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Genomic Patterns of selection and differentiation in Aftican populations and implications 
for mappinz disease association. 

Thesis Abstract: 

Ibe main objective of this thesis is to gain a better understanding of genomic patterns of 
natural selection and population differentiation in Africa, where there is great genetic 
diversity, and of the implications for genetic mapping of complex diseases. 

I began by studying two neighbouring villages in eastern Sudan that are of different 
ethnicity, Hausa and Masalit, and that appear to have different susceptibility to malaria and 
visceral leishmaniasis (VL). Specifically, I investigated patterns of linkage disequilibrium 
(LD) and haplotypic signals of positive selection in the 5q3I genomic region which contains 
immune genes that have been implicated in susceptibility to malaria and VL. 

In my first analysis, by genotyping 34 single nucleotide polymorphisms (SNPs) in the 5q31 
region, I did not find signals of selection or population differentiation between the Hausa and 
Masalit using available statistical methods. I conceived the idea that patterns of LD might 
provide a more sensitive test of population differentiation, and I developed an approach for 
this using permutation analysis. This method revealed differentiation between the Hausa, 
the Masalit and other African ethnic groups. 

To better understand signals of selection, I next studied a region of the genome associated 
with a known malaria resistance factor, the haernoglobin S (HbS) variant of the HBB gene. 
By genotyping 26 SNPs in the region of the HBB gene, I observed a haplotype that extended 
in excess of I Mb, despite being at high frequency and spanning several recombinational 
hotspots. This long haplotype carried the HbS allele but, importantly, it could be readily 
detected without typing the HbS variant. 

Building on this observation, I designed a new method to screen the whole genome for long 
haplotypes that might be signals of selection, and developed a software programme to 
implement this method. I validated this method using haplotypic data for the Yoruba 
generated by the HapMap project and complemented by additional SNP data that I generated 
on HapMap cell lines, and found that the HbS allele resides on a haplotype that extends to 
1.2 Mb, and is at strikingly high frequency compared to other haplotypes of similar length 
on the same chromosome. 

Next I applied this method to a large family-based association study of severe malaria in The 
Gambia, and identified several novel genomic regions with unusually long haplotypes of 
high frequency. These included a number of regions that may be associated with resistance 
to severe malaria, and which merit further investigation. 
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Overall objectives: 

* Explore genetic diversity patterns in the Hausa and Masalit of Eastern Sudan, in 

order to inform the design of future association studies to be carried out in these 

populations. 

* Introduce new approaches and methods to discern genetic differentiation between 

populations, and to look for signals of natural positive selection in the genome. 

* Characterize a set of regions in the genome where malaria selective pressure might 

have played a role, and highlight them for further future exploration. 
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Chapter 1: 

Introduction 

1.1. Demography of human populations 

The evolution of modem human populations has been accompanied by dramatic changes in 

environment and lifestyle. In the last 100,000 years, behaviourally modem humans have 

spread from Africa to colonize most of the globe. Humans appear to have experienced a 

rather strong reduction in the effective population size at the time of migration out of Africa 

(Garrigan and Hammer 2006). 

In that time, humans have been forced to adapt to a wide range of new habitats and climates. 

Following the end of the last ice age, 14,000 years ago, there was a major warming event 

that raised global temperatures to roughly their current levels. Further dramatic changes 

occurred with the transition from hunter-gatherer to agricultural societies, starting about 

10,000-12,000 years ago in the Fertile Crescent, and a little later elsewhere. This was also a 

period marked by rapid increases in human population densities. Increased population 

density promoted the spread of infectious diseases, as did the new proximity of farmers to 

animal pathogens (Diamond 2002). 

Real populations are rarely simple, so it is difficult to research and develop theories about 

them. Natural populations are also dynamic in many dimensions: over time they change in 

size, density and location, and over space they can fragment into several populations and 

join with others. Our species has had a complex demographic history and provides examples 

of many kinds of population structure. Also, a considerable part of modem medical genetics 
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relies on an understanding of human demographic history, so there is a strong demand for 

high-quality human population-genetic research. 

1.2. The HapMap project and other publicly available genome-wide data 

Invention of efficient methods for sequencing DNA in the mid 1970s by Maxam and Gilbert 

(Maxam. and Gilbert 1977) and Sanger (Sanger, Nicklen et al. 1977) followed by automation 

and subsequent development of more and more rapid applications of these methods soon led 

to the sequencing of complete genomes of a variety of species, and culminated in the 

completion of the first draft of the human genome in 2001 (Lander, Linton et al. 2001; 

Venter, Adams et al. 2001). Results of the studies like these have meant a real revolution in 

the whole of biology, and consequently the present time in biology is commonly called the 

post-genomic era. Biology and its applied sciences, including medicine, have experienced a 

radical shift in the methods used, and most of the central problems of biology, like evolution 

in particular, can now be approached from a completely new quantitative perspective. 

Analysis of the human genome sequence has assisted analysis of human diversity, revealing 

large numbers of single-nucleotidc polymorphisms (SNPs), and a structured pattern in the 

distribution of polymorphisms along chromosomcs, whcreby common combinations of 

SNPs, or haplotypes, are observed within populations (reviewed in (Ardlie, Kruglyak et al. 

2002)). 

'Me International HapMap Project was founded in 2002, with the goal of mapping the 

structure of allelic association across the human genome. With the participation of funding 

agencies, academic research centres, and industrial partners in many countries, the initial aim 

was to genotype one SNP every 5 kb in the human genome across 270 individuals from four 

geographical populations. About I million SNPs were typed by the completion of phase I of 
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the project and a total of about 4 million SNPs have been typed across these genomes so fai 

after phase 2, providing an unprecedented view of human genetic diversity. The data, with 

associated summaries and query-based tools, are available online at http: //www. hapmap. org 

The aim of the project was to provide a resource that facilitates the design of efficient 

genome-wide association studies, through characterising patterns of genetic variation and 

linkage disequilibrium (LD), and facilitating the economic selection of marker SNPs. A lot 

of insight into the human genetic variation is gained from data generated by the project 

(McVean, Spencer et al. 2005). 

1.3. Organisation of the human genome 

I. Human genetic variation 
After the sequencing of the human genome, focus on human genetic variation has come to 

the forefront, mainly in the form of single nucleoticle polymorphisms (SNPs). The number of 

single nucleotide polymorphisms (SNPs) is the most precise and best, though not the sole, 

measure of the general amount of genetic polymorphism in humans. 

SNPs are the commonest form of variation in the genome. Comparison of any two 

chromosomes will generally reveal SNPs at 1.2 kb average intervals across the genome 

(Altshuler, Pollara et a]. 2000). The International HapMap consortium (2005) estimated that 

every 279th nucleotide pair is polymorphic in the human population, while Crawford et al. 

(2005) reached an even higher estimate of polymorphism. They estimated that every 180th 

nuclcotidc pair would be polymorphic. Therefore, with regards to SNPs, we differ from each 

other only by 3.6-5.6%. The respective figure for big mammals in general is approximately 

10% (Crawford, Akey et al. 2005). 
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SNP markers have revolutionised the way human genetics and disease are studied. Presently 

they are a key research material and valuable resource for genetic association with heritable 

traits. They can also tell us many things about the functional parameters and critical regions 

of a gene, protein, regulatory element or genomic region. 

SNPs are thought to arise as a result of mutational defects during DNA replication. Mutation 

rate has been estimated to be in the order of a probability of 2xlO-8 per nucleotide per 

generation (Zuckerkandl 2002). The fate of these mutations is often determined by chance. 

Some mutations will subsequently be lost in the population, that is, the mutation arises in 

one individual but is not transmitted to the next generation. Many will randon-dy drift until 

they reach a state of equilibrium in the population (encapsulated in the neutral theory 

(Kimura 1968)), while still others respond to selective pressures, for example if the SNP 

confers some survival advantage. 

The methods by which SNPs arise and are maintained ensure that their demography in 

human populations is diverse and that their distribution and frequency vary widely with 

ethnicity and gene region (Salisbury, Pungliya et al. 2003). Most are found in non-coding 

regions of the genome where they often have little function although a few may regulate 

gene function. This latter group includes SNPs in the promoters of genes (Hoogendoorn, 

Coleman et al. 2003), those affecting splice sites (Liu, Cartegni et al. 2001), or SNPs within 

gene enhancers (Nobrega, Ovcharenko et al. 2003). Within coding regions SNPs can lead to 

an aniino acid substitution potentially affecting protein function, although the majority 

produce changes that have little or no effect (Cargill, Altshuler et al. 1999). 

Presence and frequency of SNPs varies with populations. Younger populations such as 

Europeans who migrated from Africa some time in the past, taking a subset of the diversity 

with them (Goldstein and Chikhi 2002), are expected to have fewer and younger SNPs. 
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These differences in allele frequencies between populations are potential confounders in 

association studies (Cardon and Bell 2001; Emahazion, Feuk et al. 2001), although they can 

also be used to map complex traits (admixture mapping) (Collins-Schramm, Phillips et al. 

2002). 

1.3.2. Linkage disequilibrium 

Recently, there has been tremendous interest in empirically establishing the patterns of 

allelic association, also known as LD, among polymorphic variants of the human genome. 

When two alleles at adjacent loci co-occur in a chromosomal segment more often than 

expected if they were segregating independently in the population, the loci are in linkage 

disequilibrium. The profile of LD depends on the age of the mutations. It is eroded by 

recombination (Jeffreys, Kauppi et al. 2001), and mutation. Both of these forces act slowly, 

each occurring at an average rate of about 10-8 probability of occurrence per base pair (bp) 

per generation. Since recombination occurs at successive generations, it will have a greater 

effect upon the LD between older SNPs than between younger ones. Ibis explains the 

reduced LD seen in older populations such as Africans (Hull, Ackerman et al. 2001; Reich, 

Cargill et al. 2001). 

Genetic drift and the demographic history of a given population are also some of the major 

factors that detern-ýine LD. The ancestry of a population can affect the extent and level of LD 

(Goldstein and Chikhi 2002; Rosenberg, Pritchard et al. 2002). Population expansion tends 

to reduce overall LD, whilst population admixture, inbreeding, migration, and geographical 

subdivision (bottlenecks), tend to increase LD. However, the inherent complexity of human 

history means that all of the above can have unique and complicated effects on LD. 
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Natural selection has unique effects on the allelic architecture of a locus. Directional or 

positive selection tends to reduce surrounding variation and increase the relatedness of 

surrounding markers (and consequently LD) as the selected allele increases in the population. 

Balancing selection tends to produce a number of intermediate frequency alleles and the 

overall effect on LD can be quite complex, depending upon the number of balancing afleles 

and the strength of selection at each one. 

Gene conversion (Ardlie, Liu-Cordero et al. 2001) also determines the quantity and quality of 

LD, where a short segment of one chromosome is transferred to another. Ile frequency and 

determinants of this phenomenon are not well known, although it has been speculated that 

widespread gene conversion events are responsible for the poor LD sometimes observed over 

short distances, occasionally even with adjacent makers. 

Over many generations LD in a region is uniquely shaped by all these forces and in practice, 

LD is a window to the ancestry of a group of markers. 

1.3.3. LD organisation in the human genome 

With the sequencing of the human genome and development of high-throughput genomic 

methods, it became clear that LD is more varied across regions, and more segmentally 

structured (Daly, Rioux et al. 2001; Gabriel, Schaffner et al. 2002), than had previously been 

supposed. 

Recombination rates typically vary dramatically on a fine scale, with hotspots of 

recombination explaining much crossing over in each region (Jeffreys, Kauppi et al. 2001). 

The generality of this model has recently been demonstrated through computational methods 

that allow estimation of recombination rates (including hotspots and coldspots) from 

genotype data (Crawford, Bhangale et al. 2004; McVean, Myers et al. 2004). It is estimated 
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that about 80% of all recombination has taken place in about 15% of the Sequence (HapMap 

2005). With most human recombination occurring in recombination hotspots, the 

breakdown of LD is often discontinuous. A 'block-like' structure of LD is manifest by 

segments of consistently high LD that break down where high recombination rates or 

recombination hotspots cluster. Despite the initial promise of haplotype blocks, more in- 

depth views of haplotype blocks suggest that the original belief that haplotype blocks 

represent a fundamental aspect of the human genome appears to be an oversimplified view 

of genome organization (Phillips, Lawrence et al. 2003; Ke, Hunt et al. 2004). While the 

idea of blocks appears to be true on a large scale, fully defining blocks, and block boundaries 

in particular, is far less robust, and appears to be at best an approximation of the complete 

picture. 

1.3.4. Usefulness of studying LD 

Defining regional LD patterns could play an integral role in deciphering mixed genetic 

signals. For example, consider two different SNPs in two juxtaposed genes separated by 

some distance, genotyped in two independent but identical studies, in which both SNPs are 

associated with a disease. Knowing the inherent ID between the two markers and their 

relation to other surrounding markers might make it possible to determine whether there 

exist two independent associations, whether the associations are related, and whereabouts the 

c- ausative marker could be. Therefore it may be possible to use the pattem of LD to help 

define the boundaries of disease associations (Tiret, Poirier et al. 2002), provide a greater 

confidence in results, and reduce genotyping redundancy. 

The extent of LD across genomic regions is a crucial parameter for defining the statistical 

power of association studies utilizing single nucleotide polymorphisms (SNP) as surrogate 
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genetic markers (Schork 2002), and for guiding the selection and spacing of such 

polymorphisms to create marker maps useful in candidate gene, candidate region, and 

whole-genome association studies (De La Vega, Dailey et al. 2002). 7be feasibility of such 

an exercise relies upon how much redundancy exists in the genome, that is, if one marker is 

well associated with another there is little point in testing both. If the genome could easily be 

broken into haplotype blocks, genome-wide SNP associations would be much more realistic, 

as a small subset of markers would provide most of the information about relatively long 

genetic stretches. This idea has prompted some researchers to approach genome scanning 

using only those SNPs that define haplotype blocks, so called tagging SNPs (Zhang, 

Calabrese et al. 2002; Ke and Cardon 2003). 

Patterns of LD are also informative about population histories and human migrations 

(Tishkoff, Dietzsch et al. 1996; Reich, Cargill et al. 2001; Plagnol and Wall 2006), recent 

natural selection (Sabeti, Reich et al. 2002; HapMap 2005; Voight, Kudaravalli et al. 2006), 

and the distribution and evolution of recombination hotspots (McVean, Myers et al. 2004; 

Fearnhead and Smith 2005; Ptak, Hinds et al. 2005). 

1.3.5. Haplotype structure of human populations 

The particular combination of marker alleles along a chromosome is referred to as a 

haplotype. LD and haplotypes are, of course, related. The number and structure of 

haplotypes across a region is a partial surrogate for the level of LD. 

The initial belief that haplotype block boundaries and haplotypes were largely shared across 

populations was a foundation for constructing a haplotype map of the human genome. 'me 

HapMap data document the generality of a block-like pattern of LD with regions of low and 

high haplotype, diversity but differences among the populations. Ile International HapMap 
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Consortium (2005) observed that the different population groups are characterized by 

different haplotype frequencies and, to some extent, different combinations of SNPs inside 

the haplotypes. 

Studies of many additional populations demonstrate that LD patterns can be highly variable 

among populations both across and within geographic regions. Recent studies have reported 

significant variation among populations in block structure and tagSNPs. Sawyer et al 

(Sawyer, Mukherjee et al. 2005) studied three loci in 16 diverse populations with an 

emphasis on African and European populations. They found significant quantitative and 

qualitative variation in LD among populations both across and within geographic groups, 

and no group showed consistency in patterns of LD for all three loci under study. Liu et al 

(Liu, Sawyer et al. 2004) reached a similar conclusion with respect to tagSNPs. 

Gu et al (Gu, Pakstis et al. 2007) observed large variation in block partition among 38 world 

populations from different regions, and their results also showed that significant variation 

can occur among populations within geographic regions. None of the block-defining 

algorithms they used produced a consistent pattern even among populations of similar 

geographic origins. They attributed such differentiation to be due to the individual 

population demographic history and the combined effects of genetic factors such as drift, 

mutation and recombination. At average sizes of 50 individuals in each group, sampling 

error was considered a minor factor (Fallin and Schork 2000). 

The large amount of variation in haplotype block structure among global populations reflects 

the considerable haplotype variation among these populations seen previously at several loci 

(Kidd, Pakstis et al. 2004). 
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The evolution of the human genome seems to have resulted in a mosaic of discrete segments, 

each with its own unique history and relatedness to different contemporary and ancestral 

individuals (Paabo 2003). 

1.4. African genetic diversity 

African populations are characterized by greater levels of genetic diversity, extensive 

population substructure, and less LD among loci compared to non-African populations. 

Africans also possess a number of genetic adaptations that have evolved in response to 

diverse climates and diets, as well as exposure to infectious disease. 

A majority of studies have shown that African populations harbour more genetic diversity 

than non-African populations for mitochondrial DNA (mtDNA) sequences, Y chromosome 

microsatellites, Y chromosome sequences, Y chromosomal single-nucleotide 

polymorphisms (SNPs), X chromosome sequences, autosomal n-dcrosatellites, autosomal 

sequences as well as autosomal SNPs (Excoffier 2002). This basic result is generally 

interpreted as evidence for an African origin of our species. 

It was also observed that the amount of human SNP in USA was higher among people of 

African origin than in people of European origin. When comparing any two individuals, 

every II 10th nucleotide pair in the mean was different in people of African origin, while the 

respective figure in the people of European origin was every 1435th. Taking into account 

that the haploid human genome consists of 3200 million nucleotide pairs of DNA, one can 

calculate that any two individual genomes differ by 2.89 million nucleotide pairs in the 

former group, and by 2.23 million nuclcotide pairs in the latter group (Crawford, Akey et al. 

2005). 
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Hinds et al. (Hinds, Stuve et al. 2005) studied the distribution of over 1.5 million single 

nucleotide polymorphisms (SNPs) in 71 Americans of European, African, and Asian 

ancestry. They found that 93.5% of these SNPs could be observed in the people of African 

ancestry, 81.1% in people of European, and 73.6% in people of Asian ancestry. African- 

Americans also had overwhelmingly more (218 500) so called private SNPs, which are 

segregating in only one population, than European- American (44 500) or Asian-American 

individuals (25 957). 

Studies have shown marked differences in the extent of LD observed between African and 

non-African populations. De la Vega et al (De La Vega, Isaac et al. 2005) observed that, by 

all measures used, out-of-Africa populations showed over a third more LD than African- 

Americans. 

The amount and nature of haplotype variation also suggest an African origin. African 

populations have relatively larger population size over a long history, and thus preserve 

more haplotypes than non-African populations, which are considered to have experienced 

bottleneck events and have much smaller population sizes historically. In a survey of 

haplotype structure across 12 Mb of DNA sequence in 927 individuals representing 52 

populations from different parts of the world, it was found that the diversity of haplotypes 

decreases as distance from Africa increases (Conrad, Jakobsson et al. 2006). 

1.5. Population differentiation and structure 

Ancient demographic and evolutionary events have left imprints that can be observed in 

present-day gene differences. Therefore, genetic investigations of present-day human 

populations can illuminate the evolutionary history of our species. 
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Given enough time following populations' division, isolated groups become genetically 

more divergent with time, either by acquiring new mutations, or when the original 

haplotypic backgrounds on which existing variants lie change in abundance by drifting 

upward or downward in the population. 'Mat plus the reshuffling caused by recombination, 

affect the associations between these variants in ways that are specific to each population 

group. Iliese changes can either take place over long time periods due to genetic drift or can 

happen over a relatively short time span when local environmental factors exert selective 

pressure on a functional variant sweeping nearby neutral polymorphisms up with it. 

Differentiating genetically between populations is valuable for admixture and population 

stratification detection. As well as lending itself to the analysis of case control association 

studies - by highlighting any hidden population structure in the sample that might generate 

spurious results if gone undetected-, discerning populations genetic differentiation might be 

hugely beneficial in the field of pharmaco-genetics, where the genetic structure of a 

population is used as a predictor of the efficacy of drugs or the likelihood of adverse 

reactions (Jorde and Wooding 2004). 

In a study of genetic variation among world populations; African populations were found to 

be more diverse than other continental groups and the largest genetic distance was seen 

between them and non-African populations (Watkins, Rogers et al. 2003). Nei et al. (Nei 

1982) studied the genetic relationships of various races in each group of Europeans, 

Africans, and Asians, and found all European populations to be genetically close to one 

another, whereas many African tribes show large extents of genetic differentiation. 
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1.6. The concept of positive selection, selective sweeps and the marks they leave in the 

genome 

Our ancestors were exposed to new enviromnents and diseases. Those who were better 

adapted to local conditions passed on their genes, including those conferring these benefits, 

with greater frequency. This process of natural selection left signatures in our genome that 

can be used to identify genes that might underlie variation in disease resistance or drug 

metabolism. 

The elimination of variation in regions linked to a recently fixed beneficial mutation is 

known as a "selective sweep" and has recently been the focus of much theoretical and 

empirical attention (Fay and Wu 2000; Kim and Stephan 2002; Przeworski 2002; Sabeti, 

Reich et al. 2002; Jensen, Kim et aL 2005). 

This reduction in variation at linked sites is a feature of two types of selection. The first - 

background selection - removes deleterious mutations and eliminates variation at linked 

sites. The strength of this effect will vary with the recombination rate, the magnitude of 

selection and the mutation rate. The second - genetic hitchhiking- predicts that if a mutation 

increases in frequency in a population as a result of positive selection, linked neutral 

variation will be dragged along with it. As a consequence, variation that is not linked to the 

adaptive mutation is eliminated, resulting in a selective sweep. Therefore, models predict 

that genetic hitchhiking will cause a greater overall reduction in genetic diversity, and that 

the effect will be more pronounced in regions of lower recombination. Both types of 

selection will result in an overall positive correlation between genetic diversity and 

recombination rate if the strength and frequency of positive and/or background selection are 

sufficiently high throughout the genome (Kaplan, Hudson et al. 1989). 
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In recent years, there has been a dramatic increase in the use of genome-wide scans to 

identify adaptively evolving loci in the human genome. A large body of cvidcncc is 

accumulating to suggest the wide spread of positive selection footprints in our genome, with 

the availability of large scale, genome-wide, population genetic variation data (Andolfatto 

2001). 

By contrasting patterns of coding sequence polymorphism, identified by direct sequencing of 

39 human individuals for 11 624 protein-coding genes to divergence between humans and 

chimpanzees, Bustamante et al. (Bustamante, Fledel-Alon et al. 2005) found strong evidence 

that natural selection has shaped the recent molecular evolution of our species. Tbe analysis 

discovered 304 (9.0%) out of 3377 potentially informative loci showing evidence of rapid 

amino acid evolution. Furthermore, 813 (13.5%) out of 6033 potentially informative loci 

showed a paucity of amino acid differences between humans and chimpanzees, indicating 

weak negative selection and/or balancing selection operating on mutations at these loci. 

Bustamante et al. (2005) also found that the distribution of negatively and positively selected 

genes varies greatly among biological processes and molecular functions. Some classes, such 

as transcription factors, show an excess of rapidly evolving genes, whereas others, such as 

cytoskeletal proteins, show an excess of genes with extensive polymorphism within humans 

and yet little amino acid divergence between humans and chimpanzees. 

Positive natural selection as such has been observed in the human lineage in various 

functional classes of genes. More importantly, the most recent studies suggest that this 

selection is still going on. In addition to brains, positive selection has been found for genes 

regulating the development of immune response, reproduction, and sensory perception. 77he 

results seem plausible in terms of evolutionary predictions (Sabcti, Schaffner ct al. 2006). 
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Why it is important to lookfor signals ofpositive selection in the human genome. 

The search for signals of positive selection in the human genome remains one of the most 

important and challenging areas of research in genetics (Akey, Zhang et al. 2002). Inferences 

regarding the patterns and distribution of selection in genes and genomes as well as insights 

into how genes predispose individuals to disease are gained from this kind of genetic 

analysis. It may provide important functional information that might inforin the development 

of improved therapeutic and disease-prevention strategies. 

Searching for signatures of positive selection has recently emerged as a strategy for 

identifying putative causal determinants of disease pathogenesis, without the requirement for 

a priori experimental determination of function. This strategy is based on the rationale that 

genetic factors that confer protection from disease should be under positive selective 

pressure and, thus, display signatures of positive selection. 

1.7. Infectious diseases and evolution 

Genetic epiderniology seeks to detem-iine whether the variation in disease severity can be 

accounted for by variation in the genome. For a disease to exert selective pressure it would 

have to have a significant effect on morbidity and mortality before reproductive age and to 

have been exerting these effects for long periods of time. 

Several common genetic disorders have been associated with protection from infectious 

disease, suggesting that their continued presence in the population has been the result of 

selection by infectious agents. A study of almost 1,000 adoptees in Denmark found that the 

host genetic contribution to susceptibility to premature death from infection was higher than 

for cancer or cardiovascular disease (Sorensen, Nielsen et al. 1988). 
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1.8. Investigation of complex diseases 

The contribution of DNA to disease is perhaps best illustrated by the many genes that have 

been implicated in inherited disorders. Traditionally, the primary focus of medical genetics 

has been monogenetic (single gene) disorders such as cystic fibrosis and hacmophilia, where 

mutations in the gene lead directly to manifestation of the disease phenotype. When a 

disease trait is monogenic, when inheritance patterns are predictable and when there is full 

penetrance of effect, correlation of the variation at a given gene locus with a given disease 

phenotype may be relatively straightforward. Uncovering the genes responsible for these 

kinds of disorders is primarily done by tracing the segregation of markers within affected 

families using microsatellite markers across the whole genome (linkage studies) and then 

using positional cloning to further localize the effect. More than a thousand genes for rare, 

highly heritable Mendelian disorders have been identified, in which variation in a single 

gene is both necessary and sufficient to cause disease. 

Most Mendelian disorders are rare and although important, they have relatively little impact 

on public health. The genetic basis for more common diseases affecting humans has been 

less straightforward to illicit. These conditions are thought to be the cxprcssion of the 

complex interplay between multiple genetic determinants of disease risk of varying 

influences that act along side several environmental factors to produce the final phcnotypc. 

In the past, studies of common diseases have fallen into two broad categories: family-based 

linkage studies across the entire genome, and population- based association studies of 

individual candidate genes. Although there have been notable successes, progress has been 

slow due to the inherent limitations of the methods; linkage analysis has low power cxcept 

when a single locus explains a substantial fraction of disease, and association studies of one 
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or a few candidate genes examine only a small fraction of the 'universe' of sequence 

variation in each patient. 

Nevertheless, with huge recent advances in molecular biology and computational 

technology, a genome-wide approach became feasible: The International HapMap resource, 

which documents patterns of genome-wide variation and LD in four population samples, 

greatly facilitates both the design and analysis of association studies. There was also the 

availability of dense genotyping chips, containing sets of hundreds of thousands of single 

nucleotide polymorphisms; (SNPs) that provide good coverage of much of the human 

genome meant that for the first time genome-wide association (GWA) studies for thousands 

of cases and controls are technically and financially feasible. Moreover, appropriately large 

and well-characterized clinical samples have been assembled for many common diseases. 

Demonstrating the feasibility of GWA studies, a path breaking Wellcome Trust Case 

Control Consortium (WTCCC) study (Saxena, Voight et al. 2007) was undertaken in the 

British population. The study examined -2,000 individuals for each of 7 major diseases and 

a shared set of -3,000 controls. Case-control comparisons identified 24 independent 

association signals across the seven diseases of aP<5x 10-7. 

1.9. Challenges of interpreting results from genetic association studies 

The practical implementation of genetic association studies has proved more difficult than 

first thought (Emahazion, Feuk et al. 2001; Ioannidis, Ntzani et al. 2001). Finding the 

variants that directly influence complex diseases has been problematic, and there has been an 

inability to replicate many associations. This is a multifaceted problem involving issues of 

sample size, population stratification, and the complexity of LD structure both within and 

between populations. 
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A large case-control study performed in The Gambia showed that IILA-B*5301 and HLA_ 

DR-1*1302 were associated with a reduced risk of severe malaria in childhood (Ifill, 

Allsopp et a]. 1991). While in a study perfonned in Kenya, a significant association of IILA- 

DR-1*0101 with protection against severe forms of malaria was found but no association 

with HLA-B*5301 and HLA-DR-1*1302 was found (Riley, Olcrup et al. 1992). Several 

hypotheses have been made to explain this heterogeneity in IILA associations in different 

countries. One possibility is that the different genetic background of the populations under 

study could affect the pattern of association. It is also possible that the composition of 

parasite populations and, therefore, the variation in parasite antigens may exert an effect on 

the selection of the HLA molecules. Finally, another explanation could involve the different 

epidemiological context with the influence of many co-infections. 

Our poor understanding of many fundamental questions about immunity to malaria - such as 

the molecular mechanisms that are critical for control of parasite density or climination of 

parasites from the bloodstream- is a significant impediment to vaccine development. There 

is no lack of hypotheses and experimental models, many of which are conflicting. The 

problem is how to determine the importance of different immune mechanisms in natural 

human infection. A further problem is how to investigate the many novel immune gcncs that 

are believed to exist in the human genome but whose function is currently unknown. 

1.10. Background on Malaria 

1.10.1. Outline the malaria problem 

Malaria is an infection of the blood with parasitic protozoa of the genus Plasmodium, which 

are transmitted to humans through the bites of infected female Anopheles mosquitoes. P. 

falciparum causes the majority of infections in Africa and is responsible for most cases of 
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severe disease and mortality. Malaria has an enormous impact on health worldwide with an 

estimated 35% of the world's population living in areas where there is some risk of P. 

falciparum transmission, creating a current disease burden of 300-500 million cases, and 

one to three million deaths each year most of them children (Sachs and Malaney 2002; 

Guerra, Gikandi et al. 2008). Africa gets the biggest toll of the disease mortality especially in 

remote rural areas with poor access to health services (WHO report. 2003). From all cases of 

malaria, over 90% of the total death toll is confined to sub-Saharan Africa (Cot and Deloron 

2003; Breman, Alilio et al. 2004; Snow, Guerra et al. 2005). There is a striking correlation 

between malaria and poverty, with lower rate of economic growth in malaria endemic 

countries (Sachs and Malaney 2002). 

Malaria is endemic in more than 90 countries and, together with HIV, tuberculosis and 

diarrhoeal diseases, constitutes one of the major causes of death by infectious diseases 

worldwide (Greenwood and Mutabingwa 2002). The malaria situation in sub-Saharan Africa 

has continued to deteriorate over the past decade mainly due to the widespread emergence of 

drug-resistant parasites as well as resistance to insecticides in the Anopheles vector. 

1.10.2. Best approach to tackle the malaria problem 

Because of the inability of most individuals in malaria-endemic regions to access or afford 

optimal treatment, and the ever-evolving drug resistance, the most effective strategy to 

reduce the number of malaria-related deaths should be through prevention of malaria 

disease. In 1998, the Roll Back malaria campaign vowed to halve the global burden of 

malaria by 2010. As we approach the later stage of this campaign, it appears that the 

established methods, including case management (diagnosis and chemotherapy) and 

integrated vector control (insecticide-treated bed nets and residual house spraying), are not 
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sufficient alone to achieve world-wide reductions in the burden of malaria. Many malaria 

control experts believe that sustainable reductions in malaria control will be impossible in 

the absence of a safe and effective vaccine against the disease (rcvicwcd in (Tongrcn, Zavala 

et al. 2004)). 

But, so far, efforts to develop effective anti-malarial vaccines have remained disappointingly 

unsuccessful, despite immense research efforts worldwide (Richie and Saul 2002). The 

challenges originate from the parasite complexity, its ability to change through its life cycle 

both in the human and in the mosquito, and its ability to hide from the immune system. 

A better understanding of the natural mechanisms of host defence against the Plasmodium 

parasite may provide new targets for therapeutic intervention in this disease. Such factors 

may manifest themselves as genetic determinants of susceptibility to infection in endemic 

areas of disease or during epidemics (Hill 1998). 

1.10.3. The malariaparasite 

Members of the genus Plasmodium belong to the phylum Apicomplexa. I'he Apicomplexa 

are a large group of almost exclusively parasitic protozoa. There are about 150 spccies of 

Plasmodium, but only four species of Plasmodium typically infect humans; Afalciparum, p. 

vivax, P. ovale and A malariae. However, a parasite species which primarily infects 

monkeys, P. knowlesi, has recently been reported in humans in Malaysian Bomco (Singh, 

Kim Sung et al. 2004). 

The four Plasmodium species, with the exception of P. malariae (which may affect the 

higher primates) are exclusively human parasites. P. falciparum has a worldwide distribution 

and is concentrated in the tropics and subtropics. It is considered the youngest in 

evolutionarily terms and the least efficient as a parasite because its malignant nature tends to 
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eliminate its host (Joy, Feng et al. 2003; Su, Mu et al. 2003; Mu, Awadalla et al. 2005). A 

falciparum is the most virulent species and is responsible for most malaria-related deaths, 

especially in Africa (Greenwood, Bojang et al. 2005). From a population genetics 

perspective, such a virulent parasite serves as a strong selective agent for genetic resistance. 

Life cycle of the malaria parasite 

Malaria parasites have a complex life cycle which is split between a vertebrate host and an 

arthropod vector. Vertebrate hosts include reptiles, birds, rodents, monkeys and humans. The 

arthropod vector of human Plasmodium species is the female Anopheles mosquito. The 

Anopheles gambiae complex comprises the most important vectors of malaria in sub- 

Saharan Africa (Coluzzi, Sabatini et al. 1979). 

Human infection is initiated when sporozoites are injected with the saliva of a feeding 

female anopheline mosquito (Figure 1.10.3., Q. The sporozoites enter the circulatory system 

and within 30-60 minutes will invade hepatocytes either directly or via the Kupffer cells. 

After invading the hepatocyte, the parasite undergoes an asexual replication. Schizogony 

refers to a replicative process in which the parasite undergoes multiple rounds of nuclear 

division without cytoplasmic division followed by a budding to form merozoite progeny 

(Figure 1.10.3., A). Merozoites are released into the circulation following rupture of the host 

hepatocyte and invade erythrocytes. 

After entering the erythrocyte the merozoite develops into trophozoites (Figure 1.10.3., B). 

In the course of their development, they absorb the haernoglobin of the red blood cells 

leaving as the product of digestion a pigment called hemozoin, a combination of haernatin 

with protein. After a period of growth the trophozoites undergo an asexual dividing process 

of erythrocytic schizogony. The nucleus divides 3-5 times into a variable number of small 

nuclei. This is soon followed by the division of cytoplasm, forming a schizont. When the 
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infected erythrocyte ruptures, merozoites are released and invade new erythrocytes. Ibis 

erythrocytic cycle of schizogony is repeated over and over again in the course of infection, 

leading to a progressive increase of parasiternia until the process is slowed down by the 

immune response of the host or by the action of effective antimalarial drugs. 

As an alternative to schizogony some parasites will undergo a sexual cycle and terminally 

differentiate into micro- (male) or macro- (female) gametocytes (Figure 1.10.3., B). The 

precise mechanism for this differentiation remains unknown but it is thought that the 

development of host antibodies may play a large part in the process. It has been observed 

that the commitment to gamete formation occurs only after the peak of asexual parasitcmia 

is reached or after drug treatment. 

When a female mosquito ingests the blood of a human host with malaria parasites in the 

circulation, the mature sexual cells undergo a series of developments in the stomach of the 

mosquito. These gametocytes migrate into the mosquito gut, where cxflagcllation of 

microgametocytes occurs, and the macrogametocytes are fcrtilized (Figure 1.10.3., Q. Ile 

resulting ookinete penetrates the wall of a cell in the n-tidgut, where it devclops into an 

oocyst. Sporogeny within the oocyst produces many mobile sporozoites. The sporozoites 

migrate (after rupture of the oocyst) from the body cavity of the mosquito to the salivary 

glands and the mosquito becomes infective to another host. The cycle continues when these 

sporozoites are injected into a human host when the mosquito feeds. 
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Figure 1.10.3: The life cycle of Plasmodiumfalciparum. 
Illustration from CDC's website for laboratory identification of parasites. 
(http: //www. dpd. cdc. ý, ov/dpdx/HTMI, /IinageLibrary/Malaria il. htm ). 

1.10.4. Clinical Aspects of Malaria 

The range of clinical outcomes in response to A falciparum infection is broad, ranging from 

asymptomatic infection to severe disease and fatality. In malaria-endemic regions of Africa, 

the majority of individuals carry P. falciparum parasites during the high malaria 

transmission season. While most individuals are asymptomatic or display only mild 

symptoms of malaria disease, 1-2% of infections progress into severe and potentially fatal 

complications (Greenwood and Mutabingwa 2002). Approximately, 20% of severely 

affected individuals die as a result of malaria (White 1987; Pasvol 2006). Several transitional 

phases, take place in the progression from initial inoculation with P. falciparum sporozoites 
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to potentially fatal disease manifestation. At each phase, a number of factors such as host 

age, immune status and genetic make-up, parasite virulcncc, and various environmental 

factors, determine whether an individual advances to the next phasc of infcction. 

About 45 minutes after inoculation, all sporozoitcs have either entered the hcpatocytcs or 

have been cleared. Successful sporozoite entry and development in the hepatocytcs is 

partially influenced by host determinants. 'Mere is a transient humoral response to sporozoite 

antigens. Significant protection from severe malaria has been demonstrated in Gambian 

individuals carrying the class I HLA-Bw53 antigen (Ifill, Allsopp ct al. 1991). Since 

erythrocytes do not express MlIC class I antigens, the IJLA-Bw53 cytotoxic T-lymphocyte 

response must be effective at the liver stage of parasite development. 

On establishment of merozoites in the blood, many individuals in cndcmic rcgions remain 

asymptomatic, while others develop clinical symptoms of malaria discasc. Ibc symptoms of 

clinical malaria include a combination of fevcr, chills, sweats, headaches, muscular ache, 

nausea and vomiting, vague abdominal discomfort and lethargy. Tlcse symptoms are 

common to all four species of Plasmodium that infect humans. Physical findings in 

uncomplicated Rfalciparum malaria may include mild jaundice, enlarged splcen and/or 

liver, and increased respiratory rate. 

The cause of fever is the induction of host cytokines in response to parasite products released 

into the circulation following schizont rupture. Host cytokine production (and fever) is part 

of the host immune response to control parasite multiplication, although over-production of 

some pro-inflammatory cytokines such as tumour necrosis factor-a (TNF-a) may also have 

adverse effects on the host (Kwiatkowski and Bate 1995). Indeed, a number of 

polymorphisms in genes encoding cytokincs have been associated with severe malaria 

(reviewed in Kwiatkowski 2005 (Kwiatkowski 2005). 
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Both innate and acquired immune mechanisms appear to be important in the control of acute 

infection. Malaria studies on neurosyphilis patients indicated that a strain-specific antibody 

response is critical for clearing infection (Collins and Jeffery 1999). A falciparum is able to 

switch its surface antigen to avoid strain-specific antibodies, and appears to cause 

recrudescences in parasitaernia approximately every three weeks in untreated infections 

(Borst, Bitter et al. 1995). 

Cerebral malaria (CM) and severe malarial anaernia (SMA) characterise the traditional 

model of severe malaria in children and have been the subject of many studies (Molyneux, 

Taylor et al. 1989; Miller, Baruch et al. 2002; Kwiatkowski 2005). However, this model 

appears to be too simplistic and many studies have revealed that severe malaria is a complex 

syndrome affecting many organs (Day, Hien et al. 1999; Organisation 2000; Kirchgatter and 

Del Portillo 2005). It has also become apparent that metabolic acidosis, often manifesting as 

respiratory distress, is an important component of the severe malaria syndrome (Krishna, 

Waller et al. 1994; Day, Phu et al. 2000). Furthermore, metabolic acidosis has been 

demonstrated to be the best independent predictor of a fatal outcome in both adults and 

children (Allen, O'Donnell et al. 1996; Marsh, English et al. 1996). In endemic conditions, 

functional immunity is acquired early in life and over 75% of mortality affects children less 

than 5 years of age (Winstanley, Ward et al. 2002). In contrast, areas of infrequent parasites 

exposure suffer a substantially lower mortality burden. However, functional immunity does 

not develop as readily and all age groups are equally affected (Smith, Leuenberger et al. 

200 1; Reybum, Mbatia et al. 2005). 

The clinical outcome of malaria infection depends on several factors with regards to the 

parasite and host as well as geographic and social factors (Miller, Baruch et al. 2002) (Hill 

1999; Kwiatkowski 2005). The combination of these factors determines the outcome of the 

disease. 
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1.11. Evidence of presence and nature of genetic susceptibility to malaria 

Over the past 50 years, a large body of evidence has accumulated to indicate that genetic 

variants influence the onset, progression, severity of disease and ultimate outcome of malaria 

infection in humans. This genetic component is often complex and multigenic (Garcia, Cot ct 

al. 1998), and its analysis by genetic epidemiology, linkage and association studies, as well 

as by candidate-gene functional studies, has revealed important threc-way interactions 

between host genes, environment and the malaria parasite. In particular, the malarial parasite 

appears to have exerted positive heterozygote selection for retention of othcrwisc-deletcrious 

and disease-associated polymorphisms at certain human genes. One of the most complex 

issues of human genomics in malaria is to quantify the contribution of host genetic 

determinants in the variation in susceptibility to disease. 

Genetic studies of malaria in mice, in which environmental conditions can be stringntly 

controlled, have demonstrated that certain strains of mice consistently show a greater degree 

of resistance to infection than other strains (Stevenson, Lyanga ct al. 1982; Stevenson and 

Skamene 1985). 

In a study to determine the heritability of malaria in Africa, Mackinnon and colleagues 

(2005) demonstrated that genetic and unidentified household factors each accounted for 

around one quarter of the total variability in malaria incidcnce in a Kcnyan population. 

Furthermore, only a small proportion (under 5%) of this variation was attributable to the 

well known sickle (HbS) and a-thalassaemia malaria resistance gcncs, indicating the 

existence of many more host genetic determinants of malaria, cach with small cffccts 

(Mackinnon, Mwangi et al. 2005). 

The first twin study in malaria was performed by Sjoberg et al. who evaluated the genetic 

contribution in antibody lcvcls against a major maMa antigcn (Pf 155/RESA) in Libcria and 
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in Madagascar (Sjoberg, Lepers et al. 1992). Antibody responses to the intact antigen and to 

some of its immunodominant epitopes were found to be more concordant among 

monozygotic twin pairs than in dizygotic pairs or siblings living under the same 

environmental conditions. These results suggested that antibody responses are genetically 

regulated. Another twin study of malaria infection and disease was performed on 258 

Gambian twins comprising 40 monozygous (MZ) twins, 217 dizygous (DZ) twins and one 

pair of unknown zygosity by Jepson et al (Jepson, Banya et al. 1995). They found that 

concordant rates for infection by malaria parasites were higher in the dizygotic than the 

monozygotic twin pairs whereas concordant rates for fever were significantly higher among 

the identical twins. This study provided evidence that host genetic factors affect risk of 

malaria disease rather than infection. On the other hand, the development of fever is 

influenced by host genetic factors. These findings were in agreement with the hypothesis 

that monozygotic twins could share alleles involved in the production of pyrogenic cytokines 

(e. g. TNF-a). High heritability for proliferative responses to several malaria antigens was 

demonstrated in a study with 267 Gambian twin pairs, including 60 monozygous twins 

(Jepson, Sisay-Joof et al. 1997). 

A large number of host genes that confer differential predisposition to various manifestations 

of malaria have been identified with association analysis (reviewed in (Frodsham. and Hill 

2004)). Unfortunately, the discovery of these polymorphisms has not led to the development 

of new treatments or prophylaxis against malaria. Most of these mutations carry serious 

consequences for the host when homozygous and therefore have been offered no practical 

therapeutic lead. 

The malaria heritability study by Mackinnon and colleagues, and the familial segregation 

analysis of immunological responses to malaria antigens in Papua New Guinea indicated that 

Mendelian effects might govern certain antigen responses but the overall picture is complex 
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(Stimadel, Beck et al. 1999; Mackinnon, Mwangi et al. 2005). It is morc probable that the 

genetic basis of susceptibility to malaria is mostly the rcsult of many different 

polymorphisms with relatively modest effects on malaria diseasc oulcomc. 

1.12. Malaria is a strong selective pressure shaping the human genome 

Natural selection is the process whereby some of the inhcrited gcnctic variation between 

individuals will result in differences in their ability to survive and rcproducc successfully. 

Haldane first pointed out that an infectious disease causing high mortality among childrcrl 

could be important in shaping human evolution by exerting selective pressure on mutant 

genes protecting against that infection (Haldane 1949). Evidence is steadily accumulating 

thatfalciparum malaria fits Haldane's description of such an infectious disease. 

Recent studies have shown that though the exposure of human populations to malaria is 

relatively short, it has left its mark as a wide range of genetic diversity (Wcathcrall, Miller ct 

al. 2002). It is thought that severe malaria became endemic -10,000 years ago coincident 

with the origination and spread of agriculture in the Middle East and Africa (rishkoff, 

Varkonyi et al. 2001; Joy, Feng et al. 2003), but mild forms of the disc= may have existed 

in humans throughout much of their evolutionary history. In malaria endemic regions, most 

children present with the mild form of the disease. Only a small percentage of those infected 

go on to develop severe or complicated disease and consequently die of it. T11is is mainly 

explained by host resistance factors that have evolved over several thousand years of, 

selection under the pressure of high exposure to falciparum malaria (Millcr. Good et al. 

1994). 

The high frequency of otherwise deleterious mutations in areas where malaria is enden-dc is 

probably due to the protection that they confer against severe malaria. It is assumed that 
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mortality from malaria is the sole selective force for those mutations (Kwiatkowski 2005). 

The classical malaria resistance genes are the best examples of this natural selection. Genetic 

polymorphisms of the innate immune system and of human erythrocytes have thus been 

proposed as factors protecting against severe malaria (Wilkinson and Pasvol 1997; Flint, 

Harding et al. 1998; Cooke, Mohandas et al. 2004) (Roberts and Williams 2003). The 

protective effect of certain red blood cell polymorphisms; (Haemoglobin S [HbS], HbC, 

HbE, a-thalassemia, P-thalassemia, and ovalocytosis) against severe falciparum malaria is 

well-known (Agarwal, Guindo et al. 2000; Modiano, Luoni et al. 2001; Weatherall, Miller et 

al. 2002; Cooke, Mohandas et al. 2004). 

It is important to identify host determinants of disease susceptibility and protective immunity 

within African populations. The host defence mechanism against malaria is complex 

(Frodsham and Hill 2004). New strategies are required to identify the most important targets 

of protective immunity in malaria. Analysis of positive selection signals like the differential 

distribution of unusually extended haplotypes between cases and controls could identify the 

loci under most intense selection. Given that malaria exerts the most powerful selective force 

on the human genome that we know, the ability to detect genetic determinants of 

susceptibility to malaria should be more feasible than in other complex diseases. 

1.13. Utilizing ethnicity to tackle the question of malaria 

Geneticists are interested in finding genes associated with disease. Because of widespread 

health disparities, cthnicity is a variable that is often said to be relevant in this context. The 

idea is that members of a preconceived ethnic group share common ancestry that may 

include genetic risk factors. Human variation has been shaped by the long-term processes of 
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population history, and population samples that reflect that history carry information about 

shared genetic variation or ancestry. 

Differences in susceptibility to malaria between ethnic groups have bccn obscrvcd in many 

studies (Greenwood, Groenendaal et al. 1987; Tcrrcnato, Shrcstha et al. 1988). Studie's 

carried out in both Nigeria and in the Gambia have indicated that the frequency of' 

splenomegaly is higher in people belonging to the Fula ethnic group than in othcr sympatric 

groups (groups inhabiting the same geographic region) (Bryccson, Fleming ct al. 1976; 

Greenwood, Groenendaal et al. 1987). 

Although it is often difficult to be confident about ascribing a genetic cause to apparent 

differences between populations, studies on susceptibility to malaria in diffcrcnt sympatric 

ethnic groups in Burkina Faso (Mossi, Rumaibe, and Fula) (Modiano, Pctrarca et al. 1996; 

Luoni, Verra et al. 2001; Modiano, Luoni et al. 2001) and in Mali (Fula and Dogon) (Dolo, 

Modiano et al. 2005), are of particular interest. Genetic factors appear to undcrlic the striking 

differences in resistance to malaria between these groups. The Fulani group, show a stronger 

immune response to malaria antigens and greater resistance to both parasitisation and disease, 

than the other two ethnic groups resident in the same area. Environmental factors and known 

malaria resistance alleles did not account for these differcnccs. 7bc Fulani havc lower 

frequencies of known protective variants such as IlbS. This fact suggests that immune 

response genes yet to be identified were responsible. In a recent study, parasitological and 

immunological parameters were compared between Fulani and the ncighbouring ethnic 

group, the Dogon of Mali. The study was performed outside the malaria transmission season 

and all individuals included were healthy at the time. The study confirmed that the Fulani 

were less parasitized, had fewer circulating parasite clones in thcir blood and had 

significantly higher levels of antimalarial IgG (IgG I and IgG3) and IgE antibodies compared 

to the Dogon (Bolad, Farouk ct al. 2005). 
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Chapter 2: 

Study Samples, Materials, and Methods 

2.1. Sampled populations and study area 

DNA samples used in the various studies in this thesis were from three sources. 

1. With the help of members of the Institute of Endemic Diseases, University of 

Khartoum, I collected population samples, mostly family trios, from two villages 

along the eastern bank of Rahad river area of eastern Sudan along the Sudanese- 

Ethiopian border. 

II. Joining efforts with other members of The Kwiatkowski group at the Wellcome Trust 

Centre for Human Genetics (WTCHG) in Oxford, I was able to use the second set of 

samples which was the HapMap Yoruba and CEPH collection obtained as EBV- 

immortalized lymphoblastoid B-cell lines from the Corriell Repository (Coriell 

Institute for Medical research). 

III. The third data set was that obtained from MalariaGEN whole-genome, association 

study in Gambian samples. An endeavour which involved the collaborative efforts of 

a huge number of people, in the Gambia (M. Jallow, M. Pinder and colleagues), 

WTCHG in Oxford, and the Wellcome Trust Sanger Institute in Cambridge, UK. 

The following few sections of this chapter will consist of detailed descriptions of these three 

datasets. 
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2.1.1. Sudanese samples 

The Sudanese samples of my study came from two populations (A recent iniýranls inhabiting 

two neighbouring villages in an area endemic to malaria in Fastern Sudan. Koka village was 

established around 1940 by Hausa people originating from Wc%t Africa. Salala village was 

established around 1960 by Masalit people originating from western Sudan. 

The two villages lie along the eastern bank of' Rahad river area of castern Sudan along the 

Sudanese-Ethiopian border, about 400 kilometres south-ewst of Khartouni and alx)ut 200 

kilometres south-west of Gedarif town (Figure 2.1.1. ), in the large-, ( mechanized agricultural 

area in Sudan. Koka village is 35 km north of Salala village. 
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2.1.1.1. Background on the Sudanese populations and their demography and environment 

The Hausa: 

The Hausa population in Africa which is estimated at 22,000,000 makes up the largest ethnic 

group in all of West Africa. It is a farming population whose social organization is based on 

a hierarchical system based on occupation, wealth, and birth. Massive migration to Sudan 

occurred during early 20h century, motivated by the interest of the British administration in 

the Hausa as skilled farmers. The Hausa language is part of the Chadic branch of the Afro- 

Asiatic family of languages. 

Koka village was established about 60 years ago by the emigrant Hausa tribe from northern 

Nigeria (mainly from the towns of Kanu and Sakatu). The Koka community is a closed 

community, male polygamy highly practiced. Above 90% of all marriages and births in the 

past 40 years occurred within the village. Only 1% of its inhabitants were bom in Nigeria 

and migrated from there, the rest were either bom in the village or incorporated to it through 

marriage from nearby Hausa villages. Village size in 2004 was 1521 individuals, making 

around 67 large extended families with 30 individuals per family on average. 

The Masalit people: 

Of the peoples living in the western province of Darfur who spoke Nilo-Saharan languages 

and were at least nominally Muslim, the most important were the Masalit. They were 

primarily cultivators living in permanent villages, but they practiced animal husbandry in 

varying degrees. The Masalit, living on the Sudan-Chad border, were the largest group. 

Urn Salala village is located in the eastern bank of the River Rahad (Gadaref State, Sudan). 

The village was founded between the years 1969 and 1984. It was founded by members of 

the Masalit tribe who migrated from El-Geneina in Darfur state, western Sudan and settled 

along the Rahad River. The migration to the village increased dramatically after the drought 
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that hit Darfur in 1984. In Salala village, 50% of the population were bom in the village, the 

others were born in western Sudan and migrated to this area in the east, either as part of the 

first migration that founded the village or as part of smaller migrations since that time. 

About 28% of marriages among the Masalit were within the village. According to a census 

carried out in 2004, the estimated village size was 1309 individuals. Most Masalit live as 

nuclear families in the village settlement, and there are about 300 small families in the 

village with 5 individuals per family on average. 71e Masalit language is part of the Nilo- 

Saharan family of languages. 

Polygamy is common in both villages but consanguinity is rather occasional. 

Population growth: 

Good population data is lacking for my study area in eastern Sudan, because it is one of the 

least accessible and hence least developed in the country. Medical services arc scarce or 

nonexistent due to its remoteness. Nevertheless, inference about population growth can be 

made from the country-wide trend. In 1990, the National Population CommIttcc and the 

Department of Statistics put Sudan's birth rate at 50 births per 1,000 and the death rate at 19 

per 1,000, for a rate of increase of 31 per 1,000 or 3.1 percent per year. This is a staggering 

increase; compared with the world average of 1.8 percent per year and the average for 

developing countries of 2.1 percent per annum, this percentage made Sudan one of the 

world's fastest growing countries. 

Environment: 

From January to March, there is practically no rainfall countrywide. By early April, the 

moist southwesterlies reach southern Sudan, bringing heavy rains and thunderstorms. By 

May the moist air reaches eastern Sudan which has a typical savannah climate with a short 

rainy season (May-October) and a dry hot one (November -May). 
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In August the rains in the Ethiopian highlands swell the Blue Nile until it accounts for 90 

percent of the Nile's total flow. The Blue Nile's two main tributaries, the Dinder and the 

Rahad, have headwaters in the Ethiopian highlands and discharge water into the Blue Nile 

only during the summer high-water season. For the remainder of the year, their flow is 

reduced to pools in their sandy riverbeds. 

The ecology of the area around Koka village is the same as in Salala village. The soil in the 

area is alluvial clay that fonns large cracks during the dry season. The area is characterized 

by woodland dominated by Balanites aegyptiaca and Acacia seyal trees. BalaniteslAcacia 

woodland, the cracked clay soil and temiite hills are the typical biotope of Phlebotomus 

orientalis, the vector of visceral leishmaniasis (kala-azar) in the Sudan. 

2.1.1.2. Age distribution in the two Sudanese villages 

In a study of the epidemiology and clinical spectrum of L donovani infection, that took 

place in the two villages of my study, from April 1994 to April 1996; the age and sex 

distribution in the two villages is shown in Figure 2.1.1.2. The age distribution is typical of 

that of developing countries, with a high proportion of younger age groups. There was a 

significant difference in sex ratio with apparent under representation of young males in 

Salala, likely because this group work as casual labourers outside the village (Khalil, Zijlstra 

et al. 2002). 

35 



>S" m 
45--49 
40-44 

35-39 
30--3-1 
25-29 
20-24 

< 15-19 
10-14 

5.9 
04 
150 12C. . 51, 50 100 

Numbef 

A) Salala 

1110 50 100 150 

B) Koks 

Figure 2.1.1.2: Population structure in A) Salala and B) Koka 611ages. 
Horizontal bars represent number of males and fernales in each age group. (Khalil, Zjjlstra ct al. 2002). 

2.1.1.3. Socio-economic and nutritional parameters 

In Salala village, the inhabitants are mainly farm labourer% and subsimence farmers and live 

in grass huts without latrines. The standard of hygiene is poor. Their dict is mainly 

carbohydrates with meat and fish once or twice a week, lemons and mangoes are available 

during the season. 

The Hausa in general have a better standard of living and nutritional status, They also have a 

more structured hierarchy in the social order. Houses in the village arc tJhatchcd grass huts 

and all have latrines. The village appears much cleaner than Salala. The ., Illager%' diet 

consists mainly of fish supplemented with sorghum, millet, vegetables and fruit. 

To compare the nutritional condition in the two study villages, for all children under 5. 

Khalil, E. A. G. and colleagues, 2002, calculated Z-scores for wclght-for-agc (WAZ). height- 

for-age (HAZ) and weight-for-hcight (WHZ), using the EPINUT anthropometry prograin of 

EpiInfo; they then compared the means of these parameters using the t-test. For adults, the 
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body mass indexes (BMI) were calculated, and mean values were compared between the two 

villages (Table 2.1.1.3. ). 

Both mean WAZ and WHZ scores were lower in Salala, indicating poorer nutritional state. 

Also in adults, mean BMI values in Salala were significantly lower. Splenomegaly rates 

were higher in Koka, in those over 15 years of age. 
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Table 2.1.1.3: Nutritional parameters, spleen size and malaria prevalence in Koka (MK) and Salala (Um- 

salala). (Khalil, Zijlstra et A 2002). 

2.1.1.4. Disease epidemiology at the study site in Eastern Sudan 

The two populations of Hausa and Masalit moved to the area of the Rahad River within the 

past 50 years. The area used to be a game reserve. Visceral leishmaniasis and malaria were 
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both endemic as well as other infectious and water-borne diseases, making the settlement a 

challenging and costly undertaking in terms of health. The Masalit in particular succumbed 

to visceral leishmaniasis. 

This area is the major endemic area for visceral leishmaniasis in Sudan (75% of rcported 

cases in 1987). Khalil, E. A. et a]. (2002), found there are differences between the two 

populations in their susceptibility to leishmania. In 1996 the disease rate was 38.3/1000 

pcrson-years in Salala, with 1.2: 1 ratio of clinical to subdinical infection. In Koka, it was 

4.6/1000 person-years, and there was a 1: 11 clinical to subclinical infection ratio. 

The scale of the malaria problem in these villages has received relativcly little attention in 

the past because the area is extremely difficult to access by road during the rainy season. But 

previous studies of VL provide data for the dry season, when there appears to be a 

significant difference in malaria prevalence between the villages. 

The area is endemic to malaria with unstable transmission in a meso-endemic to hyper- 

endernic levels depending on the season. Most infections are due to A falciparum with a 

minority caused by A malariae. 

In October 2002, the final month of the rainy season, the diagnostic laboratory of the local 

health centre, at a nearby village, performed 1200 blood films on patients presenting with 

fever, of which half were found to have P. falciparum parasitaernia. Since the population of 

the group of villages covered by the health centre is around 15,000, this observation suggests 

that at least 4% of the population, averaged across all age groups, had malaria fever episodes 

during that single month. This is a minimum estimate and the true value may be much higher 

than that. In surveys carried out shortly after the end of the rainy season, spleen rate was 

found to be around 25-30% in children below 15 years-old. 
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Data for malaria prevalence in the two villages were obtained from eight cross-sectional 

surveys between 1994 and 2006, which were carried out by members of the Institute of 

Endemic Disease, University of Khartoum (http: //www. iend. org/). All cross-sectional 

surveys prior to 2004 showed little or no clinical malaria in the two villages. From 2004 and 

onwards, the cross-sectional surveys were supplemented by an active surveillance system 

involving village workers and teams that stayed over during the rainy season. Longitudinal 

follow up of these two populations have indicated that despite the malaria endemicity, the 

disease is generally presented in mild clinical forms particularly in Hausa. Their recent West 

African origin and agricultural life style suggests an early and stable exposure to the malaria 

parasite, with extended periods of co-evolution. Clinical malaria was consistently few fold 

higher in Masalit than Hausa. 

Clinical malaria was mainly manifested with parasiternia and a body fever of 38-42 *C. 

Vomiting, headache and other symptoms were occasionally reported. Severe malaria as 

defined by WHO criteria for malaria was rarely encountered. Severe anaernia was found to 

be relatively infrequent in the two populations with a mean haemoglobin level in the Hausa 

population of 14.2± 1.08 g/dI and for the Masalit 13.1±1.78 g/dl. 

2.1.1.5. Sample recruitment 

The samples I used for my study were collected during a cross sectional survey conducted 

during June 2004. The study was reviewed and ethically approved by the Ethical Committee 

of the Institute of Endemic Diseases, University of Khartoum. Samples were taken with 

informed consent from all individuals (see appendix for informed consent documents). 

The criteria I chose for sampling trios (two parents and a child) from the two villages, in 

order to better represent the general village population; is that the parents had to be 

39 



unrelated, neither to each other within a trio, nor to parents from other trio% included in the 

study. The parents in each family that was seen were questioned on their degree ot' kinship. 

and they were only sampled if they were found not to be related. Then, one ()I their children 

was chosen at random to be sampled. To make sure that there were no hackground 

relatedness between the chosen trios, I had to construct the pedigree for the whole village 

using the software Cyrillic (Figure 2.1.1.5). 

Figure2.1.1.5: A window in Cyrillic showing an example of an average sized family in Koka village. 
The red box indicates the individual for whom the family tree is retrieved. 

Firstly, each family had its family tree constructed separately. Then, families were connected 

together through mutual individuals by reviewing family histories for consanguinity and 
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presence of relatives in the village. Only those trios with no kinship either within or between 

them were chosen for the study. 

This task proved to be very difficult due to the many connections between families, so much 

so that the whole village resembles one big pedigree. Because of the requirement to choose 

trios who are not related, there might have been a disproportionate representation of 

individuals originally from outside the village and have only been incorporated into it by 

mamage. 
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Data collection questionnaire for the Sudanese samples 

ID: ................................................ House number .......................... 

Date: ............................. 

Village: ..................................... Tribe: ....................................... 

Name: ........................................................................................ 

Mother's name: ............................................................................ 

Date of Birth (age): ........................................... Sex: ....................... 

Are(you/ your mother & father) related? 

If yes what is the degree? ................................................................ 

Do you have relatives in the village? ............. If yes , 
name ..................................... 

&D of relatedness ................................ 

name ...................................... D of relatedness ................................. 

occupation: ................................................................................... 
Residence in the last 6 months .............................................................. 

Do you use bed-nets? ................. 
If yes, how often? .................................................................................................. 

Past Medical History: 

Did you have Malaria before? ................... 

If yes, How frequent do you get it(/year)? .................................................................. 

how long ago was the last attack? ............................................................................ 

methods of diagnosis ......................................................................... 

symptoms of the last attack .................................................................... 

what treatment did you take for it ............................................................ 

what was the response to treatment? ............................................................................ 

did you ever had severe malaria before? ..................................................................... 
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did you ever had kala-azar before? ............................................................................. 

if yes how Iong ago? ........................... who diagnosed it? ............................................ 

did you have PKDL before? ............................ 

Present complaints: 

Fever El 
if yes, duration .......... ........... grade ................ ........... type ........... ............ 

sweating El Rigors 11 Diarrhea El 

Nausea El Vomiting El abdominal pain El 

Headache 1: 1 drowsiness 11 Convulsions 13 

Cough 13 Generalweakness Allergy El 

Do you have any other complaints? ....................................................................... 

Examination: 

General appearance ................................. 

Temperature ........................... 

Spleen (cm) .................................. 

PKDL ................................ 

Other examination ............................................................................. 

Investigations: 

BF ............................................................................................... 

PCV ............................................................................................. 

Diagnosis and Treatment: 
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2. LZ The HapMap samples 

The DNA samples for the HapMap have, so far, come from a total of 270 people. The 

Yoruba people of lbadan, Nigeria, provided 30 sets of samples from two parents and an adult 

child. In Japan, 45 unrelated individuals from the Tokyo area provided sarnples. In China, 45 

unrelated individuals from Beijing provided samples. Thirty U. S. trios provided samples, 

which were collected in 1980 from U. S. residents with Northern and Western European 

ancestry by the Centre dEtude du Polymorphisme Humain (CEPII). 

The non-profit Coriell Institute for Medical Research provides DNA and ccll lincs from the 

samples for research projects that have been approved by the appropriate cthics committees. 

'ne samples and cell lines are not linked to any individual in the populations studied. 

However, the samples and cell lines are identified as coming from one of the four 

populations participating in the study. 

The HapMap samples were collected with the understanding that they would be used not 

only to develop the HapMap, but also for a wide range of future studies. 11cir use is not 

limited to the study of any particular disease. Each community that provided new samples 

for the HapMap has established a Community Advisory Group (CAG) to serve as a liaison 

between the community and the repository. The CAGs receive quarterly reports that list the 

investigators who requested their samples and the nature of the research those investigators 

plan to conduct with their samples. ney also receive a quarterly listing of the major 

publications that result from any research with their samples, so that they can stay apprised 

of how their samples are being used. The entire donor community, through its CAG, could 

decide to withdraw its samples from the Repository if it were determined that community's 

samples were being used in a manner inconsistent with the wishes of most of the members of 

that community. According communities a right to withdraw their samples in this manner is 
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consistent with contemporary standards of research ethics for genetic variation research that 

involves identified populations (HapMap 2004). 

In this thesis, I genotyped and used publicly available data for two sets of samples genotyped 

in phase 1 and 2 of the international HapMap project: 

Yoruba in Madan, Nigeria (abbreviation: YRI): A set of 30 Trios with 90 samples. These 

samples were collected in a particular community in lbadan, Nigeria, from individuals who 

identified themselves as having four Yoruba grandparents. The sample set does not 

necessarily represent all Yoruba people, whose population history is complex. 

CEPH (Utah residents with ancestry from northern and Western Europe) 

(abbreviation: CEU): A set of 30 Trios with 90 samples. These samples were collected 

from people living in Utah with ancestry from Northern and Western Europe. The term 

"CEPH" stands for the Centre dEtude du Polymorphisme Humain, the organization that 

collected these samples in 1980. Because the importance of precision in assigning group 

membership to prospective donors based on ancestral geography was not well appreciated in 

1980, it is unclear how accurately these samples reflect the patterns of genetic variation in 

people with Northern and Western European ancestry. 

2.1.3. The Gambian samples 

Study site 

The Gambia can be crudely divided into coastal regions (know as Kombos), with a 

predominantly urban population, and inland regions (non-Kombos) largely rural and 

relatively less developed. In the Gambia malaria transmission is highly seasonal and it 

usually clusters between July and December, coinciding with the arrival of the rains. The 

Royal Victoria Teaching Hospital (RVTH), located in the capital Banjul on the Atlantic 
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coast, is the main referral hospital in the country and an average of 300 children are annually 

treated for severe malaria. 

Data collection 

Since 1997 a research team from the Medical Research Council (NIRC) in The Gambia has 

actively been recruiting patients presenting to the RVT1I paediatric ward with signs of 

severe malaria. On admission, a detailed clinical history, physical examination including 

assessment of consciousness (Molyneux, Taylor ct al. 1989), capillary blood samples for 

haematocrit and thick blood smears for malaria parasites were conducted on all children. Tile 

study team reviewed the children within 8 hours of admission. If consent was given, children 

with severe malaria were recruited if they were aged 4 months to 14 years, with 

P. falciparum malaria and fulfilled one or more of the WHO criteria for severe malaria 

(2000). For anaernic children requiring transfusion, recruitment was done at the time of 

blood transfusion. Demographic details including ethnicity, place of residence, treatment 

received before presentation and clinical details were recorded on to standard forms. A four- 

hourly evaluation of the temperature, pulse, respiration, Blantyre Coma Score (which was 

designed by Drs Terrie Taylor and Malcolm Molyneux in 1987 as modification of the 

Pediatric Glasgow Coma Scale. The score is a number from 0 to 5, determined by adding the 

results from three groups: Motor response, verbal response, and eye movement. The: 

minimum score is 0 which indicates poor results while the maximum is 5 indicating good 

results), and blood sugar estimation were performed. Quantification of urine output and 

blood pressure were done only in children with clinical suspicion of shock or acute renal 

insufficiency. Thick blood films were examined aftcr Ficld's staining and read 

independently by a second experienced microscopist. A slide was classificd as ncgativc if no 

parasites were seen in 100 fields. The parasite concentration was esfimatcd by counting the 

number of parasites per high power field and multiplying by 500; one parasite per high 
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power field was taken to indicate parasitaernia of approximately 500 per [LL (Greenwood 

and Armstrong 1991). A final reading was made by a third microscopist only if there were 

large discrepancies. Blood glucose levels were measured using BM-Test-Glycaemic 1-44 

strips. The study was approved by the Gambia Govemment/Medical Research Council 

(MRC) Ethics Committee. Written informed consent was obtained from the patient or family 

after discussion in local language. 

Collected samples were used to establish several large population and family-based case- 

control association studies. For family-based association analysis, both parents of affected 

children served as control subjects. 

Clinical case definitions of severe malaria and inclusion criteria 

Children were categorized as having cerebral malaria if they had a Blantyre coma score : 53, 

at least 30 minutes after the last seizure and appropriate treatment of hypoglycaemia, with 

asexual forms of A falciparum on blood film and no other evident cause of coma 

(Molyneux, Taylor et al. 1989). Severe malarial anaemia was defined as packed cell volume 

: 515% or hacmoglobin : 55 g/dl with ascxual forms of A falciparum on blood film. 

Respiratory distress was defined as the presence of any of the following: deep breathing, 

abnormal respiratory pattern, grunting and/or use of accessory muscles of respiration. 

OnlY cases with complete information for ethnicity and area of residence were selected. 

Moreover, cases with unknown coma score or haemoglobin concentration were not included. 

Priority was given to individual cases living in the Kombos over rural Gambia. 
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2.2. DNA collection and extraction 

2. ZI. Sudanese samples DNA collection and extraction 

With the help of other members of the Institute of Endemic Diseases, I collected DNA, 

samples using the buccal brush method, and extracted thcm by the guanidinc hydrochloridc--- 

method as follows: 

- 20uL of 10mg/mL proteinaseK was added to each sample to rupture cell mcmbranct& 

and degrade protein. 

- ImL of 6M guanidine chloride and 300 pl, of 7.5NI N114 acctate wcre added tO Cach 

sample in a 50 mL tube and left overnight to remove remaining proteins and 

peptides. 

- Samples were centrifuged at 2000 rpm and the supernatant transferred to 15 niL 

polypropylene tube containing 2 ml, of pre-chillcd chloroform. 

- Those were vortexed, left to stand for one minute and ccntrifugcd for 5 rninutcs at 

2500 rpm. 

- The upper layer was collected and transferred to a 15 mL Falcon tubc containing 10 

mL of cold absolute ethanol; the tube was then inverted and shaken gently. 

- Tubes were kept at -20'C for at least 2 hours then centrifuged at 3000 rpm for 15 

minutes. 

- The supernatant was carefully drained and the pellct of DNA was washcd with 4 mL 

of 70% ethanol. 

- Tubes were centrifuged at 3000 rpm for 15 minutcs, aftcr which the supcmatant was 

carefully drained. The tubes were left inverted on a paper towd for 5 minutes. 
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- The pellet was washed again using 70% ethanol, the supernatant was discarded and 

the pellet was left to air-dry. 

Pellets were re-suspended in 100-200 jiL of de-ionized water and left for 2 days at 4 

*C before being quantified. 

2.2.2. HapMap samples DNA extraction 

EBV-immortalized lymphoblastoid B-cell lines from the HapMap Yoruba (Ibadan, Nigeria) 

collection were obtained from the Corriell Repository (Cofiell Institute for Medical 

Research). Other members of the Kwiatkowski lab were responsible for growing the cell 

lines in cell culture at the Oxford WTCHG (Suzana Campino, Sarah Auburn and 

colleagues). Cell lines were maintained at between 200,000 and 800,000 cells per mL in 

RPMl 1640 medium (Sigma) with 10% fetal calf serum (Sigma), 200 mM L-glutamine, 

penicillin, and streptomycin (all Sigma) at 37'C in humidified incubators, in an atmosphere 

of 5% C02. DNA was extracted from aliquots with 20 million cells. 

gDNA extraction from lymphoblastoid B-cells was undertaken by myself and Anna 

Richardson (Kwiatkowski lab manager) using the Nucleon kit from Tepnel Life Sciences 

(httl2: //www. tel2nel-conV) according to their protocol. 

2.2.3. Gambian samples collection and DNA extraction 

In Gambia local teams extracted DNA samples from venous blood samples (-I mL) using 

the Nucleon BACC2 DNA extraction Kit, as per protocol. Aliquots of the extracted DNA 

samples were sent to the WTCHG, Oxford, UK. 
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DNA samples were whole genome amplified using ý29 multiple displacement amplification 

(MDA) with REPLI-e 625S reagents based on instructions from the manufacturer (NIS][ 

Inc, New Haven). The quality and quantity of DNA was assayed in each sample prior tc. * 

amplification with PicoGreen. The DNA samples were in TE (10mNI Tris-HCI pil 7.5. 

ImM EDTA) and the concentration was 2: 20ng/pL in a total volume of 2: IOPL Amplified 

DNA samples were re-assayed using PicoGrccn, normalized to 250 ng1W, and loci 

representation Quality Control (QC) was performed by Taqman assay on two loci. All 

029MDA DNAs selected for genome-wide genotyping resulted from reactions with a 

minimum of 5 ng input genornic DNA. 7be quality of the amplifited DNA was furthcr 

assessed by assaying 30 SNPs across the genome using Sequenom iPlcx. 

ZZ4. Sampk Archiving 

Collaborative efforts have enabled the collection of thousands of DNA samples for the 

genetic epiderniologic analysis of severe malaria in the Kwiatkowski laboratory. 7hus 

efficient database systems were required for managing large numbcrs of DNA samples and 

their associated clinical information. I carried out the archiving of the Sudanese sct of DNA 

samples, and helped with the archiving of the IlapMap cell lines. 

Samples were labelled with a new ID for confidentiality. The DNA concentration of each 

sample was measured using the PicoGrcen method and the results were recorded in the DNA 

archive database and used to prepare a diluted set of samples to a standard DNA 

concentration. Ile samples were all diluted with Ix TE to a standard concentration of 

20ng/gL. Five microlitres of this dilution were transferred to a dcep-wcll plate and diluted to 

Ing/gL. The samples were stored at -20*C at dilutions of 20ng/jiL in scrcw-top tubes and at 
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I ng/gL in deep well plates. The original sample was returned to -80*C. The exact location of 

each sample (box position, box location and freezer) was recorded in the DNA archive. 

A plate plan containing the position of each sample was created and a duplicate copy kept in 

the group's secure database. 

2.2.5. DNA quantification: PicoGreen 

At the WTCHG in Oxford, DNA samples were quantified and archived. DNA samples were 

prepared to give 20ngl[tL stock samples. I quantified the sample DNA concentrations using 

the PicoGreen@ assay (Molecular Probes, Leiden, Netherlands). PicoGreen binds to double 

stranded DNA and fluoresces under UV light in proportion to the amount of DNA bound. 

Preparations before sample reading 

The first two stages of the PicoGreen protocol were the preparation of TE and the 

preparation of DNA standards. From the 20x TE provided with the PicoGreen kit, I mL was 

diluted with l9mL of distilled water to give Ix TE. Stock DNA of 100[Lg/mL lambda DNA 

was provided with the PicoGreen kit. From this stock, 54gL were added to 2646gL TE to 

give 2700gL of DNA at 2jig/mL. DNA samples were diluted by taking 2gL of each sample 

and adding 200pL of the diluted TE. Stock PicoGreen from the kit (25jiL) was added to 

4975[tL TE to give 5mL working reagent, sufficient for one 96-well plate of samples. The 

light-sensitive working reagent was stored in a l5mL falcon tube wrapped in tin foil at 4*C 

and used within half an hour of being made. 

Sample Reading 

From each DNA standard (in duplicate) and each DNA sample (in duplicate), 50gL were 

added to a Costar 3925, black polystyrene assay plate (Figure 2.2.5. ). PicoGreen reagent 
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(50pQ was added to each well. The solution was nlixcd and incubated for 5 minutes at roorm 

temperature in darkness. Fluorescence was measured using the SPECTRAfluor Plus 

fluorimeter (Tecan instruments, Reading, UK). 7lie DNA concentration was calculated using 

a standard curve of fluorescence versus DNA concentration. The integrity of the standards 

was judged by their fit to a standard curve. An R2 value of > 0.9 was accepted. NVhcre 

several discrepancies occurred, the measurements were rcdone using diffcrcnt standards C)n 

another fluorimeter (Cytofluor). The sample concentrations wcrc entcrcd into the sample 

archive database. 

A 
B 
c 
D 
E 
F 
G 
H 

1 10 11 12 
s s 1 1 9 9 17 17 25 25 33 33 
T T 2 2 10 10 18 18 26 26 34 34 
A A 3 3 11 11 19 19 27 27 35 35 
N N 4 4 12 12 20 20 28 28 36 36 
D D 5 5 13 13 21 21 29 29 37 37 
A A 6 6 14 14 22 22 30 30 38 38 
R R 7 7 15 15 23 23 31 31 39 39 
D D 8 8 16 16 24 24 32 32 40 40 

Figure 2.2.5: PicoGreen* Assay: Plate Plan. 

ZZ6. Whole-genome Amplification 

Whole-genome amplification was required to increase the number of genomc copies of the 

DNA samples. Samples were subject to whole-genome amplification using the PEP (PriMCJr 

Extension Preamplification) protocol (Zhang, Cui et al. 1992). The PEP PCR reaction uses at 

number of 15 nucleotide, random sequence primers called "N15" primers. These primcr,, 

anneal to various positions on the template DNA whcrcvcr thcy find thcir complcmcntary' 

scqucncc and, thus, amplify the cntirc genomc. 
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Five microlitres of the stock DNA samples at Ing/gL was added to the corresponding well 

on a skirted Thermofast 96-well plate. PEP master mix was prepared with the following 

volumes of reagents per sample: 5pL PCR buffer, 2.5pL M902 (50m. M), 2VL of dNTP mix 

(each dNT`P at 5mM), 2.2ttL N15 primer mix (all GENPAK Ltd), 32.8gl, MilliQ water and 

0.5[tL Biotaq (Bioline). Thus, 451il, master mix was added to each well. The cycling 

conditions were: 94'C for 3 minutes followed by 50 cycles of 94'C for I minute, 37'C for 2 

minutes, ramp at 0.10C per second to 550C, 550C for 4 minutes and a final extension period 

at 720C for 5 minutes. For quality control, 2 pL of random samples of the PEP product was 

run on a 2% agarose gel (Sigma, USA). 

2.3. Choice of markers 

In this thesis, different strategies were used for SNP selection in different candidate regions. 

The objective was to achieve relatively uniform marker spacing across the genomic regions 

of interest. Following the initial selection of a set of SNPs by any strategy, the final set on 

which analysis will be carried out is likely to differ as various SNPs may be eliminated on 

account of assay design failures and economic multiplexing decisions. 

From the abundance of available SNPs, inappropriate markers may be filtered out by 

exclusion of non-validated SNPs, with preference for validated SNPs especially in an 

African population. A minimum reasonable frequency should be required for marker 

inclusion. Indeed, from a public health perspective it is important to note that rare alleles in 

common disease generally explain relatively little of the overall disease prevalence (low 

population-attributable fraction, or PAF). The Common Disease Common Variant 
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hypothesis proposes that common modest-risk alleles may account for a greater PAF in 

common disease than do rare high-risk alleles. 

LD, the non-random association between alleles at different loci, is an important 

consideration in marker selection, particularly in large genetic regions where it is not 

economically feasible to genotype a high density of SNPs. In chromosomal regions where 

there is substantial LD between markers, allelic dependence improves the chances of 

establishing the approximate location of a disease mutation without actually typing it. When 

a mutation arises in a population, it will be on a specific haplotype. Once the haplotype 

structure is determined, redundant SNPs can be identified and it is possible to type the 

minimum number of SNPs required to uniquely tag all the haplotypes to search for a 

mutation (Daly, Rioux et al. 2001; Gabriel, Schaffner et al. 2002). The use of haplotype 

tagging SNPs (htSNPs) enables researchers to capture the majority of the haplotypic 

variation and reduce the amount of genotyping required to scan a genetic region. 

2.3.1. Marker choice in 5q3l genomic region 

Markers typed in the 5q3I region were chosen from a larger set that had previously been 

tested in the laboratory at the WTCHG in Oxford in samples from The Gambia and the UK. 

There were 34 markers selected as the most efficient set of markers to capture most of the 

haplotypic diversity in those populations (haplotype, tagging SNPs). 

Previously, for two population samples from the Gambia and the UK, initially, 162 SNPs 

were identified from dbSNP (ncbi. phn. nih. tov/SNP) and the literature. Selected SNPs were 

those reported to have MAF >0.05, and that together gave a good representation of coding 

and noncoding regions. A total of 98 SNPs were analysed after excluding those that were out 
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of Hardy-Weinberg equilibrium, had a genotyping failure rate >10%, or had MAF <0.05 in 

both populations tested. The West African sample comprised 32 mother-father-child trios 

where the child had severe malaria. In order to identify haplotype tagging SNPs in the 5q31 

region, firstly, haplotypes of the 128 parental chromosomes from each population were 

determined from the pedigree data using the PHASE algorithm, then an unstructured 

approach using ENTROPY which determines the information content of each SNP without 

consideration of block structure was used for selecting tagging SNPs. This method identified 

21 tagging SNPs in Europeans and 18 in West Africans (Luoni, Forton et al. 2005). 

The marker set I subsequently typed in the Sudanese populations consisted of those 18 

Gambian tagging SNPs, in addition to 16 others identified as having a long-range LD pattern 

in the region (Sadighi Akha E et al. Manuscript in preparation). 

2.3.2. Marker choice in the HBB region 

In the HBB region, I genotyped. SNPs for which there were already assays designed and 

primers available in the Kwiatkowski lab. These SNPs were previously selected by Neil 

Hanchard (D. Phil thesis 2004) according to the following process: Project Ensembl 

(www. ensembl. org) was consulted to find SNPs spaced every 5 to 10 kb across 400 kb 

centred on the sickle mutation. There were 230 database SNPs submitted, of which 40 were 

validated. Nine SNPs in total had available frequency data, all of which were above 10%, 

but only one had frequency data in an African-related population (African Americans). As a 

result, SNPs were chosen on the basis of validation, preferably in an African population; 

available frequency data; and the desired SNP density. Two published SNPs (Currat, 
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Trabuchet et al. 2002) that were close to HbS but not in the database, were added to this set 

(HBB-707 and HBB-984). In all, 33 SNPs were chosen. 

For my thesis, an extra five Restriction Fragment Length Polymorphism (RFLP) markers 

were chosen from literature to define the previously described classical ý-globin haplotypes 

(Pagnier, Mears et al. 1984). Classical RFLP haplotypes were defined using 5 polymorphic 

restriction endonuclease sites within a 30-kilobase region of the P-globin-like gene cluster. 

For interpreting the haplotypic patterns of the 5 RFLP marker% in terms of the classical 

haplotypes they describe in the P-globin like cluster (Table 2.3.2a), several publications were 

consulted (Pagnier, Mears et al. 1984; Steinberg, Lu et al. 1998; Rahimi, Karimi et al. 2003; 

Vivenes De Lugo, Rodriguez-Larralde et al. 2003). 

Table 2.3.2a: Classical HbS haplotypes; designated by the 5 RFLP markers. 
A+ sign indicates the restriction Enzyme would cut, a- sign indicates ahsLnce of digestion by the enzyme at 
the site. 

Primers were designed using the web-based Pfimer3 programC (available from the MIT- 

Whitehead website - http: //www. broad. mit. edu/), and calculations of melting temperature 

(Tm) were checked using the group's web-based Tm calculator (K. Rockett). Primer 

sequences were blasted against the human genome sequence (BLAST 

http: //www. ncbi. nlm. nih. gov/BLAST/) to ensure selectivity. Primers were ordered from 

MWG BiotecO as HPSF pufified at 0.01 gmol, reconstituted with sterile water to 100 gM, 

and labeled for storage on arrival. 
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Primers were designed to make sure they amplify a unique segment containing the targeted 

SNP, a process which involved careful consideration of the high degree of homology in the 

region due to genic duplication. It resulted in large fragments being amplified. 

In total four fragments were required to be amplified to complete typing the 5 RFLP sites 

(Table 2.3.2b): 

HBG2 fragment (2734 bp in length) amplified the HBG2 gene and contained 

restriction sites for both Hind III and Xmn I RFLPs. 

HBGl fragment (2909 bp in length) amplified the HBGI gene and contained the 

restriction site Hind Ill. 

- HBB fragment (1200 bp in length) amplified the HBB gene and contained the 

restriction site Avall. 

- The restriction site Hincll was in an inter-genic region with unique flanking 

sequence, so a smal I fragment of 118 bp containing it was amplified. 

RE rs number position I st primer sequence 2ed primer sequence fragment fin 
AAA TI AA(, AAAAACAAC, AAC CAI rCTAAAC I (ý I ACCCTGT 

Ava 11 rslOI68683 chrl 1: 5204367 AAA I GAA 1G FACI TAIGG 
ACGTTGGATGTCTGCCTCT ACGTTGGATGCTGACTTCTG 

Hinc 11 rs968857 chrl 1: 5217034 GCTATAGTCTG ATACTATGTCT 
ACGTTGGATGCATGTACAC ACGTTGGATGCTTAAGAACC 

Hind III rs6578593 chrl 1: 5226375 GCACATCTTATGTC ATCCTTGCTACTCAG 2! 
GACAGCATGAATACTTCCTG ACGTTGGATGGAACTGAAGA 

Hind 111 rs207O972 chrl 1: 5231293 cc CAACCATGTGTG 2* 
ACGTTGGATGACAGCATGA ACGTTGGATGGAACTGAAGA 

. 
Xmn 1 rs7482144 Ichrl 

1: 5232745 ATACTTCCTGCC CAACCATGTGTG 2 

'rable 2.3.2b: Positions of RFLP markers and primer sequences used to amplify PCR products in the 
HBB region, as well as the length of the amplified fragments. 
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2.4. Genotyping 

Commonly used high-throughput SNP genotyping platforms include Sequenom 

(www. sequenom. com), Illumina GoldenGate (www. illumina. com , and Affyinetnx 

ParAllele (www. affymetrix. com). The choice of which of these technologies to use depends 

on the focus of the study. The ultra-high throughput Affymetrix and Illumina plafforms are 

more feasible to large genetic screens of many genes. They were the platforins used in 

genotyping MalariaGEN case-control samples. 

The relatively limited set of polymorphisms genotyped in the 5q3l and HBB regions was 

undertaken using the Sequenom Matrix-Assisted Laser-Desorption/lonosal ion 'I'line-of- 

Flight Mass Spectrometry (MALDI-TOF MS) platform provided by the WTCHG Core 

Genomics group SNP typing service (www. well. ox. ac. uk/genoiilics). At the start of this 

project, only the homogenous MassExtend (hME) platform for low multiplexing (4- to 5- 

plex) was available. 

2.4.1. hME platform 

MassEXTEND is a SNP-typing procedure based on a pri mer-e x tension reaction for the 

polymorphism in question. It differentiates genotypes by allele-specific pn mer-ex tension. 

The MassEXTEND primer anneals adjacent to the polymorphic site and is extended 

dependent on the polymorphism. The hME platform uses a termination mixture with three 

dideoxynucleotides (ddNTPs), which terminate extension, and one deoxynucleotldc (dNTP). 

For polymorphisms to be multiplexed together using a specific termination mixture, the 

extension products of the different alleles should differ by at least 15 Da in mass. An 

illustration of the allele-specific hME MassEXTEND process is presented in figure 2.4. Ia. In 

this example, a ddATP/ ddCTP/ ddTTP/ dGTP termination mix resolves a C/T 
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polymorphism. The EXTEND primer (23-mer) anneals up to the polymorphic site and 

extends by one base on allele I (T) as a ddATP nucleotide is incorporated (24-mer), and by 

two bases on allele 2 (C) as a dGTP is incorporated, followed by a ddTTP nucleotide (25- 

mer). The 24-mer and 25-mer extended primers are differentiated using a mass spectrometer. 

Thus, where samples are homozygous for allele I (TT) or allele 2 (CC), a single peak is 

observed on the mass spectrometry trace at the predicted mass. Where a sample is 

heterozygous (CT), two peaks are observed on the mass spectrometry trace, one at the 

predicted mass for each allele. An additional "pause" peak might be observed on the trace. It 

represents the incorporation of one deoxynucleotide followed by incomplete extension by 

the polymerase. The pause peak is an artifact, but the position is taken into account for 

multiplex design, to avoid overlap with a true peak of another reaction. 

AlIck- 12 
EXTEND Primer (23-mer) EXTEND Primer (23-mer) 

CIA 

+Enzyme 
+ddATP/ddCTP/ddTTP 
+dGTP 

extended Primer (24-mer) extended Primer (25-mor) 

21 22 23 24 28 24 ZT 28 21 22 23 24 25 26 27 28 

13 0: 3 
21 22 23 24 2s 26 27 28 

93 11 

uj 
x uj 

Figure 2.4.1a: Illustration of the massEXTEND process of the hME genotyping platform. 
Image courtesy of Sequenom. 
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Amplification PCR 

Sample DNA templates included PEP product diluted 1: 20 with MilliQ water. A master mix 

consisting of reagents in the following volumes per sample was prepared; 0.25 pL dNTPs 

(8mM pooled); 0.2 pL M902 (50mM); 0.5 pL x10 PCR buffer, 0.025 pL Bioloine BioTaq 

(MgQ; 1.025 pL MilliQ water; 0.01 pL forward primer (100gm); 0.01 pL reverse primer 

(IGOVM). Reaction mixture (3 pL) was dispensed into each well of an ABGene Thermofast 

384-well plate. Of each diluted PEP sample, 2.0 gL were added to the reaction mixture in the 

corresponding well. PCR was undertaken on a 384-well MJ tetrad DNA engine under the 

following reaction conditions; 

1. 96'C for 1: 00 min 
2. 96'C for 1: 00 min 
3. 940C for 45 see 
4. 560C for 45 see 
5. 72'C for 30 see 
6. go to 2 x5 
7. 94"C for 45 see 
8. 65'C for 45 see 
9. 720C for 30 see 
10. go to 6 x29 
11.72'C for 10: 00 min 
12.150C forever 

Mass-EXTEND protocol 

The Core Genomics group at the VvrTCHG undertook SAP (shrimp alkaline phosphatase) 

digestion of the amplified PCR product to remove non-incorporated dNTPs. The hNIE 

(extension) reaction cocktail solution was added to the SAP-cleaned PCR plates and the 

allele-specific PCR reaction, illustrated in figure 2.4.1a, was run on a 384-well MJ tetrad 

DNA engine. The WE product was treated with SpectroCLEAN resin to remove non- 

incorporated ddNTP's and dNTP's and salts. A SpcctroPOINT robot spotted the cleaned 

product (15 nL) onto a 384 SpectroCHIP and calibrant was added onto calibrant patches of 
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the 384 SpectroCHIP. Genotypes were estimated by MALDI-TOF mass spectrometry. The 

quality of the runs was assessed by the Genomics team for the presence of probe peaks, 

clean spectra, unexpected peaks, and probe intensity. The resultant genotypes were presented 

in the form of 'Typer Analyzer' (figure 2.4. lb. ), a software that displays the spectra for each 

run, highlights sample failures, and displays the predicted genotype calls for each sample 

and assay with an indication of the confidence of the call; conservative, moderate, 

aggressive, low probability, no alleles, or bad spectra. 

Further details on Sequenom's hME genotyping process, including reaction cocktails and 

PCR cycle conditions can be found at the WTCHG Core Genomics website; 

http: //www. well. ox. ac-uk/genomics/faciIitites/sequenonVl2rocessing. shtiii1. 

Figure 2.4.1b: A spectrum trace from the Sequenom typer analyzer for a single assay in one 

sample with different peak positions corresponding to different alleles with different extension 

product masses. 
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Sequenom hMEprimer design 

Sequenorn hME amplification and extension primers were designed using Sequenom's 

SpectroDESIGNER assay design software. Amplification primers were designed to produce 

an optimal amplicon size containing the polymorphic site at 80-120 bp. To avoid confusion 

in the mass spectrum, the mass of the amplification primer was designed to be different from 

the extension primer and its extension products. 7be SpectroDESIGNER software selected 

an appropriate termination mix for each SNP. The termination mix was selected such that 

DNA polymerisation terminated at the polymorphic site for one allele, (yielding an extended 

primer of one nucleotide), and as soon thereafter for the alternative allele. Tle 

SpectroDESIGNER software also grouped assays into optimal multiplexes. Criteria for 

assays within a hME multiplex included compatibility of extension primer peaks, minimal 

primer-primer interactions, and shared termination mix. For best results it was cnsured that 

all extension primers and possible extension products differed by at least 15 Da, preferably 

50 Da, with compr=dse for maximal multiplexing. 

2.4.2. Genotyping the RFLP markers in the MBB region 

2.4.2.1. PCR amplification 

PCR reactions were carried out in a 96 well plates. Genomic DNA concentrations were 

standardised, to 5 ng/ pL beforehand. A master mix consisting of reagents in the following 

volumes per 192 reactions was prepared; 44 ý& M902 (50MM),, I 10 pL dNTPs (8mht 

pooled), 110 ýtl, IOx PCR buffer, 5.5 pL Bioline Taq (5U/ tiL), 386.1 pL MilliQ water, 2.2 

ýtL forward primer (100ýM); 2.2 pL reverse primer (100pM). Ile PCR mix was the same 

for all the fragments except the HB GI fragment (2909 bp) for which a 3.3 pL of the forward 

and 3.3 pL of the reverse primers were used. Into each well of an ABGene Thermofast 96- 

62 



well plate, 6 pL of the reaction mixture were dispensed. Of each genomic DNA sample, 2.0 

were added to the reaction mixture in the corresponding well. Each amplified fragment 

was done independently after optimizing the PCR conditions for it to get the best possible 

results for all the samples. PCR was undertaken on a 96-well MJ tetrad DNA engine under 

the following reaction conditions; 

PCR protocol for HBGI fragment: 
1. 96T for 1: 00 min. 
2. 94T for 0: 45 min. 
3. 62"C for 2: 30 min. 
4. 720C for 1: 00 min. 
5. go to 2 x5. 
6. 940C for 0: 45 min. 
7. 65"C for 2: 30 min. 
8. 720C for 1: 00 min. 
9. go to 6 x29- 
10.720C for 10: 00min. 
11.150C for 15: 00 min. 

PCR protocol for HBG2 fragment: 
1. 96"C for 1: 00 min. 
2. 94cC for 0: 45 min. 
3. 64"C for 2: 30 min. 
4. 72'C for 1: 00 rnin. 
5. go to 2 x5. 
6. 94*C for 0: 45 min. 
7. 65C for 2: 30 min. 
8. 72*C for I min. 
9. go to 6 x29. 
10.72'C for 10: 00 min. 
11.15'C for 15: 00 min. 
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PCR protocol for Hinc II fragment: 
1. 96'C for 1: 00 min. 
2. 94'C for 0: 45 min. 
3. 56'C for 0: 45 min. 
4. 72"C for 0: 30 min. 
5. go to 2 x5. 
6. 94T for 0: 45 min. 
7. 65T for 0: 45 min. 
8. 72T for 0: 30 min. 
9. go to 6 x29. 
10.72T for 10: 00 min. 
11.15T for 15: 00 min. 

PCR protocol for HBB fragment: 
1. 96"C for 1: 00 rnin. 
2. 94'C for 0: 45 min. 
3. 56T for 0: 45 min. 
4. 72T for 1: 00 min. 
5. go to 2 x35. 
6. 72*C for 10: 00 min. 
7. 150C for 15: 00 min. 

2.4.2.2. Digestion by restriction endonuclease enzymes 

Digestion enzymes and their buffers were ordered from New England BioLabs. Reaction 

mixes were prepared for each enzyme according to protocol as stated by the manufacturer. 

Hind III digestion reaction: 
Enzyme mix for one reaction 
IN NEBuffer 2 1.5 pL 
H20 9 [tL 
Hind III enzyme 0.5 pL 

II gL of enzyme mix added to 4 VL of PCR product. 

Hinc 11 digestion reaction: 
Enzyme n-dx for one reaction 
IN NEBuffer I gL 
H20 6.75 gL 
Hine Il enzyme 0.25 gL 

8 [iL of enzyme mix added to 2 [iL of PCR product. 
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Xmnl digestion reaction: 
Enzyme mix for one reaction 
lOx NEBuffer I pL 
BSA 0.1 pL 
H20 6.77 pL 
Xrnnl enzyme 0.25 pL 

8 [tL of enzyme mix added to 2 gL of PCR product. 

Avall digestion reaction: 
Enzyme mix for one reaction 
lx NEBuffer 41 IiL 
H20 6.75 pL 
AvaII enzyme 0.25 pL 

8 ýtL of enzyme mix added to 2 gL of PCR product. 

Digestion products loaded into an agarose gel and scored as (+ +) if the two alleles were 

digested, as (+ -) if one but not the other allele was digested (heterozygote), and as (- -) if no 

digestion occurred in the sample. 

2.5. Statistical, analytical, and computational procedures 

2.5.1. Analytical methods 

2.5.1.1. Hardy-Weinberg Equilibrium 

I used the Hardy-Weinberg equilibrium as an indicator of genotyping error rate. The 

underlying assumption is that where an assay experiences a low rate of genotype error, the 

observed genotype numbers should conform to the Hardy-Weinberg expected numbers. In 

the HWE model, the mathematical relation between the allele frequencies and the genotype 

frequencies is given by; AA: p2 Aa: 2pq aa: q2. Where, 'A' and 'a' are the major and 

minor alleles, respectively, and 'p' and 'q' are the allele frequencies of 'A' and 'a', 

respectively. The fit between the HWE model (expected) and the observed genotype 
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frequencies for each locus was tested with Pearson's chi-square test. with one degrec of 

freedom. 

2.5.1.2. Population Differentiation: Wright's FUation Index (Fst) 

Wright's Fst essentially provides a measure of the average reduction in hctcrozygosity 

within subpopulations relative to the total population. Tle Fst provides a measure of all 

effects of population substructure (at different levels of the population hierarchy) combined: 

FsT = 
Ht-Hs 

Ht 

Where Ht is the average HWE heterozygosity among organisms within the total area, and Hs 

is the average HWE heterozygosity among organisms within random-mating subpopulations. 

The theoretical minimum and maximum Fst values are 0 (indicating no genetic divergence) 

and 1 (indicating fixation for alternative alleles in different subpopulations), although Fst 

values of I are rarely observed. Wright proposed a rough guideline for the interpretation of 

Fst whereby values above 0.25 indicate very great genetic differentiation (Wright ct al. 

1978). 

2.5.1.3. Linkage disequilibrium statistics 

Estimates of pair-wise LD were, for the most part, derived from haplotypes. Two parameters 

were calculated; IDI and r2 and are derived as follows. If a locus A has two alleles A and a. 

with major allele frequencyfA and minor allele frequencyf., and a locus B has two alleles B 

and b, with major allele frequencyfB andfb; then there are four possible haplotypes between 
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the two loci - AB, Ab, aB, ab whose frequencies can be denoted as fAB, fAbg faB9 and fab 

respectively. From this, the parameter D (Lewontin 1964) can be calculated as the difference 

between the frequency of any two-locus haplotype and the frequency those two alleles would 

be expected to show under random segregation (linkage equilibrium) such that, 

fAb 
- 

fAfb 

fa b- fa fb 

AB 
- 

fAfB 

faB 
- fafB 

all of which are equivalent. The absolute value of D' is calculated from D and D,,., the 

maximum theoretical value of D given the allele frequencies, 

IDJ= D 
Dnax 

where D=x = min(fAfB. f. fb) when D is negative and min (f. fB. fAfb) when D is positive. 

This absolute value of D, then, ranges from zero (linkage equilibrium - all haplotypes 

equally represented) to a maximum of one. The important characteristic of D' is that if each 

of the four theoretical haplotypes is not observed in the sample, then the D' statistic between 

those two markers will equal one. 

The parameter r2 is used for the correlation of the markers at the two sites and is given by 

2=D2 
VA fa fB fb 

67 



In practice r2 is the same as the X2 statistic (derived from a standard 2x2 table) diý ided bv the 

number of chromosomes (Pritchard and Przeworski 2001). R-squared a]-so range-% from a 

value of one (absolute and complete linkage - both alleles correlate perfectly and are at the 

2- same frequency) to zero. Although r is less skewed by low allele frequencies and small 

sample sizes than U, values equal to one are only very occasionally observed. 

Calculation of LD was done using HaploXT (G. Abecams - a%ailable from 

http: //www. sph. umich. edu/csg/abecasis) and illustrated using MARKER. an in-housc 

software programme that graphically plots pair wise LD measure% (D. Kwiatko%skl - 

available at httl2: //www. gmap. net/marker). 

2.5.2. Tools for detecting Signatures ofpositive selection 

2.5.2. L Haplotype-based toolsfor identifying signatures of recent pas ititr natural. %election 

An alternative, and perhaps more powerful (Sabeti, Reich et al. 2002. '1'(x)rllajiafi. Ajioka et 

al. 2003; Hanchard, Rockett et al. 2006), strategy to single locus te,, ts of non-neutral 

evolution is haplotype-based analysis. Haplotype-based methods for detecting signatures of 

recent positive selection use information on the frequency of a given allele and the level of 

LD in the region surrounding that allele. Mutations under positive selection tend to increase 

in frequency at a sufficiently rapid rate that recombination does not substantiall) break down 

the haplotype on which the mutation arose. The reduction in the variability in sites 

surrounding selected mutations is known as a selective sweep. In contrast. alleles under 

neutral evolution tend to rise in frequency at a slow rate, over many generations, dunng 

which time recombination has substantially broken down the LD in the region surrounding 

the allele. Thus, a signature of positive selection is an allele with unusually long-range LD 

and high allele frequency. This has been demonstrated at numerous loci with previous 
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evidence of recent selection, including the G6PD (Sabeti, Reich et al. 2002), LCT 

(Johansson and Gyllensten 2008), HBE (Ohashi, Naka et al. 2004) and HFE (Toomajian, 

Ajioka et al. 2003) loci. I used two haplotype-based tests, the Long Range Haplotype (LRH) 

test implemented in Sweep (Sabeti, Reich et al. 2002), and the haplosimilarity score 

(Hanchard, Rockett et al. 2006) implemented in MARKER, to screen for putative signatures 

of recent positive selection in the 5q3I and HBB genomic regions, studied in the Sudanese 

samples. 

2.5.2.2. Sweep 

SweepTm allows large-scale analysis of haplotype structure in genomes for the primary 

purpose of detecting evidence of natural selection. Primarily, it uses the LRH test to look for 

alleles of high frequency with long-range LD, which suggest the haplotype rapidly rose to 

high frequency before recombination could break down associations with nearby markers 

(Sabeti, Reich et al. 2002). Sweep takes phased genotype data as input, detects all haplotype 

blocks in that data, and then determines the frequency and long-range LID for each allele in 

each block. 

http: //www. broad. mit. edu/mV_g/sweo/. 

2.5.2.3. Haplosimilarity 

The basis of the haplosimilarity test is essentially the same as that of the LRH test; high 

frequency alleles under neutral selection tend to be associated with a wider range of 

haplotypes than alleles under recent positive selection due to recombination. Thus, the two 

tests are highly correlated and have similar power (-80%) to detect reasonably strong 

selective sweeps even with a high recombination rate and minor allele frequencies below 0.2 

(Hanchard, Rockett et al. 2006). However, while the LRH test searches for the interval at 

which haplotype homozygosity decays away from an allele of interest, the haplosimilarity 

test takes a predefined interval, or window, of SNPs and investigates the similafity of the 
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haplotypes within that window associated with an allele of interest. The haploslinilarity 

score provides a measure of haplotype similarity and is associated with the minor allele of 

the first SNP. All SNPs are investigated in turn by passing a sliding window across the 

region. A potential confounding effect due to variation in location, recombination and 

mutation rates is controlled for by comparison of the haplosirmlarity score of a minor SNP 

allele relative to its major allele. haplosimilarity scores greater than 10 are considered 

relatively high (Hanchard, Rockett et al. 2006). 

The Sudanese and HapMap SNP haplotypes for the 5q3l and HBB genomic regions were 

uploaded into MARKER (www. jZmap. net), and the MARKER utilities were used to 

calculate the haplosimilarity scores. 

2.5.3. Softwarefor data analysis 

2.5.3.1 Software for haplotype construction and interpretation 

In diploid organisms, such as Homo sapiens, haplotypes are not distinct, and onlY unphased 

genotype data can be obtained through application of experimental techniques. Molecular 

haplotyping methods are available but these methods are not widely used becau%e they incur 

significant costs and are low-throughput. Several algorithms for reconstructing haplotypes 

from unphased genotype data are now available (reviewed in (Niu 2004)). These algorithms 

offer practical, accurate, and cost-effective solutions. The difference in efficacY of haplotype 

reconstruction between algorithms tends to be modest when the region under study is short, 

as was generally the case in the candidate genes investigated here. 

PHASE version 2.0 

The PHASE programmes use a coalescence- based Markov-chain Monte Carlo (MCMC) 

approach: a pseudo-Gibbs sampler (PGS) for reconstructing haplotypes from genotype data 
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(Stephens, Smith et al. 2001). PGS uses Gibbs sampling to inform haplotype reconstruction 

from a priori expectations based on the coalescence theory. The approximate coalescent 

prior is based on the assumption that "the genetic sequence of a mutant offspring will differ 

only slightly from the progenitor sequence (often by a single-base change)" (Stephens and 

Donnelly 2003). PHASE version 2 is an advanced version of PHASE], in which PGS 

algorithm has been slightly modified. Improvements in PHASE2 include allowance for 

recombination and decay in LD with distance. 

Phamily-PHASE 

PHASE (versions I and 2) requires genotypes from unrelated individuals as it uses 

population frequencies in the calculations. However, where additional family members have 

been genotyped, their genotypes can be used to infer the known haplotypes before running 

PHASE. This provides PHASE with more information enabling both more reliable results 

and faster execution. The phamily analysis is designed for one such situation. It takes a set of 

trio families and in the first stage uses logical methods only to infer all the known haplotypes 

in the parents. The children are then discarded and the parental genotypes and known 

haplotypes are passed to PHASE as a set of unrelated individuals. PHASE is used to 

estimate the most probable remaining haplotypes using statistical methods (Stephens, Smith 

et al. 200 1 ). 

MARKER beta 

MARKER is a set of tools for exploring genetic markers in their genomic context 

(http: //www. gmap. net/i-narker). The current beta version of MARKER only specifically 

deals with SNPs. MARKER's key feature is a genome mapping tool that generates 

MARKER maps illustrating the LD between SNPs in a specified genetic region. A density 

of up to 200 SNPs (labelled by rs number) can be observed on a single map. Features of the 
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map such as the measure of LD, the SNP density, and the LD colour coding system can be 

altered as preferred. The main source of public data on MARKER is from the HapMap 

project (www. hapmap. or-g). However, MARKER maps can also be generated from private 

datasets. I used MARKER to generate LD maps of the 5q3l and HBB gene regions 

investigated here. 

2.5.3.2. Softwaref6r detecting genetic differentiation between populations 

The following software packages were used to detect and estimate the difference% in the 

genetic makeup of different populations used in my studies. 

ARLEQUIN 

Arlequin software package (Schnieder et al. 2000) was used to assign individual genotypes 

to populations. This is done by determining the log-likelihood of each individual multi-locus 

genotype in each population, assuming that the individual comes from that population, 

taking into account the allele frequencies in each sample. 

PHYLIP version 3.5c 

Phylip software package (Felsenstein, J 1993) was used to construct the gene geneaologies: 

The haplotypes from different population samples were pooled together after phasing the 

genotypic data in each group separately. A distance matrix was calculated for the pooled 

haplotypes, and the algorithm UPGMA (Unweighted Pair-Group method with Arithmetic 

mean) was used to construct the phylogenetic gene tree that best describes the ancestral 

relationship between the haplotypes. When the population is divided in to two semi - isolated 

groups, for example, the alleles within each group are expected to be, on average, more 

similar to one another than comparisons between groups. This should produce two major 

clusters corresponding to the two populations in the constructed gene tree. 
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STRUCTURE version 2.1 

The program STRUCTURE is a free software package for using multi-locus genotype data 

to investigate population structure. Its uses include inferring the presence of distinct 

populations, assigning individuals to populations, studying hybrid zones, identifying 

migrants and admixed individuals, and estimating population allele frequencies in situations 

where many individuals are migrants or admixed. It can be applied to most of the 

commonly-used genetic markers, including SNPs, microsatellites, RFLPs and AFLPs. The 

basic algorithm was described by Pritchard et a]. (Pritchard, Stephens et al. 2000). Two 

models were used in the analysis: the no-admixture model, where the LD in the data is 

ignored. The other model is the linkage model, when any LD in the data is attributed to 

admixture in the population history. The models were provided with population-of-origin 

information for each individual. 

KOIND 

Using the MIND package (Kosman and Leonard 2007), several within-population 

diversity measures are calculated (Nei(Hs), Muller(Mu), Kosman expected(K), 

Simpson(Si)). Values close to 0 indicate high uniformity, while large values indicate high 

diversity. A maximum of 200 bootstrap samples are generated by the software for each 

population's haplotypcs. Measures of diversity are then averaged over all bootstrap-derived 

estimates. Several between-populations diversity measures can also be calculated using the 

same package (The Nei coefficient of differentiation(Gst), The Kosman-Leonard expected, 

The Rogers distance(R)). Values close to 0 indicate very little genetic differentiation. A 

maximum of 200 bootstrap samples are allowed to be generated for each population's 

haplotypes. Measures of genetic distance are then averaged over all bootstrap-derived 

estimates. 
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2.5.3.3. Software for bioinformatics and statistical analYsis 

All statistical analyses were carried out in either Microsoft Excel or R'ý %erslon 2.7.0. 

hitp: //www. r-pro*ect. or-g. 

Perl scripts were compiled in UNIX and executed on Linux pr(k: e-, %()r,, a%ailahle in the 

Wellcome Trust Centre. 

74 

2F. 

1 

Am 



Chapter 3: 

Genetic diversity, LD, and Haplotype structure of the 5q3l 

region in two ethnically distinct populations from neighboring 

villages in Eastern Sudan. 

3.1. Abstract 

The Hausa and Masalit of Eastern Sudan are two ethnically distinct but geographically 

contiguous populations that share the same environmental exposure to malaria and visceral 

leishmaniasis (VL). Epidemiological data suggest differential susceptibilities to these 

diseases in the two groups, with the Hausa appearing to be the more protected. 

I chose to investigate whether there is any genetic basis for their differential susceptibilities 

by studying and comparing the genetic variation patterns, especially signals of recent 

positive selection, in one important genomic region - the 5q31- that has previously been 

implicated in both malaria and VL disease pathogenesis, and which hosts a large number of 

important immune genes that could be good candidates for malaria and/or leishmania 

susceptibility/resistance. 

I genotyped 34 SNPs in 96 individuals from the Hausa village and 96 individuals from the 

Masalit village. Genetic diversity within and between groups was calculated, haplotypes 

phased, LD maps constructed, and signals of positive selection were tested for by available 
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metrics. I found these patterns not to be amenable to straightforward interpretations and 

concluded that they required further exploration. 

3.2. Objectives 

9 Construct maps of LD and haplotype structure in the 5q3l region of the human 

genome, in the Hausa and Masalit of Eastern Sudan, and compare them to each other 

and to data from other populations. 

* Quantify genetic diversity within each group. Discern and calculate the genetic 

distance between the two population groups. 

* Look for signatures of positive selection in the 5q3I region and try to disentangle it 

from patterns created by the demographic history of these populations. 

3.3. Introduction 

3.3.1. Description of the Study area 

The study area includes a set of villages that lie along the Rahad River, in Gadaref Province 

in eastern Sudan. The area has a total population of around 15,000, spread over 3040 km 

along the river bank and consisting of 9 separate villages, each with its own distinct ethnic 

character. The major groups are Hausa, Masalit, Fulani, and Bergu. This study is carried out 

in two villages, Koka (population 1521), and SaIala (population 1309). 
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3.3.2. Before association studies 

Genetic association analysis is a popular approach for identifying genetic variations that 

correlates with phenotypic variation such as susceptibility to complex diseases, but there are 

numerous examples of associations that cannot be replicated or for which attempts to 

substantiate by linkage have failed, which has led to questioning the usefulness of the 

approach for common conditions (Terwilliger and Weiss 1998; Garnbaro, Anglani et, al. 

2000; Weiss and Terwilliger 2000; Cardon and Bell 2001). It appears that understanding the 

structure of haplotypes in the human genome provides an important starting point for the 

study of complex traits. Haplotype methods have contributed to the identification of genes 

for Mendelian diseases, and recently, disorders that are both common and complex in 

inheritance (Hugot, Chamaillard et al. 2001; Rioux, Daly et al. 2001). 

Because most association-study designs so far involve genotyping a small set of markers in 

genes or regions of interest and measuring their association with disease status they typically 

examine only a fraction of human genetic variation. Consequently, these studies rely on 

background marker correlations to detect disease association. With no knowledge of the 

properties of the variants studied (e. g. extent of genomic region for which variant provides 

information), it is difficult, to interpret their results (Cardon and Abecasis 2003). 

In recent years, considerable effort has been directed towards elucidating the general 

properties of haplotypes in the human genome and underlying biological processes 

determining their variability. Some studies (Daly, Rioux et al. 2001; Patil, Berno et al. 2001) 

suggested a surprisingly simple pattern: blocks of variable length over which only a few 

common haplotypes are observed punctuated by sites at which recombination could be 

inferred in the history of the sample. One study showed that the boundaries of blocks and 

specific haplotypes they contain are highly correlated across populations and their results 
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suggested that haplotype blocks can be detected with a few markers (Gabriel, Schaffner et al. 

2002) referred to as haplotype tagging SNPs (htSNPs). This notion of shared haplotype 

block boundaries and haplotypes across populations was the foundation and initial focus of 

the HapMap project (www. hapmap. org). But more recently. there has heen a shift in the 

general consensus. It is now widely agreed that the generality of' a block-like patiern is an 

oversimplification and is not a fundamental aspect of the genome (Liu, Sa%yer et al. 2004; 

Sawyer, Mukherjee et al. 2005). Gu et al. (Gu, Pakst's et al. 2007) studied 10 Im' In 38 

diverse populations. They found considerable diversity in the pattern of LD, but 

nevertheless, very high transferability of tagSNPs was also found. 

Another major area of investigation, implicated in designing and in(erpreting assmiation 

studies is population structure. Most studies of human variation begin by -.!,. ampling from 

predefined "populations. " These populations are usually defined on the ba. -, I% of' culture or 

geography and might not reflect underlying genetic relationships. Self-rel-mi-ted ancestry can 

facilitate assessments of epidemiological risks but does not obviate the need to use genetic 

information in genetic association studies. Uncorrected ix)pulation stratification may lead to 

false positives in association studies when there are systematic differences in the ancestry of 

cases and controls. 

The problems associated with very tight LD in regions that have been identified as being 

both linked and associated with disease, is that many alleles in a gene or genes might be 

strongly associated, thereby precluding resolution of individual effects. Given strong 

evidence for LD, it can prove difficult or impossible to identify causative mutations in 

disease genes themselves. This can be further complicated by the clustermg of loci that share 

similar functions within a single genomic region of strong LD. One approach to breaking 

down such regions of linkage disequilibrium is to characterize the disea-se pheno(ype in 

diverse populations that might share substantially different ancestric-, for the genomic region 
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of interest. Such 'trans-racial mapping' has allowed the dissection of strongly conserved 

regions with extensive LD (Cardon and Bell 2001). 

3.3.3. Evidence of differential malaria susceptibility across populations 

The structure of human populations is relevant in various epidemiological contexts. As a 

result of variation in frequencies of both genetic and nongenetic risk factors, rates of disease 

and of such phenotypes as adverse drug response vary across populations. Differences in 

susceptibility to malaria between ethnic groups have previously been observed in many 

studies (Bryceson, Fleming et al. 1976) (Greenwood, Groenendaal et al. 1987; Terrenato, 

Shrestha et al. 1988). From studies on sympatric ethnic groups in Burkina Faso, the Fulani 

were found to be more resistant to malaria, exhibiting fewer clinical attacks and lower 

parasitaernia, than the Mossi and Rimaibe (Modiano, Petrarca et al. 1996). The enhanced 

resistance of the Fulani appears to reflect genetic factors. It has been demonstrated that the 

Fulani have high levels of antimalarial antibodies (Modiano, Chiucchiuini et al. 1998) and a 

low frequency of protective globin variants and other classical malaria resistance genes 

(Modiano, Luoni et al. 2001). 

The apparently less severe malaria observed in the Hausa compared to Masalit could well be 

due to a protective mechanism similar to that reported in the Fulani of West Africa, 

particularly when considering the shared genetic, cultural and political history between 

Hausa and Fulani. 
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3.3.4. Why we are interested in the 5q31-33 region 

In a candidate-region approach to the human genetics of A falciparum infection levels, 

chromosomal regions that contain genes involved in immune responses are of major interest. 

Chromosome 5q3l-q33 region contains numerous candidate genes encoding immunological 

molecules such as cytokines, growth factors, and growth-factor receptors which are involved 

in the control of immunity to P. falciparum blood stages, in particular a cluster of candidate 

genes coding for the CSF2, IL-3, IL4, IL-5, IL-13, and IRF-I that regulates IFNy 

transcription. A large number of observations indicated that IFNy is critical in immunity 

against intracellular pathogens. Among candidates that map in the distal part of 5q3I is 

IL12p4O which encodes the P chain of IL12 which has been shown to protect monkeys 

against P. cynomolgi sporozoite induced infection (Garcia, Marquet et al. 1998; Rihct, Traore 

et al. 1998). More recently, the involvement of the IRF-I locus within the 5q3I region with 

malaria susceptibility has been established in a case control study in the Mossi ethnic group 

from West Africa (Mangano, Luoni et al. 2008). 

Moreover, the importance of this region in immune regulation is highlighted by its linkage to 

plasma immunoglobulin E (IgE) levels (Marsh, Neely et al. 1994; Meyers, Postma et al. 

1994), bronchial hyperresponsivencss (Postma, Blcecker et al. 1995). and schistosomiasis 

infection (Marquet, Abel et al. 1996). 

3.3.5. The genomic region approach 

Identification of patterns of LD at the genomic level as well as within specific genes is 

useful for mapping genes associated with complex diseases. Knowledge of variant 

frequencies and their relationships can reduce the uncertainty in the design and interpretation 

of association studies. It can act as a guide to predict adequate coverage of a particular 
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genomic region and help point to the probable location of functional variants when 

association to a SNP marker is identified. 

This approach can yet be refined by the detection of background signals of selection in the 

genomic area of interest (Hamblin and Di Rienzo 2000; Saunders, Hammer et al. 2002; 

Bamshad and Wooding 2003). It is important to model selection in order to understand 

patterns of allele frequency variation, including haplotype frequencies in data from studies in 

genetic epidemiology. In theory it may be possible to identify putative genetic disease 

factors by identifying regions of the human genome that are currently under selection. 

As the signals of positive selection are often confounded by demographic factors, an 

understanding of population history is crucial for identifying the genes that are subject to 

selection. And because of the effect of demographic assumptions on the population genetic 

neutrality tests, it would not be very meaningful to reject the standard neutral model using 

these methods without paying careful attention to the underlying demographics. 

In conclusion, knowledge of the patterns of genetic diversity, LD and haplotype structure, as 

well as patterns of positive selection in the 5q3I region across sympatric groups, and 

populations in other parts of the world, has important implications for the identifications of 

SNPs and haplotypes useful for genetic mapping studies of susceptibility to complex 

diseases. 

3.4. Materials and Methods 

3.4.1. Sampled populations and study area 

Sampling was carried out in two villages along the eastern bank of Rahad river area of 

eastern Sudan along the Sudanese-Ethiopian border, 400 km south-east of Khartoum. Koka 

81 



village is 35 km north of Salala, village. This area is the major endemic area for visceral 

leishmaniasis in Sudan (75% of reported cases in 1987), it is also endemic for malaria 

mainly P. falciparum infection. 

3.4.2. DNA collection andpreparation 

The study was reviewed and ethically approved by the Ethical Committee of the Institute 

of Endemic Diseases, University of Khartoum. Samples were taken with informed consent 

from all individuals (see Appendix 1). 

With the help of other members of the Institute of Endemic Diseases, I collected DNA 

samples using the buccal brush method, and extracted DNA by the guanidine 

hydrochloride method (see Materials and Methods chapter). Total yield for a sample was 

20 pg on average. At the WTCHG in Oxford, I quantified and archived the DNA samples. 

First, sample DNA concentration was quantified using the PicoGreen assay (Molecular 

Probes, Leiden, Netherlands). DNA samples were then prepared to give 20ng/PL stock 

samples. Whole genome amplification was carried out using Primer Extension Pre- 

amplification PCR Method (PEP) (Zhang, Cui et al. 1992). 

3.4.3. Choice of markers 

Thirty four markers were chosen from a larger set of markers in the 5q3I region that had 

previously been tested in the laboratory at the WTCHG in Oxford, in samples from The 

Gambia and the UK (see Materials and Methods chapter for details). These 34 were selected 

as the most efficient set of markers to capture most of the haplotypic diversity in those 

populations (haplotype tagging SNPs). These SNPs are listed in table 3.4.3. Their 

distribution and relation to genes in the region is displayed in figure 3A. 3. 
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ID number 
Assay 

(rs number) 
Chromosomal 

coordinate Gene Alleles 
I rsl2656759 131395509 ACSL6 A/G 
2 rs3091334 131419372 ID C/T 
3 rs31473 131432345 CSF2 A/T 
4 rs27348 131435038 CSF2 A/T 
5 rs 1469149 131436741 CSF2 A/C 
6 rs27438 131441154 CSF2 AIG 
7 rs162881 131636693 PDLIM4 GfF 
8 rs157572 131654011 ENSGO0000205179 C/G 
9 rs272842 131684416 SLC22A4 A/G 
10 rs274559 131747969 SLC22A5 C/T 
11 rs274549 131757017 SLC22A5 G/T 
12 rs12517950 131759225 SLC22A5 C/T 
13 rs17689595 131760673 SLC22A5 OT 
14 rsl 1739135 131761296 SLC22A5 C/G 
15 rsIO16988 131772473 NP 001013739.1 A/G 
16 rs12521868 131812292 NP 001013739.1 A/C 
17 rs2522044 131819745 NP 001013739.1 A/G 
18 rs2522057 131829846 

_NP 
001013739.1 C/G 

19 rs7719499 131841990 NP 001013739.1 C/G 
20 rs207O727 131848174 _ IRFI A/C 
21 rs 10068129 131849145 IRFI Ctr 
22 rs2706384 131854779 IRR A/C 
23 rs2069820 131904015 IL5 C/G 
24 rs17166050 131943112 RAD50 C/T 
25 rs12187537 131967803 RAD50 A/C 
26 rs3798135 131993008 RAD50 A/G 
27 10800925 132020708 IL13 A/G 
28 rs1295686 132023742 IL13 A/G 
29 rs20541 132023863 IL13 C/T 
30 rs1295685 132024344 IL13 C/T 
31 rs2243219 132030024 IL13 A/G 
32 rs734244 132038625 ILA A/G 
33 rs2227284 132040624 ILA A/C 
34 rs2243270 132042008 IL4 OT 

Table 3.4.3: SNPs typed in the 5q31 in the Sudanese samples. Their coordinates in chromosome 5 are 
shown (Ensemble version 39). Also shown are the closest genes to the polymorphisms and their alleles. 
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Figure 3.4.3: The distribution of SNPs that were typed in the 5q3l in the Sudanese %ample-% and their 
relation to genes in the region. The SNPs and genes arc ordered froni left it) riplit a% in table 14, 

3.4.4. Genotyping the 5q3l genomic region 

The genomic area typed spanned a 646.5 kb in the 5q3l region Orom .: tx)rdinatc 

5: 131395509 to coordinate 5: 132042008 according to Ensemble version 39). From each 

village 96 individuals were genotyped. In the Masalit. 63 individual compn,. cd tnos of 

mother, father, and child. 12 individuals were in parent-child pairs. and the 21 remaining 

individuals were unrelated. In the Hausa; 42 individual compfised trios of mother. father, 

and child. 32 individuals were in parent-child pairs, and the 19 remaining indkiduals were 

unrelated. Genotyping was carried out using primer-extcnsioii/iiia. s%--, I)cctrt)iiietry 

(Sequenom, San Diego, CA, USA) technology (see Materials and Methods chapter). 17here 

was a very high genotyping success rate of 97%. 
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3.4.5. Statistical, analytical, and computational procedures 

HWE calculations for assay genotyping performance were undertaken in excel. A 

compromise between the exclusion of interesting variants with significant genotype 

distortion from HWE due to the selective pressure of malaria and the exclusion of inaccurate 

genotyping assays, a 0.1 (Xv HWE chi-square significance threshold was set for assay 

exclusion. 

3.4.5. /. Haplotype construction 

Haplotypes were generated from the genotypic data of unrelated individuals using the 

Phamily-PHASE and PHASE version2.1 software packages (Stephens, Smith et al. 2001; 

Stephens and Donnelly 2003). Because I typed additional family members, their genotypes 

were used to infer the known haplotypes before running PHASE. This provided PHASE 

with more information enabling both more reliable results and faster execution. The Phamily 

analYsis is designed for one such situation. It takes a set of trio families and in the first stage 

uses logical methods only to infer all the known haplotypes in the parents. The children were 

then discarded and the parental genotypes and known haplotypes were passed to PHASE as 

a set of unrelated individuals. PHASE was used to estimate the most probable remaining 

haplotypes using statistical methods. 

3.4.5.2. LD maps and signals of positive selection 

Haplotypes of unrelated individuals generated from PHASE, were fed - each population 

group separately- into the MARKER application (http: //www. gmap. net/marker). MARKER 

maps were generated illustrating the LD between SNPs in the 5q3I genetic region. I chose 

the disequilibrium coefficient D' as the LD measure for these maps. Haplosimilarity 

(Hanchard, Rockett et al. 2006) was computed by the application as a way for detecting 

putative signatures of recent positive selection. 
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3.4.5.3. Detecting genetic differentiation between the Hausa and Alasalit 

The following software was used to detect and estimate the differences in the genetic 

makeup of the Hausa and Masalit (see Material and Methods chapter for details) 

ARLEQUIN software package (Schnieder et aL 2000) was used to assign individual 

genotypes to populations. This is done by determining the log-likciihood of each individual 

multi-locus genotype in each population, assuming that the individual comes from that 

population, taking into account the allele frequencies in each sample. 

PHYLIP version 3.5c software package (Felsenstein, J 1993) was used to construct the gene 

geneaologies: The haplotypes from the Hausa and Masalit samples were pooled together 

after phasing the genotypic data in each group separately. 

STRUCTURE v2.1: (Pritchard, Stephens ct al. 2000) Analysis was carried out with 100,000 

bum-in and 100,000 iterations. Two models were used in the analysis: the no-admixture 

model, where the LD in the data is ignored, assuming two populations of origin. 7le model 

was provided with population-of-origin information for each individual. 7he other model is 

the linkage model, when any LD in the data is attributed to admixture in the population 

history. The linkage model was run using the phased haplotypcs of the unrelated individuals 

and providing population-of-origin information. For estimating K, 1,000,000 iterations wcre 

used for assumed number of populations (k) between I and 10. 
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3.5. Results 

3.5.1. Checkingfor pedigree errors 

Twenty-nine of the 34 typed markers were typed successfully and found to be polymorphic 

in the two populations. For 11 % of the sampled individuals, their pedigree did not concur 

with their genotypic data. For every trio with two or more markers with pedigree 

inconsistencies out of a possible 29, the three individuals making the trio were analysed as 

unrelated. After the pedigree check there were 72 unrelated Masalit, and 72 unrelated Hausa 

individuals. 

3.5.2. Assay Properties 

Table 3.5.2a and table 3.5.2b present features of the 5q3I assays genotyped in the Hausa and 

Masalit samples respectively, including their minor allele frequencies in the unrelated 

individuals -after excluding the children-, their genotyping performance in terms of failure 

rate (%), and conformation of observed genotype distributions to the expected HWE 

distribution. The assays generally performed well on the MALDI-TOF mass spectrometry 

platform. All assays exhibited low failure rates, the majority falling below 5%, and none 

exceeded 15%. Typed assays demonstrated high concordance with HWE. They were all 

within the 0.1% significance threshold. This threshold, rather than the typical 5% threshold, 

was defined in the attempt to discriminate between poor genotype call rate and effect of 

selection pressure. 
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Assay 
(rs number) 

Minor allele 
frequency 

% 
Failure 

*IIWE 
chi-square 

rs12656759 0.49 0.04 0.7(0.40) 
rs3091334 0.32 0.11 0.68(0.41) 
rs31473 0.49 0.00 1.39(0.24) 
rs27348 0.23 0.01 0.01(0.91) 

rs1469149 0.42 0.01 0.02(0.90) 
rs27438 0.39 0.01 2.29(0.13) 
rs162881 0.46 0.04 0-01(0.94) 
rs157572 0.46 0.01 0.41(0.52) 
rs272842 0.34 0.03 0.0](0.90) 
rs274559 0.35 0.03 0.09(0.76) 
rs274549 0.42 0.00 0.27(0.60) 

rs12517950 0.04 0.01 0.09(0.76) 
rs11739135 0.04 0.01 0.09(0.76) 
rslO16988 0.09 0.04 0.75(0.39) 
rs12521868 0.05 0.00 0.19(0.66) 
rs2522044 0.22 0.04 3.88(0.05) 
rs2522057 0.06 0.06 0.27(0.61) 
rs7719499 0.48 0.00 10.45(0.0012) 
rs2706384 OA2 0.01 6.84(0.01) 
rs2069820 0.02 0.04 0.03(0.85) 
rs3798135 0.37 0.01 0.57(0.45) 
rs1800925 0.38 0.01 0.02(0.89) 
rs1295686 0.30 0.00 0.79(0.37) 
rs20541 0.13 0.10 0.94(0.33) 

rs1295685 0.04 0.06 0.1(0.75) 
rs2243219 0.41 0.00 0(0.97) 
rs734244 0.48 0.15 0.14(0.71) 

rs2227284 0.06 0.03 0.33(0.57) 

rs2243270 0.27 0.00 0.58(0.44) 

Table 3.5.2a: Genotyping Performance of Sq3I SNPs in 72 Unrelated Ilausa Individuals (144 
Chromosomes). * Hardy-Weinberg equilibrium chi-squarc value with probability (p-valuc) in brackets. 
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Assay (rs 
number) 

Minor allele 
frequency % Failure 

*HWE chi- 
square 

rsl2656759 0.29 0.03 2.53(0.11) 
rs3091334 0.27 0.07 3.87(0.05) 
rs31473 0.44 0.03 1.24(0.27) 
rs27348 0.21 0.00 2.31(0.13) 

rs1469149 0.41 0.03 0.24(0.63) 
rs27438 0.42 0.00 1.01(0.32) 
rs162881 0.40 0.06 0.42(0.52) 
rsl57572 0.49 0.00 0.00(0.99) 
rs272842 0.14 0.00 1.87(0.17) 
rs274559 0.14 0.00 1.87(0.17) 
rs274549 0.35 0.01 0.01(0.92) 

rs12517950 0.02 0.00 0.03(0.86) 
rsl1739135 0.02 0.01 0.03(0.86) 
rsIO16988 . 

0.15 0.00 2.1(0.15) 
rs12521868 0.03 0.00 0.06(0.81) 
rs2522044 0.20 0.01 2.53(0.11) 
rs2522057 0.04 0.01 0.14(0.71) 
rs7719499 0.39 0.00 9.11(0.003) 
rs2706384 0.33 0.08 6.26(0.01) 
rs2069820 0.02 0.01 0.03(0.86) 
rs3798135 0.42 0.00 0.06(0.81) 
rs1800925 0.38 0.00 1.55(0.21) 
rs1295686 0.17 0.01 2.78(0.1) 
rs20541 0.20 0.01 0.00(0.98) 

rs1295685 0.01 0.03 0.00(0.95) 
rs2243219 0.46 0.00 0.29(0.59) 
rs734244 0.48 0.04 2.41(0.12) 
rs2227284 0.01 0.03 0.01(0.9) 

rs2243270 0.14 0.00 1.87(0.17) 

Table 3.5.2b: Genotyping Performance of 5q31 SNPs in 72 Unrelated Masalit Individuals (144 
Chromosomes). * Hardy-Weinberg equilibrium chi-square value with probability (p-value) in brackets. 

3.5.3. Comparing allelefrequencies in the Hausa and Masalit 

To compare allele frequencies between the Hausa and Masalit in the 5q3l region, I 

calculated the allele frequencies in each population group of unrelated individuals. Each 

marker was then compared between the two groups using aW chi square test with one 

degree of freedom. Although the differences of allele frequencies between the groups were 

mostly insignificant (Figure 3.5.3a), the sampled Hausa individuals tended to be higher in 
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their minor allele frequency compared to the Masalit sample. One rx)%%ible explanation for 

this minor difference is that the Hausa might have a greater effective popukition "ife due to 

higher migration and integration of individuals from nearb) Hausa %illages through 

marriage. If that were true, they could be less influenced by genetic drift %khich. generally, 

tends to sweep gene variants out of a population over time. 
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Figure 3.5.3a: Minor allele frequencies of 5q3I markers typed in the Hausa (blue bar% i and Masaht 
(purple bars). Stars indicate the markers that were found to be significantly different tkt%ct: n the oho 
populations. Markers are ordered on x axis as shown in Table 3.4.3. Minor allele I-requerwic,, iqý Art! %hown on 
the y axis. 
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Minor allele frequencies were found to be highly correlated between the Hausa and Masalit 

samples, with correlation coefficient R2=0.81 (figure 3.3.3b). 
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Figure 3.5.3b: Correlation of minor allele frequencies (MAF) in the Hausa and Masalit for markers 
typed in the 5q3I region. 

To determine whether this level of correlation in MAF values is greater than might be 

expected for any two different ethnic groups in Africa, more population groups should be 

analysed. The question of whether this observation is specific to the 5q3l region or not, 

could be tackled by looking at other genomic regions in the Hausa and Masalit. 
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3.5.4. Inbreeding 

When mating takes place between relatives, the pattern of mating is called inbreeding. In the 

two Sudanese populations, I expected to find some evidence of inbreeding, because of the 

fact that most individuals were found to be related to some degree within each village when 

whole-village pedigrees were constructed. 

The main effect of inbreeding is to produce organisms with decrease in hcterozygosity, 

relative to the heterozygosity expected with random mating in the same subpopulation, as 

calculated from the Hardy Weinberg equilibrium. 

The effects of inbreeding can be quantified by the Inbreeding coefficient (F) which 

measures the fractional reduction in heterozygosity of an inbred subpopulation relative to a 

random mating subpopulation with the same allele frequencies. 

(Ho-Hi)/llo 

Where Ho is the expected heterzygosity (2pq), and 11, is the observed hcterozygosity. The 

value of F equals zero when there is no inbreeding. For the Masalit sample the average F 

over all typed markers was (-0.04235) and for the Hausa (-0.04568). This suggests either an 

inadequacy or a bias in the samples' choice. Tbc rigorous criteria used for choosing 

unrelated individuals might have resulted in samples that don't represent the villages, 

pedigree structure, with a disproportionate representation of individuals from outside the 

villages. 

3.5.5. Haplotype Analysis 

Using the software package PIUSE 2.1 (Stephens, Smith ct al. 2001; Stcphcns and 

Donnelly 2003) to infer the chromosomal phase of the parental genotypes. I Japlotypcs were 
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generated by integrating family- and population-based reconstruction methods. The Masalit 

were found to have 117 distinct haplotypes across the region, out of a possible 144. Only 

two haplotypes were common (frequency > 5%), the highest had a frequency of II identical 

copies (figure 3.5.5a) (For a full list of haplotypes sequences and PHASE probabilities see 

appendix). 
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Figure 3.5.5a: Haplotype frequencies in the Masalit sample in the 5q3I region. On the x axis distinct 
haplotypcs are listed by their serial number as listed in appendix2. The y axis indicates the number of 
copies of each haplotype. 

The Hausa were found to have 127 distinct haplotypes across the region, out of a possible 

144. Only two haplotypes were common (frequency > 5%) in this sample as well, the 

highest had a frequency of 9 identical copies (figure 3.5.5b) (For a full list of haplotypes 

sequences and PHASE probabilities see appendix). 
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Figure 3.5.5b: Haplotype frequencies in the Hausa sample in the 5q3l region. On the x axis distinct 
haplotypes are listed by their serial number as listed in appendix2. The N au" indicate% ttw number of 
copies ofeach haplotype. 

3.5.6. Gene diversity 

Gene diversity or haplotype diversity is the probability that m () hapl()(ý l)c,, . -hoscii at 

random from the sample are different. Haplotype diversity was calculated u-sing Nei formula 

(Nei 1978) as follows: 

-- 
n P, 

j 

Where n is the number of chromosomes for each haplotype in the sample, k is the number of 

haplotypes, and pi is the sample frequency of the i-th haplotype. 
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Both populations were found to be haplotypically diverse (haplotype diversity = 0.99 +/- 

0.002 in Masalit; 0.99+/- 0.001 in Hausa). Haplotypcs were found to be highly diverse 

across the region. Only a few haplotypes were found to be common (frequency > 5%) in the 

populations studied. Only two haplotypcs in each population were found to have a frequency 

of more than 5%. 

Using the software package ARLEQUIN (Schnieder et al. 2000) to look for the haplotypes 

shared between the two populations, I found that only 4 haplotypes were shared between 

Hausa and Masalit. 

3.5.7. The degree of genetic differentiation between the Hausa and Masalit samples 

Having two populations provided the opportunity to make comparisons between population 

groups. These comparisons were carried out using Fst plus three methods of genetic 

clustering. 

3.5. Z 1. Fst 

A standard measure of gene frequency variation among populations is Wright's Fixation 

Index statistic (Fst). It reveals differences between populations by calculating the reduction 

in heterozygosity that is expected after random mating between the two populations. Fst 

measures the inter-population diversity using the difference between the average observed 

and the total expected heterzygosity. It was calculated for each of the SNPs typed using the 

equation described by Cavalli-Sforza (Cavalli-Sforza, Menozzi et al. 1994; Garte 2003). FST 

was first calculated between the two populations at each individual SNP. All SNPs except 

for three have an Fst value less than 0.06. The maximum FST value was 0.15 (Figure 3.5.7.1). 
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Figure 3.5.7.1: Fst values for SNPs typed in the 5q3I region in the Ifau%a and Mmalit %ampk--, - 
Markers ordered on the x axis as in Table 3.4.3. (See table fOr marker nanic aflif : hromommial ixi-sition). 

The fact that single markers' Fst values are low simply mean that the difference in allele 

frequency for each particular marker is not large enough for the test to he usel"ul in drawing 

inferences about the genetic distance between the two populations (i. e. how genetically 

similar or different they are from each other). The average Fst value could be more 

significant, as it gives an overall estimate of the genetic distance across the whole area. This 

estimate is less influenced by the random allele frequency similarities of single markers. The 

mean FST value over all SNPs was 0.025, which is below the expected range ot'differcrice 

between two populations (0.07 to 0.15) (Rosenberg, Pritchard et al. 2002. Banishad, 

Wooding et al. 2003). 
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Another approach I used to calculate the overall Fst value involves utilizing the full 

haplotypic information of all the typed markers, as is shown below. 

Haplotypic Fst: 

The ARLEQUIN software package was used to calculate the weighted average F-statistic 

over all loci to acquire a single general statistic that summarizes the difference between the 

two populations. The following formula was used: 

P- P 
Fst -------- 

I- ji 

Where JO is the probability of identity by decent of two different haplotypes drawn from the 

same population, f] is the probability by decent of two haplotypes drawn from different 

populations. 

The Fst value calculated using this method was 0.02 which was similar to the mean Fst 

values of single SNPs calculated previously. 

3.5. Z2. Genetic Clustering Methods 

1) ARLEQUIN: 

The ARLEQUIN software package was used to assign individual genotypes to populations. 

This is done by determining the log-likelihood of each individual multi-locus genotype in 

each population, assuming that the individual comes from that population, taking into 

account the allele frequencies in each sample. 

When the log-likelihood values of individuals from Hausa (pink dots) versus those from the 

Masalit tribe (blue dots) were plotted, as shown in figure 3.5.7.2a, it did not show two 
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distinct clusters. Rather, there was overlapping of the clu%ter,,. and a large number of 

individuals could have belonged to either group. 
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Figure 3.5.7.2a: Assigning individuals from the Hausa and Masalit to population groups by the Arlequin 
sofware. On the x-axis is plotted the -log likelihood of' belonging to the Masalit. On the )-axi% the -log 
likelihood of belonging to the Hausa is plotted. Each data point represents an individual. 

2) Gene Genealogy: 

The haplotypes from the Hausa and Masalit samples were pooled together after phasing the 

genotypic data in each group separately. A distance matrix was calculated for the pooled 

haplotypes. Then, as part of the software package PHYLIP version 3.5c (Felsenstein. J. 

1993), the algorithm UPGMA was used to construct the phylogenetic gene tree that best 

describes the ancestral relationship between the haplotypes. 
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Because the pooled sample is constituted of two isolated groups, the allcles within each 

group are expected to be, on average, more similar to one another than comparisons between 

groups. This should produce two nia lor clusters corresponding to the two populations in the 

constructed gene tree. The constructed gene tree did not have such distinct clusters 

corresponding to the Hausa and Masalit samples (figure 3.5.7.2b). The spacing of markers 

over it large genetic region, 29 markers over 650kb in this case, would have allowed some 

degree of' recombination to play a part in shaping haplotype diversity, which consequently 

would have violatcd the assumptions ofthe tree building method. 

Figure 3.5.7.2h: Phylogcnctic rclationships between haploypes in the combined Hausa and Masalit 

sample. Shown k an unroolc(l tree willi cacti branch represciiiiiig a skigle haplotype. 
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3)STRUCTURE: 

Using the program STRUCTURE 2.1 (Pritchard, Stephens et al. 2000), the two Sudanesc 

populations were indistinct when the genotypes of the 29 polymorphic markers in the 

combined sample were run under a no-admixture model assuming two populations of origin. 

The model was provided with population-of-origin information for each individual. Each 

population had on average an equal proportion of its individuals assigned to one or the other 

population (Figure 3.5.7.2c, a). This could be either because there were not enough markers 

typed, or due to the presence of background LD between markers that is not accounted for 

by the program. 

A linkage model was run using the haplotypes of the unrelated Ilausa and Masalit 

individuals and providing population-of-origin information. With this model, Structure tries 

to account for the correlations between linked markers by assuming admixture. All 

individuals from both populations had a portion of their ancestry assigned to the other 

population (figure 3.5.7.2c, b). 'I'lic discrepancy in the results of the two modcls (no- 

admixture and linkage models) indicates that there is a considerable LD in the data that 

impinges on the results of the analysis. 
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Figure 3.5.7.2c: a) STRUCTURE Bar plot of individuals' ancestry assuming no admixture and two 
populations of origin of the combined unrelated Hausa and Masalit samples typed for 29 markers in 
the 5q31 region. b) STRUCTURE Bar plot of individuals' ancestry under linkage model. In figure 
individuals are arranged on the x axis as vertical lines so that Hausa sample constitute left half ofthe graph 
and the Masalit the right hall'. with the vertical black line in the middle separating them. On the y axis the 
percentage of each individual's assigned ancestry is indicated with different colours for the two assumed 
populations. 

3.5.8. The pattern of Linkage Disequilibrium in the 5q31 

The program MARKER was used to generate an LD map of the 5q3l region in the Hausa 

and Masalit. A separate map was constructed for each sample (Figure 3.5.8a & figure 

3.5.8b). The vertical axis is the 5q3l region with SNPs typed and minor allele frequencies, 

the coloured patterns are a statistical representation of the ID'I value calculated for each pair 

of markers. 
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Figure 3.5.8a: Marker Map illustrating the LD between SNPs in the 5q3l region in the Nfasalit. LD is 
measured by absolute D' (littp: //www. ý,, iiiap. net/iiiýirkcr ). Coloured sfx)t,, omnecting SNII% illustrate the 
absolute D' level between those SNPs. Colour coding is presented in the top right -hand corner. 
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Figure 3.5.8b: Marker Map illustrating the LD between SNPs in the 5q3l region in the Hausa. LD is 
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The figures show little LD between markers typed in both populations. In both the Hausa 

and Masalit samples the average LD value was 0.05 with a variance of 0.01. LD values 

ranged from 1.8E-05 to 0.96 in the Hausa, and from LOE-05 to I in the Masalit. 

There was less LD and more diversity in the two Sudanese samples when compared with 

HapMap CEU sample (Figure 3.5.8c). This is contrary to the extensive LD expected in small 

semi-isolated populations due to bottle necks, small effective population size and inbreeding, 

especially when compared to a sample representing the whole population of Utah. 
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Figure 3.5.8c: Marker Map illustrating the LD between SNPs in the 5q3l region in the HapMap CEU 
population. LD is measured by absolute D' (hitp: //www. ý,, iiiap. netliiiarker ). Coloured spots connecting SNPs 
illustrate the absolute D' level between those SNPs. Colour coding is presented in the top right-hand comer. 
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3.5.9. Signals ofpositive selection 

To search for signals of positive selection in the 5q3l region in thc mo Sudanese 

populations, the haplosimilarity test implemented in the NIARKER application 

(httl2: //www. gmap. neUniarker was used. 

There was no clear signal in the Hausa data (Figure 3.5.9a). The Ma-salit data revealed a very 

slight signal that was barely distinguishable from the background noise In the region (Figure 

3.5.9b). 
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Figure 3.5.9a: Scatter plot of minor allele frequencies of markers typed in the 5q3I and their 
haplosimilarity scores in the Hausa sample (hitp: H",, A-A. Lniap. net/marker ). On the x axj% markers art: 
arranged in the same order as in figure 3.5.8a. The y axis is the relative I-Jill worc. '11)e grLen line is the 5% 
significance level. 
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Figure 3.5.9b: Scatter plot of minor allele frequencies of markers in the 5q3I and their haplosimilarity 

scores in the Masalit sample (http: //www. Lniap. net/marker ). On the x axis markers are arranged in the 
same order as in figure 3.5.9b. The y axis is the relative EHH score. The green line is the 5% significance level. 

In order to verify the significance of any signals detected, there has to be a comparison with 

other regions of the genome in the two populations. Any of several factors could affect the 

detection of such signals, such as the level of LD in the region, and the haplotype inference, 

which in turn, largely depends on the markers' choice. 

3.5.10. Tagging SNPs 

The entropy maximization method (EMM) selects those SNPs that most effectively dissect 

the underlying haplotypic structure of a locus. I used this method to define a subset of SNPs 

that represent the greatest proportion of the full 29-SNP haplotypic diversity. 
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The results of these analyses allow us to prioritize SNPs for genotyping in future disease- 

association studies and examine the transferability of tagSNPs between the studied Hausa 

and Masalit. To identify which SNPs are the best markers of the 5q31, (EMNI) identified 15 

out of the 29 typed polymorphic SNPs in Masalit and 16 SNPs in the Hausa, as required to 

describe 100% of the haplotypic diversity. There were 12 tagging SNPs found to be shared 

between the Hausa and Masalit groups. 

3.6. Discussion 

Knowledge of the patterns of genetic diversity and haplotype structure in the 5q3l region 

across the two Sudanese groups, living in a malaria and VL endemic area, has important 

implications for identifying SNPs and haplotypes useful for genetic-mapping studies of these 

diseases in the two populations. Furthermore, this investigation offers an in-depth look at the 

genetic variation patterns in a typical African village setting. Ibis knowledge especially 

when compared with that of populations from other parts of the world might help advance 

our understanding of human genetic diversity as a whole, in Africa and elsewhere. 

Why the Hausa and Masalit are interesting: 

The Hausa and Masalit populations of eastern Sudan were sampled from two neighboring 

villages with similar environmental pressures. They have distinct ethnicities and 

demography as evidenced by their history, how they identify themselves and their oral 

account of origin, migration and lack of interbreeding with other populations, as well as their 

linguistic differences. Founder effects, consanguinity, endogamy, and isolation from original 

population sources, might have played some part in creating homogeneity and in limiting 

variation in the genetic pools in these recently immigrant populations. Previously many 
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studies have emphasized the value of isolated populations in the dissection of complex traits 

(Shifman and Darvasi 2001). 

The markers: 

The 5q3I region in these two populations has been typed using a set of 29 markers. These 

markers were previously identified by members of the Kwiatkowski group, in the WTCHG 

laboratory in Oxford, as the most informative set (tagSNPs) in a sample from the Gambia in 

West Africa. 

The fact that these markers are a tagSNP set from another African population made them 

more likely to be useful in outlining the genetic variation pattern in the two Sudanese 

populations of my study. In the recent past, the transferability of tagSNPs across 

populations, especially those from the same continental region, was suggested by several 

studies (Gu, Pakstis et al. 2007). And although Gonzalez-Neira et al. (Gonzalez-Neira, Ke et 

al. 2006) found Africa to be the most diverse region for the portability of tagSNPs from one 

population to another, nonetheless, they still found tagSNPs to be highly portable between 

African populations. However, those results were obtained in a gene-free region and may not 

be extended to other regions with different properties, like the 5q3I region. 

The sample size: 

The robustness of inferred LD structures is dependent, among other things, on the size of the 

samples used. Evaluations of empirical data recently concluded that 90-100 subjects will 

likely be sufficient for construction of stable enough HapMap (Zeggini, Rayner et al. 2005). 

Fallin et al. (Fallin and Schork 2000) estimated that a sample size of 100 is sufficient to 

estimate, using the EM algorithm, haplotype frequencies with a high degree of accuracy. For 

these reasons, I expected the LD and haplotype frequency estimations in my datasets to be 
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reasonably stable, especially with the advantage of typing extra family members, which 

provided more accurate haplotype phase information. 

Polymorphism patterns: 

This genotyping endeavour was carried out to determine the population patterns of genetic 

diversity in the Hausa and Masalit, their haplotypic and LD structure. and to gain insight into 

how genetically different these two populations arc from each other in the 5q3I region. Ibis 

particular region of the genome is functionally significant in many diseases. It harbours zx 

number of key genes important in resistance to infections and in modulating the body 

immune response. 

Although there are differences between the Hausa and Masalit of the study in terTns of 

nutritional status, social organization and family structure, nonetheless, the fact that these 

two populations share the same environment and are exposed to the same pathogens, mainly 

P. falciparum and L donovani; makes any patterns of genetic similarities above and beyond 

those expected, of particular interest, for it could indicate evolutionary convcrgence due to 

same selection forces acting on these two groups. Ibis type of information could be 

potentially useful to aid in the design of the future association studies in thcsc populations 

when phenotypes are considered, with the hope of understanding a bit more about the 

genetic factors underlying the susceptibility to these infectious diseases. 

It became evident when I constructed the whole village pedigree that there was a high degree 

of relatedness between individuals from different families within the same village. 7be 

whole village could be divided into several clusters where there are many strong tics 

between families. From a recent study carried out in the Masalit - the same group studied 

here- whole genome scan data showed there are only a limited number of Y chromosomal 

lineages in Salala village (Miller, Fadl et al. 2007). 
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Although this setting - extended pedigrees with high degree of relatedness between them- 

might be ideal for some study designs like linkage studies and Family Based Association 

Testing (FBAT), it could present some challenges for others. For example it could 

potentially confound the results of case control studies, especially in founder populations 

that have grown rapidly and recently from a small size -as probably is the case here-, where 

there would be an increased likelihood of sampling bias toward collecting relatives (Voight 

and Pritchard 2005). The above underlines the importance of careful consideration of 

schemes adopted when sampling from groups with high degrees of relatedness between their 

members. 

Surprisingly the expected genetic telltale signs of inbreeding and bottle necks, like increased 

homozygosity, the presence of a few haplotypes, and extensive LD; are all absent in the 

Hausa and Masalit samples, despite the fact that they both have a small population size and 

being founded by a few individuals who migrated to eastern Sudan and maintained a limited 

flux with their original population source. This can perhaps be partly explained by the fact 

that the rigorous criteria used for including individuals in the study might have biased the 

sample to include a disproportionate number of individuals from outside the village, which 

might have given rise to the picture of low LD in the region and lack of evidence of 

inbreeding. Alternatively low LD might arise due to exponential growth and rapid expansion 

of the size of these populations. The founding population for each village comprised 10-15 

related males with their families. By 2004 population sizes were 1,300 in Salala village and 

1,500 in Koka village. This rapid growth is concordant with the reported country-wide trend. 

In addition to being evidenced by the actual village numbers at present, the effect of 

population growth on patterns of genetic variation could also be magnified by the high 

mortality rate, which constitutes a sort of undetected or cryptic numbers. 
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The spacing and choice of markers from tagging SNPs which by definition have no or little , 

LD between them might have made it more likely to get this result. Furthermore, the low LD 

observed in the 5q3I region could be related to the important functionality of the region, 

being packed with genes involved in many aspects of immunity to a wide range of diseases. 

It is possible that multiple forces of selection could be playing a role in shaping the 

polymorphism pattern in the region, resulting in a high preponderance of intermediate 

frequency alleles and low LD between variants. Fine-scale genetic map estimates from phase 

2 HapMap data found genes involved in defence and immunity to have the highest 

recombination rates compared to genes of other functional classes (Frazer, Ballinger ct al. 

2007). 

The amount of LD was very similar in the Hausa and Masalit samples. Although I have only 

quantified the amount of LD here, the question of quantifying the LD pattern differences 

between population groups remains an important one. I will be tackling this issue in the 

coming chapter. Just one example of the many arguments for its importance is that 

quantitative measures of transferability -of the set of tagSNPs selected from one population 

to another- are related to the extent of agreement (similarity) between the LD structures in 

different populations. 

It was interesting to find less LD and more diversity in the two Sudanese populations when 

compared with HapMap CEU population. Especially considering the fact that each of the 

Sudanese groups represents a single, ethnically homogeneous small village, while HapMap 

CEU, on the other hand, was sampled from the whole population of Utah. The genetic 

diversity pattern of LD structure found in the 5q31 region in the two Sudanese populations 

versus that of the CEU population can be explained by the 'out-of-Africa' hypothesis of 

human dispersal. The subsequent founder effect in non-African populations and the larger 

effective population size of African population resulted in more genetic diversity, less LD 
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and higher heterogeneity among populations in Africa than elsewhere. However, these 

patterns could have been affected by other processes such as ascertainment bias of the 

markers, sample choice, or selective pressures. 

Population differentiation: 

The sampled Hausa and Masalit were similar in their minor allele frequencies with a 

tendency for Hausa to have higher MAR All tests run to try and differentiate these two 

populations from each other (single marker Fst, haplotypic Fst, clustering individuals using 

ARLEQUIN, STRUCTURE and genetic trees. ) failed to identify the two populations as 

genetically distinct from each other, and to cluster individuals correctly. 

The FST values for individual SNPs confirmed the initial observation regarding allele 

frequency; namely, that the frequencies are relatively similar. The whole locus Fst, using 

haplotypes of all the SNPs I typed in the region, was 0.02. The mean single-SNP FST value 

was 0.025. 

In a study conducted in 37 world populations using 80 independent loci, considerable 

substructure was found within geographical regions. More divergent genetic lineages and 

higher levels of subdivision have been shown to exist in African populations than in those 

from other regions. Estimates of average Fst values within Africa were found to be around 

0.051 (Tishkoff and Verrelli 2003). In another study, in which 44 worldwide populations 

were typed at the CTLA4 gene, the highest continental Fst value was found in sub-Saharan 

Africa. The average Fst for African populations was 0.068 (Ramirez-Soriano, Lao et al. 

2005). Kidd et al. (Kidd, Pakstis et al. 2004) found the distribution of Fst values in 38 world 

populations analysed with more than 100 neutral polyrnorphisms per analysis, to range 

between 0.042 and 0.380. 

Since African populations are generally thought to have more associated diversity and to be 

more different from each other than would be predicted from their geographical proximity 
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(Kidd, Pakstis et al. 2004), the apparently minimal overall difference in diversity between 

the two Sudanese populations of my study was intriguing. It was also interesting to note that 

most of the SNPs with similar population frequencies in the I-lausa and Masalit and thcrcfort-- 

low Fst were of a high frequency. Kidd ct al. (2004) noted that markers with low Fst values 

tend to be of low heterozygosities, and they found the combination of high hctcrozygosity 

and low Fst to be unusual. Whether this relatively low Fst in the 5q3l region is reflected in, 

the genome as a whole, is an interesting question that merits further investigation. 

Recent common ancestry can not be put forward as an explanation of the genetic similarities 

between the Hausa and Masalit, for they are West African and East African in origin 

respectively, and although they are geographically contiguous at present, high levels of 

migration and gene flow can not explain their similarities either. Tbcy are both highly 

endogamous with marriages exclusively restricted to within the same ethnic group. 

Furthermore, what makes the above two possibility even less likely is the wide social and 

linguistic divide of the sampled Hausa and Masalit. 

Determining the FST over several SNPs at a particular locus (avcmgc FsT) is suggestive of 

the forces that might have produced the particular FsT distribution. Fst values that are 

exceptionally high or low could reflect differential selection acting on particular loci rather 

than genetic drift or migration. For example, a low global FsT could indicate balancing 

selection where the allele frequencies are expected to be similar, while high global FS-r 

values could be the result of directional selection where there is divcrgcncc of allcic 

frequencies (Hamblin and Di Rienzo 2000). Due to the importance of the 5q3I region in 

modulating the immune response to infection, and the commonality of the environmental 

pressures in the two villages; this genomic area could have been shaped by balancing 

selection acting on the two populations and creating an excess of intumediatc-alldc- 
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frequency markers. This raises the need to further explore the signals of positive selection in 

the region. 

But the most likely explanation could be that this observed pattern is a consequence of the 

density, spacing and choice of markers. It could very well be that the number and 

characteristics of typed markers, does not allow for enough resolution to distinguish these 

two populations from each other. Marker choice affects downstream statistics based on the 

allele frequencies of these markers, like Fst and algorithms used in STRUCTURE and 

ARLEQUIN. For methods that rely on haplotype information like gene genealogy inference, 

robustness of the phasing of the extended haplotypes over a 600 kb region using a few 

markers might be a consideration. 

Although it is difficult to advance any definitive answers for these observations, in the next 

chapter I will explore the markers-set choice further, and try and maximize markers' 

information content used to tease out the genetic distinctness of the Hausa and Masalit. This 

will be done to examine whether there is enough between-population variance, sufficient to 

cause consistent bias in case control studies when such subtle differences can be made 

significant by the larger scale sampling schemes typically employed by these studies. 

Signals of selection: 

Most SNP data have been obtained by choosing high frequency markers from publicly 

available databases. The process by which the SNPs have been selected affects levels of LD 

observed in the data and the frequency spectrum, which makes these studies not ideally 

suited for detecting selection. Ascertainment bias complicates downstream analyses of 

selection signals, one example of that might be the skew it creates in allele frequency 
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spectrum. That is why for this dataset the metric I've chosen to look for signals Of selection 

depends on the haplotypic information rather than allele frequencies. 

While the Hausa did not display any obvious signal of selection in the 5q3I region using the 

Haplosimilarity measure, the Masalit had a small signal that did not stand out against other 

background signals. This emphasizes the difficulties in weighing the significance of such 

results without a standard to measure against. Understanding how frequently signals of this 

magnitude can occur by chance alone, as well as interpreting them against background noise, 

is important in identifying markers subject to positive selection. 

Patterns of genetic variation and LD are affected both by gene specific factors (mutation. 

recombination rate, conversion, selection) as well as demographic histories (contractions, 

expansions, subdivision). In contrast to population processes that affect the whole genome., 

gene factors such as differential selection can shape the haplotype structure and LD in 

specific gene regions and might result in population differences. Since the 5q31 region has a 

key role in the immune system and has been related to susceptibi Ii tics to infectious diseases, 

the exposure to geographic differential selective pressures, such as the presence of pathogens 

that might have affected the 5q3I gene structure, could be envisaged. 71is has been the case 

of the selection for resistance to malaria detected in several genes such as G6PD, Duffy and 

TNFSF5. But demographic explanations have to be ruled out first before selection can be put 

forward as an explanation. 

It would be interesting to study these two populations at another region in the gcnomc where 

selection might have played a part and where the functional variant is already known, and to 

compare the selection signal with the patterns seen here at the 5q31 region. With the large 

body of evidence of it being under malaria selection, the IlbS locus is one such region 
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perfect for modeling how the signal of positive selection would look like in these two 

populations. 

Furthermore, any additional genotyping carried out in another genomic region could help 

improve the resolution of genotypic data to distinguish the two populations as separate 

entities. 

Impact on association studies: 

The knowledge of the haplotype structure and LD patterns in specific regions, such as the 

5q3I region, will shed light not only on the history of the populations analysed but also on 

the gcnomic processes that could be pivotal for biomedical interests. 

Although there were striking similarities in allele frequencies and amount of LD, and less 

than expected structuring by available genetic distance estimates; significant differences in 

haplotype composition were found to exist between the geographically contiguous Hausa 

and Masalit of eastern Sudan. Genomic processes might have affected the populations in the 

same manner, giving similar LD and allele frequency patterns, whereas the differences found 

in haplotypes, might be explained by demographic processes, such as expansions, founder 

effects and migrations. 

Although the differences observed here are small, they could be highly significant in the 

context of a large case-control study in which ethnic groups were not well matched between 

cases and controls. These results point to the need of a very well matched control population 

to compare with cases in order to minimize false positive associations. 

The analysis done on the 5q3I region could be linked to improving the future design of any 

association study to be carried out in these two Sudanese populations. Prioritization of 

markers to be genotyped. could be done by choosing the markers with the greatest chance of 

identifying those contributing to the phenotype under investigation like typing the tagSNPs 
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or those with some evidence of being under selection; thus reducing financial and statistical 

costs of studies. 

These data could have several additional roles in the analysis of diseasc-association studies. 

For example, using phased haplotypes with high probabilities from this small set of trios 

could help in phasing the haplotypes of a larger case control set of unrelated individuals 

from the same populations. 

By a similar argument, missing genotypes out of the set used here, either because of 

genotyping failure or because the SNP was not assayed in the casc control study, could 

potentially be inferred through comparison to the genotyping data generated in this analysis. 

3.7. Conclusion 

A map of LD and haplotype structure in the Sq31 region has becn constructcd for each of the 

two Sudanese populations separately. The two populations were found to be very similar in 

terms of their minor allele frequencies and genetic distance. On the other hand, there was 

negligible overlap in the haplotype frequency between the two groups. There was also little: 

LD between this particular set of markers in the Sudanese populations when compared with 

a population of European ancestry. It was also difficult to interpret the positive selection 

signals of this dataset in relation to background noise. 

Sampling, choice of markers, demographic factors or selective forces can all influcncc the 

results, and consequently would affect any downstream statistics. 7bis exploration of the 

data has certainly raised more questions about African-population genetics than answers. 

The rest of the thesis will be an in-depth exploration of these questions, and the practical 

applications of the knowledge gained through these explorations. 
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As all the available methods used to discern the genetic differentiation between the Hausa 

and Masalit failed to reflect this difference in my dataset. Bearing the limitation of the data 

firmly in mind, I will go on, in the next chapter, to explore an LD-based statistical analysis 

that will maximize the informativeness of markers for estimating genetic distance. 

In chapter 51 examine the P-globin region harbouring the sickle haemoglobin variant, as a 

clear example where natural selection is known to have played a part in shaping its diversity 

and where the functional variant is known, to allow an easier interpretation of the genetic 

variation patterns associated with positive selective pressures in the Hausa and Masalit. 

117 



Chapter 4: 

Ascertaining genetic differentiation between closely related 

populations by employing LD information of a limited set of 

linked markers. 

4.1. Abstract 

In the previous chapter, methods employed to genetically differentiate the ahnically distinct 

Hausa and Masalit did not yield significant results. However, there were marked differences 

in allclc association patterns and haplotypic structure, in spite of the observed allcle 

frequency similarities. The focus of this chapter is determining whether this apparent 

difference is a product of chance, or whether it is a reflection of diverse ancestry. and if so. 

can it be usefully employed in genetic distance estimation. In order to answcr these questions 

I wrote and developed programming scripts to calculate pair-wise LD values for markers 

across the genomic region for each population group separatcly using the Expectation 

Maximization (EM) algorithm. Then the correlation between the paired samples was 

calculated using Spearman's rank correlation coefricicnt (rho). To test for the signiricancc of 

the results, I employed a permutation approach. Between a 1000 and 50000 bootstrap 

samples were generated for each pair of populations compared. 

I performed this analysis on limited sets of linked markers, along a 650 kb stretch of 

chromosome 5q3I region, in four African population samples, comprising the flausa and 

Masalit of eastern Sudan, a population sample from the Gambia, and the IlapNlap Yoruba 

sample from Ibadan, Nigeria. I also compared those groups with the IIapNlap CEU sample 

of Utah residents of European decent. 
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Incorporating LD information proved successful in highlighting the genetic divergence of 

Hausa and Masalit and for most of the between-African-populations comparisons, with aP 

value as low as 0.0008. When the HapMap CEU population was compared with the African 

groups, there was more than forty fold decrease in the P value. 

4.2. Objectives 

o Explore whether LD pattern differences correlate with genetic distances between 

distinct population groups. 

0 Employ a permutation approach to test for statistical significance. 

9 Compare the results against other available methods for determining genetic 

differentiation. 

4.3. Introduction 

Characterization and quantification of genetic diversity has long been a major goal in 

evolutionary biology. As well as the relevance of this topic to understanding human 

population history and anthropology, it is of importance for the investigation of genes 

associated with disease. The idea is that members of a preconceived ethnic group share 

common ancestry that may include genetic risk factors. Human variation has been shaped by 

the long-term processes of population history, and population samples that reflect that 

history carry statistical infonnation about shared genetic variation or ancestry. 

As well as lending itself to the analysis of case control association studies - by highlighting 

any hidden population structure in the sample that might generate spurious results if 

undetected- discerning genetic differentiation between populations might be hugely 

beneficial in the field of pharmacogenetics, where the genetic structure of a population is 
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used as a predictor of the efficacy of drugs or the likelihood of advcrsc reactions (Jorde and 

Wooding 2004). 

Populations are often defined in many often arbitrary ways. Exploring human differentiation 

could be pursued using frameworks that incorporate information on geography, culture, 

language, ethnicity and local demography, as proxies for the genetic makeup. Genetic 

distance between populations was found to increase with geographic distancc at both 

continental and global scales (Cavalli-Sforza and Feldman 2003). Although studics revealed 

that geographic distance explains at least 75% of the variance between human populations 

(Manica, Prugnolle et al. 2005), still, it is not enough to explain the whole of the genetic 

variation. The correlation between the results of genetic analysis and concepts of race, 

language or ancestry might not be perfect, therefore direct assessment of genetic variation 

will yield more beneficial information, especially if distance between groups is described in 

a context relevant manner, like accounting for LD when designing and analysing association 

studies (Jorde and Wooding 2004). 

Patterns of LD are the product of population histories and human n-Ligrations, recent natural 

selection, and the distribution and evolution of recombination hotspots. Previous studies of 

LD patterns in the human genome have shown that LD appeared to vary substantially among' 

populations and is sensitive to the demographic history of a population, like founder events, 

bottlenecks and isolation (Slatkin 1994; Service, DeYoung ct al. 2006). LD can extend over 

large genetic distances in isolated population groups, which was found to be quite different 

from its extent in outbred populations, in spite of the remarkably similar hctcrozygosities, 

(Angius, Hyland ct al. 2008). Even neighbouring isolate villages were found to be different 

in their genetic background (Angius, Bcbbcre et al. 2002). 
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LD serves as the backdrop for the design of association mapping studies (Zondervan and 

Cardon 2004). Based on this fact, it makes sense to look at any substructuring in the sample 

using a method that employs LD information. As it is often the case that the risk-enhancing 

SNPs are not observed directly, association tests consequently rely on LD between the 

observed and unobserved causal variant. And it is the pattern and extent of LD that 

determines the feasibility and design of association studies. This dependence on LD becomes 

even more pronounced when haplotypes are used to test associations. Testing for LD pattern 

homogeneity between groups making up the sample goes a longer way towards minimizing 

type I error than relying on allele frequency information alone. 

Furthermore, testing for LD pattern conservation across populations is of paramount 

importance in the prediction of successful transferability and efficiency of tagging SNPs 

derived from one population to be used for an indirect association study in another 

population. Recently, some studies have revealed significant variation in the underlying 

haplotype structure in spite of the observed conservation of tagSNP patterns across global 

populations (Gu, Pakstis et al. 2007). This might indicate that even in cases where the 

coverage of tagSNPs appears to be preserved across populations, caution still needs to be 

exercised because the hidden genetic variants tagged by any particular tagSNP might not be 

the same in different populations. 

The HapMap samples have been extensively used in designing studies and guiding analysis 

in other populations. Marchini et al. (Marchini, Howie et al. 2007) have successfully used 

the HapMap data to impute unobserved SNPs in the Wellcome Trust Case Control 

Consortium (WTCCC) samples. This might have been made more feasible because of the 

close genetic proximity between European populations. But for the more diverse 

relationships between other populations, initial testing of LD pattern comparability between 

those populations could be factored into the imputation of unobserved SNPs. 
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For most of the currently available genetic distance methods where the differences in alleic 

frequencies between the populations is the comer stonc; no account is taken of the LD 

relationships between markers, on the contrary, any strong LD in the data might present a 

challenge for interpreting the results of these analyses. The need for new measures of genetic 

distance has been highlighted for genotyping data with marked LD between marker loci. 

Employing an inappropriate genetic distance estimator can lead to n-dsleading conclusions in 

this type of data (Pritchard, Stephens et a]. 2000). 

Some examples of the most frequently used genetic distance methods that rely on allelc 

frequency data are: Nei's genetic distance (Nei and Feldman 1972). Fst and the derived Nei's 

coefficient of differentiation (Nei 1973). Because genetic diversity between humans is much 

less than those of many other species (Li and Sadlcr 1991) and they are found to vary only 

slightly when metrics like Fst and average nucleotide divcrsity(n) that depend on allcle 

frequency comparisons are used, the accurate classification of this diversity is extremely 

sensitive to the way markers are ascertained. For example choice of markers may favour 

those of high frequency for their high information content, especially when tagging sets arc, 

employed across populations. These high frequency markers are more likely to be old and 

shared between populations, therefore using them might lead to an underestimation of the 

genetic distance between groups compared. Due to the absence of meaningful quantitative 

cut off points that can be applied across analyses, there also arises the difficulty of deciding 

what a particular result means. Therefore Fst and related measures arc more suited to be used 

in a relative context when more than two population groups arc compared, or when, 

comparisons are made between different functional classes of gcncs (Kullo and Ding 2007). 

Metrics like Fst treat each locus in isolation from others and takes no account of correlations 

among loci. Consequently, the more loci analysed, the more of the LD information is 

ignored by this class of metrics. 
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Distance based clustering methods like the program STRUCTURE also uses allele 

frequency information. The model in STRUCTURE assumes that markers are not in linkage 

disequilibrium within subpopulations, so it can not handle markers that are extremely close 

together (Falush, Stephens et al. 2003). In addition, it usually requires the use of a large 

number of loci to tease out this difference and identify population structuring. 

Differences in haplotype frequencies between the various compared groups -could be 

considered to overcome the problem of LD in the data, like Rogers distance(R) (Rogers 

1972), but using haplotypes across relatively big genetic regions would raise the issue of the 

extent of haplotypes and their constituting markers that are most appropriate to use. If too 

large a genomic segment or too many markers are considered, most haplotypes would be of 

a single or very low frequency, subsequently there rrýight not be a difference in diversity 

within and between groups. i. e.; the chance of randomly picking two distinct haplotypes 

from different groups would be the same as sampling from the same group. On the other 

hand if shorter haplotypes are used, a lot of potentially useful infonnation. would not be 

utilized, which might lead to loss of power. Furthermore, because the accurate estimation of 

the haplotypic phase is paramount to this type of approach, errors in phase determination are 

a concem. 

In this chapter, I explore the usefulness of comparing LD patterns across population samples 

and its implications for highlighting genetic divergence. I examine the question of whether 

taking account of LD differences might possibly provide a useful addition to genetic distance 

estimation methods, and be more sensitive in distinguishing more closely related groups by 

getting the most out of the data, especially in my datasets of limited numbers of markers in a 

restricted genomic region, typed in a few individuals. In spite of the recent accessibility of 

genome wide genotypic data, this kind of data in a restricted genomic region is still relevant 

and usually encountered in studies with gene targeted approaches, where a lot of markers are 
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typed within or around a gene of interest, or when sequence data is available for such genes 

or regions. 

In addition to carrying out the analysis in the populations of my study that enjoy proxirnity 

by geographical distance, i. e. the Hausa and Masalit inhabiting two ncighbouring villages in 

a remote area of eastern Sudan, I analysed another two African populations, the Gambians 

and YRI populations, that share a west African origin with the Hausa. I also compared the 

LD in those African groups with that of the HapMap CEU. 

I used a limited number of polymorphic genetic markers (23-30 SNPs), with significant LD 

between them, typed in a short segment of the 5q31 region (about 650kb). 

When compared with the currently available methods in ability to reflect the dissimilarities 

between these populations' genetic makeup, the LD-based approach showed consistent 

results with some methods, but it had higher resolution and discriminatory power for 

unravelling human population structure than most methods. 

4.4. Materials and Methods 

4.4.1. Population samples 

For samples used in the study, proper informed consents and ethical approvals were 

obtained. 

The Sudanese dataset. - 

In Sudan, sampling was carried out in two villages along the bank of Rahad river area of 

eastern Sudan: Koka village founded by the Hausa and SaWa village founded by the Masalit 

(see Materials and Methods Chapter). 

Family histories were reviewed for consanguinity and relatedness of the individuals. Only 

those trios with no kinship either within or between them were chosen. 
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From each village 96 individuals were genotyped: initially for the Masalit; 63 were in trios, 

12 in parent & child pairs, and 21 were unrelated. For the Hausa: 45 were in trios, 32 in 

parent &child pairs, and 19 unrelated. For 11 % of the sampled individuals, their pedigree did 

not concur with their genotypic data. For every trio with two or more markers with pedigree 

inconsistencies out of a possible 30, the three individuals making the trio were analysed as 

unrelated. After the pedigree check there was 72 unrelated Masalit and 72 unrelated Hausa 

The Gambian Dataset: 

The Gambian genotyping data was obtained with kind permission from the authors (Luoni, 

Forton et al. 2005). The sample comprised 128 unrelated Gambian chromosomes, based on 

genotyping 32 family trios. 

The HapMap Dataset: 

These analyses are based on release 22 (March 2007) of the genotype data generated by the 

International HapMap Consortium. Genotypes were retrieved from the HapMap Project Web 

site (http: //www. hapmap. org) using HapMart for 24 markers in 30 CEPH trios from Utah 

(CEU sample, 120 independent founder chromosomes), and 23 markers in 30 Yoruba trios 

from Ibadan, Nigeria (YRI sample, 120 independent founder chromosomes). 

4.4.2. Marker selection 

The 30 single nucleotide polymorphisms (SNPs) set that was typed in the Sudanese 

populations was based on markers that have previously been tested in the laboratory in 

Oxford, in the Gambian sample. These markers were selected as the most efficient set of 

markers to capture most of the haplotypic diversity in the Gambian population (haplotype 

tagging SNPs), from a larger set of markers in the 5q3I region (Luoni, Forton et al. 2005). 
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4.4.3. SNPgenotyping 

For the Sudanese samples, DNA was collected using buccal brush and cxtraction was 

performed by a standard guanidine hydrochloride protocol at the Institute of Endemic 

Diseases, University of Khartoum. Total yield for a sample was 20 ug on average. DNA 

concentrations were measured and dilutions normalized to 20nglul using the picogrccn DNA 

quantification kit. Whole genome amplification was performed using Primcr Extcnsion Pre- 

amplification PCR Method (PEP) at the Wcllcome Trust Centre for Human Genetics, 

University of Oxford. Genotyping was carried out using the MALDI-TOF Mass 

Spectrometry (matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry) 

system (Sequenom). The proportion of missing data was not more than 3%. Missing 

genotypes were distributed across individuals from the two population groups. 

4.4.4. Genomic region 

The genomic area typed spanned a 646.5 kb in the 5q3l region (5: 131443826- 

5: 132090325). 

The 5q3I region was selected because it contains several genes cncoding molecules that 

have important functions in the regulation of the immune response, such as IIA, IL-13, IL- 

5, IL-3, CSF and IRFI. It has been implicated in the susceptibility for parasitic infections 

like malaria and schistosomiasis. 

The extent of genomic region and choice of markers to be typed as high frequency tagging 

SNPs is described elsewhere (Luoni, Forton et al. 2005). Tbc same 650 kb segment of the 

5q3I region studied in the Gambian population was chosen to be typed in the two Sudanese 

populations with the tagging SNPs identified from that study. And it is data for this SNP set 

that was downloaded from the HapMap websitc for the YRI and CEU populations. 
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4.4.5. Statistical analysis 

All markers were tested for departures from Hardy-Weinberg equilibrium. The HWE test for 

each SNP within each population was calculated by standard )? statistics, and none of the 

tested SNPs were found to deviate from HWE at a significance value of 0.01. To compare 

allele frequency between population groups; after calculating allele frequencies in each 

group of unrelated individuals, each marker was compared between population groups, using 

aW chi square test with one degree of freedom. 

Using the software package PIUSE (v 2.1) (Stephens, Smith et al. 2001; Stephens and 

Donnelly 2003) to infer the chromosomal phase of the parental genotypes, haplotypes for 

each population sample were generated by integrating family- and population-based 

reconstruction methods. 

KOIND: Using the MIND package (Kosman and Leonard 2007), several within-population 

diversity measures were calculated (Nei(Hs), Muller(Mu), Kosman expected(K), 

Simpson(Si)). Values close to 0 indicate high uniformity, while large values indicate high 

diversity. 200 bootstrap samples were generated for each population's haplotypes. Measures 

of diversity were averaged over all bootstrap-derived estimates. Consider a sample collected 

from population P, which consists of n haplotypes xj, x2, ... , x,, typed at k bi-allelic loci. qj 

denotes the frequency of allelel. at the ith locus, i=1,2, ... , k. The number of copies and 

frequency of haplotype r in population P are denoted by n, and p, r=1,2, ... , s, 

respectively, where s is the number of distinct haplotypes in P. The measure of dissimilarity 

between haplotypes is denoted by p. 
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Kosman index K K(P) =E niin[2qi, 2(l - qi)]/k, 1: 5 i: 5 k. O: SK(P)-<l 

Mfiller index of diversity Mu Mu(P)=[2n/(n-l)lyqi(I-qi)/k. 1: 5i: 5k. 0: 5NIu(P)<I 

Nei measure of gene Hs Hs(P) [I -qj 
2_ (I _q, )2]/k ,1 :5i :5k. 0: 511, s(P)-< 0.5 

diversity 
Simpsonindex Si Si(P) = I- 2: Pr 29 1: 5 r: 5 s, s -<Si(P)-<l 

Between-populations diversity measures were calculated also calculated using the same 

package (Ile Nei coefficient of differentiation (Gst), 7be Kosman-Lconard expected, The 

Rogers distance(R)). Values close to 0 indicate very little genetic differentiation. 200 

bootstrap samples were generated for each population's haplotypes. Measures of genetic 

distance were averaged over all bootstrap-dcrived estimates. Consider two samples collected 

from two populations P, and P2, which consist of the same number n of haplotypcs x, I, x12, 

... , xi. and X21, X229 ... , x2., respectively, typed at k bi-allelic loci. q1I and q2I denote the. 

frequencies of allelel at the ith locus for populations P, and P2. respectively. The 

frequencies of haplotype r in populations P, and P2 are denoted by pl, and P2,, respectively. 

r=1,2, ... , s, where s is the total number of distinct haplotypcs in both populations. The, 

measure of dissimilarity between haplotypes is denoted by p. 

Rogers distance R R(P 1, P2) = Y_j pI r-p2r V2, I : 5r-<s 

Nei coefficient of differentiation Gst Gst(PI, P2)= I/ k 2: Gsti(PI, P2), 1: 5 i: 5 k. (Nei 1973) 7 

STRUCTURE v2.1: Analysis was carried out with 100,000 burning and 100,000 iterations. 

Two models were used in the analysis: the no-admixture model, where the LD in the data is 

ignored, assurning two populations of origin. The model was provided with population-of- 

origin information for each individual. The other model is the linkage model, when any LD 
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in the data is attributed to admixture in the population history, the linkage model was run 

using the phased haplotypes of the unrelated individuals and providing population-of-origin 

information. For estimating K, 1,000,000 iterations were used for assumed number of 

populations (k) between 1 and 10. 

Pairwise Linkage disequilibHum coe ients: Haplotype frequencies for all pairs of SNPs : ff, C 

were estimated by maximum likelihood using an implementation of the EM (Expectation- 

Maximization) algorithm. Pair-wise disequilibrium. was summarized using the r2 measure, 

which was calculated using estimated haplotype frequencies. In each pair of populations 

compared, only the markers typed in both groups were used in the LD pattern comparison. 

For LD quantification and summary in all population groups, only the 23 markers shared 

between all populations were used. 

Description of the LD-based approach: The theoretical hypothesis behind this analysis is 

that for the degree of correlation in the MAF between any compared groups belonging to 

distinct populations, there is an un-matching degree in LD correlation between these groups. 

In order to estimate the chance element, random re-sampling and permutation is carried out 

to draw the probability distribution, against which the real data would be tested. 

Using Perl. scripts running on a UNIX platform (see appendix 3, script 1); Initially all the 

pair-wise r2 values are calculated for all markers, within each group separately, using the 

Expectation Maximization (EM) algorithm. Each group represents one of the populations 

that we want to establish the genetic distance between. Afterwards the Spearman's rank 

correlation coefficient (rho) is calculated for the r2 values between the two groups. Each r2 

value in the first group is paired to the corresponding r2 of the same marker pair in the other 

group. Spearman's rho estimates the association between paired samples and computes a test 
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of the value being zero. The measure of association has the range [- 1.11 with 0 indicating nc) 

association. 

For estimating the probability distribution and P-valucs, a series of bootstrap sampling is 

carried out, each time constructing two new groups from the pooled sample of individuals 

from the two populations together. Individuals are randomly selected from the pooled 

sample, ignoring their ethnicity assignment, to create two random groups of the same sizes 

as the real groups. 

For each of the two new random groups, pair-wise r2 values are calculated. as well as the 

Spearman's rank correlation cocff"icicnt correlation, as done for the real groups. This process 

is repeated between (1000 to 50000 times). 

The P-value for obtaining the result of the real data is calculated from the distribution of the 

permutations' rho values, as the number of rho values equal or less than the rcal data rhc) 

value divided by the total number of permutations. 

Scatter plots of Spearman's rank correlation coefficients calculations, allcle frequencies and 

LD statistics, for each pair of population comparisons, were done using the R statistics 

program (R Development Core Team 2005). 

The bootstrap method: Bootstrap is a method to estimate various statistics and their 

reliability based on newly generated artificial samples. Tbesc new samples arc obtained by 

drawings from the original sample. For a given sample of individuals new computer- 

generated samples may be formed by randomly selecting (with replacement) a desired 

number of individuals from the given set. Repeating this procedure an x number of times 

provides a collection of x new samples which allows to estimate various indices of interest, 

their variations, and to apply subsequently inference statistical methods, e. g. significance 

tests or confidence interval estimation (Good 2006). 
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4.5. Results 

After perfonning pedigree checks, there were 72 unrelated Masalit and 72 unrelated Hausa 

with data for 30 polymorphic loci, 64 unrelated Gambian individuals with data for 29 loci, 

60 unrelated YRI individuals with data for 23 loci, and 60 CEU individuals with data for 24 

loci. None of these loci showed any departure from Hardy-Weinberg Equilibrium. 

4.5.1. Genetic Diversity within populations 

Using the KOIND package (Kosman and Leonard 2007), several within-population diversity 

measures were calculated (Table 4.5.1). Values close to 0 indicate high uniforn-lity, while 

large values indicate high diversity. 200 bootstrap samples were generated for each 

population's haplotypes. Measures of diversity were averaged over all bootstrap-derived 

estimates. High values of within-population diversity were found in all samples (Table 

4.5.1). 

Population\ Nei(Hs) Muller(Mu) Kosman Simpson(Si) 
Diversity index expected(K) 

Hausa -0.782 -0.789 -0.564 0.978 

Masalit -0.648 -0.655 -0.479 0.976 

Gambians -0.819 -0.827 -0.595 0.979 

YRI -0.744 -0.751 -0.538 0.977 

CEU -0.641 -0.647 -0.490 0.904 

Table 4.5.1: Within- population diversity indices for all of the population groups analysed. 

All studied groups displayed very high genetic diversity within themselves (Table 4.5.1). 

The same result was obtained by looking at haplotypes. Haplotypes were found to be highly 

diverse within groups, and there was a negligible proportion shared between the different 
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groups. This result is most likely due to the inadequacy of sample sizes for estimating 

genetic diversity. Previously, it was shown that the numbcr of individuals to be used for 
- 

estimating average heterozygosity should be large if a small number of loci arc studied and 

the average heterozygosity is expected to be high. The number of individuals also needs tc, 

be large if the genetic distance of the two compared population groups is small (Nci 1978). 

This high within-population diversity makes it more difficult for clustering methods like 

Structure to correctly discern population groups. 

4.5.2. Comparing allelefrequencies between population pairs 

To compare allele frequencies between pairs of population groups in the 5q3I region; first. 

minor allele frequencies in each group of unrelated individuals wcrc calculated, then each 

marker was compared across a population pair using aW chi square test with one degree ()f 

frccdom. 

For pairs of African population groups, thcrc werc no significant diffcrcnces in minor allcle 

frequencies. The correlations in MAFs were found to be high between these population 

groups, with the Correlation Coefficient (R-) mnging bctwccn 0.76 and 0.93 (Table 4.5.2a, 

Figure 4.5.2a). 

Populations' pair Correlation Number of markers Number of individuals 
compared. Coefficient (R2). compared. compared. 
Hausa vs Masalit 0.8263 30 72 
Gambians vs Hausa 0.8792 29 64 

Gamblans vs Masalit 0.7548 29 64 
YRI vs Gamblans 0.87 23 60 
YRI vs Hausa 0.9306 23 60 

YRI vs Masalit 0.7756 23 60 

Table 4.5.2a: correlation of Minor Allele Frequencies between pairs of African populations. 
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Figure 4.5.2a: The Correlation of Minor Allele Frequencies in comparisons between pairs of African 
population samples. 

To explore whether the high correlations of allele frequencies between the pairs of African 

populations can be attributed exclusively to the choice of markers typed or not; publicly 

available data from the HapMap project for the same marker set in the CEU sample, was 

analysed and compared with each of the African population samples. 

The high degree of correlation of minor allele frequencies observed between the African 

population samples was absent in comparisons involving HapMap CEU sample and 

employing a subset of the markers (Table 4.5.2b, Figure 4.5.2b), which suggests that the 
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similarities between African population groups result from the combined cffect of close 

genetic relatedness and inadequacy of marker sets and sample sizes to unravel the 

differences in the genetic makeup of these groups. 

Populations' pair Correlation Number of Number of individuals 

compared. Coefficient (R2). markers compared. compared. 

CEU vs YRI 0.0066 23 60 

CEU vs Gambians. 0.0217 24 60 

CEU vs Hausa. 0.0143 24 60 

CEU vs Masalit. 0.0755 24 60 

Table 4.5.2b: Correlation of Minor Allele Frequencies between a population of a European origin 
(HapMap-CEU) and four African populations. 
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Figure 4.5.2b: comparing minor allele frequencies between the CEU sample and the four African 
population samples. 

4.5.3. Comparing LD quantity andpattern between population groups 

To explore whether the LD in the studied populations is quantitatively comparable, I 

describe some LD summary statistics. The average, variance, range and the median of pair- 

wise ? values over the whole set of loci in each population were calculated (Table 4.5.3a). 
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LID average (variance) LD median value LD range 

Hausa 0.05(0.01) 0.021 1.8E-05,0.96 

Masalit 0.05(0.01) 0.02 1. OE-05,1 

Gambians 0.04(0.01) 0.014 1.9E-17,1 

YRI 0.04(0.01) 0.014 1.2E-17 , 0.93 

CEU 0.24(0.1) 0.108 9.2E-19 ,1 

Table 4.5.3a: Sunmary of LD quantities in the rive populations of the study. 

LD was found to be quantitatively very similar between the African population groups. The 

median and average of LD values, as well as their variance and range is comparable for these 

population groups. 

The CEU sample, as expected, harbors more LD than the African populations. It is evident 

from table 4.5.3a and figure 4.5.3b the higher LD values in CEU relative to the African 

population samples. The well known "out of Africa! ' bottleneck --200,000 years ago (Cann, 

Stoneking et al. 1987) reduced the genetic diversity of modem humans in Asia and Europe 

dramatically, leading to a higher LD in Europeans, as observed in several previous studies. 

In contrast to the quantitative similarities in LID values between the African groups, pattems 

of LD appear to differ between these groups, as suggested from figure 4.5.3a. 
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Figure 4.53a: Comparisons of r2 values between pairs of African populations (each dot represents the r2 
value of a marker pair in one population and its corresponding value in the other population). 
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Figure 4.5.3b: Comparing r2 values between CEU and African populations (each dot represents the r2 
value of a marker pair in one population and its corresponding value in the other population). 

While no differences were observed between African population -samples from comparisons 

of MAF and LD quantity, it became apparent there are some differences when examining 

their LD patterns. This observation merited further exploration to see If it is what chance 

alone would dictate -due to the inherent higher variability in LD statistics- or whether it is a 

true reflection of the genetic distances between these groups and could be usefully employed 

in capturing their genetic differentiation. 
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To address the above questions I used the following approach: first, to compare the LD 

between any two population groups for a particular set of markers, pair-wise r2 values were 

calculated for all the marker pairs within each population group. The LD values in the two 

groups were then matched and their correlation was calculated using Spearman's rank 

correlation coefficient (rho), which is a non-parametric measure of correlation in which raw 

scores (pair-wise r2 values) are converted to ranks within each sample, and the differences 

between the ranks of paired observations in the two samples are calculated. 

To quantify the chance element in the observed correlation value, the null hypothesis had to 

be tested. The null hypothesis states that the observed low correlation in LD values between 

the two population groups is due to normal sampling fluctuation because of the inherently 

high variability of the LD statistic, and not due to the different ancestry of the groups which 

means than the two population samples came from the same pool of individuals and are 

actually no more different than any other two samples drawn from the combined sample. To 

test whether an observed value of rho is significant is to calculate the probability of it being 

greater than or equal to the observed rho given the null hypothesis. In order to achieve this, I 

chose to use a permutation test because it is generally considered superior to traditional 

methods of calculating significance. The individuals in the two compared samples were 

pooled together and two new bootstrap samples were randomly chosen from this combined 

sample, effectively switching group membership for some individuals. r2 and rho were then 

calculated for the new random samples as described above. The bootstrap re-sampling was 

then repeated a great number of times to get the probability distribution of the rho values, 

from which the real data P value was calculated. 
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Analyzing the Hausa and Masalit; the Spearman's rank correlation coetTicient (rho) of r2 

values in the two groups was found to be (0.411878). When a IOAX) perniulations were 

carried out, correlation coefficients from these permutations, had a nornial shaped 

distribution (Figure 4.5.3c), which supports the assumption of randomness and justifies the 

way I chose for calculating the P value. From this distribution the P-value of observing the 

real-data rho value was found to be 0.016. I'liat is to say, out of the 10,000 permutations 

carried out, 160 had a correlation value that was equal to or less than the real data 

(represented in figure 4.5.3c by the left tale of the disti-ibution from the red arrow). 

<14 

CD 

00 

CD 

Figure 4.5.3c: Distribution of the Spearman Correlation Coefficient (rho) values for MWO permutations 
of the Hausa and Masalit LD-pattern comparison. Red arrow indicates the correlation value ofthe real data. 
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Number of 

permutations 

HausalMasalit 

P-values 

YRMCEU 

P-values 

50000 --- 0.00004 

10000 0.016 0.0001 

8000 0.014 0.00013 

6000 0.013 0.00017 

4000 0.013 0.00025 

3656 0.016 - 

3000 0.017 0.0003 

2000 0.013 0.0005 

1000 0.011 0.001 

100 0.02 0.01 

Table 4.5.3b: P-values obtained from different number of permutations of the LD-based genetic distance 
analysis. 

I ran the analysis several times with a different number of permutations each time, to 

determine the minimum acceptable number. There were two criteria that I sought to fulfil. 

First, the number of permutations had to be large enough to generate at least one instance of 

rho that is equal to or less than the rho value of the real data. Second, the minimum 

acceptable number of permutations should ideally be at the point where the P-value starts to 

level off with no significant decrease in the P-value with increasing the number of 

permutations. 

When carrying out the comparison between the Hausa and Masalit samples using different 

numbers of permutations to estimate the P values, 1000 permutations were enough to 

generate several random samples with less correlation values than the real data (less than 

0.41). Permutations above that did not much increase the accuracy of estimating the P value 

(Table 4.5.3b). On the other hand, when the CEU and YRI were analysed, the P-value 
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decreased steadily with increasing the number of permutations up to 10,000 (Table 4.5.3b). - 

Even this number of permutations was not enough to generate a single rho value of less than 

0.16 which is the correlation value between the real groups. 50,000 permutations were 

required before lowcr-than-real-data rho values were obtained by chance. 

From the above, it appears that the number of required permutations differs with the data set 

specifics like the number of markers, the sample size and divergence between population-s 

from which samples are taken. Ilerefore, it might be reasonable to attempt several levels of 

permutations before deciding on the P value. 

The LD pattern difference between the Hausa and Masalit appearcd to be greater than what 

chance would dictate. To further test this, I used the genotypic data from two additional 

African populations, the Gambian population sample comprised of 64 unrelated individuals 

(Luoni, Forton et al. 2005), and the HapMap data for 60 unrelated Yoruba of lbadan, Nigeria' 

(YRI). 

Populations' pair Spearman 

compared. Correlation 

P-value. Number of Number of 

markers individuals 

Coefficient (rho). compared. 

Hausa vs Masalit 0.411878 0.015698 30 

Gamblans vs Hausa 0.275096 0.035796 29 

Gamblans vs Masalit 0.313772 0.076692 29 

YP-l vs Gambians 0.196855 0.031097 23 

YRI vs Hausa 0.087956 0.0008 23 

YRI vs Masalit 0.2897 0.435356 23 

compared. 

72 

64 

64 

60 

60 

60 

Table 4.5.3c: LD-based genetic distance estimation between pairs of populations of African origin. Each 
analysis is of 10,000 bootstrap pennutations. P-valucs < 0.05 arc shown in bold. 
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rhe number of markers used in each population pair comparison, represents the intersect ol 

markers typed in both populations. The number of individuals was that of the lesser group. 

In total six comparisons were carried out with all the pair-, of African populations. Out of 

these, four comparisons yielded significant results, when significance level was set to 0.05 

(Table 4.5.3c). 

I explored whether it is reasonable to compare results from different analyses. Figure 4.5.3d 

displays the distribution of rho values for all population pairs analysed, as box plots next to 

each other. Overlap in the distributions indicates the possibility of comparing results from 

different analyses. 

10 

Figure 4.5.3d: Comparing the distributions of rho values for all population-pair comparisons. On the x 
axis the betwcen-populations comparisons are ordered as I'Ollows (i -Hausa&Masalit. 2-Ganibians&Hausa. 3- 
Ganibians&Masalit. 4-YRI&(jambians. 5-YRI&Hausa. 6-YRI&Masalit. 7-YRI&CE-U. S-CEU&Gainhians. 9- 
CEU&Hausa. IWCE'U&Masalit. ). On the Y axis the rho values are displayed. 

All comparisons between African populations showed the two compared groups to be 

significantly different from each other at the 0.05 significance level, except when comparing 

the Masalit with the Gambians and with the Yoruba (Table 4.5.3c). Higher sample diversity 

in the Masalit cannot explain this result, as the within-population diversity in the Masalit is 
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comparable to that of the other samples. It is more likely attributed to low resolution of this 

marker set in the Masalit. The least similar groups were those of the Hausa and YRI (rho == 

0.088, P-value = 0.0008). This apparently larger genetic distance relative to the other 

population pairs is interesting. 'Me fact that Hausa being part of a long history of Nigerian 

populations, and possibly admixing with populations in the South like YRI. might lead to the 

assumption that the relationship between the Hausa and YRI might be a closer one than that 

of the other population pairs. This shows that, while comparing LD patterns might have 

higher sensitivity in discerning genetic distance, it is not perfectly correlated with it and it is 

not the final answer in determining the bctwecn-populations genetic distances, rather it 

should be taken within the context of other evidence. 

When a European population sample (Utah residents with ancestry from Northern and 

Western Europe-CEU) was compared with each of the African samples, the genetic distance 

as reflected by rho, and probability of genetic differentiation as reflected by the P-values; 

were found to be significantly more pronounced than the differences between African 

populations (Table 4.5.3d). This is probably due to the combined effects of more pronounced 

differences in allele frequencies as well as quantity and pattern differences in LD between 

the European and African samples, which is probably a reflection of the relatively distant 

ancestry between CEU and the African groups. 
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Populations' pair Spearman 

compared. 

CEU vs YRI 

CEU vs Gambians. 

CEU vs Hausa. 

CEU vs Masalit. 

Correlation 

Coefficient (rho). 

0.160754 

0.060142 

0.201406 

0.063556 

P-value. markers individuals 

compared. compared. 

0.00004 23 60 

0.00002 24 60 

0.00044 24 60 

0.00012 24 60 

Table 4.5.3d: Genetic distances estimated with the LD-based method between HapMap-CEU and several 
African populations. 50,000 permutations were carried out per analysis. 

4.5.4. Comparing the LD-based approach against some available metrics of genetic 

distance estimation 

In order to see how the LD-based approach I employed so far fairs against some of the 

available methods of genetic distance estimation, several between-populations diversity 

measures were calculated using the KOIND package (Kosman and Leonard 2007) (Table 

4.5.3). 

Even though the KOIND package is intended for die haploid genomes of plant pathogens, I 

found it extremely useful for the intended LD-based analysis. It suited the nature of the 

datasets I am using, as it is designed for data with strong LD between its markers. 

145 



The Nei The Nei coefficient The Kosman- Ile Rogers 
distance(N) of Leonard distance(R) 

differentiation(Gst) expected 
distance(KL) 

Hausa vs 0.006 -0.009 0.078 1.000 
Masalit 
Gambians 0.004 -0.006 0.063 1.000 
vs Hausa 
Gambians 0.005 -0.011 0.083 1.000 
vs Masalit 
YRI vs 0.003 -0.008 0.059 1.000 
Gambians 
YRI vs 0.002 -0.005 0.050 1.000 
Hausa 
YRI vs 0.005 -0.008 0.073 0.999 
Masalit 
CEU vs 0.031 -0.045 0.182 1.000 
YRI 
CEU vs 0.026 -0.037 0.180 1.000 
Gambians 
CEU vs 0.030 -0.040 0.185 1.000 
Hausa 
CEU vs. 0.034 -0.047 0.197 1.000 
Masalit 

Table 4.5.4: Between-populations diversity indices for each population pair analysed. 

The first three columns in table 4.5.4 give results of mctrics that depend on allcle frequency 

comparisons. Their results show larger genetic distances between CEU and the African 

population groups than between African groups. This trend agreed with what was shown by 

the LD pattern analysis in the previous section. 

On the other hand, Rogers distance (R) which is an approach that utilizes the full haplotypic 

information of all typed markers (the last column in table 4.5.4), resulted in maximum or 

near maximum values across all comparisons with no diffcrcnce in the estimated genetic 

distances across or within continents. This probably represents an overestimation of the 

between-populations genetic distances and rnight indicate the unsuitability of this kind of 

metric to analyse these data sets. 
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The program STRUCTURE 2.0 (Pritchard, Stephens et al. 2000; Falush, Stephens et al. 

2003) is one of the most widely used software packages for determining population 

stratification. When I used it to identify stratification in the combined sample which is 

comprised of the two Sudanese populations, the Gambian sample and the HapMap YRI and 

CEU, there was no obvious distinction between the populations in spite of their well known 

different ancestry (Figure 4.5.4a). Although the CEU were better identified as a cluster 

compared with the African populations, still there was a significant degree of wrong 

assignment of the individuals in the sample. This observation suggests that the number of 

genotyped markers is inadequate for STRUCTURE to identify population divergence 

between these groups, the effect of inadequate markers becomes more pronounced, the more 

closely related the populations are to each other, as is observed between the African groups. 

1.00 

0.80 

0.60 

0.40 

1 

0.20 
1 

0.00 A. 

Figure 4.5.4a: STRUCTURE Bar plot of individuals' ancestry under no admixture model and 
assuming five populations of origin of the combined unrelated Hausa, Masalit, Gambians and 
HapMap VRI and CEU samples with data for 30 markers in the 5q31 region. In figure each vertical 
bar represents an individual. Population groups were ordered as Hausa, Masalit, Gambians, YRI, and CEU 
on the x axis. On the y axis the proportions of the individuals ancestry assigned to the five populations are 
shown with different colours. 

When the markers analysed were increased in number to 80 in total by using genotypes from 

several other genomic regions (see Chapter5), STRUCTURE still failed to distinguish 

between the African population groups (Figure 4.5.4b). 
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Figure 4.5.4b: STRUCTURE Bar plot of individuals' ancestrý under no admixture model and 
assuming four populations of origin of the combined unrelated Hausa, %lasalit, and HaPMap, YRI 
and CEU samples with data for 80 markers. In figure 1-x)pulation groups %%ere Ordered as CIU. YRI, 
Hausa and then Masalit. On the x axis each vertical bar reprew-nis an indi%idual. On [tie y axis the 
proportions of the individuals ancestry assigned to the four populations are shown with different colours. 

4.6. Discussion 

In this chapter I have tried to reveal, and possibly quantit') the genetic diffewnces between 

the populations in my study which are of distinct ancestry. In the previous chapter no 

obvious genetic differences were observed when available methods were applied to the 

Hausa and Masalit data, in spite of the fact that there are several lines ofevidence indicating 

their ethnic distinctness and suggesting that each of these groups represents a separate gene 

pool. The case for Hausa and Masalit ethnic differences draws substantianon from several 

sources. In spite of their geographic contiguity - they inhabit neighbouring villages in 

remote area in Eastern Sudan- they have diverse historical accounts of their origins with 

well known recent history. Their languages belong to different linguistic families. They 

represent relatively isolated populations with a limited contemporarý , cnc flow and no . Zl 

admixture with other ethnic groups. In each village the founders were all derived from the 

same original gene pool, and the pedigree structure showed that within each village, there 

was a high degree of relatedness between individuals from different families. The whole 

village can be divided into few clusters of families with close kinship ties between their 
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members. Therefore, founder effects and genetic drift are expected to have played a big part 

in the genetic differentiation between these populations. In a previous study conducted in the 

same area of Eastern Sudan, analysis of two nearby villages occupied by the related 

ethnically uniforin Masalit group, found different susceptibility loci in the two villages to the 

same phenotype. This result was attributed to chance founder events that carried specific 

susceptibility alleles into each village (Miller, Fadl et al. 2007). 

The genetic similarities between the Hausa and Masalit as well as the other African groups 

were reflected in the very high correlations of allele frequencies across African populations 

(R2 between 0.8 and 0.9) (Table 4.5.2a). And although the quantity and extent of LD across 

all African populations were found to be comparable as well (Table 4.5.3a), when the pair- 

wise r2 values were compared for each pair of population groups, the qualitative difference 

in LD pattern between different groups was obvious. Scatter plots comparing r2 statistics 

between populations are presented in Figure 4.5.3a and Figure 4.5.3b. Several studies have 

previously highlighted the differences in LD patterns across population groups. Evans et al. 

(Evans and Cardon 2005) have found considerable variation in the extent and distribution of 

pair-wise LD when they compared samples of East Asians, African American and Western 

European descent. Recent studies conducted in four non-urban Sardinian sub-populations, 

indicate that, even neighbouring villages of sub-isolates derived from the same founding 

genetic pool, may have contrasting extents and patterns of LD (Angius, Bebbere et al. 2002). 

The observation of different LD patterns between the populations of my study raised the 

question of whether this apparent difference in LD pattern is due to chance fluctuation of 

random sampling of an inherently variable statistic (LD statistic sampling is potentially more 

variable than that of allclc frequency), or if it is a true mark of the different ancestry of the 

samples. The relatively low correlation in LD patterns also raised the question of whether 

this property is helpful in determining the genetic distance between population groups and if 
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it can be employed in some sort of metric to calculate it. Although the notion of contrasting 

LD patterns, has been introduced before to compare case and control samples, for tile 

purpose of mapping and identifying disease susceptibility loci (Zaykin, Meng et al. 2006); it 

has not been used before to discern genetic differentiation between populations of diverse- 

ancestries, with employment of the permutation approach, to take the analysis a step beyond 

the graphical representation, and allow for statistical quantification of the differences 

between groups compared. 

To address the above questions, I performed LD pattern comparisons using Spearman's rank 

correlation coefficient (rho) and a bootstrap permutation approach to determine significance.. 

The results agreed with the general principle of larger genetic distance between populations 

from different continents than those within the same continent. As expected the degree of 

correlation of within-African-populations r2 statistic was found to be higher than correlation 

statistics between CEU and African groups (Table 4.5.4c and Table 4.5.4d). Nevertheless, 

there still were significant differences between pairs of African populations. In a study of 

genetic variation among world populations; African populations were found to be more 

diverse than other continental groups and the largest genetic distance was seen between then, 

and non-African populations (Watkins, Rogers et al. 2003). Nei ct al. (Nei 1982) studied the 

genetic relationships of various races in each group of Europeans, Africans, and Asians, and 

found all European populations to be genetically close to one another, whereas many African 

tribes show large extents of genetic differentiation. 

Four out of the six comparisons made between African populations yielded significant 

results. The groups that had the biggest difference were the Hausa and YRI, with a P. value 

of 0.0008. The most similar groups were the Masalit and YRI, with aP value of 0.44. These 

quantitative estimates of genetic distances did not agree with what was expected from the 

histories of these populations. The Hausa being originally from West Africa is expected tcl 
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be more similar to the West African YRI than the Masalit population which has an East 

African origin. 'Iberefore, although the LD pattern comparison was successful in 

highlighting genetic differentiation between groups and estimating the confidence in the 

results, whether the resulting P values express the degree of that difference remains an area 

for further work and discussion. 

The extent of the genomic region used in the current analysis -a 650kb segment of the 5q31 

region- lends itself to the proposed approach of exploiting LD inforination, to discern genetic 

differences between populations. In most human populations, LD extends for relatively short 

distances, on the order of 10s to 100s of kb in most genomic regions (Reich, Cargill et al. 

2001), but in some instances LD may extend to longer distances. Luoni et al. (Luoni, Forton 

et al. 2005) found that high LD tends to be more dispersed in African populations, as 

opposed to the close range at which high LD is observed in a European population. Over the 

same genomic region of my current analysis, they have found more examples of long-range 

LD in the Gambian population, where instances of high LD between SNP pairs were 

significantly more likely to span a distance of >200 kb. Whether that is due to positive 

selection or population demography like small effective population size or recent admixture, 

it can be utilized in distinguishing population groups from each other. Also it has been 

shown that useful LD extends over large genetic distances in isolated populations (Angius, 

Hyland et al. 2008). Although it was previously observed that global LD profiles of human 

populations show overall similarities corresponding to shared recombination patterns 

(Service, DeYoung et al. 2006); at this finer scale, there exist differences in LD patterns that 

might reflect variations in demographic histories between populations. 

I considered, but eventually excluded, the decline of LD with distance as a way of 

comparing LD pattern between groups, because in isolated populations LD could be present 
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between linked and unlinked markers (Abecasis, Ghosh et al. 2005), suggesting that there is 

more to the pattern than the decay in LD, that could be affected by population structure. 

The reason why I chose to use r2 instead of other measures of LD like absolute D', was 

because ? reflected marker allele frequencies more closely than the other measures, thus 

combining more of the information contained in aflele frequency differences with that fron, 

the LD between markers. It is also the standard measure of whether the LD between two 

markers is sufficient for detecting phenotype associations. In a recent study, D' displayed a- 

ceiling effect with most points reaching a maximum value of 1.0 in one of the compared - 

populations. This resulted in high variability for this measure even when groups of similar-, 

ancestry were compared. This suggested that the observed lack of concordance betweeri 

groups was an effect of the measure used rather than different group ancestries (Evans and 

Cardon 2005). Therefore, the authors suggested that the r2 measure might be more useful in -ý 

trans-population disease gene mapping than the pair-wise D'. 

An interesting aspect to this LD-based approach is the possibility of using LD relationships 

between pairs of markers as an alternative to identifying populations-differentiating marker 

sets, when none of the markers typed is significantly different in frequency across compared 

groups. LD values with the highest disparities between groups could be used for this 

purpose, especially if these disparities consistently hold for one population when compared 

with others. An example of that is the relationship between marker rs1295686 and rs200541. 

These two markers have a comparable Minor Allele Frequencies in all the population groups 

that were looked at. Consequently neither of these SNPs could be used as a population-' 

differentiation marker on its own. On the other hand, when the LD relationship between 

these two markers was explored, they were found to be in perfect LD in the CEU population. 
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which was in stark contrast to their very low LD value in all other populations considered 

(Table 4.6). 

MAF(rs]295686) 

CEU 0.23 

Masalit 0.2 

Gambians 0.29 

Hausa 0.3 

YRI 0.28 

MAF(rs20054l) r2 

0.23 1.00 

0.18 0.05 

0.17 0.08 

0.15 0.04 

0.17 0.08 

Table 4.6: Two markers with no significant difference in their Minor Allele Frequency (MAF) in 
different populations, exhibit high disparity of their LD values between CEU and other populations. 

I applied some of the available genetic distance estimation metrics to the data, in order to 

compare them with the results of the LD-based analysis. Measures of diversity within and 

distance between populations based on frequencies of individuals' haplotypes, like Rogers 

distance(R) (Kosman and Leonard 2007), overestimated actual diversity within and 

differences between populations (Table 4.5.1, Table 4.5.4). This bias can be explained as 

follows. The number of individuals tested, is limited and considerably less than the number 

of theoretically possible haplotypes (2" in the case of x independent binary characters) even 

for relatively small values of x. Therefore, it is very likely that nearly all sampled individuals 

are of different genotypes. Actual population diversity might be much lower because of 

possible similarity between overall allelic patterns of individuals not sampled. Similarly, the 

Rogers distance may overestimate actual difference between two populations because of the 

high probability that none or a very small number of individuals in the two compared 

samples will have identical genotypes. Methods based on comparing haplotypes within and 

153 



between populations can also be hampered by the degree of uncertainty in haplotype phase 

inference, especially when extending over a 650 kb region. 

Given enough time following populations' division, isolated groups become genetically 

more divergent with time, either by acquiring new mutations, or when the original 

haplotypic backgrounds on which existing variants lie change in abundance by drifting 

upward or downward in the population. That plus the reshuffling caused by recombination. ' 

affect the associations between these variants in ways that are specific to each population, 

group. These changes can either take place over long time periods due to genetic drift or can 

happen over a relatively short time span when local environmental factors exert selective 

pressure on a functional variant sweeping nearby neutral polymorphisms up with it. The 

effects of all of these factors could potentially be reflected in allcle frequencies profiles, but I 

found the effects on allele frequencies to be obscured in my datasets, probably due to the fact 

that most SNP data have been obtained by choosing high frequency markers from publicly 

available databases. This ascertainment bias complicates any downstream analyses based on 

allele frequency differences. However, these processes by which SNPs have been selected 

would probably bias allele frequencies more so than levels of LD observed in the data. 

While high frequency variants are more likely to be old and shared between population 

groups, consequently displaying little frequency differences between compared groups; these 

high frequency variants are more valuable in highlighting historical recombination events 

because of their higher resolution. This might suggests a potentially higher sensitivity of an 

LD-based approach in deteffnining genetic distances than one that is based on allele, 

frequency alone. 
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Tbc effects of the ascertainment bias were clearly manifest in the failure of most available 

methods that rely on differences in allele frequencies to highlight any significant genetic 

differentiation between studied population groups (Table 4.5.3). The number and 

characteristics of markers typed might not have had enough resolution to distinguish these 

populations from each other. This suggested an inadequacy of the combination of method 

and data for unravelling genetic distinction between the population samples. 

Clustering algorithms like those employed in Arlequin and Phylip gene tree construction did 

not manage to correctly assign individuals to proper clusters (Chapter 3). STRUCTURE 

failed to discriminate between all populations using data from 30 markers, and even when 

markers were increased to 80, the program only managed to distinguish the CEU population, 

leaving the African populations indistinguishable from each other. 

Barnshad et al. (Barnshad, Wooding et al. 2003) indicated that a small sample of loci doesn't 

typically provide sufficient power to detect population structure. The low resolution of allele 

frequency information content of loci used in the analysis was not sufficient to discern 

populations' genetic differences, especially when considering that linked markers give 

nonindepentant information and are therefore less informative than are the same number of 

unlinked markers. Rosenberg et al. (Rosenberg, Burke et al. 2001; Rosenberg, Pritchard et 

al. 2002) tested the effect of the number of loci on STRUCTURE clustering results and 

found that accurate clustering of individuals from extremely closely related populations can 

only be achieved when large numbers of markers are used. 

Furthermore, under the linkage model, structure inferred that all individuals from both 

groups are admixed. STRUCTURE authors observed from simulations based on a variety of 

demographic scenarios, that this kind of result indicates background LD in the data 
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complicating the analysis. They suggest that genuine adn-dxture should be asymmetrical, 

affecting one population more than the other (Falush, Stephens et al. 2003). STRUCTURE 

accounts for the correlations between linked markers by assuming it is due to adn-Axture, but. 

does not implement a way to deal with background LD (that is LD generated by genetic drift 

and expected to be strong between syntenous loci separated by few cM). Consequently, f0jr 

STRUCTURE to make meaningful inferences, it can only deal with data from unlinked ()r 

weakly linked loci. Kaeuffer et al. (Kaeuffer, Reale et al. 2007) showed that structure could 

be sensitive to even a rare pair of loci in strong LD, resulting in clustering bias and the 

generation of spurious results. Pritchard and Wen (2004) advised users against using loci 

separated by less than 1 cM. 

To summarize the above, commonly used measures of population diversity or genetic 

distance consider either allele frequencies or haplotype frequencies. Ile allele frequency 

based methods, require large numbers of markers to be typed at unlinked loci, while the 

haplotypes based methods require a large number of sampled individuals from each group, 

to accurately estimate diversity. So using methods based on allele frequency comparison 

may not be the most efficient approach in this setting. Not only does it not utilize the full 

information content of the data, but some methods recommend the exclusion of pairs of 

strongly linked loci that potentially bias the results. 

The results of LD-pattem comparison supported oral traditions and historical accounts Of the 

diverse origins of the populations of my study. And although it is a problem specific solution 

that I had to come up with in order to analyse the data available, it has the potential, after 

further testing and method development, of being applied and generalized to make a sensible 

testing framework relevant in association studies. Tle apparent relative sensitivity of this test 

to detect genetic distance did not safeguard against missing some cases, when either, the 
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genetic distance was too small, or the dataset was inadequate to discern genetic 

differentiation. 

In order to develop the LD pattern comparison approach into a fully fledged applicable 

method of genetic distance estimation, rigorous testing for robustness and false discovery 

rate estimation needs to be carried out which might be more suitable for further future work 

beyond the scope of this thesis. However, as it stands it is an interesting observation that 

raises several questions about a number of situations and areas of opportunity where the 

application of a method based on this concept might be helpful and relevant to substantiate 

conclusions about genetic differentiation. For example when collecting from nearby villages 

inhabited by the same ethnic groups it would be helpful to make a judgement about whether 

they can be treated as the same sample (Miller, Fadl et al. 2007), especially when local 

environmental pressures might have accelerated their differentiation. This can be done with a 

modest data set, without the need for a large number of unlinked markers to be typed. In 

situations where limitations are created by amount and type of data, i. e. a few tightly linked 

markers in a small genomic region, typed in a few individuals, without the advantage of 

genome wide data, it is likely that no single best method can be recommended for the 

estimation of genetic differentiation, and several analyses could be considered, in 

conjunction, to form a judgement in each specific case. 

4.7. Conclusion 

The idea of comparing LD patterns between groups of populations, combined with a 

pennutation approach, proved successful in genetically distinguishing the Hausa and 

Masalit. Other African and non-African populations were included to further test the 
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approach. Four out of the six comparisons between African populations were significant, and 

the largest differentiation was found between populations across continents. 

I have shown that the genetic differentiation between populations can be highlighted using 

information contained in the LD patterns, when the data set is limited, rendering available 

methods not sensitive enough to infer genetic divergence. I managed, to a large extent, to 

tease out the distance between populations as predicted by their self specified ethnicities. 

Although this approach shows promise as a useful addition to existing methods of estimating 

genetic distance when analyzing similar datasets, and it is of special relevance in the context 

of association studies; yet the full development and rigorous testing of such a method is 

beyond the scope of this thesis. I've decided to go back to the empirical data to explore, in, 

more depth, the question of characterizing the signals of positive selection in the Hausa and 

Masalit by genotyping the HBB genornic region. 

158 



Chapter 5: 

Genetic polymorphism and positive selection patterns in the P- 

globin region in the Hausa and Masalit of eastern Sudan. 

5.1. Abstract 

Identifying signals of positive selection in a genomic region of interest may offer important 

clues in the search for disease modifying variants. In previous work I found no clear signals 

of selection in the 5q31 genomic region in the Hausa and Masalit, so in this chapter I studied 

the P-globin region, as a classic example of a locus under positive selection, to provide a 

bench mark for analysis of other regions of the genome. 

I genotyped 26 markers, including the HbS polymorphism. and six classical RFLP markers, 

in 48 unrelated Masalit, individuals and 47 unrelated Hausa individuals. A subset of the 

samples, those found to be carrying the sickle allele (12 Masalit and 9 Hausa), were further 

genotyped for another 37 markers spaced across a genomic area measuring 2Mb around the 

HbS polymorphism. I characterized the P-globin region in tenns of haplotype structure, LD, 

genetic diversity, and signals of positive selection, with special focus on studying the HbS 

polymorphism, its frequency and haplotypes. 

The Hausa group displayed a very distinct selection signal in the P-globin region. However, 

the detection of this signal was conditional on including the functional variant for sickle 

haemoglobin in the analysis. The observation that sickle haemoglobin haplotypes, had much 

higher frequency than other haplotypes across the region, prompted an in-depth look at how 

far these haplotypes extend, and introduced the possibility of utilizing such phenomenon in 
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detecting positive selection in the genome, especially when the functional variants might be 
I 

missed out in the genotyping efforts. 

5.2. Objectives 

0 Characterize the P-globin region in chromosome II in terms of haplotype structure. 

LD, and genetic diversity, in the Hausa and Masalit of eastern Sudan. Compare it to 

data from other populations. 

Study HbS variant, its frequency and haplotypes and attempt to link that with the 

classical HbS haplotypes, and what is known about malaria epidemiology in the two 

populations. 

9 Characterize the signal of positive selection in the region, and explore the extent of 

its effects on the patterns of genetic diversity and haplotype structure. 

* Further explore the effects of demography on genetic variation in the region, and use 

insights gained from the P-globin region to shed light on genetic variation in the 5q3I 

region. 

5.3. Introduction 

Regions of the human genome containing disease resistance genes may be under 

considerable selective pressure if the disease phenotype leads to a reduction in fitness. Ever, 

very small fitness effects may, on an evolutionary time scale, Icavc a very strong pattern. 

Therefore, in theory it may be possible to identify putative genetic disease factors by 

identifying regions of the human genome that are currently under selection. Inferences 

regarding selection have therefore been used extensively to identify functional regions or 
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protein residues (Blanchette and Tompa 2002). (Sawyer, Wu et al. 2005). One practical and 

immediately applicable benefit of looking for signals of positive selection in the genome is 

in reducing both the economical and statistical costs involved in marker choice for 

association studies. 

Challenges to interpretation of the genetic variation patterns in the Hausa and Masalit 

In chapter 3, the interpretation of the positive selection patterns in both Hausa and Masalit 

genetic data proved to be problematic due to the presence of too many variables beside the 

putative disease modifying variant(s) under investigation in the 5q3l region. 

'Ibis complexity stems from the relative contribution of any of the following factors to the 

snapshot of observed genetic variation data in these populations: 

- Migration, founder effects and genetic ri. . 

- Population growth rate. 

- Population substructure, inbreeding and admixture. 

- Natural positive selection. 

- Choice and coverage of markers. 

One way of reducing the uncertainty is controlling for some of the variables by comparisons 

with other genomic areas where one or more of these factors are well defined. Uncertainty 

about whether or not there is a selective pressure shaping the patterns of the polymorphism 

data, could be addressed by studying the P-globin region on chromosome 11, where the 

genetic polymorphism under selection is well studied and described. The sickle cell allele in 

the P-globin region is the primary example of a polymorphism driven up by the selective 

pressure of P. falciparum malaria. This approach makes available prior knowledge of the 
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functional variant and its attributes, i. e.: position, frequency, LD and haplotypic relationship 

with other markers in the region. 

A clearer picture of positive selection effects on the genetic variation in the Hausa and 

Masalit should emerge from studying the P-globin region. Applying knowledge gained fronj, 

and looking for patterns recognized in the P-globin to the 5q3l region, might help to better 

interpret its genetic variation results. 

How positive selection affects the genetic variation in a genomic region 

When a new beneficial mutation increases in frequency in a population because of natural - 

selection, the genetic variation in neighbouring regions will be affected. The level of 

variability will be reduced, the level of LD increased, and the pattern of allele frequencies 

will be skewed (Braverman, Hudson et al. 1995). 

The HbS polymorphism and Malaria 

Haemoglobin S results from a non-synonymous mutation in the P-globin gene (HBB) on 

chromosome 11, which leads to valine being substituted for glutamic acid at position seven 

in the beta chain of adult haernoglobin. 7be homozygous fonn (HbSS) gives rise to sickle 

cell anaernia, and the heterozygous fonn (HbAS) to sickle cell trait. 

The high representation of the HbS allele in some populations and correlated geographical 

distribution between it and malaria reflects the protection it provides against the disease 

(Gendrel, Kombila et al. 1991) (Carlson, Nash et al. 1994). 

The malaria parasite does not survive as well in the enythrocytes of people with sickle trait as 

it does in the cells of normal individuals (Odih, Chevli ct a]. 1985). 7lie basis of the toxicity 

of sickle hemoglobin for the parasite is unknown. One possibility is that the malarial parasite 

produces extreme hypoxia in the red cells of people with sickle trait. Iffiese cells then sickle 

and are cleared (along with the parasites they harbor) by the rcticuloendothelial systenj 
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(Roth, Friedman et al. 1978). Another possible mechanism is that low levels of hemichromes 

are formed in sickle trait erythrocytes. Hemichromes are complexes that contain heme 

moieties that have dissociated from the hemoglobin. Hernichromes catalyze the formation of 

reactive oxygen species, such as the hydroxyl radical, which can cause injury or even kill the 

malarial parasites (Anastasi 1984). 

The malaria hypothesis maintains that during prehistory, on average, people without the 

sickle allele died of malaria at a high frequency. On the other hand, people with two alleles 

for sickle hemoglobin died of sickle cell disease. In contrast, the heterozygotes (sickle trait) 

were more resistant to malaria than normal individuals and yet suffered none of the ill- 

effects of sickle cell disease. 'Ibis selection for heterozygotes is termed "balanced 

polymorphism" (Haldane 1949). Support for this concept comes from epidemiological 

studies in malaria-cndcmic regions of Africa. A recent study found that the state of having 

one sickle cell allele was associated with protection against mild clinical malaria (50%), 

hospital admission for malaria (75%) and severe malaria (90%). The parasite densities 

during clinical attacks in children with HbAS were also found to be lower than HbAA 

children (Williams, Mwangi et al. 2005). 

Landscape of the P-globin genomic region 

The P-globin gene (HBB) exists in a region of chromosome 11 called the "p-globin locus" 

(Figure 5.3). This is a 70kb region harboring the P-globin gene which codes the P-globin 

chain of adult haemoglobin, as well as related genes that code the equivalent chains during 

fetal life and the first few months after birth. Recombination is common around a hot spot 

located between the HBB and the 8-globin gene (Chakravarti, Buetow et al. 1984). 
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region (LCR), and include the embryonic lepsilonj, two tandem fetal Igainnial Fene%, and (he adult [delta] 

genes oriented in the 5' to 3' direction. 

In the wider genomic area of 2Mb encompassing the P-globin gene cluster, there are about 

23 recombination hotspots. Many of them are of a higher intensity than that near the HBB 

gene (Figure 5.4). 
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The classical HbS haplotypes 

The genetic variation in the flanking regions of the HbS variant (the haplotypes) show that 

HbS allele arose separately at least four times in Africa, and once in Asia, possibly in India 

(Nagel and Fleming 1992). 

The four distinct African haplotypes are all localized exclusively to a separate geographical 

areas, Senegal, Benin, Central African Republic (CAR), and Cameroon. The haplotypes are 

named for the geographic regions where they were identified. The geographic distribution of 

HbS haplotypes has been argued by some scientists to demonstrate the independent origin of 

the HbS mutation in these regions. This assumption has been rejected by others who favor a 

unicentric origin of the HbS mutation that would have had spread to different haplotypes by 

a yet to be substantiated process (Flint, Harding et al. 1993). 

The four African haplotypes show broad trends in disease severity. The CAR haplotype 

tends to have the least favorable clinical course, followed by the Benin and Senegal 
G7- 

haplotypes (Powars and Hiti 1993). The ranking of the more recently described fourth 

haplotype, Cameroon, is uncertain. 

No clear explanation exists for the differences in average severity between the haplotypes. 

The hypothesis is that, the mutations in the flanking region could secondarily affect severity 

by altering fetal haernoglobin (HbF) expression in the cells. The patterns of severity apply 

only to populations. Broad overlap in the clinical patterns prevents the use of haplotypes to 

predict the clinical course in a particular person. HbF is lower in patients with Benin, CAR 

or Cameroon RFLP haplotypes (less than 10%) than in those with Senegal or Asian 

haplotypes (15-30%). 

These classical globin gene cluster haplotypes are determined by DNA polymorphic: sites 

that are identified by endonuclease enzymes. In any particular population, the majority of the 
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HbS chromosomes have one of the five common haplotype%. However usually 5-1017c of the 

chromosomes of any sample have less common haploty-pes, referred to as atypical 

haplotypes which are thought to have been generated by a variety of' genetic mechanisms 

including (a) isolated nucleotide changes in one of the polymorphic restriction sites, 

simple and double crossovers between two typical HbS haplotypes or much more frequently 

between a typical HbS haplotype and a different HbA associated haplotype that was present 

in the population, and (c) gene conversion (Zago, Silva et al. 2000). One study showed that 

3.1 % of apparently typical haplotypes involve recombinations similar to those that generate 

the atypical haplotypes, which reinforces the picture of the 0-globin gene cluster as highly 

dynamic (Zago, Silva et al. 200 1). 

5.4. Materials and Methods 

Samples 

The samples for this study comprise Sudanese jndj% iduals 1'roin I LILIsa and Masalit tribes of 

Eastern Sudan. Genotyping was carried out in 49 unrelated Masalit individuals from Salala 

village and 47 unrelated Hausa individuals from Koka village in eastern Sudan. These 

samples were a subset of that genotyped previously in the 5q3l region (Chapter 3). 

SEQUENOM genotyping 

The ENSEMBL database (http: //www. ensenibi. org/) was used to identify an initial set of 28 

SNPs across 414 kb of the P-globin locus on chromosome 11, spanning about 200 kb on 

either side of the HbS SNP. SNPs were chosen on the basis of validation (preferably in an 

African-related population), and available frequency data. For these markers there were 

already designed assays and available pnmers in the Kwiatkowski lab. Iliese SNPs were 

selected by Neil Hanchard (D. Phil thesis 2004). 
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Chosen SNPs (including the HbS SNP) were genotyped using MALDI-TOF mass 

spectrometry (SEQUENOM) (Griffin and Smith 2000) on PEP DNA in 95 Sudanese 

population samples. SNPs with greater than 10% missing data, genotypes not consistent with 

Hardy-Weinberg equilibrium (P < 0.01), or minor allele frequencies < 5% were then 

excluded, resulting in a final set of 20 SEQUENOM-typed SNPs (SNP assay details in table 

5.4.1). 
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A subset ofthe samples, namely those found to be carrying the sickle cell allele (12 Masalit 

and 9 Hausa), were further genotyped for another 37 markers spaced across a genomic area 

measuring about 2 Mb around the HbS polymorphism (see table 5.4.2. for details). 

I 11 -1397051) 1" 1000600 1 1: 43970S9 
2 11-4440254 rsII032345 11: 4440254 
3 1 1-4453331 rs2278170 11: 4453422 
4 11-4507222 rs] 1032629 11: 4507222 
5 11-4521274 rs 1505212 11: 4521274 
6 1 1-4528237 rsl2281831 11: 4528237 
7 11-4682971 rs 16933304 11: 4682971 
8 1 1-4755172 rs2899966 1 1: 4755087 
9 11-4755524 rs 1594914 11: 4755524 
10 11-4800616 rs 17328 191 1 1: 48(X)616 
11 11-4942124 rs2196122 11: 4842124 
12 11-4957919 rsl6906893 11: 4957919 
13 11-4877465 rs 16907096 11: 4877465 
14 11-4911119 rs 10500623 11: 4911118 
15 11-5070787 rs1551499 11: 5070787 
16 rs7l 14854 rs7 114854 11: 5 1 W499 
17 11-5519408 rs4910732 11: 5173877 
18 hHbC-B rs33930165 11: 5204909 
19 11-5206744 rs7936823 11: 5206744 
20 11-5207406 11: 5207406 
21 11-5207723 11: 5207723 
22 11-5207734 11: 5207734 
23 11-5254606 rs10498675 11: 5254606 
24 11-5313624 rs] 1036885 11: 5313624 
25 rs7938837 rs7938837 11: 5319683 
26 rs7929631 rs7929631 11: 5324552 
27 11-5343364 rs 10500637 1 1: 5343364 
28 rs 1498468 rs 1498468 11: 5367607 
29 11-5502292 rs317776 11: 5502292 
30 11 -56325 19 rs16933926 11: 5632519 
31 11-5667472 rs2291841 11: 5067472 
32 11-5676411 rs1063303 11: 5676326 
33 11-5929083 rs4453215 11: 5929083 
34 1 1-6111354 rs325632 11: 6111354 
35 11-6180413 rs 188980 11: 6180413 
36 11-6181392 rs4759398 11: 6181392 
37 11-6189229 rs9659 11: 6189229 

Table 5.4.2: Extra SNPs genotyped in subset of Sudanese samples found to he carrying HbS allele. 
Listed are the rs reference numbers as well as the location of SNPs on chromosome II (EASIM131- release 39). 
SNPs number 20,21 and 22 were chosen from literature and did not have an rs entry in the public database 
(Wood, Stover et al. 2(X)5). 
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RFLP genotyping 

Six RFLP sites were additionally genotyped in the same 95 Sudanese population samples. 

The RFLP markers were chosen so as to characterize the classical HbS haplotypes in the 70 

kb P-globin-like cluster region on chromosome 11. Using PCR amplification and 

subsequently digestion with restriction endonuclease enzymes, the restriction enzymes sites 

Hinf 1, Hinc II, Hind III in HBG I, Hind III in HBG2, and Xmn I were typed. 

Hinf I digests were uninformative as there were multiple Hinf I sites in the amplified PCR 

fragment; the remaining restriction digests were therefore used to define classically- 

described O'haplotypes. 

HBB PCR Primers (see table 5.4.3) used to amplify products for RFLP genotyping were 

designed with careful consideration of the high degree of homology in the region due to gene 

duplication. Primers were designed to make sure they amplify a unique segment containing 

the targeted markers. This resulted in relatively large amplification fragments. The HBG2 

fragment (2734 bp in length) amplified the HBG2 gene and contained restriction sites for 

both Hind III and Xmnl. The HBGI fragment (2909 bp in length) amplified the HBG1 gene 

and contained the restriction site Hind HI. The HBB fragment (1200 bp in length) amplified 

the HBB gene and contained the restriction site Ava II. The recognition site for Hinc 11 was 

in an intergenic region with unique flanking sequence, so a small fragment of 118 bp 

containing it was amplified. 
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For each PCR reaction 2 pL of genornic DNA at a concentration of 5 ng/pL was added to 6 

jiL of PCR mix. PCR mix for 192 reactions was prepared by adding the following: M902 

(50 mM) - 44 gL; dNTPs (8 mM pool) - 110 gL; xlO buffer - 110 pL; Biotag 5 U/IiL - 5.5 

gL; H20 - 386.1 gL; I"' PCR primer - 2.2 pL; 2nd PCR primer - 2.2 pL The PCR mix was 

the same for all fragments except HBGI (2909 bp) for which 3.3 pL of each of the forward 

and reverse primers was used. 

PCR protocols for the HBG1 and HBG2 RFLP fragments consisted of an initial five cycle 

denaturation of 96"C for 1 minute, 94"C for 45 seconds, 62*C for 2.5 minutes, and 72*C for 

I minute; followed by a 29 cycles of 94'C for 45 seconds, 65'C for 2.5 minutes, and 72*C 

for I minute, and a final extension of 72'C for 10 minutes and 15*C for 15 minutes. The 

PCR protocol for the Hinc II fragment differed only with regard to the main cycling 

conditions which required an annealing temperature of 65'C for 45 seconds and an extension 

temperature of 72*C for 30 seconds. The HBB fragment did not require the initial 5 cycle 

denaturation; instead 35 cycles consisting of 96"C for I minute, 94C for 45 seconds 

followed by an annealing temperature of 56*C for 45 seconds, and a 72"C extension for I 

minute was used (For full PCR amplification and digestion protocols see Materials and 

Methods, chapter2). 

Restriction enzymes and their buffers were ordered from New England BioLabs (Ipswich, 

MA, USA); digests were carried out according to the manufacturer's recommendations. 

Digestion products were loaded onto an agarose gel and scored as +/+ if the two alleles were 

digested, as +/- if one but not the other allele was digested (heterozygote), and as -/- if no 

digestion occurred in the sample (Figure 5.4). 
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Analytical and statistical methods: 

Fst 

Wrights Fixation Index statistic (Fst), which is a measure of inter-population diversity that 

uses the difference between the average observed and the total expected heterzygosity; was 

calculated for each of the SNPs typed. 

STRUCTURE 

Both the basic model and the linkage model were used in the software STRUCTURE on the 

genotypic data and haplotypic data respectively from the two study populations. 

The program STRUCTURE implements a model-based clustering method for inferring 

population structure using genotype data. A model in which there are K populations (where 

K may be unknown) is assumed. Each of which is characterized by a set of allele frequencies 

at each locus. Individuals in the sample are assigned (probabilistically) to populations. It is 

assumed that within populations, the loci are in Hardy-Weinberg equilibrium, and linkage 

equilibrium. Individuals are assigned to populations in such a way as to achieve this. 

Long-range haplotype similarity 

The Sudanese haplotypes (each population separately) in the HBB genomic region, were 

uploaded into MARKER (www. gmal2. net/marker ), and the HAPLOSIMILARITY 

algorithm was used to calculate the haplotype similarity (HS) scores. This algorithm uses 

sliding windows to assess the mean similarity of haplotypes (given as the mean of the sum of 

the squares of the frequencies of distinct haplotypes within a given window) associated with 

the minor allele of a given SNP. The value of haplosimilarity ranges from one (all 

haplotypes associated with the allele are exactly the same) to a minimum given by I/k.., 

where k ..... is the maximum possible number of distinct haplotypes for a given sliding 

window size (haplotypes associated with the allele are extremely diverse). I used the default 

option for a sliding window size, which is ten SNPs, in my evaluation. 
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HAPLOSIMILARITY (including details on operating charactenstics and implementation) is 

available for public use at the GMAP website (http: //www. gniap. neUpub/003). 

Extended Haplotype Homozygosity (EHH) 

The EHH statistic of the LRH, implemented in the software Sweep, is broadly similar to the 

haplosimilarity statistic and is defined as the probability that at a given distance away from a 

core haplotype or SNP, any two haplotypes extending outward from the core haplotype/SNP 

will be homozygous at all SNPs. EHH scores range from a minimum of zero to a maximum 

of one. 

The EHH reflects the rate of decay in LD at increasing distance from a locus and uses this to 

determine the age of the relevant allele. Core haplotypes are defined to mark subsets of 

similar haplotypes in the region. The EHH of a given haplotype subset, marked by its core 

haplotype, is compared to other core haplotypes in the population. The relative EHH (rEHH) 

of a haplotype refers to its EHH relative to the EHH of other core haplotypes. The inclusion 

of alternative haplotypes as controls for one another is advantageous because it intrinsically 

controls for potential confounders due to variation in the local recombination rate (Sabeti, 

Reich et al. 2002). 

5.5. Results 

Genotyping success rate was above 92% for all of the typed markers in the HBB region. All 

genotyped markers were found to be in Hardy-Weinberg equilibrium. 

5.5.1. Allele Frequencies in the two populations 

The allele frequencies of genotyped markers were found to be correlated between the two 

populations (figure 5.5.1.1 and figure 5.5.1.2). This result is similar to that previously seen 

in the 5q3l region. 
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Figure 5.5.1.1: Allele frequencies of markers genotyped in the HBB in the Sudanese Hausa and masalit 
samples. Markers are shown on the x axis by their rs numbers and allele frequencies on the y axis. Red points 
represent allele frequency values in Hausa. Blue points represent those in the Masalit. 

Figure5.5.1.2: The correlation of allele frequencies between the Hausa and Masalit samples. Shown is 
data for 26 markers in a 400kb region around the HbS variant. The correlation coefficient R2 is shown on the 
top right comer of figure. 
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Allele frequency similarities between the two Sudanese populations were also manifested by 

the low Fst values for these markers (figure 5.5.1.3). 

All SNPs except for three have an Fst value less than 0.06. This result also inirrors Fst 

results previously obtained from genotyping the 5q3l in the two populations. 

0.2 

0.15 

0.1 

0.05 

0 
1 13 15 17 19 21 1 16, a 2.5 

Figure 5.5.1.3: Single-SNP Fst values for markers typed in the HBB region in the Hausa and Masalit 
samples. Fst values are shown in the y axis and markers ordered on the x axis by F)osition as sho%kn in figure 
5.5.1.1. 

The genotypic and haplotypic data for the 26 markers around the HbS, typed in the 48 

unrelated Masalit and 47 Hausa samples, was used in STRUCTURE to assign individuals to 

their population. The analysis was carried out using a no-admixture model and assuming two 

populations. This failed to assign individuals correctly to their population of origin (figure 

5.5.1.4). 
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Figure 5.5.1.4: STRUCTURE Bar plot of individuals' ancestry assuming no admixture and two 
populations of origin of the combined unrelated Hausa and Masalit samples typed for 26 markers in 
the HBB region. In figure individuals are arranged so that Hausa sample constitute left half of the graph 
and the Masalit the right hall'. On the x axis each vertical bar represents an individual. On the y axis the 
proportions ofthe individuals ancestry assigned to the two populations are shown with different colours. 

Individuals were not identifiable by their genetic variation data at the typed loci as belonging 

to their sampled geographic/population assignment. 

This does not seem to be a region-specific effect. This result was mirrored in the 29-marker 

set typed in the 5q3I region as well as another 36 markers typed across the whole genome of 

these two population samples (Table 5.5.1). 
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id Assay name Assay (rs number) coordinate flawsa NIAý Masalit MAF 
1 t-.,, 75179; 7 r.,, 75 17l) ;7 1 :8 1) ,ýsI () ;s 1) it) 
2 rs 1801274 rs 18012 7; I: I ý') '14(, (, () (), 42 
3 11,10232424450 rs30245(X) 1: 205(X)7454 0.46 0.49 
4 12-72249510 rs2227491 12: 66932788 0.33 0.34 
5 h ll-- 10- 108 2 rs I 8(X)896 1: 205013520 0.38 0.43 
6 rs9282799 rs9282799 17: 23 152855 0.07 0.07 
7 hICAM-1codon29 rs549 1 19: 10246540 0.15 0.08 
8 hIL-10-3533 rs I 8(X)890 1: 205015988 0.24 0.22 
9 rs 1143634 rs 1143634 2: 113306961 0.13 0.12 
1 () rs708567 rs709567 3: 9935070 0.50 0.45 
11 rs6780995 rs6780995 3: 57 113459 0.44 0.49 
12 hTNF-308 rs I 9(X)629 6: 31651010 0.05 0.04 
13 hTNF-238 rs361 525 6: 31651090 0.06 0.04 
14 hTNF-plus851 rs3093662 0: 31052169 0.08 0.07 
15 rs 1555498 rs 1555499 6: 137367540 0.46 0.49 
16 hCD36 T1264G rs32 11938 7: 90138385 0.17 (). (X) 
17 rs8 176747 rsH 176747 9: 135121136 0.22 0.16 
18 rs229587 rs229587 14: 64313053 0.40 0.49 
19 rs8 176746 rs8176746 9: 135121143 0.21 0.16 
20 12-72251611 rs2227478 12: 66914989 0.16 0.43 
21 11,4R-6301 I rs 1805015 16: 27281691 0.49 0.33 
22 hNOS2-1659 rs8078340 17: 23 153339 0.33 0.23 
23 rs 17047661 rs 17047661 1: 205849512 0.29 0.26 
24 rs 17411697 rs 17411697 2: 113259694 0.14 0.13 
25 hICAM- I codon469 rs5498 19: 10256683 0.08 0.02 
26 rs 1 1096957 rs 11096957 4: 38452886 0.44 0.39 
27 hIL-4-599 rs2243250 5: 132037053 0.24 0.15 
29 hl-'F-alpha-Ncol rs909253 6: 31648292 0.52 0.43 
29 hl'NF-376 rs 1 8(X)750 6: 31650943 0.04 0.03 
30 12-72245636 rs2227507 12: 60928914 R(m) 0.04 
31 12-72247607 rs 10 12356 12: 6691OH85 0.49 0.35 
32 hNOS2-954 rs 12720463 17: 23 152636 0.04 0.05 
33 12-72250702 rs2227495 12: 66933990 0.45 0.16 
34 rs77806 rs77906 14: 64122985 0.45 0.48 
35 rs3177244 rs3177244 22: 22509132 0.49 0.16 
36 rsg 176743 rs8 176743 97115 1 -, 12 'NO 0.21 0.16 

Table 5.5.1: Extra markers typed across the genomes of Hausa and Masalit. Sliwkn are r. -, numbers ofthe 
typed assays, thcir chromosomal locations and Ilicir Minor Allele Ireclucm. -ic" in (lie Hausa and Masalit 

samples. 

Using a 91 Marker data set (26 in the HBB region, 29 in the 5q3l region and 36 across the 

genome of 48 Masalit and 47 Hausa), STRUCTURE failed to assign individuals to their 

self-specified populations of origin (figure 5.5.1.5). This observation suggests that rather 

than being a mere marker-resolution issue of the data set, this result might reflect real 

genetic similarities between the two populations. 
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Figure 5.5.1.5: STRUCTURE Bar plot of individuals' ancestry assuming no admixture and two 
populations of origin of the combined unrelated Hausa and Masalit samples. Analysis was carried out 
using all available genotype data from 92 markers. In figure individuals are arranged so that Hausa sample 
constitute left half of' the graph and the Masalit the fight half. On the x axis each vertical bar represents an 
individual. On the y axis the proportions of the individuals ancestry assigned to the two populations are 
shown with different colours. 

Interestingly, when only the subset of Hausa and Masalit individuals carrying the HbS 

variant were analysed by the program STRUCTURE, individuals (except in a few cases) 

were distinctly clustered to their known population of origin (figure 5.5.1.6). This analysis 

was carried out with the 26-marker dataset in the 400 kb region around the HbS marker. 

1.00 

0.80 

0.60 

0.40 

0.20 

0.00 

Figure 5.5.1.6: STRUCTURE Bar plot of individuals' ancestry of the Hausa and Masalit individuals 
heterozygote for the HbS allele. Analysis was carried out using the data for the 26 markers typed in the 
HBB region, and assuming no admixture and two populations of origin. In figure individuals are affanged 
so that Hausa sample constitute left half of the graph and the Masalit the right half. On the x axis each 
vertical bar represents an individual. On the y axis the proportions of the individuals ancestry assigned to 
the two populations are shown with different colours. 
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In order to exclude that the above observation is not the result of sample choice, I used the 

same subset of individuals. This time, genotype data from 26 markers at least 100 kb away 

from the HbS was used. This did not result in correctly assigning individuals to their 

populations of origin (figure 5.5.1.7). This fact suggests that the observed similarities 

between the Hausa and Masalit in the HBB region, rather than being the result of balancing 

selection acting on the HbS simultaneously in the two populations, is a reflection of their 

genome wide similarity. Furthermore, this similarity is observed in the HBB region in spite 

of selection sweeping the different HbS haplotypes up in the two populations, with whatever 

alleles happened to be on those haplotypes, leading to a greater divergence among the HbS 

haplotypes under positive selective pressure. 
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Figure 5.5.1.7: STRUCTURE Bar plot of individuals' ancestry assuming no admixture and two 
populations of origin of the Hausa and Masalit individuals heterozygote for the HhS allele. Analysis 

was carried out using a set of 26 markers at least 100kb away from the HbS. In figure individuals are 
arranged so that Hausa sample constitute left half of the graph and the Masalit the right hall' , On the x axis 
each vertical bar represents an individual. On the y axis the proportions of the individuals ancestry 
assigned to the two populations are shown with different colours. 

5.5.2. Haplotype analysis 

Phasing the genotypic data from the combined Hausa and Masalit sample (95 individuals) 

was carried out using the program PHASE 2.1 (see appendix 2 for full list of haplotypes, 

their sequences and PHASE probabilities). 
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Studying the frequency of haplotypes spanning the 400 kb region surrounding the HbS 

variant, haplotype frequencies were found to be generally low over this physical distance. 

The vast majority of haplotypes in the region had only one or two copies (identical 

chromosomes with the same allele sequence). The only exception to that was the HbS 

haplotypes. There were six identical HbS haplotypes in the combined population sample 

which were the most frequent across the region (Figure 5.5.2.1). 
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14 
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0 

Figure5.5.2.1: Absolute frequencies of haplotypes in the HBB region. Data from 26 markers typed in 95 
unrelated Hausa and Masalit was used to construct the haplotypes. Frequencies of HbS haplotypes are shown in 
purple. Shown on the x axis are the ids of the distinct haplotypes in the sample, and on the y axis the number of 
copied of each of these distinct haplotypes (see appendix 2 for full list of haplotypes, their sequences and phase 
probabilities). 
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Haplotype sequences in the HBB region are shown in Figure 5.5.2.2 and Appendix 2. 

Another aspect of the data that seems to differentiate the HbS haplotypes from the rest is that 

the haplotypic background of the HbS allele appears to be generally more homogenous than 

that of the HbA haplotypes (Figure 5.5.2-2). 

With further analysis of the haplotypes carrying the HbS allele, and using data from the extra 

37 markers characterizing the 2 Mb region anchored on the HbS variant (table 5.4.2); it was 

evident that the six high frequency HbS-bearing haplotypes maintained the same frequency 

over a distance of 1.7 Mb. 
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B 

Figure5.5.2-2: Haplotypes in the HBB region in the combined Sudanese sample. Haplotypes carrying the HbS 
are shown in part A; HhA haplotypes are shown in part B. HbS marker position is outlined by the black border. Haplotypes 
are arrayed along the Y-axis (see appendix 2 for full list of haplotypes, their sequences and phase probabilities). 26 SNPs 
are displayed on (he X-axis oriented in the 3' to 5' direction from left to right (For names and order of markers see figure 
5.5.1.1 ). At each SNP position, the major allele of each SNP is represented in Green and the minor allele in orange. 
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The HbS haplotypes in Hausa and Masalit 

The program PHASE 2.1 was initially used to partition the haplotypes, but due to the small 

sample size and low phase probabilities, the output was modified for the HbAS individuals 

so as to favor the construction of one of the classical HbS haplotypes. 

There were 17 individuals from the Hausa and Masalit sample that were HbS heterozygotes. 

The 17 HbS haplotypes were found to correspond to two distinct haplotypcs characterized by 

the RFLP classical markers. The first haplotype which is shared between the two populations 

fits the Benin classical sickle haplotype. The other haplotype which agrees with the 

Cameroonian haplotype was also shared between the two populations. Out of all the 

haplotypes of the Masalit sample 9.4% were carrying the HbS polymorphism. Out of those 

78% were of the Cameroon type and 22% were of the Benin type. In the Hausa samples 

8.5% of all haplotypes were HbS. 75% of those were Benin and 22% Cameroon. Out of the 

six identical haplotypcs in the combined population sample that had the highest frequency 

among all the other haplotypes and carried the HbS polymorphism, the majority (five 

haplotypcs) was contributed by the Hausa sample and fitted the classical Benin haplotype 

when interrogating its RFLP markers. 

The recent West African origin and agricultural life style of the Hausa, suggests an early and 

stable exposure to the malaria parasite, with extended periods of co-evolution that might 

have allowed enough time for the emergence and selection of genetic variants conferring 

resistance to malarial disease. One of the more important of these variants is the HbS allele 

which is present in the Hausa on a more homogenous haplotypic background that mostly 

resembles the Benin haplotype dominant in Nigeria, where this population has migrated 

from. 
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5.5.3. LD map and selection signals in the HBB region 

Using the programme Sweep, EHH was calculated for the 26 SNPs genotyped in the HBB 

region in the 95 unrelated Hausa and Masalit, sample. The extended haplotype homozygosity 

(EHH) is defined as the probability that two randon-Ay chosen chromosomes carrying the 

core haplotype of interest are identical by descent (as assayed by homozygosity at all SNPs) 

for the entire interval from the core region to a distance x (Sabeti, Reich et al. 2002). 

Core haplotypes, were defined as single SNPs by setting the core selection function in the 

program to look at single SNPs. 

To compare the EHH value between SNPs across the region, a distance measure was chosen 

to match those values at 0.4 cM, because it is more relevant to compare across genetic 

distance than physical distance. The program employs the fine-scale recombination map 

based on the program LDHat for the HapMap (McVean, Myers et al. 2004). 

The scatter plot below gives EHH plotted against frequency for every core SNP in the data 

files of the 26 Markers typed in the Hausa and Masalit, samples. EHH values are given at a 

particular long-range distance (0.4 cM). As shown in the figure, HbS had the highest EHH 

and REHH values of all the markers in the region. 
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Figure 5.5.3.1: Sweep EHH vs. Frequency Scatter plot of the HIM region. 
EHH values for every SNP (, y axis) is shown against its allele frcqucncý, am%). The HbS marker is circled and 
its EHH(REHH) values are indicated in the figure. 

The chart below gives EHH plotted for the HbS core SNP at every long-range distance in 

both directions. The different haplotypes associated with each of the SNP alleles are shown 

with different color in the plot. 
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Figure 5.5.3.2: Sweep EHH vs. Distance Chart. EHH values are displayed on the y axis at consecutive 
genetic distances away from the HbS core in both directions (x axis). The haplotype carrying the HhS allele is 
shown in orange and the haplotype with the HbA allele is shown in purple. 
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The program MARKER was used to generate an LD map of the HBB region in the Hausa 

and Masalit. A separate map was constructed for each sample (figure 5.5.3.3 and 5.5.3.4). 

The vertical axis is the SNPs typed and minor allele frequencies, the coloured patterns are a 

statistical representation of the rý value calculated for each pair of markers. 

In the Hausa, little LD was found between typed markers in the HBB region. The HbS 

marker did not have an r2 value above 0.4 with any other marker typed in the region (Figure 

5.5.3.3a). Nevertheless, it displayed an obvious haplosimilarity selection signal (Figure 

5.5.3.3b). 

The LD was weak between markers typed in the Masalit sample as well. The HbS marker 

did not have an r2 value above 0.2 with any other marker typed in the region (Figure 

5.5.3.4a). 

The selection signal at the HbS locus was smaller than that observed in the Hausa (Figure 

5.5.3.4b). 
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Figure 5.5.3.3: a) Marker Map illustrating the LD between SNPs in the HBB region in the Hausa. LD is 

measured by r2 (httl2: //www., Pinap. net/marker ). Coloured spots connecting SNPs illustrate the LD level 
between those SNPs. Colour coding is presented in the top right-hand comer. b) Scatter plot of minor allele 
frequencies of markers typed in the HBB and their haplosimilarity scores. 
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Figure 5.5.3.4: Marker Map illustrating the LD between SNPs in the HBB region in the Masalit sample. 
LD is measured by r2 (tl(ll2: //www. giiizip. net/iiiarker ). Coloured spots connecting SNPs illustrate the LD level 
between those SNPs. Colour coding is presented in the top right-hand comer. b) Scatter plot of minor allele 
frequencies of markers typed in the HBB and their haplosimilarity scores. 
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The absence of any other marker with strong LD with the HbS in the 400kb region analysed, 

meant that the selection signal would disappear when analyzing the dataset without the HbS 

marker (when the HbS marker was removed from the analysis) (Figure 5.5.3.5). 
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Figure 5.5.3.5: Haplosimilarity scores of markers typed in the HBB region in the combined Hausa and 
Masalit samples. A) Selection signals when the HbS marker is included in the analysis. B) Selection signals 
when HbS marker is excluded from the analysis. 
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5.6. Discussion 

In the HBB region allele frequencies were found to be very similar between the Hausa and 

Masalit samples. This was suggested by the high correlation of allele frequencies (figure 

5.5.1.1 and 5.5.1.2), the low Fst values (figure 5.5.1.3), and the failure of the program 

Structure to correctly assign and cluster individuals in the combined sample to a distinct 

population of origin (figure 5.5.1.4). 

The above agrees with the genetic variation pattern observed previously in the 5q3l region 

(chapter 3). This fact makes a homogenizing balancing selection force being responsible for 

the apparent similarity pattern in genetic variability data a less likely possibility. 

In addition to the possibility of the inadequacy of marker resolution, it is likely that the 

above also reflects the general genetic similarities and low genetic differentiation between 

the two population samples. This is evidenced when using data from 91 markers across the 

genome in STRUCTURE and the persistent lack of sample structuring by the program 

(Figure 5.5.1.5). 

On the other hand, a much more obvious differentiation pattern emerged when looking 

exclusively at those individuals carrying the selected HbS haplotypes. Structuring became 

much more apparent when using only HbS positive individuals in the program 

STRUCTURE (Figure 5.5.1.6). This effect is clearly related to selection on the HbS 

haplotypes rather than being a factor of sample choice. When the same number of markers 

was used for the same HbS positive individuals, but they were markers at least a 100 kb 

away from the HbS variant; the pattern of sample structuring disappeared (Figure 5.5.1.7). 

The above point suggests that even in cases where the functional variant is the same in 

different population groups, its different haplotypic background between the groups might 

be accentuated more so than those of neutral markers. If a genetic variant is under natural 
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positive selection in several populations, it is likely to reside on different haplotypic 

backgrounds and thus have a more discrepant LD relationship with other markers than might 

be the case for other markers. This could be attributed to the faster haplotypic divergence 

under selection than neutral genetic drift. 

Further in-depth analysis of the HbS haplotypes by trying to interpret them in terms of the 

classically described HbS haplotypes, revealed that in spite of the shared haplotype 

sequences between the two population groups, the relative frequency of each of these 

haplotypes is different between these two groups. This further supports the point made above 

about group differences in selected haplotypes even when it is the same polymorphism that 

is under selection in the different groups. 

The fact that the functional variant (HbS in this case) was found on different haplotypic 

background in different populations, could complicate results of association studies carried 

out in different African populations, or studies that suffer from population sub-structuring of 

the sample. Even though the same variant might be under selection in the compared 

populations, its haplotypic background is likely to be different. 

It is likely for the type of variants targeted in association studies, those functional variants 

affecting susceptibility, to be acted on by natural selection. My data shows that these 

I selected variants are more likely to have a discrepant LD relationships between different 

population groups because they could occur on different haplotypic backgrounds, either due 

to the mutation arising several times in history or due to dcmography of the populations 

studied. The haplotype on which the functional polymorphism might have originally 

occurred could change with time, by recombining and acquiring variations from new 

mutations, a subset (migration or bottleneck events) of these new haplotypes, might be 
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introduced into another population and then start to rise in frequency by a selective pressure 

encountered in the new environment. 

If the functional SNP is not typed in the association study, then its detection depends on 

linkage with nearby markers, and if this relationship is discrepant between groups of 

different ethnicities considered jointly in the study, then different SNPs could tag the 

functional one across populations. This could lead to a decrease in the power of any of these 

tagging SNPs if the sample suffers from undetected sub-structuring, possibly resulting in a 

few markers clustering in this genomic region displaying association signals below the level 

of significance. Therefore it might prove a sensible approach in the interpretation of results 

from association studies to consider a region-wide significance. 

Taking a closer look at the haplotype structure in the HBB region in general, and the HbS 

haplotypes in particular; it becomes apparent that another aspect setting the HbS haplotypes 

apart from others in the region, in addition to their greater inter-group differentiation, is the 

fact that the HbS haplotypes are the highest in frequency across the region when compared 

with the background haplotype structure (Figure 5.5.2.1). This relatively high ftequency was 

maintained as far as 1.7 Mb span around the HbS variant, long after the frequency of all 

other haplotypes decreased to a single copy. Furthennore, the HbS haplotypes, appear in 

general to be more homogenous when compared with the HbA haplotypes (Figure 5.5.2.2). 

Marker spacing and frequency profoundly influence observed levels of haplotype diversity. 

The number of haplotypes also depends on the number of SNPs and the recombination rate 

in the genon-dc area. In the combined Hausa and Masalit sample, the high frequency of HbS 

carrying haplotypes are in contrast to the high haplotype diversity in the region as a whole, 

reflecting the high recombination rate. This high frequency was found to extend to a 1.7 Mb 

region centered on the HbS is a phenomenon which could indicate the positive selection 
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pressure on the HbS variant sweeping its haplotype to a high frequency over an extensive 

genetic distance without the chance for recombination to break it down. 

It would be interesting to further explore the relationship between high frequency haplotypes 

and recombination, and if there are other instances in the genome similar to the observed 

long range high frequency haplotype in the HBB region. If so, how common and what is the 

likelihood of chance giving rise to a similar picture. This observation has a possible utility as 

a metric to look for positive selection signals across the genome. 

The above observation could be considered the primer for further investigation of this 

phenomenon in the search for positive selection signals across the genome. Indeed the next 

two chapters will be on the exploration and application of this phenomenon in data from the 

HapMap and MalariaGEN whole genome case control study. 

Because the HapMap cell lines are publicly available, I will be able to integrate my 

experimental data in the P-globin region with the genome-wide SNP data to gain new 

insights into the relationship between classical P-globin haplotypes, and SNP variation. 

Although there was evidently a clear selection signal at the HbS variant when using the 

program Sweep on the combined population sample (Figures 5.5.3.1 and 5.5.3.2), when 

examining this signal for individual populations separately, it was not as prominent in the 

Masalit when compared to the Hausa (Figures 5.5.3.3 and 5.5.3.4). Five of the six high 

frequency haplotypes in the data belonged to the Hausa group. Although the HbS haplotypes 

in the Masalit samples displayed some degree of homogeniety compared to the HbA 

haplotypes as observed in figure 5.5.1.6 and figure 5.5.2.2, no selection signal was detected 

in the sample. This might indicate that identical high frequency extended haplotypes might 

be much easier to be detected by metrics of positive selection than the effect of homogeneity 

of the haplotypic background. The HbS allele in Masalit appears to have been more recently 
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introduced to this population from several different sources, as revealed by its more diverse 

haplotypic background. 

5.7. Conclusion 

The analysis in this chapter provided insights on the selected haplotypes in the Hausa and 

Masalit. In spite of the fact that HbS was the same selected variant in the two populations, it 

resided on different selected haplotypes. This suggests that, in association studies, the causal 

variant may be tagged by different SNPs in different populations, which may lead to a 

decrease in the power of these tagSNPs to detect disease association if the sample suffers 

from undetected sub-structuring. 

In this chapter I found evidence of positive selection in the P-globin region in the Hausa 

population. Using known metrics to detect this signal depended on inclusion of the HbS 

functional variant in the analysis. However, I noted that the high frequency HbS-carrying 

haplotype extends to a very long distance (1.7 Mb), spanning several recombination 

hotspots. This raised the question of whether a method might be developed to search for 

such extended high frequency haplotypes even if the causal variant was not genotyped, and 

whether this might provide a useful tool for screening for signals of selection in the whole 

genome. In the next chapter, I go on to examine this question by using the publicly available 

genome-wide genotyping data of the HapMap project. 
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Chapter 6: 

Genome-wide search for natural selection signals by 

characterizing extended-high-frequency haplotypes in the 

HapMap data. 

6.1. Abstract 

In the previous chapter, analyzing the polymorphism data of the Hausa and Masalit HBB 

region, I observed an unusually long and high-frequency haplotype that carried the HbS 

allele. This haplotype was easily identifiable even when the HbS genotype was omitted from 

the analysis. 

Because such phenomenon could be a surrogate for positive selection signals in the genome, 

set out to better characterize it by attempting to answer the following two questions: 

Firstly, is the high frequency extended HbS haplotype exclusive to the Sudanese populations 

or can it be discernable in another African population, secondly, are there similar instances 

in other genomic regions, and if so, is there any supporting evidence of them being 

candidates of positive selection. 

I used publicly available genome-wide genotyping data from the Yoruba (YRI) samples that 

were typed in the HapMap project. To make a meaningful comparison with the Sudanese 

data, I typed the 90 YRI samples for SNPs typed in the Sudanese samples that had not been 

typed in the HapMap project. I developed programming scripts that dealt with the large 

volumes of data generated by HapMap and tested for identical long rage high frequency 

haplotypes employing a sliding window approach. This involved taking account of the 
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variation in recombination rate to enable comparisons to be made between different regions 

of the genome. 

In the Yoruba, I identified an HbS haplotype of a strikingly different frequency from others 

in the region. This haplotype extended to 1.2 cM and was clearly unusual when compared to 

other haplotypes across chromosome 11.1 also identified a few other regions in the genome 

where similar instances of extended high frequency haplotypes were present, and which had 

some suggestive evidence of being under selection. 

6.2. Objectives 

e Investigate whether the phenomenon of a long-range high-frequency HbS haplotype 

observed previously in the Sudanese population samples is replicated in the HapMap 

YRI sample. 

9 Quantify it in the context of the whole genome and identify other similar instances. 

* Look at regions identified as outliers and detem-dne whether there is any suggestive 

evidence of selective pressure. 

0 Attempt better localization of the functional variant in a region with an unusually 

extended high frequency haplotype. 
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6.3. Introduction 

Advantage of using a genome-wide empirical approach. 

A genome-wide empirical approach might be a sensible way of detecting positive selection 

signals. 'Ibis is an approach that does not depend on assumptions about population history, 

as opposed to the expectations of population genetic models which depend on assumptions 

about demographic parameters for which estimates remain ambiguous. 

Some demographic factors like population growth, subdivision, bottlenecks and admixture 

can cause departures from the neutral model that are indistinguishable from those caused by 

natural selection. It is also possible for a departure from the neutral model at any specific 

locus to be caused by a combination of both population history and selection. One way to 

overcome this problem is to recognize that population demographic history affects patterns 

of variation at all loci in a genome, whereas natural selection acts upon specific loci 

(Przeworski, Hudson et al. 2000; Andolfatto 2001; Nielsen 2001). Tlius, by sampling a large 

number of unlinked loci throughout the genome, it is in principle possible to distinguish 

between selection and dernography. 

Available methodsfor detecting positive selection. 

Many of the common population genetic methods for detecting selection are based on 

comparing variation within and between species, most famously the HKA test (Hudson, 

Kreitman et al. 1987). In this test, the rate of polymorphisms to divergence is compared for 

multiple genes. If the ratio varies more among genes than expected on a neutral model, 

neutrality is rejected. 
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When a locus shows extraordinary levels of genetic population differentiation, compared 

with other loci, this may then be interpreted as evidence for positive selection. One of the 

first neutrality tests proposed, the Lewontin-Krakauer (Lewontin and Krakauer 1973) test, 

takes advantage of this fact. This test rejects the neutral model for a locus if the level of 

genetic differentiation among populations is larger than predicted by a specific neutral 

model. Akey et al. (Akey, Mang ct al. 2002) looked at variation in FST among human 

populations genome-wide. 

Selection also affects the distribution of alleles within populations. Some of the most 

commonly applied tests are based on summarizing information regarding the frequency 

spectrum. Selection against deleterious mutations will increase the fraction of mutations 

segregating at low frequencies in the sample. A selective sweep has roughly the same effect 

on the frequency spectrum (Braverman, Hudson et al. 1995). Conversely, positive selection 

will tend to increase the frequency in a sample of mutations segregating at high frequencies. 

The most famous example is the Tajima's D test (Tajima 1989). In this test, the average 

number of nucleotide differences between pairs of sequences is compared with the total 

number of segregating sites (SNPs). If the difference between these two measures of 

variability is larger than what is expected on the standard neutral model, this model is 

rejected. Fu & Li (Fu and Li 1993) extended this test to take information regarding the 

polarity of the information into account by the use of an evolutionary outgroup (e. g., a 

chimpanzee in the analysis of human genetic variation), and more refinements were 

introduced by Fu (Fu 1997). Fay & Wu (Fay and Wu 2000) suggested a test that weights 

information from high-frequency derived mutations higher. 
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An incomplete sweep (when the adaptive mutation has not yet been fixed in the population) 

leaves a distinct pattern in the haplotype structure. This has led to the development of many 

statistical methods for detecting selection based on I. D. Hudson et al. (Hudson, Bailey et al. 

1994) developed a test based on the number of alleles occurring in a sample. Andolfatto et 

al. (Andolfatto, Wall et al. 1999) developed a related test to determine whether any subset of 

consecutive variable sites contains fewer haplotypes than expected under a neutral model. A 

similar test was also proposed by Depaulis & Veuille (Depaulis and Veuille 1998). A 

variation on this theme was proposed by Sabeti et al. (Sabeti, Reich et al. 2002) who 

considered the increase in the number of distinct haplotypes away from the location of a 

putative selective sweep. The presence of long high frequency haplotypes across the genome 

was taken as a possible evidence of natural selection (HapMap 2005; Frazer, Ballinger et al. 

2007; Sabeti, Varilly et al. 2007). 

Finally, the MacDonald-Kreitman test (McDonald and Kreitman 1991) explores the fact that 

mutations in coding regions are of two types: nonsynonymous mutations and synonymous 

mutations. It summarizes the data in what has become known as a MacDonald-Kreitman 

table, which contains counts of the number of nonsynonymous and synonymous mutations 

within and between species. If selection only affects the nonsynonymous mutations, negative 

selection will reduce the number of nonsynonymous mutations and positive selection will 

increase the number of nonsynonymous mutations, relative to the number of synonymous 

mutations. 

Evidence thatpositive se1ection is widespread across the genome. 

Ambiguity in the interpretation of classical population genetic neutrality tests, due to the 

presence of confounding demographic factors, may have precluded the establishment of firm 

conclusions regarding the pervasiveness of selection. As more large-scale data have 
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accumulated, and methods that are robust to demographic assumptions have been applied, a 

clearer picture of the pervasiveness of positive selection has been established. 

Several scans of the human genome have been undertaken to search for regions under 

natural selection, and more are underway (Cargill, Altshuler et al. 1999; Sunyaev, Lathe et 

al. 2000; Stephens, Schneider et al. 2001; Akey, Zhang et al. 2002; Payseur, Cutter et al. 

2002). 

There is an increasing amount of evidence that selection is important in shaping variation 

within and between species. In human SNP data, there is a clear difference in the frequency 

spectrum between non-synonymous and synonymous mutations (Williamson, Hernandez et 

al. 2005). This observation shows that a large proportion of the mutations that are 

segregating in humans are affected by selection. In addition, there is a rapidly growing list of 

specific genes that show evidence for positive selection in both humans and other organisms 

(Bamshad and Wooding 2003; Vallender and Lahn 2004). This explosion of results showing 

a presence of positive selection may suggest that positive selection is much more common 

than previously believed. Standing levels of variation in the genome can be explained by the 

proposed models of repeated selective sweeps (Gillespie 2000). In these models, known as 

genetic draft models, mutations causing species differences are not neutral mutations 

increasing in frequency due to genetic drift, but primarily neutral mutations increasing in 

frequency due to linkage with adaptive mutations sweeping through the population. Even 

though only few mutations are adaptive, the population genetic dynamics is determined by 

the selective forces acting on the adaptive mutations, not by genetic drift, and as yet there is 

no mathematical or empirical evidence to suggest that this model is unrealistic. 
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Limitations of available methods. 

The power of tests used for detecting natural selection is typically determined by carrying 

out simulations under a restricted range of demographic models and parameters to estimate 

the critical values that support rejection of the neutral model (Simonsen, Churchill et al. 

1995; Fu 1997). To this end, an understanding of population history is crucial for identifying 

the genes that are subject to selection. 

The neutrality tests are all tests of complicated population genetic models that make specific 

assumptions about the demography of the populations, in particular a constant population 

size and no population structure. In addition, in some of the tests there may be other implicit 

assumptions regarding distributions of recombination rates and mutation rates. Many of 

these tests have long been known to be highly sensitive to the demographic assumptions. For 

example, TaJima's D test (Tajima 1989) would reject a neutral model very frequently in the 

presence of population growth (Simonsen, Churchill et al. 1995). Simple models of 

population subdivision can lead the commonly used neutrality tests to reject the neutral 

model with high probability, even in the absence of selection. In addition, even if the 

presence of selection can be established, in many cases it can be difficult to distinguish 

between the pattern left by selective sweeps and selection on slightly deleterious mutations 

(background selection) (Charlesworth, Morgan et al. 1993). 

Because of the effect of demographic assumptions on the population genetic neutralitY tests, 

the results of these tests have often been contentious and often have not led to firm 

conclusions regarding the action of selection. It is not very meaningful to reject the standard 

neutral model using these methods without paying careful attention to the underlying 

demographics. 

202 



One possible way to circumvent the problem of demographic confounding effects is to 

compare multiple loci. The assumption being that if strong departures from the neutral 

model are seen only on one or a few outlier loci, this may be interpreted as evidence for 

selection on these loci. 

Standard methods for detecting selection from population genetics can, in principle, be 

applied to provide a detailed picture of the regions of the genome that may have been 

targeted by selection. However, most SNP data have been obtained through a complicated 

SNP discovery process that involves the discovery (or ascertainment) of SNPs in a small 

sample followed by genotyping in a larger sample, or by choosing high frequency markers 

from publicly available databases. The process by which the SNPs have been selected affects 

levels of LD observed in the data and the frequency spectrum, which makes these studies not 

ideally suited for detecting selection, because ascertainment bias complicates downstream 

analyses, one example of that might be the skewness it creates in allele frequency spectrum 

(Akey, Zhang et al. 2003). 

Current methods for detecting selective sweeps have little or no robustness to the 

demographic assumptions and varying recombination rates, and provide no method for 

correcting for ascertainment biases, as well as the limitation of requiring DNA sequence data 

by many of these tests. 

What is known about the extent of the signals ofpositive selection. 

Apart from very few recent studies, very little was done in the past in way of establishing 

how far the effects of positive selection extend in the human genome. The feasibility of such 

analysis nowadays could be due in part to the recent improvement in efficiency of high 

throughput genotyping technologies. 
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How far a selective sweep extends depends on the combined effects of selective pressure 

strength, time since it occurred, background recombination rate and population demographic 

history. 

A few recently published studies indicate that selection can lead to non-random associations 

among SNPs over great physical and genetic distances, in one study (Saunders, Slatkin et al. 

2005) a genornic region of approximately 1.6 Mb around G6PD was characterized by long- 

range LD. In another study (Yu, Sabeti et al. 2005) a region of approximately one megabase 

of human chromosome 12 shows extensive LD, this effect was subsequently attributed to 

selection of a pre-expansion CAG repeat within exon I of the Spinocerebcllar ataxia type 2 

gene (SCA2). 

Purpose of this investigation. 

Here I will explore a genome-wide approach that uses empirical distribution of data to 

eliminate variability created by demographic factors. This may provide a rapid way to define 

the area in the genome over which it would be useful to carry out further, more refined 

analysis to look for the adaptively important functional variant. This initial definition of area 

is the most important aspect of this analysis that would aid downstream analysis that would 

have otherwise yielded false negatives if used over too small or too large a genornic area. 

Although this method requires both haplotypic and recombination information, it is less 

computationally intensive than other methods based on the extended haplotype 

homozygosity (Sabeti, Reich et al. 2002) which in addition require partitioning at each SNP 

or group of SNPs and then comparing the two partition groups in terms of how similar the 

haplotypes are in each group. Furthermore, this method circumvents the problem of SNP 

ascertainment bias because it looks at such a large genomic, area, the choice of SNPs plays 

little or no role in haplotypes' determination, which makes it greatly robust in picking up 
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regions where positive selection has played a role even if the functional variant or a tightly 

linked marker has not been typed, rather it makes use of the more stable information 

contained in the long range haplotype carrying the selected mutation without the need to 

actually type it. 

6.4. Materials and Methods 

6.4.1. Subjects and DNA preparation 

Ninety DNA samples used in phase I HapMap project from the Yoruba in lbadan, Nigeria 

http: //www. hal2iiiap. o[g/abouthapi-nap. htiiii . 

Publicly available HapMap data was also used for thirty U. S. trios provided samples, which 

were collected in 1980 from U. S. residents with Northern and Western European ancestry by 

the Centre d'Etude du Polymorphisme Humain (CEPH). The blood samples were converted 

into cell lines, which are used to make DNA, by the non-profit Coriell Institute for Medical 

Research http: //Iocus. utiidni. edu/ni&m. s. Cell lines of the relevant samples were ordered from 

the Coriell Cell Repository at Coreill Institute for Medical Research (see 

<http: //Iocus. umdnj. edu/nigms/>) as transformed B-lymphocytes from peripheral blood, cell 

lines were cultured in the lab and then DNA was extracted using CST Genomic DNA 

Purification Kit (<http: //www. chargeswitch. conV>). DNA was subsequently quantified using 

picogreen and NanoDrop technology <http: //www. nanodrop. com/>, concentration 

standardized to 20 ng/[tL, whole genome amplification using Primer Extension Pre- 

amplification PEP (Zhang, Cui et al. 1992) was carried out on these samples in a 50 pL 

reactions. PEP is a method which uses random pfimers 15 base pairs long to amplify the 
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whole genome by PCR. The products are usually in the region of 1.5 k-h in length. Samples t- 

were tested with an ARMS reaction to determine quality ot'DNA bcf'ore genotyping. 

6.4.2. Genotyping 

Sixteen markers in the IIBB region were typed in the 30 IlapMap YRI Irlo,, (Table 6.4.2). 

Markers were chosen to overlap with those previously typed in the Sudanese samples, 

excluding those for which data is already available in phase I IlapMap dataset. Those 

markers chosen included the five RFLP marker described previously in chapter 5. The RFLP 

markers were chosen from literature to define the previously describwd classical ji-globin 

haplotypes (For details see Materials and Methods chapter and chapter 5). Other than the 

RFLP markers, genotyping was carried out using prinicr-cx1crision / niass-spectroinetry 

(Sequenom) technology. 

MARKER 
ID 

SNP ASSAY 
NAME RS NUMBER POSITION 

I rs7 114854 rs7l]48ý I I 1: 'ý I (X)-l Q's' 
2 11: 5498824 rs49 10722 1 1: 515; 29; 
3 11: 5502427 r,, 4910726 11: 5156896 
4 11-5519408 rs4910732 11: 5 173877 
5 HBS rs334 11: 52(WSOM 
6 hHbCI3 rs33930165 11: 5204809 
7 Hint'l in HBB rs 10742594 11: 5205346 
8 HBB-703 rs 11036364 11: 5205580 

9 HBB-989 rs 16911905 11: 5205866 

Hincll rs968857 11: 5217034 

Hind3 in GI rs6578593 11: 5226375 

12 Hind3 in G2 rs207O972 11: 5231293 
13 Xmn I in G2 rs7492144 11: 5232745 
14 rs7939937 r-, 7939837 11: 53 19693 
15 rs792963 I rs7929631 11: 5324552 
16 rs 1499468 rs 1 49946H 11: 5167607 

Table 6.4.2: Assays of SNPs typed in the P-globin region in the flap. %lap YRI %ample. 
Listed are the Laboratory as, ýay namcý,, r,, reference numbcrý, a,, 'ýkcll a,, flic I(K ation ot SNII% on chromosome 
II (Ensembl release 39). 
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6.4.3. Bioinforynatics and statistical analysis 

I downloaded haplotypes and recombination rate estimates for the phase I HapMap Yoruba 

and CEU population from the HapMap site. For these datasets PHASE (v2.1) was used to 

infer haplotypes for the I million-SNP of HapMap release 16. c, and recombination rates 

were estimated using the coalescent method of McVean et al. (McVean, Myers et al. 2004). 

The method uses a probabilistic model (the coalescent) to describe patterns of genetic 

variation in which the genetic map is a parameter that can be estimated from data. The 

method Is implemented within the LDhat package 

(http: //www. stats. ox. ac. uk/-iiicvean/LDhat). 

Recombination rates were estimated separately for each HapMap analysis panel (YRI, CEU, 

CHB+JPT). Recombination rates were averaged across populations (www. hamap. org). 

PHASE (v2.1). 

I used PHASE software package, version 2.1 

(http: //www. stat. washin, tzton. edu/stephens/software. html) (Stephens, Smith et al. 2001) 

(Stephens and Donnelly 2003) to infer the haplotypic phase from the genotypic data I 

generated in the laboratory. The reason I chose this software for haplotype inference in my 

data was that PHASE (v2.1) was shown to be the most accurate algorithm in a comparison 

between methods used for phase inference of haplotypic data from genotypic data (Marchini, 

Cutler et al. 2006). 

MARKER. 

MARKER was used to calculate and graphically present LD between markers and to 

display the Haplosimilarity values in the P-globin region of chromosome II for the HapMap, 

YRI (http: //www. giiiap. net/i-narker) 
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Haplosimilarity 

The haplosimilarity test implemented in the MARKER application 

(http: //www. gmap. net/marker (Hanchard, Rockett et al. 2006). 

Extended high-frequency haplotype analysis 

I developed a Perl script (http: //www. peri. org/ ) to run on a UNIX platfonn in order to look 

for instances of unusually extended high-frequency haplotypes in the genome. The Perl code 

was used to scan the human genome employing an overlapping window approach. The script 

ext-hap-freq. pl (see appendix) looks at all the haplotypes within a predefined window. All 

chromosomes of both the YRI and CEU were scanned using window size prefixed to 360 

markers. The window slides across haplotypes supplied (phased HapMap data) by shifting 

the window position along the length of each chromosome. Firstly, I used window shift of 

180 markers, so as to make windows overlap by half their sizes. Then I carried out another 

genome scan with the much smaller window shift of I marker. 

The outputs for each position of the window are the numbers of identical haplotypes, in 

descending order. A typical line could look like: 7,3,2,2 which means that that window 

(i. e. window of fixed size but starting at that position) had 7 haplotypes the same 

(throughout the window), and also 3 haplotypes the same, then 2, then another 2, and the rest 

were distinct. However if all the haplotypes are distinct, the output is I in a single line, so that 

this (very common) case is countable. This script also calculates the average recombination 

rate for each window position using a file of estimated recombination rates downloaded from 

HapMap. 

After acquiring the data for all the windows across each of the chromosomes, the frequency 

of the highest identical haplotype in a window would be plotted against the genetic distance 
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value for that particular window. This would create a chromosome-wide distribution 

amenable to an outlier analysis of all windows across a chromosome. 

Using excel sheet macros a regression line with the upper and lower 95% confidence 

intervals was fitted to the scatter plot of maximum haplotype frequency and genetic distance 

of each window. 

6.5. Results 

6.5.1. Long-range highfrequency HbS haplotypes in YRI 

I combined the data that I generated in the laboratory by genotyping the YRI samples, and 

data downloaded from the HapMap website for the 400 kb region surrounding the HbS 

marker position (Chrl 1: 4999517 - Chrl 1: 5401780). This resulted in marker density of about 

I marker every 2.4kb using165 markers from HapMap release 16c. l. Phasing was carried 

out using the software PHASE v2.1. Upon analysis of the resulting haplotypes frequencies, 

it was noted that the highest haplotype frequency was that of an HbS haplotype (Figure 

6.5.1.1). 

When compared with the Sudanese sample data, this observation was clearer in the YRI 

sample probably due to the higher marker resolution (165 markers in YRI as opposed to 26 

markers typed in the same area in the Sudanese sample). 
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Figure 6.5.1.1: Haplotype frequencies in a 4001kb region around HbS in the HapMap Yoruba sample. 
On the x axis distinct haplotypes are arrayed by their id numbers. On the y axis the number of identical copies 
of each haplotype are shown. Blue dots represent HbA haplotypes and pink dots represent HbS haplotypes. 

The striking difference between the HbS carrying haplotype and the rest of haplotypes in the 

same region was clearer in the YRI dataset when a window centred on the HbS was 

gradually increased in size to include incrementally larger areas around the HbS marker 

position. The frequencies of identical haplotypes were plotted for each window size (in 

figure 6.5.1.2 the x axis represent windows of increasing sizes (in kb) centred around the 

HbS marker while the y axis is the absolute frequencies of identical haplotypes in each 

window. Red dots represent HbS haplotypes). An HbS haplotype was noted to have high 

frequency when compared to the frequencies of other haplotypes within the same window. 

This high frequency was maintained for 1.2 Mb around the HbS allele before declining very 

rapidly to become indistinguishable from others in the same region. Also noted was the fact 

that over distances less than 200kb the HbS haplotypes were grouped together with other 

HbA haplotypes because they were indistinct at the analysed marker density. For a selective 

sweep of a similar magnitude to the one created by the HbS mutation, the signature of a 
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single extended high frequency haplotype would be most useful to explore with windows 

sizes between 200 kb and 1.2 Mb. 
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Figure 6.5.1.2: Frequencies of haplotypes in windows centred on the HbS marker and incrementally 
increased in size. The x axis represent sizes of windows (in kb) centred on the HbS marker. The y axis shows 
the absolute frequencies ofidentical haplotypes in each window. Red dots represent HbS haplotypes. 

The HbS carrying haplotype maintained its high frequency undisturbed over a 1.2 Mb region 

(Chrl 1: 4695489- Chrl 1: 5930724). Marker density about I marker every 2.6 kb. 430 

markers from HapMap release 16c. I plus the HbS marker), in spite of the presence of 

several recombination hot spots (Figure 6.5.1.3). Hotspots were defined as areas where there 

is at least a fivefold increase in estimated local recombination rate (McVean, Myers et al. 

2004). 

Of dril 

Recombination rate (clift) 
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Figure 6.5.1-3: Recombination rate and hotspots in the 1.2Mb region around HbS as estimated from 
phase I HapMap data. Figure downloaded from HapMap website. 
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The development of an easy method that utilizes the above observations could potentially 

yield critical clues about regions under natural positive selection because unlike other 

haplotype based methods considered by many to be the state of the art, it does not require the 

typing of the functional variant or a marker that is in high LD with it. 

6.5. Z Extended highfrequeney haplotypes across chromosome 11 

To determine whether this observation could be utilized as a method for identifying genornic 

regions under positive natural selection, it was important to quantitatively determine how 

significant this finding is on a larger scale, when measured against the whole of chromosome 

II and the rest of the genome. 

To see whether there are other instances in chromosome II where the maximum identical 

haplotype copies would exceed that of the HbS haplotype over approximately 1.2 Mb 

distances, windows of 400 markers in size and a 100 marker shift were analysed across 

chrl 1. The maximum haplotype frequency in each window was calculated. It was found that 

other than the 7 identical HbS haplotypes in the HBB region, windows with a maximum 

haplotype frequency above 6 identical copies were only located in the centromcric region of 

chromosome 11 where recombination rate is close to zero (Figure 6.5.2.1). 
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Figure 6.5.2.1: Frequency distribution of maximum number of identical haplotypes in widows across 
chromosome 11. Windows were ol'400 markers in size and shifted by a 100 markers. On the x axis are the 
bins for the maximum number ofidentical haplotypes, and on the y axis the number of windows with in each 
bin. 

To distinguish whether the high frequency haplotypes were the result of selection or lack of 

recombination, it was necessary to account for the recombination rate in genomic areas that 

were analYsed. 

Phased haplotypic data from HapMap phase I was analysed for chromosome II using a 

sliding window approach. A window of a pre-defined number of markers and shift was run 

across the chromosome. Window size was fixed to 360 markers, because it roughly 

corresponded to IMb with the currently analysed SNP density (This distance was chosen 

because of the insights gained from the HBB region which makes this analysis optimised. to 

selective sweeps of a parallel effect to that caused by the HbS mutation). The whole of 

chromosome II was analysed using a window shift of 180 markers, and then re-analysed 

using aI marker window shift in order to make sure no areas were missed. 
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In each window, frequencies of all distinct haplotypes were calculated as well as the total 

genetic distance from adding up all the estimated genetic distances of areas spanned by the 

window. The genetic distance values were downloaded from the HapMap website where 

they were estimated using the methods described in McVean et al (McVean, Myers et al. 

2004). Genetic distance was chosen rather than recombination rates to control of the 

variation in marker spacing of the HapMap data, since the genetic distance factors both the 

recombination rate and the physical distance. 

A distribution was plotted with each window as a data point whose coordinates are the 

highest haplotype frequency on the y axis and total genetic distance for that particular 

window on the x axis (Figure 6.5.2.2). A regression line with upper and lower 95% 

confidence interval curves were fitted to the distribution. Any data point outside the upper 

95% CI was considered as a candidate for a genomic area undergoing selective sweeps. 
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Figure 6.5.2.2: Distribution of highest haplotype frequency and genetic distance values of windows 
across chromosome 11. Windows were ol'360 marker size and 180 marker shift. On the x axis is the genetic 
distance values in cM and on the y axis the frequency ofthe haplotype with the most identical copies in a 
window. Red circle highlights the HBB region. 
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6.5.3. Another way to determine the extent of the high frequency haplotype 

For the purpose of determining the full extent of the high frequency haplotype signal that 

could be identified with the present analysis, the minimum extent of haplotype has already 

been determined by the window size chosen, but the upper limit over which the haplotype 

remains outside the upper 95% confidence interval of the distribution is determined by using 

windows of one marker shift to trace the full extent of the a single high frequency haplotype 

across adjacent windows. It was taken to be the length of the region spanned by all adjacent 

windows outside the 95% confidence interval of the distribution (Figure 6.5.3). The whole 

region defined in the above way was taken to be of possible biological interest. In the case of 

the HBB region the HbS haplotype of frequency 5 and above, was traced over a 1.4 Mb 

region. 
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Figure 6.5.3: Distribution of highest haplotype frequency and genetic distance values of windows of 360 
marker size and I marker shift across chrl I. Each data point represents a single window with its genetic 
distance -in cM- value on the x axis and on the y axis the frequency of the haplotype with the most identical 

copies in that window. 
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6.5.4. Regions of interest in HapMap YRI and CEU genomes 

Phased haplotypic data from HapMap phasel for both the YRI and CEU populations were 

analysed for each chromosome at a time, using the same sliding window approach described 

previously for chromosome II in YRI. In total there were 55 regions that were picked up 

from the analysis. 23 in YRI and 32 in CEU. From the total 55 regions there were 8 regions 

shared between YRI & CEU and 39 regions exclusive to one or the other population. The 

average size of region was (2.78 Mb) in YRI and (2.64 Mb) in CEU samples. The combined 

length of these regions across the whole genome in bp was found to be 63.8 Mb in YRI 

which is equivalent to 2% of the total genome size. In CEU it was 84.6 Mb which represent 

3% of total genome size. (See appendix for complete details of regions identified by scan). 

Sometimes there will be more than one local maximum for the haplotype frequencies in a 

genomic region, as evidenced by tracing the build-up and decay pattern of haplotype 

frequencies at adjacent windows of a one marker shift in a genomic area where previously 

the extent has been defined (described previously). They may indicate the presence of more 

than one overlapping sweep in the same area, and is not unexpected given that the analysis is 

in the order of megabases, so that each area could very well contain more than one 

functionally important gene. In the whole genome scan, areas with a single build-up and 

decay pattern from peak window(s) were assigned a single sweep status, there were 19 such 

regions with the longest being 2.7 Mb in size. Regions with putatively multiple sweeps were 

up to 13 Mb in size. 

65.4.1. Genic content, density and ontology in genomic regions of interest identified by 

genome scan 

The total number of genes in the regions that stood out from YRI and CEU whole genome 

scan as possible candidates of positive selection, was 691 genes in a total area of 124002522 
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bp with average gene density of one gene every 179454 bp. This density was found to be 

less than average genomic gene density of one gene every 97607 bp when compared with the 

rest of the genome. (See appendix for a full list of genes in those regions). 

Out of these 691 genes identified, 77 genes (10%) were immune genes. When this is 

compared with the 770 immune genes out of the 33524 total genes in the human genome 

(about 2%), it becomes clear that there is a higher preponderance of immune genes in the 

outlier regions identified by the extended-high-frequency-haplotype genomic scan. 

65.4.2. Supportive evidence from previous studies for scan regions as biologically 

important 

The HBB region had the highest signal in the YRI genome, which is hardly surprising given 

the fact that the whole scan was optimised on this signal. In the CEU genome the most 

remarkable signal mapped to the 2q2l. 3 region within which the LCT gene is present. 

At least 18 of the 47 regions in both YRI and CEU had a previously reported evidence of 

being under natural selection pressure or had a positive signal in association studies. 

6.5.5. Characterizing the attributes of the extended high frequency haplotype and the 

causal variant 

The high robustness of the extended-high-frequency-haplotype method hinges on the fact 

that the search has to be conducted over very large genomic: areas, but the trade off is that 

subsequent more refined search for the causal variant has to be carried over that same very 

long genomic region identified. 

In a region with a selected high frequency extended haplotype, some SNPs might correlate 

with this haplotype more than others. These SNPs are of most interest for further 

217 



investigation because they might either include or closely tag the causal SNP. These SNPs 

are expected to have an unusually extensive LD pattern compared with other markers in the 

region. Let us imagine that the minor allele of SNP A is exclusively present on the extended 

high frequency haplotype. For any other SNP in the region spanned by that haplotype, only 

one allele will be associated with the minor allele of SNP A because the genotypes at every 

position of the extended high frequency haplotype are identical. Ilus all other SNPs will be 

in strong LD with SNP A. 

In an attempt to identify those SNPs of interest and localize the causal polymorphism in a 

genomic region spanned by a high frequency selected haplotype, I again used the HBB 

region in YRI as a model. Equipped by the knowledge of the precise location, frequency and 

haplotypic and LD relationships of the causal variant (HbS), I looked more closely at an area 

of 1. lMb around the HbS (Chrl 1: 4703080- Chrl 1: 5796500. Marker density about I marker 

every 2.6 kb using 416 markers from HapMap release 16c. I plus the HbS marker). 

I carried out several attempts to summarize and compare LD between markers in the pre- 

defined genomic area, using different LD statistics. I chose the statistic (ID'I . '&2) to 

represent LD instead of the more common IDI or &2 because the distribution curve was 

noted to become more uniform with this measure (see below). The reason why subtracting 

the value of A2 from absolute D prime leads to more uniform distribution is not fully 

understood, but this kind of manipulation of the data could be justified by the fact that all 

data points of the empirical distribution underwent the same transformation. Based on this 

statistic I formulated a metric that I will refer to as the LD-summary statistic (LDSS) to help 

localize the SNPs of most interest in the HBB region for further analysis. For this purpose a 

Perl script was used to create an output file with an average LD-surrimary statistic for each 

marker in the defined genomic region. Input to the script required a file with genotype data 

for markers typed in the genomic region of interest. 
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First, LD-summary statistic was calculated for each marker by firstly calculating the LD 

between that marker and every other marker in the region using the EM algorithm (LD 

relationships were described by subtracting the delta^2 (A 2) value from the absDprime 

value). For each marker the sum of all its LD values was divided by the number of markers 

in the data minus one (the number of relationships) to get the average LD value for this 

marker. This was done for all the markers in the defined genomic area. The distribution of 

LDSS and MAF of markers was then plotted. In the resulting scatter plot each marker was 

represented by a data point whose horizontal position was determined by the value of its 

MAF and vertical position is determined by the value of its LDSS (table 6.5.5.1) (see 

appendix for Perl script used to run the analysis). 
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Figure 6.5.5.1: A scatter plot of the correlation between minor allele frequency MAF (on the x axis) and 
LD-summary statistic (y axis) for each marker in the I. IMb region anchored on the HbS in YRI. 
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For the resulting scatter plot a smoother line was fitted using a generalized additive model, 

this model divides the data into overlapping intervals and for each interval tries to fit the best 

regression line that describes that section of the data. 95% confidence intervals are then 

calculated for the regression lines. For each data point the residual value is calculated by 

taking the vertical difference between the data-point value on the Y axis and its fitted value 

on the smoother. The absolute values of the residuals are then standardized by dividing by 

the standard deviation to deteffnine the statistical significance of the deviation of each data 

point from the general distribution of the rest of the data. 

A few markers stood out as obvious outliers not conforming to the correlation curve 

distribution. These are shown in table 6.5.5.1. When the LDSS values of these markers were 

compared to their haplosimilarity values (Hanchard, Rockett et al. 2006), strong 

concordance between these two methods was demonstrated by the fact that the same markers 

that scored high with the LDSS analysis had the highest haplosimilarity scores in the region. 

This indicates that these two methods are comparable when applied to a large enough 

genomic area, but with an extra advantage of the LDSS method of not requiring haplotypic 

data and being computationally less intensive. 
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id rs# position MAF LDSS haplosimilarity 

1 rs7951605 4883681 0.225 167.844 14.422 

2 rs7945056 4887272 0.225 167.844 14.902 

3 rs334(HbS) 5204808 0.135 298.845 32.942 

4 rs7119428 5266389 0.216 171.788 15.903 

5 rs4519119 5267214 0.216 171.788 15.185 

6 rs2213170 5267342 0.216 171.788 15.34 

7 rs2226952 5271463 0.225 167.136 15.295 

8 rs417425 5474593 0.133 253.674 26.777 

9 rs392296 5475237 0.153 226.419 23.529 

10 rs414154 5484881 0.129 269.418 31.202 

11 rs393044 5500846 0.136 266.72 30.234 

12 rsl391614 5505802 0.133 266.72 30.594 

13 rs317775 5510959 0.142 252.78 30.015 

14 rs7934354 5530215 0.233 156.158 16.926 

Table 6.5.5.1: Markers identified as outliers by LDSS analysis in the HBB region in YRI and their 
corresponding haplosimilarity values. 

The cluster of markers identified as outliers shared the same HbS haplotype, which indicates 

that rather than being noise, they mostly point to selection on HbS. The highest scoring 

markers after the HbS were the ones furthest away from it (more than 280 kb), but they had a 

matching minor allele frequency to that of the HbS and subsequently a higher A2 relationship 

with it. For the other markers in the cluster, they were of a higher minor allele frequency 

than that of the HbS marker. They had a high ID'I but low A2 values with the HbS marker 

and they also shared but to a lesser extent the same HbS haplotype. 
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To further confirm that the cluster of unusual LDSS values observed resulted from selection 

on the HbS allele, I analysed areas of the same size, both upstream and downstream of the 

1.1 Mb area anchored on HbS. I found that the clustering of signals noted in the core I-I Mb 

region, was absent from the two flanking regions (Figure 6.5.5.2 and 6.5.5.3). This indicates 

that all the signals around the P-globin region point towards or result from selection pressure 

on the HbS allele and the clustering effect of signals is due to the presence of a single high 

frequency extended haplotype carrying the HbS allele. 
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Figure 6.5.5.2: LDSS analysis of a IMb region upstream of the 1.1 %1 b anchored on the libS marker. 
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Figure 6.5.5.3: LDSS analysis of aIMb region downstream of the 1. IM b anchored on the HbS marker. 
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I also carried out the LDSS analysis on the whole of chromosome II with a sliding window 

of size 380 markers (approximately IMb) and shift of 180 markers. This analysis showed 

windows around the HbS mutation to have a cluster of outlier markers. This clustering effect 

appears to be only around the HbS variant on chrl 1, a result which supports the previous 

high frequency haplotype analysis and could be used as an alternatively simpler method to 

scan the genome for regions under positive selection. 

Another piece of evidence suggesting that positive selection is responsible for the observed 

LDSS signals was facilitated by the knowledge of which hapolotypes carry the HbS 

mutation. I removed the seven identical haplotypes containing the HbS allele out of data of 

the 1.1 Mb region around HbS, and then reanalysed the data with the LDSS metric. The 

results showed disappearance of the cluster of signals observed previously in the region 

when the HbS haplotypes were taken out (Figures 6.5.5.4). 
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Figure 6.5.5.4: LD-summary statistic carried out in the I. IMb region centred, on the HbS after removing 
the 7 identical HbS haplotypes. LDSS scores are displayed in the y axis and Minor Allcle Frequencies on the 
x axis. Figure shows disappearance of outliers when compared with figure 6.5.5.1. 
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The positions, MAFs, LD and haplotypic relationships between markers displaying signals 

of positive selection in a genomic region could potentially be used to better predict location 

and MAF of the functional SNP. In the 1.1 Mb region anchored on the HbS S NP, the markers 

that had the highest LD-summary statistic and haplosimilanty scores were those closest to 

the causal variant (HbS) in tenns of allele frequency and haplotypic relationship, but not 

necessary in terms of physical distance. Therefore, it might be reasonable to generalize that 

in a given genomic region with a cluster of markers displaying signals of being positively 

selected, the causal variant (if not one of the markers typed) is likely to be of a similar MAF 

and shares the same haplotypes with those of the highest scoring markers. 

On the other hand, based on that information alone, no assumptions could be made about the 

position of the functional variant in the region. For that purpose the LD relationship between 

all members of the cluster could give clues about the position as can be seen from the 

example of the genomic area around the HbS in the YRI (Figure 6.5.5.5). 
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Figure 6.5.5.5: A schematic drawing of MAF and LD relationships between outlier markers in the LD- 
summary statistic analysis in a LIMb region around the HbS in the VRL HhS is %ho" n as an orange circle 
and other markers as green circles on the horizontal axis. MAI-'are indicated on the top hall'of the figure above 
each group of markers. The LD relationships represented on the bottom half offigure %ith red lines indicating 
strong LD and interrupted line indicating weak LD. 
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In the schematic figure above, it is shown that all cluster members had strong LD 

relationships (represented by red lines) with the HbS SNP and with each other within the 

group each side of the HbS, but not among the two groups of markers on either side of it. If 

the causal variant is not known and a guess had to be made about which one it is, it is more 

likely to be the one with strong LD with all the other members of the cluster. In the case 

where the functional marker is not typed then the closest estimation of its position would be 

in the area where the LD breaks down between members of the cluster. 

6.6. Discussion 

6.6.1. Quantifying the temporal relationship between recombination and the effects of 

selective sweeps on haplotypefrequency distfibution 

In the YRI HBB region, malaria selection pressure acting on the sickle-cell variant helped 

maintain identical HbS haplotypes at high frequency. This effect was equal on both sides of 

the HbS polymorphism (600 kb) regardless of the number, position and intensity of 

recombinational hotspots on each side. Therefore the effect of selection on haplotype 

frequencies does not seem to be correlated with the fine scale recombination rate but rather 

is tuned by the overall recombination rate in the region. The reported effect of a single 

recombination hotspot in breaking down associations and reducing the signal of selection 

around HbC (Wood, Stover et al. 2005) does not hold true for this analysis. This might be 

due to the weaker selective pressure of the HbC mutation compared with the HbS. 
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6.6. Z Strengths and limitations of the method 

Using the extended-high-frequency-haplotype method is a simple and quick way to highlight 

a particular genomic region as a candidate of natural positive selection, as well as defining 

the boundaries of that region for further analysis. Tle simplest form of such downstream 

analysis could be the LD-summary statistics for markers within that region's boundaries. 

This type analysis will probably not be as informative without defining the unit size by the 

initial scan. 

This analysis helped identify and describe the genomic scale over which selective sweeps 

could have an effect. With the extended-high-frequency-haplotype method, detecting 

positive selection in genomic regions could be achieved without regard to whether the causal 

variant was typed or not. Consequently, there is less emphasis on the choice of markers, 

density and spacing unlike other methods (like LRH and haplosimilarity) which rely on the 

ability of a marker to tag the causal SNP by being in high LD with it and thus making 

marker choice and density of essential importance. Using data for all SNPs in a genomic 

region in the order of a megabase makes this method robust to marker choice and density 

variation when compared to the above mentioned methods. The consistency in finding the 

high frequency extended haplotype in the face of variable marker density, and chance 

element in choice and ascertainment of typed markers, gives this method an advantage by 

decreasing the rate of false negatives when looking for signals of positive selection. 

This property may make this method useful for genome wide case control studies on a large 

number of individuals with a modest marker coverage that will not necessary tag all the 

untyped markers, a thing which is logistically difficult to achieve either due to limitations in 

resources, technology or an over-fitting problem in marker choice which in most instances 

rely on an imperfectly transferable SNP-tagging sets between populations and studies. 
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Using the correlation between haplotype frequencies and recombination rate as a test to look 

for selective sweeps will miss those regions with no or very little recombination rates if they 

were acted on by positive selection. As it stands now this analysis is a conservative way to 

scan for selection, in the sense that it would only have power to pick up areas with 

incomplete selective sweeps which are relatively recent and did not yet reach fixation, due to 

the underestimation of recombination rates in regions with complete sweeps. 

The choice of window size, that would be optimal for identifying genomic regions under 

selection, warrants some consideration for different datasets. At very small window sizes, 

most haplotypes will be of a high frequency which makes them indistinct from the selected 

haplotype. At the other extreme of very big windows, all haplotypes would be distinct from 

each other leading to a failure to pick the selected haplotype. Between these two extremes of 

distribution unifortnities, all the possible signals with different effect sizes could potentially 

be identified by running the analysis with different window sizes. 

In the YRI I fixed the window size to 360 markers, which roughly corresponded to IMb. I 

chose this size because it is optimised to selective sweeps of a similar or greater magnitude 

to that observed for the HbS in YRI. 

6.6.3. Gene ontology 

The percentage of genes involved in mediating inflammatory and immune responses in areas 

picked up by the scan was five times more than that of the proportion of immune genes in 

the whole genome (10% vs 2%). The higher preponderance of inuhune genes in these 

regions is highly suggestive of them being selectively important. 
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6.6.4. Why there are more sweeps in CEU than YRI 

The migration of modem humans out of Africa into new environments was accompanied by 

genetic adaptations to emergent selective forces. An interesting feature of my data is that the 

majority of deviations are not shared between the two population samples, suggesting that 

local adaptation has played an important role in recent human evolutionary history. 

Consistent with this observation, several possible examples of local adaptation in humans 

have previously been reported (Rana, Hewett-Enunett et al. 1999; Hollox, Poultcr et al. 

2001; Tishkoff, Varkonyi et al. 2001; Currat, Trabuchet et al. 2002; Fullerton, Bartoszewicz 

et al. 2002; Gilad, Rosenberg et al. 2002; Hamblin, lbompson et al. 2002; Rockman, Hahn 

et al. 2003). 

The highest signal in the CEU sample was found in the region of chromosome 2 that 

contains the LCT gene which previously was found in Northern European populations to 

have very high frequencies of the lactase persistence allele (LCT*P) (Hollox, Poulter et al. 

2001), which allows digestion of fresh milk throughout adulthood. It is widely accepted that 

strong selection has driven LCT*P to high frequency in Northern Europeans, beginning 

sometime after the domestication of animals approximately 9,000 years ago (Hollox, Poulter 

et al. 2001; Bersaglieri, Sabeti et al. 2004). 

I The stronger signatures of selection in the European-derived population may reflect the 

exposure of non-African populations to novel and evolutionarily recent selective pressures 

(e. g., unique dietary, climatic, and cultural environments) as modem humans migrated out of 

Africa and spread throughout the world. In contrast, the Yoruba population may have 

experienced fewer evolutionarily recent selective forces. 'Meorefical studies have 

demonstrated that the power to detect a selective sweep is generally greatest if it occurred 

less than approximately 0.1 Ne generations ago (i. e., approximately 20,000-25,000 years ago 
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(Kim and Stephan 2000; Przeworski 2002), which is consistent with the hypothesis that 

signatures of selection in European-Americans reflect recent selective events. Glinka et al. 

(Glinka, Ometto et al. 2003) found that European-derived populations of Drosophila 

melanogaster demonstrated abundant evidence for recent selective sweeps, whereas African 

populations did not, which is strikingly similar to my results. 

6.6.5. The genome-wide approach 

One way to overcome the confounding effects of population history is by empirically 

comparing the pattern of variation at a candidate locus with the genome-wide pattern 

estimated from a set of neutral markers that have been typed in the same individuals or 

populations. In contrast to demographic processes, which affect the entire genome, natural 

selection affects specific functionally important sites in the genome. 

The availability of large-scale genomic data has created new challenges and opportunities, 

especially in allowing for more outlier analyses. However, the availability of genomic data is 

not the final answer the fundamental problem that population-level demographic processes 

and selection are confounded. Many demographic processes, such as certain types of 

population subdivision, may increase the variance in the statistics used to detect selection. 

Certain demographic models are, therefore, more likely than other models to produce 

outliers. The outlier approach in population genetics does not solve the problem that a 

postulated signature of selection, inferred from population genetic data, may instead be the 

product of complicated demographics. Therefore more downstream analysis to try and locate 

the functional variant is required. 
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6.6.6. Towards locating thefunctional variant 

The fact that the high-frequency-extended-haplotype method identifies genomic regions in 

the order of megabases as possible targets of natural selection has its pros and cons. It lends 

robustness to identifying positive selection signals without the need to specifically type the 

functional SNP as long as the haplotype diversity is correctly captured, overcoming any 

biased estimation introduced by SNP ascertainment. The possibility of capturing the true 

haplotype diversity becomes more likely the bigger the area studied at any one time. Conrad 

et al (Conrad, Jakobsson et al. 2006) found that the longer the haplotypes considered, the 

truer the estimate of their heterzygosity. They also found that the same underlying 

haplotypes are likely to be observed, regardless of which SNPs are studied, over a long 

enough genomic region. 

The boundaries of the region over which subsequent analysis could be carried out, can be 

demarcated very effectively by identifying the extent of a long haplotype of unusually high 

frequency. Without this area demarcation some analysis like the LD- summary statistic 

analysis will not give any coherent or useful result. 

The challenge of this method stems from its source of strength. It becomes more of a 

challenge to pinpoint the functional variant, the larger the genomic area over which the 

search has to be conducted. A few markers in the regions identified by the extended high 

frequency haplotype method are expected to have unusually extensive LD values because of 

their close correlation with the high frequency selected haplotype. To try and identify these 

markers I defined a metric based on LD and called it the LD-summary statistic (LDSS). It is 

a quick method which proved to give comparable results to those of the best methods at the 

moment, when used within the proper pre-defined genomic area context. 
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The Expectation Maximization (EM) algorithm was used to calculate LD values between 

markers in regions spanned by an extended high frequency haplotype. The EM algorithm 

was chosen because it is much less computationally intensive than haplotype-based LD 

calculations and it gives comparable results. The gain in computational time and effort over 

using the haplotype based methods, overbalance the slight loss of accuracy in LD estimates. 

Certainly for the purposes of this analysis the EM algorithm is quite adequate as long as the 

bias in the estimation is consistent, since it is the overall average LD summary of each 

marker rather than the detailed pair-wise LD values that are being used. 

There were eight haplotypes with the minor alleles of all of the outlier markers in the LDSS 

analysis and all the eight haplotypes were carrying the HbS allele. This close haplotypic 

relationship between causal variant and other members of cluster of markers with selection 

signals in the region could be utilized to limit the depth of the search for the causal variant 

by marking a few haplotypes out for further genotyping effort and analysis. 

All markers that had high signals on both the haplosimilarity and LDSS analysis were found 

to be highly correlated with the haplotypes carrying the HbS allele. This suggests that rather 

than being noise, the signals they show mostly point to selection on HbS. 

To confirm this, the haplotypes containing the HbS were taken out of the analysis with a 

resultant marked reduction of signals at those markers that stood out before. No reduction in 

their signals was noted when a similar number of randomly chosen haplotypes was taken out 

of the analysis. At the same time for the other markers which demonstrated no significant 

signals before taking the HbS haplotypes out, there was hardly any change to their 

haplosimilarity signals. This observation supports the claim that most of the haplosimilarity 

signals in the HBB region are the result of the selection on one marker and they could all 

point towards a single selective pressure on the HbS allele. So rather than considering these 
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signals the result of stochastic events, an indication of the insensitivity of the metric used or 

a problem to be circumvented, they could be utilized to characterise genornic regions 

undergoing selection and to pin point the position of the functional polymorphism. 

in order to achieve the above goal (the utilization of selection signals at specific markers to 

identify genomic regions under selection), I had to prove first that there is a tendency of 

selection signals to be clustered in genomic: regions undergoing selective sweeps. The 

clustering effect, observed very clearly in the I. IMb region anchored on the HbS, was found 

to be absent from the same sized flanking regions using the LD-summary statistic analysis. 

The whole chromosomal LDSS analysis carried out across chromosome II with a sliding 

window of approximately IMb in size, showed the clustering effect to be only around the 

HbS mutation in chrl 1. Ibis result supports the previous high frequency haplotype analysis 

and could be used as an alternatively simpler method to scan the genome for regions under 

positive selection. 

Positive selection signals at several individual markers could all collectively be pointing 

towards selection on a single untyped functional marker. In the HBB region unless the 

functional marker (HbS) is typed it could be easily overlooked in the search for selection 

signal in the genome using LRH and derived metrics. The very essential act of defining the 

extent of the area where to look for a cluster of signals, regardless of the metric used, makes 

this approach more robust than the approach of trying to find a single truly selected marker. 

6.6.7. Method correlation with EHH and haplosimilarity 

In chromosome 11, the region that showed unusually high frequency long haplotype with the 

extended-high-frequency-haplotype analysis was the same region that demonstrated 

clustering of signals using other haplotype based analysis like the LRH and haplosimilarity. 

232 



The same cluster of markers that stood out in the LRH and HS analysis was picked up by the 

LDSS analysis, which shows that this method lines up very closely to the other haplotypic 

based analyses if the overview of the clustering effect of a selective sweep is considered 

rather than the individual markers scores which are at best hard to interpret against the 

background noise. 

The most important insight from my analyses is highlighting the scale over which signals of 

selection are most effectively detected, and giving other methods of looking for natural 

selection context by considering all the members of a cluster of signals in a genon-k region 

to be telling the same story. 

6.6.8. Applying the method to genome wide association studies with less marker density 

and more individuals than the HapMap data 

To explore whether using high density markers in a small area yields the same results as 

using widely spaced markers in a bigger region, an LD-summary analysis was carried out in 

a 150kb region around the HbS marker in YRI, using the HapMap release 20 data which is 

about five times denser than the data used for my analysis so far. 200 markers were analysed 

and it was found that the HbS marker is hardly distinguishable from the background noise 

because its average LD value is not that much different from other markers distribution 

(Figure 6.6.8). This leads to the conclusion that to first define the boundaries of the area over 

which the LDSS can be carried out is of utmost importance in successfully identifying the 

positive signal from the background noise. 
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Figure 6.6.8: LD-surnmary statistic analysis of a 150 kb region anchored on the H bS in YR 1.2(X) markers 
from HapMap release 20 were used. 

The density of the markers in the 1.1 Mb region around HbS was reduced to half that in 

phase I of the HapMap, by taking every other marker's genotypes out and then re-phasing 

the genotypic data. The HbS haplotypes were still distinguished from others by their high 

frequency over that distance. 

In a recent study (Conrad, Jakobsson et al. 2006) it was shown that the bigger the window 

considered; the more powered the genotyped SNPs to capture the haplotypic heterozygosity 

in the area as measured by microsatellites. 

My method is suited to genome wide association studies with much more individuals typed 

and less marker density than that used in phase I of the HapMap project, because it will 

probably capture the same haplotypic diversity with less marker density. Furthermore, it is 

likely that the difference in frequency between selected and other neutral haplotypes in the 

same region will become more prominent with the larger number of individuals typed. 
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To sununarize, the LD-summary analysis highlighted the clustering effects of selective 

sweeps, and the potential for using the LD and haplotypic relationships between these cluster 

markers to better predict location and minor allele frequency of the functional SNP. Within 

the boundaries of the genomic region under selection and the full scale of the sweep, the LD- 

based analysis is as good as other computationally intensive haplotype-based methods at 

picking up selection signals. As well as coming up with comparable results, it gave context 

to the interpretation of signals obtained by other methods. 

6.7. Conclusion 

The same striking pattern I previously observed in the Sudanese samples was mirrored in the 

Yoruba HBB region with a high frequency HbS haplotype that extended to 1.2 Mb, and 

which clearly stood out when compared with the rest of chromosome 11. Genome-wide scan 

identified 23 genomic regions in the YRI, and 32 regions in the CEU, with unusually 

extended high frequency haplotypes. These regions were enriched for immune genes, 

suggesting they might have been targeted by positive selection for their important biological 

functions. The highest signal in the YRI genorne was that from the HBB region. In the CEU 

genome the most remarkable signal mapped to the 2q2l. 3 region within which the LCT gene 

resides. Both of these regions have extensive literature suggesting their selective advantage. 

The genome-wide approach I employed in the HapMap data to look for extended-high- 

frequency- haplotypes could be useful for highlighting genornic areas that are good 

candidates of positive selection. Since this approach is relatively robust to the choice and 

density of markers and could potentially pick up signals of selection even if the selected 

variant is not genotyped, it might prove useful for genome-wide case control studies. 
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Therefore in the next chapter I will apply the same approach developed here to a larger 

dataset generated by the MalariaGEN project. nis dataset consists of genome-wide 

genotyping data of severe malaria cases from the Gambia and their parents as controls. 
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Chapter 7: 

Genome-wide detection of malaria-related natural selection by 

applying an extended-high-frequency haplotype method to case- 

control data from the Gambia. 

7.1. Abstract 

The extended-high-frequency-haplotype method introduced in the previous chapter showed 

promising results, suggesting its utility in highlighting genomic regions that might be 

candidates of positive selection. Applying it to a real-life genome-wide case-control data 

presents the opportunity to further develop and validate the method, and to identify genomic 

regions where positive selection might have played a role. Additionally, this analysis could 

draw disease-specific inferences that might aid the search for malaria 

resistance/susceptibility genetic variants. 

Here I analyse the results of applying this method to a case-control study of Gambian 

children with severe malaria and their parents as part of the Malaria Genomic 

Epidemiological Network (MalariaGEN) project. 2632 chromosomes were analysed for 

585,350 SNPs (total number of genotypes 770,320,600). Overlapping windows of IcM size 

and O. lcM shift were run across the 22 autosomes. Data from all chromosomes was then 

combined to carry out a genome-wide statistical assessment where the upper 2.3% of the 

data points were highlighted and further explored for their genic content. This analysis was 

carried out separately for the malaria cases and controls. 
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7.2. Objcctive-S 

e Scan the genome of Gambian malaria cases and controls by the high-frequency- 

extended-haplotype method to recognize putative genomic regions under positive 

selection. 

9 As a proof of principal, investigate whether there is a selection signal at the HbS 

locus, and if so, if the signal is more prominent in the controls indicating malaria- 

specific selective pressure. 

* Investigate whether there is a selection signal in the MHC region, and if so, if the 

signal is malaria related. 

9 Look for other prominent signals in the genome. 

7.3. Introduction 

Human genetic diversity has been shaped, in part, by infectious diseases, and one of the 

more prominent examples of this is the impact of selective pressure exerted by malaria. In 

areas where malaria is endemic, those individuals who carry resistance-conferring genes 

stand a better chance of surviving childhood and contributing to the population's genetic 

pool. This has long been recognized when the theory of natural selection was substantiated 

for thalassemias, sickle cell anaernia, and other red blood cell disorders (Flint, Harding et al. 

1998). Haldane's insight in1949, that the geographical distribution of haernoglobinopathies 

reflected malarial selection, provided numerous candidate genes for studies over the next 

four decades. 
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Twin studies and heritability estimates have subsequently confirmed the influence of host 

genetics, which was shown to be most pronounced in children (Jepson, Banya et al. 1995; 

Rihet, Abel et al. 1998; Mackinnon, Mwangi et al. 2005). 

The importance of genes regulating immune responses to malaria was demonstrated by the 

finding of HLA associations with resistance to severe malaria (Hill, Allsopp et al. 1991). 

Polymorphism in the promoter of another MHC gene, tumour necrosis factor TNF, was 

found to affect the risk of cerebral malaria (McGuire, Hill et al. 1994). However it has been 

surprisingly difficult to detect an influence of HLA and other major histocompatibility 

complex genes on the magnitude of immune responses to malarial antigens in field studies. 

In general, cellular immune responses to malaria antigens show marked heterogeneity in 

specificity, type and magnitude; the relative importance of MHC polymorphism and other 

genetic factors in accounting for this heterogeneity has been unclear (Hill, Jepson et al. 

1997). 

A number of clear associations of genetic polymorphisms with the altered risk of malaria 

disease have been presented and supported by a significant body of scientific evidence in the 

past, mainly from candidate gene approaches (Fortin, Stevenson et al. 2002). Most of these 

association studies have targeted immune loci, thus highlighting the importance of immune 

processes in malaria. Some examples are loci encoding MBL, CD36, CD40 ligand, IFN-y, 

IIA and the p4O subunit of IL12 (Kwiatkowski 2000). 

But despite the large number of field studies over many years, knowledge on the key targets 

and mechanisms of protective immunity is still remarkably limited, with many studies giving 

negative or contradictory results. Numerous studies reporting apparent associations between 

polymorphisms and outcome of malaria infection have been published in the last 10 years, 
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but there are concerns that many of these associations may be spurious because of the small 

size of the studies and low levels of population matching. 

Recently, data availability from huge international initiatives like the human genome 

sequence, the international HapMap project, and large-scale multicenter studies of exposed 

populations using immunogenetic studies of polymorphisms (such as those of the 

MalariaGEN research network) (MalariaGEN 2008), along with the advent of new methods 

for high throughput, high resolution genotyping are leading to an explosion in genetic 

epidemiology, which will pave the way for better understanding of mechanisms of malaria 

protective immunity and the rational development and evaluation of future vaccines and 

novel therapies. 

Theory and analytical approaches used to detect signatures of natural selection in the 

human genome 

Natural selection, which can be defined as the differential contribution of genetic variants to 

future generations, is the driving force of Darwinian evolution. Identifying regions of the 

human genome that have been targets of natural selection is an important step in clarifying 

human evolutionary history and understanding how genetic variation results in phenotypic' 

diversity, it may also facilitate the search for complex disease gcnes. Rather than detecting 

selection by observing its ongoing dynamics, population genetic approaches aim to establish 

whether or not observed extant patterns of genetic variation would be unlikely in the absence 

of selection. 

The traditional way of identifying targets of adaptive evolution has been to study a few loci 

that one hypothesizes a priori to have been under selection. This approach is complicated 

because of the confounding effects that population demographic history and selection have 

on patterns of DNA sequence variation. Technological advances in high-throughput DNA 
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sequencing and single nucleotide polymorphism genotyping have enabled several genome- 

wide scans of natural selection to be undertaken. Using a genome wide distribution of any 

statistic can potentially tease out the signature of selection from a background signature of 

demographic history. Because while specific demographic events, such as population 

expansions, bottlenecks, and subdivision of populations will potentially affect variation 

genome wide. On the other hand, natural selection is expected to have locus-specific effects. 

The deluge of large-scale catalogues of genetic variation has stimulated many genome-wide 

scans for positive selection in several species. Recently the Phase 11 HapMap data have been 

used to identify genomic regions that show evidence for the influence of adaptive evolution, 

primarily through extended haplotype structure indicative of recent positive selection. Using 

two established approaches, namely the LRH test and the Integrated Haplotype Score (iHS) 

test (Sabeti, Reich et al. 2002; Voight, Kudaravalli et al. 2006), approximately 200 regions 

with evidence of recent positive selection from the Phase II HapMap were identified. These 

regions include many established cases of selection, such as the genes HBB and LCT, the 

HLA region (Sabeti, Varilly et al. 2007). 

7.4. Materials and Methods 

7.4.1. Samples 

was privileged to have been given the opportunity to work with data generated by the 

Malaria Genomic Epidemiological Network (MalariaGEN) project, in order to test the 

applicability of my method and assist the MalariaGen analysis group in exploring new ways 
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of analyzing the data. By applying the extended-high-frequency-haplotype method to the 

data, the opportunity was presented for further development and validation of the method. 

MalariaGEN is an intemational research Network fonned by researchers from more than 20 

countries in Africa, Asia, North America and Europe, in order to better understand 

mechanisms of protective immunity against malaria. The project involves collaboration 

between investigators in 25 institutions which are all not-for-profit research institutes or 

universities (MalariaGEN 2008). 

Here I describe the results when the extended-high-frequency-haplotype method was applied 

to the Gambian dataset of MalariaGen Consortial project 1 (CPI). The following is a 

description of how this data was collected, generated and processed by the MalariaGEN 

project. 

Consortial Project 1 (CPI): Mole genome association study of severe malaria: 

The aim of this investigation was to identify sequences of DNA (single nucleotide 

polymorphisms; (SNPs) which are associated with susceptibility or resistance to malaria. 

MalariaGEN partners participating in this project contributed samples of DNA from well- 

defined cases of severe malaria with ethnically- matched controls. 

Phase I of the project involved screening hundreds of thousands of SNPs for association 

with susceptibility or resistance to severe malaria in Gambian children with severe malaria 

and their parents. Unlike case-control analysis, family based association analysis is not 

confounded by population stratification which could increase the rate of false positive and 

false negative results. 
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Clinical Samples: 

In this study cerebral malaria was defined as a Blantyre coma score of < 3, persisting for 

30 minutes after cessation of a transient seizure or after correction of hypoglycaernia, in a 

child with asexual forms of P. falciparum on blood film and no other evident cause of coma. 

Severe malaria anemia was defined as packed cell volume < 15%, or hemoglobin <5 (or 6) 

gIdl with asexual forms of P. falciparum on blood film. 

Mole genome amplification: 

DNA samples were whole genome amplified using f29 multiple displacement amplification 

(MDA) with REPLI-gTM 625S reagents based on instructions from the manufacturer (MSI 

Inc, New Haven). The quality and quantity of DNA was assayed in each sample prior to 

amplification with PicoGreen. 

The DNA samples were in TE (I OmM Tris-HCI pH 7.5, lrnM EDTA) and the concentration 

was 20ng/mL in a total volume of l0m. L. Amplified DNA samples were re-assayed using 

PicoGreen, normalized to 250 ng/mL, and loci representation QC was performed by Taqman 

assay on two loci. All f29MDA DNAs selected for genome-wide genotyping resulted from 

reactions with a minimum of 5 ng input genomic DNA. The quality of the amplified DNA 

was further assessed by assaying 30 SNPs across the genome using Sequenom. iPlex. Call 

rates and imputation on these DNA samples were assessed in the following study (Teo, 

Inouye et al. 2008). 

7.4.2. Genotyping 

Extracted DNA specimens were sent to Panos Deloukas lab in the Sanger Institute for 

genotyping services using Illumina 650Y chip (Ilmn650K) SNP array. This chip is based on 

the HumanHap550 panel which is a whole-genome genotyping panel of 555,352 SNPs that 
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was constructed to effectively tag CEU (European) and CHB + JPT (Asian) sample 

populations. A majority of the SNPs were selected by tagging the more than 2 million 

conunon HapMap SNPs, but the panel also includes variation types that have been found to 

be overrepresented in diseases such as nonsynonymous SNPs. SNPs in the MHC region, 

SNPs in commonly reported CNV regions, and mitochondrial. SNPs. Because individuals 

with African ancestry have distinct and lower levels of LD compared to those with European 

or Asian ancestry, another 100,000 common YRI (African) tag SNPs were added to increase 

coverage of the YRI samples for the HumanHap650Y panel. Eberle et al estimated the 

genome coverage and power for the HumanHap650Y panel (Eberle, Ng et al. 2007). 

Genotype calling: 

The kind of data volumes that were generated by high throughput genotyping platforms, 

created a need for an efficient and accurate automated genotype cafling software. 

A genotype calling algorithm for the Illumina BeadArray genotyping platforms was 

developed and applied to the data by Teo et al (Teo, Inouye ct al. 2007) who formalized a 

calling strategy with a number of features that are specifically designed for the BeadAffay 

genotyping technology. They introduced a model-based approach to call genotypes for the 

Illurnina BeadArray platforms and this has been implemented within an Expectation- 

Maximization framework in the program Illuminus. 

Illuminus made more concordant calls and resulted in a smaller number of SNPs which are 

excluded on the basis of per-SNP call rates than other available genotype calling algorithms. 

This improvement was found to be significantly more substantial for DNA samples which 

have undergone whole-genome amplification. 
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Data Quality Control (QC): 

SNPs QC: Those SNPs which had more than 5% of their genotypes missing were excluded. 

Also SNPs with excess HWD, and Mendelian errors were excluded. 

Samples QC: Excluded were the samples with more than 5% missingness, excess 

heterozygosity, any duplicates. For the trios all Mendelian discrepancies were set to missing 

before phasing. 

658 trios and 585,350 SNPs passed the quality control, and this was the dataset on which I 

conducted my analysis. 

7.4.3. Haplotypic phasing 

Phasing was carried out by Kerrin Small using the Phamily-PHASE and PHASE 

version2.1 software packages (Stephens, Smith et al. 2001; Stephens and Donnelly 2003). 

The genotyping data was partitioned into 50 SNP segments conditional on the presence of at 

least one unambiguous SNP in each segment. If this condition was not fulfilled, more SNPs 

would be added until this condition was met, up to a maximum of 200 SNPs. 

The Phamily algorithm was first used on the trios to determine the phasing that can 

unambiguously be inferred from the pedigree data. Afterwards, PHASE was used to 

statistically infer the rest. In this process any missing data was imputed. 

Finally, the different segments were patched together to create the haplotypes along the 

whole length of the chromosome, for all autosomes. 
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Files with the phased haplotypes for the Gambian trios were provided, one file for each 

chromosome, in the following format: 

Father id 
Haplotype transmitted to the child 
Haplotype not transmitted to the child 
Mother id 
Haplotype transmitted to the child 
Haplotype not transmitted to the child 
Child id (case) 
Haplotype transmitted from father 
Haplotype transmitted from mother 

Along with each haplotype file there was a legend file with data on the typed markers, their 

chromosomal location based on NCBI Genomic build 35, and their genetic distance from the 

start of the chromosome. Estimates of genetic distances were those calculated from and 

provided by phase 2 HapMap. 

7.4.4. Selection analysis 

To start with, analysis was carried out separately for each of the different chromosomes. Perl 

and R scripts running on a UNDC platfonn were developed and used to carry out the analysis 

(Appendix 3). The same procedure was conducted for each chromosome as follows: 

- Firstly, two files were generated from data contained in the file with the 

phased haplotypes of the Gambian family trios. The haplotypcs of the parents 

were divided into those that were transmitted to the children, representing the 

severe malaria cases; and the rest of the paternal haplotypes that were not 

transmitted to the children, representing the controls. Ilie resulting two 

groups of haplotypes were saved in two separate riles. 
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- Before starting analysing the haplotypes, windows were defined beforehand 

based on the data from the accompanying legend input file, where all the 

typed markers were listed with their physical and genetic distances away from 

the chromosomal start. The coordinates of the markers defining the 

boundaries of windows were saved in addition to information about the 

number of markers in each window, and the windows' sizes in terms of 

genetic and physical distances. 

- Overlapping windows covering the whole length of a chromosome were fixed 

to a maximum of a IcM in size. When there were no typed markers at the 

exact window limit, the last marker position in aI cM range from the window 

start, was taken as the window's end position. Therefore, in spite of pre- 

fixing the genetic distance of windows there was still some variability in this 

statistic. 

- To create a sliding window effect, the start positions of successive windows 

were shifted by incrementing the previous window starting position by 0.1 cM 

(when no markers were typed at the required exact position, the closest 

marker before that position was taken as the window starting point). Thus, the 

overlap created between consecutive windows was roughly 0.9cM. 

- After all the markers in all windows across the chromosome were defined, 

including first and last markers' physical and genetic distance coordinates, the 

haplotypic information for these markers were retrieved from the haplotype 

file. The search for unusually high frequency extended haplotypes was carried 

out once for the cases and then for the controls as described below. 
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In each window, the number of copies (frequency) of each distinct haplotypc 

in that window was counted, and then those haplotypcs and their copy 

number were ordered by frequency from the highest to the lowest. The 

number of copies of the most frequent haplotype in the window was recorded. 

- The same procedure was carried out for all the overlapping windows across 

each chromosome. 

Data from all chromosomes were combined to carry out a genome-wide statistical 

asscssment and analysis as follows: 

- Firstly, all windows with less than 0.8 cM in size or less than 50 typed 

markers were filtered out of the analysis. 

- The absolute frequencies of the haplotypes with the maximum number of 

copies were plotted for all windows across all chromosomes. 

-A generalized additive model (R function gam) was used to correlate the 

number of typed markers in a window with its highest haplotype frequency. 

Thus controlling for the variability in the number of typed markers that 

affects the resolution of haplotype ascertainment. 

- This statistical model partitions the data into overlapping segments, then fits a 

statistical mean that best describes the data in each respective segment. The 

means are then smoothed to create an overall mean for the whole of the data. 

- For every data point its residual value (that is its vertical distance away from 

the mean) is calculated. 
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The standard deviation is calculated. Then every point's residual value is 

divided by the standard deviation to give the standardized residual value for 

that data point. 

All data points with standardized residual values above two or more are taken 

to be significant, which means that the upper 2.3% of the data points were 

considered to be enriched for selection signals and were then further explored 

for their genic content in the malaria cases and controls. 

7.4.5. Gene set analysis 

WebGestalt which is a "WEB-based GEne SeT AnaLysis Toolkit" was used to carry out 

analysis on gene sets produced from the above analysis. WebGestalt incorporates 

information from different public resources and provides an easy way for biologists to make 

sense out of large sets of genes. It enables biologists to manipulate integrated information 

and find patterns that are not detectable otherwise. WebGestalt is designed for functional 

genomic, protcomic and large scale genetic studies from which high-throughput data are 

continuously produced. it currently works for human and mouse 

'du/webmestaltl). 

7.5. Results 

In total there were 2632 chromosomes analysed for 585,350 SNPs, which makes for a total 

number of 770,320,600 genotypes. This volume of data required the development of a 

number of programming scripts to automate the handling and analysis of this dataset. 

overlapping windows of a fixed size (IcM), and shift (O. IcM) were used to analyse the 
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haplotype data in all 22 autosomes of the Gambian trio data. As part of the analysis, 

information about window statistics (window size in bp, window size in cM, window start 

and end coordinates, and number of typed markers) were gathered and recorded in the initial 

stage. The average window size in terms of physical distance was 761613 bp. The average 

window size in terms of genetic distance was 0.93 cM. The average number of markers 

typed per window was 166 markers. The variation in the genetic distance was not 

eliminated by pre-fixing the window sizes to I cM due to markers spacing variability. Figure 

7.5.1 shows the frequency distribution of window sizes in cM for all windows across all 

chromosomcs. 

Before analysing the haplotype frequencies, any window which was 0.8 cM or less in size 

was eliminated from the analysis. This made for 5% of data being filtered out. The logic 

behind this is that the smaller the genetic distance considered, the less recombination events 

considered, which means the higher likelihood of haplotypes with high frequencies. A factor 

which would bias analysis standardised for genetic distance by increasing the likelihood of 

false positives. 
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Figure 7.5.1: Frequency distribution of window size statistic. Data is for all windows across all autosomes 
in the Gambian trios. Shown on the x axis the bins of window size in cM. On the y axis the frequency of each 
bin. 

Another potential bias could arise from the variability of the number of markers typed in 

each window. Although the analysis is standardized to account for the number of markers 

per window, initially I chose to exclude all the windows with 50 or less typed markers. 4% 

of windows across the genome had 50 or less typed markers, but about half of those were 

also 0.8 cM or less in size. Therefore, the combined proportion of windows filtered out of 

the analysis was 7%. 

Each chromosome was analysed twice; one time with the haplotypes that were transmitted 

from parents to children (representing the severe malaria cases), and a second time with the 

haplotypes that were not transmitted from the parents (representing the controls). Therefore, 

the analysis carried out in the cases can potentially highlight genomic regions where genetic 

variants might be involved in malaria susceptibility, and the analysis carried out in the 
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controls could potentially identify genomic regions where nialana protective polymorphisms 

reside. 

The bench mark example of malaria-specific selection is the HbS polymorphisni in HBB 

region in chromosome 11, therefore, as proof of principal, it was of great interest to see 

whether the extended-high-frequency analysis would pick up a signal in this genomic region. 

When looking at the results from chromosome 11, there was a very strong and clear signal in 

the HBB region with the analysis that was carried out in the controls (Figure 7.5.2). 
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Figure 7.5.2: Analysis of untransmitted haplotypes (malaria controls) of chromosome 11. Scatter plot of 
maximum haplotype frequencies in windows of' I cM size and 0.1 cM shift along chrl 1. Only windows more 
than 0.8 cM in size and with more than 50 typed markers are shown in figure. On the x axis, windows are 
arranged according to their position along chrl 1, with the p arm on the left hand side. On the y axis, the 
number of copies of the most frequent haplotype in each window art: shown. 
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The signal originating from the HBB region constituted the highest signal in chromosome II 

in the controls. It reflected the presence of an unusually long and high frequency haplotype 

in the HBB region. This haplotype maintained a relatively high frequency over many 

overlapping windows where its frequency was outside the genome-wide 95 th percentile. 

These windows covered a 3.4 Mb genomic area. The maximum frequency of 66 copies was 

in the 0.5 Mb (0.98 cM) around the HbS position (11: 479574011: 5309382). 1 confirmed 

that this haplotype is one which carries the HbS allele. This makes for a very strong case that 

the pattern observed is the result of selection on the HbS allele in the Gambian controls, 

especially when it is noted that the peak at the HBB region disappears completely when 

analysing those haplotypes transmitted to the cases (Figure 7.5.3). 
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Figure 7.5.3: Analysis of transmitted haplotypes (malaria cases) of chromosome 11. Scatter plot of 
maximum haplotype frequencies in windows of I cM size and 0.1 cM shift along chrl 1. Only windows more 
than 0.8 cM in size and with more than 50 typed markers are shown in figure. On the x axis, windows are 
arranged according to their position along chrl 1, with the p arm on the left hand side. On the y axis, the 
number of copies of the most frequent haplotype in each window are shown. 
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There were cases when the peaks were observed both in the transmitted haplotypes (cases) 

and untransmitted haplotypes (controls). The most stnking example of that is the genomic 

area in chromosome 6 where the MHC and other immune genes are located (Figure 7.5.4). 
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Figure 7.5.4: Analysis of chromosome 6 for both the malaria cases and controls. Values from transmitted 
haplotypes are represented in green and those from untransmitted haplot)pes in blue. Scatter plot of maximum 
haplotype frequencies in windows of I cM size and 0.1 cM shift along chr6. Only windows more than 0.8 cM 
in size and with more than 50 typed markers are shown in figure. On the x axis, windows are arranged 
according to their position along chr6, with the p arm on the left hand side. On the y axis, the number ofcopies 
of the most frequent haplotype in each window are shown. 

From looking at the sequences of the haplotypes, I found the same unusually high frequency 

haplotype to be responsible for the signal in the MHC region in the both the cases and 

controls. The strength of this signal is greater than that observed in the HBB region in the 

malaria controls. 
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Due to the many immunologically important genes in this region, it is not implausible that 

the signal observed might be due to the effects of a very strong natural positive selection 

force acting on the region, but not necessary due to malaria. 

Data from all windows across all chromosome were compiled together to make a 

comprehensive genome-wide analysis and determine significance level across the whole 

genome. The pooling of the data from different chromosomes was a statistically feasible 

thing to do since the factor that most determine haplotype frequencies in a region, namely 

the recombination rate, was accounted for in the analysis. Another factor that might possibly 

influence the variability in haplotypes frequencies across the genome is sample relatedness. 

It was excluded since the Gambian sample consisted of unrelated trios, and there was no 

evidence from the genetic data to suggest there were undetected kinships between members 

of different trios. In spite of the initial observation that there was a baseline of 10 haplotypes 

that were similar in any given genomic region across any given chromosomes, upon further 

analysis of this phenomenon, I found that those haplotypes did not belong to any group of 

individuals in particular. 

The spacing of markers across genomic regions might also influence the variability in 

haplotype frequency across the genome. But I judged it not to be a major factor in this 

dataset because marker spacing was comparable across chromosomes (one marker every 4 to 

5 kb). Additionally, markers in the Illumina 650Y chip (Ilmn650K) SNP array were chosen 

primarily as tagging SNPs which means their spacing was correlated with haplotype 

diversities. 

The number of markers typed in each window however can greatly influence the observed 

haplotype frequency in that window. The smaller the number of markers per window, the 

less resolution of distinct haplotypes and consequently the higher likelihood of observing a 
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haplotype with high frequency in that window. In figure 7.5.5 it is clear that there is greater 

variability in the maximum haplotype frequencies across windows with smaller number of 

typed markers. 
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Figure 7.5.5: Correlation between the maximum number of haplotype copies in a window and the 
number of typed markers. Windows are of' IcM size and O. IcM shift. EaLh data point oil the scatter plot 
represent a window with its number of typed marker on the x axis. and the copý number )I its most frequent 
haplotype on the y axis. 

The way I chose to tackle this issue was first to exclude all windows that had 50 or less 

typed markers. For the remaining data the variability in window statistics with the number of 

typed markers was factored in to the analysis by statistically correlating the number of 

markers typed per window and its highest haplotype frequency. A generalized additive 

model (R function gam) was used which partitions the data to overlapping segments then fits 

a statistical mean that best describes the data in each respective segment. The means were 

then smoothed to create an overall mean for the whole of the data. 
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For every data point its residual value (its vertical distance away from the mean) is 

calculated. The standard deviation is calculated. Then every point's residual value is divided 

by the standard deviation to give the standardized residual value for that data point. All data 

points with standardized residual values above two or more were taken to be significant. 

This resulted in the upper 2.3% of the data considered to be outliers and warrant further 

exploration for their potential biological significance. 

In figure 7.5.6 the stanclardised residual values for filtered data are displayed by 

chromosomal order for the severe malaria cases. 
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Figure 7.5.6: Standardised residual values for windows across the genomes of malaria cases (transmitted 
haplotypes). Shown is filtered data for windows on IcM size and 0.1 cM shift. On the x axis windows are 
ordered by chromosome and by position within chromosome. The y axis displays the standardised residual 
values for windows' maximum haplotype frequencies taking account of the number of typed markers in the 
window. The two grey horizontal lines represent the second and third standard deviations. 
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This analysis was carried out using the haplotypes transmitted from parents to children. Each 

chromosome was done independently then the data was pooled for all chromosomes and 

statistical significance determined. The same was done for the controls on the parental 

haplotypes not transmitted to children with severe malaria (Figure 7.5.7). 
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Figure 7.5.7: Standardised residual values for windows acro&s the genornes of nuilaria controls 
(untransmitted haplotypes). Shown is filtered data for %k indo%k,, on I c. M si/e and 0.1 cM shitt. On the x axis 
windows are ordered by chromosome and by position within chromosome. 'Ilk: y axis displays the standardised 
residual values for windows' maximum haplotype frequencies taking account of the number oftyped markers 
in the window. The two grey horizontal lines represent the second and third suuxiard deviations. 

For signals that were observed in both the cases and con(rols, by far the strongest signal was 

that observed in the MHC region in chromosome 6, values well above 25 standard 

deviations of the genome wide average. In the controls, the highest signal exclusive to the 

controls originated in the HBB region of chromosome II( 11: 3524620- 11: 687189 1), which 

was the second strongest genome wide after the MHC signal, with values atx)ve the 13 th 

standard deviation. A number of additional regions with evidence of unusually long high 
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frequency haplotypes were identified in the cases and controls. Although their statistical 

significance might be weaker than regions mentioned above, still they might be plausible 

candidates for positive selection. Experiences in other infectious diseases have shown that 

weaker signals may as well lead to the identification of relevant genetic variants (Ogura, 

Bonen et al. 2001). 

Certainly in their entirety, outlier regions in this analysis are likely to be enriched for 

biologically important genes under selection. Further exploration of these and other regions 

identified by similar analysis and localization attempts for causal variants is being carried 

out by the analysis group of the MalariGen project. 

Figure 7.5.8 shows the genomic distribution of the regions, exclusive to the severe malaria 

cases, with values above two standard deviations (for full list see appendix 4). 
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Figure 7.5.8: Genomic distribution of selection candidate regions exclusive to malaria cases (transmitted 
haplotypes). Figure created using Chromosome Distribution Chart sub-module of WebGestalt 
(http: //bioinl'o. vanderbilt. edu/webil, estall/ . 
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Figure 7.5.9 shows the genomic distribution of the regions, exclusive to the controls, with 

values above two standard deviations (for full list see appendix 4). 
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Figure 7.5.9: Genomic distribution of selection candidate regions exclusive to malaria controls 
(untransmitted haplotypes). Figure created using Chromosome Distribution Chan %uh-modulc ot'Web6cstalt 
(hitp: //hioinfo. vanderbilt. edu/webL, e,., ialt ). 
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Figure 7.5.10 shows the genomic distribution of the regions, identified in both the cases and 

the controls to be outliers, with values above two standard deviations. These are regions that 

are potentially under positive selection, but not necessary malaria related (for full list see 

appendix 4). 
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Figure 7.5.10: Chromosome distribution chart of candidate regions of recent adaptive evolution in both 
malaria cases and controls (positive in both transmitted and untransmitted chromosomes). Figure created 
using Chromosome Distribution Chart sub-module of WebGestalt (http: //bioinfo. vanderbilt. c(iii/web, _, estalt ). 

261 



The outlier genomic regions that were exclusive to the malaria cases spanned 75 Mb in total, 

which corresponds to 2.3% of the genome. 'I'lie total area of genomic regions exclusive to 

the malaria controls spanned a total of 70 Mb. This area is equivalent to .. - 2 2% of the genome. 

For the regions that were shared between the cases and controls, they covered 138 Mb of the 

genomc, cquivalent to 4.2 

In the cases these regions contained 2.3% of the total number of genes in the genome, which 

agreed with the percentage of the genome they cover. However, for the genomic regions 

identified in the controls, there was a slight enrichment for genes. Their genic content 

constituted 3.2% of the total number of genes in the genorne. As for the regions that were 

shared in both the cases and controls the percentage oftotal genes was 4.8'/(. 

To define the genes both in the regions of interest and the t'C[10IIIe-WIdC total number of 

genes, I used ENSEMBL release 42 (December 2006 Genebuild) which is based on NCBI 

36, Oct 2005 assembly. The definition of a gene included the following: Known protein- 

coding genes, Novel protein-coding genes, pseudogenes, RNA genes. RNA pseudogenes, 

and immunoglobulin/T-cell receptor gene segments. 

In order to see if the full list of genes identified in either the cases or controls was enriched 

for any biological pathways, I uploaded the complete list of genes from the analysis into 

WebGestaft. Using the KEGG Table and Map. v sub-niodule, WebGestall organizes genes 

based on the KEGG biochemical pathways database (Kyoto Encyclopedia of Genes and 

Genomes. http: //www. jzenonic. *p/kUZ/J. When analyzing the functional significance of the 

interesting gene set, all of the genes in human were used as the reference. In a KEGG Table 

(Table 7.5.4) the pathways associated with the gene set are shown, as well as the number of 

genes in each pathway, and the statistical parameters for the enrichment for the pathways. 
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Cytokine-cytokine receptor interaction 34 0--34; E--13.8842; R=2.4488; P--1.33e-6 
Focal adhesion 24 0=24; E=10.9008; R=2.2017; P=2A3e4 
Antigen processing and presentation 24 0-24; E--4.1308; R=5.81; P=7.67e-13 
Regulation of actin cytoskeleton 22 0=22; E--11.3024; R=1.9465; P--2.2le-3 
Calcium signaling pathway 20 0=20; E--9.5239; R=2.1; P=1.39e. 3 
Insulin signaling pathway 20 0=20; E=7.4585; R=2.6815; P=5.23e-5 
Axon guidance 19 0=19; E=6.9421; R=2.7369; P=6.00e-5 
Purine metabolism 19 0=19; E--83764; R=2.2683; P=7.13e4 
Natural killer cell mediated cytotoxicity 18 0=18; E=6.8274; R=2.6364; P=1.52e4 
Type I diabetes mellitus 16 0=16; E--2.2949; R=6.972; P--2.18e. 10 
Glycan structures - biosynthesis 1 16 0=16; E--5.6799; R=2.817; P--1.58e4 
Cell adhesion molecules (CAMs) 16 0=16; E--7.1142; R=2.249; P--1.98e-3 
Starch and sucrose metabolism 16 0=16; E--3.7866; R--4.2254; P=7.17e-7 
Pyrimidine metabolism 14 0=14; E--5.1062; R=2.7418; P--5.29e4 
Metabolism of xenobiotics by cytochrome P450 14 0=14; E--3.2703; R--4181; P--2.97e-6 
Glioma, 11 0=11; E--3A424; R-3.1954; P=SA6e4 
Phosphatidylinositol signaling system 10 0=10; E--3.9587; R=2.5261; P=5.8le-3 
Porphyrin and chlorophyll metabolism 10 0=10; E--1.6064; R=61251; P=1.9le-6 
Glycerophospholipid metabolism 10 0=10; E--3.5571; R=2.8113; P=2.64e-3 
Inositol phosphate metabolism 9 0=9; E--2.6392; R=3.4101; P=1.06e. 3 
Androgen and estrogen metabolism 9 0---9; E--2A67; R=3.6482; P=63le4 
Arninoacyl-tRNA biosynthesis 9 0--9; F--1.7786; R=5.0602; P=4.2le-5 
Taste transduction 8 0--8; E--2.467; R--3.2428; P=2.77e. 3 
Sphingolipid metabolism 8 0=8; E--2.0654; R--3.8733; P=8.25e4 
Pentose and glucuronate interconversions 7 0=7; E=0.8606; R--8.1339; P--8.65e-6 
Alanine and aspartate metabolism 7 0=7; E--1.7786; R--3.9357; P--1.57e-3 
Cystcine metabolism 7 0=7; E=1.2622; R=5.5459; P=1.6le-4 
Phenylalanine metabolism 6 0=6; E--1.5491; R-3.8732; P=3.69e-3 
Olfactory transduction 6 0---6; E--1.6064; R--3.7351; P=4.47e-3 
O-Glycan biosynthesis 5 0=5; E-1.0327; R--4.8417; P=2.82e-3 
Keratan sulfate biosynthesis 4 0--4; E=0.8606; R--4.6479; P--8.85e. 3 

Table 7.5.4: Enrichment of KEGG pathway in the list of candidate regions of selection in the Gambian 
trios dataset. The KEGG Table organizes genes based on the KEGG biochemical pathways. The KEGG Table 
shows KEGG pathways associated with the gene set (column 1), the number of genes in each pathway (column 
2). The 3rd column gives the parameters for the enrichment of the KEGG pathway. 
0 is the observed gene number in the KEGG pathway. E is the expected gene number in the KEGG pathway 
(Expected number of genes in a specific KEGG pathway for an interesting gene sct--Total number of genes in 
the KEGG pathway for the reference set * Total number of genes in the interesting set / Total number of genes 
in the reference set). R is the ratio of enrichment for the KEGG pathway (R=O/E). P is the p value indicating 
the significance of enrichment calculated from Hypergeometric test. The KEGG pathways listed here are only 
those with at least 4 genes and with p<0.01. 
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7.6. Discussion 

Outlier approaches, in which candidate selection genes are identified in the extreme tails of 

empirical distributions, have become a widely used strategy in genome-wide scans for 

selection (Akey, Zhang et al. 2002; Payseur, Cutter ct al. 2002; Kayser, Brauer et al. 2003; 

Storz, Payseur et al. 2004; Voight, Kudaravalli et al. 2006). 

In general, the simple outlier approach considered here is likely to result in an cnriched set of, 

genes that have been targets of positive selection. However, false discovery rate (FDR) can, 

be high, depending upon parameters such as the strength of selection and the fraction of all 

loci that have been subject to selection. Unfortunately, thcsc paramctcrs are generally not 

known and are difficult to estimate. 

In this analysis, I took into account variations in rates of rccombination and number of 

markers, but I did not take into account variation in rates of mutation, and selection 

coefficients across loci, nor did I consider demographic perturbations that real populations' 

are likely to experience. These factors are expected to increase variance and further 

complicate simple outlier approaches. There is no escaping the fact that evolutionary 

processes are inherently stochastic and extreme outlier values might arise under neutrality. 

In this regard, the utility of simple outlier approaches may seem questionable. However, if 

the goal of a study, like it is in this case, is to identify a restricted set of candidate selectio'n' 

genes to study in more detail, then an outlier approach is a reasonable study design as long 

as one accepts that a substantial proportion of candidates may be false positives. 

The strongest signal exclusive to the controls originated in the 11BB region of chromosome 

11 and covered a 3.4 Mb genomic area. 'Ibis observation validated the ability of the method 

to identify genuine signals of selection. The classic examples of sickle cell anacmia and HbC 

represent some of the best examples of natural selection acting on the human genomc. The 
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HBB signal was the second strongest signal genome wide. By far the strongest signal in both 

the cases and controls was that observed in the MHC region in chromosome 6. 

There is a large body of evidence for the involvement of the MHC locus in malaria 

susceptibility. Piazza et al., were among the first to present evidence of the association 

between particular HLA variants and malaria in Sardinia, where they compared lowland 

areas where malaria occurred and highland areas (Piazza, Mayr et al. 1985). A case-control 

study in the Gambia indicated that the HLA class I antigen HLA-B53 and the HLA class II 

haplotypes DRB 1* 1302-DRB 1 *0501 both protect against severe malaria (Hill, Allsopp et al. 

1991). In population studies, these genotypes accounted for as great a reduction in disease 

incidence as the sickle cell polymorphism, conferring 40% reduction in life-threatening 

complications of malaria in Gambian children (Hill, Bennett et al. 1992). In spite of the 

considerable literature on the subject, the results of this analysis indicate that the selective 

sweep observed in the MHC region is probably not related to malaria, at least in this 

Gambian sample set. 

Few other significant signals - albeit less striking - were identified in the cases and controls. 

The regions highlighted by the analysis in malaria cases and controls, comprise a number of 

genes which may be classified as functional candidates because their products are operative 

in immune regulation or red blood cell metabolism, or other biological pathways suspected 

to play a part in malaria pathogenesis. While further pursuit of such signals is to be carried 

out by the MalariaGen analysis group, a preliminary analysis of the genic content and 

enrichment for biological pathways in regions identified as outliers, gave interesting results. 

The top three biological pathways enriched for in the full list of genes in the outlier regions 

were; cytokine-cytokine receptor interaction; focal adhesion; and antigen processing and 

presentation. 

265 



Cytokines induced by malaria products are a major determinant of disease progression. 

Upregulation by inflammatory cytokines of adhesion sites on cndothclial cells invites 

susceptible circulating blood elements to attach to the inner wall of blood vessels 

(Michelson, Wencel-Drake et al. 1994). 

Several investigators have posited that complex disease genes may be enriched for 

signatures of selection (Bamshad and Wooding 2003; Akcy, Eberle ct al. 2004), which can 

be regarded as an extension of the thrifty gene hypothesis proposed by Neel to explain the 

high prevalence of type 11 diabetes (Neel 1962). If this is in general true, then the genes that 

were found to possess evidence of selection in the malaria cases may be strong candidate 

disease genes. 

A number of genome-wide scans for positive selection have recently been performed on the 

HapMap data (HapMap 2005; Sabeti, Varilly ct al. 2007), which provide an important 

opportunity to compare results across studies. Forty-one regions out the195 autosomal 

regions identified in the HapMap samples using the MS and LRII marics (Sabcti, Varilly et 

al. 2007), were in the top fifth percentile of my analysis on the Gambian trios. Four out of 

the 26 autosomal genes with highly differentiated nonsynonymous SNPs described in Table 

9 of The International HapMap Consortium (11apMap 2005) are among my candidate, 

selection regions. 

The considerable overlap of candidate selection genes with other gcnomc-widc analyses 

engenders confidence in the method's predictions. flowcvcr, it is important to confirm these 

results on independent data with analyses that test different predictions of neutrality, 

functionally characterize suspected targets of selection, and ultimately correlate adaptive 

genetic variation with phenotypic variation. 
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Although there is overlap between my results and previously described genome-wide scans 

for positive selection, there is also evidence for selection in genes not implicated in the 

above-described studies. This is to be expected for a number of reasons. For example, FDRs 

of outlier approaches are likely to be high. Furthennore, tests of neutrality generally have 

low statistical power. 

7.7. Conclusion 

In this chapter, I further developed the method introduced in chapter 6, and applied it to 

genome-wide data of severe malaria cases and controls from the Gambia. This method is 

built upon the premise that natural positive selection can be reflected in genetic variation 

patterns by the presence of unusually long haplotypes of relatively high frequency. 

The analysis identified a number of interesting genomic regions that had unusually long 

haplotypes compared with the genome average. Although, this type of outlier approach 

employed here is bound to result in a high false discovery rate, it is likely that in their 

entirety, the outlier regions are enriched for biologically important genes undergoing 

selective sweeps. Certainly, the benchmark example of HbS has come up as one of strongest 

signals genome-wide and it was exclusively observed in the malaria controls. However, the 

strongest genome-wide signal originating from the MHC region was of equal magnitude in 

both the cases and controls, indicating its independence from malaria selective pressure. 

The validity of this method is also supported by the overlap between regions identified by 

my analysis and those picked up by other genome-wide scans in other populations. 

This analysis resulted in highlighting genon-dc regions enriched for interesting pathways 

with biological functions that might be implicated in malaria pathogenesis. The results 
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obtained from this study underline some of the regions in the gcnome whcrc future detailed 

studies could be focused. 
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Chapter 8: 

Summary and Discussion 

There are many challenges facing the design, interpretation, and replication of genetic 

mapping studies of complex diseases. These challenges are much more manifest in African 

populations, due to the relatively complex population genetic patterns, and relative ethnic 

separation between many of the African populations with distinct ancestries. 

In Africa there is also great variation in climate, diet, and exposure to infectious disease, 

which results in high levels of genetic and phenotypic variation. A better understanding of 

levels and patterns of variation in African genomes, together with phenotype data on 

susceptibility to disease, will be critical for identifying variants that play a role in 

susceptibility to a number of complex diseases and the development of more effective 

vaccines and other therapeutic treatments. No other point demonstrates the challenges facing 

association studies better than the fact that numerous association studies could not be 

replicated. 

In general, these studies rely on background marker correlations to detect disease 

association. Therefore, understanding the structure of haplotypes in the human genome 

provides an important starting point for the study of complex traits. How patterns of LD vary 

between populations of different ethnic origin is highly topical, for two main reasons. First, 

variation in LD structure is integral to the problem of defining haplotype-tagging strategies 

that are transferable across different populations in disease association studies. Second, 

uncorrected population stratification may lead to false positives in association studies when 

there are systematic differences in the ancestry of cases and controls. 
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Through recurrent exposure to different pathogens, a number of genetic adaptations have 

evolved that provide resistance to infection in humans. Although the number of known 

candidate genes related to infectious disease has expanded, progress in the identification of 

genes that influence infectious disease susceptibility and/or resistance in diverse African 

populations has been slow. Studying the signatures of selection in African populations may 

provide a useful tool for gaining a clearer understanding of genetic and phenotypic 

adaptations in Africa. 

During the course of this thesis, I gained insights into genomic signatures of recent positive 

selection and population differentiation in ethnically diverse African population groups. 

These insights can potentially be employed to better inform the design and interpretation of 

association studies in these groups. 

Two ethnically distinct populations (Me Hausa and Masalit) that inhabit ncighbouring 

villages in eastern Sudan, were chosen for my study because each represent a typical African 

village with ethnically-homogenous, closely-related extended families. Furthermore, the two 

villages are located in an area endemic for malaria and visceral leishmaniasis (VL), and there 

is preliminary evidence of differential genetic susceptibility to these infectious diseases 

between the Hausa and Masalit. A population-based study was carried out to investigate host 

and parasite genetic factors that might underlie these differences in VL disease 

susceptibility. 

At the start of this thesis, I set out to explore genetic diversity patterns in the Hausa and 

Masalit of Eastern Sudan, in an attempt to investigate if there was any genetic component to 

their apparent differential susceptibilities, in order to inforin the design of future association 

studies to be carried out in these populations. As the 5q3I region is a susceptibility locus for-, 

parasitic infections including malaria and VL, I compared the haplotypic structure across the 
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region in the two populations. A dense concentration of immune genes is located in the 

human 5q3I region. The Th2 cytokine cluster in the human 5q31 region is known to be 

under coordinate regulation and several important enhancers and repressors have been 

defined at locations distinct from the genes themselves. I therefore examined long-range 

haplotype structure rather than limiting comparison to the variation at each individual gene 

locus. I studied a 656 kb segment of the 5q3I region containing 13 genes including IL3, 

CSF2, IRFI, ILS, IL13 and IL4. 

I genotyped 96 Hausa individuals and 96 Masalit individuals for 34 SNPs in the 5q3I region. 

Ibese samples were mostly unrelated trios chosen to represent the population in each 

village. The process of choosing these trios involved constructing the whole village 

pedigree. From this it became apparent that there is a high degree of relatedness between 

individuals from different families within the same village. The whole village could be 

divided into several clusters where there are many strong ties between families. From a 

recent study carried out in the Masalit - the same group studied here- whole genome scan 

data showed there are only a limited number of Y chromosomal lineages in Salala. village 

(Miller, Fadl et al. 2007). Although this setting - extended pedigrees with high degree of 

relatedness- might be ideal for some study designs like linkage studies and Family Based 

Association Testing (FBAT), it could present some challenges for others. For example it 

could potentially confound the results of case control studies, especially in founder 

populations that have grown rapidly and recently from a small size -as probably is the case 

here- where there would be an increased likelihood of sampling bias toward collecting 

relatives (Voight and Pritchard 2005). The above underlined the importance of careful 

consideration of schemes adopted when sampling from groups with high degrees of 

relatedness between their members. 
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The results of haplotype estimation in this dataset could have several roles in future disease- 

association studies to be carried out in these populations. For example, because the number 

of individuals sampled is likely to be sufficient for accurate estimation of haplotypCs, using 

phased haplotypes with high probabilities from this small set of trios could help in phasing 

the haplotypcs of a larger case control set of unrelated individuals from the same 

populations. Furthermore, the set of tagSNPs identified could potentially help with designing 

associations studies focused on the 5q3I region. 

Tle markers I typed in the 5q31 region in the Hausa and I*Walit were previously identified 

by members of the Kwiatkowski group, in the WFCHG laboratory in Oxford, as the most 

informative set (tagSNPs) in a sample from the Gambia in West Africa. Ile logic I drew on 

was that these markers being a tagSNP set from another African population were more likely 

to be useful in outlining the genetic variation pattern in the two Sudanese populations. In the 

past, the transferability of tagSNPs across populations, especially those from the same 

continental region, was suggested by several studies (Gu, Pakstis ct al. 2007). Although 

Gonzalez-Neira et al. (Gonzalez-Neira, Ke et al. 2006) found Africa to be the most diverse 

region for the portability of tagSNPs from one population to another, nonetheless, they still 

found tagSNPs to be highly portable between African populations. However, those results 

were obtained in a gene-free region and may not be extended to other regions with different 

properties, like the 5q31 region. 

Marker choice is likely to have had a major effect on different genetic variation patterns 

observed in the data. First of 0, the amount of LD is likely to have been greatly affected by 

it. In both the Hausa and Masalit samples I observed little LD between markers. The average 

LD value was 0.05 with a variance of 0.01. LD values ranged from 1.8E-05 to 0.96 in the 

Hausa, and from LOE-05 to I in the Masalit. There was less LD and more diversity in the 

two Sudanese samples when compared with HapMap CEU sample. Tlis is contrary to the 
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extensive LD expected in small semi-isolated populations due to bottle necks, small effective 

population size and inbreeding, especially when compared to a sample representing the 

whole population of Utah. The spacing and choice of markers from tagging SNPs which by 

definition have no or little LD between them might have made it more likely to get this 

result. A less likely alternative explanation, but one which could not have been dismissed 

with the available data, is that the low LD observed in the 5q3I region could be related to the 

important functionality of the region, being packed with genes involved in many aspects of 

immunity to a wide range of diseases. Fine-scale genetic map estimates from phase 2 

HapMap data found genes involved in defence and immunity to have the highest 

recombination rates compared to genes of other functional classes (Frazer, Ballinger et al. 

2007). 

The second major effect of marker choice was that the sampled Hausa and Masalit were very 

similar in their minor allele frequencies, and all the tests that were run to try and differentiate 

(single marker Fst, haplotypic Fst, clustering methods like ARLEQUIN, STRUCTURE and 

genetic trees. ) failed to identify the two populations as genetically distinct from each other, 

and to cluster individuals correctly. These observations went against the social, historical 

and linguistic evidence of their separation. 

With the limited data generated in the 5q3l region, it was hard to distinguish whether the 

high degree of correlation in minor allele frequencies between the two Sudanese populations 

is an expected phenomenon resulting from the lack of resolution of the typed markers, a 

characteristic of the genomic area, or, alternatively, a reflection of real similarities due either 

to populations admixture, or convergent evolution due to balancing selection. Any of the 

above possibilities could be responsible for creating such a picture, but the most likely 

explanation is that this pattern is a consequence of the density, spacing and choice of 
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markers. It could very well be that the number and characteristics of typed markers, does not 

allow for enough resolution to distinguish these two populations from each other. 

Although there were striking similarities in allele frequencies and amount of LD, and less 

than expected structuring by available genetic distance estimates; significant differences in 

haplotype composition were found to exist between the geographically contiguous Hausa 

and Masalit of Eastern Sudan. Marker choice and genornic processes such as mutation and 

recombination rates could affect the populations in the same manncr, giving similar allele 

frequency patterns and overall quantity of LD, whereas the differences found in haplotypcs, 

might be a reflection of the randomness of the sampling process, or demographic processes, 

such as expansions, founder effects and migrations. Previous studies of LD patterns in the 

human genome have shown that LD is sensitive to the demographic history of a population, 

like founder events, bottlenecks and isolation (Slatkin 1994; Service, DeYoung et al. 2006). 

The processes by which SNPs have been selected by choosing high frcquency markers frorn 

publicly available databases affect allele frequency spectrum more so than levels of LD 

observed in the data. While high frequency variants arc more likely to be old and shared' 

between population groups, consequently displaying little frequency differences between 

compared groups; these high frequency variants arc more valuable in highlighting historical 

recombination events because of their higher resolution. 

To explore this issue further, I tried to maximize the information content of markers that is 

used to tease out the genetic distinctness of the Ilausa and Masalit, by comparing the LD 

patterns between these groups for this limited dataset. I also tested for the genetic 

differentiation among additional African (Gambians, YRI) and non-African (CEU) 

population groups, using the same approach to investigate its validity. I used similar sets of 
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polymorphic genetic markers (23-30 SNPs), typed in the same segment of the 5q31 region 

(about 650 kb). 

Initially all the pair-wise r2 values were calculated for all markers, within each group 

separately, using the Expectation Maximization (EM) algorithm. Afterwards the Spearman's 

rank correlation coefficient (rho) was calculated for the r2 values between the two compared 

groups. Each r2 value in the first group was paired to the corresponding r2 of the same 

marker pair in the other group. For estimating the probability distribution and P-values, a 

series of bootstrap sampling was carried out, each time constructing two new groups from 

the pooled sample of individuals from the two populations together. Individuals were 

randomly selected from the pooled sample, ignoring their ethnicity assignment, to create two 

random groups of the same sizes as the real groups. Then for each of the two new random 

groups, pair-wise r2 values were calculated, as well as the Spearman's rank correlation 

coefficient correlation, as done for the real groups. This process was repeated between (1000 

to 50000 times). The P-value for obtaining the result of the real data is calculated from the 

distribution of the permutations' rho values, as the number of rho values equal or less than 

the real data rho value divided by the total number of permutations. 

Although LD was found to be quantitatively very similar between the African population 

groups compared -The median and average of LD values, as well as their variance and range 

is comparable for population groups- the pattern of LD was shown to be different between 

them. Comparing the Hausa and Masalit samples; the Spearman's rank correlation 

coefficient (rho) was found to be (0.411878). When 10,000 permutations were carried out, 

correlation coefficients obtained from each of these permutations had a normal shaped 

distribution and from this distribution the P-value of observing the real data was found to be 

0.016. Out of the six between-African population comparisons, four comparisons yielded 

significant results, when significance level was set to 0.05. Interestingly the pair that were 
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least correlated in their LD patterns were the Hausa and YRI which showed the highest 

degree of correlation between their minor allele frequencies. The minor allele frequency, 

similarities could be due to their very close origin, as both of these populations are originally 

from Nigeria, but their LD pattern difference could be because the LD patterns reflect more 

recent demographic events which reflect ancestry rather than cthnicity. 

When CEU and YRI were compared, at least 50,000 permutations were run before lower- 

than-real-data rho values were obtained by chance. When the HapNIap CEU population was 

compared with the African groups, there was more than forty fold decrease in the P value 

(lowest P value 0.00002 compared to 0.0008). The genetic distance as reflcctcd by rho and 

probability of genetic differentiation as reflected by the P-valucs; wcrc found to be 

significantly more pronounced than the differences between African populations. Ibis is 

probably due to the combined effects of more pronounced diffcrcnccs in allcle frequencies as 

well as quantity and pattern differences in LD between the European and African samples. 

Using this approach I managed, to a large extent, to tease out the distance between 

populations as predicted by their self specified ethnicitics. I argue that any low correlation in 

pair-wise LD patterns between the study samples is due to the fact that the two samples 

come from two distinct ethnic groups with different demographics, rather than chance 

sampling effects resulting from sampling from the same population (the stochastic nature of 

sampling in a finite population). Ile permutation approach employed by this method to test 

the null hypothesis provided an inherent mechanism to estimate confidence in the results. 

When comparing these results with those of other mctrics of genetic distance estimation; 

very low values were found between groups of African populations when allelc frequency- 

dependant metrics were applied. Furthermore, the approaches that utilized the full haplotypic 

information of all typed markers resulted in maximum values across all comparisons, which 
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probably represent an overestimation of the between-populations genetic distances. This 

indicates the unsuitability of these metric to analyse these data sets. These commonly used 

measures of population diversity or genetic distance consider either allele frequencies or 

haplotype frequencies. The allele frequency based methods, require large numbers of 

markers to be typed at unlinked loci, while the haplotypes based methods require a large 

number of sampled individuals from each group to accurately estimate diversity. So using 

methods based on allele frequency comparison may not be the most efficient approach in 

this setting. Not only does it not utilize the full information content of the data, but some 

methods recommend the exclusion of pairs of strongly linked loci that potentially bias the 

results. 

One major advantage of using an LD based method to highlight between-populations genetic 

differences is that LD is highly relevant in disease association studies context. Discerning 

populations' genetic differentiation by utilizing LD lends itself to the analysis of case control 

association studies by being potentially more sensitive in highlighting population structure 

that might be undetected by looking at allele frequencies alone, especially when data is 

limited. The pattern and extent of LD determines the feasibility and design of association 

studies when haplotypes are used to test associations or when untyped SNPs are imputed. 

Testing for LD pattern homogeneity between groups making up the sample goes a longer 

way towards minimizing type I error than relying on allele frequency information alone. 

Considering LD in association study design is much more relevant in African populations. 

Some evidence has suggested variance in levels and patterns of LD among subpopulations in 

Africa. Tishkoff and colleagues (Tishkoff, Dietzsch et al. 1996) noted that African 

populations have divergent patterns of LD; specifically, alleles that were in positive 

association in one population were in negative association in another. Additionally, a 

resequencing analysis of the IL-13 gene in 126 geographically diverse Africans identified 
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divergent patterns of LD across West and East African populations (Tarazona-Santos and 

Tishkoff 2005). These observations suggest that not all African populations arc characterized 

by a single discrete pattern of LD and each may have distinct haplotype block structures. 

It might also be useful to quantify the degree to which LD relationships will hold when 

attempting to transfer and judge the coverage of tagSNPs when using data from one 

population like the HapMap samples, in designing studies and guiding analysis in other 

populations. Recently, some studies have revealed significant variation in the underlying 

haplotype structure in spite of the observed conservation of tagSNP patterns across global 

populations (Gu, Pakstis ct al. 2007). This might indicate that even in cases whCre'the 

coverage of tagSNPs appears to be preserved across populations, caution still needs to bc 

exercised because the hidden genetic variants tagged by any particular tagSNP might not be 

the same in different populations. I 

It is unlikely that a single best method can be recommended for the estimation of genetic 

differentiation, but this approach is a useful addition to existing methods for estimating 

genetic distance, and it shows promise in computing the genetic distance from the correlated 

structure of genomic variation. Ibis proposed approach could have a practical significance in 

analyzing similar datascts, with the potential for future applications in dcciphcring 

stratification in population samples and case control studies. 

Another major area of population genetics which this thesis encompasses is investigating 

how the signals of positive selection arc reflected in the genetic polymorphism patterns. 

Identifying positive selection signals in a genomic rcgion of interest offers a much needed 

insight into the search for disease modifying variants. 

The need for better characterization of these kinds of signals in the 11ausa and Masalit arose 

from the ambiguous results previously obtained when analyzing the 5q3I rcgion in the two 
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groups. There was no clear selection signal in the 5q3I in the Hausa. The Masalit data had a 

small signal that was very close to the background noise in the region. In order to verify the 

significance of any signals detected, a comparison with other regions of the genome had to 

be made in the two populations. Close examination of another area of the genomes of these 

two populations where natural selection is known to have played a part in shaping its 

diversity and where the functional variant is known (the P-globin region harbouring the 

sickle variant); allowed an easier interpretation of the genetic variation patterns associated 

with positive selective pressures in the Hausa and Masalit. 

The P-globin region being the classical example of a locus under positive selection, offers 

the perfect opportunity for bench marking the other less defined positive selection signals in 

the genome. This approach makes available prior knowledge of the functional variant and its 

attributes, i. e.: position, frequency, LD, and haplotypic relationship with other markers in the 

region. Applying knowledge gained from, and looking for patterns recognized in the 

globin to the 5q31 region, helped to better interpret its genetic variation results. 

The malaria hypothesis maintains that during prehistory, on average, people without the 

sickle gene died of malaria at a high frequency. On the other hand, people with two genes for 

sickle haernoglobin died of sickle cell disease. In contrast, the heterozygotes (sickle trait) 

were more resistant to malaria than normal individuals and yet suffered none of the ill- 

effects of sickle cell disease. 7bis selection for heterozygotes is tenned "balanced 

polymorphism". Support for this concept comes from epidemiological studies in malaria- 

endemic regions of Africa. A recent study found that the state of having one sickle cell allele 

was associated with protection against mild clinical malaria (50%), hospital admission for 

malaria (75%) and severe malaria (90%). The parasite densities during clinical attacks in 

children with HbAS were also found to be lower than HbAA children (Williams, Mwangi et 

al. 2005). 
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The Hausa group displayed a very distinct selection signal in the P-globin region. But the 

detection of the signal was conditional on including the functional marker itself -the HbS 

polymorphism- in the analysis. The observation that sickle cell haplotypes, in stark contrast 

to others, were the highest in frequency across the 400 kb region, prompted an in-depth look, 

at how far out these haplotypes extend, because such phenomenon could be a surrogate for 

positive selection signals in the genome, I set out to better characterize it by attempting to 

answer the following two questions: Firstly, is the high frequency extended I-IbS haplotype 

exclusive to the Sudanese populations or can it be discernable in another African population. 

Secondly, are there similar instances in other genomic regions, and if so, is there any 

supporting evidence of them being candidates of positive selection. 

I used publicly available genome-wide genotyping data from the Yoruba (YRI) samples that 

were typed in the HapMap project. To make a meaningful comparison with the Sudanese 

data, I typed the 90 YRI samples for SNPs typed in the Sudanese samples that had not been 

typed in the HapMap project. Publicly available HapMap data was also used for thirty trios 

which were collected from U. S. residents with Northern and Wcstcrn European ancestry 

(CEU). 

I developed a Perl script to run on a UNIX platform in order to look for instances of 

unusually extended high-frequency haplotypes in the genome. The Pcrl code was used to 

scan the human gcnome employing an overlapping window approach. Mie script looks at all, 

the haplotypes within a predefined window. All chromosomes of both the YRI and CEU 

were scanned using window size prefixed to 360 markers. The window slides across 

haplotypes supplied (phased HapMap data) by shifting the window position along the length 

of each chromosome. Firstly, I used window shift of 180 markers, so as to make windows 

overlap by half their sizes. Then I carried out another Senome scan with the much smaller 

window shift of I marker. 
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This script also calculates the average recombination rate for each window position using a 

file of estimated recombination rates downloaded from HapMap. 

After acquiring the data for all the windows across each of the chromosomes, the frequency 

of the highest'identical haplotype in a window would be plotted against the genetic distance 

value for that particular window. This would create a chromosome-wide distribution 

amenable to an outlier analysis of all windows across a chromosome. 

In the HBB region in the YRI, the highest haplotype frequency was that of an HbS 

haplotype. When compared with the Sudanese sample data, this observation was clearer in 

the YRI sample probably due to the higher marker resolution (165 markers in YRI as 

opposed to 26 markers typed in the same area in the Sudanese sample). 

This high frequency haplotype was maintained for 1.2 Mb around the HbS allele, spanning 

several recombination hot spots before declining very rapidly to become indistinguishable 

from others in the same region. Also noted was the fact that over distances less than 200 kb 

the HbS haplotypes were grouped together with other HbA haplotypes because they were 

indistinct at the analysed marker density. The most likely explanation for this phenomenon is 

that in the YRI HBB region, malaria selection pressure acting on the sickle-cell variant 

helped maintain identical HbS haplotypes at this high frequency. This effect was equal on 

both sides of the HbS polymorphism (600 kb) regardless of the number, position and 

intensity of recombinational hotspots on each side. Therefore the effect of selection on 

haplotype frequencies does not seem to be correlated with the fine scale recombination rate 

but rather is tuned by the overall recombination rate in the region. 

To determine whether this observation could be utilized as a method for identifying genomic 

regions under positive natural selection, it was important to quantitatively determine how 
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significant this finding is on a larger scale, when measured against the whole of chromosome 

11 and the rest of the genome. Phased haplotypic data from HapMap phase I was analysed 

for chromosome II using a sliding window approach In chromosome 11, the region that 

showed unusually high frequency long haplotype with the extcndcd-high-frequency- 

haplotype analysis was the same region that demonstrated clustering of signals using other 

established haplotype-based methods for detecting selection like the LRH and 

haplosimilarity. 

Phased haplotypic data from HapMap phasel for both the YRI and CEU populations were 

analysed for each chromosome at a time, using the same sliding window approach. In total 

there were 55 regions that were picked up from the analysis. Twenty three regions in the 

YRI and 32 in the CEU. The average size of region was 2.78 Mb in YRI and 2.64 Mb in 

CEU samples. From the total 55 regions there were 8 regions shared between YRI and CEU 

and 39 regions exclusive to one or the other population. This is an interesting result 

suggesting that local adaptation has played an important role in recent human evolutionary 

history. 

The total number of genes in the regions that stood out from YRI and CEU whole genome 

scan as possible candidates of positive selection, was 691 genes in a total area of 124002522 

bp with average gene density of one gene every 179454 bp. Out of these 691 genes 

identified, 77 genes (10%) were genes involved in immunity. When this is compared with 

the 770 genes involved in immunity out of the 33524 total genes in the human gcnomc 

(about 2%), it becomes clear that there is a higher preponderance of genes involved in 

immuntiy in the outlier regions identified by the extendcd-high-frequency-haplotypc 

genomic scan. and is highly suggestive of them being selectively important. At least 18 of 

the 47 regions in both YRI and CEU had a previously reported cvidcncc of being under 

natural selection pressure or had a positive signal in association studies. 
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The HBB region had the highest signal in the YRI genome, which is hardly surprising given 

the fact that the whole scan was optimized on this signal. In the CEU genome the most 

remarkable signal mapped to the 2q2l. 3 region within which the LCT gene is present. The 

LCT gene was previously found in Northern European populations to have very high 

frequencies of the lactase persistence allele (LCT*P) (Hollox, Poulter et al. 2001), which 

allows digestion of fresh milk throughout adulthood. It is widely accepted that strong 

selection has driven LCT*P to high frequency in Northern Europeans, beginning sometime 

after the domestication of animals approximately 9,000 years ago (Hollox, Poulter et al. 

2001-, Bersaglieri, Sabeti et al. 2004). 

Ibis analysis helped identify and describe the genomic scale over which selective sweeps 

could have an effect. With the extended-high-frequency-haplotype method, detecting 

positive selection in genomic regions could be achieved without regard to whether the causal 

variant was typed or not. Consequently, there is less emphasis on marker choice, density and 

spacing unlike other methods (like LRH and haplosimilarity) which rely on the ability of a 

marker to tag the causal SNP by being in high LD with it and thus making marker choice 

and density of essential importance. Using data for all SNPs in a genon-dc region in the order 

of a megabase makes this method robust to marker choice and density variation when 

compared to the above mentioned methods. The consistency in finding the high frequency 

extended haplotype in the face of variable marker density, and chance element in choice and 

ascertainment of typed markers, gives this method an advantage by decreasing the rate of 

false negatives when looking for signals of positive selection. 

This property may make this method useful for genome wide case control studies on a large 

number of individuals with a modest marker coverage that will not necessary tag all the 

untyped markers, a thing which is logistically difficult to achieve either due to limitations in 

resources, technology or an over-fitting problem in marker choice which in most instances 
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rely on an imperfectly transferable SNP-tagging sets between populations and studies. This 

method will probably capture the same haplotypic diversity with less markcr density. 

Furthermore, it is likely that the difference in frequency between selected and other neutral 

haplotypes in the same region will become more prominent with the larger number of 

individuals typed. When I reduced the density of the rnarkers in the 1.1 Nib region around 

HbS to half that in phase 1 of the HapMap, by taking every other marker's genotypes out 

and then re-phasing the genotypic data. The HbS haplotypes were still distinguished from 

others by their high frequency over that distance. In a recent study (Conrad, Jak-obsson et al. 

2006) it was shown that the bigger the window considered, the more powercd the genotypcd 

SNPs to capture the haplotypic heterozygosity in the area as measured by microsatellites. 

The most important insight from my analyses is highlighting the scale over which signals of 

selection are most effectively detected, and giving other methods of looking for natural 

selection context by considering all the members of a cluster of signals in a genomic region 

to be telling the same story. Using the extendcd-high-frcqucncy-haplotypc method is a 

simple and quick way to highlight a particular genomic region as a candidate of natural 

positive selection, as well as defining the boundaries of that region for further analysis. This 

type analysis will probably not be as informative without dcrining the unit size by the initial 

scan. 

The challenge of this method stems from its source of strength. It becomes more of a 

challenge to pinpoint the functional variant, the larger the genon-tic area over which the 

search has to be conducted. Several markers in the regions idcntificd by the extended high 

frequency haplotype method are expected to have unusually extensive LD values because of 

their close correlation with the high frequency selected haplotypc. 
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Moreover, using the correlation between haplotype frequencies and recombination rate as a 

test to look for selective sweeps will miss those regions with no or very little recombination 

rates if they were acted on by positive selection. As it stands now this analysis is a 

conservative way to scan for selection, in the sense that it would only have power to pick up 

areas with incomplete selective sweeps which are relatively recent and did not yet reach 

fixation, due to the underestimation of recombination rates in regions with complete sweeps. 

In the YRI I fixed the window size to 360 markers, which roughly corresponded to IMb. I 

chose this size because it is optimized to selective sweeps of a similar or greater magnitude 

to that observed for the HbS in YRI. The choice of window size, that would be optimal for 

identifying genomic regions under selection, warrants some consideration for different 

datasets. At very small window sizes, most haplotypes will be of a high frequency which 

makes them indistinct from the selected haplotype. At the other extreme of very big 

windows, all haplotypes would be distinct from each other leading to a failure to pick the 

selected haplotype. Between these two extremes of distribution uniformities, all the possible 

signals with different effect sizes could potentially be identified by running the analysis with 

different window sizes. 

The extended-high-frequency-haplotype method developed in the HapMap data showed 

pron-dsing results, suggesting its utility in highlighting genomic regions that might be 

candidates of positive selection. Applying it to real-life genome-wide data of Gambian 

children with severe malaria and their parents as part of the Malaria Genomic 

Epidemiological Network (MalariaGEN) project, presented the opportunity to further 

develop and validate the method, and to identify genomic regions where positive selection 

n-dght have played a role. Additionally, it was an opportunity to gather disease-specific 

inferences that might aid the search for malaria resistance/susceptibility genetic variants. 

2632 chromosomes were analysed for 585,350 SNPs (total number of genotypes 
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770,320,600). Overlapping windows of IcM size and O. IcM shift were run across the 22 

autosomes. Data from all chromosomes was then combined to carry out a gcnomc-wide 

statistical assessment where the upper 2.3% of the data points were highlighted and further 

explored for their genic content. This analysis was carried out separately for the malaria 

cases and controls. 

Each chromosome was analysed twice; once with the haplotypes that were transmitted from 

parents to children (representing the severe malaria cases), and a second time with the 

haplotypes that were not transmitted from the parents (representing the controls). Tberefore, 

the analysis carried out in the cases can potentially highlight genomic regions where genetic 

variants might be involved in malaria susceptibility. On the other hand, the analysis carried 

out in the controls could potentially identify genomic regions where malaria protective 

polymorphisms reside. Each chromosome was done independently then the data was pooled 

for all transmitted chromosomes and statistical significance determined. The same was done 

for the controls on the parental haplotypes not transrrdtted to the malaria cases. 

I was particularly interested in the HbS locus and the NIIIC regions, to see if these two 

genomic regions, which have extensive literature supporting their involvement in malaria 

susceptibility, would come up as significant in this analysis. 

The classic examples of sickle cell anaernia and IlbC represent some of the best examples of 

natural selection acting on the human genome. 71crefore, the 1IBB region in chromosome 

11 is the bench mark example of malaria-specific selection. It was of great interest to see 

whether this method would pick up a selection signal in the IIBB region in the controls. 

When looking at the results from chromosome 11, there was a very strong and clear signal in 

the HBB region with the analysis that was carried out in the controls. 
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The signal originating from the HBB region constituted the highest signal in chromosome 

11. It was the second strongest genome wide after the MHC signal, with values above the 

13 1h standard deviation. It reflected the presence of an unusually long and high frequency 

haplotype in the HBB region. This haplotype which carries the HbS allele maintained a 

relatively high frequency over many overlapping windows where its frequency was outside 

the genome-wide 95th percentile. These windows covered a 3.4 Mb genon-& area. Ile 

maximum frequency of 66 copies was in the 0.5 Mb (0.98 cM) around the HbS position 

(1 1: 479574Q1 1: 5309382). Furthermore, the selection signal at the HBB region disappeared 

completely when analyzing the haplotypes transmitted to the cases, which makes a strong 

argument that the pattern observed is the result of selection on the HbS allele in the Gambian 

controls. This observation validated the ability of the method to identify genuine signals of 

selection. 

Where the MHC and other immune genes are located on chromosome 6, the selection signal 

was observed in both the transmitted haplotypes (cases) and untransmitted haplotypes 

(controls). The same haplotype was responsible for creating this signal in the both the cases 

and controls. The strength of this signal was greater than that observed in the HBB region in 

the malaria controls. By far the strongest signal in both the cases and controls was that 

observed in the MHC region on chromosome 6. Values were well above 25 standard 

deviations of the genome wide average. Due to the many immunologically important genes 

in this region, it is not implausible that the signal observed might be due to the effects of a 

very strong natural positive selection force acting on the region, but not necessary due to 

malaria. 

The importance of genes regulating immune responses to malaria was demonstrated by the 

finding of HLA associations with resistance to severe malaria (Hill, Allsopp et al. 1991). 

Polymorphism in the promoter of another MHC gene, tumour necrosis factor TNF, was 
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found to affect the risk of cerebral malaria (McGuire, Hill ct al. 1994). However it has been 

surprisingly difficult to detect an influence of HLA and other major histocompatibility 

complex genes on the magnitude of immune responses to malarial antigens in field studies. 

In general, cellular immune responses to malaria antigens show marked heterogeneity in 

specificity, type and magnitude; the relative importance of IMIC polymorphism and other 

genetic factors in accounting for this heterogeneity has been unclear (11ill, Jepson ct al. 

1997). 

There is a large body of evidence for the involvement of the NIIIC locus in malaria 

susceptibility. Piazza et al., were among the first to present evidence of the association 

between particular HLA variants and malaria in Sardinia, where they compared lowland 

areas where malaria occurred and highland areas (Piazza, Mayr ct al. 1985). A casc-control 

study in the Gambia indicated that the HLA class I antigen IILA-1353 and the IJLA class 11 

haplotypes DRB I* 1302-DRB 1 *0501 both protect against severe malaria (Ifill, Allsopp et al. 

1991). In population studies, these genotypes accounted for as great a reduction in disease 

incidence as the sickle cell polymorphism, conferring 40% reduction in life-threatcning 

complications of malaria in Gambian children (Hill, Bennett et al. 1992). In spite of the 

considerable literature on the subject, the results of this analysis indicate that the selective 

sweep observed in the MHC region is probably not related to malaria, at least in this 

Gambian sample. 

A number of additional regions with evidence of unusually long high frequency haplotypes 

were identified in the cases and controls. Although their statistical significance might be 

weaker than regions mentioned above, but still they might be plausible candidates for 

positive selection. Experiences in other infectious discascs havc shown that wcak-er signals 

may as well lead to the identification of relevant genetic variants (Ogura. Boncn et al. 2001). 
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Certainly in their entirety, outlier regions in this analysis are likely to be enriched for 

biologically important genes under selection. A preliminary analysis of the functional 

significance of the full list of genes identified in the outlier regions of the cases and controls 

highlighted certain biological pathways as being over-represented. The top three enriched 

biological pathways were; cytokine-cytokine receptor interaction; focal adhesion; and 

antigen processing and presentation. Cytokines induced by malaria products are a major 

determinant of disease progression. Upregulation by inflammatory cytokines of adhesion 

sites on endothelial cells invites susceptible circulating blood elements to attach to the inner 

wall of blood vessels (Michelson, Wencel-Drake et al. 1994). 

A number of genome-wide scans of positive selection have recently been performed on the 

HapMap data (HapMap 2005; Sabeti, Varilly et al. 2007), which provide an important 

opportunity to compare results across studies. Fourty-one regions out the195 autosomal 

regions identified in the HapMap samples using the WS and LRH metrics (Sabeti, Varilly et 

al. 2007), were in the top fifth percentile of my analysis on the Gambian trios. Four out of 

the 26 autosomal genes with highly differentiated nonsynonymous SNPs described in Table 

9 of The International HapMap Consortium (HapMap 2005) are among my candidate 

selection regions. 

The considerable overlap of candidate selection genes with other genome-wide analyses 

engenders confidence in the method's predictions. However, it is important to confirm these 

results on independent data with analyses that test different predictions of neutrality, 

functionally characterize suspected targets of selection, and ultimately correlate adaptive 

genetic variation with phenotypic variation. Although there is overlap between my results 

and these previously described genome-wide scans for positive selection, there is also 

evidence for selection in genes not implicated in the above-described studies. This is to be 
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expected for a number of reasons. For example, tests of neutrality gcncrally have low 

statistical power. Furthennore, the FDRs of outlier approaches arc likely to be high. 

Outlier approaches, in which candidate selection genes arc identified in the extreme tails of 

empirical distributions, have become a widely used strategy in genome-wide scans for 

selection (Akey, Zhang et al. 2002; Payseur, Cutter et al. 2002; Kayser, Brauer et al. 2003; 

Storz, Payseur et aL 2004; Voight, Kudaravalli et al. 2006). In gencral, the simple outlier 

approach considered here is likely to result in an enriched set of genes that have been targets 

of positive selection. However, FDRs can be high, depending upon parameters such as the 

strength of selection and the fraction of all loci that have been subject to selection. 

Unfortunately, these parameters are generally not known and are difficult to cstimatc. 

In this analysis, I took into account variations in rates of recombination and number of 

markers, but I did not take into account variation in mtcs of mutation, and selection 

coefficients across loci, nor did I consider demographic perturbations that real populations 

are likely to experience. These factors are expected to increase variance and further 

complicate simple outlier approaches. 7bere is no escaping the fact that evolutionary 

processes are inherentlY stochastic and extreme outlier values might arise under neutrality. In 

this regard, the utility of simple outlier approaches may seem questionable. Ilowcvcr, if the 

goal of a study, like it is in this case, is to identify a restricted set of candidate selection 

genes to study in more detail, then an oudier approach is a reasonable study design as long 

as one accepts that a substantial proportion of candidates may be false positives. 

Analyzing MalariaGen Gambian dataset for extended high-frCquency haplotypes helped 

highlight a number of genomic regions which might harbour genes or biological pathways 

suspected to play a part in malaria pathogenesis. This work helped inform a much broader 

analysis - to further explore, improve and expand the search for such signals - that is being 
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carried out by the MalariaGen analysis group, the results of which are to be published by 

MalariaGen consortium in the future. 

To summarize, this thesis has been about exploring two important aspects of population 

genetics that are of topical importance in the design and interpretation of association studies. 

These insights, although driven from and focused on the populations of this study, are not 

limited to them. Promising results have been obtained that might with further future work 

lead to improving the determination of sample substructure by considering the LD 

relationship between markers. More clues of disease susceptibility loci could potentially be 

gained from using the extended-high-frequency-haplotype method to look for signals of 

natural selection in the genome. This analysis does not require the typing of the causal 

variant. It also helps highlight the scale over which signals of selection are most effectively 

detected, and determine the boundaries of the region on which further more detailed search 

is to be conducted. 

Although interesting regions worthy of future pursuit were identified in relation to malaria 

susceptibility, the method could be as useful in other disease studies. Certainly if time would 

have allowed I would have liked to further develop and test the robustness of the method for 

determining population differentiation, as well as the method for detecting natural positive 

selection in the genome by looking at high frequency extended haplotypes. By structuring 

them as formal methods with an online user interface, they would have been available to the 

MalariaGen consortium and the wider scientific community. Also I might have been 

involved in exploring the regions that came up as interesting in the analysis of MalariaGen 

Gambian population, with the objective of narrowing the search down to a few biologically 

relevant genes that might influence malaria susceptibility and might be amenable to 

functional studies. 
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Appendix 1: Ethical approval and informed consent. 

Figurel: Ethical Approval from the Ethical Committee of the Institute of Endemic 
Diseases for the collection of the Sudanese samples. 
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Figure 2: Informed consent form for the Sudanese samples. 
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We are a group of doctors and researchers from the Institute of Endemic Diseases, 
University of Khartoum. Our interest is on the question of why malaria affects some human 
populations more than others and the relationship of the population genetic history and 
population structure on the propagation of diseases. 
The persons in charge of this study are Dr. Muntaser E. Ibrahim from the University of 
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Appendix 2: Haplotypes sequences in the 5q3l and 1111B regions. 

Table 1: Haplotypes of the 5q3I region in the Hausa sample. 

Haplotype ID 
I 

Haplotype sequence 
Ha -p- lotype- 
Fmquency 

1 121111211111111111111221111111 1.000000 
2 121111211111112111221111111211 1.000000 
3 121111221111111111221112112211 2.000000 
4 121111121121111111111111111111 2.000000 
5 121111121111111111221112112211 1.000wo 
6 121122221111111111111121111211 1.000000 
7 121122111121111111111111111211 1.000000 
8 121122122221111111111112112112 1.000000 
9 121122122221111111221111111211 1.000000 
10 121122122221111111221121211212 2.000000 
11 121122122221111111221121212212 1.000000 
12 121122121121111111111111111122 1.000000 
13 121122121121111111111111111211 1.000000 
14 121122121121111111111121111211 1.000000 
15 121122121111111111111211112112 1.000000 
16 121122121111111111111211112122 2.000000 
17 121122121111111111111221111111 4.000000 
18 121122121111111111221221111111 1.000000 
19 121122121111111111212121111111 1.000000 
20 122121211111111111111112112211 1.000000 
21 122121222221111111111221111111 1.000000 
22 122121221111111111111122112211 1.000000 
23 122121221111111111111211111111 1.000000 
24 122121221111111111111211112112 1.000000 
25 122121221111111111111211112122 3.000000 
26 122121221111111111111212111111 1.000000 
27 122121221111111111111221111111 2.000000 
28 122121221111111121111121111211 1.000000 
29 122121112221112111221221222122 1.000000 
30 122121112221112111221221222211 1.000000 
31 122121111121111111111111111211 1.000000 
32 122121111111111121111221111111 2.000000 
33 122121122221111121111111111112 1.000000 
34 122121122221111121111111112111_ 1.000000 
35 122211212221111111111111112112 2.000000 
36 122211212221111111221112112211 1.000000 
37 122211221121111111111111112111 4.000000 
38 122211121111111111221112112211 1.000000 
39 111111211111111111111111111211 1.000000 
40 111111211111111111111111112112 1.000000 
41 111111211111111121111221111111 9.000000 
42 111111221111111111111211111122 1.000000 
43 111112212221112111221111111111 1.000000 
44 11111221_2211111111221112111122 2.00-0000 
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45 111112211121112111221112112211 2.000000 
46 111112222211111111212121111111 1.000000 
47 111122222221111111221121211212 
48 111122111121111111111111111211 1.000000 
49 111122111111111111111111112211 2.000000 
50 111122111111121222221111212211 1.000000 
51 111212222221111111221121211212 1.000000 
52 111212121121112111221111111211 1.000000 
53 112121111121111111111111111211 1.000000 
54 112211211111111111111111111112 1.000000 
55 112211222211111111221221111111 1.000000 
56 112211222211111121111112112211 1.000000 
57 112211221121111111111111112111 2.000000 
58 222121111221111111212221211211 1.000000 
59 211111211111111121111221111111 1.000000 
60 211112212221111111111111211212 1.000000 
61 211112121122121222221111112112 1.000000 
62 211121211111111111221112112112 1.000000 
63 211121211111111111221112112211 1.000000 
64 211121112221111121221211111211 

_2.000000 65 211122212211111111221112111211 1.000000 
66 211122212211111111221112112112 1.000000 
67 211122212211111111211221111111 2.000000 
68 211122221111111111111211111111 3.000000 
69 211122221111111111111211111211 1.000000 
70 211122221111111111221222112211 1.000000 
71 211122111121111111111111111211 2.000000 
72 211122122221111111111121222211 1.000000 
73 211122122221111121111221111111 1.000000 
74 211122121121111111111112111211 2.000000 
75 211122121121111111221112111211 1.000000 
76 211122121122121222221111112112 2.000000 
77 211122121122121222221111112122 1.000000 
78 211122121122121222221112112111 1.000000 
79 211122121122121222221112112212 1.000000 
80 211122121111111111221121221212 1.000000 
81 212111211111111111221221111211 1.000000 
82 212121212211111111221111112111 1.000000 
83 212121212211111111221112111211 1.000000 
84 212121211111111111221112112111 1.000000 
85 212121211111111111221112112112 3.000000 
86 212121211111111111221112112122 1.000000 
87 212121211111111111211212111112 1.000000 
88 212121211111111121111221111111 1.000000 
89 212121222221111111111111111112 1.000000 
90 212121222221111111111211111111 1.000000 
91 212121222211111111221111212112 1.000000 
92 212121221111111111221112112111 1.000000 
93 212121221111111111221112112112 1.000000 
94 212121221111111111221221111211 1.000000 
95 212121221111111111221221112211 1.000000 
96 212121112221112111221221222211 2.000000 
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97 212121111122111111111111111211 1.000000 
98 212121111111111111111221111111 1.000000 
99 212121111111111111221222112211 1.000000 
100 212121111111111111221222211211 1.000000 
101 212121111111111121111221111111 1.000000 
102 212121121111111111111221111111 1.000000 
103 212121121111111111221222112211 1.000000 
104 212122221121111121221112112211 1.000000 
105 212122221111111111221121211211 1.000000 
106 212211211111111111221112112111 1.000000 
107 212211211111111121221112112211 2.000000 
108 212211211111111222221122112211 1.000000 
109 212211222221111111212221211211 1.000000 
110 212211222211111121111112112211 1.000000 
ill 212211221121112111111221111111 1.000000 
112 212211112221112111111111111211 1.000000 
113 212211112221112111221111111111 5.000000 
114 212211112221112111221111111112 1.000000 
115 212211112221112111221221111111 1.000000 
116 212211111111111111111112112211 1.000000 
117 212211111111111111111112112212 1.000000 
118 212211122221111111111111111111 2.000000 
119 212211122221111111111112112111 1.000000 
120 212211122221111121221222112211 1.000000 
121 212211122221111222221122112211 1.000000 
122 212211121121112111221111212211 1.000000 
123 212211121111111122211121222212 1.000000 
124 212212212211111111111111111211 1.000000 
125 212212222221111111111111212111 1.000000 
126 212212222221111111111211112122 1.000000 
127 212212121111111122211221111111 1.000000 

308 



'rable 2: Ilaplotypes ofthe 5(131 region in the Masalit sample. 

Haplotype 
Haplotype sequence 

Haplotype 
Frequency 

1 211122111111111111111111212211 _ 2.000000 
2 211122111111111111111211112122 1.000000 
3 211122111111111111111212112211 1.000000 
4 211122111111111111111221111111 1.000000 
5 211122111121111121221211111112 1.000000 
6 211122121111111111111221211211 1.000000 
7 211122121121111111111111111211 1.000000 
8 211121121121111111111121111211 1.000000 
9 211112121111111111221212112211 1.000000 
10 211111111121111111111111111211 1.000000 
11 212121121111111111111121111211 2.000000 
12 212121121111111111111221111111 2.000000 
13 212121211111111111211111112211 1.000000 
14 212121211111111111221112112211 1.000000 
15 212212211121111111111111112211 1.000000 
16 212212211121111111221111212211 1.000000 
17 212212211121112111111111112111 1.000000 
18 212212212211111111111221111111 1.000000 
19 212211111111111111111211112211 1.000000 
20 212211112121112111221111212112 1.000000 
21 212211112221112111221111111211 2.000000 
22 212211121111112111221111112211 1.000000 
23 212211211121112111111121111111 1.000000 
24 212211211121112111221111212211 8.000000 
25 212211211221112111221111111211 1.000000 
26 212211212221111111221112112211 3.000000 
27 212211221111111111111221111111 1.000000 
28 212211222211111111221112112211 2.000000 
29 212211222221111111111111111112 1.000000 
30 111122111121111111221111112211 1.000000 
31 111122121111111111111111112122 2.000000 
32 111122121111111111211211211111 1.000000 
33 111122121111111111221111112211 2.000000 
34 111122121111111111221111212211 1.000000 
35 111122121111111111221112111112 1.000000 
36 111121111121112121111121211212 1.000000 
37 1111121111111111 11111221111111 2.000000 
38 111112111121111121111111112111 2.000000 
39 111112111121112111111211212211 1.000000 
40 111112112221112111221121111111 1.000000 
41 111112112221112111221212112211 1.000000 
42 111112121111111111111111111211 2.000000 
43 111112121111111111111111212211 2.000000 
44 111112121111111111111221111111 11.000000 
45 1111121211111111 11111221111112 1 000000 
46 111112121111111111111221112211 1.000000 
47 1111121211111111 11112111111111 1.000000 
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48 111112121111111111221112112211 1.000000 
49 111112121111111111221212112211 1.000000 
50 111112121111111121111221111111 1.000000 
51 111112121111112111221111112111 1.000000 
52 111112121121111111111111111111 1.000000 
53 111112121122121222221111112111 1.000000 
54 111112121122121222221112112211 3.000000 
55 111112121122121222221112112112 1.000000 
56 111112211111111121111221111111 1.000000 
57 111112211111111122211212112211 1.000000 
58 111112211111111122211221112211 1.000000 
59 111112212221111111111111111112 2.000000 
60 111112212221111121111111111112 1.000000 
61 111112221121112111221111211111 1.000000 
62 111111111111111111111121111111 1.000000 
63 111111112221111111221112112211 1.000000 
64 111111121111111111111221111111 2.000000 
65 111111121111111111221221112112 1.000000 
66 111111221111111121111221111212 1.000000 
67 111111221111111121111221111111 1.000000 
68 111111221111111121221111212111 1.000000 
69 111212121121111111111111111211 1.000000 
70 111212211111111121111111112111 1.000000 
71 112121211111111111111211111211 1.000000 
72 112121211111111111111221111111 3.000000 
73 112121211111111111221111111111 1.000000 
74 112121211111111111221112112211 1.000000 
75 112121211111111111221212112211 1.000000 
76 112121212221112111221121222211 1.000000 
77 112121221111111121111221211211 1.000000 
78 112112121111111111111221111111 1.000000 
79 112212221111111111221121111111 1.000000 
80 112211211111111122111121211111 1.000000 
81 121122112211111111221111212211 1.000000 
82 121122121111111111111111111111 1.000000 
83 121122121111111111111211212111 1.000000 
84 121121111121111111111111111211 1.000000 
85 121121111121111111111111112111 1.000000 
86 121121111121111111111111212211 1.000000 
87 121121121111111111212111111111 2.000000 
88 121121121111111111221112111112 1.000000 
89 121121211121111122111121211111 1.000000 
90 121111121111111111111111111211 1.000000 
91 121111121111111111111112112211 1.000000 
92 121111211111111111111112111112 1.000000 
93 121111211111111111111221111111 1.000000 
94 121111211111111111111221112211 1.000000 
95 121111211111111111121111211211 1.000000 
96 121111212221111121221121111111 1.000000 
97 121111222221111111111211111111 1.000000 
98 122121111111111111111211112211 1.000000 
99 122121111111111111111212112211 1.000000 
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100 122121111111111111111221111111 2.000000 
101 122121111111111111221111111111 1.000000 
102 122121111111111111221112111211 1.000000 
103 122121111111111111221221112112 1.000000 
104 122121111111111221111112112211 1.000000 
105 122121121111111111111221112112 1.000000 
106 122121121111111121111221111111 11.000000 
107 122121121121111121111111112111 1.000000 
108 122121121121111121221212112211 1.000000 
109 122121211121111111111221111111 1.000000 
110 122121221111111121111121111111 2.000000 
ill 122121221111111121111221111111 1.000000 
112 122121221111111121111222112211 1.000000 
113 122121222221111111111111111112 1.000000 
114 122111212221111111211221111111 1.000000 
115 122211121111111111111221211112 1.000000 
116 122211121111111111221212112211 1 . 000000 
117 1222112211111111111112111111114 1.000000 
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Table 3: Haplotypes of the HIM region in the combined Ilausa and Nlasalit samples. 

Haplotype 
ID Haplotype sequ nce 

Haplotype 
frequency 

1 11111112121222112221111112 1.000000 
2 11111112121211211111121112 1.000000 
3 11111112121121111111111112 2.000000 
4 11111112121121111111112112 1.000000 
5 11111112121121111112121111 1.000000 
6 11111112121121112121121111 1.000000 
7 11111112121121112122121111 2.000000 
8 11111112121121122121111112 1.000000 
9 11111112121121122121112211 1.000000 
10 11111112121122112221111112 1.000000 
11 11111112121111211111211111 3.000000 
12 11111112121111211111221111 1.000000 
13 11111112121111211111221211 1.000000 
14 11111112121112112221211112 1.000000 
15 11111112122221112121111211 1.000000 
16 11111112122121111111121211 1.000000 
17 11111112122121122121111111 1.000000 
18 11111112122121122121111212 1.000000 
19 11111112122122112221111112 1.000000 
20 11111212121121111111121211 2.000000 
21 11111212121121112111121112 1.000000 
22 11111212121121122121111211 1.000000 
23 11111212121121122121112211 2.000000 
24 11111212121121211111211211 1.000000 
25 11111212121111211111212111 1.000000 
26 11111212121111211111221111 2.000000 
27 11111212122221112121111211 1.000000 
28 11111212122121111112111211 1.000000 
29 11111212122121122121111112 1.000000 
30 11111212222121122121121112 1.000000 
31 11111222121121122121121211 1.000000 
32 11112112121221111111112211 1.000000 
33 11112112121221111112111111 1.000000 
34 11112112121221111112111112 1.000000 
35 11112112121221111112112111 1.000000 
36 11112112121221111112112112 2.000000 
37 11112112121222112221112111 1.000000 
38 11112112121211111111111111 2.000000 
39 11112112121211211111221211 1.000000 
40 11112112121111211111111211 1.000000 
41 11112112121112112221211111 1.000000 
42 11112112122221111111111211 1.000000 
43 11112112122121112121111211 1.000000 
44 11112112221221111112112111 2.000000 
45 11112112221221111112112112 6.000000 
46 11112112221221111112112211 3.000000 
47 11112122121221111112121112 2.000000 
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48 11112122121222112221212111 1.000000 
49 11112122121222112221212211 1.000000 
50 11112122121211211111221111 1.000000 
51 11112122121121111111112111 1.000000 
52 11112122121121111111112211 1.000000 
53 11112122121121122121112111 1.000000 
54 11112122121121211111221211 1.000000 
55 11112122121111211111111211 1.000000 
56 11112122121111211111211111 1.000000 
57 11112122121111211111211112 1.000000 
58 11112122121111211111211211 1.000000 
59 11112122121111211111221111 1.000000 
60 11112122122221211111111221 1.000000 
61 11112122122222112221221111 1.000000 
62 11112122122121111111121211 1.000000 
63 11112122122121111112112112 2.000000 
64 11112122122121111112221111 1.000000 
65 11112122122121112121111211 1.000000 
66 11112122122121112121121111 1.000000 
67 11112122122121122121111111 1.000000 
68 11112122122121122121111211 2.000000 
69 11112122122122112221111111 1.000000 
70 11112122122122112221111112 1.000000 
71 11112122122111112122111111 1.000000 
72 11112122122111211111211211 1.000000 
73 11112122122111211111221111 1.000000 
74 11112212122121111121121112 1.000000 
75 11211212122222112221121111 1.000000 
76 11211222121121122121111211 1.000000 
77 11212112121221111112112112 1.000000 
78 11212112121221211111121112 1.000000 
79 11212112122122112221112112 1.000000 
80 12111112121121111111111111 1.000000 
81 12111112121121111111111211 1.000000 
82 12111112121121111111121112 1.000000 
83 12111112121121111111121211 1.000000 
84 12111112121121111112111111 1.000000 
85 12111112122111211111211211 1.000000 
86 12111212121121111111121111 1.000000 
87 12111212121121122121111211 1.000000 
88 12111212121121122121112211 1.000000 
89 12111212122121111112121111 1.000000 
90 12111212222121122121121112 1.000000 
91 12112112122122112221112211 1.000000 
92 12112122121121122121112112 1.000000 
93 12112122122121111112112211 1.000000 
94 12112122122122112221111112 1.000000 
95 12121112122121211111111211 1.000000 
96 21111112121121111111112111 1.000000 
97 21111112121121111111121111 1.000000 
98 21111112121121112111221111 1.000000 
99 21111112121121112111221211 1.000000 
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100 21111112121121112111221221 1.000000 
101 21111112121111211111211211 1.000000 
102 21111112121111211111221121 1.000000 
103 21111112122221112121111112 1.000000 
104 21111112122121111111111111 1.000000 
105 21111112122121111111121111 1.000000 
106 21111112122121111111121211 1.000000 
107 21111112122121112122111221 1.000000 
108 21111112122111211111111112 1.000000 
109 21111212121221111112211211 1.000000 
110 21111212121111211111211111 1.000000 
ill 21111212122121122121111211 1.000000 
112 21112112121221111112111111 1.000000 
113 21112112121221111112121121 1.000000 
114 21112112121211111111111112 1.000000 
115 21112112121211211111111211 1.000000 
116 21112112121211211111121211 1.000000 
117 21112112121211211111221111 1.000000 
118 21112112121121111111111112 1.000000 
119 21112112121121112121121111 1.000000 
120 21112112121121112122121112 1.000000 
121 21112112121111211111111211 1.000000 
122 21112112122121111111111112 1.000000 
123 21112112122121111111111211 1.000000 
124 21112112122121111111121112 1.000000 
125 21112122122121211111111221 1.000000 
126 21112122221221111112112112 1.000000 
127 22111112121121111112111211 1.000000 
128 22111112121111211111221111 1.000000 
129 22111112122121111112111112 1.000000 
130 22111212121121122121111211 1.000000 
131 22111212121121122121112112 1.000000 
132 22111212121121122121121211 2.000000 
133 22111212121111211111211112 2.000000 
134 22111212121111211111211221 1.000000 
135 22111212121111211111212111 1.000000 
136 22111212121111211111212112 1.000000 
137 22111212122221122121112112 1.000000 
138 22111212122121111111121211 1.000000 
139 22111212122122112221111111 1.000000 
140 22111212222121112121121111 2.000000 
141 22111212222121122121111112 1.000000 
142 22111212222121122121111211 1.000000 
143 22111212222121122121111212 1.000000 
144 22111212222121122121121112 1.000000 
145 22112112121121111112111211 1.000000 
146 22112112121121112121111112 1.000000 
147 22112112121121112121111211 1.000000 
148 22112112121121122121112211 1.000000 
149 22112112121111211111111111 1.000000 
150 22112112121111211111121111 1.000000 
151 22112112121111211111121211 1.000000 
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152 22112112121111211111211211 1.000000 
153 22112122121222112221112211 1.000000 
154 22112122121121111111121211 1.000000 
155 22112122121121122121111111 1.000000 
156 22112122121121122121111211 1.000000 
157 22112122121121211111211211 1.000000 
158 22112122121111211111121112 1.000000 
159 22112122122221122121112112 1.000000 
160 22112122122121111111121211 1.000000 
161 22112122122121211111111211 1.000000 
162 22112122122122112221111111 1.000000 
163 22112122122122112221111211 1.000000 
164 1 22121112121121111111111112 1.000000 
165 22121112122221211111111211 1.000000 
166 22121112122121111111112111 2.000000 
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Appendix 3: Programming Scripts. 

Script 1: LDbasedGD. pl 

#1 /usr/bin/perl 
use strict; 
use warnings; 
use DBI; 
use datapro; 

-head 
this is a script to calculate the likelihood of two populations being 
genetically distinct, by using the LD information of the genotypic data 
firstly two random groups are sampled from the pooled combined sample, 
then for each of the two random groups, Run the EM algorithm for a list of 
rsnumbers using genotypes from a file. The markers in the file are 
considered to be 
a single dataset, where the EM algorithm is run for each marker compared 
to all other markers. 
then get the correlation value for all the pairwise LD relationships. 
this process is repeated an x number of times as specified in the command 
line during run time. 
the the distribution of the difference in correlation values for all the 
permutaions is drawn, and the probability of observing the real data is 
calculated from it's place in the distribution. 

=head2 arguments to script 

invoke example: LDbasedGD. pl inputfile 100 98 
[01: input file (one rsnumber per line, first field is rsnumber, next 
field is space-separated string of genotypes 11 12 12 22 11 11) 
Ell: is the number of individuals in the first population group 
[21: number iterations for random sampling of two groups from the pooled 
individuals. 

=head3 
the method used for generating random samples from the data is as follows: 
Suppose, we have an empty list. we pick a random number between 1 and 
10"'12 and add it to the list only if it was not already picked before, 
i. e. if it is not already contained in the list. 
We then do the same thing again and again until we have eventually 
collected IOA 6 distinct numbers. 
Now we sort the set ascending and return it. 

-cut 

my $st time; 
my $now gmtime; 
print "Starting process at $now \n"; 

die "Invoke with input filename, number of individuals in the first group 
and number of iterations\n" unless QARGV -- 3 
my $infile = $ARGV[01; 
my $first-group - $ARGV[11; 
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my $iterations - $ARGV[21; 

my $outfile ;#- "twogroups_LDvalues-10000. txt"; 

if ($ARGVCOI w- /(\W+)\. txt/) { 
$outfile = $1.11-LDvalues-JN". $iterations. 1l. txt"; 

print "opening input file $infile ... 11; 
open FH, $infile or die "Could not open infile $infile\n"; 
print "done\n"; 

my @G = <FH>; 
my $g - $G[O]; 
chomp $g; 
my @H - split /\S+/, $g; 

my $totalindivs - (scalar @H -1); 

my @markers; 
my @details; 
my $markernum 
my @firstgroup; 
my @secondgroup; 
my $lines - 0; 
foreach my $ln (@G) 

$lines++; 

chomp $1n; 

my @indivs - split I\s+l, $ln; 
my $rs - shift @indivs; 

#my $totalindivs - scalar @indivs; 
#print "total num num num of indivs is $totalindivs in this 

instance.???? \n"; 

my $sub 
- 

record; 
my @this 

- record; 
my $dd - 0; 
while ($dd < $first_group) 

my $ra - $indivs[$ddl; 
push @this-record , $ra; 

$dd++; 

#Print "Retrieved suitable genotypes for 11, $dd, 11 for the first 
group. \n"; 

$sub_record - join 11 11, @this_record; 
push @firstgroup, $sub_record; 

my $sub 
- 

record2; 
my @this-record2; 

for ( my $ss = $first_group; $ss < $totalindivs; $ss++ 

my $amon - $indivs[$ss]; 

push @this-record2 , $amon; 
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$sub_record2 = join " ", athis_record2; 
push @secondgroup, $sub_record2; 

push @markers, $rs; 
push @details, [$markernum, $rs]; 

$markernum++; 

#now we have two arrays with the same rs genotyping records, each array 
represents one of our real groups of individuals. 

close FH; 
#print "Retrieved suitable genotypes for 0, $dd, I for the first group and 
11, scalar @secondgroup, " for the second group of $lines markers. \n"; 

print "Preparing to calculate metrics for the two real groups. \ns; 

my @LD 
- 

firstgroup; 
for (my $p=o; $p < scalar @firstgroup-1; $p++) 

for (my $q-$p+l; $q < scalar Ofirstgroup; $q++) ( 

my $rslr = $markers[$pl; 
my $rS2r = $markers[$ql; 
my $geno-rsir - $firstgroup[$pl; 

#print $geno_rsir ; 
my $geno 

- 
rS2r = $firstgroup[$ql; 

#print $geno rs2r ; 
my $rsi 

- 
in-dsetir - $p+l; 

my $rs2_in7dsetir - $q+l; 

string of 11 12 11 11 12 22 00 11 

string of 11 12 11 11 12 22 00 11 

my ($majlr, $minir, $maj2r, $min2r, $fllr, $fl2r, $f2ir, $f22r) 
datapro:: EM_algorithm($geno-rslr, $geno-rs2r); 

# check that the EM algorithm gave valid results 
unless (defined $majlr and defined $minlr and defined $maj2r and 

defined $min2r and defined $f11r and defined $f12r and defined $f21r and 
defined $f22r) ( 

die "ERROR: EM algorithm for: \n$geno-rslr\nvs\n$geno-rs2r\n gave 
maji $majlr, mini - $min1r, maJ2 - $maj2r, min2 - $min2r, fil - $fiIr, 
f12 $f12r, f2l = $f2lr, f22 - $f22r\nu; 

I 

# calc D using the PAIRWISE allele frequencies from the EM algorithm 
my ($Dr, $absDr, $Dprimer, $absDprimer) - 

datapro:: calC_D($majlr, $minir, $maj2r, $min2r, $fllr, $fl2r, $f2ir, $f22r); 

# check that calc 
-D 

gave valid results 
unless (defined $Dr and defined $absDr and defined $Dprimer and 

defined $absDprimer) { 
die "ERROR: calc -D gave D- $Dr, absD - $absDr, Dprime 

$Dprimer, absDprime - $absDprimer\nw; 
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# calc dalta2 using the PAIRWISE allele frequencies from the EM 
algorithm 

my $delta2r 
datapro:: calc-delta2($majlr, $minlr, $maj2r, $min2r, $fllr, $fl2r, $f2lr, $f22r); 

# check that calc 
" 

delta2 gave valid results 
unless (defined $delta2r) I 

) 
die "ERROR: calc_delta2 gave delta2 = $delta2r\n"; 

my $pairwiser - join 
"\t", $rsl-in_dsetlr, $rs2_in-dsetlr, $rslr, $rs2r, $minir, $min2r, $absDprimer, $ 
delta2r; 

push @LD_firstgroup, $pairwiser; 

my OLD_secondgroup; 
for (my $u =0; $u < scalar @secondgroup-1; $u++) 

for (my $v=$u+l; $v < scalar @secondgroup; $v++) 

11 

11 

my $rrslr - $markers[$u]; 
my $rrs2r - $markers[$vl; 
my $geno_rrsir = $secondgroup[$ul; # string of 11 12 11 11 12 22 00 

#print $geno_rsir ; 
my $geno_rrs2r = $secondgroup[$v]; # string of 11 12 11 11 12 22 00 

#print $geno_rs2r ; 
my $rsl_in 

- 
dset2r - $u+l; 

my $rS2_in_dset2r = $v+l; 

my ($mmajlr, $mminlr, $mmaj2r, $mmin2r, $ffllr, $ffl2r, $ff2lr, $ff22r) 
datapro:: EM_algorithm($geno_rrsir, $geno-rrs2r); 

# check that the EM algorithm gave valid results 
unless (defined $mmajlr and defined $mminlr and defined $mmaj2r and 

defined $mmin2r and defined $fflir and defined $ffl2r and defined $ff21r 
and defined $ff22r) { 

die "ERROR: EM algorithm for: \n$geno_rrslr\nvs\n$geno_rrs2r\n 
gave maji - $mmajlr, minl - $mminlr, maj2 = $mmaj2r, min2 = $mmin2r, f1l 
$fflir, f12 = $ffl2r, f2l = $ff2lr, f22 = $ff22r\n"; 

# calc D using the PAIRWISE allele frequencies from the EM algorithm 
my ($D2r, $absD2r, $Dprime2r, $absDprime2r) = 

datapro:: calc_D($mmajlr, $mminlr, $mmaj2r, $mmin2r, $fflir, $ffl2r, $ff2lr, $ff22 
r); 

# check that calc 
-D 

gave valid results 
unless (defined $D2r and defined $absD2r and defined $Dprime2r and 

defined $absDprime2r) ( 
die "ERROR: calc 

-D 
gave D= $D2r, absD = $abSD2r, Dprime 

$Dprime2r, absDprime = $absDprime2r\n"; 

# calc dalta2 using the PAIRWISE allele frequencies from the EM 
algorithm 
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my $delta22r = 
datapro:: calc-delta2($mmajlr, $mminir, $mmaj2r, $mmin2r, $ffllr, $ffi2r, $ff2lr, 
$ff22r); 

# check that calc delta2 gave valid results 
unless (defined $aelta22r) { 

die "ERROR: calc_delta2 gave delta2 w $delta22r\n"; 

my $pairwise2r = join 
"\t", $rsl_in 

- 
dset2r, $rs2-in_dset2r, $rrslr, $rrs2r, $mminir, $mmin2r, $abaDprim 

e2r, $delta22r; 
push @LD_secondgroup, $pairwise2r; 

print "done calculating the LD values for the two real groups. \nm; 

open FH 
- 

OUT, ">$outfile" or die "Could not open outfile $outfile for 
writing\nn; 

print "output file opened for writing results of real groups . \no; 

foreach my $pair_recordl (OLD_firstgroup) 
my @aa - split "\t", $pair_record1; 

my $rsl_l = $aa[21; 
my $rs2_1 = $aa [31 ; 
my $comb MAF1 = $aa[41 + $aa[51; 

foreach my ýpair_record2 (@LD-Secondgroup) 
my @bb = split II\t", $pair_record2; 
my $rsl_2 = $bb[21; 
my $rs2_2 = $bb[31; 

my $comb_MAF2 = $bb[4] + $bb[51; 

if (($rsl_l eq $rsl_2 or $rsl_l eq $rs2_2) and ($rs2_1 eq $rsl_2 or $rs2-1 
eq $rs2_2)) ( 

my $r_LD = join "\t", ($aa[71, $bb[71); #, $comb_MAF1, $comb_MAF2); 
print FH_OUT "$r_LD\n"; 

close FH-OUT; 

#system "nedit $outfile V; 
# now we have a file with two columns, the first column is the delta2 
values of the first real group, the second is the matched values for the 
second group. 

#next we want to read the file with the two real groups, LD values with R 
and get Spearman's Rank Correlation Coefficient for them. 

my $var - 'R --vanilla <KOKA_SAL. R> logfile'; 
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my $0 - 0; 
while ($o < $iterations) ( 

# to generate random lists: The rando function is used to generate random 
numbers. 
# By default it generates a number between 0 and 1, however you can pass 
it a maximum and it will generate numbers between 0 and that number. 

my %random, 
_group; my QK; 

my $k - 0; 

my $c -1; 
while ($k < $first-group) 

my $random 
- number - int(rand($totalindivs)) + 1; #This gives you an 

integer from 1 to numberofindivs inclusive: 
unless ( exists $random, 

_group[$random-numberl) 

$randorý_group{$random_number) - $c; 

$C++; 
@K - keys trandoný_group; 
$k - scalar QK; 

# now we have a randomly generated list out of the total pooled 
individuals, equal in number to the first pop group. 

my @secon4_group; 
for (my $f-1; $f <. $totalindivs; $f++) 
unless (exists $randorR_group{$fl) 
push osecon4_group, $f; 

#now we have a second list with the remaining numbers. 

print "Processing markers in input file to pick genotypes of random 
groups ... 

\nII; 

my $markernum - 1; 

my @new-firstgroup; 
my @new secondgroup; 
foreacl: -my $line (OG) 

chomp $line; 

my @fields - split I\s+l, $line; 
my $rs - shift @fields; 

my $new 
- 

record; 
my Qsome_record; 
#push @some_record, $rs; 
foreach my $d (SK) ( 
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push @some_record , $fields[$dl; 

$new-record = join " ", Qsome_record; 
push @new-firstgroup, $new-record; 

my $new 
- record2; 

my @some_record2; 
#push @some record2, $rs; 
foreach my ýs (@second,. 

-group) 

push asome_record2 , $fields[$sl; 

$new-record2 - join " ", Qsome_record2; 
push @new-secondgroup, $new-record2; 

#now we have two arrays with the same rs genotyping records, each array 
represents a different group of individuals. 

print "Preparing to calculate metrics for the two random groups. \n"; 

#my $processed - 

my @LDvalues_firstgroup; 
for (my $i=o; $i < scalar @new-firstgroup-1; $i++) 

for (my $j-$i+l; $j < scalar @new-firstgroup; $J++) 

11 

11 

my $rsi - $markers[$il; 
my $rs2 - $markers[$jl; 
my $geno-rsi = $new-firstgroup[$il; # string of 11 12 11 11 12 22 00 

#print $geno-rsi ; 
my $geno-rs2 . $new-firstgroupl$j]; # string of 11 12 11 11 12 22 00 

#print $geno-rs2 ; 
my $rsi 

- 
in dsetl - $i+l; 

my $rs2_in-dseti - $j+l; 

my ($majl, $minl, $maj2, $min2, $fll, $fl2, $f2l, $f22) 
datapro:: EM-algorithm($geno-rsl, $geno-rs2); 

# check that the EM algorithm gave valid results 
unless (defined $maji and defined $minl and defined $maj2 and 

defined $min2 and defined $f1I and defined $f12 and defined $f2l and 
defined $f22) { 

die "ERROR: EM algorithm for: \n$geno rsl\nvs\n$geno_r112\n gave 
maji = $majl, minl - $minl, maJ2 - $maj2, min-2 = $min2, f1l = $f11, f12 
$f12, f2l = $f2l, f22 - $f22\n"; 

# calc D using the PAIRWISE allele frequencies from the EM algorithm 
my ($D, $absD, $Dprime, $absDprime) w 

datapro:: calc_D($majl, $minl, $maj2, $min2t$fll, $fl2, $f2l, $f22); 

check that calc-D gave valid results 
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unless (defined $D and defined $absD and defined $Dprime and defined 
$absDprime) { 

die "ERROR: calc 
TD 

gave D= $D, absD = $absD, Dprime = $Dprime, 
absDprime - $absDprime\n", 

# calc dalta2 using the PAIRWISE allele frequencies from the EM 
algorithm 

my $delta2 
datapro:: calc-delta2($majl, $minl, $maj2, $min2, $fll, $fl2, $f2l, $f22); 

# check that calc delta2 gave valid results 
unless (defined $aelta2) ( 

die "ERROR: calc_delta2 gave delta2 = $delta2\n"; 

my $pairwise - join 
"\t", $rsl in dsetl, $rs2_in_dsetl, $rsl, $rs2, $minl, $min2, $absDprime, $delta2; 

pusE @EDvalues_firstgroup, $pairwise; 

my @LDvalues 
- secondgroup; 

for (my $n-0; $n < scalar @new 
- secondgroup-1; $n++) 

for (my $m. $n+l; $m < scalar @new-secondgroup; $m++) 

my $rrsi - $markers[$nl; 
my $rrs2 - $markersl$ml; 
my $geno_rrsl - $new_secondgroup[$nl; # string of 11 12 11 11 12 22 

00 11 
#print $geno 

- 
rsl 

my $geno_rrs2 - $new_secondgroup[$ml; # string of 11 12 11 11 12 22 
00 11 

#print $geno_rs2 
my $rsl_in_dset2 = $n+l; 
my $rs2_in_dset2 = $M+l; 

my ($mmajl, $mminl, $mmaj2, $mmin2, $ffll, $ffl2, $ff2l, $ff22) 
datapro:: EM-algorithm($geno_rrsl, $geno_rrs2); 

# check that the EM algorithm gave valid results 
unless (defined $mmaji and defined $mmini and defined $mmaJ2 and 

defined $mmin2 and defined $ffll and defined $ff12 and defined $ff21 and 
defined $ff22) { 

die "ERROR: EM algorithm for: \n$geno 
- 

rrsl\nvs\n$geno-rrs2\n gave 
maji $mmajl, minI - $mmini, maj2 - $mmaj2, min2 = $mmin2, f1l = $ffil, 
f12 $ffl2, f2l - $ff21, f22 = $ff22\n"; 

# calc D using the PAIRWISE allele frequencies from the EM algorithm 
my ($D2, $absD2, $Dprime2, $absDprime2) = 

datapro:: calc_D($mmajl, $mminl, $mmaj2, $mmin2, $ffll, $ffl2, $ff2l, $ff22); 

# check that calc 
-D 

gave valid results 
unless (defined $D2 and defined $abSD2 and defined $Dprime2 and 

defined $absDprime2) ( 
die "ERROR: calc_D gave D= $D2, absD = $absD2, Dprime 

$Dprime2, absDprime - $absDprime2\n"; 

323 



# calc dalta2 using the PAIRWISE allele frequencies from the EM 
algorithm 

my $delta22 
datapro:: calc-delta2($mmajl, $mminl, $mmaj2, $mmin2, $ffll, $ffl2, $ff2l, $ff22); 

# check that calc delta2 gave valid results 
unless (defined $aelta22) j 

die "ERROR: calc_delta2 gave delta2 - $delta22\no; 

my $pairwise2 - join 
"\t", $rsl_in_dset2, $rs2_in_dset2, $rrsl, $rrs2, $mminl, $mmin2, $absDprime2, $de 
Ita22; 

) 
push @LDvalues-secondgroup, $pairwise2; 

open FH 
- 

OUT, 11>$outfile" or die "Could not open outfile $outfile for 
writing\n"; 

print "opening output file to write results of the random groups. \n"; 

foreach my $pair 
-1 

(@LDvalues_firstgroup) 
my @aaa = split "\tn, $pair_l; 

my $rrsl_l - $aaa[21; 
my $rrs2_1 - $aaa[31; 
my $com-MAF1 = $aaa[4] + $aaa[51; 

foreach my $pair 2 (OLDvalues_secondgroup) 
my @bbb = splIt "\t", $pair_2; 
my $rrsl_2 - $bbb[21; 
my $rrs2_2 - $bbb[31; 

my $com-MAF2 = $bbb[41 + $bbb[51; 

if (($rrsl_l eq $rrsl 2 or $rrsl_l eq $rrs2_2) and ($rrs2_1 eq $rrsl_2 or 
$rrs2_1 eq $rrs2_2)) T 

my $twogroup_LD - join "\t", ($aaa[71, $bbb[71); #, $COM-MAF1, $com-MAF2); 
print FH_OUT "$twogroup_LD\n"; 

close FH 
- 

OUT; 
print "done calculating LD values for permutation number $o\nn, - 
# now we have a file with two columns, the first column is the delta2 
values of the first random group, the second is the matched values for the 
second group. 

#next we want to read the file with the two random groups' LD values with 
R and get Spearman's Rank Correlation Coefficient for them. 

my $var - 'R --vanilla <KOKA_SAL. R> logfile'; 

1 
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#all the permutations' correlation values are stored in the file ex. data, 
the first value should be that of the real data. 

-cut 
-head 
#display it by plotting a graph 
#get the probability of observing the real data. 
#my $variable - 'R --vanilla <Spearman. R> logfile'; 

my $infile2 - "ex-10000. datall; 
open FH_IN, $infile2 or die "Could not open infile $infile2\n"; 

my Ofile_lines <FH - 
IN>; 

my $total-lines (scalar @file_lines); 

my $outfile2 - "prob 
- values - 

10000. txt"; 
open FH_DIS, ">$outfile2l' or die "Could not open outfile $outfile2 for 

writing\n"; 

my @result; 
for (my $w - 9; $w <= $total_lines; $w = $w + 10) 

my $y = $w +10; 
my $cor 

- 
LD - $file 

- 
lines[$w]; 

my $cor-Maf = $file_lines[$yl; 
my $diff = $cor_maf - $cor_LD; 

push @result, $diff; 
print FH-DIS "$cor_LD\n"; 

close FH 
- 

IN; 
close FH DIS; 

=cut 

my $dur w time - $st; 
my $finish - gmtime; 
print "Finished after $dur seconds. Results in $outfile\nTime at finish: 
$finish\n"; 
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Script 2: ext-hap-freq. pl. Script used for analysis of the HapMap, data for extended 
high frequency haplotypes (chapter 5). 

#I/usr/bin/perl 
use strict; 
use warnings; 

-headl ext-hap_freq. pl 

Slides windows of chosen size across haplotypes supplied. 
Outputs (for each position of the window), the numbers of identical 
haplotypes, in descending order. 
A typical line could look like: 
7,3,2,2 
which means that that window (i. e. window of fixed size but starting at 
that position) had 7 haplotypes 
the same (throughout the window), and also 3 haplotypes the same, then 2, 
then another 2, and the rest were distinct. 
However if all the haplotypes are distinct, we output 
I 
as a single line, so that this (very common) case is countable. (we don't 
bother to append Is to the end of 
lines where there are identical haplotypes. ) 
This scripts also calculates the average recombination rate for each 
sliding window using a file of estimated recombination rates downloaded 
from HapMap. The filename is inferred from the hapfile name. 

=head2 Arguments to script 

Invoke as perl ext hap-freq. pl hapfile 75 1 
to process the haplotypes in file hapfile with a window size of 75 and a 

window shift of 1 

=head2 Haplotype file format 

Each line should be a single haplotype only. It does not matter whether 
the numbers/characters are separated by spaces. 

Each line should have the same number of (non-space) characters on it. 

Example 

1211112121212212121212121212121 
2121112122121221211212121221221 

=cut 

# where are the haplotype files? 
My $REFDIR - ". /"; 

# check command line arguments 
die "Invoke as 'perl ext - 

hap_freq. pl hapfile 75 11 to read hapfile, window 
size 75 with window shift 1. \n" 

unless 3- scalar QARGV and $ARGV[11>0 and $ARGV[21>0 and 
$ARGV[21<=$ARGV[11; 

my $infile = $REFDIR . $ARGV[01; 
my $windowsize - $ARGV[11; 
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my $windowshift - $ARGV[2]; 
my $legend_file - 
my $recom-file - 
if ($ARGVEO] -- /(\w+(chr\d+lchr[XYI)_\w+)\. phaE3ed/) 

$legend_file - $REFDIR $1 
. "_legend. txt"; 

$recom_file - $REFDIR IIrecomb_rate_II . $2 
. II. txt"; 

die "Legend file $legend file not found. \n" unless -f $legend 
- 

file; 
die "Recombination rate hle $recom-file not found. \n" unless -f $recom-file; 

print "\nusing $infile\nlegend file = $legend_file\nrecom file 
$recom-file\n"; 

# output files 
my $hapfile = "haps-out"; 
my $freqfile - "freqs. out"; 
my $chkfile - I'long. out"; 
my $posfile - "pos. out"; 
my $winfile - "win. out"; 

my $st - time; 

# all trials are recorded in the log. This is appended to each time a 
trial is run 
my $haplog - "haplog. txt"; 
die "Can't find the log file $haplog\n" unless -e $haplog; 
my $lognum - 'cat $haplog I wc -l'; 
chomp $lognum; 
$lognum sl^\s+ll; # remove leading whitespace 
$lognum sl\s+$Il; # remove trailing whitespace 

# copy selected output files to unique names at the end 
my $hapcopy "$lognum\_haps. txt"; 
my $freqcopy "$lognum\_freqs. txt"; 
my $poscopy "$lognum\_pos. txt"; 
my $wincopy "$lognum\_yin. txt,,; 

# read in recombination rates file 
my ($details, $starts, $stops) = read_recomb_rate_file($recom-file); 

# populate array of haplotypes as strings 
my @haps; 

# read from haplotype file 
local *FH; 
open (FH, $infile) or die "Couldn't open $infile to read. \nl,; 
my $full_haplength; 
while (<FH>) 

chomp; 
my @temp - split; # splits on whitespace 

my $thishap - join(, ',,, @temp); # haplotype as a string like 
12112122112121212121 

if (defined $full 
- 

haplength) 
die "Didn't find a haplotype of length $full-haplength" unless 

length($thishap) - $full 
- 

haplength; 
) else # infer length to check subsequent lines against from first 

line 
$full-haplength - length($thishap); 

push Ghaps, $thishap; 
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close FH; 

# read in chromosome coordinates of markers from legend file 
4 one marker per line, in chromosomal positional order (hence same order 
as haplotypes file) 
# store the coordinates in @coordinates, where element 456 contains the 
coordinate for the 457th marker in the haplotype 
my Gcoordinates; 
open FH LEGEND, $legend_file or die "Could not open legend file 
$legendý-file. \nll; 
<FH_LEGEND>; # first line is header line 
while (my $line = <FH-LEGEND>) ( 

my ($pos, $zero, $one) = split I\s+l, $line; 
push @coordinates, $pos; 

I 

close FH_LEGEND; 

$1 = 1; # don't buffer output 

my $numchr = scalar @haps; 
print "Read $numchr haplotypes of length $full-haplength. \no; 

# open main output file 
open (FH, ">$hapfile") or die "Couldn't open $hapfile to write 
my $old_fh = select(FH); 
$1 = 1; # don't buffer output to this file 
select($old_fh); 

# open outfile to write window coords to 
open (FH_POS, 11>$posfile") or die "Couldn't open $posfile to write 

# open outfile to write window number, max haplotype frequency, average 
recombination rate, average genetic distance, n_recombination windows 
open (FH 

- 
WIN, 11>$winfile") or die "Couldn't open $winfile to write 

print FH_WIN "window\tmax-hap_freq\tavg__ýZate\tapprox-cM\n"; 

# calculation 

# loop through the window positions available (pos is starting position, 0 
meaning starting from first SNP) 
my $max-simhap - 1; 
my $max_pos 0; 
my $numpos 0; 
my %numchr 

- 
to 

- 
freq; # key is number of chromosomes, value is number of 

times that number of chromosomes were identical 
for (my $pos = 0; $pos+$windowsize <- $full-haplength; $pos+-$windowshift) 

my @hapcounts = count-similar-haps(\ehaps, $pos, $windowsize); 

my $markerpos - $Pos+l; 
my $winstart - $coordinates[$pos]; 
my $winend $coordinates[$pos+$windowsize-11; 

my $maxhaps 1; # the maximum number of identical haplotypes at this 
position 

if (scalar Ghapcounts) 
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$maxhaps - $hapcounts[o]; 

if ($hapcounts[O] > $max 
- simhap) # keep track of the highest 

number of identical haplotypes across positions and the position 
$max-Simhap - $hapcounts[o]; 
$max_pos - $pos; 

for my $hc (Chapcounts) {# record the frequency of identical 
chromosomes (>-2) at this position 

_ 
$numchr_to_freq($hc)++; 

my $outputline - (scalar Qhapcounts) ? (join 11,11, @hapcounts) : 111; 

print FH 11$outputline\n1l; 
$numpos++; 

my ($string, $avg-recom-rate, $approx-cm) 
calc_recombination_rate($winstart, $winend, $details, $starts, $stops); 

print FH 
- 

WIN "$numpos\t$maxhaps\t$avg_ýrecom_rate\t$approx-CM\n"; 
print FH 

- 
POS "window $numpos starts at marker $markerpos and has coords 

$winstart-$winend. Rate = $avg_recom_rate cM. Mb over $approx-cM cM 
($string)\n"; 
I 

close FH; 
close FH POS; 
close FH_WIN; 

# print the frequencies to a file for plotting graphs 
process_freqs(\%numchr_to_freq, $numchr, $numpos, $freqfile); 

# extract and print to file the haplotype strings for the window that had 
the highest identical haplotype frequency 
extract best-window(\@haps, $max_pos, $windowsize, $chkfile); 

# print info about this run to the logfile 
open FH_LOG, ">>$haplog" or die "Could not open logfile $haplog. \n"; 
print FH-LOG 
"$lognum\t$windowsize\t$infile\t$numchr\t$full-haplength\t$max_simhap\t$ma 
x_pos\t$windowshift\t$numpos\n"; 
close FH-LOG; 

print "trial $lognum. Window = $windowsize markers. $numchr haplotypes of 
$full haplength markers ($numpos window positions and windowshift 
$wind7owshift). $max 

- 
simhap of 11, scalar @haps, 11 chromosomes were 

identical at position $max_pos\n"; 
print "See results: \n"; 

print 11$hapfile - frequencies of haplotypes at each position\n"; 
print 11$freqfile overall frequencies of haplotypes across all 
positions\n"; 
print 11$posfile window positions and associated recombination rates\n"; 
print 11$winfile window number, max number of identical haplotypes, 
average recombination rates and genetic distance of window\n"; 
print "Finished in 11, time-$st, 11 seconds. Log information is in 
$haplog. \n"; 
system 11cp $hapfile $hapcopy"; 
system 11cp $freqfile $freqcopy"; 
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system "cp $posfile $poscopy"; 
system "cp $winfile $wincopy"; 

system H nedit $hapfile $freqfile $posfile $winfile W; 

-headi count_similar_haps 

For a particular window position, examine the substring of haplotypes of a 
given size and 
count the numbers of identical haplotypes. We do not include distinct 
haplotypes. 

-head2 Arguments 

$-[03 : reference to array of haplotypes 
$_[11 : start position (0-based: 0 means beginning of string) 
$_[21 : size of window 

Returns empty list if all haplotypes are distinct in this region, or a 
list of numbers 
like 7,3,2,2 (ordered descending) which represents the number of 
identical hits. 

=cut 

sub count-similar_haps { 

my ($ref-haps, $start, $size) - Q-; 

my %subhaps; # hash with key of subhaplotype string, value number of 
occurrences 

for my $full hap (@($ref-haps)) ( 

my $SUE 
I 

hap - substr($full hap, $start, $size); 
$subhaps{$ýub_hap)++; # will Ee I if not encountered before, 

otherwise increment 
I 

# now find those that are not 1 
my @interesting; 
for (values %subhaps) 

push @interesting, unless 

return sort ($b<->$a) @interesting; 

I end sub count-similar_haps 

-headi process_freqs 

Calculate the frequency of chromosomes being identical for all number of 
chromosomes between 2 and $numchr totalled over all positions. 

-head2 arguments 

[0] :a hash of number of chromosomes -> freq of being identical 
[1] : total number of chromosomes examined 
[2) total number of windows used 
[31 file to write to 
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=cut 

sub process_freqs 

my ($numchr_to_freq, $numchr, $numpos, $freqfile) 

open FH, ">$freqfile" or die "Could not open $freqfile. \n"; 
for (my $i - 2; $i <= $numchr; $i++) 

print FH II$i\tII; 

print FH II\nII; 

for (my $i = 2; $i <= $numchr; $i++) 

if (defined $$numchr_to_freq{$il) 

# this is the number of times that $i of $numchr chromosomes are 
identical 

my $freq - $$numchr 
- 

to freqf$i); 
print FH "$freq\t"; 

else { 

print FH "O\t"; 

print FH "\n"; 
close FH; 

# end sub process_freqs 

wheadi extract-best-window 

Extract the haplotype strings for the window that gave the greatest number 
of identical haplotypes 

. head2 Arguments 

[01 : ref to array of haplotype strings (one element per chromosome) 
[11 : the window position that gives the highest number of identical 

haplotypes 
[21 : the size of the window 

=cut 

sub extract_best_,, rindow 

my ($ref-haps, $max_pos, $windowsize, $chkfile) - @-; 

my Otemp; 
for my $full hap (@{$ref haps)) 

my ýsub_hap = s-ubstr($full_hap, $max_pos, $windowsize); 
push Otemp, $sub_hap; 

my @sorted - sort(Otemp); 

open FH, ">$chkfile" or die "Could not open $chkfile. \n"; 
for my $h (@sorted) 

print FH "$h\n"; 
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I 

close FH; 

# end sub extract-best-window 

-headi read_recomb_rate_file 

Read in a recombination rates file from HapMap. The following fields are 
required: 

chrom start stop Rate_cM. Mb Avg_cM Gen_map_. ýcM 

It is assumed that the windows are in ascending chromosomal coordinate 
order 

-head2 Arguments 

$_[O]: filename of input file 

returns a ref to array of ordered recom window start coords, an array of 
ordered recom window end coords, and an array of recom. window details 

in same order as start and end coords 

=Cut 

sub read_recomb_rate_file 

my $filename - $_[01; 

my @details; 
my @starts; 
my @stops; 

open FH, $filename or die "Could not open input file $filename\nw; 

<FH>; # skip the first line (header line) 
while (my $line - <FH>) 

chomp $line; 

my ($chrom, $start, $stop, $rate, $Avg_cM, $Gen_map_cM) split /\o+/, 
$line; 

push @details, "$rate\t$Avg_cM\t$Gen_map_cM"; 
push @starts, $start; 
push @stops, $stop; 

close FH; 

return (\@details, \Qstarts, \Qstops); 

# end sub read_recomb_rate_file 

sub calc-recombination_rate 

my ($winstart, $winend, $ref-details, $ref_starts, $ref-Stops) - G_; 

my $winstart index - find 
- 

max 
- 

coord($winstart, $ref-starts); 

my $winend_iiidex - find_max-coord($winend, $ref-starts); 
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my $total recom-windows = 0; 
my $total rate - 0; 
my $total cm - 0; 
for my $ind ($winstart-index .. $winend_index) 

my $details = $$ref-details[$ind]; 
my ($rate, $Avg_. ýCM, $Gen_map_cM) = split /\t+/, $details; 

$total rate +- $rate; 
$total cM += $Avg-cM; 
#print "rate - $rate, total rate = $total_rate, CM = $Avg_cM, total 

cM $total_cM\n"; 

$total-recom-windows++; 

my $avg-rate = $total_rate/$total_recom-windows; 
#my $avg-cM - $total_cM/$total_recom-windows; 

#print "TOTAL RATE - $total_rate, avg rate = $avg-rate\nl,; 
#print "TOTAL cM - $total_cm, avg cM = $avg-cm\n"; 

my $string - "winstart in recom window at index $winstart_index, winend 
at $winend_index (total = $total_recom_windows)"; 

return ($string, $avg_rate, $total_cM); 

)# end sub read_recombination_rate 

-headi find_max_coord 

Search through array of genes to find the maximum index of genes whose 
start coord is less than/equal to the snp, 

whead2 Arguments 

[01 : coordinate of marker 
[11 : reference to array of arrays sorted in chromosome start order 

(routine is likely to fail if the array is empty) 

Returns the appropriate index 

-cut 

sub find_max_coord 

my ($coord, $arr) 

my $ind; # index of $arr corresponding to the start coordinate of a 
boundary gene 

# binary search 
my $max - (scalar @($arrl) 
$ind - int ($max / 2); # current position 
my $up - $max; # top of current window we are searching in 
my $down - 0; # bottom of current window we are searching in 
my $got_flag - 0; 

my Walready_checked; # to keep a record of indices we've already 
checked 
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while (I$got_flag) ( 

last if defined $already_checkedf$indl and 
$already_checked($ind) == 1; 

$already_checked{$ind) 

if ($ind>o and $ind<$max) (# normal case 

# start by checking whether the current position is OK 
# note that if we get to the edges the behaviour is 

different 
my $gene coord - $arr->E$ind]; 

my $gene_coord: plusl - $arr->C$ind+l]; 

# now assess which of three possibilities applies: 
# possibility 1: this is the right place. The snp coord lies 

between gene_coord and gene_coord_plusi 
if ($coord >- $gene_coord and $coord < $gene_coord_plusi) 

$got_flag = 1; 

# possibility 2: both gene 
- 

coord and gene_coord_plusi 
are lower than the snp coord. move to higher coords 

) elsif ($coord > $gene_coord and $coord >- $gene_coord_plusi) 

don't do the halving if total window size is small 
if (($up-$down)>-4) 

$down = $ind; 
$ind - int(($up-$down)/2) + $down; 

else (# just walk right 
$ind++; 

$ind - $max if ($ind>$max); 

# possibility 3: both gene_coord and gene_coord_plusl are higher 
than the snp coord. move to lower coords 

I elsif ($coord < $gene_coord and $coord < $gene_coord_plusi) 

don't do the halving if total window size is small 
if (($up-$down)>-4) 

$up - $ind; 
$ind - int(($up-$down)/2) + $down; 

else {# just walk left 
$ind--; 

$ind -0 if ($ind<O); 

) else ( 
# $ind is maximum or zero, we must stop the loop 
# snp_. ýcoord may be less than all gene starts on this chrom 
$got_flag - 1; 

) end of while I$got_flag 

return $ind; 

) end sub find_max_coord 
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-headi find_min_coord 

Search through array of genes to find the minimum index of genes whose end 
coord is greater than/equal to the snp 

-head2 Arguments 

[01 : coordinate of marker 
[11 : reference to array of arrays sorted in chromosome end order (routine is likely to fail if the array is empty) 

Returns the appropriate index 

=cut 

sub find_min_coord 

my ($coord, $arr) 

my $ind; # index of $arr corresponding to the start/end coordinate of a boundary gene 

# binary search 
my $max - (scalar Q($arr)) - 1; 
$ind - int ($max / 2); # current position 
my $up = $max; # top of current window we are searching in 
my $down - 0; # bottom of current window we are searching in 
my $got_flag - 0; 

my %already_checked; # to keep a record of indices we've already 
checked 

while (I$got_flag) 

last if defined $already_checked($ind) and 
$already-checked($ind) == 1; 

$already_checked($ind) 

if ($ind>o and $ind<$max) I# normal case 

# start by checking whether the current position is OK 
# note that if we get to the edges the behaviour is 

different 
my $gene_coord $arr->[$ind][11; 

my $gene_coord_mini $arr->[$ind-11(i]; 

# now assess which of three possibilities applies: 
# possibility 1: this is the right place. The snp coord lies 

between gene_coord and gene 
- 

coord 
- 

mini 
if ($coord <- $gene_coord and $coord > $gene_coord_mini) 

$got_flag = 1; 
# possibility 3: both gene_coord and gene_coord_mini are 

lower than the snp coord. move to higher coords 
I elsif ($coord > $gene_coord and $coord > $gene_coord-mini) 

don't do the halving if total window size is small 
if (($up-$down)>=4) 

$down = $ind; 
$ind = int(($up-$down)/2) + $down; 

else (# just walk right 
$ind++; 
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$ind - $max if ($ind>$max); 

# possibility 3: both gene_coord and gene_coord. 
_mini are higher 

than the snp coord. move to lower coords 
) elsif ($coord < $gene_coord and $coord <- $gene_coord_minl) 

don't do the halving if total window size is small 
if (($up-$down)>-4) 

$up - $ind; 
$ind - int(($up-$down)/2) + $down; 

else (# just walk left 
$ind--; 

$ind -0 if ($ind<O); 

) else ( 
# $ind is maximum or zero, we must stop the loop 
# snp-coord may be greater than all gene ends on this chrom 
$got_flag - 1; 

) end of while I$got_flag 

return $ind; 

) end sub find_min_coord 
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Script 3: exthap. TDT-cm. pl. Script used for analysis of the MalariaGen Gambian trio 
case-control data for extended high frequency hapIotypes (chapter 6). 

#I/usr/bin/perl 
use strict; 
use warnings; 

=headl exthap-TDT-cm. pl 

Slides windows of a fixed chosen genetic distance across haplotypes 
supplied. 
OUtpUtB: 
hapfrequency file: (for each position of the window), the numbers of 
identical haplotypes, in descending order. 
A typical line could look like: 
7,3,2,2 
which means that that window had 7 haplotypes the same (throughout the 
window), and also 3 haplotypes the same, then 2, then another 2, and the 
rest were distinct. 
However if all the haplotypes are distinct, we output 1 
as a single line, so that this (very common) case is countable. (We don't 
bother to append Is to the end of 
lines where there are identical haplotypes. ) 
windows file: details of each sliding window start and stop position, size 
in physical and genetic distance. 
summary file: with number of highest hap frequency across all windows, and 
window position 

-head2 Arguments to script 

Invoke as perl exthap-affy-cm. pl hapfile 1 0.5 
to process the haplotypes in file hapfile with a window size of 1 CM and 

a window shift of 0.5 CM 

=head2 
Haplotype file format: 

a line of individuals ID followed by two lines of phased haplotypes for 
this individual 

It does not matter whether the numbers/characters are separated by 
spaces. 

Each line should have the same number of (non-space) characters on it. 

Example 

individualID 
1211112121212212121212121212121 
2121112122121221211212121221221 

legend file format: chr rs cm position 

-cut 

# where are the haplotype files? 
my $REFDIR - ". /I; 

# check command line arguments 
die "Invoke as 'Perl exthap-TDT-cm2. pl hapfile legendfile 1 0.51 to read hapfile, window size 1 CM with window shift 0.5 CM. \nI, 
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unless 4 == scalar @ARGV and $ARGV[21>0 and $ARGV[31>0 and 
$ARGV[31<=$ARGV[21; 

my $infile = $REFDIR 
. 

$ARGV[01; 
my $legend_file - $REFDIR . $ARGV[11; 
my $winsize $ARGV[21; 
my $winshift $ARGV[31; 

print "\nusing $infile\nlegend file = $legend_file\n*; 

# output files 
my $hapfile = "haps. out"; 
my $freqfile = "freqs. out"; 
my $chkfile = "Iong. out"; 
my $posfile = "pos. out"; 
my $winfile = "win. out"; 

my $st = time; 

# all trials are recorded in the log. This is appended to each time a 
trial is run 
my $haplog = "haplog. txt"; 
die "Can't find the log file $haplog\n" unless -e $haplog; 
my $lognum = 'cat $haplog I wc -l'; 
chomp $lognum; 
$lognum sl^\s+ll; # remove leading whitespace 
$lognum sl\s+$Il; # remove trailing whiteapace 

# copy selected output files to unique names at the end 
my $hapcopy = I$lognum\_. 4aps. txt"; 
my $freqcopy = "$lognum\_freqs. txt"; 
my $poscopy = "$lognum\_pos. txt"; 
my $wincopy = , $lognum\_yin. txtII; 

# open the legend file to get coordinates of windows as well as windows 
details 

open FH 
- 

LEGEND, $legend_file or die "Could not open legend file 
$legend_file. \n"; 

my @mapfilelines; 
my $counter =0; 

while (<FH_LEGEND>) 

chomp; 
my ($chr, $rs, $CM, $position) - split I\s+l; 

$counter++; 

my @linevariables - ($counter, $chr, $rs, $CM, $position); 
my $aref = \@linevariables; 

push Gmapfilelines, $aref; 
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my $number . 0; 
my %windows; 
for (my $start . 0; $start+$winsize <= $mapfilelines[-I][31 
$start+-$winshift) 
my @window; 
my $wincoor; 

for my $g (Qmapfilelines) { 

if ( ${$g)[31 >- $start and $($g)[31 < $start+$winsize)( 
push @window, $g; 

$wincoor - \@window; 
$number++; 
$windows($number) - $wincoor; 

# open outfile to write window coords to 
open (FH_POS, 11>$posfile") or die "Couldn't open $posfile to write 

my %windetails; 
my $count - 0; 

foreach my $key (sort {$a <=> $b) keys %windows) { 

my $value - $windows{$key); 
my @windowdetails; 
my $chrnum; 
my $winstart; 
my $winend; 
my $winref; 
my $startrs; 
my $startpos; 
my $endrs; 
my $endpos; 
my $markersnum; 
my $physicaldis; 
my $geneticdis; 

my $startcm = $($value)[0][3); 
my $endcm - $($value)[-l][31; 
$chrnum - ${$value)[0](11; 
$winstart = $($value)[0][01; 
$winend $($value)[-l][0]; 
$startrs ${$value)(0][21; 
$startpos $($value)[0][4]; 
$endrs $f$value)[-11[21; 
$endpos $($value)[-11[41; 
$markersnum = $winend $winstart; 
$physicaldis = $endpos $startpos; 
$geneticdis - $endcm - $startcm; 

push @windowdetails, $key; 
push windowdetails, $chrnum; 
push @windowdetails, $winstart; 
push owindowdetails, $startrs; 
push owindowdetails, $startpos; 
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push Qwindowdetails, $winend; 
push Owindowdetails, $endrs; 
push @windowdetails, $endpos; 
push @windowdetails, $markersnum; 
push @windowdetails, $physicaldis; 
push @windowdetails, $geneticdis; 

$winref = \@windowdetails; 
$count++; 
$windetailsf$count) = $winref; 
#$count++; 

print FH POS "window $key is $physicaldis bp 
' 

in size, has $markersnum 
ýkers, with coordinates $startpos - typed ma $endpos, which is between 

marker number $winstart $startrs and $winend 
I 

$endrs. \nm; 

my $first keys twindetails; 
my $second keys %windows; 
print "$first is the number of records in the hash windetails. \no; 
print "$second is the number of records in th e hash windows. \nn; 

close FH-LEGEND; 

# $1 = 1; # don't buffer output 

close FH-POS; 

# populate array of haplotypes as strings 
my Qhaps; 

# read from haplotype file 
local *FH; 
open (FH, $infile) or die "Couldn't open $infile to read. \n"; 
my $full 

- 
haplength; 

while (<FH>) 
chomp; 
# skip lines with individuals Ids. ie: skip everything that starts 

with WTCCC. 
next if /ATDT/; 

my @temp - split; # splits on whitespace 
my $thishap = join("", @temp); # haplotype as a string like 

12112122112121212121 
if (defined $full-haplength) 

die "Didn't find a haplotype of length $full-haplength" unless 
length($thishap) == $full-haplength; 

) else # infer length to check subsequent lines against from first 
line 

$full-haplength - length($thishap); 

push @haps, $thishap; 

close FH; 

my $numchr = scalar @haps; 
print "Read $numchr haplotypes of length $full-haplength. \n"; 

# open main output file 
open (FH, 11>$hapfile") or die "Couldn't open $hapfile to write 
my $old_fh = select(FH); 
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$1 - 1; # don't buffer output to this file 
select($old_fh); 

# open outfile to write window number, max haplotype frequency, number of 
typed markers in the window, window size in bp, window size in cM. 
open (FH WIN, 11>$winfile") or die "Couldn't open $winfile to write 
print Fli-WIN 
11window\tnumber 

- 
of-markers\tmax-hap_freq\tsecond 

- 
most_freq_hap\tthird-most 

_freq\tforth_most_freq\twindow_size_inbp\twindow_size_inCM\twin_start\twin 
_end\twin_coord\n"; 

calculation 

# loop through the window positions available (Pos is starting position, 0 
meaning starting from first SNP) 
my $max-simhap - 1; 
my $max_pos - 0; 
my $max-winsize; 
my $numpos = 0; 
my %numchr 

- 
to 

- 
freq; # key is number of chromosomes, value is number of 

times that number of chromosomes were identical 
foreach my $key (sort {$a <=> $bj keys %windetails) 

#my $poss $key; 
my $value $windetailsf$keyl; 
my $chromosome = $($valuej[11; 
my $windowsize = ${$value)[81; 
my $bpdist - $($value)[9]; 
my $cmdist - ${$value)(101; 
my $pos = $($value)[21; 
my $startposition = $($value)[41; 
my $endposition = $($value)[71; 
my $wincoord - 

$chromosome. 11: 11. $startposition. "_". $chromosome. 11: 11. $endposition; 

if ($pos+$windowsize <= $full_haplength) { 

my Shapcounts = count_similar_haps(\Ghaps, $pos, $windowsize); 

my $markerpos = $key; 

my $maxhaps - 1; # the maximum number of identical haplotypes at this 
position 

my $secondfreq; 
my $thirdfreq; 
my $fourthfreq; 
if (scalar @hapcounts) 

$maxhaps - $hapcounts[o]; 
$secondfreq $hapcounts[l); 
$thirdfreq $hapcounts[21; 
$fourthfreq $hapcounts[31; 

if ($hapcounts[O] > $max-simhap) 
number of identical haplotypes across 

$max-simhap = $hapcounts[O]; 
$max_pos = $markerpos; 

$max-winsize - $windowsize; 

{# keep track of the highest 
Positions and the position 
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for my $hc (@hapcounts) {# record the frequency of identical 
chromosomes (>=2) at this position 

$numchr_to_freq($hc)++; 

my $outputline - (scalar Qhapcounts) ? (join ", ", Qhapcounts) : 111; 

print FH "$outputline\n"; 
$numpos++; 

print FH_WIN 
"$numpos\t$windowsize\t$maxhaps\t$secondfreq\t$thirdfreq\t$fourthfreq\t$bp 
dist\t$cmdist\t$startposition\t$endposition\t$wincoord\n"; 

close FH; 

close FH WIN; 

# print the frequencies to a file for plotting graphs 
process-freqs(\Wnumchr_to_freq, $numchr, $numpos, $freqfile); 

# extract and print to file the haplotype strings for the window that had 
the highest identical haplotype frequency 
extract-best-window(\@haps, $max_pos, $max-winsize, $chkfile); 

# print info about this run to the logfile 
open FH_LOG, 11>>$haplog" or die "Could not open logfile $haplog. \n"; 
my $time - time-$st; 
print FH 

- 
LOG "exthap-TDT-cm2. pl log number $lognum\t hapfile 

$infile\t$numchr chrom of $full-haplength length\t max num of aim haps 
$max simhap\t at $max_pos\t win size $winsize\t win shift $winshift\t 
numb; r of wins $numpos\t finished in $time seconds\nw; 
close FH_LOG; 

print "trial $lognum. Window size is $winsize CM. $numchr haplotypes of 
$full-haplength markers ($numpos windows with windowshift $winshift). 
$max 

- simhap of 11, scalar @haps, 11 chromosomes were identical in window 
number $max-pos\n"; 
print "See results: \n"; 
print 11$hapfile - frequencies of haplotypes at each position\nw; 
print 11$freqfile - overall frequencies of haplotypes across all 
positions\n"; 
print 11$posfile - window positions and associated recombination rates\n"; 
print 11$winfile - window number, max number of identical haplotypes, 
window size in bp and CM\n"; 
print "Finished in ", $time, " seconds. Log information is in $haplog. \n"; 
system 11cp $hapfile $hapcopy"; 
system 11cp $freqfile $freqcopy"; 
system 11cp $posfile $poscopy"; 
system 11cp $winfile $wincopy"; 
system "nedit $hapfile $freqfile $posfile $winfile 

-headi count similar_haps 
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For a particular window position, examine the substring of haplotypes of a 
given size and 
count the numbers of identical haplotypes. We do not include distinct 
haplotypes. 

=head2 Arguments 

$_[O] : reference to array of haplotypes 
$_[1] : start position (0-based: 0 means beginning of string) 
$_[21 : size of window 

Returns empty list if all haplotypes are distinct in this region, or a 
list of numbers 
like 7,3,2,2 (ordered descending) which represents the number of 
identical hits. 

-cut 

sub count-similar_haps 

my ($ref-haps, $start, $size) 

my %subhaps; # hash with key of subhaplotype string, value number of 
occurrences 

for my $full 
- 

hap (@($ref-haps)) 
my $sub 

- 
hap = substr($full hap, $start, $size); 

$subhaps($ýub_hapj++; # will Ee 1 if not encountered before, 

otherwise increment 

# now find those that are not 1 
my @interesting; 
for (values %subhaps) 

push @interesting, unless 

return sort ($b<->$al @interesting; 

)# end sub count-similar_haps 

-headl process_freqs 

Calculate the frequency of chromosomes being identical for all number of 
chromosomes between 2 and $numchr totalled over all positions. 

-head2 arguments 

[0] :a hash of number of chromosomes .> freq of being identical 
[1] : total number of chromosomes examined 
[21 : total number of windows used 
[31 : file to write to 

-cut 

sub process_freqs 

my ($numchr-to-freq, $numchr, $numpos, $freqfile) 

open FH, ">$freqfile" or die "Could not open $freqfile. \n"; 
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for (my $i = 2; $1 <= $numchr; $i++) 
print FH "$i\t"; 

print FH "\n"; 

for (my $i = 2; $i <= $numchr; $i++) { 

if (defined $$numchr_to_freq($i)) { 

# this is the number of times that $i of $numchr chromosomes are identical 
my $freq = $$numchr 

- 
to 

- 
freq($i); 

print FH "$freq\t"; 

) else f 

print FH "O\t"; 

print FH "\n"; 
close FH; 

)# end sub process_freqs 

=headl extract-best-window 

Extract the haplotype strings for the window that gave the greatest number 
of identical haplotypes 

=head2 Arguments 

[01 : ref to array of haplotype strings (one element per chromosome) 
(11 : the window position that gives the highest number of identical 

haplotypes 
[21 : the size of the window 

=cut 

sub extract-best-window 

my ($ref-haps, $max_pos, $windowsize, $chkfile) 

my @temp; 
for my $full-hap (@($ref-haps)) 

my $sub hap = substr($full-hap, $max, 
_pos, 

$windowsize); 
push @temp, $Eub_hap; 

my @sorted = sort(@temp); 

open FH, ">$chkfile" or die "Could not open $chkfile. \no, 
for my $h (@sorted) 

print FH "$h\n"; 
I 
close FH; 

# end sub extract-best-window 
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Appendix 4: List of Candidate regions of recent adaptive evolution 
identified by the extended -high-frequency-haploty pe analysis as outliers. 

Table 1: List of regions identified as outliers in the HapMap YRI sample. 

1 31556567 33433589 

3 86907721 94948713 

3 103087318 104285667 

4 32485339 34426976 

5 28742001 30545765 

5 89111186 90513821 

7 116185790 118067340 

10 57634147 59250452 

11 4510238 5995893 

11 37097729 39848258 

11 83758120 85597492 

12 33445564 37798991 

12 79150083 80365837 

13 45780806 47081488 

13 54211160 56561660 

13 75210078 76875750 

14 44075381 46991264 

14 75676344 77064129 

15 69757099 72242413 

16 35620265 49098715 

21 29879196 30682260 

21 39093741 39899947 

x 60784354 66128220 
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Table 2: List of regions identified as outliers in the HapMap CEU sample. 

1 71280907 73209837 

2 134815385 139315244 

2 152698583 154212372 
2 188984759 190690353 
3 82170375 85570099 

3 88645387 96427710 

4 33069411 35043016 

5 128843291 132521927 
5 143053541 144725999 
6 28479325 32787435 
7 117007660 119822806 
10 68028852 69326346 
10 73050857 76184991 

11 37801245 39403713 

11 89236882 91316765 

12 36622847 38720468 

12 83925058 85937776 

12 86607819 87840431 

13 53403182 55351347 

14 38232681 39917445 

16 66110521 69310080 

17 46279132 47949645 

17 57722226 59757634 

18 23972443 25483998 

18 28517165 30324295 

18 48147725 49438530 

18 61259757 62263986 

19 41303124 43375145 

20 32368272 34555370 

21 28537026 30131445 

x 32793093 37015221 

x 56100644 66841866 
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Table 3: List of regions exclusive to the Gambian severe malaria cases, with values 
above two standard deviations (transmitted chromosomes). 

Chromosome Region start Region end 
1 13963744 14635377 
1 24450994 25514253 
1 151299443 152840623 
1 153149865 153931494 
1 173888472 175696261 
1 220139012 224963515 
2 43962338 45017326 
2 166377315 168145965 
2 234798487 235170750 
3 59993366 60324502 
3 117934964 118379319 
4 70697431 72780842 
4 76104443 77488113 
4 114593831 116022924 
4 137111972 138731721 
4 139966470 153459800 
4 168022785 169206776 
5 98604146 103209350 
5 168486834 169404466 
5 178112905 178559043 
7 6643875 7138246 
7 105994486 106900372 
7 110076704 111379964 
7 129628646 130253907 
9 12775073 13500394 
9 25732531 26679442 
9 77438679 78545080 
9 83157154 83938249 
10 32430956 33828921 
10 36244764 37290394 
10 59104312 60334520 
12 24949964 25656557 
12 41734204 43209601 
12 77425651 78635538 
13 28413875 29337397 
13 62058599 64080366 
13 77971249 79148512 
13 96857343 97550726 
13 107670522 108157835 
13 109764350 110091916 
14 51311946 51962362 
is 63461230 64318418 
15 85502521 86262610 
16 14378729 15835092 
16 69344281 71074515 
17 73279820 73775501 
18 47185007 48044577 
is 48042298 49313161 
19 14355473 14806170 
20 24265910 28172124 
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20 58098406 58795868 
21 40182104 40514014 
22 25625691 25854738 

Table 4: List of regions exclusive to the Gambian severe malaria controls, with values 
above two standard deviations (untransmitted chromosomes). 

Chromosome Region start Region end 
1 18925130 19744951 
1 36644986 37217566 
1 37206802 38135790 
1 39220335 41086073 
1 94763951 95860203 
1 184148193 185483037 
1 209950760 210818616 
2 3406189 3804389 
2 46547928 47235083 
2 121328889 122206162 
2 133709244 134559297 
2 212203748 212597176 
3 67524605 68403369 
4 7487097 7688429 
4 57318722 61059378 
4 62566178 67903349 
4 163842473 164833845 
5 24880170 25837347 
5 29967494 31281091 
5 149641346 150439981 
6 40880949 41583425 
6 69615419 71790469 
6 73846091 75593660 
6 165855338 166166746 
7 13453171 13978945 
7 21927694 22873460 
7 22697767 24665754 
7 25292991 26318339 
7 30066932 30711953 
7 70649078 72491430 
7 142020041 142733566 
8 13023771 13535366 
9 4364278 4856840 
9 16232088 16700870 
9 19390351 20076856 
9 27994206 29689426 
9 31111425 32335581 
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9 32421306 34413806 
10 95239595 95702720 
10 113107817 114044591 
11 3524620 6871891 
11 63976255 67728122 
11 68340260 69222519 
11 99120957 100375744 
12 10839120 11685903 
12 111804639 112465947 
13 33558808 34360987 
13 58702026 60093488 
13 111832084 112325637 
14 65122654 67056028 
14 81465079 82328673 
16 10903900 11553435 
16 11525159 12069150 
16 71941694 72654767 
18 44694487 45485063 
19 20422200 21828007 
19 44329879 45114921 
19 59624545 60189667 
20 14763778 15317397 
20 38882719 40018906 
20 59380439 59666382 
22 36007876 36301981 

Table 5: List of regions identified in the Gambian severe malaria cases and controls, 
with values above two standard deviations (transmitted and untransmitted 
chromosomes). 

Chromosome Region start Region end 
1 91912840 94216566 
1 112677988 114163349 
1 115633140 116436501 
1 146487865 147773423 
1 171882840 172408553 
1 182023083 183738838 
1 218283134 219311746 
2 31085475 31483437 
2 37937323 38537958 
2 45474465 45954129 
2 52405577 53463251 
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2 75570435 76557318 
2 77992907 79134870 
2 106051082 107886535 
2 107478040 109104877 
2 109163846 111996372 
2 122236257 123486075 
2 127094744 127487236 
2 135592827 137908254 
2 157509224 158522037 
2 174077451 174749060 
2 192896944 195784259 
2 205602055 206377484 
2 222686780 223177919 
2 224004933 225582286 
3 3562732 4078926 
3 17122967 20347803 
3 26362867 27006618 
3 26856110 27814871 
3 45108910 46327388 
3 71332365 71822254 
3 71956269 72466185 
3 121630554 122754748 
3 124342771 125439402 
3 130275449 131722422 
3 133609225 134639390 
4 59478401 61931307 
4 68296320 70906581 
4 78411154 79640582 
4 82841349 83726466 
4 100658226 102061562 
4 111022234 112363266 
4 169926272 170347712 
5 53395816 54882855 
5 65690748 66586611 
5 132637416 133046502 
6 26375779 36338113 
6 156444174 157490966 
7 5701197 6728910 
7 18843405 19533430 
7 35876184 36325896 
7 49397368 51587916 
7 111680844 113741168 
7 141620986 142566810 
8 9011268 9750690 
8 25806316 26517618 
8 73405227 73998473 
9 22234280 23636551 
9 35756561 36806714 
9 36862314 37721177 
9 119529894 120213741 

10 21481046 23404726 
10 26202772 27707093 
10 72002446 72979896 
10 76631338 77834518 
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10 121959101 122502825 
11 113625984 116805250 
12 12127650 12612565 
12 21986082 22836038 
12 23016698 23803922 
12 32539025 38836591 
12 78626764 79648279 
12 81034619 82048539 
12 86424349 87937645 
12 95049481 96309883 
13 29345216 29976511 
13 29977837 31158884 
13 35177556 36228830 
15 29143717 30228824 
15 51057772 51562962 
16 45559127 48183497 
16 71475102 71903535 
16 76918164 77356110 
16 79126074 79681653 
17 9948656 10165009 
17 15588448 17032630 
17 17246812 18503445 
17 33914210 34541657 
17 60368201 60993743 
17 70254715 71109514 
18 11068646 11894266 
18 13367128 22525080 
18 53242291 53928699 
18 64343434 64780832 
20 23927305 24731483 
20 36347834 38090578 
20 38303533 38890738 
20 39022636 40422758 
20 40403504 41081132 
20 40912958 41366282 
20 45807248 46280573 
22 32684271 35857568 
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