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Abstract—Drone simulators can provide an abstraction of
different applications of drones and facilitate reasoning about
distinct situations, in order to evaluate the effectiveness of these
applications. In this paper we describe Dragonfly, a simulator
of the behaviours of individual and collection of drones in
various environments, involving random contextual variables and
different environmental settings. Dragonfly supports the use of
several drones in applications and evaluates the satisfaction
of requirements under normal and exceptional situations. It
simulates adaptive behaviours of drones due to exceptional
situations. The adaption of drones is based on the use of wrappers
implemented using aspect-oriented programming.

Index Terms—Drone, Adaptation, Aspects

I. INTRODUCTION

The use of drones to support different types of applica-
tions ranging from search-and-rescue, to goods delivery and
surveillance tasks has become a reality [1], [2]. However, it is
possible to encounter uncertainties and exceptional situations,
not initially predicted, during the use of drone-based applica-
tions. Drones are designed to satisfy pre-defined requirements,
following pre-defined specifications, and are not necessarily
intended to change their behaviour during their execution in
order to support requirements of specific applications, or even
to support new situations that may appear during the execution
of these applications.

Many applications, including drone-based applications, are
developed by the composition of independently created com-
ponents into a single application. These applications allow the
execution of certain functionalities that cannot be achieved by
individual participating components on their own. Therefore,
it is necessary to support emergent behaviours that appear due
to the combination of existing components into new larger
applications, or even due to new requirements or context
changes [3]. The participating components are not necessarily
intended to change their behaviour during execution, nor to
support some requirements of the new applications.

Self-adaptive approaches have been proposed to support
uncertainties and new requirements during the execution of
applications [4]-[8]. However, the evaluation of the appli-
cations during runtime, in real situations, is not always an
easy task. This is the case when dealing with risky situations.
For example, in the case of drone-based applications, it is
necessary to avoid the lost of drones and their respective
delivery goods due to drones landing on water because of low
battery levels; or to avoid drones flying over prohibited areas

because of bad communication with the controller or lost of
visual line-of-sight (VLOS) of the pilots.

In this paper we present Dragonfly, a simulator for self-
adaptive drone behaviours in drone-based applications. Drag-
onfly is an extensible open-source tool that simulates both
normal and adaptive behaviours of drones at runtime. The
tool provides a graphical interface from which the user can
create different environments composed of pre-defined entities
and variables (e.g., drones, river, hospitals, communication
antennas), and can monitor the status of the drones’ resources
and activities. The simulator also evaluates the implementa-
tion of self-adaptive behaviours of drones due to exceptional
situations. The behavioural adaptation is based on the use
of wrappers implemented in aspect-oriented programming.
Dragonfly supports the comparison of the execution of drones
in normal situations and when using the wrappers.

The remainder of the paper is structured as follows. Section
IT discusses related work. Section III gives an overview of the
approach to support self-adaptation of drones, underpinning
the simulator. Section IV presents the Dragonfly simulator,
detailing its architecture and design decisions. Section V
describes an example of using the simulator for a medical
payload drone delivery application. Section VI concludes and
presents future work.

II. RELATED WORK

Simulation approaches evaluate the satisfaction of require-
ments by using a model similar to the real environment, at an
acceptable level of abstraction, depending on the evaluation
purpose. Some approaches have been proposed to support
simulation of drones and drone-based applications. Evaluating
functional requirements of drone surveillance systems requires
the environment to be modelled as close to the real world as
possible, whilst evaluating safety requirements of drone nav-
igation systems, requires the environment to model unlikely
events that could cause collision incidents.

Simulation of functional requirements: Microsoft Air-
Sim'! [9] can simulate the functionality of drones and their
environments using a video game engine called Unreal Engine.
The simulation allows users to immerse in an almost real-
time experience in first-person view (FPV). This simulator has
been used to validate algorithms that implement functionalities

Uhttps://github.com/Microsoft/AirSim



such as Obstacle Detection in navigation [10]. These types of
simulators are good for evaluating functional requirements of
individual drones. However, they do not support the simulation
of multiple drones or the simulation of drones with different
behaviours.

Simulation of safety requirements: Although it is important
to evaluate a swarm of drones to support safety requirements
such as collision avoidance, the use of simulation can provide
assurance of certain functionalities before physical real tests
in the sky. Dronology approach [11] can simulate up to
100 drones for critical safety properties such as separation
of distances. However, most of the properties supported by
Dronology are concerned with the drones, while properties
concerned with the environment (e.g., communication conges-
tion, weather situations) are not taken into account.

Simulation of crosscutting requirements: In general, differ-
ent quality requirements tend to crosscut multiple parts of large
applications [12]. Aspect-oriented programming (AOP) [13]
is one way to simulate drones to evaluate such crosscutting
requirements, but not the only way. For example, dependency
injection (DI) [14] may be applied when it is allowed to change
the design of original system intrusively. AOP can be applied
to both source and binary code, while DI is applicable typically
when the programming languages support reflections [15].

In the following we present Dragonfly that complements
existing simulators for drone-based applications. Dragonfly
supports simulation of a large number of drones with distinct
behaviours. It considers properties of the drones and of the
environments. Moreover, Dragonfly is based on a non-intrusive
approach to support adaptation of drones.

III. OUR APPROACH

Figure 1 presents an overview of the proposed approach
to identify and resolve exceptional situations in drone-based
applications. As shown in the figure, the process is divided into
two phases, namely: (i) wrapper design and implementation
and (ii) runtime adaptation. The former occurs at design time,
while the latter occurs at run time.

The wrapper design and implementation (phase 1) uses
aspect-oriented programming (AOP) [13] to implement wrap-
pers. The use of wrappers supports changes in the behaviour
of a drone in order to satisfy global requirements of an appli-
cation, while keeping the satisfaction of local requirements of
the participating drones.

Wrappers specified in aspect-oriented programming support
the introduction of changes into participating drones without
requiring consent from the designer of the drones. The use
of agent-oriented programming avoids the need to redesign
a drone to satisfy emergent behaviours, as it is the case
when using dependency injection techniques [14] or plugin-
based approaches [16]. On the other hand, the use of aspect-
oriented programming techniques can be risky, since changes
introduced by the use of aspects may violate the original
(local) requirements of the drones. Our work uses aspect-
oriented techniques in a way that guarantees the original

requirements of the drones under normal execution situations
of the application.

In phase 1, the first step consists of identifying exceptional
situations that may happen with a drone with respect to
the application. This can be done by running brainstorming
sessions with the development team of the application, or
using a more systematic approach like scenarios to model both
normal and exceptional behaviours of the drones. Scenarios
can be used to represent both exceptional and normal situations
of a system, and have been widely used for modelling what-if
situations [17]. In general, scenarios assume the use of off-
the-shelf software components, with predefined requirements
and specifications.

The second step in phase 1 consists of identifying moni-
torable context variables. These variables can represent inter-
nal resources of drones (e.g. battery level and geographical
positioning), and environmental features of the application
(e.g. wind situation and temperature).

The identified exceptional situations indicate where changes
in the system should occur. We refer to these locations of
change as joint points. The third step in phase 1 consists of
analysis of exceptional situations as joint points. The identified
joint points are narrowed down to point cuts in the system
(e.g., movement procedures of drones).

The fourth step in phase 1 aims at planning adaptation
actions as advices. Aspect advices handle exceptions by either
invoking existing functionalities of a drone or introducing new
functionalities and situations to be executed. The approach
uses precedence order among wrappers when more than one
wrapper exists for the same exceptional situation.

Finally, after implementing wrappers as aspects, the fifth
step consists of deploying wrappers in the drone’s system so
that the drone becomes a self-adaptive system during runtime.

In the runtime adaptation (phase 2), the system is weaved
with wrappers and the respective functionalities are executed.
This phase is based on the MAPE-K loop approach [18]. In
this phase, monitors are used to verify contextual variables
based on data from the environment (e.g., wind situation) or
from sensors (e.g., Global Positioning Systems, accelerometer,
battery level). The approach analyses exceptional situations by
executing the point cuts defined in phase 1. When exceptional
situations are satisfied, the respective wrappers for those situa-
tions are invoked and exceptional functionalities implemented
by the aspects are executed.

IV. THE Dragonfly TOOL

Dragonfly simulator is an open source and extensible Java
tool available at GitHub 2. It supports creating environments
for simulating the behaviour of a set of drones in drone-based
applications. In this section, we describe the interface and
architecture of Dragonfly. We also describe how a simulation
can be executed and how the tool can be extended.

Zhttps://github.com/DragonflyDrone/Dragonfly
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Fig. 1. Overview of the drone behaviour adaptation approach

A. Interface

Figure 2 shows the interface of the Dragonfly tool. As shown
in the figure, the interface is divided into four main panels,
namely: graphical elements panel (1), drone flight environment
panel (2), drone properties panel (3), and trace log panel (4).
In Figure 2 each panel is expanded for better visualisation.

The graphical element panel (1) provides a set of graphical
elements that can be used to represent different environments
of various applications. The current version provides elements
to represent rivers, hospitals, communication antennas, and
drones. Other elements can be easily added to the tool and
is part of a future extension of Dragonfly.

The user can insert the graphical elements in the drone flight
environment panel (2), which is used to create the environment
in which the tool will simulate drones in an application. This
panel consists of a grid layout in which each cell can contain
one or more graphical elements.

The example in Figure 2 illustrates an environment with
two hospitals: one on the far left and the other one on the
far right, representing origin an destination of a flight. The
pathway of this scenario consists of a river. The environment
also has two communication antennas to simulate the emission
of signals that may interfere with the journey of the drones.
There are four drones flying in the environment: one drone
(a) with its original specifications (i.e., without having any
wrapper), and three drones ((b), (c), and (d)) weaved with
wrappers representing different adaptive behaviours in case of
exceptional situations during their respective journeys.

The drone property panel (3) allows setting of initial values
of some of the resources of the participating drones. It also
associates each participating drone with one or more wrappers
representing behaviour adaptation functionalities, in case of
exceptional situations. Examples of initial resource values are
initial battery level and battery consumption rate.

The trace log panel (4) shows the current status and ac-
tivities of each participating drone (identified by a number),
during runtime simulation. An example of a current status
is concerned with a drone’s battery level, while examples of

activities are concerned with take off, fly, move aside, and
land.

B. Architecture

The architecture of Dragonfly is structured following the
Model-View-Controller (MVC) architectural pattern [19]. As
shown in Figure 3 the architecture is composed of three layers,
namely: View, Controller, and Model layers.

The View layer contains classes representing the graphi-
cal elements and the environment itself. For each graphical
element, it is necessary to create a view class (illustrated in
Figure 3 by the generic class EntityView). A view class im-
plements the interface SelectableView, which declares methods
for inserting visual effects when an element is (or not) selected
in the environment.

A particular case is of the graphical element representing
a drone. In this case, the view class is abstracted and should
be implemented by each specific type of drone available in
the environment. For example, it is possible to have simple
drones, which provide users with simple features such as
taking off, moving, and landing; or more sophisticated ones
that implement actions such as “return to home” or “follow
me”. In Figure 3 we assume one type of drone and represent
this by class DroneViewImpl).

The class CellView contains shared functionalities for each
cell of the grid of the drone flight environment. This class is
associated with class EnvironmentView.

The Controller layer contains classes that associate events
related to each graphical element in the environment with
their correspondent model classes. Each element has its own
controller class. The drone is the only element that has two
controller classes: one for handling generated events when
the drone is controlled by a user representing a pilot via a
keyboard (DroneKeyboardController), and one for handling
generated events when the drone is in automatic pilot mode
(DroneAutomaticController).

The class MainController identifies all possible events in the
environment and transfers the events to the correct controller
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Fig. 2. Screenshot of the Dragonfly simulation tool

class that can handle them. In addition, the class Logger-
Controller is responsible for printing the trace logs execution
during the drone flight in the trace log panel.

The Model layer contains entity classes for each graphical
element (illustrated by the generic class Entity). These classes
implement the behaviour of elements. For instance, object
Drone can execute several activities (e.g., take off, fly, and
land), while object Antenna has only one associated activity
(signal emission).

C. Execution of flight simulation

When using the simulator, the first step consists of con-
structing the environment of an application. In this case, the
user inserts graphical elements by selecting an element from
the graphical element panel (Figure 2 (1)) and choosing a
specific position in the grid of the drone flight environment
(Figure 2 (2)), where the element should be placed.

The user needs to configure the following properties for
each drone inserted in the environment: battery consumption
rate per block and per second, initial battery level, and target
element (i.e., the place to where the drone will fly). In addi-
tion, he/she can associate a drone with an available wrapper.
Afterwards, the user chooses the mode that the drone should
fly. In the case of automatic pilot mode, when the simulation
starts, the drone will execute the shortest path to reach the
target destination. In the case of user pilot mode, the user will
manoeuvre the drone by using the keyboard. The commands

to manoeuvre a drone are available at the Dragonfly’s GitHub
repository.

The final step consists of starting the simulation by click-
ing the “Start” button, which triggers the execution of each
inserted drone simultaneously. The currently implementation
of the tool supports up to 400 drones flying at the same time,
with and without wrappers. If the user has chosen to pilot the
drone manually, the available commands to be executed are:
turn on/off the drone, take off, move (up, right, down, and
left), and land.

D. Tool extension flow

The current version of Dragonfly is extensible in terms of
new graphical elements to represent other environment settings
and in terms of new wrappers to represent new exceptional
situations. For the creation of new graphical elements, it is
necessary to create one class in each layer of the architecture
for each new element, following the structure described in
Section IV-B. It is also possible to associates an image with the
new element in its correspondent view class. For the creation
of new wrappers, it is possible to implement the behaviour
represented by the wrapper in aspect-oriented programming
to represent new exceptional situations, and associate drones
with the new wrappers.

V. AN EXAMPLE

In order to illustrate the Dragonfly simulator, and its capa-
bility to simulate multiple drones under emergent environment
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situations, consider an example of a medical payload drone
delivery application (organs or blood bags) between two
hospitals.

This example has been chosen since it illustrates safety
concerns involving multiple drones, with different battery
levels, to deliver medical payload along a route across a river.
The example also shows a complex environment, with different
types of elements such as river and communication antennas,
and different wind conditions.

Assume two global requirements for the example as:

¢ GRI1: the drone must take a payload organ from the
sender to the receiver hospital.

e GR2: in the case in which it is not possible to deliver
the payload, the drone should not lose it (e.g., lost of the
payload by landing on water).

Figure 4 depicts an overview of scenarios representing pos-
sible behaviours of a drone, and when the various behaviours
are executed depending on sequence of actions and environ-
ment conditions. In Figure 4, the functionalities of normal
specifications of a drone are represented by full rectangles
and the transitions by full arrows, while the representation of
exceptional situations are represented by dashed rectangles and
dashed transitions.

In the scenario, the pilot can control the drone to take off
(Take Off). During a flight, a drone periodically checks the
status (Check Status) of its internal devices and sensors such
as battery level and distance from the destination, represented
by b and dft, respectively, in the guard conditions over the
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Fig. 4. Drone example scenario

transitions. For the example, if the battery level is above the
expected threshold of § = 10%, and the drone is not yet in its
destination, the pilot can keep manoeuvring the drone (Flying).

In a normal behaviour, when a drone arrives at its des-
tination, the pilot sends a landing command to the drone
(Landing), that is acknowledged when the drone lands on the
ground, and after landing the drone shuts down (Shut Down). If
the battery is below the expected threshold, the drone performs
a safe landing (Safe Landing) in accordance to its specification,
and than it shuts down.

The “return to home” functionality (Return to Home) is
executed whenever a drone bypasses a bad connection area
(for instance, near communication antennas) and loses its
connection with the pilot. This is a common safety procedure
currently found in most existing drones. As shown in Figure 4,
Return to Home happens when the contextual variable bc (bad
connection) is true. When the drone arrives at the depart point
(contextual variable ds equals to 0), it lands normally.

Wrapper Design and Implementation: This phase initiates
with the identification of exceptional situations for the medical
payload drone delivery application, which are represented as
dashed boxes in Figure 4. In the example, the exceptional
situations are added in interception points represented by
circles in the figure. The exceptional situations state that if the
distance to the expected destination is less than 2km and the
wind is strong (condition strongWind==true), then the pilot
can keep the drone flying (Keep Flying), even in a low-level
battery situation, and land afterwards. In this case, the drone
is able to complete its overall goal of delivering the organ
payload successfully (global requirements GR1, above). In the
case in which the battery level is low, the drone is flying over
the river (condition onWater==true), but the drone is more
than 2km away or the wind is not strong, then the action is to
move the drone aside (Move Aside) in order to land it safely
on the ground and, therefore, satisfy global requirement GR2.

The exceptional situation for the automatic return to home



functionality consists of allowing the drone to glide while
waiting for the connection to return and, therefore, maximizing
the chances of the payload delivery. The exceptional behaviour
is represented by Glide, which is performed when a bad
connection is detected, the distance from the target hospital
(contextual variable dr) is less than the distance from the
source hospital, and the battery level is greater than 10%.

The next step consists of identifying monitorable context
variables for analysing global requirements. In the payload
organ delivery example, the monitorable context variables are:
battery level, distance to destination, position of drone in
relation to water, and wind condition.

The exceptional situations are mapped to corresponding
concepts in the aspect-oriented paradigm [13]. The main goal
is to analyse exceptional conditions and identify when they
are triggered in order to associate them with joint points
when mapping into aspect-oriented technique. The interception
points in Figure 4 represent the point in which exceptional
situations should be analysed and they are mapped to joint
points.

For instance, considering the medical payload drone deliv-
ery example, the only interception point is the one between
Check Status and Safe Landing, when it is checked whether
the battery level has reached 10%. Subsequently, we have to
define point cuts in which the code will be intercepted. For
our example, we defined that method safeLanding() needs to
be intercepted when it is called.

The code in Figure 5 shows an excerpt of the DroneAspect.
We defined point cut checkExceptionalConditions() that inter-
cepts the call of the drone’s original safeLanding() method
(when the battery level reaches 10%).

The code shows two kinds of syntactic advices: before and
around. The before clause (Line 6) is executed when the drone
is over the water, and either the distance to the target hospital
is no less than 2km or the wind is not strong (Lines 7-9). In
this case, the drone executes a moveAside() method (Line 10),
which moves the drone to fly over the ground and to execute
the original safeLanding() method.

The around clause (Line 13) is executed when the drone is
no more than 2km away from the destination, is flying over
the water, and the wind is strong (Lines 14-16). Unlike the
previous before() clause, new behaviour manoeuvre() (Line
17) replaces the safeLanding() method, which is no longer
executed. When the drone reached the destination it performs
the original Landing() method.

For the medical payload drone delivery example, we have
created three wrappers W1, W2, W3, specified as follows.
Wrapper W1 addresses the safe landing procedure including
exceptional situations Move Aside and Keep Flying. Wrapper
W2 addresses the bad connection situation by forcing the
drone to glide for a while instead of automatically returning
to home. Wrapper W3 implements the above two exceptional
conditions at the same time.

Runtime Adaptation: This phase executes the weaved wrap-
pers (W1, W2, and W3) due to exceptional situations. The

public aspect DroneAspect ({

pointcut checkExceptionalConditions () :
call (void safelanding());

void before(): checkExceptionalConditions () {
if (isOverWater ()

&& (getDistanceTargetHospital () >=2
| !lisStrongWind()))

10 getDrone () .moveAside () ;
11 }
12
13 void around(): checkExceptionalConditions () {
14 if (isOverWater ()
15 && getDistanceTargetHospital () <=2
16 && isStrongWind())
17 getDrone () .manoeuvre () ;

Fig. 5. Example of DroneAspect advice

steps of this phase are derived from the activities of the MAPE-
K [18] control loop.

During their executions, the drones monitor (M) their
respective contextual variables by either checking internal
components and resource levels, or by receiving environmen-
tal data provided by sensors. The contextual information is
analysed (A) and, when applicable, the respective wrappers
intercept the execution of the system in the defined point
cuts. In the example, this happens after the interception of
checkExceptionalConditions() point cut. In the planning (P)
and execution (E) activities of the MAPE-K loop, when
an exceptional situation is satisfied, the wrapper applies the
behaviour adaptation by executing the exceptional scenario
according to the rules implemented in the advices. The process
continues while the execution of the application is not finished.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a simulator tool called Dragonfly
to support the simulation of drones and drone-based applica-
tions in distinct environments. Dragonfly supports the simula-
tion of up to 400 drones at the same time, and the evaluation
of these drones during normal and exceptional situations. The
simulator provides ways to specify distinct environments and
different ways of dealing with exceptional situations repre-
sented as wrappers, expressed in aspect-oriented programming.
The wrappers implement adapted behaviours of the drones and
support runtime adaptation. An example of a medical payload
drone delivery application is described to illustrate the use of
the simulator.

Currently, we are extending the simulator to support the
representation of new elements (entities and conditions), and
implementing an editor to help developers identify exceptional
situations and create wrappers.
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