
Open Research Online
The Open University’s repository of research publications
and other research outputs

Pervasiveness of a Programming Paradigm: Questions
Concerning an Object-oriented Approach
Conference or Workshop Item
How to cite:

Woodman, Mark; Holland, Simon and Price, Blaine Pervasiveness of a Programming Paradigm: Questions
Concerning an Object-oriented Approach. In: Proceedings of the Second All Ireland Conference on the Teaching of
Computing.

For guidance on citations see FAQs.

c© 1994 The Authors

Version: Accepted Manuscript

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Online

https://core.ac.uk/display/195353819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Woodman, Holland and Price 1 Printed on December 12, 2000 ar 9:14 PM

Pervasiveness of a Programming Paradigm: Questions
Concerning an Object-oriented Approach

MARK WOODMAN, SIMON HOLLAND,
BLAINE PRICE
Computing Department,
Faculty of Mathematics and Computing,
The Open University, Milton Keynes

Email ids: m.woodman@open.ac.uk, s.holland@open.ac.uk,
b.a.price@open.ac.uk

Abstract

This paper outlines the way in which a radical syllabus is being designed for the new
introductory computing course being offered by the Open University from 1997. It
describes how a decision to teach object-oriented programming has resulted in the
associated concepts and paradigm pervading the syllabus. The result is a novel ped-
agogy by which students take considerable time to begin conventional programming.
The context for this innovatory approach is a very large student population (3,500 per
year), a long lead time for developing courses, and a need to remain current six or
seven years after conception. The background and the emerging syllabus are both
summarized and questions concerning the teaching of the object-oriented approach are
raised.

This paper appeared as

Woodman, W., Holland, S., and Price, B. (1994) Pervasiveness of a Programming
Paradigm. Questions concerning an Object-Oriented Approach. In Proceedings of the
Second All Ireland Conference on the Teaching of Computing. CTI Centre for
Computing, Dublin City University, Dublin 5-7 Sept.

Woodman, Holland and Price 2 Printed on December 12, 2000 ar 9:14 PM

Pervasiveness of a Programming
Paradigm: Questions Concerning an
Object-oriented Approach

MARK WOODMAN, SIMON HOLLAND,
BLAINE PRICE
Computing Department,
Faculty of Mathematics and Computing,
The Open University, Milton Keynes

Email ids: m.woodman@open.ac.uk,
s.holland@open.ac.uk, b.a.price@open.ac.uk

Abstract

This paper outlines the way in which a radical syllabus is being designed
for the new introductory computing course being offered by the Open
University from 1997. It describes how a decision to teach object-oriented
programming has resulted in the associated concepts and paradigm
pervading the syllabus. The result is a novel pedagogy by which students
take considerable time to begin conventional programming. The context
for this innovatory approach is a very large student population (3,500 per
year), a long lead time for developing courses, and a need to remain cur-
rent six or seven years after conception. The background and the emerging
syllabus are both summarized and questions concerning the teaching of
the object-oriented approach are raised.

1 Computing at the OU

The Open University (OU) offers its programmes of study in the U.K., the
Republic of Ireland, and throughout continental Europe—with approxi-
mately 200,000 students studying with the university each year. The degree

Woodman, Holland and Price 3 Printed on December 12, 2000 ar 9:14 PM

programme is modular and there are no named degrees. Very few
constraints are imposed on how students may order or combine courses.
This means that an introductory course may be taken by students wishing
to specialise in computing, or by those who plan a much broader degree.
Of the 2,500 students per year who complete the current introductory
computing course nearly half will have chosen it for vocational reasons;
typically they have studied a foundation course in technology or mathe-
matics prior to the computing course. Predominantly they are male, and
the number of female students taking the course is dropping. The new
course must satisfy both students wishing to develop a computing profile
and those who take it as a minor component in a general degree. It must
also attempt to attract more female students and those students who
might consider the course without either the mathematics or technology
foundation courses. Anecdotal evidence indicates that female students
find the course too male-biased and feel unusually reticent in tutorial
groups because of the professional programming experience of male stu-
dents (the average age of students is 34 and most are in employment).

Computing is studied at the OU in much the same way as other courses:
students use a combination of specially written distance learning texts in
combination with broadcast radio and television programmes designed for
the course. In addition, students spend considerable time programming
using personal computers. The new introductory course is worth 60 CAT
points and will be need some thirty text units, four audio cassette
programmes and sixteen television programmes; software development
requires approximately ten person-years of effort. Therefore, a course team
of nearly twenty academics and numerous programmers, designers,
editors, BBC producers and project management staff need three years to
produce all the material to the high standards of quality demanded by the
institution and its students.

The current introductory computing course is extremely successful with
2,500 students per year finishing the course; but is now showing its age
with an out-of-date programming environment, nothing in the way of
modern HCI, and old-fashioned television programmes. It is a classical
computer science course; it concentrates on data structures, programming
and top-down design, but includes units on software engineering, database
systems, structured analysis and design, and the social impact of comput-
ing. What distinguishes the current course from those at other institu-
tions in the style of presentation and tutorial support that are particular to
the distance mode. The current course’s message about computing is, im-

Woodman, Holland and Price 4 Printed on December 12, 2000 ar 9:14 PM

plicitly, that it is about programming and about algorithms. In common
with many similar courses it leads students to believe that a single design
approach always leads to good solutions and that design is straightforward;
i.e. the statement of some ‘problem’ can be refined stepwise, and without
review or backtracking, towards an executable ‘solution.’

OU students are relatively isolated from their peers and tutors, and this
has a major impact on the syllabus and pedagogy for a particular course.
Students may not have easy access to their colleagues and so often lack the
informal support network which conventional students enjoy.
Consequently, there is a high drop-out rate early in courses when students
often become disillusioned by the difficulty of new ideas or by the general
ethos of the course which may not be what they expected. It is therefore
imperative to ensure that students ‘survive’ the first part of a course in
which a new concepts are being taught. The first assignment in continu-
ous assessment (which counts for 50% of the final course score) is a water-
shed in this context. Moreover, internal studies have provided evidence
that students are directed by the content of their continuous assessment
questions, to the extent that they spend much longer doing them than
course teams advise. Students also use assignment to determine what to
study, to pace themselves and to assess their own progress.

The current combination of students using goal-directed learning and aca-
demics teaching a goal-oriented design and programming method appears
to work against the development of strong analytical and abstraction skills.
Even students who have previous professional programming experience
do not properly deepen their knowledge sufficiently for more advanced
courses on formal methods, database systems, etc.

Given the factors above, the new course needs to have at least the
following characteristics:

1. It must give high priority to analysis and abstraction.

2. The design method must exploit notions of encapsulation and
abstraction and must encourage students to reflect on choices they
have to make.

3. Early weeks of work must simultaneously be challenging, be
encouraging and hold the interest of students.

Woodman, Holland and Price 5 Printed on December 12, 2000 ar 9:14 PM

4. Novelty of content and delivery should be used to ensure course
longevity and to establish a ‘level playing field’ for all students.

5. The programming language must at very least support abstract data
types and must facilitate programming modern graphical user
interfaces.

6. Whatever software environments students might need must
exhibit the concepts taught and must provide support not only for
the programming language chose but for visualisation and
comprehension tools.

After much discussion the course team has concluded that object-oriented
technology is most likely to be the best basis for meeting most of the above
requirements. However, this conclusion has not been whole-heartedly
endorsed by all of the team for a variety of reasons, one of which is the
degree to which any object-oriented approach will force us to adopt the
whole object-oriented ‘paradigm’—the whole culture and rhetoric of
object-oriented development. (Cook (1994) analyses a variety of cases and
discusses the appropriateness of the object-oriented paradigm.) Even those
team members who promote the importance of object-oriented concepts
remain dubious about which ideas are sufficiently mature to be relied
upon and to be adapted for introductory programming.

In the sections which follow we explore how our decision to adopt an ob-
ject-oriented approach has resulted in the related concepts dominating our
syllabus considerations and has led us to a different emphasis than is
usual for the object-oriented paradigm. We first describe the basic
principles of the new course—how, in particular, we have diverged from
the classical approach. Second we record how an object-oriented syllabus
evolved and report our views that it must be present in an introductory
course. Third, we discuss three possible pedagogical strategies for the
object-oriented paradigm. Finally we outline requirements for computer-
based support for object-oriented programming. We demonstrate by this
reflection on our processes that a decision to adopt an object-oriented
paradigm has pervaded the design of the new syllabus.

Woodman, Holland and Price 6 Printed on December 12, 2000 ar 9:14 PM

2 A New Emphasis for Introductory Computing

For the new course we are taking a different stance from the data
‘structures + algorithms’ philosophy of the current introductory course,
but have not yet finally decided on a suitable title that encapsulates the
new philosophy (the course is known by its code, M206). The main mes-
sage about computing in the new course is that software has structure and
is constructed from components. The course aims to deliver the following
to students:

1. knowledge of computing concepts and a vocabulary for discussing
them,

2. analysis and programming skills,

3. a framework for the theory and discipline of computing.

The primary outcome of study for a student will be her ability to recognize
what a computing artefact is—in terms of its use and construction. Having
completed the course a student should be able to analyse a piece of
software, to understand its use and usage, and to understand from that
analysis something about the design choices made. This understanding
will necessarily come from experience designing and implementing
programs. Before gaining this experience, we want students to have an
adequate and accurate language for describing software.

This theme of language—the language of software—comprises a rich vo-
cabulary for describing and analysing software and provides a ‘rhythm’ for
the course. The theme is introduced in early and can be re-visited at inter-
vals through the course as more sophisticated understanding is devel-
oped, e.g. starting from a user’s view (what does application X do?), mov-
ing to a constructor’s view (how is application X structured), then becom-
ing more technically sophisticated and incorporating more and more im-
plications for software design (does X do what is does effectively or can a
better design be developed?).

The course is not primarily intended to train programmers or even to
teach programming per se, but to teach that programming is the building
of structured artefacts in order to accomplish a goal or serve some purpose,
like solving a problem. This perspective will underpin the learning of
software development skills for those who will eventually become
programmers. The course intends to convey a view of computing and

Woodman, Holland and Price 7 Printed on December 12, 2000 ar 9:14 PM

software development at all scales—from what may be termed
programming in the small to programming in the large—even though
students cannot be expected to originate much code of truly large
programs. However, we do fully expect them to be able to construct large
programs from library components supplied with a programming system
or by the course team.

Thus the course will teach people about computing in part through
programming. However the course will also teach people about
computing by having them read, analyse, de-bug, modify, and test
programs. Most importantly, students will be asked to reflect on their
work and the processes they have used. Hence the course will foster a
broad understanding of practical computing and will choose particular
concepts to study in depth—for example, notions of structure, abstraction,
and component-based construction.

The theme of construction from components provides an approach to
programming at all scales, which can be used to introduce different styles
if reasoning and construction, for example presenting procedural and
object-oriented techniques as different component construction
‘paradigms.’ (We outline how these are to be combined later.)

In large measure, therefore, the new course is defined by the combination,
of its themes and the skills it sets out to develop:

• abstraction;

• the language of software;

• software has structure;

• software development as a rational engineering process;

• software has dynamic, predictable behaviour but this is defined by
static text or graphics;

• software uses a multiplicity of views;

• components are significant software structures;

• analytical skills;

Woodman, Holland and Price 8 Printed on December 12, 2000 ar 9:14 PM

• debugging;

• reading programs;

• reasoning about programs and program behaviour.

We next describe how various object-oriented approaches were considered
and some of the constraints that required a compromise.

3 The Development of an Object-oriented
Strategy

The development of any strategy has as much to do with the interaction of
the people involved (and the effectiveness of an individual argument on
a given day) as it has to do with any objective view of its value. In the case
of an OU course team, some twenty academics may bring forward
proposals with strong scholarly reasons for adopting one pedagogical
approach or another. While strong arguments in favour of teaching
object-oriented programming in an introductory course have been
published there is no evidence that the ‘face-to-face’ techniques used at, for
example, Carleton University (Lalonde and Pugh, 1990) can be easily
translated to the distance mode. A number of factors need to be
addressed—both those peculiar to the Open University and general to
computing academia. We sketch two of these below and briefly describe
how we sought a compromise.

3.1 The Need for Longevity

The significant investment needed when producing a course demanding
the resources mentioned earlier means that OU courses must have a life
of between four and six years. M206 will not be reviewed for replacement
until 2001; this means that it must be for current for at least six or seven
years after its conception. Hence we have had to examine what changes are
in train in conventional universities, what students want, what changes
are perceptible in he computing industry and how various experts are
expecting software development to evolve in the next decade. Much
crystal ball gazing is therefore needed.

Woodman, Holland and Price 9 Printed on December 12, 2000 ar 9:14 PM

Put crudely, in terms of programming languages, what we see in
conventional universities is a relatively slow movement towards object-
oriented programming. For the most part this means students beginning
to program abstract data types, with the likes of C++ (e.g. Lee and Stroud,
1994), and moving on to more advanced object concepts later. We have
become convinced that the trend toward teaching object-oriented concepts
is a reflection of the increase if their importance to the industry, where the
increase in the use of object technology is evident.

However, the medium-to-long term importance of emerging technologies
is of greater importance to our planning. The continuing industry
preoccupation with maintenance and reverse engineering and recent
reports of development with reuse yielding significant increases in
productivity and quality has led us to consider a component-based
perspective to be extremely important. While components are not
synonymous with objects, the latter are effective realisations of the
component concept.

For the above reasons, allowing object-oriented concepts to pervade the
course does seem to assist our particular problems of longevity.

3.2 Attitudes to Object Technology

Attitudes on the importance of object technology can be conveniently
approximated by three simplified positions:

(a) It’s another fad and will pass,

(b) It’s just another modularity technique that can be adopted
piecemeal where appropriate

(c) It’s a true paradigm shift, and will eventually pervade most of
computing (Cook, 1994).

It is not the aim of this paper to argue for or against any of these positions;
for some of the arguments see Udell, 1994; Kay, 1993; Love, 1993; Pope,
1994, and Cook 1994. However, it is important to accept the existence of the
different positions. (Note that positions 2 and 3 may be entirely
compatible. Holders of a new belief often have to start off being critical of
their opposition until their belief becomes established, at which point they
can afford to be generous.)

Woodman, Holland and Price 10 Printed on December 12, 2000 ar 9:14 PM

Many Computer Science departments need not confront such problems
yet, since they can keep an eye on developments and adapt their teaching a
little year by year, (assuming that patterns of mutually dependent courses
do not render any necessary change impractical). Gradual change is not an
option for us, for reasons discussed earlier, since the course must be
written very soon based on decisions taken now, to run more or less
unchanged from 1997 to 2001–3. Hence we have been forced to explore the
pedagogic implications of possible positions on the object paradigm now.

The course team did not collectively agree on any of the three positions
noted above, but fortunately, were easily able to agree that object-
orientedness should be a central element of the teaching strategy, and that
object-oriented concepts should be taught well and clearly. However,
having made this decision, the course team was split between apparently
incompatible teaching strategies on the best way to achieve this aim.

3.3 Seeking a compromise

An incremental and evolutionary approach was taken to developing our
ideas. When it became clear that there was not a consenus on a whole-
hearted concentration on object-oriented programming (for example
teaching Smalltalk from the outset) we investigated three strategies for
meeting the requirements stated above. These strategies concentrated on
the beginning of the course where motivation and retention is so crucial.
One strategy produced ideas on creating software artefacts without
conventional text programming—using recording and scripting systems
for graphical user interfaces. Another argued that concentrating early on
near-expert use of a programming environment, and understanding
conditional and repetitive structures was essential for the type of course
we wanted. The third tried to introduce object-oriented ideas from the
beginning using a suitable object-oriented language (not C++) but
spending considerable time exploring and analysing carefully constructed
object-oriented systems before becoming involved.

While none of these strategies, which are described in the next section,
fully satisfied our course team, they did expose strong support for a
software component orientation in the course and confirmed the
commitment of all discussants to developing students’ analysis skills and
to improving their ability to abstract. Furthermore, the idea of not
‘programming’ first (i.e. avoiding a textual language) was thought to be

Woodman, Holland and Price 11 Printed on December 12, 2000 ar 9:14 PM

worth taking further and now forms an essential part of the course team’s
pedagogy.

The incremental approach has proved beneficial, not just because it has
allowed sufficient time for reflection and informal debate. It has allowed
us to extrapolate from certain ‘obvious’ approaches which we found to be
flawed. For example, it was estimated that it would take over half the
course study time to proceed from the traditional starting point of
language learning (expressions and statements) to using object-oriented
facilities inheritance and polymorphism; this appears to be consistent with
the decision of colleagues in other institutions to postpone these ideas to
later courses; see Lee and Stroud, 1994.

Next we review the alternatives considered so as to show how object-
orientedness pervades a syllabus whatever strategy is considered desirable.

4 Three Pedagogical Strategies for Objects

We will now review three strategies which are appropriate to the
requirements given earlier; we examine some of the advantages and
limitations of each, their apparent incompatibilities, and the reasons why
they finally all had to be rejected in favour of a newly synthesised
approach.

Note that several points are related to the types of interfaces and
environments that students will be used to prior to embarking on the
course and during the course; we believe that students must be able to
write programs whose interfaces are similar to those that they are used to.

A significant difficulty is the development of an explicit strategy that
students can employ to derive designs from natural language or graphical
specifications. This problem is related to the programming language
chosen; a pure object-oriented language would allow a straightforward
conceptual model of computation to be used; a hybrid language would
require that the imperative–store model coexist with an object-oriented
model. A further pedagogic consideration is the use of algorithm design.
Traditional approaches use algorithm design early in order to develop
non-trivial applications. A programming method, language and
environment that facilitates early development of non-trivial applications
is likely to change, or even diminish, the role of algorithm design.

Woodman, Holland and Price 12 Printed on December 12, 2000 ar 9:14 PM

4.1 Pedagogic Strategy 1: A ‘Pure objects’ Approach

This is in some senses the simplest pedagogical strategy of the three. It may
be seen as growing partly out of the classic ‘Boxes’ approach pioneered by
Adele Goldberg and Alan Kay (1977). The key points of this approach are as
follows:

1 Treat objects and messages as fundamental.

2 Use a pure object-oriented language (such as Smalltalk).

3 Hide the full power of a programming environment initially and
work in a simplified but progressively disclosed teaching
environment (e.g. only allow access to a few classes).

4 Introduce the object model and object terminology as the basic way
of describing computation.

5 Teach decomposition of a computation into objects as fundamental.

We will note the initially perceived advantages and disadvantages for
each of the pedagogic strategies. Kay (1993) argues that these advantages are
no accident. His argument is that when decomposing a computation (or
anything else), it is better from if the decomposition is recursive—from
the points of view of mathematics, design, aesthetics, systems theory and
engineering principles. Kay maintains that decomposing a computation
into inert data and separate processing algorithm immediately violates
this principle since neither component can compute anything alone. This
violation leads to complexity and problems in conventional
methodologies when decomposing these components further
independently, which after all clearly affect each other. On the other hand,
decomposing a computation into lots of ‘little’ active computational
units—objects—meets the requirement for good recursive decomposition.

Perceived advantages of an ‘objects first’ approach

• Conceptual simplicity: a very small number of concepts are required
compared with a traditional approach (but see Jones, 1994 for a
contrasting view).

Woodman, Holland and Price 13 Printed on December 12, 2000 ar 9:14 PM

• Intellectual power: the traditional imperative–store approach may
be viewed as a conceptually simple subset of a pure object oriented
approach—the reverse is not true.

• Concrete support for abstraction: this approach is excellent for
teaching Abstract Data types and good principles of
modularity—since ADTs are concretely supported.

• Engineering merits : excellent support is provided for good software
engineering and modularity.

• Student motivation : this approach has good re-use properties allow
students to build substantial programs very early.

• Good environments: excellent and easy-to-alter graphical
environments are available (at least for Smalltalk).

• Avoiding bad habits: avoidance of ‘C++ syndrome’ where students
write ‘object-oriented programs’ with just one class.

One interesting claimed advantage is that programmers who learn a
traditional imperative–store approach first appear to have more have
difficulty absorbing an object-oriented outlook than complete beginners.
The converse does not appear to be the case.

Perceived disadvantages of an ‘objects first’ approach

• general distrust of extreme rapid change;

• perceived lack of teaching resources;

• belief that objects as a concept are in some way too abstract;

• scarcity of experience in universities of teaching objects first (though
see Lalonde and Pugh, 1990);

• fears of effects on other courses;

• fears about the need to make radical modifications to the
programming environment;

Woodman, Holland and Price 14 Printed on December 12, 2000 ar 9:14 PM

• dislike of semantic aspects of object-oriented languages (such as the
semantics of expressions in Smalltalk).

4.2 Pedagogic Strategy 2: An ‘Objects late’ approach

The second pedagogical strategy is more complex, but much easier to
describe because of its strong traditional (structured programming)
component. The essence of this approach is as follows.

1 Use a hybrid language, such as Ada 9X, C++, Oberon-2, etc.

2 Teach traditionally, working up from expressions and statement to
the concept of an abstract data type (ADT).

3 Finally introduce the concept of object as a development of the
ADT.

Perceived advantages of the ‘objects late’ approach

• builds on existing staff strengths;

• safe, evolutionary change.

Perceived disadvantages of the ‘objects late’ approach

Conceptually this approach is potentially complex for the beginning
student: beginners must be exposed in one course to a series of diverse,
subtly differing, and partially redundant concepts. For example:

• both reference and value semantics for assignment;

• both basic data types and objects (and their type incompatibilities);

• both polymorphism and overloading;

• in many candidate languages the use of pointers for references is too
apparent (and explicit dereferencing is needed);

• in many candidate languages, no explicit garbage collection is
provided.

Woodman, Holland and Price 15 Printed on December 12, 2000 ar 9:14 PM

In general, having a virtual machine that must function both with, and
entirely without objects leads to apparent inconsistencies, redundancies
and overloading of notation. Furthermore, the concept of abstract data
types becomes difficult and abstruse, rather than immediate and concrete.
In short, even though a hybrid language be a practical choice, students are
likely to be confused by the time they reach the object concepts, violating
the decision to teach objects well.

4.3 Pedagogic Strategy 3: A ‘Programming last’ approach

This was the third and most radical strategy which was explored.
Consequently we give some extra detail.

Traditionally, introductory computing courses have begun with
programming: they introduce the student to the syntax of some simple
statements in the chosen programming language (such as a “print”
statement) and then they show the student how to execute the program
with some simple data (such as “print 'hello, world'”). The students
then add more syntax to their vocabulary and progress to using iteration
and selection in other simple programs. Students with little background in
computing will fail to see the practical value of tiny programs that print
their name and the number of days until their next birthday while
students who have programmed before will be bored with such tasks.

This strategy is to teach computing by beginning without teaching
traditional low-level programming. Instead, start by formalizing the
language of software:

1 We begin by working with everyday software which the student
will already be familiar with: a word processor, a spreadsheet, and a
drawing application.

2 We then formalize the students’ understanding of modern software
interfaces by identifying the name and functionality of various
visual components common to each of the applications.

3 Examine the units which each application works with (e.g.
characters, words, lines, paragraphs, cells, lines, objects, etc.). The
student is then given a number of problems and asked which
application is most appropriate for a given problem. All these
exercises build the vocabulary needed.

Woodman, Holland and Price 16 Printed on December 12, 2000 ar 9:14 PM

From here we progress to communicating between applications, first using
the simple manual ‘cut and paste’ mechanism, then using a script recorder
to automatically record a script by demonstration to automate the process.
Subsequently we bring in an interface building tool kit and have the
student link this new script to a button on their desktop. The students may
not realize it at this point, but they will have just written their first self
contained program.

Now we have the student begin to work with the script-writing
environment to examine and modify the script that they have just
written. They will then create practical scripts to manipulate data between
the applications and learn some of the basics of debugging, iteration, and
selection along the way as well as make use of the interface building tool
kit to create stand-alone scripts. By the end of this first section of the course
the students will have the same type of programming skills as in a
traditional course, but they will have achieved this by using everyday
software and practical problems as opposed to an abstract language and toy
problems. Some of the students may not even realize at this point that
they have been programming.

Perceived advantages of the ‘programming last’ approach

• creates a ‘level playing field’ for students;

• establishes the language of software fairly naturally;

• encourages weaker students without boring the stronger ones;

• develops analysis skills early to facilitate relating the software they
write to the software they use everyday.

Perceived disadvantages of the ‘programming last’ approach

• lack of experience teaching using this style;

• fears that course will be seen as a computer literacy course.

This strategy met with almost universal approval as a way of introducing
the course, although it was not clear how later parts of a course based on
such an approach might proceed. In the next section we explain how these

Woodman, Holland and Price 17 Printed on December 12, 2000 ar 9:14 PM

strategies were used to synthesize an object-oriented approach where
programming comes late, if not exactly ‘last.’

5 Synthesis of a New Teaching Strategy

Given the lack of agreement on the first two approaches, and given that
the third approach applied chiefly to the beginning of the course, it was
decided to attempt to synthesise a new approach that met the constraint of
teaching object concepts clearly and well, as well as all of the other
constraints described earlier, combining the best features of each approach
were possible.

The teaching sequence we have devised can be described as falling into
four (unequal) parts:

(a) The Everyday Software Approach.

(b) Elementary Programming and The Software Development System.

(c) The Core.

(d) Wider aspects.

The ‘everyday software approach’, follows the third strategy for objects. It is
intended to establish a vocabulary and develop analytical skills so that
students are equipped to deal with later concepts. Students will be set
specific goals on the use of software and on its manipulation, rather than
on its construction from a low-level of abstraction. In practical terms it
involves running, describing, and analysing everyday software
applications—such as word processors, database systems and graphics
editors—and using combinations of them and getting them to
communicate (even remotely).

During this first part, which is at the heart of the synthesis, students will
encounter object-oriented ideas. These will range from describing the
launching of applications and the opening of documents in terms of
messages being sent to objects. Early in this part will introduce the student
to the concept of communication between computing components
(applications); later we build on this understanding as we introduce
communication between objects in an object-oriented programming

Woodman, Holland and Price 18 Printed on December 12, 2000 ar 9:14 PM

language. More subtly, ideas of polymorphism and inheritance can be
introduced—e.g. sending the message “open” to different objects.

The second part of the course requires exposure to low-level programming
concepts before proceeding to core ideas about constructing programs.
Moreover, it does require an exploratory approach and demands that
students continue to use the analytical skills developed earlier; we intend
that they learn about their programming system by guided exploration and
analysis. We also intend to teach certain skills explicitly: those of learning
elementary language constructs, analysing and de-bugging programs.

The ‘core’ of the course, in outline, looks like a conventional
programming course insofar as a student encounters expressions,
statements, etc. Objects will effect this part in several ways. First the
programming language, will support a component-oriented and object-
oriented view of software. Smalltalk and Eiffel are actively being
considered, but pragmatic factors may lead to a choice of Ada-9X, object-
oriented Modula-2, Oberon-2 or Object-oriented Turing. In many ways the
language choice is less important than the availability of an environment
that will support a student in the distance mode; we foresee an increased
need for program analysis and visualization tools to help students reason
about object-oriented programs.

The intention of the final part of the course is to teach social issues, ethics,
etc. as part of the practical work on constructing software; for example,
programming a simulator for a nuclear control system or a patient
monitoring system will be more effective in conveying the relevant
issues. (The reason for separately identifying this part is that it allows for
the possibility of frequent (in OU terms) replacement of the wider aspects
material.)

Much of the above will require significant technological support, the cost
of much of which will be borne by students. We briefly explore our new
approaches in this area.

6 Innovations in Course Delivery

The traditional method of delivering an OU course is via a custom
designed textbooks with accompanying audio–visual material. In M206 we
will also have the opportunity to innovate on our delivery method by

Woodman, Holland and Price 19 Printed on December 12, 2000 ar 9:14 PM

delivering course material in a hypertext multimedia application. This
means that static diagrams of computing abstractions in the text can be
animated when necessary using software visualizations to show dynamic
execution over time. Another advantage of electronic delivery of the
teaching material is the availability of automatic translation into other
forms, such as spoken word translation of text for visually impaired
students.

In the first section of the course we will examine communication between
the application and the user by formalizing our description of the
interface. We also examine communication between applications; the next
obvious step is communication between computers, which leads into a
look at the Internet. Students will use e-mail and electronic conference (in
addition to face-to-face tutorials) for communicating with their tutor. They
will expand their network use from here by using modern network
navigation tools to search hypertext multimedia databases around the
world, thus developing a valuable computer literacy skill for the next
decade. Students will also look at the social implications of very large
interlinked global networks in terms of privacy, nuisance, and personal
safety.

The theme of understanding that programs are dynamic with predictable
behaviour will contribute directly to an understanding of testing, in which
the student must predict the expected behaviour of program—must in
effect simulate its behaviour in order to produce test data. Dynamic
visualization is pertinent to this theme.

However, these innovations require significant processing capacity. At
present computing students need only purchase a simple PC and printer.
Current courses only need floppy drives and 512k of memory. We are now
advising students that by 1997 we will be assuming that they own, or have
access to, a computer which has the power of a fast Intel 486 machine with
at least 8 Mb of memory, 250 Mb hard disk and a high-speed modem. It is
also likely that large volumes of on-line information will be assumed so a
CD-ROM drive may also be a requirement. The programming language
and its development environment will be supplied to students; depending
on the cost of CD-ROM drives and potential savings to the university in
terms of print costs, these devices may also be supplied to students.

It is expected that considerable use of remote facilities will be needed by the
syllabus. However, we are expecting that ideas about an electronic campus

Woodman, Holland and Price 20 Printed on December 12, 2000 ar 9:14 PM

(using conferencing, electronic mail, on-line information services, etc.)
will be coming to fruition during the lifetime of M206 and so considerable
effort will be put into integrating these technologies.

Given the power of the type of computer system students will have, we
are also planning computer-assisted learning systems for the course and
developments in this area are in progress.

7 Conclusion and Discussion

We have outlined a teaching approach for beginners which allows object
concepts to be tackled early, but which does not neglect more traditional
views of computing. The difficulties in designing the curriculum for this
course lie in the diversity of the students’ background and the breadth of
the goals of the course: we must accept all students, including those who
may have no background in mathematics or computing, and when they
leave the course they must have skills which they can take to other
courses in the sciences and humanities as well as sufficient preparation to
take more advanced computing courses if they should choose to do so. We
will have succeeded in our goals if some students who take the course as a
one-off advanced literacy course later decide to study more advanced
computing courses and if we retain those students who originally took the
course as a preparation for further study in computing.

As we analysed the various strategies, it became clear that the approach of
initially exposing students to a set of applications, while building up a
language for describing and specifying software applications more
abstractly, provided a good means of laying the grounds for a very
concrete, and not at all abstract notion of an object. (Indeed, this partly
recapitulates the development of the object concept as traced in Kay, 1993).
An application could be discussed with beginners as having state and
responding to various commands via a well defined interface. This could
lead very naturally, if informally, to simple notions of objects, messages,
interface, state and encapsulation. Clearly, such an approach is not too
conceptually abstract for beginners.

Woodman, Holland and Price 21 Printed on December 12, 2000 ar 9:14 PM

Objects ‘late’ may be too late

A second realisation came when it became apparent that with the ‘objects
late’ approach, even if the traditional imperative–store part of the course
was cut to the bone (just one type of loop, etc.), it would be impossible to
reach the object part of the course until near the end, when students were
tired and unlikely to take in the new ideas as well as required.

Terminological exploration

Object advocates on the team had initially found it hard to persuade object
sceptics that traditional concepts were relatively easily described in object
terminology, but not vice versa. The following example seemed to
establish this point, although it is important that it should be treated as
suggestive rather than rigorous. Consider the problem of using a pure
object language, such as Smalltalk, to teach a traditional imperative–store
approach. Bearing in mind that Smalltalk has explicit assignment, unlike,
say, Self (Chang and Ungar, 1993), it turns out that to a good order of
approximation, this requires no new constructs, only optional restrictions,
as follows:

• Restrict attention to a single class.

• Restrict attention to a single object of that class.

• Use bare minimum rest of class hierarchy e.g. integers, strings,
arrays etc. as a sort of function library.

• Designate one method as the main program.

• Use no instance variables (unless global variables are desired).

• Deal only with objects with no state (‘basic data types’).

Similarly, if we wish to describe various phenomena in a traditional
imperative–store approach using object terminology, it turns out that this
is not too hard; one message understood by a typical Pascal program is
“execute.”

By contrast, it turns out that simulating a full object oriented language
using only a traditional language with no object facilities requires

Woodman, Holland and Price 22 Printed on December 12, 2000 ar 9:14 PM

construction rather than subtraction: namely, writing an object interpreter.
Similarly, describing the full range of object phenomena using
imperative–store terminology alone tends to become convoluted.

For this level of course, detailed method may not matter

When analysing typical problems set to students in traditional courses, we
realised that they are typically very leading. For example, what purported
to be a real-world question about solving a problem to do with devising
questionnaires for establishing passengers preferences about buses was
really a leading question inviting the student simply to nest a conditional
within a loop. At this level of problem, whether using a traditional or
object oriented approach, precise software development methods matter
less than any reasonable approach that helps the student to learn and
solve problems or create models.

Realisations such as these allowed us to synthesise a new approach with
key points as follows:

Objects and imperative–store concepts in parallel

• Use a ‘programming last’ or component-based approach to
introduce basic concepts of objects and interaction between objects.

• Introduce objects early, much as outlined in the ‘pure objects’
approach (not necessarily using a pure object language).

• Treat objects and messages as fundamental concepts, but take time
over the ‘message fragments’ stage.

• Deal clearly with sequence, iteration and conditionals as ways of
structuring these fragments.

• Introduce concepts relevant to both an ‘objects early’ and a
traditional approach side by side.

We believe that this approach combines the following benefits.

Woodman, Holland and Price 23 Printed on December 12, 2000 ar 9:14 PM

• Conceptual simplicity: a smaller number of concepts are required
(compared with an ‘objects late’ approach), to introduce concepts
from both object and imperative–store paradigms.

• Concrete support for abstraction: ADTs will be concretely supported
early, unlike in an ‘objects late’ approach.

• Student motivation : Students will be enabled to build substantial
programs early, by exploiting object-based re-use techniques.

• Avoiding bad habits: avoidance of ‘C++ syndrome’ described earlier,
where students write ‘object-oriented programs’ with just one class.

At the same time, this approach meets pragmatic organisational needs by
building on existing staff strengths, and represents a path of relatively safe
evolutionary change.

Remaining problems

While the course team continues to work on the development of concrete
teaching sequences, and on the choice of a final language and
environment, in one sense the contradictions requiring the original
synthesis are still present. For example, use of a particular language can
import a lot of conceptual baggage. Choice of a pure object oriented
language such Smalltalk would tend to lead to a result closely related to
the original ‘objects first approach’; while choice of C++, ADA 9X, etc.
might force a relatively cluttered approach in terms of the number of
concepts forced on the student’s attention. A comparatively pure object-
oriented language such as Eiffel that looks similar to Pascal on the surface
might be a good compromise candidate if it were not for the current lack of
good student environments available for Eiffel.

References

Udell, John (1994) Componentware. In Byte, May 1994, page 46-56.

Pope, Stephen Travis (1994) In Open University Video for postgraduate
course M868: Object-Oriented Software Technology, Band 4, Walton Hall
Milton Keynes.

Woodman, Holland and Price 24 Printed on December 12, 2000 ar 9:14 PM

Kay, Alan (1993) The Early History of Smalltalk, in ACM SIGPLAN
Notices, Volume 28, No 3 March 1993

Lalonde, Wilf and Pugh, John (1990) ‘Smalltalk as the first programming
language’ in the Journal of Object Oriented programming, December, 1990.

Love, T. (1993) Object Lessons. SIGS Books , New York.

Cook, S. (1994) Analysis, Design, Programming: What's the difference?. In
Teaching and Training in the Technology of Objects (proceeding of
TATOO, 1994).

Goldberg, Adele. and Kay, Alan C. (1977a) Methods for teaching the
programming Language Smalltalk, Xerox Palo Alto Research Centre , June
1977.

Goldberg, Adele. and Kay, Alan C. (1977b) Smalltalk in the classroom,
Xerox Palo Alto Research Centre , June 1977.

Chang, B and Ungar, D (1993) Experiencing Self Objects: an object -based
artificial reality. Technical Report, Sun MicroSystems.

Jones, A, (1994) Smalltalk – an educator’s dream? University of Wales,
College of Cardiff.

Lee, P.A. and Stroud, R.J., (1994). C++ As An Initial Programming
Language, in M. Woodman, Programming Languages: Experience and
Practice, Chapman and Hall, London (in press).

