach for analysing initialisation concerns in the problem

space and derivation of appropriate solutions which can then be used to prevent conflicts at

runtime. Such an approach could widen the scope of resolutions to conflicts and guarantee

that the requirements of the conflicting features are eventually satisfied. We conclude this

section by presenting a comparative summary of the three arbitration approaches discussed

above.

Comparative Summary of Arbitration Approaches: Table 3.4 presents a comparative

summary of the characteristics of the FIM, CC, MSCP approaches. The main strength of the

FIM over the CC is that it treats feature specifications as ̀ black-boxes' hence does not dictate

any changes in the way they are specified. This makes it suitable for use in legacy system and

environments where features are developed by different designers and as such only the

externally observable feature behaviour is available. Its main drawback is that errors are

allowed to occur and such errors may potentially take the system to an inconsistent state.

Error recovery techniques are used to bring the system to a consistent state. While using error

recovery techniques is plausible for telecommunications switching systems, allowing errors to

occur may have irreversible consequences for systems that rely on the physical environment

to satisfy their requirements. For example in an automobile system, if the requirement is that

brakes should be applied to avoid hitting a pedestrian, error recovery cannot correct the

consequences of the violation of such a requirement.

69

Table 3.4 Comparative Summary of Characteristics of Arbitration Approaches

Arbitration Approaches
Comparison Feature Interaction Composition Controller Modular Supervisory
Criteria Manager (FIM) (CC) Control with Priorities

(MSCP)

Method of Dealing POST-ACTION (REACTIVE): PRE-ACTION (PROACTIVE): PROACTIVE: Events with

with Shared Errors are allowed to occur Prohibit clauses prevent higher priority supervisors

Domain and error recovery potentially violating events are allowed to temporarily

Inconsistency techniques are used to bring from taking effect on the override those of lower

the feature-based application shared domain states. priority in case of potential
to a consistent state. blocking.

Method of Feature Detection is through the Detection is through the Detection is through

Interaction Identification of deviation from occurrence of a currently explicit specification of
detection previously stored signature prohibited event. 'out-of-specification' states

behaviour. which Indicate violation of
Individual supervisor

constraints.
Method of Feature Error Recovery and feature Feature prioritisation Feature prioritisation based

Interaction prioritisation on event priority functions.

Resolution
Support for the

eventual

satisfaction of

requirements of a NONE NONE NONE

feature that is

granted access to a
resource
Explicit support for

Initialisation of NONE NONE NONE

shared domain

Support for YES: Through dynamic YES: Feature specifications YES: Supervisors are
dynamically loading and unloading of are composed through a dynamically composed
changing feature feature behavioural composition controller. through a coordinator.

sets. signatures into signature

database.

Require changes in NO: Management of feature YES: requires that YES: Assumes that
the way features Interactions Is based on specifications Include specifications are event.
are specified? externally observed feature prohibited events, based with their behaviour

behaviour. modelled as state
machines.

On the one hand the Composition Controller, through event prohibition, disallows events that

are likely to lead to the violation of the requirement of a currently executing feature.

However, this approach assumes that feature specifications issue prohibit(...) events which

are used to detect and resolve potential feature interactions. This assumption limits the

application of this approach as it requires changes to the way features are specified.

70

MSCP is similar to CC in that to prevent blocking on shared resources, events of higher

priority features are allowed to temporarily override those of lower priority. The key

difference is that in the MSCP approach the events are rejected based only on the priority

between features. These may result in all events of a lower priority feature being rejected;

even those that will not cause blocking (conflict). Meanwhile in the CC, events to be rejected

by the arbitrator are explicitly described in the individual feature specifications. This enables

the arbitrator to reject only the specific events that are likely to cause a conflict rather than the

entire set of events for a lower priority feature. Hence in the CC, in addition to priority

between features, events rejection is also based on specific conflict prone events described in

the specification.

3.4 Chapter Summary

In this chapter we have explored the argument that the feature interaction problem is a context

sharing problem and reviewed approaches to handling feature interactions both at design-time

and at run-time. We have noted that design-time approaches are not suitable in the resolution

of conflicts at runtime since they often require redesign of features and are often over-

restrictive on the composition requirement. Postponing the resolution of feature interactions to

runtime has the advantage of resolving actual rather than potential interactions. We have

reviewed two runtime approaches to resolving feature interactions: negotiation and

arbitration.

In a negotiation approach features are designed as negotiating agents. In the event of a

conflict they enter into a dialogue on how the conflict can be resolved. Such a dialogue results

in one of the features being granted access to a shared resource. With arbitration, a third party

component presides over the conflict and its decision on how the conflict should be resolved

is binding on the features involved. Prioritisation is a common resolution technique [Hay and

Atlee 2000], [Jackson and Zave 1998]. Both negotiation and arbitration resolve non-

71

determinism conflicts using prioritisation. There are differences though. In negotiation

prioritisation is implicit as it is reached through a dialogue and a resolution is not guaranteed.

The lack of a guarantee for a resolution is due to the potential that a dialogue may reach a

deadlock. Meanwhile, in arbitration prioritisation is explicit and a resolution is guaranteed.

Prioritisation ensures that in the event of a conflict a higher-priority feature is given control of

the shared resource. However, this conflict resolution technique does not guarantee that the

requirement of the feature that eventually gains control of the resource will be satisfied (as

shown in the comparative summary in Table 3.4). When a previously pre-empted feature has

to resume execution it has to be initialised correctly with the shared resource. This is because

its model of the shared resource may be inconsistent with the actual state of the resource, due

to the state being changed by another feature. This may result in its requirement not being

satisfied when it is eventually granted access to the resource. We have characterised this as

the initialisation problem. Arbitration and negotiation approaches do not address this problem.

In summary, arbitration and negotiation only address the resolution of non-deterministic and

negative impact feature interactions. They are not sufficient for runtime resolution of bypass,

invocation order, and looping interactions. In this thesis we propose an approach to resolving

runtime feature interactions which extend arbitration with a technique to resolve bypass

feature interactions. Bypass interactions result from inability of current approaches to address

initialisation concerns. Therefore our approach to runtime resolution of bypass interactions

involves a solution to the initialisation problem.

72

Chapter 4. Complementing Arbitration with
Contingency Planning

Feature interactions may occur whenever features are composed such that they control a

shared resource. Features with inconsistent requirements may prevent, block, or interfere with

the satisfaction of the requirements they satisfied in isolation. Composing such features can be

complex. This is because the model of the shared resource in one feature may become

inconsistent with the actual state (of the shared resource), due to the state being changed by

another feature. This may result in the requirements of one of the features not being satisfied.

In Chapter 1 we characterised this as the initialisation problem. We noted that arbitration

alone is insufficient in addressing this problem.

Our approach to addressing the initialisation problem is based on contingency planning. We

use contingency planning as a mechanism for identifying varying conditions and

corresponding alternative behaviours necessary to guarantee that when an application begins

execution it is able to satisfy its requirement by adjusting its behaviour to the state of the

resource. This is achieved by equipping each feature with contingent specifications

corresponding to each state of the shared resource. Depending on the current state, one of the

contingencies is selected to enable a feature to satisfy its requirement.

Contingency planning ensures that in the event of a non-deterministic conflict the

requirements of conflicting features are eventually satisfied. Our approach ensures that all

features have a consistent view of the state of the shared resource and are able to use the

shared resource at any state. In this short chapter we outline the conceptual basis for our

approach by motivating how the concept of contingency planning is relevant to feature

interaction resolution. We also argue that the concepts of arbitration and contingency are

73

complementary as their combination ensures that in the event of a non-deterministic conflict

the requirements of conflicting features are eventually satisfied.

In section 4.1, we revisit the initialisation problem explaining it in more technical depth than

presented earlier. Domain descriptions are essential in addressing initialisation problems. We

explain, justify, and illustrate their role in section 4.2. The application of the concept of

contingency planning in our approach to addressing the initialisation problem is outlined in

section 4.3.

For a feature to select the correct contingency for a given state of the context it is necessary to

correctly determine the current state of a shared resource. We present a mechanism for

detecting the current state in section 4.4. In section 4.5 we analytically validate our approach

to the initialisation problem by comparing and contrasting its main features with related

works addressing context switching and self-stabilisation problems in operating systems.

Finally, in section 4.6 we conclude with a chapter summary.

4.1 The Initialisation Problem - Revisited

The need for initialisation arises whenever two or more features share the control of a

resource. Before presenting our proposed approach to the initialisation problem we first recap

and explain this problem in more detail than what we presented in chapter 1. Figure 4.1 shows

a conceptual model of how an arbitrator resolves conflicts between two machines controlling

a shared resource. To illustrate the initialisation problem consider that: machine M, issues a

sequence of events S,., _ (ell, e, s, efj to satisfy requirement RI; machine M2 issues a

sequence of events S�, 2 = (e1,, e22,, e1�) to satisfy requirement R2; and in response to the

events issued by M, and M2, the shared domain, W,, changes between the sequence of statesß

= (P11 Jßä ..., ßJ.

74

M'
c snared

ArbitMor Resource
(N.)

Mz a R,

,'
b_

a: Mi! {events) d: Ws I (States)
b: MI! {events) e: Ws! {States}

c: Arbitrator! { Successful Events)

Figure 4.1 Composition of two machines with an arbitrator

The arbitrator intercedes between the machines and the shared domain. It filters events passed

to WW depending on its composition requirement which states the priority between R, and R2.

Both machines are allowed to effect state changes in Ws unless there is a conflict, in which

case the machine corresponding to the requirement with the highest priority is the one whose

events are allowed to effect state changes in W.

Assume that R, has a higher priority than R2 and hence certain events issued by M2 will be

rejected at times when R, needs to be satisfied. Consider a scenario in which while M2 is

executing M, requests access to W,. Since R, has a higher priority, M, pre-empts M2. This

means that all events from M2 that conflict with the satisfaction of R, are rejected. Assume

that the sequence of events issued by M, leaves the shared domain in some arbitrary state ßx,

and that M2 assumes W, to be in some stateßy, where xty.

When M, has finished executing, events from M2 are no longer rejected. However, R2 may not

be satisfied since the actual state of Ws is not the same as that assumed by M2. This is due to

the interference of M, in changing the state of W,. The initialisation problem is how to

reconcile the state assumed by M2 with the actual state of Ws to minimise the possibility of a

discrepancy in the execution of M2. In the rest of the thesis Next machine refers to the

machine about to take control of the shared domain. Current machine refers to the machine

that is currently interacting with the shared domain.

75

4.2 The Need for Domain Descriptions in Addressing Initialisation

A domain description describes the indicative behavioural properties of the context. It maps

event occurrences to state changes and thus helps in reasoning about how successful events

result in state changes in the context. An event is successful if it has not been rejected by the

arbitrator. Addressing the initialisation problem requires explicit knowledge about behaviour

of the context, the possible states, and what actions may lead to those states. Domain

descriptions are about this information and hence they are essential in addressing initialisation

concerns.

A useful analogy of a domain description is an interactive map of a country. A map shows

the different cities, their relative position to each other, and the highways that connect them.

Such information enables a person navigating the country to answer questions such as: If I am

in city X, what motorway should I take to get to city Y? In software development, we use

domain descriptions in a similar manner in describing and reasoning about the behaviour of

resources.

Figure 1.1 is a behavioural model of the DVD-R. According to Figure 1.1, if the current state

of the DVD-R is Stopped, the occurrence of a play event would result in the state changing to

Playing. Machines interacting with the DVD-R issue events from the set (play, record, stop,

pause) to satisfy their requirements. In response to these events, the DVD-R may be in one of

the states: (Playing, Recording, Stopped, Paused Recording, Paused Playing). In the next

section we discuss how our approach applies the concept of contingency planning in

preparing feature specifications for satisfying their requirements for different states of a

shared resource based on domain descriptions.

76

4.3 Contingency Planning as an Approach to Addressing Initialisation

Problems
A specification that assumes a single initial state of the shared resource may not satisfy its

requirement. This is because for a shared resource, a single initial state can not be guaranteed

to be true always. This is due to the possibility of machines of other features changing the

state. Such interference may lead to inconsistency between the actual state of the domain and

the state assumed by the next machine. We have characterised this as the initialisation

problem.

In addressing the initialisation problem we propose the use of contingency planning.

Contingency planning is a concept from management science [Umanath 2003; Sousa and

Voss 2008]. In management, contingency planning entails explicit a priori statements about

various situations which are not certain to happen but are nevertheless possible in the

operations of an organisation. These situations are not part of the normal operations of the

organisation and they are regarded as disruptions (or exceptions). Contingency planning is

used as a risk management strategy aimed at designing corresponding alternatives for how the

satisfaction of organisational goals will be maintained, should those situations arise.

In this thesis we use the term contingency to mean having several specifications per feature,

satisfying the same requirement, depending on the current state of the shared resource. We

refer to these as contingent specifications. Using contingency planning, each feature is

equipped with contingent specifications corresponding to all possible states of the shared

resource. Contingent specifications satisfy the same requirement and are selected depending

on the current state of a shared resource. The derivation of contingent specifications involves

identifying the set of all possible states of the shared resource from its behavioural

description. In illustrating how we apply the concept of contingency, consider a resource with

the set of statesß = {/31, ß2,
..., ßJ. Using the entailment relation, we express the structure of a

feature as:

77

S, Wf- R (4)

Based on the above expression we express the contingencies of a feature as follows:

S,, W[ß,] i- R (4.1)

S21 w[ß21 f- R (4.2)

Sk, W[ßk] i- R (4. k)

Each of the relations 4.1 to 4. k are contingencies corresponding to each element inß. S1 to Sk

are contingent specifications corresponding to each of the states of the context shown inside

the square brackets. Note that the requirement (R) and context (W) are the same in all the

relations (4.1) to (4. k). What differs is the specifications (S) and the state of the context

considered. Deriving a contingent specification involves answering the question: if the current

state of the shared resource in context (W) is ßx e ß, what specification would satisfy the

requirement (R)?

4.4 Determining the Current State of a Shared Resource

In order for each feature to select the correct contingent specification at run-time, we provide

a mechanism for maintaining consistent value of the current state of a shared resource. This

mechanism involves creating and maintaining a model of the resource shared by all features.

The shared model acts as a reference for a feature to track state changes. The state in the

model is updated by keeping track of all successful events. An event is successful if it has

been allowed by the arbitrator. The model is based on a resource's behavioural domain

descriptions and it enables a feature to determine the current state of a shared resource based

on successful events. For example, when a record event occurs, a DVD-R starts recording.

Once the model is created and synchronised with the actual state of the shared domain, future

states of the resource can be determined by querying the model.

78

The assumption made in the state tracking mechanism is that the behaviour of a model

accurately mimics that of the actual domain. The rationale behind this assumption is that the

occurrence of a successful event results in corresponding state changes in the actual resource

and its model. Figure 4.2 shows a problem diagram for creating and maintaining local models

in each feature. The model maintenance machine ensures that the shared domain model

corresponds to the actual state of the shared resource.

Shared
Domain

(SD)
c ý. d

Model b Shared e State In model
Maintenance Model --------I corresponds to

Machine (SM) ,. state In domain
(MMM) I

, a ,'f
, Arbitrator

,.
'

a: Arbitrator! {Successful_Events}
b: MMM! {EventsToModel)
C: MMM! {EventsToResource}
d: SD! (ResourceState)
e: SM! (ModelState)
f: Arbitrator! {Successful Events)

Figure 4.2 Creating and Maintaining Model Subproblem (Adapted from [Jackson 2001])

In order to maintain an accurate model of the current state of the resource, the model

maintenance machine monitors all successful events. In Figure 4.2 interface a represents

successful events from the arbitrator. Successful events are forwarded to the shared resource

through interface c and interface d represents the current state of the resource resulting from

the events received through c. The shared model is updated through interface b and its current

state is observed in interface e.

79

Figure 4.3 shows a problem diagram of the generic arbitrator of Figure 4.1 with the model

maintenance mechanism and share model. Interfaces a and b represent the set of events issued

according to the specifications of machines M, and M2, respectively. If there is a conflict

between the events issued by the two machines, the arbitrator rejects the event originating

from a lower priority machine in favour of a higher priority machine. The successful event is

then passed by the arbitrator to the model maintenance machine through interface c. The

successful events are forwarded to the resource through interface d and its model is updated

through interface e.

M,

b

11 M2 1

S

f
Shared
Model
(SM)

Model
c Maintenance

Arbitrator Machine
(MMM)

Shared
Domain

(SD)

a: M1! (Events}
Arbitrator! {Events Reports)

b: M2! (Events)
Arbitrator! (EventsReports)

c: Arbitrator! (Successiul_Events)
d: MMM! (EventsToResource)
e: MMM! (EventsToModel)
f: SM! (M2SharedModelState)
g: SM! {M1SharedModelState}

ý
Ri

Ri

Figure 4.3 Arbitrator with Shared Resource State Tracking Mechanism

Machines MI and Ml determine the current state of the shared resource through interfaces f

and g, respectively. This mechanism ensures that a feature that is not currently in control of a

shared resource can passively follow state changes, so that when it is granted access to the

resource, it selects a suitable contingent specification.

80

4.5 Previous Attempts at Addressing Initialisation Problems

The initialisation problem (as characterised in this thesis) is similar to the problems of context

switching [Silberschatz et al. 2004] and self-stabilisation [Dolev and Yagel 2008] in operating

systems. In this section we compare such approaches to our proposed approach to solving the

initialisation problem. Due to the similarity between the concepts of contingent specification

and context-awareness, we also compare our approach to approaches used in developing

context-aware applications.

Context Switching in Operating Systems: The initialisation problem is similar to the

context switching problem in operating systems [Silberschatz et al. 2004]. The idea of context

switching is to enable multiple applications to share the same processor, accessing it at

specially allocated times called time slices. At each time slice, an application may execute a

portion of its instruction set. When its time slice finishes, the application is suspended. When

an application uses the processor, it changes the processor state such as values of registers and

instruction counters. This may result in an application that was suspended being unable to

resume correctly. Context switching is an approach to addressing this problem.

A context switcher saves the values of the registers when an application is suspended [Nuth

and Dally 1991; Hwu and Conte 1994]. It reloads these values when the application resumes -

ensuring that a suspended application starts correctly. In essence, the approach to the context

switching problem is to adjust the state of the shared resource (processor) to that of the next

machine. The assumption this approach makes is that it is possible to adjust the state of the

resource to that expected by the application. However, this assumption does not always hold.

The focus in the context switching approach is on the state of the machine rather than the state

of the world. It does not matter what state the world is in; what matters is what state is

expected by the machine. In contrast, our approach focuses on the state of the resource and its

relation to the satisfaction of the machine's requirement. In context switching, a suspended

81

machine resumes execution from the last instruction it executed before suspension. This

inflexibility does not take into account that changes to the state of the resource that occurred

while the machine was suspended may already be satisfying (or advanced towards satisfying)

the machine's requirement.

As an illustration consider a machine with a requirement of closing a door. If the machine

assumes that the door is initially open, if the door has already been closed by another machine

there is no need to open only to close it again. Our approach works around this problem. Each

contingent specification consists of actions that satisfy the requirement from a particular state

of the resource. Each specification is executed only when the corresponding assumed initial

state is the current state of the resource. This prevents the possibility of (unnecessarily)

repeating actions already performed on the resource, and is similar to Scalera and Vazquez's

technique [Scalera and Vazquez 1998] for minimising context switches by sharing data

between contexts.

Self-Stabilising Operating Systems: Transient faults, such as soft errors (electrical spikes

on the hardware) [Mitra et al. 2007], often result in operating systems being in arbitrary and

unexpected states where it may be impossible to recover to normal operation [Dolev and

Haviv 2006]. If such a fault occurs in an operating system controlling a satellite in space, that

satellite may be lost. In Dolev and Yagel (2008) [Dolev and Yagel 2008], a self-stabilising

approach to recovering from such faults is proposed. A system is said to be self-stabilising if

it can be started in any possible initial state and converge to a desired behaviour.

The approach of self-stabilisation is to reload and re-execute the operating system code each

time a Non-Maskable Interrupt (NMI) occurs [Dolev and Haviv 2006]. An NMI is used to

signal the occurrence of hardware errors from which it is impossible to recover. The reload

and re-execution of the operating system code ensures that in case the system ends-up in an

unexpected state it can recover itself to normal operation. Although this approach offers a

82

generic solution to recovery from an arbitrary unexpected state, it does not take into account

that the state reached as a result of a transient fault may be a desirable state with respect to

satisfying the requirement.

In contrast, our approach considers the entire state space of a shared resource and devises

plans on how satisfaction of the requirement will be achieved should the resource be in that

state. The tailored recovery plans for each possible state eliminates the need for reload of the

entire feature specification as, only the contingent specification corresponding to the current

state needs to be executed.

Approaches to Developing Context-Aware Applications: Our approach to deriving

contingent specifications is broadly related to work on developing context-aware applications

[Oreizy et al. 1999; Cortellessa et al. 2000; McKinley et al. 2004; Zhang and Cheng 2005;

Zhang et al. 2005a; Salifu et al. 2007]. While the emphasis of such work is on how to make a

system context-aware, the focus of our work is how to use context-awareness techniques to

manage inconsistency. Approaches to developing context-aware applications consider the

entire space of possible changes in the context and design behaviours that enable the

satisfaction of the application's requirement in those states. Although we also initially

consider the entire state space of the context, at composition-time, this is reduced to only

behaviours corresponding to states of the context that are possible. The set of likely states is

determined by the requirements of the features being composed. The selection of contingent

specification for composition is covered in chapter 5.

4.6 Chapter Summary

This chapter has outlined the conceptual basis of our approach to the initialisation problem by

motivating how the concept of contingency planning is relevant to feature interaction

resolution. Contingency planning enables features to deal with initialisation concerns. This is

achieved by equipping each feature with contingent specifications corresponding to each state

83

of the shared resource. Depending on the current state, one of the contingencies is selected to

enable a feature to satisfy its requirement.

We have discussed two main components of our solution: contingency analysis and

determination of the current state of the resource. Contingency analysis involves identifying

all possible states of the shared context and deriving corresponding contingent specifications.

For an application to select a suitable contingency, it needs to determine the current state of

the context. This is achieved by having a shared model of the dynamic behaviour of the

shared resource. This model is updated by taking note of all successful events and their

possible effect on the actual context. This enables the feature to determine the state of the

context by querying the model.

We have also discussed the similarities and differences between our approach to the

initialisation problem and approaches to context switching, and self-stabilisation in operating

systems. The initialisation problem is very similar to the operating system context switching

problem as they both involve ensuring that the requirement of a previously suspended

application is satisfied when it resumes execution. The main difference is that in our approach

to the initialisation problem a feature adjusts its assumed state to that of the context (obeys the

world), meanwhile in context switching the reverse is true. The objective of self-stabilisation

approaches is to ensure that an operating system is able to recover itself if it gets to an

unexpected state.

In the next chapter we discuss how our approach can be instantiated using the problem frames

notation to model features and the Event Calculus for domain descriptions.

84

Chapter 5. Using Contingency Planning and
Arbitration to Resolve Runtime Conflicts

In chapter 4 we discussed the conceptual basis of our proposed approach to addressing the

initialisation problem. We argued that contingency planning complements arbitration by

ensuring that the requirement of a feature that eventually gains access to a shared resource is

satisfied. This section illustrates how our proposed approach can be used in practice by

showing how an existing arbitration approach can be extended with contingencies. We

present the steps involved in developing a feature-based application that makes use of the two

concepts to resolve feature interactions.

CONTINGENCY
ANALYSIS 2

Feature Problem
Desc(i{wons Resource Domain

Dynamic Knowledge

Problem Behaviour e. g. Manuals

Analysis Modelling

Domain
Descnptions(M

I

Problem $
Statement Contingent Feature

Specifications Requirement (R)

!!!
Derivation

Contingent
FEATURE COMPOSITION Specifications
THROUGH ARBITRATION

4

Contingent Composition

Specification Requirements

Composition
through

Arbitrator

Figure 5.1 Steps Involved in Applying the Proposed Approach

85

We identify two phases such a development process could entail: (1) Contingency Analysis: at

design-time each feature is equipped with contingent specifications; and (2) Feature

Composition through Arbitration: at runtime, the contingent specifications are composed

through an arbitrator, called a Composition Controller [Laney et al. 2007]. These phases are

illustrated in Figure 5.1.

Contingency Analysis consists of 3 steps; namely: Problem Analysis, Resource Dynamic

Behaviour Modelling, and Contingent Specifications Derivation. Each contingent

specification is executed based on the current state of the shared resource. The second phase

entails composing the resulting contingent specifications through an arbitrator. In the

following subsections we describe these steps in detail.

5.1 Contingency Analysis

This section presents the first three steps of our approach: problem analysis, resource dynamic

behaviour modelling, and contingent specification derivation.

5.1.1 Problem Analysis

Problem analysis involves determining the problem to be addressed by a feature, scoping the

context of the problem, and documenting the results of the analysis. Given a requirement,

problem analysis enables a requirements analyst to identify and scope the context of the

problem. As an illustration consider the problem of providing security for a laptop left on a

desk in an office. If we assume that securing the laptop means that only the owner is able to

remove it from the desk, then a problem analysis might proceed as follows: For a thief to

remove the laptop from the desk they have to gain entry into the office through the door or

windows. Hence one solution to this security problem is to ensure the door and windows are

locked and they only open on request from the office owner.

86

Initially the context consists of the laptop, office, desk, chair, books, door, and windows.

Problem analysis focuses the problem to only the door and windows - reducing the original

context. The technical problem that should be solved then becomes: how do we build a

machine that will ensure authorised opening and closing of the door and windows? The

results of problem analysis are expressed as a problem description. A problem description

shows the relationship between the descriptions of the requirement (R), specification (S), and

context (W) [Jackson 2001]. Figures 2.2 and 2.3 are problem descriptions for the burglary

capture and burglar deterrence features, respectively.

5.1.2 Resource Dynamic Behaviour Modelling

A domain description describes the indicative (i. e. given) behavioural properties of the

context [Jackson and Zave 1993]. It maps event occurrences to state changes and thus helps to

reason about how successful events result in state changes in the context. We consider an

event as successful if it has not been rejected by the arbitrator. Addressing the initialisation

problem requires explicit knowledge about the behaviour of the context, states that are

possible, and what actions may lead to those states. Domain descriptions are about this

information and they are essential in addressing initialisation concerns.

Figure 1.1 is a domain description of the DVD-R. According to this domain description, if the

current state of the DVD-R is Stopped, the occurrence of a play event would result in the state

changing to Playing. Machines interacting with the DVD-R issue events from the set (play,

record, stop, pause) to satisfy their requirements. In response to these events, the DVD-R

may be in one of the states: (Playing, Recording, Stopped, Paused Recording,

Paused Playing}. In the next section we discuss how our approach applies the concept of

contingency planning in preparing feature specifications for satisfying their requirements for

different states of a shared resource based on domain descriptions.

87

5.1.3 Contingent Specification Derivation

In deriving contingent specifications, we use a refinement technique proposed by Laney et al.

(2007) [Laney et al. 2007]. Using this technique, specifications are derived by modelling the

behaviour of the context in terms of states and events, and refining requirements over the

domain descriptions. We first identify the set of states of the shared domain from its

behavioural description. Lets call this set B= (ß,, ß1,
...,

ßj. K is the number of states of the

resource. For the DVD-R the set of states are (Playing, Recording, Stopped,

Paused Recording, Paused Playing).

A requirement describes the desired state of the context to be brought about by a

specification. Consequently, we say that a requirement is satisfied when the context is in the

state described in the requirement. For example, satisfying the requirement of capturing a

burglary requires the DVD-R to be in the recording state. In deriving contingent

specifications we identify, from ß, the state of the shared domain associated with satisfying

the requirement. Let us call this state aeß. a for the burglary capture requirement is

Recording.

Given the behavioural descriptions of the shared domain, set of states (/3), and the state

associated with satisfying the requirement (a), we derive specifications associated with each

element inß. Each specification is a sequence of events that should occur if the current state is

ß� (where n is in the range I to k), to reach a. Table 5.1 shows burglary capture contingent

specifications for different initial states of the DVD-R.

Note that the pairs of contingent specifications for the Paused Recording and Paused Playing

states are alternatives. For example, in the case that the initial state is Paused Recording, the

burglary capture machine either issues a single record event or (alternatively) issue a stop

followed by a record event.

88

Table 5.1. Specifications for Burglary Capture Feature

Initial State Sequence of Events

Stopped record

Paused Recording record

stop, record

Playing stop, record

Paused Playing play, stop, record

stop, record

5.2 Selecting Contingent Specifications for Composition through an Arbitrator

This section explains step 4 in Figure 5.1. An important question in feature contingency

planning is which of the possible failures due to state inconsistency should be planned for?

This question is especially relevant when a shared resource has a large state space as it may

be inefficient and too costly to plan for all possible states.

Our approach assumes that each feature is developed in isolation. The implication of this

assumption is that the requirements of other features are not known in advance but become

apparent at composition time. Therefore we can now refine our initial question above to:

which of the contingent specifications of a feature should be included when it is composed

with other features? In this section we present selection criteria and a procedure that can be

followed in selecting contingent specifications for composition.

Contingency Selection Criteria and Assumptions: Our approach is to plan for all states of

the shared resource but include necessary contingent specifications only during composition.

The selection criteria targets specifications corresponding to states that will be reached. The

first state that will be reached is a default initial state. A default initial state is one in which

the resource is expected to be when it is initialised. For example, according to Figure 2.2, the

default initial state of the DVD-R is Stopped. Default initial states are associated with normal

89

operation. The second set of states included is the set of states reached because of external

events issued by other features controlling the resource.

In identifying these states (likely to be reached) we make two assumptions: (1) that changes to

states of a resource are due to events issued according to specifications of other features in the

composition; and (2) that the specification of each feature in the composition executes to

completion. The reasoning behind the first assumption is that state inconsistency results from

changes introduced only by other features in the composition.

The second assumption implies that a feature executes successfully, and hence only the final

state of the resource need consideration in the selection. The final state of the resource with

respect to the specification of a feature is the state associated with satisfying its requirement.

For example, for the requirement to capture the footage of a burglar using the DVD-R, the

final state is recording.

Contingency Selection Procedure: Based on the selection criteria and assumptions above,

the procedure for selecting the contingent specifications for each feature is outlined below:

Let:

I: be the default initial state of the shared resource.

S= (S1, Sz......, SJ : be the set of contingent specifications for a particular feature.

Where k is the number of contingent specifications for the given feature.

D= (4, RZ ,, ,.) : be the set of final states of other features. Where m is

the number of features to be composed.

0= {(P,, J,..., 0, j : be the set of contingent specifications, for a given feature,

selected for composition.

For each feature:

i. Identify the set of final states of other features in the composition, 12.

90

ii. For each element in r):

a. Select a specification from Swhose initial state correspond to that

element (. Rr).

b. Add the selected specification to 0.

iii. Select an element in a whose initial state corresponds to the default initial state,

I. Add the selected contingent specification to

Composing Contingent Specifications: Our approach to composing selected contingent

specifications is in two parts: which we refer to as intra- and inter-composition. Intra-

composition refers to the composition of contingencies of the same feature, while inter-

composition refers to the composition of one feature with another through an arbitrator.

Intra-composition assumes that the problem domain (W) can only be in one state at a time,

and hence only one of the contingent specifications can be active at a time. Based on this

premise, we use the exclusive disjunction (XOR) logical operator to compose contingent

specifications of a single feature. The composition of the contingent specifications in relations

(4.1) to (4. k) in Chapter 4 is as shown by relation (5.1) below:

(Sl®S2®... ®Sk), W[ß1, ßv,..., 134 F- R (5.1)

The objective to enable the feature to satisfy its requirement (R) by executing one and only

one of its contingent specifications {S1, S2,..., Sk} depending on the current state of its

context (W). In the next section we present an example that illustrates the steps of the

approach presented above.

91

5.3 Worked Example: Composing Smart Home Features

In this section we illustrate the steps of our proposed approach to the composition of the

burglary capture and burglar deterrence features in our running example. In section 5.3.1 we

show how the dynamic behaviour of the DVD-R can be described with the Event Calculus. In

section 5.3.2 we illustrate the derivation of contingent specifications using a technique that

involves refining requirement over domain descriptions. Finally, in section 5.3.3 we apply our

contingency selection technique to determine the contingencies that should be included when

the two features are composed.

5.3.1 Domain Description ofDVD-R

Figure 5.2 shows an EC domain description of the DVD-R. W1 to W4 describe the behaviour

of the DVD-R when the current state is Stopped. According to W 1, the occurrence of a play

event results in the DVD-R being in the Playing state. Similarly, according to W10, the

occurrence of a stop event changes the state from PausedPlaying to Stopped. According to

W17, the occurrence of a stop event results in the DVD-R being in the Stopped state

regardless of the previous state. This clause (W17) is generic form of the following clauses:

Initiates(stop, Stopped, t) E- HoldsAt(Playing, t) (W1 7a]

Initiates(stop, Stopped, t) E- HoldsAt(Recording, t) [W17b]

Initiates(stop, Stopped, t) HoldsAt(PausedPlaying, t) [W17c]

Initiates(stop, Stopped, t) E- HoldsAt(PausedRecording, t) [W17d]

W 17a, W 17b, W 17c, and W 17d correspond to the case in which the current state of the DVD-

R is Playing, Recording, PausedPlaying, and PausedRecording, respectively.

92

initiates(play, Playing, t) E- HoldsAt(Stopped, t) [W1)

initiates(record, Recording, t) F HoldsAt(Stopped, t) 1W2)

terminates(play, Stopped, t) E- HoldsAt(Stopped, t) [W3]

terminates(record, Stopped, t) E- HoldsAt(Stopped, t) 1W4]

initiates(pause, PausedPlaying, t) E- HoldsAt(Playing, t) [W5]

terminates(pause, Playing, t) E- HoldsAt(Playing, t) [W6]

terminates(stop, Playing, t) E- HoldsAt(Playing, t) [W7]

initiates(play, Playing, t) (- HoldsAt(PausedPlaying, t) [W8]

terminates(play, PausedPlaying, t) (- HoldsAt(PausedPlaying, t) [W9]

terminates(stop, PausedPlaying, t) E- HoldsAt(PausedPlaying, t) [W10]

initiates(pause, Paused Recording, t) <- HoldsAt(Recording, t) [W11]

terminates(pause, Recording, t) E- HoldsAt(Recording, t) [W12]

terminates(stop, Recording, t) E- HotdsAt(Recording, t) [W13]

initiates(record, Recording, t) F- HoldsAt(PausedRecording, t) (W141
terminates(record, PausedRecording, t) E- HoldsAt(PausedRecording, t) [W151

terminates(stop, PausedRecording, t) E- HoldsAt(PausedRecording, t) [W16]

initiates(stop, Stopped, t) LWI7]

Figure 5.2 Domain Description of DVD-R expressed in Event Calculus

5.3.2 Deriving Smart Home Contingent Specifications

We first formalise the burglary capture and burglar deterrence requirements. Following the

refinement method described in Laney et al. [Laney et al. 2004; Laney et al. 2007], we derive

contingent specifications of each feature.

Burglary Capture Contingent Specifications: The burglary capture requirement (RAP) can

be stated informally as: When a thief is detected by the burglar sensors, record a video of the

burglary. Using EC, we formalise this requirement as follows:

HoldsAt(BurglarDetected, t0) 4 HoldsAt(Recording, t) A (t0 < t) (R)

93

The state associated with satisfying Reep is Recording. We derive specifications corresponding

to each state of the DVD-R by refining the conclusion of RCap over the EC domains

description in Figure 5.2. We start with the situation in which the DVD-R is already recording

from the surveillance camera. Since Recording is already true, we refine the conclusion of

Reap using EC1 as follows:

(Refine conclusion by applying EC I)

Initially(Recording) A -Clipped(tO, Recording, t)

(Apply EC3 to the second sub-clause)

Initially(Recording) A -, 3e1, tl " happens(el, ti) n

terminates(el, Recording, tl) A (tO<tl<t)

(Unify the terminate sub-clause with W12 and W13)

Initially (Recording) A -3 ti " happens(pause, tl) n

terminates(pause, Recording, tl) A -3 ti " happens(stop, tl) n

terminates(stop, Recording, tl) A (t0<tl<t)

(Remove the terminate clauses since they are axioms)

Initially(Recording) A -3 ti " happens (pause, tl) n

-13 ti " happens(stop, tl) A (t0<tl<t)

(Replace the second and third clauses with prohibit clauses)

Initially (Recording)A prohibit (pause, t0, t) A prohibit(stop, tO, t)

From the derivation above, the burglary capture specification corresponding to the Recording

state is:

HoldsAt(BurglarDetected, t0) 4

94

Initially(Recording) A prohibit(pause, tO, t) n

prohibit(stop, 0, t) A (t0 < t)

Since the Initially(Recording) clause cannot be enforced by the specifications and it is

condition that should be true before the prohibit(..) actions can be executed, we re-write the

specification with this clause as a pre-condition.

HoldsAt(BurglarDetected, t0) A HoldsAt(Recording, t0) 4

prohibit(pause, O, t) A prohibit(stop, O, t) A (t0 < t) (SSI)

We derive the burglary capture specifications corresponding to the rest of the states by

applying EC2 to the conclusion of RCap. We follow similar steps of refinement as shown

above. The resulting contingent specifications for the burglary capture feature are shown in

Table 5.2.

Table 5.2. Specifications for the Burglary Capture Feature

Current State Specification
SSI Recording HoldsAt(BurglarDetected, t0) A HoldsAt(Recording, t0) 4 prohibit(pause, 0, t) A

prohibit(stop, O, t) A (tO<t)

SS2 Stopped HoldsAt(BurglarDetected, t0) A HoldsAt(Stopped, t0) 4 happens(record, tt) A
prohibit(pause, t2, t) A prohibit(stop, t2, t) A (t0< ti <t2<t)

SS3a Playing HoldsAt(BurglarDetected, t0) A HoldsAt(Playing, t0) 4 happens(stop, tl) A

happens(record, t2) A prohibit(play, t2, t3) A

prohibit(stop, t3, t)A prohibit(pause, t3, t) A (tO<tl<t2<t3<t)

SS3b Playing HoldsAt(BurglarDetected, t0) A HoldsAt(Playing, t0) 4 happens(pause, tl) A

prohibit(play, t2, t4) A happens(stop, t2) A happens(record, t3) A

prohibit(stop, t4, t) A prohibit(pause, t4, t) A (t0<tt <t2<t3<t4<t)
SS4a Paused-Playing HoldsAt(BurglarDetected, t0) A HoldsAt(PausedPlaying, t0) 4 happens(stop, tl) A

prohibit(play, t2, t3) A happens(record, t2) A prohibit(stop, t3, t) A

prohibit(pause, t3, t) A (tO<tl <t2<t3<t)
SS4b Paused-Playing HoldsAt(BurglarDetected, t0) A HoldsAt(PausedPlaying, t0) -9 happens(play, tl) A

prohibit(pause, t2, t3) A happens(stop, t2) A prohibit(play, t3, t4)
A happens(record, t3) A prohibit(stop, t4, t) A prohibit(pause, t4, t)

A (t0<tt <t2<t3<t4<t)
SSSa Paused- HoldsAt(BurglarDetected, t0) A HoldsAt(PausedRecording, t0)4 happens(record, tt) A

Recording prohibit(stop, t2, t) A prohibit(pause, t2, t) A (tO<t1<t2<t)
SS5b Paused- HoldsAt(BurglarDetected, t0) A HoldsAt(PausedRecording, t0)-) happens(stop, tl) A

Recording prohibit(play, t2, t3) A happens(record, t2, t) A prohibit(stop, t3, t)
A prohibit(pause, t3, t) A (t0<tl<t2<t3<t)

95

Similar to Table 5.1, the pairs of contingent specifications SS3a - SS3b, SS4a - SS4b, and

SS5a - SS5b are alternatives. Each pair corresponds to the same initial state. For example,

both SSSa and SS5b are contingencies for state PausedRecording. According to SSSa if a

burglar is detected while the DVD-R is in the PausedRecording state, the burglary capture

machine should issue a record event and thereafter the composition controller should prohibit

stop and pause events as they will violate the requirement to record a burglary.

Similarly, according to SS3b, if a burglar is detected and the DVD-R is in the playing state,

then the burglary capture machine should issue a pause event. This takes the DVD-R to the

PausedPlaying state. Once in the PausedPlaying state the composition controller should

prohibit play events as this will reverse the previous action. The burglary capture machine

that issues a record event, to start recording the burglary and the composition controller is

instructed to reject stop and pause events as their occurrence will violate the recording

requirement.

Burglary Deterrence Contingent Specifications: We state the deterrence requirement

(Rd,,), informally, as follows: If the house owner is away, play a movie. Again using EC the

requirement is stated formally as:

HoldsAt(AwayFromHome, t) 4 HoldsAt(Playing, t) (Rý,)

Following the same refinement method used for deriving burglary capture specifications,

above, we derived the specifications for the burglar deterrence feature shown in Table 5.3.

The pairs ES3a - ES3b, ES4a - ES4b, and ES5a - ES5b are alternative contingent

specifications.

At run-time, the contingent specifications are selected based on the current state of the DVD-

R. As an illustration of the selection of the correct specifications, consider a hypothetical

96

scenario in which the burglar deterrence feature is in control of the DVD-R. Under the control

of this feature the DVD-R is in the Playing state. Assume that burglary capture has a higher

priority than burglar deterrence. If a thief breaks-in, deterrence is pre-empted by burglar

capture to record the burglary. The burglary capture machine selects either SS3a or SS3b.

Table 5.3. Specifications for Burglar Deterrence Feature

Current State Specification

ESI Playing HoldsAt(AwayFrom Home, t0) A HoldsAt(Playing, t0) 4 prohibit(pause, O, t) A

prohibit(stop. O, t) A (tO<t)

ES2 Stopped HoldsAt(AwayFromHome, t0) A HoldsAt(Stopped, t0) -4 happens(play, tl) A

prohibit(pause, t2, t) A Prohibit(stop, t2, t) A (t0<tl<t2<t)

ES3a Recording HoldsAt(AwayFromHome, t0) A HoldsAt(Recording, t0) -4 happens(stop, tl) A

prohibit(record, t2, t3) A happens(play, t2) A

prohibit(pause, t3, t) A prohibit(stop, t3, t) A (tO<tl <t2<t3<t)
ES3b Recording HoldsAt(AwayFromHome, t0) A HoldsAt(Recording, t0) -4 happens(pause. tl) A

prohibit(record, t2, t4) A happens(stop, t2) A

happens(play, t3) A prohibit(pause, t4, t) A

prohibit(stop, t4, t) A (t0<t1<t2<t3<t4t)

ES4a Paused- HoldsAt(AwayFrom Home, t0) A HoldsAt(PausedRecording, t0) 4 happens(stop, tl) A
Recording prohibit(record, t2, t3) A happens(play, t2) A

prohibit(pause, t3, t) A prohibit(stop, t3, t) A (t0<tl<t2<t3<t)

ES4b Paused- HoldsAt(AwayFromHome, t0) A HoldsAt(PausedRecording, t0) 4 happens(record, tl) A
Recording prohibit(pause, t2, t3) A happens(stop, t2) A

prohibit(record, t3, t4) A happens(play, t3) A

prohibit(pause, t4, t) A prohibit(stop, t4, t) A
(t0<tl <t2<t3<t4t)

ES5a Paused-Playing HoldsAt(AwayFromHome, t0) A HoldsAt(PausedPlaying, to) 4 happens(stop, tl) A

prohibit(record, t2, t3) A happens(play, t2) A

prohibit(pause, t4, t) A prohibit(stop, t4, t) A
(tO<tl <t2<t3<t4t)

ES5b Paused-Playing HoldsAt(AwayFromHome, t0) A HoldsAt(PausedPlaying, t0) 4 happens(play, tl) A

prohibit(pause, t4, t) A prohibit(stop, t4, t) A
(t0<tl <t2<t3<t4t)

When the selected burglary capture specification has finished executing it leaves the DVD-R

in the Recording state. While suspended, the burglar deterrence machine monitors state

changes in the DVD-R. When it resumes execution it selects either specification ES3a or

ES3b (which corresponds to the Recording state). Although the state of the DVD-R has been

changed by the burglary capture feature, the burglar deterrence feature still satisfies its

97

requirement by selecting the correct specification. In chapter 7 we present simulation results

showing arbitration with and without contingencies.

5.3.3 Selecting Smart Home Contingencies for Composition

In selecting contingent specifications for composition we follow the procedure outlined in

section 5.2. We start by selecting contingencies for the burglary capture feature:

 The initial state of the DVD-R I, is Stopped.

 The set of contingent specification for the burglary capture feature J , &C (SS1, SS2,

SS3a, SS3b, SS4a, SS4b, SS5a, SS5b}

 The set of states associated with satisfying the burglar deterrence requirement £2 =

(Playing).

 Based on the three sets: 1, SSA,, and .(the set of selected contingent specifications for

burglary capture, 0$ec = {SS2, SS3a, SS3b).

Note that SS2 corresponds to the initial state, Stopped. Meanwhile, SS3a and SS3b both

correspond to the Playing state. By following the same method above the set of selected

contingent specifications for the burglar deterrence feature 0., (= (ES2, ES3a, ES3b).

5.4 Chapter Summary

This chapter has illustrated how our proposed conceptual approach to the initialisation

problem could be applied in practice by showing how an existing arbitration approach, the

Composition Controller [Laney et al. 2007], can be extended with contingencies. We have

presented a development process that could be used in developing a feature-based application

that makes use of the concepts of arbitration and contingency planning to resolve runtime

feature interactions. We have identified two main steps such a development process could

entail, namely: (1) contingency analysis which involves building contingencies into

98

specifications and (2) composing the contingent specifications through arbitration. We have

illustrated our approach to the composition of smart home features. In the next chapter we

discuss tool support for the derivation of contingent specifications.

99

100

Chapter 6. Tool Support for Deriving
Contingent Specifications

In Chapter 5 we showed how to derive contingent specifications and compose them through a

Composition Controller. The derivation of contingency specifications can be time-consuming

and error prone, if done manually, hence the need for automation. In this chapter we present a

tool, called Contingency Specification Generator (CSG) that automates the contingency

specification derivation process. CSG is based on Graph Theory [Gould 1988] and abduction

[Russo et al. 2002]. Abduction is a reasoning technique for determining what events might

lead from an initial state to a final state [Mueller 2006a]. We express a requirement in terms

of the set of fluents that should hold in the final state. The initial state is expressed in terms of

the fluents that currently hold. Figure 6.1 shows, at a high-level, how the tool generates

contingent specifications.

Figure 6.1 High-level Architecture of the Contingent Specification Generator (CSG) tool

CSG takes as input EC domain descriptions (W) and the requirement (R). The domain

descriptions are converted into directed graphs. Abduction is then applied on the directed

graph to refine the requirement into contingent specifications (S). The specifications are

expressed in EC and stated in terms of: (a) the sequence of events that should occur in order

101

to satisfy a requirement given the current state as an initial state; and (b) events that should be

prohibited in order to sustain the satisfaction of the requirement. We discuss, in detail, the

derivation of contingent specifications through abductive reasoning in section 6.1 and

compare our tool to existing tools in section 6.2. Finally, we present a summary of the chapter

in section 6.3.

6.1 Deriving Specifications through Abductive Reasoning on Directed Graphs

We explain the tool in detail in the following sections. Section 6.1.1 discusses the conversion

of an EC description into a directed graph. Section 6.1.2 explains how abduction is applied on

the directed graphs to identify paths. In section 6.1.3 the paths are re-expressed as EC

specifications.

6.1.1. Converting Event Calculus Descriptions to Directed Graphs

We chose to translate the EC description into directed graphs for two reasons: (1) the

availability of mature algorithms for analysing directed graphs; (2) the ease with which such

algorithms can be implemented. A directed graph consists of vertexes connected by edges. In

translating an EC description to a directed graph, we associate each vertex with a set of

fluents that should hold. We use the edges to represent transitions between vertexes and hence

changes in fluent values. Each edge is labelled with the event that should occur for a

transition to occur. Therefore, a transition is described in terms of three entities: Transition

(Current State, Event, Next State). Current State is the set of fluents that hold in the current

vertex. Next State is the set of fluents that would hold as a result of the transition. Event is the

action that should happen to trigger the transition.

A directed graph representation of the EC descriptions in Figure 5.2 is shown in Figure 6.2.

We have used Figure 6.2 here as a visual aid for explaining the concepts of translation from

EC descriptions to directed graphs. In the CSG tool such a graphical representation is not

102

necessary as the tool represents the directed graph as a collection of transitions as shown in

Figure 6.3.

PLAYING

pause/
play/

PAUSED
PLAYING

stop/

record/

STOPPED record/

stop/
/ \op/

RECORDING

PAUSED
=CORDING

Figure 6.2 Directed Graph Description of DVD-R Behaviour

Transition(STOPPED, stop, STOPPED) (WDGj)
Transition(STOPPED, play, PLAYING) (yyDG2)
Transition(STOPPED, record, RECORDING) (WDG3)
Transition(STOPPED, pause, STOPPED) (WDGs)

Transition(PLAYING, stop, STOPPED) (WOGS)
Transition(PLAYING, play, PLAYING) (JDG6)
Transition(PLAYING, record, PLAYING) (WDG7)
Transition(PLAYING, pause, PAUSED PLAYING) (VNDG3)

Transition(RECORDING, stop, STOPPED) (WDG9)
Transition(RECORDING, play, RECORDING) (WDG, o)
Transition(RECORDING, record, RECORDING) (WG�)
Transition(RECORDING, pause, PAUSED RECORDING) (WDG12)

Transition(PAUSEDPLAYING, stop, STOPPED) (WDG�)
Transition(PAUSEDPLAYING, play, PLAYING) (WDG, 4)
Transition(PAUSED_PLAYING, record, PAUSED PLAYING) (WDG, s)
Transition(PAUSEDPLAYING, pause, PAUSED_PLAYING) (WDG, e)

Transition(PAUSEDRECORDING. stop, STOPPED) (WDG»)
Transition(PAUSEDRECORDING, play, PAUSED RECORDING) (WDGia)
Transition(PAUSEDRECORDING, record, RECORDING) (WDG�)
Transition(PAUSED RECORDING, pause, PAUSED RECORDING) (WDG20)

Figure 6.3 Directed Graph description of DVD-R represented as Transitions

103

Since we are translating Event Calculus domain descriptions into finite state machine

behavioural descriptions, our work focuses on the form of initiates(...) and terminates(...) EC

clauses shown in Figure 5.2. In the following we discuss how these forms of EC clauses are

translated into state machine descriptions.

Each initiate(e, Fj, t) F HoldsAt(F2, t) clause states that the occurrence of event e initiates

fluent F, provided fluent F2 currently holds. Based on the relationship between fluents and

vertexes described above, this EC clause is translated to Transition(F2, e, F,) in a directed

graph. For example the EC clause Initiates (play, Playing, t) F HoldsAt (Stopped, t), W1 in

Figure 5.2, is expressed as Transition(Stopped, play, Playing), WDG2 in Figure 6.3. The

mapping of all the initiate(...) clauses in Figure 5.2 to the transitions in Figure 6.3 is as shown

in Table 6.1.

Table 6.1. Mapping of Initiates(...) Clauses to Transitions

Event Calculus Initiate
Clause

State Transition
Mapping

W1 WDG2

W2 WDG3

W5 WDG8

W8 WDG14

W11 WDG12

W14 WDG19

W17a WDG5

W17b WDG9

W17c WDG13

W17d WDG17

In the translation from an Event Calculus to a finite state machine description terminate(...)

clauses do not need to be included explicitly since they are implied in initiate(...) clauses. This

is because a transition in a finite state machine directly describes initiating actions and,

additionally, indirectly implies terminating actions. More precisely this could be described as

104

follows: In a state machine description, the transition from some state X to another state Y

due to the occurrence of an event e initiates fluents in state Y, while at the same time

terminating fluents associated with state X.

Consequently, while it is necessary to explicitly include both initiates(...) and terminates(..)

clauses in Event Calculus descriptions, it is sufficient to translate only initiates(...) clauses for

equivalent finite state machine behavioural description. This is because transitions describe

both fluent initiating and terminating actions. For example, in Figure 5.2, clause W3 is

implied in clause WI and hence transition WDG2 in Figure 6.3 describes both clauses. The

mapping of all the terminates(...) clauses in Figure 5.2 to the transitions in Figure 6.3 is as

shown in Table 6.2 below:

Table 6.2. Mapping of Terminates(...) Clauses to Transitions

Event Calculus Initiate
Clause

State Transition
Mapping

W3 WDG2

W4 WDG3

W6 WDG8

W7 WDG5

W9 WDG14

W10 WDG13

W12 WDG12

W13 WDG9

W15 WDG19

W16 WDG17

Figures 1.1 and 6.2 are incomplete descriptions of the DVD-R behaviour because they do not

show how the occurrences of events that have no outgoing transitions from a given state are

handled. For example they do not answer the question: if the current state is Playing and a

play event occurs, what should be the next state? This is handled by transition WDG6 in

Figure 6.3. According to WDG6 if a play event occurs while the current state is Playing, there

105

is no change of state. Other similar error handling transitions are WDGI, WDG4, WDG7,

WDGIO, WDGI1, WDG15, WDG16, WDG18, and WDG20. These transitions have been

deliberately omitted from Figures 1.1 and 6.2 to keep the graphical representations simple and

improve readability.

In the next section we show how our tool uses a directed graph analysis algorithm to

implement abduction.

6.1.2 Using Abduction to Identify Paths through a Graph

We use Dijkstra's Distance Algorithm [Gould 1988] to traverse the directed graph and find all

paths from a source to a target vertex. The source vertex (node) is associated with the current

state, while the target vertex is associated with next state. Each path consists of a sequence of

transitions (edges). For example, in Figure 6.2, if initially PausedPlaying holds and it is

desired that fluent Recording should be true, there are two paths, p1 and p2 shown below:

P1: Transition(PausedPlaying, stop, Stopped), Transition(Stopped, record, Recording).

P2: Transition(PausedPlaying, play, Playing), Transition(Playing, stop, Stopped),

Transition(Stopped, record, Recording).

An exhaustive list of paths is obtained by selecting each of the different fluents as sources to

the target until all fluents have been explored. This ensures that the specification can cause a

desired fluent to hold regardless of the current state of the shared domain.

6.1.3 Expressing Paths as Specifications

Finally, each path is converted into a specification by extracting the events in each transition.

The specifications are then re-expressed in the Event Calculus. We re-express the

specifications in EC for convenience and to take advantage of the rich vocabulary of the EC.

The re-expression is based on the idea that each transition in a directed graph can be

expressed as three EC clauses:

106

 happens(event, t)

 terminates(event, CurrentState, t) F holdsAt(CurrentState, t)

 initiates(event, NextState, t) E- holdsAt(CurrentState, t)

For example Transition (Stopped, record, Recording) in path P1 (section 6.1.2) can be re-

expressed as:

 happens(record, t),

 terminates(record, Stopped, t) F holdsAt(Stopped, t) [W4]

 initiates(record, Recording, t) E- holdsAt(Stopped, t) [WZ].

Informally, this can be stated as: if the DVD-R is currently Stopped, the occurrence of a

record event at time t results in fluent Stopped being false and fluent Recording being true. In

a similar manner to the refinement method described in Laney et al. [Laney et al. 2007], we do

not include terminates(...) and initiates(...) clauses in the specification since they are part of

the axioms. The truth values of these clauses are taken for granted since they are part of the

(indicative) domain descriptions. They serve as a starting point from which we logically

derive specifications. We include the happens(...) clauses in the specification since they state

the actions that should happen for the requirement to be satisfied. The right hand sides in W4

and W2 are retained as pre-conditions to the occurrence of the event in the happens(...)

clause.

Deviations from a given path may lead to the violation of a requirement. Such deviations are

possible if the current vertex in a path has more than one outgoing edge. To avoid these

deviations we use the prohibit(.) [Laney et al. 2007] clause to instruct the composition

controller to reject events that lead to different transitions which are not part of the current

path. This yields the contingent specifications associated with each possible state of the

problem domain. Figure 6.4 shows screen shot of a partial view of a text file representing

contingent specifications generated by the CSG tool for the Burglary Capture feature.

107

Each paragraph represents a contingent specification. The initially(...) clauses in each

contingent specification represents the state that should hold for the corresponding

specification to be executed. For example lines 6- 20 represent two contingent specifications

108

Figure 6.4 Automatically Generated Contingent Specifications for Burglary Capture Feature

that would be executed if the current state of the DVD-R is Playing to satisfy the burglary

capture requirement. The contents of the first contingent specification are shown between

lines 6- 11 and they correspond to SS3a in table 5.2. We will use this specification as an

exemplar to illustrate the contents of Figure 6.4. The specification runs from time tO to t3.

Line 7 states that at time tO the burglary capture machine issues instruction to the

Composition Controller to prohibit pause events between to and ti. At tl the burglary capture

machine issues a stop event (line 8) and at t2 an instruction is issued for the Composition

Controller to reject play events between times t2 and t3 (line 9). In line 10, the burglary

capture machine issues a record event instructing the DVD-R to start recording. Line 11

shows the order from time tO to t3.

6.3. Comparison to the Event Calculus Planner

Our tool is inspired by the Event Calculus Planner (ECP) [Shanahan 1999]. Given a domain

behavioural description expressed in the EC and the requirement to be satisfied expressed as

fluents that should hold, the planner automatically generate the sequence of events (plans) that

satisfy the requirement. Our tool works in a similar manner. The main difference between the

two is that the CSG is specific for generating contingent specifications while the ECP is a

generic Al planner.

In generating specifications we do not only consider the behaviour of the context, but we are

also explicit about the initial state of the context. This makes it possible to explore,

exhaustively, the different states of the context and derive corresponding contingencies. The

same effect can be achieved by integrating our tool with the ECP such that ECP acts as an

engine for generating single contingent specifications based on parameters supplied by the

CSG.

109

The differences between state machines and the Event Calculus descriptions are not

significant in our approach to deriving contingencies. This is because the derived

specifications are the same regardless of the language (whether state machine or Event

Calculus) used initially for describing the behaviour of a problem domain.

6.4 Chapter Summary

We have presented automated tool support for deriving contingent specifications. The

contingent specifications are part of our approach to composing and resolving feature

interactions at runtime. The tool is based on graph theory and derives specifications by

performing abductive reasoning on a dynamic description of a resource. The next chapter

presents an evaluation of our approach to the initialisation problem through its application to

both our running example and a practical problem.

110

Chapter 7. Evaluation

Our main claim, in this thesis, is that combining arbitration with contingency planning

ensures that, whenever a conflict occurs, the requirement of a feature that is eventually

granted access to a shared resource will be satisfied. In section 7.1 we test the validity of this

claim by simulating the contingent specifications of the smart home derived in Chapter 5. We

have also validated the industrial applicability of our approach by applying it to the resolution

of conflicts between features of a computer-based automotive application. We present the

results of our validation in section 7.2 and a summary of this chapter in Section 7.3.

7.1 Evaluation on Smart Home Features

Using CSG we derived the contingent specifications for the burglary capture and burglar

deterrence features. The specifications and Composition Controller were then implemented in

Java. The dynamic behaviour of the DVD-R was modelled using ECharts [Bond]. Marts is

a state-machine based programming language for event driven systems. Appendix 1 shows

the coding of the DVD-R domain descriptions in ECharts. In this section we present

simulation results when the contingent specifications were composed through the

Composition Controller (section 7.1.1) and a discussion of the results (section 7.1.2).

7 1.1 Smart Home Specification Simulation Results

Table 7.1 and 7.2 show simulation results when the burglary capture and burglar deterrence

features were composed sequentially, with burglary capture having a higher priority than

burglar deterrence. Recall that: the burglary capture requirement (RC. p) is to record a burglary,

while the deterrence (Rdt) is to play a movie. SCBp and Sdt are the specifications of the capture

and deterrence features, respectively. W. indicates the current state of the DVD-R. The post-

111

condition of the deterrence requirement is that the DVD-R is in the Playing state, while the

post-condition of capture requirement is that the DVD-R is in the Recording state.

When composed sequentially these features exhibit a bypass feature interaction. To illustrate

this, assume that for both features the pre-states are that the DVD-R is in the Stopped state.

Consider a scenario in which burglar deterrence is executed at 6 pm and the movie last for 3

HRS. If a burglary happens at 8 pm, the burglary capture feature will be triggered through the

burglar sensors but will fail to execute. This is because at this time the DVD-R will be in the

Playing state and this is inconsistent with burglary capture's pre-state. As a result the capture

requirement is not satisfied and the deterrence feature is said to have bypassed the capture

feature.

Table 7.1 shows the simulation results when the Composition Controller is used with feature

specifications that have no contingencies. The first row shows the time range in terms of

timepoints over which the simulation was executed. There are four timepoints indicated by

the columns labelled 0 to 3. At each timepoint the events issued by each feature, the status of

each feature's requirement (satisfied or unsatisfied) and the current state of the DVD-R are

recorded. This enabled us to monitor the satisfaction of the requirements of features in

response to the occurrence of events issued according to the feature specifications.

Table 7.1. Composition Controller without Contingencies

Time: 0 1 2 3

SM Prohibit(play; tO; tl) Record -

Rw Unsatisfied Satisfied Satisfied Satisfied

Sd1 Prohibit(record; tO; tl) Play

Rd - Unsatisfied Unsatisfied

W STOPPED RECORDING RECORDING RECORDING

112

The row labelled Scap shows the sequence of events issued by the burglary capture feature,

while the row labelled Rcp shows whether the burglary capture requirement is satisfied or

unsatisfied at a given timepoint. Similarly, the row labelled Saes shows the sequence of events

issued by the deterrence feature while the row labelled Rdeý shows whether the deterrence

requirement is satisfied or unsatisfied at a given timepoint. We have used the dash ("- `) to

indicate that at the given timepoint no event has been issued by a feature and hence its

requirement is not satisfied. This is the case with the rows labelled S&, and Rdt at timepoints 0

and 1.

The specifications of both features had Stopped as the pre-state. Initially the DVD-R is in the

Stopped state. When a non-deterministic conflict occurs on the DVD-R, the burglary capture

feature is granted access because of its higher priority. Since the current state of the DVD-R

matches the preconditions of the capture specification, the execution of S,, P satisfies RCap by

leaving the DVD-R in the Recording state at timepoint t=1. However, when the deterrence

feature starts executing at t=2, its requirement is not satisfied because the current state is

inconsistent with its pre-state. Note that this also implies that if the preconditions of the higher

priority feature were not met then both requirements would not be satisfied - rendering the

effort of arbitration futile.

Table 7.2. Composition Controller with Contingencies

Time: 0 1 2 3 4 5

Scup Prohibit(play; tO; tl) Record - - -

R.. p Unsatisfied Satisfied Satisfied - - -
Sdet

- - Prohibit(pause; t2; t3) stop Prohibit(record; t4; t5) Play

- - Unsatisfied Unsatisfied Unsatisfied Satisfied

W. STOPPED RECORDING RECORDING STOPPED STOPPED PLAYING

Table 7.2 shows the results of simulation when the Composition Controller is composing

contingent specifications. Similar to table 7.1, table 7.2 shows timepoints as column headers

113

(0-5), and events issued according to feature specifications, status on satisfaction of

requirements, and states on the DVD-R as row labels.

Contrary to table 7.1, according to table 7.2, the deterrence requirement is also satisfied (at

time t=5, row 5) because a contingent specification corresponding to the Recording state of

the DVD-R was selected at timepoint t=2. Hence, despite the use of arbitration to resolve non-

determinism both requirements are eventually satisfied. This substantiates our claim that

combining arbitration with contingency planning guarantees that the requirements of

conflicting features are eventually satisfied (where possible).

7.1.2 Discussion of Smart Home Evaluation Results

We have illustrated how contingency planning complements arbitration by ensuring that the

requirement of a feature that is granted access to a shared resource is eventually satisfied. In

this section we discuss the limitations of our approach by examining the assumptions we have

made and the implications of having those assumptions violated. This includes assumptions

on using a model to track state changes, contingency selection criteria, selective contingency

derivation, and location of contingencies.

Using Model of a Resource to Track State Changes: The model of a resource is central to the

ability of a feature to determine a resource state. Updating models with successful events does

not guarantee that the state in the model accurately represents the actual (physical) state of the

world. The assumption is that if an event was not prohibited by the arbitration process then it

has caused the necessary effect in the real world. This assumption may not always be true

because of the possibility that a successful event that has been used to update the model may

not reach the real world.

114

For example, the burglary capture machine and the DVD-R share events through interface c

in Figure 2.2. This interface could be realised through a physical data cable. If the burglary

capture machine issues a record event and this event is not prohibited by the arbitrator, the

assumption is that it has caused the corresponding effect on the DVD-R. However, if the

cable is broken, this assumption does not hold and the model will not be consistent with the

actual state of the DVD-R! Addressing these concerns may need a monitoring [Fickas and

Feather 1995] mechanism on the shared domain. We have ignored these concerns by

assuming that every successful event results in the corresponding state changes in the

resource.

Validity of Assumptions on Contingency Selection Criteria: The contingency selection criteria

described in chapter 5 assumes that (inconsistent) state changes in a shared resource result

from events issued according to specifications of features in the composition. This assumption

ignores state changes that may result from actions issued by external agents. An example of

an external agent is a person pressing the play button on the DVD-R.

The cost of ignoring external events is that it is difficult to deal with state changes that do not

originate from within the features currently in the composition or that have not resulted from

an event which is part of their (features) collective set of events. If one contingent

specification has (play, stop) and another has (record, stop), their collective set of events is

(play, stop, record). The occurrence of these events would result in the DVD-R being in the

Playing, Stopped, and Recording states, respectively.

The contingent specifications included in the composition would correspond to these three

states. The occurrence of an event outside this set would result in the DVD-R being in a state

with no corresponding contingent specification. For example, a pause event would leave the

DVD-R either in the PausedPlaying or PausedRecording state. Since none of the contingent

specifications has these two states as their initial states, it may not be possible to recover from

115

these states. In addressing these issues, the work on obstacle analysis [van Lamsweerde and

Willemet 1998] may be a starting point.

Selective Contingency Derivation and Intermediary States: Our approach is to plan for all

contingencies and eliminate those not necessary when features are composed. If there is high

cost associated with planning for each contingency, eliminating the contingencies during

composition may already be too late to avoid such a cost. Thus another option is to be

selective from the onset on which states should be provided with contingencies. However, this

option is not compatible with one of the main assumptions of our approach. As discussed in

section 5.2, we assume that each feature is developed in isolation. Thus it is not possible to

decide in advance which contingencies to include in the planning as the requirements for

other features can only be known during composition.

Our contingency selection technique also assumes that features execute to completion. This

assumption does not always hold. One situation where it may be invalid is when a higher

priority feature pre-empts a lower priority feature such that the resource is left in an

intermediary state instead of a final state. Recall that in the case where a feature specification

executes successfully only the final state of the resource needs consideration in the selection.

Meanwhile in the case where a specification may not complete execution, intermediary states

of the resource are considered. An intermediary state is reached if a specification does not

execute to completion; that is, it does not reach the final state. This is likely to happen if a

feature is suspended or its execution aborts (such is the case with pre-emption). For example,

assuming the current state of the DVD-R is Playing, to satisfy the requirement of capturing a

burglary the DVD-R changes from Playing, to Stopped, and then to Recording. Playing is the

initial state while Stopped is an intermediary state. Consideration of both final and

intermediary states is necessary.

116

Location of Contingencies: Another implementation issue worth considering concerns the

location of the contingencies. Recall that a feature consists of a requirement(R),

specification(S), and context([49. In our approach we place contingencies in the specification.

This seems a natural choice as a specification consists of descriptions of how the properties

described in the requirement will be fulfilled. Locating the contingencies in the specification

has the advantage that if a state of the resource has more than one contingency, a choice can

be made between the alternatives. A common factor on which such a choice can be based is

cost. For example in Table 5.3 both contingencies ESSa and ES5b correspond to the case in

which the DVD-R is in the Paused-Playing state. In this case ES5b could be a better choice as

it involves fewer state changes and could be cheaper to execute than ESSa.

An alternative location of the contingencies is the context (W). The advantage of this

alternative is that the specification does not have to be very specific on how the requirement is

to be satisfied. It needs to only specify to the context what state is desired in the requirement.

Depending on its current state, the context would select the appropriate contingency to satisfy

the requirement. However, this role of the specification blurs its distinction from the

requirement.

This also means that the specification is more lightweight and less complex as the

responsibility of the contingency planning is shifted to the context. From a practical

viewpoint, it is expected that the engineer responsible for designing a device is likely to be

well versed on its behaviour and can, hence, plan better contingencies than the person who

develops a specification that uses the device. However, this also removes the ability of the

specification to make a choice between contingencies (in case there are two or more
alternative contingencies corresponding to the same state).

117

7.2 Industrial Validation: Instrument Cluster Case Study

We constructed the smart home example discussed through the thesis to help us develop and

illustrate the basic concepts of our approach. The example is simple enough to help us

understand and motivate the problem addressed by the approach we have proposed. However,

it is not enough in demonstrating the industrial relevance of our approach. For this reason, we

also validated our approach by applying it to the resolution of feature interactions in an

Instrument Cluster (IC) case study from DaimlerChryslerr'" [Buhr et al. 2003].

The IC is a display device in cars consisting of various instruments which show measurement

information about the status of the vehicle such as its speed, fuel level, and engine

temperature. Figure 7.1 is a photo of a Instrument Cluster viewed from the driver's seat of a

or

Figure 7.1 Photo of Instrument Cluster for a Mercedes S-Class S63 AMG Vehicle

118

Mercedes S-Class S63 AMG car. From left-to-right, it shows the engine temperature

gauge, fuel gauge, speedometer, and rev meter.

This case study involved an analysis of an 83 page document which detailed the functional,

hardware, and communications characteristics of the IC. Functional descriptions describe the

functional behaviour of the IC including when it can be activate or deactivated, the

behaviours of the rev meter, speedometer, direction indicator lights, and display. Hardware

characteristics describe the physical appearance, focussing mainly on the optical design of the

cluster.

Our analysis focused on activation and deactivation behavioural descriptions because this

forms the larger part of the software aspect of the IC. Activation means that the cluster

display lights up, while deactivation means that the display dims out and the IC is put in sleep

mode. This section presents the results of applying our approach to resolving conflicts

between features of the Instrument Cluster. The problem being solved is that of specifying a

controller (an Activate/Deactivate machine) for activating and deactivating the IC display.

7.2.1 Requirements for Activating and Deactivating Instrument Cluster

Figure 7.2 shows the context diagram of the Activate/Deactivate machine. The context

consists of the Instrument Cluster Display, Ignition Lock, Driver's Door, IC Button and

Headlights. The required behaviour of the Activate/Deactivate machine described by seven

requirements, listed in Table 7.3.

119

Ignition Lock II Driver's Door

Activate/Deactivate
Machine Instrument

cluster Display

IC Button Headlight

Figure 7.2 Context Diagram of Instrument Cluster Activation/Deactivation

Table 7.3 Requirements for activation/deactivation of the Instrument cluster

Short Description Behavioural Description
R-1 Permanent activation when After the Ignition has been switched on the Instrument cluster Is activated

ignition Is on
R-2 Permanent deactivation by Half a minute after the Ignition has been switched off the Instrument

switching-off ignition cluster is deactivated and all (warning) lights dim out.
R-3 Permanent activation by After the Ignition key Is set in position radio, the Instrument cluster Is

setting Ignition key in position activated.
radio

R-4 Temporal activation by After the drivers door has been opened the Instrument cluster is

opening the driver's door activated for half a minute.
R-5 Temporal activation by After the drivers door has been closed for the Instrument cluster Is

closing driver's door activated for half a minute
R-6 Temporal activation by After the headlights have been switched on the Instrument cluster Is

switching on headlights activated for half a minute

R-7 Temporal activation with push After the Instrument cluster push button has been applied the Instrument
button cluster Is activated for half a minute.

Whether the IC is activated or deactivated depends on the status of the Ignition Lock, Driver's

Door, IC Button and Headlights. For example, according to R-4 opening the Driver's Door

should activate the IC for 30 seconds and deactivate it thereafter.

7.2.2 Features of the Instrument Cluster

Using a requirements clustering technique proposed by Hsia et al. [Hsia and Yaung 1988;

Hsia and Gupta 1992; Hsia et al. 1996], we clustered these requirements into Temporal

120

Activation and Permanent Activation features. Temporal Activation relates to the

requirements of activating the IC display for 30 seconds only based on the occurrence of a

specific event. This includes requirements R-4 to R-7. Permanent Activation relates to the

requirements on the IC where activation does not depend on the occurrence of intermittent

events, but on the state of a monitored device. Requirements R-1 to R-3 are in this category.

For example, according to R-1 the IC should stay activated as long as the ignition is on. When

the ignition is turned-off, the IC should be deactivated 30 seconds later (R-3). We use these

categories in structuring the requirements into features. In this way we decompose the

problem of controlling IC activation/deactivation problem into two features: Permanent and

Temporal Activation.

The results of the decomposition are problem descriptions of the Permanent and Temporal

Activation features shown in Figures 7.3 and 7.4, respectively.

Ignition
a/ Lock (IL)

Permanent
Activation
Machine
(PAM)

b Instrument
Cluster

Display (IC)

C

S

Activate IC '
permanently if

either ignition or i radio is ON, and
Deactivate IC 30s

after ignition is
switched off.

a: IL! (Iq_Lock-O, Ig Lock-l, Ig_LockR-O, Ig_LockR-1)
b: PAM! (deactivate, activate)
c: IL! (Ignition0n, IgnitionOff, RadioPowerOn,

RadioPowerOff)
d: IC! (Deactivated, Activated)

Figure 7.3 Problem Diagram of Permanent Activation Feature

The requirement of the Permanent Activation Machine (PAM) is to activate the

IC permanently when the ignition lock is in RADIO or ON position. When the ignition is

switched off, the display is deactivated after 30 seconds. The context of the PAM consists of

the Ignition Lock and the Instrument Cluster problem domain. The interface labelled a

121

consists of phenomena Ig_Lock=O, Ig_Lock=1, Ig_LockR=O, and

Ig_LockR=1 controlled by the Ignition Lock domain. If the ignition key is in the lock ON

position then Ig_Lock=1 (otherwise Ig_Lock = 0). Similarly, Ig_LockR = 1, if the

ignition key is in the RADIO position (otherwise Ig_LockR = 0). The position of the key in

the Ignition Lock is represented in interface c. Identifier b refers to phenomena deactivate and

activate. These phenomena are the events issued by PAM to activate and deactivate the IC.

Interface d represents the current state of the IC with phenomena Activated or Deactivated.

The requirement of the Temporal Activation feature is to activate the Instrument Cluster for

30 seconds if either the driver's door has just been opened/closed, the headlight have just

been switched-on, or the IC button has been pressed. The context of the Temporal

Activation Machine (TAM) includes the following problem domains: Driver's Door,

Headlight, IC Button, and Instrument Cluster Display.

`. ý m

------.

, Activate IC for half a
minute if door
opened/ closed,
headlight on, or ý-

-- - ýý button pressed.

i: Door! (Status_Door
_dd=0,

Status Door dd-1)
j: Headlights! (Status_Lightsa0, Status_Lights-i)
k: ICButton! (Status_IC Button=0, Status IC Button-i)
1: TAM! {deactivate, activate}
m: Door! {DoorClosed, DoorOpened}
n: HeadLights! (LightsOn, LightsOff)
o: ICButton! (pressed, NotPressed)
p: ICD! {Activated, Deactivated)

Figure 7.4 Problem Diagram of Temporal Activation Feature

122

The Temporal Activation Machine determines the current status of the driver's door through

phenomena status_Door_dd. If the door is observed as closed in m, then

Status_Door_dd=O. Otherwise if DoorOpened is true then Status Door dd=1.

The current state of the headlights is determined through interface j. If LightsOn is true in

n, then the Status_Lights=l in j. In contrast, if LightsOff is true, then

Status-Lights=O. The TAM reads the status of the ICButton through the value of

phenomena Status_IC_Button in interface k. If the ICButton is Pressed (in interface

o), then Status_IC_Button=l (otherwise =0). Events to activate and deactivate

the IC by the TAM are sent through interface I and in response IC Display domain is observed

as either Activated or Deactivated in interface p.

7.2.3 Dynamic Behaviour of Instrument Cluster Display

When composed, the two features share the Instrument Cluster Display. In this section we

provide domain descriptions for the display since it is the only resource shared and the likely

domain where conflicts will be manifested. According to the documentation of the IC, the

dynamic behaviour of the display can be described using two events and two states. The

events are: activate and deactivate. The states are: Deactivated and Activated. The

events and states are related by the Event Calculus domain description in Figure 7.5.

Initiates (deactivate, Deactivated, t) [ICI]

Initiates (activate, Activated, t) [IC2]

Terminates (deactivate, Activated, t) [IC3]

Terminates (activate, Deactivated, t) [IC4]

Figure 7.5 Dynamic Behaviour of Instrument Cluster

On occurrence of a deactivate event, the IC is Deactivated (IC1). IC2 states that in response

to the occurrence of an activate event, the IC is Activated. IC3 and IC4 have been included for

completeness.

123

7.2.4 Instrument Cluster Contingent Specifications

Based on the domain description of the IC, we derived contingent specifications for the

features with the help of our CSG tool.

Temporal Activation Specifications: TASa (below) is the TAM contingent specification

corresponding to the state when the IC is Activated .
It states that on occurrence of at least

one of the following events: DoorClose, DoorOpen, ButtonPressed,

HeadLightsSwitchedOn or IgnitionSwitchedOff; if the IC is Activated

then deactivate events should be prohibited for 30 seconds. After 30 seconds TAM

should deactivate the IC.

(HoldsAt(DoorClose, tO) V HoldsAt(DoorOpen, tO) V

HoldsAt(ButtonPressed, tO) V HoldsAt(HeadLightsSwitched0n, tO) V

HoldsAt(IgnitionSwitchedOff, t0)) A HoldsAt(Activated, t)

4 Happens(Prohibit(deactivate; tl; t2), tl)

A Happens(deactivate, t2)

A (tO<tl <t2<t) A (t2=tl +30s). [TASa]

Since the IC is Activated, the objective of TASa is to keep it active an then deactivate it

after 30s. TASb is the TAM contingent specification corresponding to the state when the IC is

Deactivated. In the case of TASb since the IC is not active, the idea is to activate it if at

least one of the trigger events occurs and keep it active for 30 seconds.

(HoldsAt(DoorClose, tO) V HoldsAt(DoorOpen, tO) V HoldsAt(ButtonPressed, tO) V

HoldsAt(HeadLightsSwitchedOn, tO) V HoldsAt(IgnitionSwitchedOff, t0)) A

HoldsAt(Deactivated, t)

4 Happens(activate, tl) A Happens(Prohibit(deactivate; tl; t2), tl)

124

AHappens(deactivate, t)AtO<tl<t2<t)A(t2=t1+30s). [TASbl

Permanent Activation Specifications: PASa (below) is the contingent specification

corresponding to the state when the IC is activated. The first part of the contingent

specification states that if the ignition is ON (Ig_Lock=1) or in the radio position

(Ig_LockR=1) then the IC should be kept activated by prohibiting a deactivate event.

(HoldsAt(Ig_Lock=1, to) V HoldsAt(Ig LockR=1, tO)) A HoldsAt(Activated, t)
-> Happens(Prohibit(deactivate; tl; t), tl) A (tO<tl <t).

HoldsAt(IgnitionSwitchedOff, t0) A HoldsAt(Activated, t)
4 Happens(Prohibit(deactivate; tl; t2), tl) A Happens(deactivate, t)
A (t0<tl<t2<t) A (t2=t1+30s). [PASa]

The second part of PASa states that if the ignition has just been turned off then the IC should

be deactivated 30 seconds after the occurrence of the IgnitionSwitchedoff event.

PASb describes the behaviour of the Permanent Activation Machine if the current state of the

Instrument Cluster is Deactivated.

(HoldsAt(Ig_Lock=1, tO) V HoldsAt(Ig LockR=l, tO)) A HoldsAt(Deactivated, t0)

4 Happens(activate, tl) A Happens(Prohibit(deactivate; tl; t), tl) A (t0<tl<t).

HoldsAt(IgnitionSwitchedOff, t0) A HoldsAt(Activated, t)

4 Happens(Prohibit(deactivate; tl; t2), tl) A Happens(deactivate, t)

A (t0<tl<t2<t) A (t2=tl+30s). [PASbj

The first part of PASb states that if the ignition key is either in the lock or radio position and

the Instrument Cluster is not active then PAM should issue an activate event and the

Composition Controller should reject deactivate events. The second part of PASb is

identical to the second part of PASa.

125

7.2.5 Feature Interaction between Permanent and Temporal features

The two states of the display are mutually exclusive (only one can be true at a time). An

inconsistency could occur between the two features if according to one feature the IC should

be Deactivated while the requirement of the other feature is that it should be

Activated. One scenario where such conflict could occur is when the car is driven at night.

According to the Permanent Activation feature if the ignition is ON, then the IC

should be Activated.

Meanwhile, part of the requirement of the Temporal Activation feature is that if the

headlights are switched-on, then the IC should be temporarily activated for 30s. This

implies that 30 seconds after the headlights have been turned-on the IC is deactivated -

resulting in the IC display being blank! This is inconsistent with the requirement of the

Permanent Activation feature to keep the cluster activated as long as the ignition

is ON.

In the implementation of the features and the IC, the effect of the conflict identified above

may or may not be significant. It may not be significant because the status of all the input

signals are scanned every 100 milliseconds. If the Temporal Activation feature

deactivated the IC after 30 seconds of switching-on the headlights, then the IC would be

activated again by the Permanent Activation feature after 100ms. If the end of the 30

seconds period coincides with the beginning of the 100ms scan cycle, then (potentially) the

display will be blank for I00ms.

This is illustrated in Figure 7.6. At time = 10 ms, TAM issues a deactivate event which

blanks the display. If the 100ms refresh cycle begins at the same time then the display is

deactivated until time =110ms where it is activated again by the PAM.

126

Display is blank during this period

TAM

PAM

1II1IIIIII1

10 20 30 40 50 60 70 80 90 100 110

Time (ms)

Figure 7.6 Illustration of Potential Conflict between Temporal and Permanent Activation

In the next section we explain how prioritising the features and composing them through a

Composition Controller resolves the conflict discussed above.

7.2.6 Composing Specifications with a Composition Controller

Assume that the Permanent Activation feature has a higher priority than Temporal

Activation and that the display is initially Deactivated. We now consider the

behaviour of TAM and PAM when they composed through the Composition Controller. When

the ignition is switched ON, PAM issues a Happens (Prohibit (deactivate; tl; t)

instruction according to PASb. This instructs the Composition Controller to reject

deactivate events as this will violate satisfaction of the Permanent Activation

requirement. The requirement of PAM is to keep the IC active as long as the ignition is ON.

The occurrence of a deactivate event violates requirement.

When the driver turns on the headlights while the ignition is ON, TAM issues a

Prohibit (deactivate; t1; t2) event according to TASa (since the Instrument

Cluster is already Activated by PAM). The Composition Controller stores the

Prohibit (deactivate; t1; t2) in its memory for making arbitration decision later.

After 30s TAM issues a deactivate event. However, this event is rejected by the Composition

Controller since PAM ordered rejection of this event (in PASa and PASb) and it has a higher

priority than TAM. This prevents events issued according to TAM specifications from having

127

an effect on the Instrument Cluster Display. This arbitration mechanism prevents the potential

blanking of the display.

7.2.7 Validity and Implications of Case Study Results

The application of our approach to the Instrument Cluster case study has demonstrated the

effectiveness of arbitration in resolving non-determinism. It highlighted a potential feature

interaction between the Permanent and Temporal Activation features that could result in the

Instrument Cluster display being blank for at most I OOms.

The practical implications of this problem were validated with one of the engineers

responsible for specifying the IC, who accepted our conclusions based on the dynamic

behaviour of the display used in the analysis. However, he also concluded that flickering of

the display does not occur in practice due to the fact that the display has a transition time

delay between its states. Our modelling of the dynamic behaviour of the display had not taken

this into account.

The potential of flickering of the display identified by our approach highlighted that the

conclusion as to whether a conflict presents a practical problem or not also depends on more

specific contextual information. In the IC problem, this contextual information included the

relationship between the rate at which the human eye scans the display, the rate at which input

signals are scanned to update the display, and the time it takes the display to transition from

being deactivated to activated (and vice versa). This emphasises the important role

that context plays in the analysis of conflicts.

7.3 Chapter Summary

This chapter has presented evaluation results of our proposed approach through its application

to the composition of feature in a smart home. Our approach has also been applied to the

128

specification of contingencies for features of an Instrument Cluster -a practical problem from

the automobile domain. The evaluation results substantiates our claim that contingency

planning complements arbitration by ensuring that when a non-deterministic conflict occurs

the requirements of conflicting features are eventually satisfied.

129

130

Chapter 8. Conclusions and Further Work

When features are specified, the designer makes assumptions about the behaviour and initial

state of the context. When the context is shared between features, assumptions about initial

states are often violated. Such violation can result in requirements of some of the features not

being satisfied. This thesis has argued that such violation of requirements can be avoided if

specifications of features take into account that when context is shared assumptions about

fixed initial states may not hold.

In addressing these initialisation concerns, we have proposed an approach that is based on

contingency planning. The effectiveness of the approach has been demonstrated through an

example and a case study based on a practical problem. Our evaluation of the proposed

approach shows that specifications with contingencies are able to satisfy their requirements

regardless of the current state of the context. We present a summary of the thesis in section

8.1, suggest pointers for further work in section 8.2, and finally, we present our conclusions in

section 8.3.

8.1 Summary of Thesis Contributions

This thesis has argued that context is important in reasoning about feature interactions as

conflicts manifest themselves on the context. In supporting this claim we have provided

evidence from the literature in the form of feature interaction taxonomies and sources of

feature interactions. Our review shows that the limitation of current approaches to feature

interaction resolution is that they lack mechanisms for explicitly dealing with initialisation

concerns and hence are insufficient in addressing conflicts resulting from the initialisation

problem.

131

We have proposed an approach to the initialisation problem which combines the concepts of

arbitration and contingency planning. The conceptual basis of our proposed approach has

been justified by motivating how the combination of the concepts of arbitration and

contingencies are relevant to feature interaction resolution. Contingency planning enables

features to deal with initialisation concerns. This is achieved by equipping each feature with

contingent specifications corresponding to each state of the shared resource. Depending on

the current state, one of the contingencies is selected to enable a feature to satisfy its

requirements.

Although contingencies deal effectively with initialisation concerns, they are insufficient in

resolving non-determinism as features may still conflict as they concurrently attempt to access

a shared resource. In order to resolve non-determinism we argued that arbitration is necessary

in feature composition to intercede between contingent feature specifications and the shared

resource.

We have demonstrated how our proposed approach can be used in practice by showing how

an existing arbitration approach, the Composition Controller, can be extended with

contingency planning. We identified two main steps that a development process implementing

our approach could entail, namely: (1) building contingencies into specifications and (2)

composing the contingent specifications through arbitration.

The first step involves deriving contingent specifications. The derivation of contingent

specifications can be erroneous and time-consuming if done manually. In addressing this we

presented a tool, called Contingency Specification Generator (CSG), which automates the

derivation of contingent specifications. The approach have been validate through a laboratory

constructed example and a case study of a practical problem.

132

8.2 Further Work

This thesis has argued that context sharing is the genesis of the feature interaction problem.

We have identified the initialisation problem as one of the important problems that needs to

be addressed in feature composition as ignoring initialisation concerns leads to bypass feature

interactions. As further work on this thesis argument we identified the following research

issues:

8.2.1 Problem Reduction as a source of Feature Interaction

Some software development problems are hard to solve in their original form. For

convenience, it is often necessary to transform them to reduced forms that have feasible

specification through problem reduction [Rapanotti et al. 2006]. However, problem reduction

results in loss of the context of the original problem. As a result (of the loss of context) a

specification to the reduced problem may not satisfy the original problem when the context is

shared with other features (despite having been demonstrated to satisfy the original problem

in isolation).

It is therefore necessary, in transforming an original problem to a reduced problem, to ensure

that any resulting loss of context will not result in this type of feature interaction. To illustrate

loss of context due to problem reduction as a source of feature interactions consider the

following example from the automobile domain [Broy et al. 2007]:

A climate control feature (air-conditioner) maintains the temperature inside
the car at a preset value. The electrical energy that powers this air-
conditioning equipment comes from the engine. The power output from the
engine depends on the number of revolutions per minute (revs). Hence, by
demanding more power from the engine, climate control increases the
number of revs. Another common feature in luxury cars is the automatic
handbrake release feature. This is a convenience feature that replaces
traditional mechanical handle handbrakes. With this feature the driver
engages and releases the handbrake by pressing a button. Once the

133

handbrake is engaged to drive-off the driver releases it by pressing the

accelerator. When the accelerator is pressed engines revs are increased and

automatic handbrake release disengages the handbrake.

One scenario in which these two features interact is if the car is driven on a

hot day with the climate control feature on to maintain a cool temperature in

the car. Assume the driver stops on the road side, engages electronic
handbrake release with the engine running, and comes out of the car by

opening the door. Since it is very hot outside, opening the door suddenly
increases the temperature inside the car. In response to the temperature

increase, the climate control feature suddenly demands more power from the

engine - increasing the engine revs. The increase in engine revs is picked-up
by the automatic handbrake release feature which disengages the

handbrake. The result is that the car starts moving without the driver!

The original problem that the handbrake release feature is intended to solve is that of

automatically releasing the handbrake when the driver presses the accelerator if the engine is

running. Pressing the accelerator results in an increase in the engine revs. Based on this

correlation, in the implementation of this feature the problem of monitoring pressing of the

accelerator was transformed to that of monitoring an increase in engines revs. This

transformation resulted in a subtle, yet potentially harmful feature interaction.

Problem reduction is a useful design tool as it allows a requirements analyst to reduce

otherwise hard problems to more solvable forms. However, to reap the full benefits of such

reductions we need a systematic way to argue and demonstrate that they are necessary,

adequate, and correct. Part of our future work is: given a specification which has resulted

from problem reduction, how can we formulate an argument that shows that when the context

is shared, the type of feature interaction illustrated in the example above is avoided.

8.2.2 Problem Decomposition with Minimal Conflicts

In this thesis, we have modelled features as subproblems. Subproblems are a result of problem

decomposition. The idea in problem decomposition is to solve each subproblem in isolation

134

and then compose the resulting (sub) solutions to solve the original problem. Intuitively, one

would expect that since the subproblems came from the same problem, then the composition

of their solutions should be trivial and provide a solution to the original problem.

However, feature interactions often arise when the solutions are (re-) composed. It is not

currently known as to what extent does the way in which a problem is decomposed into

subproblems contribute to conflicts that arise during composition. We envisage that knowing

the relationship between problem decomposition and the resulting conflicts between features

can lead to systematic guidance on how decomposition could be executed in a way that

minimises feature interactions.

8.2.3 Arbitration for Distributed Resources

The basic premise of our thesis argument is that the feature interaction problem arises from

sharing of resources. The approach we have proposed to resolving feature interactions

assumes that the shared resources are centralised and may therefore not be applicable to

distributed resources. For example the approach may not resolve the feature interaction

between Originating Call Screening (OCS) and Call Forwarding Unconditional (CFU) in a

telephone switching system. OCS is used to prevent a subscriber from being connected to

certain pre-specified contact numbers. CFU forwards incoming calls to another subscriber.

Consider a scenario with three telephone subscribers: John, Lucy and James.

Assume that James sells value added services whose content is not suitable for John's young

son. In order to prevent his son from being exposed to such unsuitable material John

subscribed to OCS with James on the screening list. This prevents John's son from connecting

to James. If Lucy forwards all her calls to James, then dialling Lucy's number leads to the

violation of John's requirements of being prevented from connecting to James. What makes

this feature interaction challenging is that James, Lucy and John could belong to different

administrative domains (telephone service providers).

135

8.2.4 Arbitration with Dynamic Priority Assignment

The arbitration approach we have used assumes that the priorities between features are fixed.

The consequence of this assumption is that when a new feature is added the priorities have to

be re-assigned. This need for re-assignment may not be practical for a large set of features.

One approach proposed in [Zimmer and Atlee 2005] to addressing this problem is to assign

priorities to classes of features rather than individual features. For example we could assign a

higher priority to burglary capture features than burglar deterrence features.

However, this still raises the question of assigning priorities to features in the same class.

Moreover, the feature categorisation approach still use fixed priorities assignment which are

independent of system dynamics. It is worth exploring flexible priority assignment in which

the assignment of priorities is a function of evolution of the feature-based application. Such

an approach could aid decisions on when to give priority to a feature and when to revoke such

priority.

8.2.5 Arbitration/Contingency as a Conflict Resolution Pattern

This thesis has discussed arbitration as an approach to resolving non-determinism and

proposed contingency planning as an approach resolving bypass feature interactions. Based

on this, a combination of the concepts of arbitration and contingency planning could be

presented as a pattern for resolving non-deterministic and bypass interactions.

It is worth investigating the extent to which the combination of these concepts in the way we

proposed can be generalised allowing for the resolution of similar problems across multiple

domains, outside the application domains of smart homes and automotive software systems.

We envisage that an application of the proposed approach to a wider and general context

would further strengthen our claim that the concepts of arbitration and contingency are

136

complementary and highlight their limitations. This could also enable us to present their

combination as a generic software design pattern for feature-based system development.

As further work, it is also worth investigating the possibility of other similar concepts (to

arbitration and contingency planning) which can be applied in resolving the rest of the feature

interactions characterised in current taxonomies (such as looping interaction). Combined with

the approach we have proposed in this thesis, such concepts could increase the scope of the

types of feature interactions that can be resolved.

8.2.6 Satisfying Failed Requirements by Retrying Rejected Events

During arbitration, events issued by a lower priority feature are rejected in favour of higher

priority events. This implies that the requirements of a lower priority feature may never be

satisfied unless it is retried when the resource is free. The arbitrator used in this thesis does

not give feedback to the originating machine that an event has been rejected. Such feedback

could give the machine the time at which it can retry a failed event. This is only possible

when the exact time at which prohibition of the event will expire is known.

For example, assume that the requirement for the broadcast capture feature is to record news

between 7pm and 8pm. Also assume that the broadcast capture feature has a higher priority

than the burglary capture feature whose requirement is to record a burglary. Any event issued

by the capture feature during the news recording period, that will violate the broadcast capture

requirement will be prohibited. This means that between 7pm and 8pm the capture feature's

requirement may not be satisfied. If a thief breaks-in during this period the feedback given to

the burglary capture feature is that the issued event has failed and can be retried after 8pm!

However, for some events it may not be possible to know the expiry of the prohibition in

advance. In the example above, assume that burglary capture has a higher priority than

137

broadcast capture. If a thief breaks-in at 7: 35pm it is not known when he will leave and hence

the duration of recording the burglary is not certain! If the requirement is that the whole

episode of the burglary should be recorded then it is not possible to determine in advance how

long an event from the broadcast capture feature should be prohibited. The issue is when to

retry when the prohibition end of the prohibition period is not certain?

8.2.7 Termination Problems in Feature Composition

This thesis has focussed on initialisation problems in feature composition. A similar problem

is termination, which concerns which state should a shared resource be left by a currently

executing feature. We alluded to termination problems in section 1.4 when we mentioned

stoppage concerns. The termination problem is especially important to address when there is a

dependency between a currently executing feature and the next feature to use a shared

resource. An abnormal termination of the current feature could leave a shared resource in a

state in which it may not be use-able for the next feature as the DVD media recording

example illustrated in Chapter 1. One of the research issues relevant to termination concerns

is how to ensure that a shared resource is always left in a state that is use-able for the next

feature. In the DVD media example, this could mean ensuring that if recording is aborted then

a recording session is always closed properly.

8.2.8 Initialisation Problems in Aspect Weaving

Our work on the feature interaction problem has similarities with so-called "aspect interaction

analysis" [Douence et al. 2004] in aspect-oriented software development [Filman et al. 2004].

This raises the question of whether our approach can be applied to or benefit from work in

this area.

Aspect-oriented development approaches aim to address challenges associated with

crosscutting concerns. Concerns are areas of interest in or focus of an application, and are the

138

primary criteria for decomposing software into manageable and comprehensible parts

[Dijkstra 1976]. A crosscutting concern is one that spans several parts of an application, such

that changing it in one part of the application requires changing it in other parts [Filman et al.

2004]. Aspects encapsulate crosscutting concerns by providing means for their systematic

identification, isolation and modularisation, representation, and composition [Rashid et al.

2002; Rashid et al. 2003; Baniassad et al. 2006]. Within aspect-oriented development, our

work is more relevant to "early aspects" [Amirat et al. 2006; Baniassad et al. 2006; Weston et

al. 2008]. The work on early aspects advocates the identification and modularisation of

crosscutting concerns at requirements engineering time [Nuseibeh 2004; Rashid et al. 2004].

Aspects are composed by weaving them through a base concern, which often changes the

behaviour of that base concern. Aspect weaving is the composition process that integrates

aspects with base concerns in an application and a base concern is a non-crosscutting concern

through which aspects are composed [Rashid et al. 2004; Weston et al. 2008]. If the aspects

being composed are conflicting, their composition may result in behaviour that does not

satisfy the requirements satisfied by each aspect in isolation - introducing subtle and

undesirable interactions among aspects [Falcarin and Torchiano 2006]. In this respect, we can

consider aspect interaction as a special case of the feature interaction problem and aspect

weaving as a special case of feature composition.

Treating aspect interaction as a special case of feature interaction means that the base concern

modified by the application of aspects can be considered as a shared resource. This suggests

that there may be scope for applying our approach to aspect interaction analysis or for our

work to benefit from the work on early aspects interaction analysis. However, before this is

possible some research issues need to be addressed. In particular, how can our initialisation

problem be described for aspect composition? In deriving contingent specifications we use
domain descriptions of shared resources. We have used domain descriptions of physical
devices, and applying our approach to aspect composition would need a domain description of

139

base concerns. We described our domain descriptions in terms of states and events. It is

therefore worth investigating what are the equivalent states and events in base concerns, and

whether states and events are sufficient abstractions for documenting domain descriptions of

these concerns.

Our technique for deriving contingent specifications assumes that the behaviour of the shared

resource does not change. In aspect composition this assumption does not hold as the

behaviour of a base concern changes when an aspect is applied. Hence, deriving contingent

aspect specifications should take into account the changing behaviour of the shared resource.

This means that contingent specifications would have to be derived each time there is a

change in the behaviour of a base concern. It is worth investigating how our approach copes

with shared resources of potentially varying behaviour.

8.3 Conclusion

The feature interaction problem arises from context sharing. A common approach to resolving

conflicts between features contesting for a resource is arbitration. This approach resolves

conflicts by assigning priorities to conflicting features such that a higher priority feature gains

access to the resource. However, this approach does not guarantee that the requirement of the

feature that eventually gains access to the resource will be satisfied. This is because the

current state of the resource may not match its pre-conditions due to the state having been

changed by features that used the resource earlier. We characterised this as the initialisation

problem.

This thesis has proposed an approach to the initialisation problem. Our approach is based on

the concept of contingency planning and involves analysing initialisation concerns in the

problem space. The analysis of initialisation concerns enables a requirements analyst to

consider all possible states of the context and derive multiple contingent specifications. The

140

selection of a specific contingent specification helps avoid initialisation concerns associated

with each state of the context.

We have demonstrated its relevance to the resolution of bypass feature interactions by

combing it with arbitration. The evaluation results of our proposed approach suggest that

contingency planning ensures that, in the event that the state of the resource in a model is

inconsistent with the actual state, the requirements of conflicting features are eventually

satisfied (where they can be satisfied).

141

APPENDIX I- DVD-R Domain Descriptions encoded In ECharts

public machine DVDR (
<" final private ExtemalPort p1 *>
<" private String currentState = "STOPPED* *>

public DVDR(ExtemalPort p1) {
this. pl = pl;

}
initial state STOPPED;
state PLAYING;
state PAUSED PLAYING;
state RECORDING:
state PAUSED RECORDING;

transition STOPPED - p1 7 String [message =_ "play" && currentState "STOPPED") I{
System. out. printin(Current State: PLAYING");
currentState = "PLAYING";

} -> PLAYING;

transition PLAYING - p1 ? String [message == "stop"] /{
System. out. println(Current State: STOPPED");
currentState = "STOPPED";

} -> STOPPED;

transition PLAYING - p1 ? String [message no "pause" && currentState =_ "PLAYING")
System. out. println("Current State: PAUSED PLAYING");
currentState - "PAUSED PLAYING";

} -> PAUSED_PLAYING;

transition PAUSED PLAYING -{ 1? String [message =_ "play" && currentState =_ "PAUSED PLAYING")

System. out. println(Current State: PLAYING");
currentState = "PLAYING";

} -> PLAYING;

transition PAUSED PLAYING -pl? String [message --"stop" && currentState no "PAUSED PLAYING")

System. out. println("Current State: STOPPED");
currentState -"STOPPED";

} -> STOPPED;

transition STOPPED - p1 ? String [message on "record" && currentState no "STOPPED"] /{
System. out. println("Current State: RECORDING");
currentState -"RECORDING";

} -> RECORDING;

transition RECORDING - p1 ? String [message no "stop"]
System. out. println("Current State: STOPPED");
currentState = "STOPPED":

)-> STOPPED;

transition RECORDING - p1 ? String [message no "pause" && currentState no "RECORDING"]
System. out. println(Current State: PAUSED RECORDING');
currentState = "PAUSED RECORDING";

} -> PAUSED RECORDING;

transition PAUSED_RECORDING - p1 ? String [message no "record" && currentState =_ "PAUSED RECORDING"[/(
System. out. printlnrCurrent State: RECORDING");
currentState = "RECORDING";

} -> RECORDING;

transition PAUSED RECORDING - p1 ? String [message =_ "stop")
System. out. printinrCurrent State: STOPPED");
currentState = "STOPPED";

}-> STOPPED;

transition STOPPED - p1 ? String [message no "pause") I{
currentState = "STOPPED";

}-> STOPPED;

transition STOPPED - p1 7 String [message =_ "stop"}
currentState - "STOPPED";

). > STOPPED;

142

transition RECORDING - p1 ? String [message =_ "play's I{
currentState = "RECORDING";

} -> RECORDING;

transition RECORDING - p1 ? String [message =_ "record") I{
currentState - "RECORDING";

} -> RECORDING;

transition PAUSED_RECORDING - p1 ? String [message -- "pause"] I{
currentState - "PAUSED RECORDING";

} -> PAUSED RECORDING;

transition PAUSED_RECORDING - p1 ? String [message =- "play"] I{
currentState = "PAUSED_RECORDING";

}-> PAUSED_RECORDING;

transition PLAYING - p1 ? String [message =_ "play"] I{
currentState -'PLAYING";

} -> PLAYING;

transition PLAYING - p1 ? String [message =_ "record"] I{
currentState = "PLAYING";

-> PLAYING;

transition PAUSED_PLAYING - p1 ? String [message =_ "record"] /{
currentState = "PAUSED PLAYING";

} "> PAUSED PLAYING;

transition PAUSED PLAYING - p1 ? String [message =_ "pause"[I{
currentState = "PAUSED_PLAYING";

} -> PAUSED PLAYING;

143

Bibliography

Abadi, M. and L. Lamport (1993). "Composing specifications. " ACM Transactions on Pro ram
Languages and Systems TOPLAS115(1): pp. 73-132.

Accorsi, R., C. Areces, W. Bouma and M. d. Rijke (2000). Features as Constraints. Feature Interactions
in Telecommunications and Software Systems. Amsterdam, IOS Press: pp. 210-225.

Akyildiz, I. F., H. Rudin, L. G. Bouma, N. Griffeth and K. Kimbler (2000). "Special issue on the
feature interactions in telecommunications systems. " Computer Networks 32(4): pp.

Albert, K., K. Jensen and R. Shapiro (1989). "A Tool Package Supporting the Use of Colored Nets. "
Petri Net Newsletter 32: pp. 22-35.

Amirat, A., D. Meslati and M. T. Laskri (2006). Elicitation of crosscutting aspects at the early phases
of software development. Information and Communication Technologies: pp. 3575-3576.

Amyot, D. (2001). Use Case Maps as a Feature Description Notation. Language Constructs for
Describing Features. Berlin, Springer: pp.

Amyot, D. and A. Eberlein (2003). "An Evaluation of Scenario Notations and Construction Approaches
for Telecommunication Systems Development. " Telecommunications Systems Journal 24(1): pp. 61-
94.

Amyot, D., T. Gray, R. Liscano, L. Logrippo and J. Sincennes (2005). "Interactive Conflict Detection
and Resolution for Personalized Features. " Journal of Communications and Networks 7(3): pp. 1-14.

Amyot, D. and L. Logrippo (2004). "Special issue: Directions in feature interaction research. "
Computer Networks 45(5): pp.

Anderson, A. and L. Bambrick (2007). Air Crash Investigation Special: Who's Fly the Plane. Air Crash
Investigation Special. Canada, Cineflix International: pp. 1 Hour.

Areces, C., W. Bouma and M. d. Rijke (2000). Feature Interaction as a Satisfiability Problem.
Proceedings of the 7th International Symposium on Modeling. Analysis and Simulation of Computer
and Telecommunication Systems: pp. 339.

Bandara, A. K., E. C. Lupu and A. Russo (2003). Using event calculus to formalise policy specification
and analysis. Proceedings of the 4th IEEE International Workshop on Policies for Distributed Systems
and Networks: pp. 26-39.

Baniassad, E., P. C. Clements, J. Araujo, A. Moreira, A. Rashid and B. Tekinerdogan (2006).
"Discovering early aspects. " IEEE Software 23(1): pp. 61-70.

Bisbal, J. and B. H. C. Cheng (2004). "Resource-based Approach to Feature Interaction in Adaptive
Software. " Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems: pp. 23 - 27.

Blair, L., T. Jones and S. Reiff-Marganiec (2002). A feature manager approach to the analysis of
component-interactions. Proceedings of the Fifth International Conference on Formal Methods for
Open Object-Based Distributed Systems, Kluwer, The Netherlands: pp. 233 - 248.

Blair, L. and K. J. Turner (2005). Handling Policy Conflicts in Call Control. Proc. International
Conference on Feature Interaction VIII, Amsterdam, IOS Press: pp.

Bond, G. W. An Introduction to ECharts: The Concise User Manual: http: //echarts. org/index. phn:
Accessed on

144

Bond, G. W., E. Cheung, K. H. Purdy, P. Zave and C. Ramming (2004). "An Open Architecture for
Next-Generation Telecommunication Services. " ACM Transactions on Internet Technology (TOIT)
4(1): pp. 83-123.

Bonn, R. L. (1972). " Arbitration: An Alternative System for Handling Contract Related Disputes. "
Administrative Science Quarterly 17(2): pp. 254-264.

Bordeaux, L., Y. Hamadi and L. Zhang (2006). "Propositional Satisfiability and Constraint
Programming: A comparative survey. " ACM Computing Surveys 38(4): pp. 12.

Braithwaite, K. H. and J. M. Atlee (1994). Towards automated detection of feature interactions. Feature
Interactions in Telecommunications Systems IOS Press: pp. 36-59.

Brandin, B. A. and W. M. Wonharn (1994). "Supervisory control of timed discrete-event systems. "
IEEE Transactions on Automatic Control 39(2): pp. 329-342.

Brcdcreke, J. (2004). On Feature Orientation and on Requirements Encapsulation Using Families of
Requirements. Objects. Agents. and Features. Berlin Heidelberg, Springer-Verlag. Volume 2975
2004: pp. 26-44.

Bredereke, J. (2005). Configuring Members of a Family of Reguirements Using Features. Feature
Interactions in Telecommunications and Software Systems VIII, Leister, U. K., IOS Press: pp. 96-113.

Broy, M., 1.11. Kruger, A. Pretschner and C. Salzmann (2007). "Engineering Automotive Software. "
Proceedings of the IEEE 9S(2): pp. 356-373.

Buhr, K., N. Ileumesser, F. Houdek, H. Omasrciter, F. Rothernel, R. Tavakoli and T. Zink (2003).
DaimlerChrysler Demonstrator: System Specification Instrument Cluster: httl2: //www. empress-
iten. org/deliverables/D5.1 Appendix B vI. 0 Public Version. pdf. Accessed on 23-05-2008

Calder, M., M. Kolberg, E. Magill and S. Reiff-Marganiec (2003). "Feature interaction: A critical
review and considered forecast. " Computer Networks 41 (1): pp. 115-141.

Calder, M. and E. Magill (2000). Feature Interactions in Telecommunications and Software Systems
Y1. Amsterdam, The Netherlands, IOS Press.

Calder, M. and A. Miller (2001). Using SPIN for Feature Interaction Analysis -A Case Study.
Proceedings of the 8th international SPIN workshop on Model checking of software, Toronto, Ontario,
Canada, Springer-Verlag New York, Inc.: pp. 143-162.

Calder, M. and A. Miller (2006). "Feature interaction detection by pairwise analysis of LTL properties:
a case study. " Formal Methods in System Design 28(3): pp. 213-261.

Cameron, E. J., N. Griffeth, Y. -J. Lin, M. E. Nilson, W. K. Schnure and H. Velthuijsen (1993). "A
feature-interaction benchmark for IN and beyond. " IEEE Communications Magazine 31(3): pp. 64-69.

Cameron, E. J. and H. Velthuij sen (1993). "Feature interactions in telecommunications systems. " IEEE
Communications Magazine 31 (8): pp. 18-23.

Charbonnier, F., H. Alla and R. David (1999). "Discrete-event dynamic systems. " IEEE Transactions
on Control Systems Technology 7(2): pp. 175-187.

Chen, K., W. Zhang, H. Zhao and H. Mei (2005). An Approach to Constructing Feature Models Based
on Requirements Clustering. 13th IEEE International Conference on Requirements Engineering
(RE'05): pp. 31-40.

Chen, Y. -L., S. Lafortune and F. Lin (1995). Modular Supervisorv Control with Priorities for Discrete
Event Systems. Proceedings of the 34th IEEE Conference on Decision and Control.: pp. 409-415.

145

Chi, C. and R. Hao (2007). "Test generation for interaction detection in feature-rich communication
systems. " Journal of Computer Networks: Special Issue on Feature Interaction 51(2): pp. 426438.

Classen, A., P. Heymans and P: Y. Schobbens (2008). What's in a Feature :A Requirements
Engineering Perspective. Fundamental Approaches to Software Engineering: pp. 16-30.

Conry, S. E., K. Kuwabara, V. R. Lesser and R. A. Meyer (1991). "Multistage negotiation for
distributed constraint satisfaction. " Systems. Man and Cybernetics. IEEE Transactions on 21(6): pp.
1462-1477.

Cortellessa, V., B. Cukic, A. Mili, M. Shereshevsky, H. Sandhu, D. Del and M. Napolitano (2000).
Certifying Adaptive Flight Control Software. Proceedings of the ISACC2000 - The Software Risk
Management Conference, Reston, VA, USA: pp.

Dahlstedt, A. G. and A. Persson (2003). Requirements Interdependencies - Moulding the State of
Research into a Research A eg nda. Proceedings of the 9th International Workshop on Requirements
Engineering: Foundations for Software Quality, Klagenfurt/Velden, Autria: pp. 55-64.

Damas, C., B. Lambeau, P. Dupont and A. van Lamsweerde (2005). "Generating annotated behavior
models from end-user scenarios. " IEEE Transactions on Software Engineering 31(12): pp. 1056 - 1073.

Dijkstra, E. W. (1976). A Discipline of Programming. Michigan, USA, Prentice Hall.

Dini, P., A. Clemm, T. Gray, F. J. Lin, L. Logrippo and S. Reiff-Marganiec (2004). "Policy-enabled
mechanisms for feature interactions: reality, expectations, challenges. " Computer Networks 45(5): pp.
585-603.

Dolev, S. and Y. A. Ilaviv (2006). "Self-stabilizing microprocessor: analyzing and overcoming soft
errors. " IEEE Transactions on Computers 55(4): pp. 385-399.

Dolev, S. and R. Yagel (2008). "Towards Self-Stabilizing Operating Systems. " IEEE Transactions on
Software Engineering 34(4): pp. 564-576.

Douence, R., P. Fradet and M. Sudholt (2004). Composition, reuse and interaction analysis of stateful
aspects. Proceedings of the 3rd international conference on Aspect-oriented software development.
Lancaster, UK, ACM: pp. 141-150.

Dunlop, N., J. Indulska and K. Raymond (2003). Methods for conflict resolution in policy-based
management systems. Proceedings of the 7th IEEE International Conference on Enterprise Distributed
Object Computing: pp. 98-109.

Easterbrook, S. (1993). Domain modelling with hierarchies of alternative viewpoints. Proceedings of
the IEEE International Symposium on Requirements Engineering, 1993, San Diego, CA, USA: pp. 65-
72.

Easterbrook, S. M. and B. A. Nuseibeh (1996). "Using ViewPoints for Inconsistency Management. "
Software Engineering Journal 11(1): pp.

Elfe, C. D., E. C. Freuder and D. Lesaint (1998). "Dynamic constraint satisfaction for feature
interaction. " BT Technology Journal 16(3): pp.

Falcarin, P. and M. Torchiano (2006). Automated Reasoning on Aspects Interactions. 21st IEEEIACM
International Conference on Automated Software Engineering (ASE'06), Tokyo, Japan: pp. 313-316.

Felty, A. P. and K. S. Namjoshi (2003). "Feature specification and automated conflict detection. " ACM
Transactions on Software Engineering and Methodology (TOSEM) 12(1): pp. 3- 27.

146

Ferber, S., I. Haag and 1. Savolainen (2002). Fea -Intg ction and Dependencies: Modeling Features
for Reenzincerinz-a Legacy Product Line. Software Product Lines: Second International Conference,
SPLC 2, August 19-22,2002, Proceedings, San Diego, CA, USA,, Springer-Verlag GmbH: pp. 235,

Fickas, S. and M. S. Feather (1995). Requirements Monitodngjn dynamig c_nvironYncnts- Proceedings

of the Second IEEE International Symposium on Requirements Engineering: pp. 140 - 147.

Filman, R. E., T. Elrad, S. Clarke and M. Aksit (2004). Asgect-Oricntgd Software D! Lv_e_12Vn _e-nt.
London, United Kingdom, Addison-Wesley.

Fu, Q., P. 11arnois, L. Logrippo and J. Sincennes (2000). "Feature interaction detection: a LOTOS-
based approach. " Computer Nct%wrk s 32(4), pp. 433449.

Gelforid, M. and V. Lifschitz (1993). "Representing action and change by logic programs. " e uma
gfUgicl? rogrammin 17(2-4): pp. 301-321.

Giannakopoulou, D. and J. Magee (2003). Fluent model checking for event-bascd systems. Er-o-cs-e-dings-
Qf the 9th EuroMan softwat prifelenct held jointly wiLh II th ACM SIGSOFT
intematignal sym2gsium on Foundations of software criginecring. Helsinki, Finland, ACM Press: pp.
257-266.

Gibson, J. P. (1997). Feature requirements models: Understanding interactions. Feature Interactions i
: [clccommunicaftpnsNtjw_oAj IV Montrial, Canada, IOS Press. 90-5199-347-1: pp. 46-60.

Gibson, J. P., 0.1 lamilton and D. Miry (1999). Integratioll Problems in ý[Clephonc Featurc
RcqLjiremcnts. Proceedings of the I st International Conference on Integrated Formal Methods,
Springer-Verlag London, UK: pp. 129-149.

Godskesen, J. C. (1995). A Formal Framework for Feature Interaction with Emphasis on Testing.
Eoture Interactions in Telecommunicationj Systems III IOS Press: pp. 21- 30.

Gorse, N., L. Logrippo and J. Sincennes (2006). "Formal Detection of Feature Interactions with Logic
Programming and LOTOS. " LQrnal of Software and-SysteMs Modelin 5(2): pp, 135.

Gould, R. (1988). 9Dp_hjAM. California, Addison-Wesley.

I laity, C. B., R. Laney, J. D. Moffett and B. Nuscibeh (2008). "Security Requirements Engineering- A
Framework for Representation and Analysis. ' IEEE-Transactions on Soflware Engineering 34(l): pp.
133-153.

Ball, lZ J. (2000a). "Feature combination and interaction detection via foregroundlbackground
models. " CooputrNetworks 32(4): pp. 449-469.

hall, IL J. (2000b). Feature Interaction in Electronic Mail. Feature Interactions in Telecommunications
and Software ystgms VI. Glasgow, Scotland, UK, IOS Press: pp.

Nall, R J. (2005). "Fundamental Nonmodularity in Electronic Mail. " Automated Software Engineering
12(1): pp. 41.79.

Iiamed, 1I, and E. AI-Shaer (2006). "Taxonomy of conflicts in network security policies. "
Communications Magazine IEEE 44(3): pp. 134-141.

Ilay, J. and J. Atlee (2000). "Composing Features and Resolving Interactions. " ACM SIGSOFT
Software Eng'ný eerivaNotes Volume 25(Issue 6): pp. 110-119.

Ilsi, I. and C. Potts (2000). Studying thq evolution and Enhancement of Software Features. 16th IEEE
International Conference on Software Maintenance (ICSM'00): pp. 143-151.

147

Hsia, P. and A. Gupta (1992). Incremental delivery using abstract data Wes and requirements
clustering. Proceedings of the Second International Conference on Systems Integration (ICSI'92): pp.
137-150.

Hsia, P., C. T. Hsu, D. C. Kung and L. B. Holder (1996). User-Centered System Decomposition: Z-
Based Reguirements Clustering. Proceedings of the Second International Conference on Requirements
Engineering (ICRE'96): pp. 126.

Hsia, P. and A. T. Yaung (1988). Another approach to system decomposition- requirements clustering.
Proceedings of the 12th International Computer Software and Applications Conference (COMPSAC
88): pp. 75-82.

Hwu, W. -M. W. and T. M. Conte (1994). "The susceptibility of programs to context switching. " IEEE
Transactions on Computers 43(9): pp. 994-1003.

Jackson, M. (2001). Problem frames : analysing and structuring software development l2roblems.
Harlow, Addison-Wesley, 2001.

Jackson, M. and P. Zave (1993). Domain descriptions. Proceedings of IEEE International Symposium
on Requirements Engineering: pp. 56-64.

Jackson, M. and P. Zave (1998). "Distributed Feature Composition: A Virtual Architecture for
Telecommunications Services. " IEEE Transactions on Software Engineering 24(10): pp. 831-847.

Jia, Y. and J. M. Atlee (2004). "Run-Time Management of Feature Interactions. " 6th ICSE Workshop
on Component-Based Software Engineering 29(4): pp.

Kaindl, H. (2005). "A scenario-based approach for requirements engineering: Experience in a
telecommunication software development project. " Systems Engineering 8(3): pp. 197-210.

Kang, K. C., S. Kima, J. Lee, K. Kim, E. Shin and M. Huh (1998). "FORM: A feature-; oriented reuse
method with domain-; spccific reference architectures. " Annals of Software Engineering 5(0): pp. 143 - 168.

Keck, D. 0. and P. J. Kuehn (1998). "The Feature and Service Interaction Problem in
Telecommunications Systems: A Survey. " IEEE Transactions on Software Engineering 24(10): pp. 779
-796.

Kolberg, M., E. Magill, D. Marples and S. Tsang (200 1). Feature Interactions in Services for Internet
Personal Appliances. In Proceedings of IEEE International Conference on Communications (ICC.
2002), New York: pp. 2613-261 S.

Kolberg, M. and E. H. Magill (2007). "Managing feature interactions between distributed SIP call
control services. " Journal of Computer Networks: Special Issue on Feature Interaction 51(2): pp. 536-
557.

Kolberg, M., E. H. Magill and M. Wilson (2003). "Compatibility Issues between Services Supporting
Networked Appliances. " IEEE Communications Magazine 41 (11): pp. 136-147.

Krebs, B. (2008). Cyber Incident Blamed for Nuclear Power Plant Shutdown:
http-. 1/www. washingtonpost. comLv; p-dXn/content/article/2008106/05-/`ýR2ooSO60501958. html:
Accessed on 04-12-2008

Kryvyi, S. L. and L. Y. Matveyeva (2003). "Formal Methods of Analysis of System Properties. "
Journal of Cybernetics and Systems Analysis 39(2): pp. 174 - 191.

Laney, %, L. Barroca, M. Jackson and B. Nuseibeh (2004). Composing Reguirements Using Problem
Frames. 12th IEEE International Requirements Engineering Conference (RE'04): pp. 122-13 1.

148

Laney, R., M. Jackson and 0. Nuscibeh (2005). Composing Problems: Deriving specifications from
inconsistent requirements. The Open University. Milton Keynes, U. K.

Laney, R., T. T. Tun, M. Jackson and B. Nuseibch (2007). CogiRgsingFsatures by Ma
Inconsistent-Requirgments. 9th International Conference on feature Interactions in Software and
Communication Systems, Grenoble, France: pp.

Lin, F. 1. and Y. 4. LIN (1994)., & building block apR_iroach to detecting Md resolviLig, Raturc
intgraction The Second Int'l Workshop on Feature Interactions in Telecommunications Software
Systerns,, Amsterdam, The Netherlands: pp.

Liu, X., If. Yang and If. Zcdan (1997). Formal methods for-the Te-engincering of compiating systems- a
comparison Computer Software and Applications Conference, 1997. COMPSAC 197. Proceedings.,
The Twenty-First Annual International: pp. 409-414.

Logrippo, L. (1998). "Special issue on feature interactions in telecommunications software. " Coml2uter
Networks and ISDN Systems 30(15): pp.

Lorentstri, L., A. -P. Tuovinen and J. Xu (2002). ModellingImturonteraction pattcrný in Nokia
Mobila Phone$ psigg Coloured Petli. Nos. 23th International Conference on Application and Theory of
Petri Nets, Adelaide, Australia, Springer-Verlag Berlin Heidelberg: pp. 294-313.

Lu, Y., G. Wei and T. -Y. Cheung (2001). Managing fcature intergglions in telecommunications
systems byjuniRgr-al Colorect Petri nets. Proceedings of the Seventh IEEE International Conference on
Engineering of Complex Computer Systems, 2001., Skovde, Sweden: pp. 260-269.

Lupu, E. C. and M. Sloman (1999). "Conflicts in policy-based distributed systems management. "
Software Engingeiing. JEFF, Transaclions gn 25(6): pp. 852-869.

Maccari, A. and A. I We (2005). "Managing infinite variability in mobile terminal software. " Software-:
Practicepnd VgriSnce35(6): pp. 5l3-537-

McKinley, P. K., S. M. Sadjadi, E. P. Kasten and D. 11. C. Chcng (2004). "Composing Adaptive
Software, " IEEE Computer 37(7): pp. 56-64.

Metzger, A. (2004). "Feature interactions in embedded control systems. " Computer N; twQrk§ 45(5):
pp. 625-644.

Metzger, A. and C. Webel (2003). ftaturclanteraction Detection
-in-Building

Control S st b
_M n Y EML y SA-S

of -a
Formal Produgt Model. Feature Interactions in Telecommunications and Software Systems VII,

Ottawa, Canada, 10 Press: pp. 105-121.

Mitra, S., P. Sanda and N. Seifert (2007). Soft Errors: Technology Trends-Svstcm Effectland
EMtection Tccliniapti. Proceedings of the 13th IEEE International On-Line Testing Symposium: pp. 4.

MucHer, E. T. (2006a). CoMmonsenje-Remnins. San Francisco, Morgan Kaufmann.

Mueller, E. T. (2006b). "Event calculus and temporal action logics compared. " ALjificial Intelliecrice
170(11)- pp. 10 17-1029.

Nakamura, M., 11. Igaki and K. 4. Matsumoto (2004a). Etature IntLractions in Integratcd Services o
Npawodied1lope Applianc :jcitA crence on Feature 0LA_n&§jt_LQLgQt&d_XPmAch. Sth International Conf
Interactions in Telecommunications and Software Systems, Leicester, UK: pp.

Nakamura, M., T. Kikuno, J. Hassine and L. Logrippo (2000). Feature Interaction Filtering with Use
Case Maps at Requirements Stage. Featurg Interactions iii-Teleco-mmunication and S ar Vete-s YL IOS Press: pp.

149

Nakamura, M., P. Leelaprute and T. Kikuno (2002). Deriving Interaction-Prone Scenarios in Feature
Interaction Filtering with Use Case Maps. Proceedings of the Seventh IEEE International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS'02): pp. 237 - 244.

Nakamura, M., P. Leelaprute, K. -i. Matsumoto and T. Kikuno (2004b). "On detecting feature
interactions in the programmable service environment of Internet telephony. " Computer Networks
45(5): pp. 605-624.

Nhlabatsi, A., R. Laney and B. Nuseibeh (2008). "Feature Interaction: the Security Threat from within
Software Systems. " Progress in Informatics(5): pp. 75-89.

Nuseibeh, B. (2004). Crosscutting requirements. Proceedings of the 3rd international conference on
Aspect-oriented software development. Lancaster, UK, ACM: pp. 3-4.

Nuth, P. R. and W. J. Dally (1991). A mechanism for efficient context switching. Proceedings of IEEE
International Conference on
Computer Design: pp. 301-304.

Oreizy, P., M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum and A. L. Wolf (1999). "An Architecture-Based Approach to Self-Adaptive Software. "
IEEE Intelligent Systems and Their Applications 14(3): pp. 54 - 62.

Palmer, S. R. and J. M. Felsing (2002). A Practical Guide to Feature-Driven Development, Pearson
Education.

Pang, J. and L. Blair (2002). "An Adaptive Run Time Manager for the Dynamic Integration and Interaction Resolution of Features. " 22nd International Conference on Distributed Computing Systems
Workshops (ICDCSW '02): pp. 445 - 450.

Pomakis, K. P. and J. M. Atlee (1996). Reachability analysis of feature interactions: a progress report. Proceedings of the 1996 ACM SIGSOFT international symposium on Software testing and analysis,
San Diego, California, United States, ACM Press New York, NY, USA: pp. 216 - 223.

Pulvermueller, E., A. Speck, J. O. Coplien, M. D'Hondt and W. D. Meuter (2002). Feature Interaction
in Composed Systems. Object-Oriented Technology, Springer Berlin / Heidelberg: pp. 1-16.

Rapanotti, L., J. G. Hall and Z. Li (2006). "Deriving specifications from requirements through problem
reduction. " IEE Proceedings - Software 153(5): pp. 183-198.

Rashid, A., A. Moreira and J. Araujo (2003). Modularisation and composition of aspectual
requirements. Proceedings of the 2nd International Conference on Aspect-Oriented Software
Development. Boston, Massachusetts, ACM: pp. 11-20.

Rashid, A., A. Moreira and B. Tekinerdogan (2004). "Early aspects: aspect-oriented requirements
engineering and architecture design. " IEE Proceedings - Software 151(4): pp. 153-155.

Rashid, A., P. Sawyer, A. Moreira and J. Araujo (2002). Early aspects: a model for aspect-oriented
requirements engineering. Proceedings of the IEEE Joint International Conference on Requirements
Engineering, Essen, Germany: pp. 199-202.

Reiff-Marganiec, S. (2004). Policies: Giving Users Control over Calls. Agents. Objects and Features.
Berlin, Springer Verlag: pp. 189-208.

Reiff-Marganiec, S. and M. D. Ryan (2005). Feature Interactions in Telecommunications and Software
Systems VIII. Amsterdam, The Netherlands, IOS Press.

Reiff-Marganiec, S. and M. D. Ryan (2007). "Guest Editorial. " Journal of Computer Networks: Special
Issue on Feature Interaction 51(2): pp. 357-358.

150

guteLNeblorks, Reiff-Marganiec, S. and K. 1. Turner (2004). "Feature Interaction in Policies, " Com
_

The International Journal of Computer and Telecommunications Networkin 45(5): PP. 569-594.

Robinson, W. N. and S. D. Pawlowski (1999). "Managing Requirements Inconsistency with
Development Goal Monitors. " IEEE Transactions on Sollware Engineering 25(6): pp. 8 16-835.

Robinson, W. N., S. D. Pawlowski and V. Volkov (2003). "Requirements interaction Management. "
A! CM Computing Surveys 3 5(2)- pp. 132-190.

Ruhe, G. and M. 0. Saliu (2005). "The art and scitaccof software release planning. " IEEE Softwars
22(6)- pp. 47-53.

Russo, A., R. Miller, B. Nuseibeh and J. Kramer (2002). An Abductive Approach for Analysing Event-
Based Requirements Specifications. Proceedings of the I Sth International Conference on Lop-ic
prQýmmiLig, Springer-Verlag: pp. 22-37.

Salifu, M., Y. Yu and B. Nuseibeh (2007). 5pecifying Monftoring and Switching Problems in Context.
Proceedings of the 15th IEEE International Conference in Requirements Engineering (RE '07): pp.
211 -220.

Scalera, S. M. and J. R. Vazquez (1998). The design and implementation of
Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines-. pp. 78-85.

Sefidcon, A. and F. Khendck (2000). "FID: feature interaction detection tool. " Micro)rocessors and
Ajjgýý 24(6): pp. 283-289.

Shanahan, M. (1999). The Event Calculus Explained. Lecture Notes in Comp erSgience. Dcrlin/
Heidelberg, Springer. 1600/1999: pp. 409.

Shaw, L, J. Gigiterano and J. Kallis ý1995). "Marketing complex technical products. The importance of intangible attributes. " Industrial Marketing Management 18(l): pp. 45-53.

Shchata, M., A. Ebtrlein and A. Fapojuwo (2007a), "Using semi-formal methods for detecting
interactions among smart homes policies. " Lcience of Computer Programming 67(2-3): pp. 125-161.

Shebata, M., A. Eberlein and A. 0. Fapojuwo (2007b). "A taxonomy for identifying requirement
interactions in software systems. " Journal of Computer Networks: Special Issue on Feature Interaction
5 1(2): pp. 398-425.

Siddiqi, S. and J. M. Atlee (2000a). "A hybrid model for specifying features and detecting
interactions. " ComR iter Nýtwo*s 32(4): pp. 471-485.

Siddiqi, S. and J. M. Atlee (2000b). "A hybrid model for specifying features and detecting
initTactions. " Journal, of Computer Networks 32(4): pp. 471485.

Silberschatz, A., P. B. Galvin and G. Gagne (2004). Ogerating 91 stem Concepts. London, John Wiley
& Sons, Inc.

Sochos, P., 1. Philippow and M. Riebisch (2004). Feature-oriented Development of Software Product
Lines: Mapping Feature Models to the Architecture. 5th Annual International Conference on Object-
Oriented and Intemet-based Technologies, Concepts, and Applications for a Networked World
(Net. ObjectDays'2004). Messekongresszentrum. Erfurt, Germany: pp.

Sousa, & and C. A. Voss (2008). "Contingency research in operations management practices. " Journal
of OMerations Management 26(6): pp. 697-713.

Spanoudakis, G. and K. Mahbub (2006). "Non Intrusive Monitoring of Service Based Systems. "
Internafionpal Journal of Coopgrative Information Systems 15(3): pp. 325-358.

151

Stafford, J. and K. Wallnau (2001). Predicting Feature Interaction in Component-Based Systems. 15th
European Conference on Object-Oriented Programming, Hungary: pp.

Stepien, B. and L. Logrippo (1994). Representing and Verifying Intentions in Telephony Features
Using Abstract Data Types. Third International Workshop on Feature Interactions in
Telecommunications Software Systems IOS Press: pp. 141-155.

Svahnberg, M., J. v. Gurp and J. Bosch (2005). "A taxonomy of variability realization techniques. "
Software: Practice and Experience 35(8): pp. 705-754.

Thiel, S., S. Ferber, T. Fischer, A. Hein and M. Schlick (2001). A Case Study in Applying a Product
Line Approach for Car Periphe[y Supervision Systems. Proceedings of In-Vehicle Software 2001 (SP-
1587), Detroit, Michigan, USA: pp. 43-55.

Tsang, S. and E. 11. Magill (1997). Behaviour Based Run-Time Feature Interaction Detection and
Resolution Approaches For Intelligent Networks. Feature Interactions in Telecommunication Networks
IV. Amsterdam, IOS Press: pp. 254-270.

Tsang, S. and E. H. Magill (1998). "Learning To Detect and Avoid Run-Time Feature Interactions in
Intelligent Networks. " IEEE Transactions on Software Engineering 24(10): pp. 818-830.

Turner, C. R., A. Fuggetta, L. Lavazza and A. L. Wolf (1999). "A Conceptual basis for feature
engineering. " The Journal of Systems and Software 49(l): pp. 3-15.

Turner, K. J. (2000). Formalising the Chisel Feature Notation. Proceedings of the Feature Interactions
in Telecommunications Networks VI. Amsterdam, IOS Press Amsterdam: pp. 241-256.

Turner, K. J. and L. Blair (2007). "Policies and conflicts in call control. " Journal of Computer
Networks: Special Issue on Feature Interaction 51(2): pp. 496-514.

Turner, K. J., E. H. Magill and D. J. Marples (2004). Service Provision John Wiley & Sons, Ltd.

Uchitel, S. and M. Chechik (2004). Merpin%! Partial Behavioural Models. ACM International
Symposium on Foundations of Software Engineering (FSE'04), Newport Beach: pp.

Umanath, N. S. (2003). "The concept of contingency beyond "It depends": illustrations from IS
research stream. " Information & Management 40(6): pp. 551-562.

van Lamsweerde, A., R. Darimont and E. Letier (1998). "Managing conflicts in goal-driven
requirements engineering. " IEEE Transactions on Software Engineering 24(11): pp. 908-926.

van Lamsweerde, A. and L. Willemet (1998). "Inferring declarative requirements specifications from
operational scenarios. " IEEE Transactions on Software Engineering 24(12): pp. 1089-1114.

Velthuijsen, H. (1993). "Distributed artificial intelligence for runtime feature-interaction resolution. "
Compute 26(8): pp. 48-55.

Weiss, M. and B. Esfandiari (2004). On Feature Interactions Among Web Services. Proceedings. IEEE
International Conference on Web Services.: pp. 88- 95.

Weiss, M., B. Esfandiari and Y. Luo (2007). "Towards a classification of web service feature
interactions. " Journal of Computer Networks: Special Issue on Feature Interaction 51(2): pp. 359-381.

Weston, N., R. Chitchyan and A. Rashid (2008). A Formal Approach to Semantic Composition of
Aspect-Oriented Requirements. Proceedings of the 2008 16th IEEE International Reguirements
Enizineerinp, Conference IEEE Computer Society: pp. 173-182.

152

Wilson, M., E. H. Magill and M. Kolberg (2005). An online approach for the service interaction

problem in home automation. Proceedings of the 2nd IEEE Consumer Communications and
Networking Conference: pp. 251-256.

Wong, K. C., J. G. Thistle, R. P. Malhameacute and H. H. H. (2000). "Supervisory Control of
Distributed Systems: Conflict Resolution. " Discrete Event Dynamic Systems 10(1-2): pp. 131-186.

Wu, X. and H. Schulzrinne (2007). "Handling feature interactions in the language for end system

services. " Journal of Computer Networks: Special Issue on Feature Interaction 51(2): pp. 515-535.

Xu, Y., L. Logrippo and J. Sincennes (2007). "Detecting feature interactions in CPL. " Journal of
Network and Computer Applications 30(2): pp. 775-799.

Yokogawa, T., T. Tsuchiya, M. Nakamura and T. Kikuno (2003). "Feature Interaction Detection by
Bounded Model Checking. " IEICE Transactions on Information and Systems 2003 E86-D(12): pp.
2579-2587.

Yoo, J., J. Catanio, R. Paul and M. Bieber (2004). "Relationship analysis in requirements engineering. "
Journal of Requirements Engineering 9(4): pp. 238 - 247.

Yu, P. S. and D. M. Dias (1993). "Performance analysis of concurrency control using locking with
deferred blocking. " Software Engineering. IEEE Transactions on 1900): pp. 982-996.

Zave, P. (2001). Requirements for Evolving Systems: A Telecommunications Perspective. Fifth IEEE
International Symposium on Requirements Engineering (RE'01), 2001, IEEE Computer Society: pp.
2-9.

Zave, P. and M. Jackson (1993). "Conjunction as composition. " ACM Transactions on Software
Engineering and MethodologX (TOSEM) 2(4): pp. 379411.

Zave, P. and M. Jackson (1997). "Four dark comers of requirements engineering. " ACM Transactions
on Software Engineering and Methodology (TOSEM) 6(l): pp. 1-30.

Zave, P. and M. Jackson (2002). A Call Abstraction for Component Coordination. Proceedings of the
29th International Colloquium on Automata, Languages, and Programming: Workshop on Formal
Methods and Component Interaction, University of Malaga, Malaga, Spain: pp.

Zhang, J. and B. H. C. Cheng (2005). Specifying adaptation semantics. Proceeding's of the 2005
workshop on Architecting dependable systems. St. Louis, Missouri, ACM. Press: pp. 1-7.

Zhang, J., B. H. C. Cheng, Z. Yang and P. K. McKinley (2005a). Enabling Safe Dynamic Component-
Based Software Adaptation. Architecting Dependable Systems 111. Berlin / Heidelberg, Springer Berlin
/ Heidelberg. 3549 / 2005: pp. 194.

Zhang, W., H. Mei and H. Zhao, (2005b). A feature-oriented approach to modeling reguirements
dependencies. Requirements Engineering, 2005. Proceedings. 13th IEEE International Conference on:
pp. 273-282.

Zimmer, P. A. and J. M. Atlee (2005). Categorizing and Prioritizing Telephony Features. Featu
Interactions in Telecommunications and Software Systems VIII. Leister, U. K., IOS Press: pp. 327-334.

153

