
Open Research Online
The Open University’s repository of research publications
and other research outputs

Exploiting Smalltalk Modules In A Customizable
Programming Environment
Conference or Workshop Item

How to cite:

Woodman, Mark; Griffiths, Rob; McGregor, Malcolm; Holland, Simon and Robinson, Hugh (1999). Exploiting
Smalltalk Modules In A Customizable Programming Environment. In: ICSE ’99: Proceedings of the 21st International
Conference on Software Engineering, ACM, New York, pp. 65–74.

For guidance on citations see FAQs.

c© 1999 ACM

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/302405.302453

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/195353871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/302405.302453
http://oro.open.ac.uk/policies.html

Exploiting Smalltalk Modules In A Customizable Programming Environment

Mark Woodman, Rob Griffiths, Malcolm Macgregor, Simon Holland, Hugh Robinson

Computing Department
The Open University

Walton Hall
Milton Keynes, England MK7 6AA

+44 1908 274066
m.woodman, r.w.griffiths, m.d.macgregor, s.holland, h.m.robinsonopen@open.ac.uk

This paper appeared as:

Woodman, M., Griffiths, R. Macgregor, M., Holland, S. and Robinson, H. (1999) Exploiting
Smalltalk Modules In A Customizable Programming Environment. Proceedings of the International
Conference on Software Engineering, ICSE 1999 Exploiting Smalltalk Modules In A Customizable

Programming Environment

ABSTRACT

This paper describes how we have extended a module structure of the Smalltalk LearningWorks to
provide a programming environment deigned for very large scale technology transfer. The ‘module’
is what we have termed the LearningBook, a set of classes and persistent objects, including an
HTML browser, programming and visualization tools, and microworlds. The context for this
development is a distance learning university course in object technology which has enrolled over
5,100 mature students in its first year – making it the largest such course in the world. While
promoting a systems building approach, we have successfully added support for programming in the
small and the needs of the isolated novice. Two principles have applied: (i) the programming
environment and its modules fit into a consistent framework for personal management of study and
(ii) details of complex facilities, such as the class library, are progressively disclosed as knowledge
and sophistication grow. The paper shows how these principles have guided the exploitation of
LearningBook modules. To provide context, relevant academic background is given. Early informal
feedback is reported and a project currently underway to observe in detail how thousands of learners
use the Smalltalk programming environment is sketched.
Keywords

Object-oriented technology, Education, Technology Transfer, Smalltalk Programming Environment,
HTML

 1

Mark Woodman, Rob Griffiths, Malcolm Macgregor, Simon Holland, Hugh Robinson
Computing Department

The Open University
Walton Hall

Milton Keynes, England MK7 6AA
+44 1908 274066

m.woodman, r.w.griffiths, m.d.macgregor, s.holland, h.m.robinsonopen@open.ac.uk

ABSTRACT
This paper describes how we have extended a module
structure of the Smalltalk LearningWorks to provide a
programming environment deigned for very large scale
technology transfer. The ‘module’ is what we have
termed the LearningBook, a set of classes and persistent
objects, including an HTML browser, programming and
visualization tools, and microworlds. The context for
this development is a distance learning university course
in object technology which has enrolled over 5,100
mature students in its first year – making it the largest
such course in the world. While promoting a systems
building approach, we have successfully added support
for programming in the small and the needs of the
isolated novice. Two principles have applied: (i) the
programming environment and its modules fit into a
consistent framework for personal management of study
and (ii) details of complex facilities, such as the class
library, are progressively disclosed as knowledge and
sophistication grow. The paper shows how these
principles have guided the exploitation of LearningBook
modules. To provide context, relevant academic
background is given. Early informal feedback is
reported and a project currently underway to observe in
detail how thousands of learners use the Smalltalk
programming environment is sketched.

Keywords
Object-oriented technology, Education, Technology
Transfer, Smalltalk Programming Environment, HTML

1 INTRODUCTION
In this section we sketch some background that
motivated the requirements for our programming
environment and to set the scene for the technical
developments described.

The work reported here is part of a large-scale research
and development project to produce and deploy a new
introductory course in computer science and software
engineering at the Open University (OU). The OU is the
UK’s largest university and since it was established
more than two million people have studied with it in the

UK, Europe and world-wide. The OU’s primary mission
is to make higher education available to adults
regardless of their personal circumstances and earlier
educational achievements. Typically for a student to
achieve an honours degree takes some six years of part-
time study; the average age of students is 37. These
factors were key influences on our development of the
syllabus and pedagogy and on our design of our version
of LearningWorks – as should become apparent. It is
worth noting that while now widely welcomed, the
planning decision at the stage in 1994 to embrace an
‘objects first’ approach and to choose Smalltalk as
primary teaching vehicle was seen as a radical and
controversial step [1].

An important influence in the design of OU
LearningWorks was the nature of the closely coupled
materials we deliver to students and hence the nature of
the team responsible for producing these. The distance
learning materials we have produced for students cover
some 440 hours of study, constituting a sixth of a
degree. The cross-media materials include some fifty
illustrated text documents (around thirty pages each),
associated software, web pages, nationally broadcast
television programmes produced in collaboration with
the BBC, the Smalltalk programming environment,
communications software, and computer conferences.
The integration of these materials involves the
production and testing several thousand individual
multi-media deliverable components and requires
experts in all media fields.

Decisions about the use of one medium frequently affect
the use of another. For example, analysis of feedback
from testers of early versions of OU LearningWorks and
draft study texts were used to refine the design of the
way in which the various media would be integrated [2].
As a result of this analysis, world-wide web technology
was put at the heart of a personal study manager for
students. This in turn influenced the design of the
programming environment, requiring the inclusion of an
HTML browser in all LearningBook modules.
Ultimately, this led to us moving much of our teaching
of object-oriented programming from printed text to
HTML in LearningBooks.

The course is called Computing: An Object-oriented
Approach. This emphasizes both the sharp focus on
object technology and its general applicability. This has
an influence on the way we customized LearningWorks,
for example, obliging us to design and implement tools

 2

that are representative of similar ones in other
programming environments. Furthermore, the
heterogeneity of our students means that the initial use
of the programming environment must be constrained in
a way that makes it very simple and restricted to use,
and all tools must be uncomplicated, consistent and not
allow the student to get into trouble [3]. The syllabus
itself is under our control and we developed it taking
into account what could be well communicated and
taught using such means; the topics not only include
object-oriented programming, analysis and design, but
networks, operating systems, human–computer
interaction (HCI), and group working. (Details of the
syllabus and multimedia presentation can be found at
www-cs.open.ac.uk/~m206/.)

Our goal is to move learners from being essentially
users of software to being developers of software. Hence
an overriding requirement of any programming
environment we would use was that it should
progressively and seamlessly disclose full facilities and
detail that are familiar to accomplished practitioner.

Several particular aspects of the syllabus have a direct
bearing on OU LearningWorks. We give prominence to
the separability of domain model and user interface.
One innovation is the teaching of an MVC-style of
application development to complete beginners,
providing practical experience of separable user
interfaces right from the first practical lessons. This was
achieved by developing a simpler version of MVC [4]
called MUI (Model–User Interface) and the tools and
abstractions to go with it. This is discussed later in this
paper. Consequently, as also described later, we have
designed a simple GUI builder which avoids the more
powerful but complicated VisualWorks facilities [4] that
underpin LearningWorks.

Another part of the syllabus that impacts the
programming environment, particularly through the
design of LearningBooks, is object-oriented analysis and
design. Our approach has been loosely centered around
the CRC approach of Wirfs-Brock et al. [5] but with a
flavour of the more formal treatment of associations
given by Cook and Daniels [6]. Within this framework,
we underscore a number of characteristics that govern
successful accomplishment in the practice of analysis
and design that includes (i) the separation of concerns
(user interface versus problem domain, already
discussed), (ii) the acquisition and practice of
dispositional skills in the identification of classes,
associations, responsibilities and collaborations by
exposing students to a range of problem scenarios
(provided by a variety of systems, discussed later) and
(iii) the importance of re-use within design. This latter
characteristic has obliged us to provide a range of class
browser tools and to have organized classes within
LearningBooks in such a way that they bear scrutiny and
modification to support these ideas.

The modular nature of LearningBooks has been crucial
to how we have customized LearningWorks as a whole
to meet the general requirements of the distance

education context. As will be discussed more later, we
have split the programming environment into a
traditional Smalltalk image and source file and a set of
LearningBooks. So far, we have distributed three
versions of LearningWorks like this, each successive
version providing additional behaviour either in the
image or in the set of LearningBooks; in February 1998,
at the beginning of the OU’s academic year, the course
went live to over 5,100 students mostly in the UK. (It
goes live in Singapore in February 1999 and is being
adapted by a variety of institutions, including in the
USA, for presentation in late 1999.) There is almost no
object-oriented programming experience among
students and despite the large enrollment, healthy
skepticism about object technology has been in
evidence. Scrutiny of on-line conferences shows student
and tutor approval of the LearningWorks system to be
high. It has been both robust and easy to repair.

In the next section we outline the OU version of
LearningWorks, essentially giving a flavour of the
organization of our LearningBooks and some of their
tools and systems. In Section 3 we look at the aspects of
LearningBooks as modules and how we have exploited
them to best suit our pedagogy. Subsequently we
examine the various novel programming tools – the
class browsers that support our progressive disclosure
principle (and properly show class method inheritance),
the new workspace, the new class reporter and class
editor tools and, finally, the new GUI builder. The paper
concludes with a reflection of the work and some
comments on what changes are planned and how we
intend to investigate just how neophytes gain
competence in programming.

2 OVERVIEW OF OU LEARNINGWORKS
As mentioned earlier, primarily to keep the size of
LearningBooks down to a maximum of a few hundred
kilobytes, we have split the programming environment
into a conventional Smalltalk image containing
‘standard’ classes, i.e. those VisualWorks classes
permitted as a runtime systems for LearningWorks, and
our own core course classes. By the latter we mean the
classes for our own framework and all the programming
tools described later, but not the domain classes for
microworld systems. The first application is run
automatically; it is a launcher which is metaphorically a
bookshelf for the LearningBook modules. These are
kept in their original course-team defined form, and in
saved versions containing new classes or additional state
representing the user’s work. The launcher does not
show a static set of LearningBooks, but provides a view
on a particular directory structure where original, saved
or user-defined LearningBooks are located. This is
needed to allow updating of the environment by adding
new LearningBooks. The user can choose to show
different versions, as well as to set other preferences
such as size of HTML text and colours for code.

Divergence from ‘standard’ LearningWorks
The OU LearningWorks environment was developed in
parallel with the version developed by Adele Goldberg
and her colleagues [7] with whom we collaborated; for

 3

simplicity we refer to it as standard LearningWorks
(although in some areas we established a ‘standard’
first). A major aim of Goldberg for LearningWorks was
to provide a framework to develop learning
environments “in which to explore ideas about
computing and software system architectures, making
use of a programming language that supports dynamic
object modelling and libraries of selected objects” [7].
Although we articulate the development of OU
LearningWorks in terms of the pedagogic goals in
connection with our users, much of what we have
achieved is widely applicable to neophyte practitioners
and ad hoc users who require an environment that
supports the principle of progressive disclosure: that
beginners be gradually exposed to concepts and tools
and the detail of an environment that is itself a complex
system. Our changes to LearningWorks arose from our
particular context.

The first noticeable difference is the user interface.
Metaphorically we place pages in a ‘binder’ which has
an external back cover with buttons for frequent
operations (like cut and paste) on its right hand edge,
rather than have such buttons at the bottom of each
page. We have also removed section ‘covers’ which
support section themes – views of state shared among
pages in a section which Goldberg et al. use extensively
in their tools and microworlds. We have also introduced
various elements of colour and control of font styles and
sizes – both to signal context and to assist visually
impaired users – and we limited the size of windows and
pages. Moreover, we have tended to use textually
labelled buttons rather than icons. Examples are shown
in Figure 1. These changes have been made for four
main reasons:
❑ to simplify user interaction and to thereby fit the

needs of distance education, and our syllabus;
❑ to realise our pedagogical structure;
❑ to simplify navigation within and between

LearningBooks;
❑ to economise on prolific use of screen real-estate.
Next, we comment on the main LearningBook types and
to what extent we used them.

Types of LearningBooks
The main LearningBook type is the project book, whose
user interface implements a notebook metaphor in
which books are organized into sections and sections
into pages. Figure 1 shows one example of a project
book. In terms of Smalltalk, the books are modules
containing variables, objects and classes which can plug
into an executing image. Class names have (as usual in
Smalltalk) global scope and are loaded into the
Smalltalk image when a LearningBook is open; such
classes are deleted when the LearningBook is closed. In
essence, pages show the user interfaces of applications.
Furthermore, both sections and pages may have
arbitrary state associated with them, particularly a
dictionary of local variables which are mostly used in
workspace pages and in microworld systems. Except in
a few introductory and limited microworlds we

invariably use section-local variables and so subsequent
discussion of local variables refers to these.

In some instances, we had to commit to writing about
certain tools before they were finalized in standard
LearningWorks. This was a primary reason for not
adopting the standard inspector book. Consequently, we
developed our own inspectors. (Indeed, because of the
collaboration with Goldberg, the look of the inspector
pages in the standard inspector book are now similar to
the our inspector windows.) The prescribed form of
inspector in OU LearningWorks is to give the class,
print-string and attributes of the class’s state – instance
variables and, if a collection, elements of the collection.
An example of our inspectors are given in Figure 2
which shows the state of a simple instance of the class
Frog (the print-string and the values of the two instance
variables. For pedagogic reasons, we do not allow the
state of objects to be changed in an inspector.

Figure 1

We do use debugger books and consequently this is our
only use of section themes – the context stack at the top
of each page of this single-section book. We are
concerned with one course so do not use course books.

Figure 2

LearningBook structure
As mentioned earlier, after an empirical study we let the
needs of the neophyte practitioner dominate the design
of LearningBooks via their user interface rather than
their software structure. We concluded that the notebook
metaphor would be a primary lever for the learner, and
therefore, we adopted a consistent organization in which
the first section of a book should contain practical
exercises and discussions of them, a glossary of relevant
terms (both as HTML browser applications) and a
simple word processor for taking notes. Subsequent
sections are organized to match the teaching strategy for
the particular course chapter. So for example, the
LearningBook for Chapter 22 (LB-22) which covers
class variables, class-instance variables, methods, and
the classes Date, Time and Character, has four
sections. The first is Practicals and Notes which is
described next; then there are the sections Class
variables and methods, Date and time, and Character
representation, with the obvious relationship to the
topics covered. The pages of the second and subsequent
sections contain the programming tools and microworlds
with which students interact to pursue their studies –
guided by the practical exercises and discussions of the

 4

first section. The general structure of the practical work
in LearningBooks is an Introduction that links the work
to the paper-based material, and a number of Sessions
which break up the work; within each session are pairs
of Practical exercises and Discussions (this is software
engineering, so there are no ‘solutions’!). Figure 3 gives
a sample pages from a first section.

Generally student users are encouraged to detach the
Practicals page – as if detaching a page from a
notebook. Normally, detaching a page does just that: it
places the page in a separate named window on the
desktop, leaving only the page tab scored through in the
notebook. However, for the HTML pages only, the page
is cloned as a window on the desktop. We found this
was necessary so that a student could consult the text of
both an exercise and its discussion (and even copy from
either) while interacting with the tool or microworld in
another section. Even if not using an HTML browser for
instructional purposes, this detach-a-copy facility can be
generally useful. (It is possible that a future version of
the environment will support this facility as generally
possible behaviour for pages.)

The constancy of our LearningBook organization is
reassuring to beginners, but it has a number of
advantages besides:
❑ It decouples sessions of practical programming

(‘lab sessions’ in a conventional setting) from
sections.

❑ It frees an author to group together microworlds,
tools, etc. to fit a teaching strategy.

❑ It facilitates detaching, moving and the navigation
of pages and windows, by keeping section and
page changes to a minimum.

Microworlds
LearningWorks encourages the use of microworlds to
motivate learners [8] who use and modify existing small
systems rather than having to program from scratch. To
provide a very simple, memorable, shared source of
examples for virtually all object-oriented concepts, we
developed an amphibian microworld in which instances
of the classes Frog and Toad (or their subclasses) could
be represented graphically. Later, once inheritance has
been taught we have students redesign these classes to
be concrete subclasses of an abstract class Amphibian.

Our requirement to provide students with a
pedagogically simple and consistent learning
environment turned out to demand some unexpected
sophistication and new features in the design of the OU
LearningWorks programming environment. This
sophistication arose from pursuing a simple set of
pedagogical requirements consistently to their
conclusion. For newcomers to computing, objects like
numbers and strings are somewhat atypical and abstract
entities, and may not be pedagogically the best
examples with which to introduce basic object concepts.
We opted instead for initial graphical microworlds
populated by cartoon-like depictions of concrete entities
(such as frogs, toads, etc.), whose class and state is
visibly obvious, whose every state change is visible, and

on whom the effect of all messages is plain to see. We
further required that any part of the microworld could be
controlled equally well either by a GUI interface using
selection, button presses and menu selection – that is, by
a user interface that novice programmers but
experienced users would find relatively straightforward
– or equivalently by evaluating Smalltalk expressions.

Figure 3

Figure 4 shows just one of many microworld states
involving frogs, toads, and the imaginary subspecies of
frog, the hoverfrog. Hoverfrogs have a height attribute
and can move up and down, thus hovering in the air! As
can be imagined, simple button commands correspond
to unary messages in the protocols, while any
commands involving a menu selection correspond to
messages requiring one or more arguments. A single-
line input field is provided for simple Smalltalk
expressions, and in some circumstances an output field
is provided to show message answers. As already noted,
the amphibian microworld (in fact a variant with all the
buttons but no input field, see Figure 5) provides a
simple, memorable, shared source of examples for all
object concepts encountered in the course.

Figure 4

The duality of control just described (GUI buttons and
Smalltalk text) allows HCI concepts to be used to
provide useful concrete metaphors and explanations for
otherwise abstract aspects of syntax and object

 5

behaviour. Unfortunately, the practical impossibility of
an input field for programming and the limitations of
screen real-estate mean that a separate workspace is
needed – as a different application in a separate page.
(LearningBook section state was indispensable in
addressing this issue, as explained next.)

As described so far, the microworld approach does not
differ very much from, for example, Goldberg and
Ross’s box world, and other introductory simulations.
However, our wish to extend this approach to deal with
assignment and object creation and destruction in a
manner consistent with the way in which objects,
messages and state are depicted provided important
motivation for the new workspace features described
next. This requirement had a significant impact on how
LearningBooks are implemented to allow interaction
between microworlds and any workspace in the same
section. A second aspect of microworlds that influenced
how new environment features were provided was the
need to allow beginners to gain practical experience of a
separable user interface architecture as early as possible.
Hence the microworld design had to take account of our
MUI (Model–User Interface) architecture and GUI
builder (see below).

Workspaces
After much prototyping, the pedagogical requirements
and the behaviour of the local variables of
LearningWorks led us to a novel design for a
workspace. We rejected the simple, traditional Smalltalk
text pane (in which ‘print it’/‘show it’/‘inspect it’
commands are available) in favour of a more elaborate
user interface that provided separate panes for (a) an
Evaluation pane for typing in, selecting and evaluating
expressions, (b) a Display pane to show the textual
representations of message answers (i.e. print-string
texts), and (c) a list of inspectable local variables.
Figure 5 shows the ubiquitous amphibian world (without
input field) in the background and our workspace tool in
the foreground. Note that the local variable myAccount
has been created to refer to an instance of the class
Account but naturally does not appear in the amphibian
world to which the class has no relevance. The
variables, kermit and gribbit, however, refer to
instances of relevant classes and so are shown and can
be manipulated as the sample code demonstrates. It
allows the novice to explore many of these somewhat
abstract concepts quite concretely and with the truth of
situations automatically reflected.

To facilitate the visualization of assignment, object
creation and destruction, our amphibian microworld was
built not as an arbitrary application, but, in effect, as a
specialized graphical view of the dictionary that held all
variable assignments in the local scope of the section in
question (a fact that is of key pedagogical importance in
later teaching of the concepts of assignment, reference,
variables, dictionaries, etc.). Hence the structure of our
LearningBook modules has a key bearing on the design
and interaction of tools in the environment. Objects of
any class can be created on any workspace page using
the evaluation pane, even though a microworld in the

same section specializes its graphical view of the local
dictionary to display only objects of certain classes of
interest (e.g. frogs and toads). Simply creating an object
of a relevant class in a workspace and assigning it to a
local variable causes its graphical representation to
appear automatically in any interested microworld’s
graphical view. All entries in the local variable
dictionary (referring to objects of any class) are also
explicitly shown in a dedicated pane of the workspace.
Any reassignments of any local variable to any object of
any class are automatically updated in the view. In
particular, if the student reassigns variables so that a
particular displayed object has no remaining references
to it, the automatic garbage collection of that object will
be graphically dramatized in its immediate
disappearance from the microworld. Imagine the visual
effect of losing a reference to an aircraft in an air traffic
control simulation! Hence we provide a microworld for
such a simulation.

Figure 5

This architecture of including workspace and a world
together in a section, and so having shared access to
section-local variables, is important to the construction
of microworlds and to the context-sensitive
characteristics of the programming tools. Not only does
it allow beginners to make rapid progress early, it
provides a straightforward modular structure for the
designers of applications (microworlds in our context)
and tools. So, for example, we have been able to provide
a microworld that is a simulation of air traffic control in
which planes disappear from view under certain
circumstances; the problem is caused by a poor protocol
for the class used in implementing the airspace and its
replacement is trivially handled in the microworld
without changing its design.

In the next section we further consider the use of
LearningBooks as modules for our programming
environment.

3 LEARNINGBOOKS AS MODULES
Because the facilities and limitations of LearningBooks
as modules significantly affect how the environment and
its tools are designed, we now consider several
important aspects of LearningBooks.

 6

Vision
The principle of progressive disclosure which has
guided much of our exploitation of LearningBooks is of
particular importance in a sophisticated programming
environment containing a range of powerful tools and an
extensive class library. Given the complexity of
commercial programming environments, the Learning-
Works environment proved ideal for such a philosophy
by allowing us to dynamically customize it via the
classes that successive LearningBooks load and by
controlling access to those classes.

As already mentioned, LearningBooks can and usually
do contain class definitions that are loaded into the
Smalltalk image when the LearningBook is opened and
deleted from the image when the LearningBook is
closed. This class loading mechanism is extremely
useful as it allows different LearningBooks to load
different versions of the same class into the image.
Indeed, we can even load in different (progressively
more complex) versions of inheritance hierarchies when
we deem it pedagogically necessary. In addition to this,
LearningWorks provides a class and method scoping
mechanism for LearningBooks, called the vision. This
powerful mechanism amongst other things allows the
LearningBook author to: import classes from other
LearningBooks; specify which classes in the image are
visible to the debugger and the class browser; specify
for each visible class those methods whose code can be
viewed and edited; specify for each visible class those
methods whose code cannot be viewed. The vision for a
book is set up when the book is created using a simple
declarative language that names books, sections, etc.
and binds them to instances of classes and user
interfaces. For example, early in the course the vision of
books is limited; i.e. restrictions on users are more
severe than later on. Towards the end of the course very
few restrictions still apply. As a specific example, take
the ubiquitous printOn: message that generates textual
representations of the state of classes of objects. It needs
to be available throughout the course but its code should
not be seen until after studying streams (about half way
through in our pedagogy).

We found this scoping mechanism extremely useful,
especially the ability to import scope from another
LearningBook as we wanted the class browsers in each
LearningBook to progressively disclose more of the
class library as the student worked through the course.
Early versions of standard LearningWorks did not fulfill
all our requirements: we needed a section-based scoping
mechanism because as a student works through a
LearningBook, section by section, we wanted the class
browser in each section to progressively disclose more
classes or more methods in the classes. We overcame
this limitation by providing our class browsers with
filters that refine the book-based scope. While not ideal,
this addition has satisfied our immediate needs.

Separation of image and LearningBooks
As already mentioned, the environment is delivered as
an image and a set of LearningBooks, with the choice
between what classes are in the image and what are in

LearningBooks being determined by minimizing the
size of the latter. (Keeping LearningBooks small also
means that there load time is minimized, an important
usability factor.) The image is a stripped down version
of a VisualWorks image. The arrangement works
satisfactorily as Smalltalk classes and objects can persist
outside of the image in binary files – LearningBooks are
examples of such files. When such a binary file is
loaded into the image a record of the classes loaded is
written to the image’s changes file. This record is also
used as the source for the text of methods displayed in
class browsers. In the OU LearningWorks system the
changes file is created when a user loads a
LearningBook and deleted when the book is closed. This
reflects the fact that the core image is never
permanently changed – if a user creates a class in a
LearningBook and closes and saves that LearningBook
the image returns to the same state that pertained before
the student opened a book. The change, a class creation,
for example, is recorded in the actual LearningBook
itself when that book is closed and saved.

One of the weaknesses and strengths of traditional
Smalltalk environments, is that the programmer-user
can change the image in anyway she or he wants. This
approach leads to great flexibility, and makes it very
easy to customize basic system functions quickly (e.g.
you can change the window system and even the
compiler to act in ways that you want). However, if a
novice makes mistakes, and saves the image, the image
can easily become corrupt in a way which is difficult
and time-consuming to repair. For beginning
programmers we thought it sensible to sacrifice
flexibility for greater safety. Hence, the LearningWorks
image cannot be saved, and therefore can never be
corrupted. Similarly, we have arranged that the original
LearningBooks supplied with the environment are
always available for the user to return to if they need to
abandon the book they were working on. So, the worst
that can happen is that the student might create some
classes in a LearningBook that corrupts the environment
while that book is loaded. The current absence of
modular change-logging for LearningBooks may be
problematic for the student, who might not know the
cause of an error. Provision of a log like the image’s
change file for each LearningBook to allow the student
(or their tutor) to replay what happened and find the
cause of an error would be ideal. This functionality is
provided by a suite of classes being developed as part of
a project to record and study how learners use the
environment, which is sketched later.

In summary, the LearningBook and image structures we
have used provide a highly modular framework which
protect students from misusing the system while
providing a good working environment. The image and
the provided LearningBooks are sacrosanct modules,
they cannot be changed or altered by the student through
everyday use of the Smalltalk environment. The only
modules the students can change in a persistent manner
are the LearningBooks that they create and save
themselves. Also, as we have used them, each

 7

LearningBook is modular in respect to other
LearningBooks, that is any change made to the state of
one LearningBook cannot change the state of another
LearningBook. Also, users know that any change to the
state of the image is (a) not persistent (b) only due to the
present LearningBook.

Loading and deleting classes
The loading and deleting of classed as LearningBooks
are opened and closed has, unfortunately, resulted in
major restriction on users – that only one LearningBook
be open at once. When a LearningBook is closed the
classes and objects that were loaded with the
LearningBook are deleted, as are any classes that were
created and any objects that were created. That is, the
image is returned as close to the state it had before the
book was loaded as possible as objects in the
environment may have changed the state of the image
while a book was one. (We can only be certain of
getting back to pristine image state by quitting and
restarting.) The general problem is having more than
one version of a class. For instance, book LB-X might
use the class Amphibian whereas a subsequently
opened book, LB-Y, might require changes be made to
Amphibian. While a pedagogy could cope with
different behaviour of LB-X due to the changes effected
in LB-Y, matters would be less than straightforward if
either book, deleted Amphibian as it closed before the
other.

We did not want to consider changes to class naming in
Smalltalk, so are resigned to this constraint. However,
we have experimentally implemented ‘safe’ books that
have no impact on the class structure, we have deferred
work on this at present. After a certain point in the
course, i.e. in certain LearningBook modules, students
may add their own sections and pages (see Figure 1).
Programming tools of various type can therefore be
introduced into a LearningBook that did not originally
provide them and so to provide safety, it is likely that
we would have to supply mechanisms to propagate
changes to classes across a range of inter-dependent
LearningBooks.

The constraint causes a significant problem when
updating the environment because so much of the core
environment is in the image. As a result of including
most of the classes needed by LearningBooks for the
HTML browser, the microworlds and the programming
tools, problems found with the deployed system are
difficult to deal with because of the current limitations
of the Internet infrastructure which would make network
distribution of full images error-prone and expensive.
We have provided no means to save a changed image
that is at the heart of the programming environment and
its practical immutability is a significant problem when
there is a requirement, as we have, to update over five
thousand users when a bug-fix is implemented.
Currently we have to provide completely new versions
via CD-ROM; the image is between 4–5Mb and even
with compression is too much to for students to
download from their Web site. Fortunately, it is possible
to make temporary or seemingly permanent changes to

ease this inherent difficulty. A text file containing
initialization code is read when LearningWorks starts.
This arranges for the launcher to open and sets fonts and
their sizes for the environment. If a bug-fix can be
provided by installing a replacement class, then the
initializing text file can be modified to read in what is
essentially a patch. Similarly, the LearningBooks
themselves can include classes that temporarily replace
those in the image.

In the next section we describe some of the other
programming tools we have implemented.

4 NEW PROGRAMMING TOOLS
In this section we briefly review the programming tools
we have introduced in the OU LearningWorks
environment. The dominant principle of progressive
disclosure can be characterized by the slogan eventual
empowerment; i.e. by the last chapter of a course
supported by LearningWorks, by the last LearningBook,
a student or trainee should be able to access all parts of
the Smalltalk environment. The modular nature of
LearningBooks has been essential in achieving our goals
in this respect.

Class browsers and viewers
Common Smalltalk class browsers make it difficult to
provide systematic teaching material. In VisualWorks,
for example, the main ‘System browser’ simply exposes
the student all of the classes in the system at once –
many hundreds of them. To find the particular classes
needed in a practical exercise needs a good knowledge
of the ‘search and find’ techniques used by experienced
programmers – and this before even knowing how to
write the simplest expressions. Also, once a class is
found, the novice is presented with a plethora of details
– some of which are not covered until many months into
the course (if at all). To get round these problems the
OU LearningWorks browsers appear in LearningBooks
in increasing degrees of sophistication and complexity
as they are needed. And just the classes needed for that
set of practicals, or which have been, are visible in the
browser – due to the ability to define the vision of a
LearningBook such that a browser can only ‘see’ certain
classes, and within those classes can only see or allow
access to certain parts of the class. Hence Figure 6
shows a browser from early in the course when only the
classes Account, Frog, HoverFrog and Toad have
been formally treated. None of the standard Smalltalk
classes are visible (not even Object) although all can
be used.

The browsers use text styles to indicate what a user can
do with some element of a class. For example, if the
name of a method is in plain style, the browser will
show its code but not allow change; if the name is in
italics only the initial method comments will be show;
only if the names is in can the method be change.

Furthermore, our browsers show just enough detail of a
class to allow students to carry out particular exercises.
For example, Figure 6 shows only instance variables and
instance methods, because at that stage of the these are
all the students know about. Later browsers allow

 8

students to use radio buttons to switch between the
instance and class side of the chosen class in the
browser. Also shown in Figure 6 is a view window. We
did not want users to have to start up different browsers
to read different parts of a class definition
simultaneously, nor did we want novices to become
confused by the possibility of seeing one version of, for
example, a method having changed and recompiled it.
Therefore we have provided the View facility which
essentially inspects a selected item; for example a user
can view a variable and its comment, or a method and
its code, or all of a class.

The later browsers begin to look more and more like
traditional browsers. A conscious design goal was to
provide evolving tools that would provide students with
a good basis for using a commercial toolset later in their
career. For this reason we did not employ the standard
LearningWorks browsers, which are of quite a
distinctive style and use a significantly different user
interface approach using themes [7]. We have followed
the lead of standard LearningWorks by not providing
the traditional controls for programming tools. So we
have provided buttons for accepting (compiling) code,
for copying and pasting, for finding methods and for
adding or removing items from a class definition. Only
later versions of more sophisticated of our browsers
provide the Find button (see Figure 7), Edit button (see
Section 4.2) or button for filing-in or filing-out classes
(not discussed). The Find menu button allows a user to
find references to the selected class, references to a
particular variable (the one currently selected in one of
the scrolling panes), references to methods and
references to the classes that implement particular
methods.

Figure 6

The Add... button produces a version of a dialog box
whose full power is only progressively disclosed, in line
with the facilities of its browser. The fullest version
allows any of the following to be added: a subclass, an
instance variable, an instance method, a class variable, a
class method, and a class-instance variable. A class
addition and all the variable additions result in the user
being prompted to document the item with a comment;
variable commenting is often not provided by standard
tools in programming environments.

Another important facility provided by the View button
is to show the metaclass hierarchy. It’s an unfortunate
aspect of traditional Smalltalk class browsers that when
context is switched from instance variables and methods
to class variables and methods that the hierarchy
remains the same. The context switch is actually from
the class definition to the metaclass definition, which
the hierarchical view should reflect. This user interface
failure contributes significantly to the misunderstanding
by both novices and experienced programmers of class
method inheritance. The problem is characterized as the
where is new defined? syndrome. Mostly because of
limited screen real estate when deep in a hierarchy, we
reluctantly concluded that we must adhere to this
aberrant user interface design but we have provided a
way of viewing the relevant metaclass hierarchy with
the view facility: selecting a class method and clicking
on the View button produces a view of the metaclass
with any classes that define the method in bold. Figure 8
shows the inheritance of new from the metaclass of
Amphibian (i.e. Amphibian class) via the metaclass
of Object (Object class), Class, Class
Description and finally Behavior. Hence it is
absolutely clear that the class and metaclass hierarchies
intersect and the class method new is found as an
instance method of Behavior.

Figure 7

Class editor
Our analysis of how novices comprehend classes in
Smalltalk led us to a requirement that the environment
allow a class be viewed as a whole. This can be done by
selecting a class and clicking the View button. To allow
changes to be made while considering a whole class, we
have provided a class editor – a type of browser in
which a user can examine variables and methods but not
classes. However, a user can change all parts of a class
depending on any restrictions the LearningBook author
may have imposed as a teacher. Typically any such
restrictions are relaxed as the course proceeds. Most
importantly the class editor allows the user to edit class-
instance variables which could previously only be
viewed. This facility is crucial for exploring complex
classes, especially when there may be more state on the
class side.

Figure 8

A user can add a class editor page using an Add page...
menu item from the Page navigation button; if this is
done the user will be asked to supply a valid class to
edit. However the easiest way of using this tool is to use
a familiar class browser later versions of which have an

 9

Edit button. This button creates a class editor tool for
the class selected in the class browser and adds a page to
the current section. For example, the class
StaffMember might be selected and the Edit button
clicked to create an editor page for the class called
Editor on StaffMember, as in Figure 9.

The facilities for changing a class being edited are not
very different from those in an ordinary class browsers;
they include adding and removing variables, methods
and comments. The main difference is that a user can
add, remove, view and comment on class-instance
variables just as you can for class variables or instance
variables. A user cannot look up the class hierarchy as
you can in a class browser but can see the name of the
superclass of the class being edited. Selecting the
superclass name (from near the top left of the page)
activates the Edit button is. One can, therefore, create a
new editor for the superclass by selecting the superclass
and clicking Edit.

Figure 9

Class reporter
The class reporter is another tool which provides the
user with a complete view (a ‘report’) of a class. In
contrast to multi-pane views, this on is a single textual
view (which is more like an annotated file-out).When a
class reporter is initialized, it selects only the classes
defined for the course, all of which are made available
in this LearningBook. A user can, if preferred, look only
at all the classes visible in the LearningBook by clicking
the radio button labelled all visible classes (these are
defined by the vision for the book and section). Figure
10 shows that this has been done and a
VendingMachine class has been selected. This report
can be printed or saved to a text file, or portions can be
copied. Another simple but useful facility is the Find
next text... button which allows a word or a phrase to be
located.

 10

Figure 10

This tool is provided to allow users to read a class as
easily as possible and to encourage them to annotate and
colour its parts for example within a Notes page (either
the one provided or one that they add wherever they
like).

GUI Builder
Our requirement to teach a simple separable user
interface architecture to students from the outset meant
that the code of methods used to move frogs, change
their colour or otherwise alter their state, did not contain
any code concerning graphical appearance, Instead these
methods simply contained self changed expressions.
Students could easily discover the immediate effect of
these messages simply by removing them.

For the notion of separable user interface architectures
to mean anything to novices, they have to be able to
design their own user interfaces using a GUI builder,
and to write all of the model and user interface code
necessary to make these interfaces work. Even for
experienced programmers using the usual VisualWorks
facilities [4] (or any other MVC-type apparatus) could
be very daunting. To this end we devised a simplified
version of MVC called MUI (Model–User interface)
suitable for beginners, and designed and implemented a
simple GUI builder, called OpenGUI, which allows
students to create user interfaces by direct manipulation
of widgets on a drawing canvas, as in Figure 11. For
each input and output widget drawn on the canvas, the
user must specify via a Properties dialog box for the
selected widget the appropriate get and set messages
which a prospective model must include in its protocol.
For input/output fields the type of the message reply of
the get method (number or string) must also be
specified. When the user interface is complete clicking
the Save button prompts the student for an appropriate
class name for the new user interface.

Figure 11

Attaching an instance of this new interface to a suitable
model is achieved through the LearningBook’s Page
menu button. Selecting the Add... option opens up
scrollable list of available user interface classes. Note
that this mechanism is entirely consistent with the way
that a user can add arbitrary pages containing
microworlds or tools to a LearningBook; the same
dialog box is used, with the course radio button
automatically selected. Adding a page is conceptually
the same, just that the biding to a model is automatic.
And again, section state has been vital in designing a
simple and consistent communication mechanism
between applications in the same section. After

 11

selecting the desired user interface class, an instance is
created and inserted as the current page in the
LearningBook. The user is then prompted to select an
appropriate model from the section dictionary, in other
words simply to select a local variable reference. This
simple reference to a suitable model must have
previously been established in the workspace in the
same section. To guarantee that the contract between
user interface and model has been properly established,
the MUI behaviour inherited by the particular user
interface then carries out extensive checks on the
model’s protocol and degrades gracefully if the right
methods are not present in the model, or if they return a
message reply of the wrong type. By detaching a
workspace from the same section, and placing it side by
side with the user interface page, students can view the
effect of sending state changing messages to the model
from a workspace – just as for microworlds. As long as
they have added self changed messages to the
appropriate set methods in the model, the state changes
will of course be reflected in the user interface, thereby
reinforcing the notion of separable user interfaces.
Similarly changing the state of the model from the user
interface can be confirmed by inspecting the model
from the workspace.

At any time the user can choose Test mode from the
Page menu button to associate a new model (from the
section dictionary) with the page’s user interface. This
new model need not be of the same class as the previous
model, but it must understands the required protocol.
Similarly, a model from the section dictionary can be
associated with any number of user interfaces pages
within the same section as the model. All the user
interfaces will update the same model and the model
will update all the user interfaces, provided of course
that the student has added the message expression self
changed to the appropriate setter methods in the model.

OpenGUI is much simpler than a commercial GUI
builder; it supports fewer widgets, and it assumes that a
user interface can only deal with one model at a time.
However, it is conceptually straightforward and simple
for beginners to use. In effect, we have traded off some
loss of flexibility with a tool that allows the unconfident
to experiment concretely with all of the key software
engineering concepts of separable user interface
architectures.

5 CONCLUSION
When we started our project in 1994, our overall aim for
an environment was that it should support learners in a
way that appropriate to the distance mode and, in
particular, that it should provide a seamless progression
from novice to accomplished practitioner. We have
achieved this because of the robustness of the
LearningWorks framework and the way in which we
have exploited LearningBooks as Smalltalk modules:
our clear pedagogy is matched by the design of our
environment. This is particularly evident in how we
support the principle we call progressive disclosure.
What is more we have achieved this on a grand scale,
having attracted over five thousand students to learn

about object technology and basic principles of software
engineering.

During 1998 we deployed four versions of the
programming environment, with each successive release
providing additional improvements by way of bug fixes,
code improvement, and additional behaviour. Two are
planned for 1999. During the time most development
took place we were using VisualWorks 2 from
ObjectShare.. To a large extent the design of OU
LearningWorks was influenced by how we were
permitted to use VisualWorks classes and, as we have
discussed, the size of the Smalltalk image. ObjectShare,
has released VisualWorks 3 which utilizes a parcel
technology that can make image size significantly
smaller. This, and a desire to reconverge with standard
LearningWorks will probably lead to further
development during 1998–9.

Meanwhile, with colleagues not involved in the design
of OU LearningWorks we have begun an objective
study of the environment and how learners use it. The
project is called An Experimental Student Observatory
Project – AESOP [9]. It aims to produce a number of
tools for recording and analyzing student interactions
with the environment. Among the tools already
implemented are a recorder and a replayer which are
deployed within our LearningBooks to further customize
LearningWorks. The recorder automatically and
unobtrusively saves information about significant events
while a learner is interacting with a LearningBook. The
replayer takes a recording and causes the
LearningWorks system to replay the significant events
so that an observer (tutor or researcher) can study the
learner’s actions. A trial is currently underway and
tutors who have volunteered are studying student
interactions and assisting the research team in its
analysis of them. It is likely that a subsequent release of
OU LearningWorks will include these tools so as to
enable all students to record their work so that tutors
could advise them of how they might improve their use
of the programming environment.

ACKNOWLEDGMENTS
We wish to thank all our colleagues on the course team
and to acknowledge their input to many of the ideas we
have reported. A special acknowledgment is due to
colleagues who completed the environment: Martin
Mathieson, Adam Gawronski and Lucia Rapanotti. We
are also indebted to Adele Goldberg, David Leibs and
Steve Abel for their help.

REFERENCES
[1] Woodman, M., Law A., Holland S. and Price, B.,
Pervasiveness of a Programming Paradigm: Questions
Concerning an Object-oriented Approach, Proceedings
CS Education, Dublin, 1994.
[2] Sumner, T. and Taylor, J., The Design of a Personal
Learning Manager, Proceedings CHI ’98, Los Angeles,
1998.
[3] Woodman, M. and Holland, S. From Software User
To Software Author: An Initial Pedagogy For
Introductory Object-Oriented Computing, Proceedings

 12

SIGCSE/SIGCUE 96, Barcelona, Spain, June 1996.
[4] Howard, T., The Smalltalk Developer's Guide to
VisualWorks, SIGS Books 1995
[5] Wirfs-Brock, R., Wilkerson, B. & Wiener, L.
Designing Object-oriented Software, Prentice Hall,
Englewood Cliffs, NJ, 1990.
[6] Cook, S. & Daniels, J., Designing Object Systems,
Prentice Hall International, Hemel Hempstead, 1994.

[7] Goldberg, A. Leibs, D. and Abel, S.,
LearningWorks, CACM, 1997.
[8] Goldberg, A. and Ross, J., Is the Smalltalk-80
System for Children?, Byte, 6, No. 8, August 1981.
[9] Thomas, P., Macgregor M., Martin, M., AESOP –
An Electronic Student Observatory Project, Frontiers in
Education '98, November 4–7, 1998, Tempe, Arizona.

