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Abstract 

There are over 2 million reports of Traumatic Brain Injury (TBI) every year in the United States 

alone, the majority of which are classified as a mild head injury. Incidences of mild TBI (mTBI), 

the kind of which are sustained most routinely by contact sports athletes, active military 

personnel, and by lesser extent, the general population, are now well accepted as being a 

definitive risk factor for development of chronic neurodegenerative disorders and debilitating 

illnesses, such as Chronic Traumatic Encephalopathy (CTE), thus leading to mild head injury being 

termed as a silent epidemic, and one desperately in need of further pre-clinical investigation and 

clinical therapeutics.  

 To date, the diagnosis of CTE has been based on late-stage, post-mortem 

neuropathological assessment of brain tissue, precluding the possibility of prophylactic or 

interventional therapy in human patients presenting with symptomatology too ambiguous for 

antemortem diagnosis, and ergo, appropriate clinical trial stratification. Moreover, the current 

pathognomonic neuropathological prerequisite feature for CTE diagnosis, diffuse aggregates of 

phosphorylated Tau protein (pTau), specifically pTau immune-positive subpial astrocytic scars in 

presence of perivascular foci of pTau positive neurons and astrocytes at the depths of the sulci, 

poses a difficult therapeutic target, even if a diagnostic were available for the pre-symptomatic 

stage of the disease.  

 Recently, it has been reported that military personnel and players of contact sports 

experiencing repetitive m-TBI (r-mTBI), as well as individuals suffering from chronic TBI-related 

illness, demonstrate a deficit in Cerebral Vascular Reactivity (CVR), the ability of the cerebral 
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vasculature to dilate in response to a vasoactive stimulus. This physiological impairment is non-

invasively detected following repeat mTBI, and to be sustained at chronic time-points post-injury 

in both repetitive mTBI and moderate to severe TBI patients alike, implicating CVR detriment as 

an endophenotypic biomarker and possible in vivo diagnostic of TBI-related neuropathogenesis, 

and Traumatic Cerebral Vascular Injury (TCVI).  

 In this thesis, I developed and validated a preclinical in vivo imaging setup to examine CVR 

in our CTE-like neuropathology exhibiting mouse model of r-mTBI, with an aim to characterizing 

the evolving pathobiology of TCVI and concurrent neurobehavioral impairment, and their 

correlation to perturbed CVR. I demonstrated recapitulation of the CVR deficit seen in the human 

population in our animal model, alongside sustained memory and learning impairment, and signs 

of an underlying response of the cerebral vasculature to injury. These finding implicate 

measurement of CVR as a valid preclinical diagnostic, and the treatment of TCVI as a compelling 

parallel pathological target in r-mTBI.  
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Chapter 1.  Introduction 

1.1. Background: 

Traumatic brain injury (TBI) is a term used to describe a head trauma caused by an external 

physical force, which affects normal brain function. There are over two million clinically 

presented incidences of TBI per year in the United States alone, accounting for approximately 

30% of all injury related fatalities1, and an estimated 5.3 million American patients at present 

coping with chronic TBI-related disability2,3. A majority of reported head injuries (approximately 

70%) falls in to the category of mild TBI (mTBI)4, with a reported 15% of mTBI patients 

experiencing chronic symptoms following injury5-9. In comparison to a moderate-to-severe TBI, 

which is almost invariably accompanied by a prolonged loss of consciousness for greater than 30 

minutes following injury, amnesia, or immediate physical damage to the brain10, mTBIs are often 

more difficult to diagnose, due to the comparatively swift resolution of symptoms, and lack of 

evidence of injury on standard hospital imaging modalities11. Criteria for having sustained an 

mTBI include any confusion, loss of memory, transient and focal neurologic deficit, alteration in 

mental state, or loss of consciousness for thirty minutes or fewer; or for longer, but with an initial 

Glasgow Coma Scale (GCS) score of between 13 and 1511-13. While the term “concussion” is often 

used in unison and interchangeably with mTBI in both the clinic and the literature, a “sub-

concussive” head injury may be defined as a cranial impact that does not result in a diagnosis of 

concussion/mTBI on the aforementioned criteria14.  

There has only relatively recently been heightened concern over repetitive mTBI (r-mTBI) 

acquired in professional and collegiate contact sports and military duty. Repetitive concussive 

and sub-concussive head injuries in the realm of athletics are now generally thought to be 
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associated with long and short term functional and neuropsychological impairments15-19. 

Congruently, the most frequent combat-related injuries seen in veterans and military personnel 

returning from Iraq and Afghanistan are mTBIs20, acquired from blunt force head impact, motor 

vehicle accidents, and high pressure waves from explosive blasts21,22. Much like the functional 

and cognitive impairments exhibited by current and retired athletes, veterans returning from the 

theatre of war are now understood to have profound neurological and neuropsychological 

complications as a result of their history of warzone mTBIs23-25.  

The very clear burden of TBI on both the healthcare system and patient quality of life has 

begot extensive preclinical research and clinical trials aimed towards improving functional 

outcome following head trauma26, however, all phase III clinical trials to this point have failed27-

29. The almost schismatic success in treatment of TBI in animal models, versus failure in clinical 

trials, is in part due to the lack of any animal model recapitulating the diverse pathological and 

physiological sequelae of the human condition, and so, there is an incomplete understanding of 

the pathogenesis and evolution of r-mTBI related neurodegeneration. Treatment is curtailed still 

further by the inherent heterogeneity of TBI in the human population, for example, the 

aforementioned spectrum of (sub-)concussive to moderate to severe, and resultant erroneous 

recruitment and stratification of subjects in to clinical trial cohorts. As such, there is an ever-

growing need for further scientific understanding of, and therapeutic intervention against the TBI 

phenotype. 
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1.2. Repetitive Head Trauma and CTE 

The first known medical record of a history of repeat head trauma being linked to a 

neurodegenerative illness was described in a retired boxer as Dementia Pugulistica30, and has 

since been given the name Chronic Traumatic Encephalopathy (CTE)31.  The exact nature of the 

causal link between repetitive mTBI and development of CTE is much researched yet 

disproportionately unexplained. To date, the most accepted biological feature of CTE is the 

microtubule associated protein Tau (MAPT), which is expressed in both the peripheral and central 

nervous system32, functioning to stabilize the microtubule33 and mediate axonal transport34-36. 

CTE is characterized pathologically by diffuse deposition of hyper-phosphorylated tau (pTau) 

immune-reactive neurofibrillary and astrocytic tangles throughout the temporal and frontal 

cortices and propensity for accumulation of pTau species at perivascular locations at the depths 

of cerebral sulci37. While the aforementioned unique tau pathology, observable only at post-

mortem, is a prominent feature of CTE, this disease can also be associated with a host of co-

pathologies including, but not limited to, amyloid plaque formation, deposition of TAR DNA 

Binding Protein 43 (TDP-43), sustained microglial inflammatory profile, white matter axonal 

degeneration, and Lewy body neuritic inclusions31,38. 

CTE has only recently become fiercely researched, following many studies identifying the 

disorder in individuals with a history of r-mTBI, including reports documenting CTE in former 

National Football League (NFL) American football players39,40, and further case reports confirming 

CTE pathology at postmortem in athletes41, and military personnel exposed to blast shock wave 

(BSW) injury37. Indeed, from a critical review of 158 published case studies, of all CTE cases 
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diagnosed symptomatically in the past decade, 50% are seen in professional American football 

players42, more than 20% of which did not show CTE pathology postmortem. Furthermore, 5% of 

cases showing classic CTE hallmarks postmortem despite being clinically asymptomatic for CTE42. 

Similarly, a recent report by Hazrati et al43 mirrors the aforementioned review, showing non-CTE 

like pathology and absence of overt Tau hyper-phosphorylation and aggregation in post-mortem 

brains of retired athletes previously diagnosed with CTE, and instead presenting with pathologies 

likening those of vascular and motor neuron disease, and AD43.  

The postmortem diagnosis of CTE was initially based heavily on the Braak staging system31,41, 

the neuropathological staging criteria used in the general diagnosis of tauopathy post-mortem44, 

with the degree and topographical distribution of paired helical filamentous (PHF) Tau, as 

identified by the monoclonal antibodies against both Serine 202 and Threonine 205 of pTau 

(AT8), and against Serine 202 alone (CP13), with AT8 positive staining representing a 

hyperphosphorylated conformational form of pTau, and CP13 positive staining identifying a 

lower molecular weight pTau42,45. Pathology progression, as originally defined by Braak staging, 

increases in severity from Braak Stage I - IV. In the mildest of the Braak stages, Stage I, PHF Tau 

pathology is restricted to discrete foci throughout the cerebral cortex, and clustering around 

small blood vessels and at the depths of the sulci. Stage II CTE manifests as a multi-epicenter of 

PHF Tau staining at the depths of the cerebral sulci and spread of PHF Tau immune-reactive tissue 

to the superficial layers of the adjacent cerebral cortex. Stage III CTE pathology is much more 

widespread than Stages I and II, with the frontal, insular, temporal and parietal cortices, 

amygdala, hippocampal, and entorhinal cortex showing PHF Tau Neurofibrillary tangle (NFT) 

pathology. In Stage IV CTE, most regions of the cerebral cortex and temporal lobe exhibit 
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aggressive PHF Tau NFT immune reactivity throughout31. The graded increase and distribution of 

PHF Tau NFTs and astroglial tangles (ATs) from Stage I – IV CTE is accompanied by a concomitant 

rise in perturbed axonal profile, limited in Stage I and II CTE to the subcortical white matter and 

diencephalon, but found in Stages III – IV as more extreme axonal loss and pathology throughout 

the frontal and temporal lobes37,41.  

The above rather general pathologic diagnostic criteria have since been refined by a recent 

case report in which a team of seven neuropathologists evaluated 25 cases of already confirmed 

tauopathy, spanning CTE, Alzheimer’s Disease, progressive supranuclear palsy (PSP), Argyrophilic 

Grain Disease (AGDA), Corticobasal Degeneration (CBD), primary age-related tauopathy, and 

Parkinsonism dementia complex of Guam46. The neuropathologists were blinded to the sample’s 

diagnostic assignment, and any discrepancies were discussed and resolved in person following 

collective evaluation. This seminal consensus report concludes that there exists “a 

pathognomonic lesion of CTE that consists of an accumulation of abnormal Tau in neurons and 

astroglia distributed around small blood vessels at the depths of sulci in the cortex in an irregular 

pattern”46. Of notable deviation from the original Braak staging of the disease31 is the prevalence 

of pTau immune-positive subpial astrocytic scars in presence of perivascular foci of pTau positive 

neurons and astrocytes at the depths of the sulci46 as a specific diagnostic for CTE (see Figure 

1.1). 
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Figure 1.1. Neuropathological evaluation of CTE stages I – IV.  Representative Images of phosphorylated Tau at CTE 
pathological stages I, II, III, and IV, in a convenience sample of 202 brains donated by deceased former players of 
American football, using the NINDS-NIBIB consensus criteria46. (A) Former college football player with stage I CTE, 
identified by the presence oftwo perivascular pTau lesions at the sulcal depths of the frontal cortex, in absence NFT 
in the temporal lobe (arrowhead), but with NFTs and neuritic foci encircling a small blood vessel. (B) Former NFL 
player diagnosed with stage II CTE, exhibiting pathognomonic pTau CTE lesions at the sulcal depths of both the 
frontal and medial cortices (open arrowhead), and perfunctory NFTs and dot-like and thread-like neurites encircling 
small blood vessels. (C) Former NFL player with stage III CTE, denoted by diffuse pTau and NFT pathology throughout 
the frontal and insular cortices and entorhinal hippocampus (black arrowhead), and perivascular CTE lesioning by 
NFTs and neuritic clusters around small blood vessels. (D) Stage IV CTE pathology in a former NFL player, identified 
by large and confluent CTE lesions throughout the frontal, temporal, and insular cortices, in combination with diffuse 
NFT pathology of the entorhinal cortex and amygdala (black arrowhead), and and aggressive perivascular NFT 
formation. 

CTE denotes Chronic Traumatic Encephalopathy; NFT, Neurofibrillary Tangle; pTau, phosphorylated Tau. All microscopic images 
are taken from 10µm thick paraffin-embedded brain tissue sections, stained with the monoclonal mouse antibody AT8, directed 
against monoclonal mouse pTau. Positive pTau staining appears red. All hemispheric images taken from 50µm thick tissue 
sections, stained with monoclonal mouse antibody against phosphor-serine 202 of pTau, considered an early site of Tau 
phosphorylation in NFT formation.  Positive pTau staining appears brown. Images modified from Mez et al, JAMA, 201745.  

 

Using the afore mentioned collaborative consensus criteria, 177 of 202 post mortem 

brains of deceased American football players were since diagnosed as having had CTE45, 

bolstering the implication of a history of contact sports being causal in the development of this 

neurodegenerative disease. The higher severity of CTE pathology (Stages III and IV) was 
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distributed across the more professional level of play, with the greater proportion of collegiate, 

semi-professional, Canadian Football League, and National Football League (NFL) players 

exhibiting severe pathology, compared to mild and infrequent perivascular lesions (Stage I and 

II) seen in former high school players45. The fact that the duration of play for mild cases was 13 

years, in comparison to 15.8 years for severe CTE diagnosis, suggests that it is the frequency of 

head trauma, which may be higher at the more professional league, sooner than the length of 

exposure, that is most culpable in the pathogenesis of the disease45. Both mild and severe CTE 

patients were retrospectively recorded as having presented clinically with a host of behavior and 

mood symptoms including impulsivity, depression, apathy, anxiety, hopelessness, explosivity, 

suicidality, and physical and verbal violence45. Memory, executive function, and attention 

symptoms were seen in 73%, 73% and 69% of mild CTE cases, respectively, and 92%, 92% and 

81% of severe CTE cases, respectively45. The insensitivity of clinical behavioral and memory 

assessments with relation to CTE diagnosis is again highlighted here, much as it was by Gardner42 

and Hazrati43, as 25% of severe CTE cases in the current report by McKee and colleagues45 were 

diagnosed with AD prior to death, and 85% of said severe cases were diagnosed by 

neuropathologists, blind to the case histories, as having dementia post mortem45. As big an 

improvement as the revised post mortem CTE diagnostic criteria is46, there remains the issue of 

ambiguous symptomology between this and other neurodegenerative disorders45. Owing to 

these discrepancies in clinical presentation and neuropathological co-morbidity, a companion in-

vivo diagnostic would be profoundly useful in the early detection and treatment of r-mTBI related 

neurodegenerative disease. 
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Model  
With Reference 

Animal and 
Genotype 

Number and 
Interval of Hits  

Age at injury, 
to animal 
euthanasia 

Effects on protein aggregate 
pathology  

Additional Observations  

Momentum 
Exchange47,48 
(Single Mild) 
 

Rat (Wistar) 1x, or 3x, at 1 per 
6 hours 

Adult, to 1d, 
4d, or 10d 

Neurofilaments Axonal Injury, Astrogliosis, 
and Edema 

Wayne State49,50 
(Repetitive Mild) 

Mouse (C57BL/6) 1x, 5x, or 10x, at 
1 per day, 95g or 
30g weight drop 

2m, or 1m, to 
1m 

Increased pTau Levels Astrogliosis. Transient 
Locomotor Impairments, 
Anxiety and Depression-like 
Behavior,  

Harvard 
Method51,52 
(Repetitive Mild)  

Mouse (C57BL/6); 
ApoE4 
 
 
Mouse (C57BL/6); 
T44 Tau; Tau KO 

5x, 7x, or 10x at 
various intervals  
 
 
1x, or 7x, in 9d 

3m to various, 
6m, 1y 
 
 
2m -3m, to 
various 
timepoints  

No increase in Aβ40, Tau, or 
Development of Amyloid 
Plaques or NFTs 
 
pTau Increase and 
Progressive Spread 
Throughout Brain over Time 

Long Term Behavioral Deficits 
and Astrogliosis, No Cognitive 
Deficits in ApoE Groups 
 
Cellular Apoptosis, 
Disinhibited Behavior 

Maryland53 
(Repetitive Mild) 

Mouse, hTau; 
hTau+/+, hTau+/-, 
hTau-/- 

1x or 2x, 1 per 1d  4-6m, to 1 
year 

Absence of Tau expression 
aids behavior. Lower APP 
expression in KO 

No difference in Astrogliosis 
or Microgliosis. Behavioral 
deficits. 

Hit and Run54,55 
(Single Mild)  

Mouse (C57BL/6) 1 Impact 2.5-3m, to 1h, 
1d, 3d, 1w, 
2w, 1m 

Not Reported  Impaired Motor function, 
Astrogliosis, and Axonal 
Degeneration  

Blast TBI37,56 
(Single Mild) 

Mouse (C57BL/6) 
 
 
Mouse (C57BL/6) 
 
 

1 Impact 
 
 
1 Impact 
 
 

3-4m, to 1d, 
1m 
 
2.5m to 2w 

Increased pTau, but no 
Difference in APP 
 
Increased pTau and APP 
Levels 

Decreased Exploration 
 
 
Astrogliosis and Microgliosis, 
Decreased Long Term 
Potentiation, Vascular 
Pathology 

Blast TBI57,58 
(Repetitive Mild) 

Mouse (C57BL/6); 
(CX3CR1-GFP+/-) 
 
 
 
 
Mouse (C57BL/6) 
 

1x, or 3x, 1 per 
24h 
 
 
 
 
1x, or 3x, 1 per 
24h 
 

3-4m, to 1h, 
4h, or 14d 
 
 
 
 
3-4m, to 14d, 
or 30d 

Rapid, but Transient, pTau 
and AT8-positive perivascular 
Tau Accumulation, 
Disappearing Within 4h 
 
 
Cerebellar Neuronal Cell Loss, 
Increased APP,  

Astrogliosis and Microgliosis, 
Vascular Pathology, BBB 
Disruption, Increase in 
Inflammatory markers. 
No Behavior Data Reported. 
 
Astrogliosis and Microgliosis 
Motor Function Impairment,  

Controlled 
Closed Head 
Impact59-63 
(Repetitive Mild) 
 
 
 

Mouse, hTau; 
hTau+/+ 
 
 
 
 
Mouse (C57BL/6) 
 
 
 
 
 
Mouse, hTau; 
hTau+/+ 
 
 
 
 
Mouse (C57BL/6) 

5x, 1 per 48h 
 
 
 
 
 
5x, 1 per 48h 
 
 
 
 
 
2x per week, for 
12w 
 
 
 
 
6x per day, for 7d 

2-3m, 6-12m 
 
 
 
 
 
2-3m, to 24m 
 
 
 
 
 
2-3m, to 3m 
 
 
 
 
 
Adult Male, to 
7d, 1m, or 6m 

No changes in pTau or Aβ40. 
Progressive APP 
accumulation with injury. 
Thinning of the corpus 
callosum. 
 
No changes in pTau or Aβ40. 
Progressive APP 
accumulation with injury. 
Thinning of the corpus 
callosum. 
 
Increased total and pTau. 
Progressive APP 
accumulation with injury. 
Thinning of the Corpus 
callosum.  
 
Increased pTau, AT8-positive  
Tau Accumulation 

Astrogliosis and Microgliosis. 
Progressive and Long Term 
Behavioral Deficit. 
Disinhibited Behavior. No 
Long-Term Motor Deficit 
 
Astrogliosis and Microgliosis. 
Progressive and Long Term 
Behavioral Deficit. No Long-
Term Motor Deficit 
 
 
Astrogliosis and Microgliosis. 
Progressive and Long Term 
Behavioral Deficit. 
Disinhibited Behavior. No 
Long-Term Motor Deficit 
 
Astrogliosis and Microgliosis 
No Behavior reported.  
 
 

Table 1.1. Animal models of head injury relevant to the dose, frequency, and neurobehavioral and pathological 
sequelae of that seen in the military and sports human population. h: hours; d: days; w: weeks; m: months. Elements 
of the table have been modified from Edwards et al, Biochem Biophys Res Commun, 201764. 
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1.3. Animal Models of Repetitive Mild Traumatic Brain Injury. 

The heterogenous nature of mTBI in the human population makes it practically impossible 

for any one single animal model to recapitulate all of the pathological and behavioral sequelae 

of r-mTBI related neurodegeneration64. Current murine models of r-mTBI producing pathological 

and behavioral deficits most representative of the human TBI population are listed in Table 1. 

These include momentum exchange, whereby a ballistic impactor converges on an aluminum 

plate attached to the rodent’s head47,48; the Wayne State and Harvard approaches, which 

institute a weight drop impact to the head, and preclude superfluous and unintentional impact49-

52; the Maryland Model, in which a steel ball is rolled in to a coupling arm attached to the frontal 

portion of the animal’s facial area, allowing for a frontal impact53; the “Hit and Run” paradigm, 

which uses a modified Controlled Cortical Impact (CCI) approach; single and repeat blast TBI, 

which uses a number of techniques to produce a blast wave that propagates through the brain 

matter, mimicking the form of injury endured by military personnel37,56-58,65-67; and numerous 

controlled closed head injury (CHI) models, typically relying on an electromagnetically driven 

piston with an impactor attached to the end, delivering a precisely calibrated insult59-63,68-71.  

In terms of mouse strains, both wild type (C57BL/6) and transgenic human tau (hTau) mouse 

models of r-mTBI have recapitulated many aspects of CTE-like pathology, alongside impairment 

in correlate behavioral indices.  Wild type C57BL6 mouse brains almost exclusively express the 

isoform of tau with only 4 repeat microtubule binding domains (MTBs) located at the C-terminal, 

otherwise known as the 4R isoform of Tau, whereas human adults express approximately equal 

proportions of both 3R and 4R Tau isoforms throughout the CNS72. In an effort to mimic the 
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human condition more closely, many researchers have used hTau mice as animal models of r-

mTBI. These mice express all six isoforms of human tau on a null murine tau background73.   As 

can be seen in Table 1, the pathologies most robustly and unanimously reported across hit 

paradigms are the neuroinflammatory profile, axonal damage and white matter loss, and in a 

great proportion of cases, vasculopathy of varying degree. Reports of increases in pTau and 

higher oligomeric AT8-positive aggregates are mixed, with some studies reporting early yet 

transient ptau accumulation following r-mTBI in C57BL/6 mice58,61, and others reporting a 

sustained increase in pTau and AT8-positive signal in hTau animals at chronic timepoints as late 

as 3 and 6 months post last injury62,63.  The way in which impairments in the preclinical 

neurobehavioral paradigms for learning and memory, assessed by Barnes Maze (Figure 1.2, A and 

B), and in impulsivity or disinhibition, assessed via Elevated Plus Maze (Figure 1.2, C and D), show 

an injury-dependent effect in the absence of overt pTau expression in animal models (Table 1) 

mirrors the afore mentioned disjoint of clinical symptomology with CTE pathognomonic lesions 

in the human population, and questions the pathological role of pTau, beyond that of a physical 

signature hallmark, in animal models and the human condition alike.  
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Figure 1.2. Behavioral paradigms for the evaluation of learning and memory deficit, and loss of in inhibition of mice 
following repeat mild head trauma. For assessment of learning, mice are given 90 seconds to locate and enter the 
target hole/box in the Barnes Maze (A) and required to remain in the target box for 30 seconds prior to retrieval, 
regardless of success. For a series of 6 consecutive days, 4 trials are given per day, with mice starting from one of 
four cardinal points on each trial. The inter-trial interval for each mouse on any given day of acquisition is 
approximately 40 minutes. The maze platform and retrieval box are both cleaned thoroughly between trials to limit 
the confounding effects of scent on performance of the mice during each trial. On the seventh day, a single probe 
trial lasting 60 seconds is performed (A and B), with the mouse starting from the center of the maze and the target 
box removed. The end-point behavioral metric of escape latency measured is the time taken for the mouse to locate 
the target hole where the escape box had been placed for the six consecutive days of learning. Panel (B) displays the 
dorsal plan view of the Barnes Maze apparatus, and the camera-tracked travelled by a r-mTBI mouse, highlighted in 
red, at 6 month post-injury during the first 30 seconds of the single 60 second memory probe trial. The r-mTBI mouse 
(B) is unable to locate the target hole within the first 30 seconds of the trial, indicating an impairment in spatial 
memory, as compared to an age-matched r-sham control animal (A), demonstrating the ability to locate the target 
hole within the first 30 seconds of probe, and travelling a significantly decreased distance to do so. In addition to 
assessment of learning and spatial memory via use of the Barnes maze, animals are also tested for anxiety-like 
behavior in the elevated plus maze. The apparatus consists of two open and two closed arms forming a plus shape 
(C and D). The arms are elevated approximately 80 cm from the floor. Each mouse is placed on the junction of the 
four arms of the maze, facing the open arm. The mouse is allowed to freely explore the maze for 5 minutes in a dimly 
lit ambient lighting (∼1 lux). The percentage of time spent in the open arms was calculated using the Ethovision 
video tracking system. Panels (C) and (D) show the dorsal camera tracked paths of biological replicates of the r-sham 
and r-mTBI animals in (A) and (B), respectively. The r-mTBI animal (D) spends a much greater length of time in the 
open arms of the maze in proportion to the closed arms, relative to the r-sham mouse (C), indicating disinhibited 
behavior in the r-mTBI mouse at this time-point post-injury. 



23 
 

It is interesting to note that one of the few studies, by Huber et al57, to report an increase in 

multiple phosphorylated forms of pTau in combination with accumulation of the CTE-defining 

AT8-positive Tau, did so by use of repetitive blast injury in wild type mice, and showed the 

accumulation of pTau to be perivascular in nature and accompanied by gross BBB disruption and 

vasculopathy57. However, this CTE-like pathology was transient, and AT8 immunoreactivity 

disappeared within 4 hours post-injury, a result the authors attribute to the use of anesthesia in 

their hit paradigm, and the potentiation effect that loss of consciousness has on rapid clearance 

of substances from the mouse brain74. The authors cited the AT8 signal as not being associated 

with any specific cell type or neuropil, and instead colocalizing with the glial limitans and Virchow-

Robin Space, indicating that, even at this acute timepoint, the pTau was in transit out of the 

parenchyma proper, possibly by means of the augmented glymphatic clearance hypothesized by 

the authors57. Indeed, there is evidence for chronic disfunction of the glymphatic system in 

patients with a history of mTBIs75, and work by Iliff et al76 has demonstrated that impairment of 

the mouse glymphatic pathway via genetic knockout of the astrocytic water channel Aquaporin 

4 (Aqp4) can promote extensive pTau pathology following a single “Hit and Run” mTBI55 at the 

chronic 3 month post-injury time point76. Furthermore, the locus coeruleus, which positively 

regulates glymphatic clearance during sleep via noradrenergic input75, is one of the first areas of 

the brain seen to be affected by astrocytic and neurofibrillary burden in mild CTE cases45,46,  at a 

stage when pTau is topographically limited to the cortex. These studies suggest that the relative 

lack of pTau accumulation across the myriad of animal models used may be due to a synergistic 

potentiation of pTau clearance by both lack of consciousness from anesthesia57,74 and inherent 
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anatomical differences in the routes of drainage of metabolic waste, such as pTau, from the 

parenchyma in lissencephalic animals, such as mice, rats, and sheep, as compared to humans75,77.  

Despite these, and other, translational limitations in recapitulating perivascular pTau foci 

pathology alongside white matter degeneration and neuroinflammatory insult, the studies of Ojo 

et al62 and Petraglia and colleagues63 have demonstrated an increase of pTau in hTau and 

C57BL/6 mice, respectively, at 3-6 months post-last mTBI62,63. The former study showed 

accumulation of pTau and higher conformational pTau species in the cortex of injured hTau mice 

3 months following the last of 26 mTBIs, delivered across a time-span of 3 months, and 

demonstrates marked deficits in neurobehavior and cerebral blood flow; the latter study also 

demonstrated increased pTau levels in the cortex, but did so following a much greater number 

of mTBIs, given at a much higher frequency, and to C57BL/6 mice, which do not express human 

Tau, and so have less of a proclivity towards exhibiting pTau aggregates. The juxtaposition of 

these reports further reiterates that, much like the observation of more aggressive CTE tauopathy 

seen in professional athletes in higher level of play45, even non-transgenic mice exposed to higher 

dose of mTBI over a shorter time frame may develop CTE-like pTau burden. However, there has 

yet to be a study demonstrating evolution of pTau or AT8 load in to NFTs in non-transgenic 

preclinical models, and so, the investigation into the physiological relevance of pTau in general, 

and perivascular pTau in specific, remains elusive.   

 

1.4. Diagnosis of TBI-related Pathology In vivo. 
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Magnetic Resonance Imaging (MRI), Diffuse Tensor Imaging (DTI), Single Photon Emission 

Computerized Tomography (SPECT), and Positron Emission Tomography (PET) MRI have been 

used for some time in the diagnosis and tracking of vascular dementia (VaD) and AD, amongst 

other neurodegenerative illnesses78. The most robust post-mortem pathological hallmarks of AD, 

such as atrophy of the cortical grey matter, and deposition of pTau NFTs and amyloid plaques 

throughout the parenchyma, are easily detectable in vivo via advanced neuroimaging 

techniques79, and combined CT/MRI-based volumetric measurements of brain matter have been 

shown to provide much more diagnostic precision than visual evaluation alone80.  

DTI, which detects water molecule diffusion through axons, and so measures white matter 

integrity and anatomical connectivity, has not only been used in AD as both a diagnostic and 

prognostic for the disease79, but has also recently shown promise in diagnosis of TBI related 

illness81.  Single and serial DTI MRI studies have shown late and persistent cortical thinning and 

white matter loss in human patients following both moderate-to-severe TBI82-84, and in those 

with a history of mTBI24,85,86. These recent points, and corroboration of longitudinal reports with 

the myelin loss and atrophy common to both CTE patient pathology31,41,45,46 and animal models 

thereof (see Table 1) spell hope for DTI as an early indicator and possible prognostic of the 

disease. However, the modality is limited in this regard by the fact that white matter pathology 

is secondary in the NINDS consensus criteria for CTE46, being a shared degenerative hallmark of 

multiple diseases, and so, more work and validation is required before DTI may be used as an in 

vivo biomarker for TBI.  

PET imaging has proven indispensable in the detection of proteinic biomarkers, such as Aβ, 

by PET ligands87, including 18FDDNP88, 11CSB89, and 11C-PIB90,91, and indeed, one such PET ligand, 
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18F-Florbetapir has even been FDA-approved because of its imaging signal’s correlation with Aβ 

load post-mortem92. The utility of neuroimaging as a diagnostic in AD, a disease the pathology of 

which is overlapping with TBI-related neurodegeneration, has led to recent research in to its 

clinical applicability in CTE. Preliminary research indeed suggests that imaging modalities may be 

a preferable approach to diagnosing and mapping CTE in the human population, as compared to 

neurocognitive and behavioral assessments, the insensitivity of which has been discussed 

earlier31,41,42,93 in patients with a history of sports related mTBIs. To this end, the activity and 

pharmacokinetics of the Tau protein PET radioligand tracer 18F-T807, otherwise known as 18F-AV-

1451, has recently been characterized in a study by Wooten et al94. The radiotracer was 

administered to four healthy control patients, three patients with a history of TBI, one of which 

sustained a severe TBI from an automotive accident, and two Mild Cognitive Impairment (MCI) 

patients94. Wooten and colleagues found that 18F-AV-1451 exhibited fast uptake in to, and fast 

elimination from, the brains of the participants, and very little non-specific white matter 

binding94, indicating its efficacy and safety as a potential PET tracer. Distribution of 18F-AV-1451 

was found to be uniform throughout the brain in control subjects, with no high sub-region 

accumulation, however, the patient with a severe TBI showed a high uptake in the posterior 

corpus callosum, extending in to the posterior cingulate gyrus94. Interestingly, both MCI subjects 

showed a separate, region-specific uptake of 18F-AV-1451, one in the occipital cortex and the 

other throughout areas associated with the Braak staging of Tauopathy in AD94,95. Further to 

Wooten and colleagues’ stratification of MCI from TBI patient antemortem by PET imaging94, 

Dickstein et al96 have reported PET recorded binding of 18F-AV-1451 in a spatial pattern akin to 

established CTE neuropathological criteria45,46, in the absence of 18F-Florbetapir-positive 
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amyloidosis, in a 39 year old male retired professional American Football Player with 

clinicopathological diagnosis of mild to moderate CTE. Most interestingly, the subject had been 

recorded as having sustained 22 confirmed concussions over his career in sports, 4 of which were 

accompanied by loss of consciousness, and presented with mild CTE cognitive and emotional 

symptoms, suggesting PET ligand imaging may be sensitive enough for detection of the disease 

early on in its pathogenesis96.  

Although the above studies would posit Tau protein PET imaging as an attractive antemortem 

diagnostic for CTE and TBI-related illness in the human population, there are several caveats to 

this approach. Most presciently, as compelling as the PET studies by Dickstein96, Wooten94, and 

a handful of other researchers97-99 are in gauging tauopathy non-invasively against case history, 

the aforementioned studies have not yet confirmed these PET findings against classical 

neuropathological analysis post-mortem.  

Application of the afore-mentioned imaging modalities, as they pertain to pTau and white 

matter pallor in TBI-related co-morbidity, is clearly in its infancy. Furthermore, the above 

preliminary studies are reliant on having at least a tentative clinical diagnosis of dementia or CTE. 

Ergo, were PET and other approaches to be validated in post-mortem tissue analyses, prospective 

patients would have to already be symptomatic for the disease, depreciating the potential impact 

of the antemortem evaluation on interventional therapy. There is thus an urgent need for 

identification and validation of in-vivo hallmark sequelae, appearing prior to manifestation of 

clinical symptoms, and identifiable non-invasively, which would allow cataloging of molecular 

pathways upstream of behavioral and cognitive dysfunction. 
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1.5. Traumatic Cerebrovascular Injury in Mouse and Man.  

The primary effects of mTBI involve not only mechanical insult to the neuronal milieu, and 

diffuse axonal shearing, but also extensive and diffuse damage to the vascular bed of the CNS, a 

form of TBI termed Traumatic Cerebral Vascular Injury (TCVI)100. Indeed, secondary injury 

following a mTBI, which results from the physiological cascade of molecular and cellular 

responses to the initial trauma, can perpetuate not only neuronal pathology, but also contribute 

further to TCVI101-104. The micro-domain connecting CNS vessels, regulation of CBF, vascular 

permeability, and angiogenesis, to neuronal metabolism and activity is known as the 

Neurovascular Unit100 (NVU), and comprises a dynamic interaction between the cerebral blood 

vessel wall and adjacent pericytes, smooth muscle cells, perivascular astroglia and neurons100, 

known as Neurovascular Coupling105. The gross macro-morphology of the cerebral vasculature 

and associated mechanisms of NVC and consequent increased CBF is depicted in Figure 1.2. The 

brain is critically dependent on a steady cerebral blood flow106 (CBF), with physio-normal 

functioning of the NVU ensuring maintenance of a constant CBF irrespective of perturbation in 

peripheral mean arterial blood pressure105,107, and so, any gross dysfunction of the NVU will have 

profound physiological consequences. There is much controversy regards which mural cell type, 

smooth muscle or pericyte, is most important for normal NVC functioning, with some groups 

stipulating the smooth musculature of arteries and arterioles as contributing the greatest 

towards changes in cerebral perfusion106, and others ascribing this role to pericytes of the 

capillary bed108. While smooth muscle cells express appreciable amounts of the contractile 

protein αSMA106, and so could be assumed to be responsible for bulk CBF response, pericytes 

have been shown to regulate CBF in vivo108-110, initiate and maintain retrograde signaling 
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upstream to larger arterioles and arteries via sensing and conductance of hyperpolarizing 

potassium cation current (Figure 1.2, A)111,112, and to contribute greatest to vascular resistance 

in the CNS113. It is also well accepted that the capillary strata of the cerebral vasculature responds 

and dilates first in mouse imaging studies114,115 and the initial BOLD MRI signal in humans 

emanates from localized parenchymal areas116, suggesting engagement of the capillaries, and 

perhaps by default pericytes, first in physio-normal Neurovascular coupling. Given the 

hypothesized importance of pericytes in healthy coupling of neuronal metabolic demand to 

adequate cerebral blood supply, it is perhaps not surprising that many groups have reported a 

decrease in pericyte vessel coverage following TBI in animal models117-122, coincident with 

impaired resting state CBF. The above data implicates a cellular and functional contribution of 

pericytes of the CNS to development of TCVI.  

As opposed to neurodegenerative hallmarks, such as pathognomonic pTau and NFT/amyloid 

pathology, the causal link to, and time of appearance alongside, neuronal dysfunction is still 

speculative, cerebrovascular pathology is known to not only appear in tandem with clinical 

symptomatology in tauopathies, such as AD, and downstream of primary TCVI and neuronal 

injury, but also to precede said neuronal pathology in these disease states100. Such is the case 

with the small vessel disease ‘Cerebral Autosomal Dominant Arteriopathy with Subcortical 

Infarcts and Leukoencephalopathy (CADASIL)’, the most common form of hereditary stroke and 

vascular dementia123, in which early and aggressive micro-vasculopathy does, by itself, cause 

neurodegeneration123. CADASIL is characterized by pre-symptomatic osmophylic accumulation 

in, and thickening of, the walls of small penetrating arteries and leptomeningeal vessels, and is 

similar in clinical presentation to vascular dementia and AD123,124, conditions for the development 
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of which a history of r-mTBI has been posited as a predisposing factor42,125-127. Concomitantly, 

one physiological correlate of vascular degeneration, cerebral hypoperfusion, has also been 

noted as a definitive risk factor for development of AD128,129, and a rapid conversion of mild 

cognitive impairment (MCI) to AD with reduced CBF has been reported in human patients130.  
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Figure 1.3. Anatomy and Function of the Neurovascular Unit. Neurovascular coupling is mediated by a variety of 
neurotransmitters and pathways (A), including, but not limited to, local release of vasodilators such as Adenosine 
and Prostoglandin E2 (PGE2) from astrocytes, and their direct hyperpolarizing action on the smooth musculature of 
the cerebral vasculature, resulting in cerebral vasodilation, and increased cerebral blood flow (CBF). Neuronally 
derived Acetylcholine (Ach) and growth factors and hormones, can also act on the endothelial layer of the cerebral 
vasculature, resulting in an increase in intracellular calcium concentration, and a calcium-dependent activation of 
endothelial Nitric Oxide Synthase (eNOS) through the activation of Calcium-Calmodulin complex (CaM) and release 
of endothelium-derived Nitric Oxide (NO), which increases activity of soluble Gaunalyl Cyclase, activating 
intracellular protein kinases, which promote reuptake of cytosolic calcium in to intracellular stores, causing smooth 
muscle cell hyperpolarization, relaxation, and vasodilation (A). Generation of eNOS is positively regulated by 
phosphorylation of the enzyme at Serine 1177, and Serine 635, and negatively regulated by dephosphorylation at 
Threonine 495. The pericytes and endothelium of the capillary bed are also involved in sensing of, and functional 
hyperemic response to, neuronal activity. Local increases in extracellular concentration of K+, resulting from 
increased activity-dependent neuronal depolarization, activate inwardly rectifying K+ channels resident on both 
pericytes and endothelial cells, initiating a net efflux of positive current, and hyperpolarization of the endothelium, 
which is retrogradely transmitted upstream to the endothelium of larger arterioles, and hyperpolarizes the smooth 
muscle cells through myo-endothelial junctions. The general morphology and mural cell distribution of the 
cerebrovasculature is shown in (B), with larger arteries and arterioles (greater than 10µm in diameter) being 
encompassed by circumferential band-like smooth muscle cells and pericytes. The surface of capillaries (of less than 
6µm in diameter) are mostly covered by pericytes with a “bump on a log” morphology, with astrocytic end-feet 
making up the difference in vessel coverage. The capillary bed terminates in to the venules of the cerebral 
vasculature, which are wrapped in both pericytes and stellate-shaped smooth muscle cells.  

AA, Arachidonic Acid; AC, Adenylyl Cyclase; Ach, Acetylcholine; Akt, Serine/Threonine-Specific Protein Kinase B; ATP, Adenosine Triphosphate; A1, 
Adenosine A1 Receptor; A2A, Adenosine A2 Receptor; BKCA, Big Potassium Channel; CaM, Calmodulin; cAMP, cyclic Adenosine Monophosphate; 
cGMP, cyclic Guanidine Monophosphate; eNOS, endothelial Nitric Oxide Synthase; GTP, Guanosine Triphosphate; IP3, Inositol Triphosphate; IP3R, 
Inositol Triphosphate Receptor; Kir, inwardly rectifying Potassium channel; L-Arg, L-Arginine; mAchR, muscarinic Acetylcholine Receptor; mGluR, 
metabotropic Glutamate Receptor; PIP2, Phosphatidyl Inositol 4,5 Bisphosphate; PLA2, Phospholipase A2; PLC, Phospholipase C; PGE2, 
Prostoglandin E2; P2YR, Purinergic P2Y Receptor; sGC, soluble Guanylyl Cyclase; SR, Sarcoplasmic Reticulum. Figure modified from Hartmann et 
al131, Neurophotonics, 2015.  
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TCVI of varying degree is seen in almost all reported cases of severe TBI post-mortem100, and 

also in the brains of patients dying in the acute phase of hours to days following a mTBI132.  TCVI 

typically manifests as extensive pericyte pathology postmortem in the acute and subacute phase 

following a severe TBI133,134, as brain contusion and capillary compression by astrocytic end-

feet135, and signs of blood brain barrier (BBB) penetrance136.  These sequelae, such as BBB 

permeability, are not monogamous for severe TBI however, but also for lesser intensities of head 

trauma, as Gill et al137 have recently shown plasma measurement of the astroglial marker Glial 

Fibrillary Acid Protein (GFAP), the neuronal cytoplasmic protein Neurofilament (NFL), and Tau to 

be sufficient to discriminate between mTBI patients and controls in the acute phase following 

injury and emergency room admission137. Changes in both regional and global CBF are observed 

in human patients following a single severe TBI, with vasospasm accompanying reduced flow in 

the acute period post-injury, before normalization of CBF to basal levels135. As with BBB 

disruption, neuroimaging implicates global and regional CBF disruption in much milder forms of 

TBI, and at more chronic timepoints post-injury, as is the case with a recent study by Siobounov 

and colleagues138, demonstrating differences in both global and regional CBF via Arterial Spin 

labelling (ASL), and Susceptibility Weighted Imaging (SWI), between collegiate football athletes 

and control participants over the course of a single season of football138. These perfusion-specific 

mTBI effects have also been recapitulated in animal models, with just a single cortical impact 

mTBI sufficient to cause reduced CBF and behavioral deficit in mice139, and work from our own 

institute has demonstrated a separate r-mTBI closed head impact model emulating a professional 

football-like frequency of mild impacts resulted in global CBF impairment as late as 3 months 
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post-last hit in hTau mice62. These data indicate a potential role for cerebrovascular dysregulation 

and resting state cerebral perfusion in the pathophysiology of TBI-related disease.  

As with resting state cerebral perfusion deficit and BBB permeability, Cerebrovascular 

Reactivity (CVR), the ability of the cerebral vasculature to produce a change in CBF in response 

to a vasoactive stimulus, and a direct measure of cerebral vascular health and reserve140, is 

known to be compromised across the spectrum of human head trauma intensity141-146. CVR 

deficit may not only be physiological proxy of TCVI, but is also seen in other neurodegenerative 

disorders, such as CADASIl147-149, MCI150 and AD150. Much like resting state CBF, CVR is often 

tested in the clinic using imaging modalities such as ASL, MRI, and NIRS, with BOLD MRI being the 

preferred imaging technique, and a transient increase in arterial partial pressure of CO2 (paCO2) 

via facemask inhalation of CO2-subsidized air being the vasoactive stimulus of choice and termed 

a hypercapnic challenge. Under physiological conditions, CVR may be said to be incumbent for 

NVC, as many mediators, including CO2, are generated by neurons during neuronal metabolism 

and depolarization (Figure 1.2), however, the CBF signal in response to the robust, supra-

physiological CO2 level used during hypercapnic challenge (pre)clinically is regarded as a more 

vascular-specific readout, by virtue of the fact that it is hypothesized to largely bypass neuronal 

input. Although the mechanisms underlying hypercapnic challenge-evoked CVR in health are 

incompletely understood, recent studies have shown this cerebral vascular function to be 

compromised in patients suffering from mild-to-moderate head trauma, and in animal models of 

moderate-to-severe TBI, positing CVR as a potential in vivo diagnostic, and possibly a therapeutic 

target, of chronic TBI related illness. 
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Owing to the prevalence of TCVI in the pathogenesis of both genetic and sporadic 

neurodegenerative illness, as above, and the perivascular nature of the pathognomonic pTau 

lesioning as a prerequisite for diagnosis of CTE, TCVI is implicated as a de facto hallmark of 

repetitive mTBI related neurodegeneration in general, and CTE in particular. Furthermore, 

vascular pathology appears to be the most universally recapitulated CTE-like pathological 

phenotype in animal models of r-mTBI (see Table 1), alongside inflammation and white matter 

damage. As such, investigating the integrity and function of the cerebrovasculature post-injury is 

an attractive preclinical research endeavor, which may lead to a meaningful therapeutic outcome 

measure. Despite the plethora of in-vivo neuroimaging modalities clinically available for the serial 

monitoring of patients following mTBI, and the emerging prevalence of cerebrovascular 

associated biomarkers in the human mTBI population, there is a stark paucity of pre-clinical CBF 

imaging conducted alongside correlative behavioral and vascular pathological analyses in 

relevant animal models of r-mTBI related neurodegeneration. This thesis will comprehensively 

examine the state of the cerebrovasculature at chronic time-points post-injury in a validated 

murine model of repetitive mild head trauma.  
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1.6. Hypothesis. 

The data here outlined implicate cerebrovascular dysfunction as a contributory factor in 

pathophysiology following repetitive head trauma in animal models and the human 

population. However, preclinical information regarding r-mTBI and the cerebrovasculature 

chronic time-points post-injury is lacking. As such, the purpose of this thesis is to characterize 

the pathological and physiological state of the cerebrovasculature in an already-validated 

mouse model of repetitive mild traumatic brain injury. I hypothesize there is chronic 

dysregulation of the cerebrovasculature following r-mTBI, accompanied by a gross deficit in 

cerebrovascular physiological response. The work to test this hypothesis is detailed in the 

following Chapters as outlined below: 

 

1. Chapter 2: Adult mice subject to a high dose and frequency of mild head trauma, 

analogous to that received by a professional athlete over the course of a career in sports, 

will exhibit learning and memory impairments and reduced cerebral blood flow at a 

chronic time-point post-injury.  

 

2. Chapter 3: Sustained neurobehavioral deficits seen following r-mTBI are accompanied by 

progressive dysregulation of cerebrovascular markers throughout the cortex. 

 

3. Chapter 4: Cerebrovascular reactivity is impaired in r-mTBI mice post-injury.  

 

4. Chapter 5: General discussion of findings. 
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Chapter 2.  Characterization of chronic memory and cerebral blood flow in a mouse model 

of repetitive mild traumatic brain injury. 

 

2.1. Introduction.  

Despite recent attempts to limit concussion in collegiate and professional contact sports, the 

incidence of r-mTBI and consequent acute and chronic neurocognitive symptoms among players 

remains high151. Almost all retrospective neuropathological post-mortem analyses of brains from 

former contact sports players, spanning the recreational and professional realms of American 

football, Hockey, Soccer, and Rugby, indicate that there is a causal link between a history of 

concussion and development of CTE-like pathology41,45,46,152,153. However, current and concise 

diagnosis of CTE can only be made post-mortem46, and recent neuroimaging techniques directed 

at the pathognomonic pTau spatial distribution throughout the diseased brain94,96-99 also 

necessitate enrollment of subjects based on clinical symptoms synonymous with having 

sustained repeat head trauma. Ergo, an established ante-mortem phenotype diagnostic 

approach to identify individuals in the pathogenic infancy of repetitive mTBI-related 

neurodegeneration is needed to circumvent clinicians’ dependency on insensitive behavioral 

assessments and self-reported, and often erroneous, testimony of time and severity of injury.  

 

The in vivo diagnoses of neurodegenerative disorders such as AD and vascular dementia have 

relied heavily upon detection of accumulation of misfolded and aggregated protein throughout 

brain regions of culpability. These regions are defined post-mortem across thousands of patients 
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at various stages of disease onset and pathology78. Therapeutic intervention based upon 

removing, or halting accumulation of, these aggregates has been unsuccessful, with exception of 

the recent Biogen Phase II clinical trial154, which demonstrated a modest slowing of progression 

of AD symptoms in patients receiving a passive antibody-based clearance of amyloid from their 

brain, as detected by PET, compared to control placebo-treated subjects. However, although the 

progression of the disease was described as being slowed by approximately 30% in the subset of 

patients given the highest dose of drug, compared to placebo treated group, individuals still 

exhibited symptom progression with time across the 18 months of treatment154. This result 

would suggest that for amyloid in AD, and possibly pTau in CTE, identification and enrollment of 

patients at a stage when the signature proteinaceous lesions have already formed may be too 

late in the pathobiology of the disease for feasible intervention. 

For these reasons, there is an unmet need in the field to identify clinical biomarkers and 

diagnostic tools, which can be detected and administered non-invasively following head trauma, 

for those patients at risk of chronic r-mTBI-related illness.  

To date, ample evidence exists for a role of vascular pathology and cerebrovascular 

dysregulation in the human mTBI population, with separate groups both reporting aberrant 

regional and global CBF in athletes138,141,  however, very few studies have examined CBF in 

relevant mouse models of r-mTBI62,155,156. We have recently reported a chronic reduction in 

global CBF in tandem with a trend towards neurobehavioral impairment, occurring alongside 

accumulation of pTau throughout the cerebral cortex, with marked inflammatory marker 

expression and white matter loss, in 9-month-old hTau mice at 3 months post-injury, in our novel 

chronic r-mTBI mouse model, consisting of one hit administered twice a week, approximately 72 
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hours apart, for 12 weeks62. This hit paradigm used in the studies herein is thus different in 

frequency to another also previously characterized by our group, which consisted of 5 mTBIs 

administered at an interval of 48 hours apart60. As our first approach, we aimed to more 

rigorously assess learning and memory-related neurobehavior, as opposed to solely the 

disinhibition-like and exploratory/locomotor activity examined in our previous report, in 12-

month-old adult C57BL/6 mice, subjected to the same r-mTBI paradigm, and to examine the state 

of the cerebrovasculature at a chronic time-point post-injury. Furthermore, for this study, adult 

wild type, rather than hTau transgenic mice were used to establish whether sustained CBF 

impairment and cognitive dysfunction can occur in the absence of detectable differences in levels 

of pTau, allowing for a more cerebrovascular-associated assessment of TBI phenotype in this r-

mTBI mouse model. 

 

2.2. Materials and Methods  

2.2.1. Animals. 

Male and female C57BL/6 mice were housed under standard laboratory conditions (23 ± 1ºC, 

50 ± 5% humidity, and 12 hour light/dark cycle) with free access to food and water throughout 

the study. All procedures were carried out under Institutional Animal Care and Use Committee 

approval, and in accordance with the National Institute of Health Guide for the Care and Use of 

Laboratory Animals.  
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2.2.2. Injury Schedule. 

12-month-old mice were randomly assigned to one of two groups: repetitive mild Traumatic 

Brain Injury (r-mTBI, delivered twice each calendar week i.e., 1 hit approximately every 72 hours, 

over a period of 3 months) or repetitive Sham (r-Sham; animals underwent the same duration 

and frequency of anesthesia as r-mTBI animals). An electromagnetic impactor (Leica Instruments) 

was used to generate a midline mTBI, using a 5.0mm diameter flat face tip, 5m/s strike velocity, 

1.0mm strike depth, and a 200msec dwell time, as previously characterized59. The mice were 

euthanatized 7 months after the final injury/anesthesia (i.e., 22 months of age). 

 

2.2.3. Assessment of Cognitive Function 

Cognitive function was assessed at 1 and 6 months after the final injury/anesthesia (15 

months of age and 21 months of age, respectively) by use of the Barnes maze, as described 

previously by our group59. Researchers conducting the experiments were blind to grouping, and 

the Ethovision XT System (Noldus) was used to track and record the movement of each animal. 

Mice were given 90 seconds to locate and enter the target box and required to remain in the 

target box for 30 seconds prior to retrieval, regardless of success. For a series of 6 consecutive 

days, 4 trials were given per day, with mice starting from one of four cardinal points on each trial. 

The inter-trial interval for each mouse on any given day of acquisition was approximately 40 

minutes. The maze platform and retrieval box were both cleaned thoroughly between trials to 

limit the confounding effects of scent on performance of the mice during each trial. On the 

seventh day, a single probe trial lasting 60 seconds was performed, with the mouse starting from 
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the center of the maze and the target box removed. Escape latency measured the time taken for 

the mouse to enter the box. 

In addition to assessment of learning and spatial memory via use of the Barnes maze, animals 

were tested for anxiety-like behavior in the elevated plus maze (EPM)157. The apparatus consists 

of two open and two closed arms forming a plus shape. The arms are elevated approximately 80 

cm from the floor. Each mouse was placed on the junction of the four arms of the maze, facing 

the open arm. The mouse was allowed to freely explore the maze for 5 min in a dimly lit ambient 

lighting (∼1 lux). The percentage of time spent in the open arms was calculated using the 

Ethovision video tracking system158. 

 

2.2.4. Histology 

Following CBF measurements at 22 months of age, the animals were anesthetized with 

isoflurane and perfused trans-cardially with phosphate-buffered saline (PBS), pH 7.4, the brain 

was removed from the skull, and one hemisphere was dissected to separate the brainstem, 

cerebellum, and ophthalmic bulbs from the rest of the hemisphere for biochemical analysis. The 

other hemisphere was post-fixed in 4% paraformaldehyde solution at 4ºC for 48 hours, and 

paraffin-embedded for Immunohistochemistry as previously described60. For each group, sagittal 

sections were cut at 6µm in thickness (lateral 1 in 10 series, 0.1–0.2mm), with the first 10 

consecutive sections cut mounted one by one on to 10 separate consecutive slides, and the next 

10 sections below these, resulting in 10 slides, each with two sections, per animal. Sections were 

deparaffinized with Histoclear (Fisher Scientific) followed by re-hydration via decreasing ethanol 
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gradient. Sections were then incubated in 3% hydrogen peroxide in order to quench endogenous 

peroxidase activity, and then underwent citrate buffer (pH 6.0) antigen retrieval for 7 minutes. 

Following antigen retrieval, sections were blocked in 2.5% normal serum at room temperature 

for approximately 30 minutes, and then incubated with primary antibody overnight at 4ºC. 

Sections were stained with primary antibodies against glial fibrillary acid protein (GFAP; DAKO, 

rabbit anti-GFAP polyclonal, ZO334, 1:10000 dilution), and ionized calcium binding adaptor 

protein 1 (Iba1; Abcam, goat anti-Iba1 polyclonal, Ab5076, 1:2500 dilution), either anti-rabbit or 

anti-goat secondary antibodies, using respective Vector ABC rabbit IgG or goat IgG Vectastain 

reagent kits (Vector Laboratories) and revealed using the Avidin-Biotin peroxidase DAB substrate 

solution (Vector DAB peroxidase substrate kit, Vector Laboratories, SK4105).   Sections were 

counter-stained with Mayer’s Hematoxylin (Sigma). Slides were visualized with a bright field 

microscope (BX60), and digital images were visualized and acquired using a MagnaFire SP camera 

(Olympus). At least 2 sections (one slide) were stained per animal for either Iba1 or GFAP 

immunohistochemistry, with at least 5 non-overlapping 40x magnification images of cortex 

analyzed per brain section, and at least 2 non-overlapping 60x magnification images of the Cornu 

Ammonis 1 (CA1), and at least 6 non-overlapping 60x images of the body of the Corpus Callosum 

(CC) regions of interest analyzed per brain section. The percentage area of image positive for 

either GFAP or Iba1 immunoreactivity was then analyzed by Zeiss Software following manual 

thresholding of image. The percentage area of individual regions of interest across sections for 

each mouse were averaged and then analyzed as biological replicates per group using unpaired 

student t-test.  
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2.2.5. Biochemistry 

Western Blot analysis was carried out on brain tissue homogenates, following 

homogenization of tissue by sonication in HALT Protease and Phosphatase Inhibitor Cocktail 

mPER-containing lysis buffer. Equivalent total protein amounts were analyzed on sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis under denatured and reduced, and denatured and 

non-reduced, conditions using 4-20% Bis-Tris precast Gels (Biorad), and electro-blotted on to a 

polyvinylidene difluoride (PVDF) membrane overnight at 90mA constant current. Membranes 

were then washed in de-ionized water, before being blocked for 1 hour at room temperature 

with 5% non-fat milk in tris buffered saline (TBS). Membranes were then incubated with primary 

antibodies overnight (12-16 hours at 4°C). The following primary antibodies were used at the 

given concentrations; GFAP (DAKO, rabbit anti-GFAP polyclonal, ZO334, 1:10000 dilution), 

laminin (Sigma, rabbit anti-mouse laminin, L9393, 1:50 Dilution), platelet derived growth factor 

receptor β (PDGFRβ; Abcam, rabbit anti-PDGFRβ monoclonal, ab32570, 1:1000 Dilution), alpha 

smooth muscle actin (αSMA; Millipore, mouse anti-αSMA monoclonal, ASM-1, 1:1000 dilution), 

Iba1 (Abcam, goat anti-Iba1 polyclonal, Ab5076, 1:2500 dilution)  and rabbit anti-GAPDH, 

glyceraldehyde 3-phosphate dehydrogenase (Sigma-Aldrich, 1:1000 dilution). Membranes were 

washed with deionized water, incubated with their respective secondary antibody for 1 hour at 

4°C, washed once more, and then developed using ECL chemiluminescent detection reagent (GE 

Life Sciences). Membranes were imaged using a Biorad ChemiDoc Wetern Blot Imager, and 

densitometry results of individual bands were collected using ImageLab 5.2 (Biorad) software. 

Target protein values for each lane were normalized against densitometry values for GAPDH for 

their respective lane. Target protein values were also normalized against the total protein stain 
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for their respective lane using a coomassie blue stain (data not shown) to validate the GAPDH-

normalized results.  

 

2.2.6. Determination of Regional Cerebral Blood Flow by Laser Scanner Doppler Imaging  

For CBF measurements, 22 month-old r-Sham and r-mTBI wild type mice (at 7 months 

post injury) were anesthetized with a gas mixture of 3% isoflurane and 0.5 L/min oxygen, 

immobilized on a mouse stereotaxic table (Kopf Instruments). Body temperature was monitored 

via rectal probe and maintained at 37ºC using a mouse homeothermic blanket system (Harvard 

Apparatus). An incision was made through the scalp, and the skin retracted to expose the skull. 

The periosteal connective tissue, which adheres to the skull, was removed with a sterile cotton 

swab. Cortical perfusion was measured with the Laser Doppler Perfusion Imager from Moor 

Instruments as previously described159. A computer-controlled optical scanner directed a low-

powered He–Ne laser beam over the exposed cortex. The scanner head was positioned parallel 

to the cerebral cortex at a distance of 26 cm. The scanning procedure took 1 min 21 s for 

measurements of 5538 pixels covering an area of 0.8 x 0.8 cm, and six replicate images per mouse 

were collected. At each measuring site, the beam illuminated the tissue to a depth of 

approximately 0.5 mm. An image color-coded to denote specific relative perfusion levels was 

displayed on a video monitor. All images were stored in computer memory for subsequent 

analysis. For each animal, a square area of 0.05 cm2 (360 pixels) equally distributed between the 

right and left hemispheres was defined and applied to each image of the series in order to 

measure the CBF in the entire, frontal, and occipital cortex using the Moor LDI Image Processing 
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V3.0h software. CBF was also measured by manually delineating for each mouse the cortex area 

(0.51– 0.54 cm2 corresponding to 3504–3714 pixels). Relative perfusion values for each area 

studied were expressed as arbitrary units. 

 

2.2.7. Statistical Analysis 

All data were assessed as if they were coming from a normally distributed population, using 

skewness and kurtosis of the distribution. If there were statistically significant kurtosis and 

skewness, the data was transformed using log2, or square root transformation.  When 

transformation did not yield a normally distributed data set, the non-parametric Kruskal-Wallis 

test was used.  

For Barnes Maze, normally distributed data was analyzed using parametric methods. If a 

given dataset was normally distributed and variances were equal, One-way ANOVA (for probe) 

or repeated measures ANOVA (for acquisition) were used to assess significant changes due to 

injury. Mauchly's sphericity test was used to evaluate sphericity in repeated measures ANOVA, 

and, if it was statistically significant, degrees of freedom were corrected with Greenhouse-

Geisser estimates of sphericity. Two-way ANOVA was used to assess significant differences 

between groups on only day 6 of acquisition trials.  

For the measurement of cerebral blood flow, the data were first tested for unequal variances 

using the O’Brien test for homogeneity of variance. If the variances were not equal Welch's test 

was used. For the analysis of CBF measurements, two-way ANOVA of values was run on a one 
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way ANOVA platform, selecting the replicate values as block, i.e. X and Y variables were analyzed 

via two way ANOVA to reveal statistical differences in X. Both Western Blot and 

Immunohistochemistry data were analyzed using unpaired student t-test. A given effect was 

considered significant at p<0.05, and indicated by asterisks in the figures. Error bars represent 

the standard error of the mean. Statistical analyses were performed using JMP 11.1.1 (SAS) and 

graphs were created using GraphPad Prism 5.0.  

 

2.3. Results 

2.3.1. Barnes Maze Acquisition 

At both the 1 month and 6 month time-points following the final injury/anesthesia, r-mTBI 

mice travelled a significantly greater cumulative distance than their r-Sham controls (Figure 2.1, 

A and B, P<0.001). Additionally, we observed a distinct effect of injury on cumulative distance 

travelled over time, reflected by a progressive separation of cumulative distance travelled by r-

mTBI mice, compared to r-sham controls, across the 6 consecutive days of acquisition at 1 month 

post-injury (Figure 2.1, A, r-Sham vs r-mTBI; P=0.0028) and a non-significant effect of treatment 

on cumulative distance with time at 6 months (Figure 2.1, B, r-Sham vs r-mTBI; P=0.07). We 

observed a time-dependent effect of injury across the 6 days of acquisition at 1 month post-injury 

(Figure 2.1, C, P=0.08), however, this injury by time interaction was not significant at 6 months 

post-injury (Figure 2.1, D, P<0.001), with the average velocity of r-mTBI mice being statistically 

greater than that of r-Sham controls on day 6 of acquisition at 6 months (Figure 2.1, D, P<0.001) 

but not at 1 month (Figure 2.1, C, P=0.2) post-injury. 
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Figure 2.1. Evaluation of learning (acquisition) and retention of spatial memory of wild type mice using the Barnes 
maze at 1 and 6 months following repetitive mild traumatic brain injury. Mice were tested in the Barnes maze for 
their ability to locate a black box at the target hole. During the course of the 6 days of acquisition at both the 1 
month sub-acute, and 6 month chronic time-points post-injury, the r-mTBI mice travelled a greater mean cumulative 
distance to reach the target hole, compared to sham controls (A and B, P<0.001, repeated measures ANOVA). In 
cumulative distance data, the injury by time interaction term was statistically significant across the 6 days of 
acquisition at the 1 month post-injury time-point (P<0.01, Repeated Measures ANOVA), however, this was not seen 
at the 6 month time-point (P=0.07, repeated measures ANOVA). There was also a significant effect of injury on mean 
velocity between groups across all 6 days of acquisition at both the sub-acute 1 month and the chronic 6 Month 
time-point (C and D; P<0.001, repeated measures ANOVA) with a significant increase in velocity of r-mTBI mice vs r-
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Sham controls on day 6 of acquisition at 6 months post-injury (D; P<0.001, Two Way ANOVA). There was no 
significant effect of injury with time on mean velocity at 1 month post-injury (C; P=0.08, repeated measures ANOVA), 
and no significant difference in velocity between groups on day 6 of acquisition at 1 month post-injury (C, P=0.2, two 
way ANOVA). Evaluation of spatial memory retention (Probe) of wild type mice using the Barnes maze, at 1 and 6 
months following r-mTBI (Figure 2, E and F, respectively). For the probe trial (the day immediately following the 6 
consecutive days of acquisition testing), the target box was removed and mice were placed in the middle of the table 
for a single, 60-second trial. Probe test performance was significantly impaired in the r-mTBI mice at 1 month (A, 
P<0.01, Welch’s Test) and 6 months (B, P<0.01, one-way ANOVA), compared to r-Sham controls. Data are presented 
as Mean ± Standard Error of the Mean (SEM); 19 r-Sham, and 13 r-mTBI at 1 Month; 18 r-Sham, and 6 r-mTBI at 6 
Months. Statistical P values on figure represent statistical analysis only for day 6 of acquisition. The injury by time 
interaction values are not shown in the figure.  

 

2.3.2.  Barnes Maze Probe 

Probe test performance was profoundly impaired in r-mTBI mice, compared to sham controls, 

at both 1 month (Figure 2.1, E, P<0.01) and 6 months (Figure 2.1, F, P<0.01) post-injury. There 

was no statistically significant difference in mean velocity, distance travelled, or total errors made 

between groups during the probe trial at either 1 month or 6 months post-injury (P<0.05, data 

not shown). 
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Figure 2.2. Evaluation of anxiety using the elevated plus maze (EPM) at 1 month post-injury. (A) Injured animals 
spent on average 79% more time in the open arms of the EPM compared to r-Sham controls, however, this trend in 
behavior was not statistically significant (P>0.05, unpaired student t-test). Additionally, r-mTBI animals exhibited 
approximately 26% greater frequency of entries in-to the open arms of the maze, compared to r-Sham controls, 
however, this result was not significant (B, P>0.05, unpaired student t-test). Data are presented as mean ± standard 
error of the mean (SEM); 19 r-Sham, and 13 r-mTBI at 1 month. 

 

2.3.3. Elevated Plus Maze 

Following probe testing at 1 month post-injury, r-mTBI and r-Sham mice were assessed for 

anxiety-like behavior via the Elevated Plus Maze (EPM, Figure 2.2). There was no significant 

difference in percentage time spent in the open arms by r-mTBI mice, compared to r-Sham 

controls (Figure 2.2, A, P>0.05), and so, similar levels of anxiety between both r-Sham and r-mTBI 

animals at this time-point. Additionally, there was no significant difference in the number of 

entries of r-mTBI mice in to the open arms (Figure 2.2, B, P>0.05), compared to r-Sham controls.  
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2.3.4. GFAP Immunostaining and Biochemistry  

Immunohistochemical analysis of glial fibrillary acidic protein (GFAP) immunostaining was 

carried out on the brain regions underlying the impact site, specifically the somatosensory and 

primary motor cortices, Corpus Callosum (CC), and Cornu Ammonis 1 (CA1) of the Hippocampus, 

of the r-Sham and r-mTBI mice from which Cerebral Blood Flow recordings were obtained. There 

was no statistically significant difference in the percentage area of GFAP-positive labelling in 

images taken of the cortices of r-Sham (0.1523% ± 0.05%) vs r-mTBI (0.1234% ± 0.03%) animals 

(Figure 2.3, A, P = 0.89). The lack of injury-effect on GFAP labelling in the cortex was not 

accompanied by the presence of hypertrophic GFAP-positive cells, but instead by a 

morphologically quiescent GFAP-positive cell phenotype in both r-Sham and r-mTBI mice (Figure 

2.3 A, the boxed insets being magnifications of the cells indicated by arrows). There was a 

noticeable increase in astrogliosis in the CC of r-mTBI mice (Figure 2.5, D, 9.05% ± 0.68% of area) 

compared to that of r-Sham controls (Figure 2.5, C, 5.69% ± 1.14% of area), however, this was 

not significant (Figure 2.5 J, P=0.0519). Pursuant to the immunopathological GFAP labelling in the 

cortex, western blot analysis of the contralateral brain homogenate did not demonstrate a 

statistically significant difference in GFAP expression between r-Sham and r-mTBI mice at 7 

months post-injury (Figure 2.3, B, P=0.57). Immunohistochemical analysis of the CA1 revealed no 

significant difference in GFAP immunoreactivity between r-Sham and r-mTBI animals (Figure 2.5, 

A and B; I, P=0.41).   
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Figure 2.3. Astrogliosis in the cortex of animals 7 months following r-mTBI. (A) There was no difference in expression 
of GFAP within the cortex of the r-mTBI group when compared to their sham counterpart (P=0.89, unpaired student 
t-test). (B) Western Blot analysis of brain homogenates showed no significant difference in GFAP expression between 
groups at 7 months post-injury (P=0.57, unpaired student t-test). Boxed inset in (A) shows 60x magnification of area 
indicated by the arrow. Astrocytes in the superficial layer of cortex of both r-sham and r-mTBI animals appeared to 
be morphologically quiescent, and opposed to hypertrophic, in shape. Immunohistochemistry: 6 r-Sham, 6 female; 
and 6 r-mTBI, 3 male, 3 female. Values represent percentage area of image analyzed. Error bars represent ± SEM, 
scale bars in images represent 20μm in length. 
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2.3.5. Iba1 Immunohistochemistry and Biochemistry 

The degree of glial reactivity throughout the superficial layers of the cortices, the CA1 and 

the CC of all mice from which the CBF recordings were taken was assessed via immunostaining 

of brain sections with a macrophage/microglial marker antibody specific to ionized calcium 

binding adaptor molecule 1 (Iba1). Immunohistochemical analysis of the Cortex (Figure 2.4, A) 

revealed no significant difference in Iba1 staining between the cortices of r-Sham (0.48% ± 0.04%) 

and r-mTBI (0.67% ± 0.09%) mice (Figure 2.4, A, P=0.065). Furthermore, it appeared that cells 

positive for Iba1 in the superficial layer of cortex of either r-Sham or r-mTBI animals were 

rounded, but not amoeboid in shape, displayed long thin processes and a spherical shaped cell 

soma (Figure 2.4, A, boxed inset of cell in magnified areas indicated by arrows), indicating an 

unreactive phenotype. There was a significant increase in Iba1 levels in the CC of r-mTBI mice 

(Figure 2.5, H, 1.25% ± 0.01% of area) compared to that of r-Sham (Figure 2.5, G, 0.88% ± 0.07% 

of area) control mice (Figure 2.5, L, P<0.01). Immunohistochemical evaluation of Iba1 expression 

in the cortex of these animals was confirmed by western blot analysis (Figure 2.4, B), which 

showed no significant difference in brain homogenate Iba1 levels between r-Sham and r-mTBI 

mice (Figure 2.4, B, P=0.67) at 7 months post-injury. Immunohistochemical analysis of the CA1 

revealed no significant difference in Iba1 immunoreactivity between r-Sham (Figure 2.5, E) and 

r-mTBI (Figure 2.5, F) animals (Figure 2.5, K, P=0.89). 
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Figure 2.4. Assessment of glial cell reactivity in the cortex of animals 7 months following injury. (A) 
Immunohistochemistry of brain sections did not reveal a significant difference in glial cell count, as assessed by Iba1 
immunostaining, between the cortices of injured animals and sham controls post-injury (P=0.065, unpaired student 
t-test). (B) Western Blot analysis of brain homogenates showed no significant difference in Iba1 expression between 
groups at 7 months post-injury (P=0.67, unpaired student t-test). Boxed inset in (A) shows 60x magnification of area 
indicated by the arrow. Glia in the superficial layer of cortex of both r-sham and r-mTBI animals appeared to be small 
and rounded, but not amoeboid in shape, with long, thin processes, indicative of a non-reactive microglial state.   

Immunohistochemistry: 6 r-Sham, 6 female; 6 r-mTBI, 3 male and 3 female. Biochemical analysis: 6 r-Sham, 
6 female; 6 r-mTBI, 3 male and 3 female. Values expressed as percentage of area of image analyzed. Error 
bars represent ± SEM, Scale bars in images represent 20μm in length. 
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Figure 2.5. Evaluation of astrogliosis and micro-glial cell reactivity by expression of glial fibrillary acidic protein (GFAP) 
and ionized calcium binding adaptor protein 1 (Iba1), respectively, in the CA1 and corpus callosum (CC) of r-Sham 
and r-mTBI mice at 7 months post-injury (GFAP, A, B, C, & D; Iba1; E, F, G, & H). There was no significant difference 
in expression of GFAP-positive cells between r-Sham (A)  and r-mTBI (B) mice in the CA1 of the hippocampus at 7 
months post-injury (I, P=0.78, Unpaired Student t-test), however, analysis of GFAP immunoreactivity in the CC 
revealed a moderate increase in astrogliosis in the CC of r-mTBI mice (D, 9.05% ± 0.68% of area) compared to that 
of r-Sham controls (C, 5.69% ± 1.14% of area), though this was not significant (J, P=0.0519, unpaired Student t-test). 
Analysis of Iba1 expression in the CA1 (E and F) and CC (G and H) of mice 7 months post injury revealed no significant 
difference in the degree of gliosis in the CA1 (K, P>0.05, Unpaired Student t-test), however, there was a significant 
increase in the degree of Iba1 immuno-positive staining in the CC of r-mTBI mice (1.25% ± 0.01% of area) compared 
to r-Sham controls (0.88% ± 0.07% of area) at 7 months post-injury (L, P<0.05, unpaired student t-test). GFAP 
Immunohistochemistry: 6 r-Sham and 6 r-mTBI. Iba1 Immunohistochemistry: 4 r-Sham, 4 Female; 6 r-mTBI, 3 Male 
and 3 Female. Values expressed as percentage of area of image analyzed. Error bars represent ± SEM, Scale bars in 
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images represent 60μm in length for images taken at 40x magnification, and 100μm in length for images taken at 
20x magnification. 

 

2.3.6. Biochemical Analysis of Vascular Markers 

Immunoblot analysis of the blood vessel markers laminin, PDGFRβ, and αSMA was carried 

out in r-Sham and r-mTBI mice. The antibody chosen for the experiments herein (Rabbit Anti-

laminin, Sigma-Aldrich, L9393) was raised against the α (440 kDa) and β/γ (220 kDa) chains of 

purified mouse laminin, however, this antibody does not detect the α1 chain on western blots, 

and so, immunoblot analysis detected a 200-220 kDa protein band appropriate to be the size of 

β/γ chains. Western analysis of wild type brain homogenate revealed a statistically significant 

increase in levels of Laminin, PDGFRβ, but not αSMA, in r-mTBI mice, compared to r-Sham 

controls (Data not shown, P<0.01; PDGFRβ, P<0.01; αSMA, P=0.3). However, as mural cell 

expression is dependent on vessel density, PDGFRβ and αSMA expression was normalized to the 

laminin/GAPDH ratio for each lane in the gel, which is portrayed in the graphs seen in Figure 2.6, 

B and C). The values for PDGFRβ and αSMA, when normalized to their respective Laminin 

proportions, showed a statistically significant decrease in PDGFRβ and αSMA r-mTBI cortex of 

30% and 33%, respectively, compared to r-Sham controls (Figure 2.6, B, P<0.01; αSMA Figure 7, 

B, P<0.05).  
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Figure 2.6. Western Immunoblot analysis of brain homogenates of r-Sham and r-mTBI mice. (A) Expression of the 
neurovascular-associated base-membrane protein laminin was significantly increased in the brains of r-mTBI mice 
(0.18 ± 0.02, Arbitrary units (AU)) compared to r-Sham controls (0.26 ± 0.03, AU, P<0.01, unpaired student t-test). 
(B) Levels of platelet derived growth factor receptor β (PDGFRβ) were significantly decreased in the cortex of r-mTBI 
mice compared to that of r-Sham controls (r-mTBI; 11.52 ± 0.61 AU vs r-Sham; 16.63 ± 0.07, P<0.01, unpaired student 
t-test) when normalized to laminin expression throughout the brain. (C) Expression of the contractile-associated 
protein α-smooth muscle actin (αSMA) was significantly lower in r-mTBI cortex compared to r-Sham control cortex 
(5.67 ± 0.49 AU for r-Sham, vs 3.85 ± 0.32 for r-mTBI, P<0.05, unpaired student t-test), when normalized to laminin 
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expression throughout the brain. 6 r-Sham and 6 r-mTBI. Values expressed as AU. Error bars represent ± SEM. All 
densitometry values for laminin for individual bands were normalized to the glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) value for their respective lane and this ratio used for statistical analysis. Values for individual 
lanes for PDGFRβ and αSMA were both normalized to the laminin/GAPDH ratio of the same lane for statistical 
analysis and generation of graphs (B) and (C). 

 

2.3.7. Assessment of Cerebral Blood Flow  

Average global or entire cortex CBF was markedly decreased in r-mTBI mice compared to 

their respective r-Sham controls (Figure 2.7, D, wild type r-mTBI vs r-Sham, 10.66% ± 2.04%, 

P<0.001). When analyzed by brain region, there was no significant difference in average CBF 

between the frontal cortices of r-mTBI and r-Sham mice (Figure 2.7, E, P>0.05), however, there 

was a significant decrease in average CBF in the occipital cortex of r-mTBI mice, compared to r-

Sham controls (Figure 2.7, F, P<0.001) indicating that the decrease in average global CBF readings 

in the r-mTBI mice is being driven by the decrease in CBF in the occipital, and not frontal, cortical 

regions.  
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Figure 2.7. Representative replicate images (3 per mouse) of two-dimensional color-coded microvasculature flow 
maps of both sham and injured aged wild-type mice (A, and B, respectively) obtained using a Moor Instruments® 
Laser Doppler Imager. Orientation of a representative dorsal view of a microvasculature flow map along the 
posterior-anterior axis is shown in C. Mouse skull was exposed under isoflurane anesthetic and a bright-field image 
taken before every repeat scan to allow for future subdivision of the entire cortex reading in to frontal and occipital 
regions of interest relative to Bregma and Lambda. Six replicate scans per mouse were analyzed to give the average 
cerebral blood flow for the entire cortex, occipital cortex, and frontal cortex for each group (n=6), represented here 
as scatter dot plot figures D, E, and F, respectively. The cerebral blood flow recordings were analyzed using a two-
way Analysis of Variance (ANOVA) mixed model ANOVA, selecting the replicate values as block (n=6 for each group). 
At 7 months post-injury, r-mTBI mice show a statistically significant decrease in average cerebral blood flow 
recordings in the entire cortex of 10.66% ± 2.04%, compared to age matched r-Sham controls. A statistically 
significant difference in cerebral blood flow is not seen between the frontal cortices of r-Sham and r-mTBI mice, 
however, a statistically significant and injury-dependent decrease in occipital cortex CBF of 11.87% ±2.33% for  r-
mTBI mice, compared to their r-Sham controls is evident several months following injury (Figure 1, F). Mice: 6 r-
Sham, 6 r-mTBI. Statistical analysis was conducted using two-way ANOVA. Error bars represent mean ± SEM. 
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2.4. Discussion 

Understanding the initial primary injuries and evolving secondary injury cascades behind 

repetitive head trauma is paramount to the development of new therapies to combat disorders 

like CTE in the human population. Using a mouse model of repetitive injury, we here demonstrate 

that repetitive mild injury, given at a frequency intended to mimic that endured by professional 

athletes or military personnel over the course of a career, results in profound impairment of 

global cerebral blood flow. This impairment in CBF was associated with persistent cognitive 

deficits evident at 1 month and 6 months post-injury, as demonstrated by impaired acquisition 

and consolidation of spatial memory in the Barnes Maze. The diminished CBF recordings and 

behavioral effect we identified here following r-mTBI are in accordance with CBF impairment 

observed following a single mTBI139 in the rodent, and prior reports from our lab describing 

neurobehavioral deficits at chronic time-points following repetitive injury60,62. A further 

advantage to the behavioral analyses conducted here is that that the Barnes Maze acquisition 

and probe, and the Elevated Plus Maze test, were repeated at both time-points on the same 

cohorts of mice. The results are thus truly representative of the persistent and evolving nature 

of cognitive impairment described, and not confounded by any potential cohort-to-cohort 

experimental error or biological replicate variability. There are fewer r-mTBI mice analyzed and 

depicted at the 6 month post-injury time-point, as compared to the 1 month post-injury time-

point, due to four r-mTBI mice having to be euthanized in compliance with animal welfare and 

ethics guidelines, and also because of several injured mice having been excluded from probe test 

as they failed to poke their nose in a single target hole during the 60 seconds of trial.  
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Perhaps the most prominent of the secondary injury cascades implicated in chronic mild and 

moderate-to-severe TBI neuropathology in the human population to date is CNS inflammation, 

seen following even just a single acute severe TBI160, and persisting up to years following a mild 

head injury161. Indeed, pTau astrogliopathy is a hallmark of CTE45,46. Furthermore, recent findings 

in human CTE patients, by Hsu et al162, show a phenotype termed ‘astrocytic degeneration’ in 

both gray and white matter, with no correlation between pTau immunoreactivity in the sulcal 

depths and astrogliosis and astrocytic degeneration in white matter adjacent to the sulcal depths. 

These observations suggest that the neuroinflammatory component of CTE-like pathology may 

be a CTE signature hallmark of its own162. Animal models of r-mTBI readily recapitulate 

neuroinflammation, with microgliosis and astrogliosis and accompanied white matter 

degeneration observed up to two years following r-mTBI in mice59-61,163. The hit paradigm used 

in this present study has been shown to induce CBF impairment and neuroinflammatory insult of 

the white matter in hTau mice aged 9 months, at 3 months post last hit. To validate our current 

findings as being representative of the white matter microgliosis and astrogliosis demonstrated 

throughout our previous chronic survival studies in mice at various ages, we examined the Iba1 

and GFAP positive immunoreactivity in the superficial gray matter of the cortex, the CA1 of the 

hippocampus, and the body of the corpus callosum. In line with our previous studies, we 

observed a significantly greater area of immunoreactivity throughout the white matter at 7 

months post-injury in r-mTBI mice, compared to r-sham control animals, with no 

neuroinflammation evident throughout the gray matter.  

Laser Doppler Flowmetry (LDF) is a non-invasive method to estimate the relative blood 

perfusion in the microcirculation. The LDF technique used here is not only useful in that it is a 
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real-time measurement of blood flow in these mice, but also pertinent due to the recent use of 

a similar technique (transcranial Doppler ultrasonography) investigating sports-related injuries in 

humans, a TBI demographic which our animal model emulates in terms of the frequency of hits 

sustained over a prolonged period of time. Owing to the failure of many animal models of 

repetitive injury to recapitulate the kind of extensive p-tau immunoreactivity, neurofibrillary 

tangles (NFTs), and amyloid burden seen in the human population, and indeed the fact that, as 

mentioned, tau/amyloid pathology post-mortem may not fully reflect the processes contributing 

to the development of CTE, the recapitulation of CBF impairment in both athletes and retired 

military personnel by our r-mTBI mouse model may be of great translational significance. Adding 

further credence to the diagnostic and preclinical relevance of CBF impairment in repetitive 

injury-induced pathogenesis, a recent report by Amen et al141 demonstrated global and regional 

CBF impairments in National Football League (NFL) players, as measured by Single Photon 

Emission Computed Tomography (SPECT) imaging, compared to healthy control individuals. Our 

perfusion studies coincide with these findings, as we observed both a global reduction of CBF in 

r-mTBI mice, compared to control animals, and brain region-specific alterations in the aftermath 

of brain trauma. One caveat regards our implemented laser doppler imaging approach is that the 

whole brain CBF flux maps are two-dimensional image compilations of an approximate 500µm 

depth of brain tissue beneath the skull, and so, will presumably have incorporated the perfusion 

of the sagittal sinus and leptomeningeal constituents of the sub-dural anatomy of each mouse, 

in addition to the pial and parenchymal arteriolar and capillary blood flow.  It is known that even 

a single mild TBI can result in Traumatic Meningeal Injury (TMI)164,165, characterized in human 

patients as an abnormal enhancement on post-contrast MRI164, and seen to lead to cytotoxic 
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neuronal cell death, oxidative stress, and meningeal vasculature remodelling in animal models of 

experimental mTBI165-167. There is, to the best of our knowledge, no data concerning the effects 

of TBI on sinus or meningeal flow in human or mouse, however, we cannot ignore the possibility 

that, given the incidence of TMI following mTBI, the decreased CBF described in the r-mTBI mice 

in the present study could have been in part due to injury-related perfusion deficit in these 

vessels. Future studies will incorporate a more zealous positioning of the regions of interest to 

be analyzed, in order to exclude potentially confounding supra-cortical vessels.  

In order to ascertain whether the observed changes in CBF in our mouse model of r-mTBI 

were due to alterations in vessel status, we conducted biochemical analysis of the protein 

laminin, a known component of the vascular basement membrane168. We observed significant 

increases in laminin expression at 7 months following injury in r-mTBI mice. Recent studies 

describe angiogenesis and vasculogenesis in both human patients and animal models following 

TBI and stroke169. Angiogenesis involves the proliferation of endothelial cells and sprouting of 

micro-vessels, both culminating in a gross increase in intra-cerebral vascular density170. Indeed, 

neovascularization at a chronic time-point post-injury has been seen at as late a time-point as 9 

months post-injury in a Lateral Fluid Percussion injury mTBI model in the rat171. This evidence of 

chronic increases in vascularization (upwards of 28% as detected using arterial spin labelling MRI) 

are not unlike our own observations of increased expression of laminin in r-mTBI mice.  

Pursuant to determining the importance of changes in vessel density as a cause of reduced 

CBF, we also investigated the possibility of cerebrovascular mural cell involvement. 

Leptomeningeal arteries and precapillary arterioles are covered by Smooth Muscle Cells (SMCs, 
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which express the contractile component αSMA), which wrap around the vessel with a band-like 

circumferential morphology, and are thought to be principally responsible for vasomotion and 

regional CBF flux106. Capillaries are bereft of SMCs, and are instead predominantly covered by 

pericytes, expressing high constitutive levels of PDGFRβ106. The involvement of SMCs and 

pericytes in CBF regulation106,108,109,121,172-177 has been well characterized and, as such, we have 

chosen these markers for interrogation of mural cell involvement in r-mTBI induced CBF 

dysregulation. In order to represent the observed mural cell marker changes as a function of 

vessel density, the values of PDGFRβ and αSMA were normalized to the relative amount of 

laminin in each sample and we observed a significant decrease in levels of both PDGFRβ and 

αSMA in r-mTBI mice, compared to r-Sham animals. It may be worth noting that we examined 

whole-brain homogenate, and thus it is impossible to surmise whether the reductions in mural 

cell markers seen herein are confined to either large leptomeningeal and intraparenchymal 

arteries, smaller arterioles, or both. With the exception of aforementioned work by Dore-Duffy 

et al121, the expression of αSMA has not been extensively researched with respect to mTBI. 

However, it has been demonstrated that intracerebral and leptomeningeal SMCs taken from AD 

patient brains express significantly greater levels of αSMA, compared with age-matched control 

subject samples, when normalized to β-tubulin178, a housekeeping protein whose expression is 

found not to be altered by the AD phenotype178. The same study178 reported an increase in αSMA, 

as opposed to the decrease catalogued by our present observations, however, this group did not 

normalize αSMA expression to the associated vasculature, as has been done in the current report, 

but instead to the individual vesicular SMC β-tubulin levels, thereby expressing αSMA as a 

function of the cell on which it is ubiquitously expressed, rather than in proportion to the 
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vasculature as a whole. Furthermore, recent studies by Merlini et al179 demonstrated an early-

onset Braak Tau-dependent, amyloid pathology-independent decrease in large leptomeningeal 

artery αSMA expression in the brains of human AD patients, with smaller arterioles exhibiting a 

significant decrease in αSMA at later disease progression. Akin to our approach, the relative 

αSMA expression was obtained by normalization to vessel wall levels179. These results may in part 

explain the hypoperfusion deficits seen with early AD128-130, as larger arterioles are implicated as 

being more regulative of CBF106, and so, the above studies provide rationale for how the reduced 

αSMA expression observed in this report may be causative of the reduced CBF noted in our r-

mTBI mouse model.  

Although some studies have designated capillaries, and by default pericytes, as the principal 

contributors to regional CBF both in normal physiology108,109,118 and following cerebral 

ischemia108,175,176, others106,173,174 have catalogued pericytes as unimportant in these regards. 

However, as mentioned earlier, pericytes have been implicated in TBI-induced hypoperfusion in 

both human patients135 and also in animal model studies, one such being a recent report by Dore-

Duffy et al121, showing the release of endothelin-1 (ET1), a potent vasoconstrictor, from damaged 

pericytes 4 hours following a closed head injury. Inhibition of ET1 in vivo has also been shown to 

both alleviate impairment in autoregulation in the piglet cerebrovasculature180, and to restore 

CBF levels in the rat181 following mTBI, and elevation of ET1 levels in CSF is shown to be correlated 

with unfavorable outcomes in children following severe TBI182. DeGracia et al183 have shown a 

robust stress response, identified by Heat Shock protein 70 (HSP-70) immunofluorescence, 

confined to the capillary bed of the mouse microvasculature, and coinciding with endothelial and 

pericyte cell death, following a single mTBI. Using quantitative autoradiography, Bell et al172 have 
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demonstrated that knockdown in PDGFRβ signaling leads to pericyte deficiency-induced 

impairments in CBF and BBB integrity in adult mice, in addition to age-dependent neuronal 

degeneration and novel object recognition memory deficits. As opposed to the 10% reduction in 

global CBF recorded in r-mTBI mice, compared to r-Sham controls, in our study, Bell and 

colleagues observed CBF reductions of up to 50% in the cortex and hippocampus of 14-16 month 

old mutant heterozygous PDGFRB+/- deficient mice172. However, the decrease in PDGFRβ 

expression and any consequent effects on CBF seen in our study are not directly relatable to 

those seen by Bell et al172, as theirs was an aging, and not an injury, study. Firstly, the increases 

in laminin expression in the r-mTBI mice in our study may reflect injury-induced angiogenesis 

and/or thickening of laminae, whereas Bell et al172 documented significant decrease in 

microvessel length, and decreased laminin expression, as a result of PDGFRβ deficiency. 

Secondly, the mice used in the Bell study exhibited impaired PDGFRβ signaling from birth, as 

opposed to an injury-induced depletion later in life as with our animals. However, despite these 

caveats, it is clear the disruption of pericytes, be it through direct ablation of the cells, or 

encroached PDGFRβ activity, can dramatically impair CBF in mouse models. Further research is 

merited to discover whether the decrease in PDGFRβ following r-mTBI reflects reduced pericyte 

density, or mere alterations in the expression of this receptor.  

These findings, alongside our observations of reduced mural cell marker expression following 

r-mTBI, indicate a role for mural cells in the pathophysiological profile following brain trauma. 

Select representative images from the superficial layers of cortex of our r-Sham and r-mTBI mice 

show non-hypertrophic astroglia, and microglia with small and round cell bodies and many 

dendritic processes, indicative of a resting or unreactive state of both astrocytes and microglia184.  
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There is also an increase in GFAP and Iba1 immunoreactivity in the CC, data in agreement with 

previous studies from our group investigating astrocytic and glial immunoreactivity at this time-

point post injury60. The fact that there is also a r-mTBI-induced increase in GFAP/Iba1 

immunoreactivity in the cortex, nor a reactive phenotype of these cells would suggest that glial-

associated neuro-inflammation may not be a factor with regards to the injury-induced 

hypoperfusion seen at 7 months post-injury in our studies. Instead, the reduced CBF we observe 

following r-mTBI is more likely due to changes in the expression profile of the cerebrovascular 

mural cell markers.  

A previous report from our laboratory demonstrated r-mTBI pathology in conjunction with 

marked and persistent behavioral deficits at chronic time-points following 5 repetitive injuries60 

in wild type mice. Another pursuant study from our lab, using an identical hit intensity, but at a 

greater frequency, occurring over a longer period of time, and carried out in hTau mice, showed 

diverse CTE-like pathology at a chronic time-point post-last injury, in tandem with marked CBF 

impairment, but with only modest neurobehavioral effects62. This current study bridges the gap 

in reporting between the last two studies mentioned, showing an injury-dependent effect of r-

mTBI on global CBF readings and a down-regulation in mural cell markers several months after 

the final injury, which taken together suggest a causal role for CBF dysregulation and the 

emergent neurocognitive deficit in this r-mTBI animal model. Moreover, we demonstrate 

neuroinflammatory hallmarks consistent with the pathology observed in other mouse TBI models 

and human TBI cases. In the next Chapter, I will explore these concepts further to characterize 

the nature of the cerebrovasculature following brain trauma and elucidate the association 

between vascular dysfunction and brain pathology after repetitive injuries to the brain.  
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Chapter 3.  Sustained neurobehavioral deficits and progressive cerebrovascular marker 

dysregulation throughout the cortex at chronic time-points post-injury. 

 

3.1. Introduction 

The greater proportion of reports cataloging Traumatic Cerebrovascular Injury (TCVI) in 

the human population have been within the acute survival window for patients suffering severe 

head trauma and expiring shortly thereafter185-188. The very few case studies investigating TCVI 

and the response of the vascular bed of the CNS to more modest injury have only been feasible 

due to fatal complications not related to the initial trauma following concussion, or analysis of 

cerebral tissues removed during lobectomy or hematoma as surgical intervention following 

injury100,132,185,186,188. Two separate studies by Rodriguez-Baeza and colleagues186, and Castejon 

et al133,134, investigating ultimately fatal severe TBI, at 1 to 20 days post-injury, and 7 to 30 days 

post-injury, respectively, have demonstrated vessel wall morphological and cellular changes in 

the brains of traumatized patients, compared to non-TBI control samples. This early remodeling 

of the cerebrovasculature following a severe insult, which is invariably coupled with impaired 

CBF, might be a shared pathogenesis of the CBF perturbations seen in repetitive mild head 

trauma.  Our recent findings in Chapter 2 support this hypothesis, demonstrating a robust 

dysregulation in vascular marker expression in the brains of head-injured mice many months 

following r-mTBI, in tandem with gross perfusion deficits.  

Our work is the first to characterize vascular pathology, and correlate CBF infringement, 

at such a chronic time-point post-r-mTBI in a preclinical animal model, however, there is little 
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post-mortem data with which to compare these findings with the time-course of TCVI 

progression after mild injury in human patients. The preclinical TBI field must instead rely on 

human imaging studies of resting state CBF in those afflicted with a history of mTBI as phenotypic 

for the underlying pathology easily quantifiable across murine studies. However, this approach is 

far from ideal, as post-mortem human studies have identified both apoptotic and regenerative 

features occurring alongside one another at sites of TCVI in human tissue weeks following a 

severe TBI189, and repetitive high magnitude head acceleration r-mTBI is linked to transient 

vascular perfusion deficit in asymptomatic female soccer athletes145,146, suggesting that TCVI 

phenotypes may be biphasic in nature. Ergo, point-in-time measurements of CBF, such as our 

work in chapter 2, in both clinical and preclinical studies may not be fully representative of the 

evolution of TCVI over time. Instead, a longitudinal and serial imaging approach, such as the 

aforementioned study by Svaldi and colleagues145,146, would be more suitable in elucidation of 

the cerebrovasculature’s changing structural plasticity and manifest physiological signal in 

response to head trauma.  

Another caveat of our study in Chapter 2 is the fact that, while r-mTBI at an adult age of 

12 months in mice may be representative of the more tenured professional athlete and military 

demographic in the human population, it might also be too advanced a time of first injury to be 

reflective of the larger proportion of human mTBI patients. In fact, recent work by Alosco and 

McKee190 has shown younger age of first tackle in contact sports to predict earlier cognitive and 

neuropsychological symptom onset across both CTE and CTE-like neuropathological brains of 

former athletes, and without correlation with increased CTE neuropathological staging190. 

Indeed, recent work from our lab has demonstrated a pre-clinical parallel of the afore mentioned 



68 
 

findings by Alosco and colleagues190, demonstrating differential age-dependent 

neuropathological effects following an identical r-mTBI in young and aged hTau mice, with the 

microglial and neuronal injury profile showing greatest ferocity in younger 3 month old mice, 

compared with 12 month old adult mice191. While the injury paradigm and survival time studied 

were of lesser intensity and more acute length, respectively, than those in chapter 2, 

juxtaposition of both above works by Mouzon191 and Alosco190 compel us to ask whether there 

is an optimal time at which to administer r-mTBI in our, and other, animal models, and to look at 

the chronic TCVI aspect thereafter.  

With all of this in mind, and owing to the possible biphasic mechanism of TCVI in mouse 

and man, in this chapter, we aimed to study the biological basis of TCVI across two chronic time-

points following r-mTBI, using the same model as described in Chapter 2, but instead 

administering the mTBIs at an earlier age, more relevant to the human athlete and military 

collective of r-mTBI patients.  
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3.2. Materials and Methods 

3.2.1. Injury Schedule 

3-month-old male mice were randomly assigned to one of two groups: repetitive mild 

Traumatic Brain Injury (r-mTBI, delivered twice each calendar week i.e. 1 hit approximately every 

72 hours, over a period of 3 months) or repetitive Sham (r-Sham; animals underwent the same 

duration and frequency of anesthesia as r-mTBI animals). An electromagnetic impactor (Leica 

Instruments) was used to generate a midline mTBI, using a 5.0mm diameter flat face tip, 5m/s 

strike velocity, 1.0mm strike depth, and a 200msec dwell time, as previously characterized. The 

mice were euthanatized at either 3 months or 9 months after the final injury/anesthesia (6, and 

15 months of age, respectively), with euthanasia preceded by behavioral testing and evaluation 

of cerebrovascular reactivity (Chapter 4). The “9 month” cohort was initiated first, and was 

originally intended as a 6 months post-injury cohort; hence the behavioral testing was carried 

out at 6 months post-injury.  However, development and optimization of the CVR procedure was 

extremely labor intensive and was not ready for implementation until the animals were 9 months 

post-last injury/anesthesia, hence the delay between behavior and CVR/euthanasia.  The “3 

month” cohort underwent behavioral assessment, CVR analysis, and euthanasia on schedule.   

 

3.2.2. Biochemical Analyses of vascular markers in vascular-enriched fractions.   

Western blot analysis was carried out on vascular-enriched fractions from whole cortical 

brain tissue dissected from sacrificed r-sham and r-mTBI mice. The cerebrovasculature from 

mouse brain tissue was isolated using a methodology previously established by our group192.  For 
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the murine samples, fresh cortices were collected (minus the cerebellum, brain stem, and 

hippocampus).  The mouse cortex was minced with a blade prior to being ground with 6–8 passes 

of a Teflon pestle in a glass Dounce homogenizer.  Brain material was homogenized in fivefold 

excess of ice-cold Hank’s balanced salt solution (HBSS) containing 10 mM HEPES.  A sample of the 

brain homogenate was collected as a representation of the whole cortex.  An equal volume of 

40% dextran solution was added to the brain homogenate for a final concentration of 20% 

dextran and immediately centrifuged at 6000g for 15 min at 4˚C.  This procedure results in a pellet 

at the bottom of the container (cerebrovasculature) and a compact mass at the top of the 

solution (parenchyma) separated by a clear dextran interface (soluble fraction).  The 

cerebrovascular and parenchymal pellets were washed with ice-cold HBSS and resuspended in 

lysis buffer consisting of M-PER reagent (Pierce Biotechnology) supplemented with Halt protease 

and phosphatase inhibitor cocktail (Thermo Scientific).  All the fractionated mouse brain samples 

were stored at −80˚C until further analysis.  Our cerebrovascular preparation consists of capillary 

micro-vessels and small cerebral vessels, as we are interested in studying the role of both brain 

vascular pericytes and smooth muscle cells in r-mTBI. Equivalent total protein amounts were 

analyzed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under denatured and 

reduced conditions using 4-20% TGX Stain-free precast Gels (Biorad), and electro-blotted on to a 

low fluorescence polyvinylidene difluoride (PVDF) membrane for 2 hours at 90mA constant 

current. Membranes were then washed in de-ionized water, before being blocked for 1 hour at 

room temperature with 5% non-fat milk in tris buffered saline (TBS). Membranes were then 

incubated with primary antibodies overnight (12-16 hours at 4°C). The following primary 

antibodies were used at the given concentrations; laminin (Sigma, rabbit anti-mouse laminin, 
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L9393, 1:50 Dilution), platelet derived growth factor receptor β (PDGFRβ; Abcam, rabbit anti-

PDGFRβ monoclonal, ab32570, 1:1000 Dilution), alpha smooth muscle actin (αSMA; Millipore, 

mouse anti-αSMA monoclonal, ASM-1, 1:1000 dilution), rabbit ant-mouse β-Actin (Cell Signaling 

Technology (CST), 13E5, 1:1000 dilution), goat anti-mouse Aminopeptidase-N (CD13; R&D 

Systems, AF2335, 1:1000 dilution), rabbit anti-CD31 (PECAM-1, R&D Systems, D8V9E, 1:1000 

dilution), mouse anti-cycloxygenase-1 (COX1, Abcam, ab695, 1:500 dilution), mouse anti-

endothelial nitric oxide synthase (eNOS, Abcam, ab76198, 1:500 dilution). Membranes were 

washed with deionized water, incubated with the appropriate secondary antibody for 1 hour at 

4°C, washed once more, and then developed using ECL chemiluminescent detection reagent (GE 

Life Sciences). Membranes were imaged using a Biorad ChemiDoc Western Blot Imager, and 

densitometry results of individual bands were collected using ImageLab 5.2 (Biorad) software. 

Target protein values for each lane were normalized against densitometry values for either the 

β-Actin value, or the Laminin/β-Actin ratio, for their respective lane. Target protein values were 

also normalized against the total protein stain for their respective lane using a stain-free total 

protein stain (data not shown) to validate the β-Actin-normalized results. 

 

3.2.3. Biochemical Analysis of BBB Integrity 

Western blot analysis of vascular endothelial tight junction proteins was carried out on the 

same vascular-enriched immunoblots as were analyzed for mural cellular and functional markers 

as above, and under the same experimental conditions. The following primary antibodies were 

used at the given concentrations; rabbit polyclonal anti-Occludin (Santa Cruz Technology, H279, 
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1:1000 dilution), rabbit anti-Zonnula Occludens 1 (ZO-1) antibody (Santa Cruz Technology, H300, 

1:1000 dilution). 

3.2.4. Assessment of Cognitive Function 

Cognitive function was assessed at 3 and 6 months after the final injury/anesthesia (9 months 

of age and 12 months of age, respectively) by use of the Barnes maze, as described previously by 

our group59. Researchers conducting the experiments were blind to the grouping, and the 

Ethovision XT System (Noldus) was used to track and record the movement of each animal. Mice 

were given 90 seconds to locate and enter the target box and required to remain in the target 

box 30 seconds prior to retrieval, regardless of success. For a series of 6 consecutive days, 4 trials 

were given per day, with mice starting from one of four cardinal points on each trial. The inter-

trial interval for each mouse on any given day of acquisition was approximately 40 minutes. The 

maze platform and retrieval box were both cleaned thoroughly between trials to limit the 

confounding effects of scent on performance of the mice during each trial. On the seventh day, 

a single probe trial lasting 60 seconds was performed with the mouse starting from the center of 

the maze and the target box removed. Escape latency measured the time taken for the mouse to 

enter the box. In addition to assessment of learning and spatial memory via use of the Barnes 

maze, animals were tested for anxiety-like behavior in the elevated plus maze (EPM)158. The 

apparatus consists of two open and two closed arms forming a plus shape. The arms are elevated 

approximately 80 cm from the floor. Each mouse was placed on the junction of the four arms of 

the maze, facing the open arm. The mouse was allowed to freely explore the maze for 5 min in a 
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dimly lit ambient lighting (∼1 lux). The percentage of time spent in the open arms was calculated 

using Ethovision video tracking system158. 

3.2.5. Validation of Vascular-Enriched Fraction Preparation.  

Laser confocal microscopy of a vascular-enriched fraction from the cortical tissue of a naïve, 

9 month old wild type mouse was carried out in order to confirm the presence of intact vessels 

in these vascular-enriched preparations. Immediately following dextran filtration centrifugation, 

the vascular pellet was resuspended in ice-cold 4% Paraformaldehyde (PFA) and fixed for 24 

hours at 4 degrees Celsius. Following PFA fixation, the vessel preparation was centrifuged at 

2000g for 30 seconds, the pellet was cleaned once with ice cold PBS, and the pellet was 

resuspended in 200µL PBS containing 10% Bovine Serum Albumin and 0.5% Triton X 100 

detergent and blocked for 2 hours at room temperature. After blocking, 200µL of PBS containing 

1:1000 dilution of fluorescent Dylight Lectin, and the primary antibodies CD13, at 1:1000 dilution, 

and the nuclear stain 4′,6-diamidino-2-phenylindole (DAPI), at 1:2000 dilution, were added to the 

200µL fixed and resuspended vascular pellet solution, and the vessels incubated overnight at 4 

degrees Celsius. The vessel fraction suspension was then centrifuged at 2000g for 30 seconds, 

and washed twice with PBS, before incubation with the respective fluorescent secondary 

antibody to CD13 for 1 hour at room temperature. Following secondary antibody incubation, the 

vessel preparation suspension was once more centrifuged at 2000g for 30 seconds, washed twice 

in PBS, and resuspended in 200µL aqueous fluorescent mounting media. 50µL of the vessel 

fraction containing aqueous mounting media was then pipetted on to a glass slide, and covered 

with a cover slip. The vessels were the n imaged using a Carl Zeiss Laser Scanning Confocal 

Microscope.  
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3.3. Results 

3.3.1. Barnes Maze Acquisition and Probe 

At both 3 and 6 months following the final injury/anesthesia, r-mTBI mice travelled a 

significantly greater cumulative distance than their r-Sham controls (Figure 3.1, A and B, 

P<0.001). Additionally, we observed a distinct effect of injury on cumulative distance travelled 

over time, reflected by a progressive separation of cumulative distance travelled by r-mTBI mice, 

compared to r-sham controls, across the 6 consecutive days of acquisition at 3 month post-injury 

(Figure 3.1, A, r-Sham vs r-mTBI; P=0.0118), and also a significant effect of treatment on 

cumulative distance with time at 6 months (Figure 3.1, B, r-Sham vs r-mTBI; P<0.001). The mean 

velocity of r-mTBI mice was statistically significantly greater at both 3 and 6 months post-injury 

(Figure 3.1, C and D, P=0.0046 & P=0.0119, respectively), with the average velocity of r-mTBI mice 

being statistically greater than that of r-Sham controls on day 6 of acquisition at both 3 months 

(Figure 3.1, C, P<0.05) and 6 months (Figure 3.1, D, P<0.05) post-injury.  

Spatial memory was analyzed at 3 and 6 months following final injury/anesthesia, at 9 and 12 

months of age, respectively. Probe test performance was profoundly impaired in r-mTBI mice, 

compared to r-sham controls, at both 3 months (Figure 3.1, E, P<0.01) and 6 months (Figure 3.1, 

F, P<0.05) post-injury.  
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Figure 3.1. Evaluation of learning (acquisition) and retention of spatial memory of wild type mice using the Barnes 
maze at 3 and 6 months following repetitive mild traumatic brain injury. Mice were tested in the Barnes maze for 
their ability to locate a black box at the target hole. During the course of the 6 days of acquisition at both the 3 and 
6 months chronic time-points post-injury, the r-mTBI mice travelled a greater mean cumulative distance to reach 
the target hole, compared to sham controls (A and B, P<0.001, repeated measures ANOVA). In cumulative distance 
data, the injury by time interaction term was statistically significant across the 6 days of acquisition at the 3 month 
post-injury time-point (P<0.0001, Repeated Measures ANOVA), however, this was not seen at the 6 month time-
point (P=0.08, repeated measures ANOVA). There was also a significant effect of injury on mean velocity between 
groups across all 6 days of acquisition at both the 3 month and the 6 month time-points (C and D; P<0.05, repeated 
measures ANOVA) with a significant increase in velocity of r-mTBI mice vs r-Sham controls on day 6 of acquisition at 
both 3 and 6 months post-injury (D; P<0.05, Two Way ANOVA). Evaluation of spatial memory of wild type mice using 
the Barnes maze at 3 and 6 months following repetitive mild traumatic brain injury. Mice were tested in the Barnes 
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maze for their ability to locate a black box at the target hole. During the course of the 6 days of acquisition at both 
the 3 and 6 month chronic time-points post-injury, the r-mTBI-treated mice travelled a greater mean cumulative 
distance to reach the target hole, compared to sham controls (A and B, P<0.001, repeated measures Two Way 
ANOVA). Evaluation of spatial memory retention (Probe) of wild type mice using the Barnes maze, at 3 and 6 months 
following r-mTBI (Figure 3.1, E and F, respectively). For the probe trial (the day immediately following the 6 
consecutive days of acquisition testing), the target box was removed, and mice were placed in the middle of the 
table for a single, 60-second trial. Probe test performance was significantly impaired in the r-mTBI mice at 3 months 
(A, P<0.01, one-way ANOVA, student t-test) and 6 months (B, P<0.01, one-way ANOVA, student t-test), compared to 
r-Sham controls. Data are presented as Mean ± Standard Error of the Mean (SEM); 12 r-Sham, and 12 r-mTBI at 3 
Month; 11 r-Sham, and 11 r-mTBI at 6 Months. 
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3.3.2. Cerebrovascular Marker Dysregulation, Normalized to β-Actin, at 3 , Months Post-Injury 

The biochemical analysis of vascular fractions of wild type r-sham and r-mTBI cortical tissue 

revealed a statistically significant decrease in expression of both platelet derived growth factor 

receptor-β (PDGFRβ) (Figure 3.2, B, P<0.01, unpaired student t-test) and endothelial nitric oxide 

synthase (eNOS) (Figure 3.2, B, P<0.05, unpaired student t-test) at 3 months post last mTBI (9 

months of age). There was no apparent change in the expression level of any other 

cerebrovascular-associated marker, except for expression of cyclo-oxygenase-1 (COX-1), which 

displayed a modest increase in expression following r-mTBI, compared to the r-sham group, 

however, this change was not statistically significant (Figure 3.2, B, P = 0.0532, unpaired student 

t-test). The average density of the loading control bands (β-Actin) was not different between 

groups at 3 months post-injury, indicating that the vasculature of both r-mTBI and r-sham mice 

exhibited proportionately similar cellularity at this time-point (Figure 3.2, C, P>0.05, unpaired 

student t-test). 
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Figure 3.2. Western immunoblot analyses of cerebrovascular cellular and functional markers in cortical vascular-
enriched fractions at 3 months following r-mTBI. Representative images of western blot bands shown in (A) were 
analyzed via densitometry to compile the graphs shown in (B) and (C). Expression of laminin, CD31, CD13, αSMA, 
and COX-1 were not altered in cortical vascular fractions of r-mTBI mice, as compared to r-sham, at 3 months post-
injury (B, P>0.05, unpaired student t-test), however, the expression of the receptor complex PDGFRβ, and 
endothelial nitric oxide synthase (eNOS) were significantly decreased in r-mTBI cortical vasculature, compared to 
the vascular fractions of r-sham controls (B, P<0.05, unpaired student t-test). There was a trend toward increase in 
levels of cyclo-oxygenase 1 (COX-1) in the cortical cerebrovasculature of r-mTBI mice, versus that of r-sham controls, 
however, this change was not significant (C, P = 0.0532, unpaired student t-test). The mean density of the β-Actin 
bands did not differ across groups (C, P>0.05, unpaired student t-test). Wild type mice; 6 r-Sham and 6 r-mTBI. Values 
expressed as AU. Error bars represent ± SEM. All densitometry values for individual bands in (A) were normalized to 
the β-Actin value for their respective lane and this ratio used for statistical analysis in (B). Values for individual lanes 
for β-Actin in (C) were not normalized to any other band.  No statistical significance between groups unless otherwise 
stated by horizontal bars and text. Error bars represent ± SEM. 
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3.3.3. Cerebrovascular Marker Dysregulation, Normalized to the Laminin/β-Actin ratio, at 3 

Months Post-Injury 

When  normalized to their respective Laminin/β-Actin ratio for each lane, the biochemical 

analysis of vascular fractions of wild type r-sham and r-mTBI cortical tissue revealed a statistically 

significant decrease in expression of both platelet derived growth factor receptor-β (PDGFRβ) 

(Figure 3.3, B, P<0.05, unpaired student t-test) and endothelial nitric oxide synthase (eNOS) 

(Figure 3.3, B, P<0.05, unpaired student t-test) at 3 months post last mTBI (9 months of age). 

There was no apparent change in the expression level of any other cerebrovascular-associated 

marker, except for expression of cyclo-oxygenase-1 (COX-1), which displayed a modest increase 

in expression following r-mTBI, compared to the r-sham group, however, this change was not 

statistically significant (Figure 3.3, B, P>0.05, unpaired student t-test). The average density of the 

loading control (Laminin/β-Actin ratio) was not different between groups at 3 months post-injury, 

indicating that the vasculature of both r-mTBI and r-sham mice exhibited proportionately similar 

cellularity at this time-point (Figure 3.3, C, P>0.05, unpaired student t-test). 
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Figure 3.3. Western immunoblot analyses of cerebrovascular cellular and functional markers in cortical vascular-
enriched fractions at 3 months following r-mTBI. Representative images of western blot bands shown in (A) were 
analyzed via densitometry to compile the graphs shown in (B) and (C). Expression of laminin, CD31, CD13, αSMA, 
and COX-1 were not altered in cortical vascular fractions of r-mTBI mice, as compared to r-sham, at 3 months post-
injury (B, P>0.05, unpaired student t-test), however, the expression of the receptor complex PDGFRβ, and 
endothelial nitric oxide synthase (eNOS) were significantly decreased in r-mTBI cortical vasculature, compared to 
the vascular fractions of r-sham controls (B, P<0.05, unpaired student t-test). There was a trend toward increase in 
levels of cyclo-oxygenase 1 (COX-1) in the cortical cerebrovasculature of r-mTBI mice, versus that of r-sham controls, 
however, this change was not significant (C, P = 0.0532, unpaired student t-test). The mean density of the Laminin/β-
Actin ratio did not differ across groups (C, P>0.05, unpaired student t-test). Wild type mice; 6 r-Sham and 6 r-mTBI. 
Values expressed as AU. Error bars represent ± SEM. All densitometry values for individual bands in (A) were 
normalized to the Laminin/β-Actin value for their respective lane and this ratio used for statistical analysis in (B). 
Values for individual lanes for Laminin/β-Actin in (C) were not normalized to any other band.  No statistical 
significance between groups unless otherwise stated by horizontal bars and text. Error bars represent ± SEM. 
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3.3.4. Cerebrovascular Marker Dysregulation, Normalized to β-Actin, at 9 Months Post-Injury.  

Western blot analysis of vascular fractions of cortical tissue isolated from r-sham and r-mTBI 

mice at 9 months post r-mTBI (15 months of age) showed no statistically significant difference 

between any vascular markers when comparing r-sham and r-mTBI mice (Figure 3.4, B, P<0.05, 

unpaired student t-test), however, there was a trend towards an increase in eNOS expression in 

r-mTBI mice, compared to r-sham animals at this post-injury time-point (Figure 3.4, B, P = 0.0649, 

unpaired student t-test). The average density of the loading control, β-Actin, bands was 

statistically greater in the r-mTBI mice, compared r-sham controls, at 9 months post-injury, 

potentially indicating that the cerebrovasculature in r-mTBI animals exhibited a proportionately 

increased cellular density than r-sham mice at this time-point post-injury (Figure 3.4, C, P<0.01, 

unpaired student t-test). 
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Figure 3.4. Western immunoblot analyses of cerebrovascular cellular and functional markers in cortical vascular-
enriched fractions at 9 months following r-mTBI. Representative images of western blot bands shown in (A) were 
analyzed via densitometry to compile the graphs shown in (B) and (C). r-mTBI did not result in a change in expression 
in any vascular cellular or functional marker at 9 months post-injury in r-mTBI mice, compared to r-sham, however, 
there was a trend in increase in expression of eNOS in r-mTBI, with respect to r-sham (B, P = 0.0649, unpaired student 
t-test). There was a statistically significant increase in the mean intensity of the loading control protein β-Actin in r-
mTBI mice, compared with r-sham animals (C, P<0.01, unpaired student t-test). Wild type mice; 6 r-Sham and 6 r-
mTBI. Values expressed as AU. Error bars represent ± SEM. All densitometry values for individual bands in (A) were 
normalized to the β-Actin value for their respective lane and this ratio used for statistical analysis in (B). Values for 
individual lanes for β-Actin in (C) were not normalized to any other band. No statistical significance between groups 
unless otherwise stated by horizontal bars and text. Error bars represent ± SEM.  
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3.3.5. Cerebrovascular Marker Dysregulation, Normalized to the Laminin/β-Actin Ratio, at 9 

Months Post-Injury.  

When normalized to their respective Laminin/β-Actin ratio for each lane, western blot 

analysis of vascular fractions of cortical tissue isolated from r-sham and r-mTBI mice at 9 months 

post r-mTBI (15 months of age) showed a statistically significant increase in all vascular markers 

when comparing r-sham and r-mTBI mice (Figure 3.5, B, P>0.05, unpaired student t-test). The 

average density of the loading control, the Laminin/β-Actin ratio, was not statistically different 

in the r-mTBI mice, compared r-sham controls, at 9 months post-injury, indicating that the 

cerebrovasculature in r-mTBI animals exhibited a proportionately similar density to r-sham mice 

at this time-point post-injury (Figure 3.5, C, P<0.01, unpaired student t-test). 
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Figure 3.5. Western immunoblot analyses of cerebrovascular cellular and functional markers in cortical vascular-
enriched fractions at 9 months following r-mTBI. Representative images of western blot bands shown in (A) were 
analyzed via densitometry to compile the graphs shown in (B) and (C). r-mTBI resulted in a statistically significant 
increase in expression in all vascular cellular and functional markers at 9 months post-injury in r-mTBI mice, 
compared to r-sham, however, there was a trend in increase in expression of eNOS in r-mTBI, with respect to r-sham 
(B, P<0.05, unpaired student t-test). There was no statistically significant difference in the mean intensity of the 
loading control, Laminin/β-Actin ratio, in r-mTBI mice, compared with r-sham animals (C, P>0.05, unpaired student 
t-test). Wild type mice; 6 r-Sham and 6 r-mTBI. Values expressed as AU. Error bars represent ± SEM. All densitometry 
values for individual bands in (A) were normalized to the Laminin/β-Actin ratio value for their respective lane and this 
ratio used for statistical analysis in (B). Values for individual lanes for Laminin/β-Actin in (C) were not normalized to 
any other band. No statistical significance between groups unless otherwise stated by horizontal bars and text. Error 
bars represent ± SEM.  
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3.3.6. Blood Brain Barrier Penetrance at 3 and 9 months Following Head Injury 

Western blot analysis of vascular fractions of cortical tissue isolated from r-sham and r-mTBI 

mice at 3 and 9 months post r-mTBI (9 and 15 months of age, respectively) showed no statistically 

significant difference between any endothelial tight junction markers analyzed across r-sham and 

r-mTBI mice (Figure 3.6, A and B, P<0.05, unpaired student t-test).  

 

 

Figure 3.6. Western immunoblot analysis of markers of BBB integrity at 3 and 9 months post-r-mTBI. Expression of 
the endothelial tight junction protein Occludin and Zonula Occludens 1 (ZO-1) in the cortical vasculature of r-mTBI 
mice was not statistically different to that of r-sham control mice at either 3 months or 9 months post-injury  (A and 
B, respectively, P>0.05, unpaired student t-test). Values expressed as AU. Error bars represent ± SEM. All 
densitometry values for individual bands in (A) were normalized to the β-Actin value for their respective lane and this 
ratio used for statistical analysis in (B). 
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3.3.7. Validation of Vascular-Enriched Fractions Prepared from Whole Cortical Brain Tissue 

Laser confocal microscopic analysis of 4% paraformaldehyde-embedded vascular-enriched 

fractions of mouse cortical tissue demonstrated intact lectin-positive capillary segments, 

containing DAPI-positive cell nuclei and abluminal CD13-positive pericytes (Figure 3.7, A – D). 

 

 

 

 

 

 

 

 

 

Figure 3.7. Qualitative laser confocal fluorescent microscope images of a single capillary vessel segment from a 
vascular-enriched mouse cortical tissue preparation. Fluorescent Dylight Lectin-positive capillary segments (A) 
covered with CD13-positive pericyte processes (B) and vascular associated nuclear staining (C) were identifiable in 
PFA-fixed vascular-enriched fractions from wild type mice. Scale bars represent 50µm in length. Images taken using 
a Carl Zeiss Laser Scanning Confocal Microscope. DyLight 488 labelled Lycopersicon Esculentum (Tomato) Lectin; goat 
anti-mouse aminopeptidade N (CD13). 
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3.4. Discussion 

We have in this chapter built upon the studies illustrated in Chapter 2 and characterized a 

progressive and dysregulated response of the cerebrovascular matter to r-mTBI at an age and 

injury paradigm relevant to both human contact sports and military populations, in our animal 

model of repeat closed head trauma. Furthermore, we have shown these vascular-specific 

aberrations coincide with pronounced spatial memory deficits at both 3 months and 6 months 

post-last injury, suggesting a potential link between r-mTBI-induced neurobehavioral dysfunction 

and TCVI.  

As discussed in Chapter 1, cerebrovascular pathophysiology is already known to be sufficient 

for development of neurodegenerative illness in human patients, as is the case with those 

suffering from the inherited disease CADASIL123, and CBF impairment has been found to 

accompany MCI symptomatology prior to AD clinical presentation128-130. However, there is 

currently very little research asserting TCVI as being causative in the development of 

neurocognitive disability in animal models of chronic mild TBI. The lack of evidence in this regard 

is arguably due to the publication of whole brain histological and biochemical data without any 

attempt to correlate these with neurobehavioral assessment of injured animals. For example, a 

recent study undertaken by Gama Sosa and colleagues193 reported an absence of chronic 

neuroinflammation in the majority of Long Evans rats exposed to repetitive low level blast injuries 

at as late as 40 weeks post-last blast mTBI. However, one rat, which demonstrated focal blast-

induced hemorrhagic tears and adjacent blood clots at 16 weeks post-injury, also exhibited 

profound microglial activation and proliferation, presumably due to chronic vascular 
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degeneration and leakage193. As unorthodox as it was to examine a single animal outlier as a case 

study for showing TCVI to be sufficient for chronic neuropathology following r-mTBI, this result 

is compelling. However, like many other studies, this report by Gama Sosa and colleagues193 did 

not have any behavioral assessment with which to validate their findings. Our study is, to the 

best of our knowledge, the first to report longitudinal and persistent behavioral impairment 

alongside evidence of cerebrovascular dysregulation in an animal model of r-mTBI.  

There have been few other notable attempts at a longitudinal assessment of the 

cerebrovasculature following experimental mTBI, and as mentioned, none with compelling 

comrade behavioral outcome measures. Obenaus et al194 have catalogued an acute rarefaction 

of global cerebrovasculature density at 1 day following a unilateral controlled cortical impact, 

and an apparent recovery of normal vascular density to baseline levels at 14 days post-injury in 

mice. The same group have also reported an increased vascularity in the corpus callosum in mice 

at 60 days following a single unilateral closed head mTBI. The increased white matter vascularity 

was inversely correlated with the Apparent Diffusion Coefficient (ADC), a measure of white 

matter integrity195, on MRI in the cortex ipsilateral to injury, suggesting the angiogenic response 

of the vascular bed to TCVI may ultimately be deleterious194. Concordantly, Morgan et al196 have 

shown signs of premature capillary outgrowth at as early as 2 days following injury in a rodent 

model of closed head acceleration mTBI, and a more moderate to severe fluid percussion injury 

in mice has been demonstrated to result in subacute increased vascularization at 14 days, but 

with continued global hypoperfusion197. All studies mentioned have used histological analyses, 

confined to discrete serial sections of brain tissue, to catalogue the neovascularization following 

mTBI in their rodent models. Using immunoblotting assessment of our vascular-enriched 
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fractions from r-sham and r-mTBI mice, which incorporates the whole of the cortical 

cerebrovasculature, we too report an apparent increased vessel density, as observed in the 

relative increase in housekeeper protein β-Actin, and further in the increased expression of all 

cerebral vascular markers normalized against the Laminin/β-Actin ratio, at the more chronic of 

the two time-points post-injury analyzed (Figure 3.4, C). This occurs months following a profound 

decrease in expression of PDGFRβ, a marker of pericytes, and endothelial Nitric Oxide Synthase 

(eNOS), a marker of endothelial cells, at the earlier time-point post-injury (Figures 3.2 and 3.3, 

B), a result which may be interpreted as representing a more acute rarefaction of the 

cerebrovasculature in our animal model. The fact that we do herein normalize to a housekeeper 

protein within group does mean that changes in mural cell and basement membrane markers, 

such as CD13 and laminin, respectively, across groups may be underestimated in our analysis, as 

the ubiquity of traditional neuronal housekeeping proteins such as β-Actin across the 

components of the cerebral vasculature is ill-defined. However, use of a cellular marker, such as 

β-Actin, comes with the advantage of heightened resolution of changes in functional receptor 

and cell-specific enzyme expression, as a function of cellularity. In this regard, the decreases in 

the receptor PDGFRβ throughout the cortex of r-mTBI mice at 3 months post-injury can be 

considered an indication of possible pericyte loss, a phenomenon characterized in humans 

following moderate to severe TBI133,134 and shown to be causal in CBF impairment in 

mice108,122,172,198-200. The stark reduction of PDGFRβ expression in the vascular-enriched sample 

of r-mTBI tissue falls in line with work by Dore-Duffy et al120, showing detachment and migration 

of pericytes away from the vessel wall following TBI in mice. In much the same way as PDGFRβ , 

the profound decrease we observed in the expression of eNOS, the key mediator of synthesis of 
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the vasodilator nitric oxide (NO)201, at 3 months post-injury in the cortices of r-mTBI mice, relative 

to r-sham controls, could as realistically represent a pallor of the endothelium as much as a loss 

of function of this integral vasodilatory machinery201. Indeed, this hypothesis is supported by the 

fact that upregulation of NO activity in preclinical brain injury studies is coupled with beneficial 

angiogenic effects in vivo202-204.  At 3 months post-injury, we have also observed a modest 

increase in cyclo-oxygenase-1 (COX-1), a prostaglandin endoperoxide synthase expressed by 

both neurons and astrocytes of the mammalian CNS, and responsible for generation of vasoactive 

prostaglandins from arachidonic acid (AA). Though not statistically significant, this result may 

indicate a compensatory mechanism in lieu of the relativistic decrease in eNOS throughout the 

cortex of injured animals at 3 months post r-mTBI. The fact that we have not seen a decrease in 

alpha-smooth muscle actin (αSMA), the most robust cellular marker for the smooth musculature 

of the CNS vasculature, at 3 months following r-mTBI in the current study is again explained by 

the tissue samples in this Chapter being representative of the vasculature, as opposed to the 

entire brain, as was the case in Chapter 2 and our previously published work155. Indeed, cortical 

levels of αSMA are seen to be elevated at 9 months post-injury, along with all other cerebral 

vascular markers analyzed, when normalized to the Laminin/β-Actin ratio. As far as we are aware, 

there is no study showing attenuated expression of smooth musculature throughout the cortex 

after experimental TBI in the rodent. It is possible that the decrease in αSMA signal in the brain 

homogenates of 22 month-old mice several months following r-mTBI (Chapter 2) reflected an 

increased capillary, versus arteriolar, neovascularization, and so, a relativistic false positive for a 

decrease in αSMA was observed. Future immunohistochemical work examining cerebral vessel 

coverage by αSMA is required to definitively answer this question.  
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The fact that the decrease in both PDGFRβ and eNOS expression is no longer apparent at the 

later 9 month post-injury time-point (Figures 3.4 and 3.5, B) is interesting for a number of 

reasons. PDGFRβ-positive pericytes are known to exhibit a biphasic loss and reactivity pattern 

following brain injury117,205, and treatment of CCI-injured 3 month old mice with a carbon 

monoxide releasing molecule diminished pericyte death, increased levels of neural NO synthesis, 

and rescued behavioral deficit across a variety of assessments, including Y-maze and Morris 

Water Maze119. Our results showing a restoration of PDGFRβ in the cortices of r-mTBI mice to 

sham levels when normalized to the cellular housekeeper β-Actin, and an augmentation in 

PDGFRβ signal when further normalized to the vascular density Laminin/β-Actin ratio, and 

concomitant, albeit insignificant, augmentation of spatial memory, infers there may be a latent 

restorative repair mechanism of the r-mTBI cortex following cessation of injury to the brain, at 9 

months post-injury. Indeed, the proposed neovascularization within the cortical tissue of injured 

mice at this time-point may be indicative of a reparative response to injury, as there has been 

success in preclinical treatment of TCVI via therapeutics with angiogenic properties; for example, 

atorvastatin administered within 1 hour following Lateral Fluid Percussion Injury (LFPI) in rats was 

demonstrated to increase the amount of circulating endothelial progenitor cells, and was 

correlated with improved perilesional vascular density and functional outcomes206. The exact 

preclinical relevance of the consistent signs of neovascularization in animal models of r-mTBI, 

shown in one interpretation of the 9 months post-injury immunoblot analyses here, as they 

pertain to the human TBI population is difficult to gage, as there have been no studies examining 

global vascular density and changes therein over time in human brain samples.  
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Another facet of vascular dysregulation following TBI which may contribute to alterations in 

CBF and may be detectable via the approach used in this study, is loss of blood brain barrier (BBB) 

integrity. BBB disruptions can include mild and transient openings or loss of tight junctions 

altogether, and impaired regulation of trans-endothelial and paracellular transport of ions and 

molecules207,208. Thee alterations in BBB penetration can lead to increased extravasation of 

peripherally-derived immune cells in to the intraparenchymal space, culminating in pronounced 

brain pathology and the persistence of neurological deficits. Evidence for the immediate injurious 

effects of mTBI on the BBB include a 2013 study by Abdul-Muneer et al209, showing that young 

male Sprague-Dawley rats exposed to a single 123 KPa intensity mild Blast Shock Wave (BSW) 

exposure injury caused upregulation of markers of oxidative and nitrosative stress in brain 

capillaries, which progressed into BBB disruption, as reflected by downregulation of the tight 

junction protein occludin, and reduced histological expression of PDGFRβ, all at 1 to 24 hours 

post-injury209. The acute effects of this r-mTBI on BBB permeability were also accompanied by an 

elevation of plasma concentrations S100β and neuron-specific protein enolase for several hours 

following injury209. Many studies have also investigated the tight junction protein Zonnula 

Occluden 1 (ZO-1) in relation to BBB disruption following experimental TBI210-212. We did not 

observe any significant changes in either occludin or ZO-1 (Figure 3.6, A and B), indicating that 

endothelial cell tight junction integrity is also unscathed at this time-point post-injury. As we do 

not observe appreciable changes in either tight junctional marker, it is unlikely the chronic 

impairment of CBF or behavioral performance at these time-points would be due to changes in 

BBB integrity. 
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The biochemical and behavioral findings of this chapter confirm an early and persistent 

biological basis for TCVI in our animal model of repetitive head trauma and validate its timepoints 

for a longitudinal assessment of the possibly biphasic pathophysiology of TCVI, using a 

complementary in vivo imaging study. In the next chapter, we will aim to develop, validate and 

make use of a clinically-relevant imaging platform to assess the functional responsiveness of the 

cerebrovasculature and characterize the evolving vascular degeneration following repeat mild 

traumatic brain injury.  
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Chapter 4.  Cerebrovascular reactivity is impaired in r-mTBI mice at chronic time-points 

post-injury. 

4.1. Introduction. 

It is clear from the past chapters that Traumatic Cerebral Vascular Injury (TCVI) plays a 

contributory, if not causative, pathological role in chronic r-mTBI related neurodegeneration in 

both animal models and human patients, manifesting as acute and chronic, regional and global 

CBF irregularities in mouse and man. The early appearance of aberrant CBF in American football 

players138,141 and the finding that global and regional CBF is decreased in retired military 

personnel having sustained an injury, compared to non-injured military control individuals213, 

point toward TCVI as an instigator and biomarker of chronic neurodegenerative illness in these 

populations, and volunteers the cerebrovascular mélange as  an enticing therapeutic target or 

diagnostic marker. Although CBF impairment appears to be a near constantly observed sequelae 

across repeat mild, to moderate and severe TBI, in both retired military personnel and current 

and former contact sports players, resting CBF is not by itself a reliable indicator of 

cerebrovascular health, as its measurement is tightly coupled to the metabolic demands of the 

CNS, and so, indiscriminate of primary and secondary neuronal and other injuries following a 

mTBI. For example, a recent study using Fluorodeoxyglucose PET (FDG-PET), combined with a 

battery of neuropsychological and post concussive symptom rating scales, demonstrated that 

Veterans with a history of r-mTBI show a decreased metabolic rate of glucose in the cerebellum, 

vermis, pons and medial temporal lobe, compared to controls214. Likewise, a recent report has 

shown increased plasma levels of brain-derived creatine kinase B as a biomarker of r-mTBI in 



95 
 

professional boxers215. Such studies infer gross CNS metabolic dysregulation at acute and chronic 

time-points post injury, which will invariably alter patient CBF.  

Recently, clinicians have instead favored cerebrovascular reactivity (CVR), a measure of 

cerebral blood vessel dilation in response to a vasoactive stimulus, as a more representative 

measure of TCVI in both acute and chronic mTBI in the human population100. The vasoactive 

stimulus most typically employed in the clinic is an increase in partial pressure of CO2 (paCO2), by 

means of  briefly increasing the fractional inspired concentration of CO2 (FiCO2) from atmospheric 

levels (approximately 0.04%) to 5% CO2 via a facemask, or voluntary breath hold100, both termed 

hypercapnia. CVR can be measured non-invasively, by a variety of modalities, including 

transcanial doppler (TCD) ultrasonography, and Near Infrared Spectroscopy (NIRS). The imaging 

technique of choice is usually either Arterial Spin Labelling (ASL) or Blood Oxygenation Level 

Dependent (Bold) MRI. In the case of ASL, water molecules in a patient’s peripheral carotid 

arterial blood are radio-labelled, and the dissipation of the radio-frequency spin as the blood 

circulates through the brain creates an MRI contrast, allowing an indirect measure of CBF in 

absolute units (cc/100g/min)100; MRI-BOLD allows real-time measurement of oxygen delivery and 

consumption via the paramagnetic properties of deoxyhemoglobin, and is the clinical gold 

standard for measurement of cerebral perfusion and metabolism. Both MRI ASL and BOLD CO2 

hypercapnic challenge are done using a facemask to moderate the mixture of inspired air the 

patient is breathing, in tandem with a capnograph, for measurement of end tidal CO2 (ETCO2).  

Using TCD in American football athletes acutely following concussion, Len et al have recently 

demonstrated an impairment of CVR, in the absence of impairment of resting Medial Cerebral 

Artery Blood velocity (MCAv), via voluntary breath hold and resultant hypercapnia and increased 
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MCAv216. Similarly, Mutch et al217 have reported alterations in MRI BOLD CVR in response to 

hypercapnic challenge, in the absence of global resting state CBF or cerebrovascular anatomical 

differences, in 15 adolescents diagnosed with post concussive symptoms, compared to 17 

healthy controls217. In addition to the above studies describing impaired CVR at chronic and acute 

times post mTBI216,217, perturbed CVR has also been seen at a median of 25 months post-injury 

using hypercapnic challenge and BOLD/ASL MRI in human patients following a moderate to 

severe TBI, with poor discrimination of patient from control via the CBF metric alone142. As such, 

CVR analyses may be a valuable tool in evaluating head trauma, as global mean gray matter CVR 

is dramatically altered and strongly correlates with patient neurobehavioral outcome142. 

Given the prevalence of cerebrovascular reactivity as an early indicator and endophenotype 

in r-mTBI, and the apparent conformity of its signal across TBI populations and time-points post-

injury, where otherwise there is only disparate and patient-specific regional and global resting 

CBF and neurobehavioral outcome, CVR represents a potential diagnostic tool and therapeutic 

target in the treatment of TCVI. All this said, r-mTBI related CVR deficit has yet to be 

demonstrated in a relevant animal at a chronic time-point post-injury, making it practically 

impossible to draw any conclusions about the mechanisms behind TCVI-induced CVR deficit, and 

how it pertains to evolution of r-mTBI related chronic illness. In this chapter, we developed a 

platform to evaluate CVR at chronic time-points post-injury in our mouse model of repetitive 

head trauma.  
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4.2. Materials and Methods. 

4.2.1. Animals  

Male C57BL/6 and transgenic ApoE3-FAD mice were housed under standard laboratory 

conditions (23 ± 1ºC, 50 ± 5% humidity, and 12 hour light/dark cycle) with free access to food and 

water throughout the study. We employed the EFAD mouse model, as these animals recapitulate 

some of the pathological characteristics observed in human AD218. These mice express the 

Swedish (K670N/M671L), Florida (I716V), and London (V717I) mutations) and PSEN1 (with M146L 

and L286V mutations), each of which is driven by the mouse Thy1 promoter. The transgenes 

inserted at a single locus, Chr3:6297836 (Build GRCm38/mm10), where they do not affect any 

known genes219. These mice display early and aggressive Cerebral Amyloid Angiopathy (CAA) 

within the walls of cerebral vessels220. The EFAD colony was established by crossing mice 

expressing five familial AD mutations (5xFAD) to homozygous apoE targeted replacement (apoE-

TR) expressing the human apoE3 isoform218.  The apoE-TR mice were created by gene targeting 

and carry one of the three human alleles (APOE2, APOE3, or APOE4) in place of the endogenous 

murine apoE gene221.  These mice retain the endogenous regulatory sequences required for apoE 

production and express the human apoE protein at physiological levels.  All mice are on a C57BL/6 

background and additional details on the production and genetic background of these mice are 

described in the sources cited above.  All experimental protocols involving animals were 

approved by the Institutional Animal Care and Use Committee of the Roskamp Institute. All 

procedures were carried out in accordance with the National Institute of Health Guide for the 

Care and Use of Laboratory Animals.  



98 
 

4.2.2. Injury Schedule 

3-month-old animals were randomly assigned to one of two groups: repetitive mild Traumatic 

Brain Injury (r-mTBI, delivered twice each calendar week i.e. 1 hit approximately every 72 hours, 

over a period of 3 months) or repetitive Sham (r-Sham; animals underwent the same duration 

and frequency of anesthesia as r-mTBI animals). An electromagnetic impactor (Leica Instruments) 

was used to generate a closed head midline mTBI, using a 5.0mm diameter flat face tip, 5m/s 

strike velocity, 1.0mm strike depth, and a 200msec dwell time, as previously characterized60. The 

mice were euthanatized at 3 and 9 months after the final injury/anesthesia (6, and 15 months of 

age, respectively). The 3 and 9-month post last injury cohorts studied here were separate groups 

of animals, given an identical regime and intensity of r-mTBI. 

 

4.2.3. Preparation of mouse cranial window  

24 hours prior to hypercapnic challenge, the left hand side of the animal’s skull was  thinned 

to transparency, and a cranial window installed over the thinned surface, using an optimized and 

validated technique222. Briefly, the animal was anesthetized under 3.0% isoflurane, its head 

shaved, and the shaved scalp scrubbed with betadine, followed by three scrubs with 70% 

isopropyl alcohol. Isoflurane concentration was lowered to 2% immediately prior to surgery.  

Using a forceps and scissors, an incision was made to expose the whole dorsal surface of the skull, 

and the incision was trimmed laterally to either edge of the temporal muscles of the skull, and 

posterior to the muscles of the neck. The thin layer of periosteum over the surface of the skull 

was carefully removed using a scalpel blade, and the edges of the incision on the scalp were 
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sealed and glued to the underlying bone of the skull using the clear version of the C&B Metabond 

dental cement (Parkell Inc, NY, USA). A 4-40 stainless steel screw was fixed to the cerebellar base 

plate of the exposed skull using Loctite 401 superglue, and upon drying of the glue, the base of 

the setscrew was further fastened to the area by application of clear dental cement. Allowing 10 

minutes for thorough drying of the dental cement, the animals head was then fixed in position 

using a custom-built fixation frame, comprising a ‘TRB1’ ball and socket, re-tapped at one end to 

fit a 4-40 setscrew, attached to a  ‘Ø 0.5” post’ connected to another Ø 0.5” post by a ‘SWC 

rotating clamp’, and to an aluminum base plate (all products bought from ThorLabs, see Figure 

2.1). For fixation of the head, the ball and socket were rotated clockwise to the 4-40” setscrew 

on the mouse’s skull. The articulated rotating socket and arm allow for fine adjustments to the 

animal’s head position, which, when perfectly flat, was made absolutely still by tightening of the 

nuts of the apparatus. With the mouse’s head in position, and under a dissecting microscope, a 

high torque, low speed dental drill (EXL-M40, Osada, CA, USA) and 0.5mm carbon steel drill burrs 

(item number 19007-05, Fine Science Tools, FST, USA) were used to thin the skull of the animal. 

The drill was set to approximately 2000 rpm, and warm Artificial Cerebrospinal Fluid (ACSF; 

125mM NaCl, 10mM Glucose, 10mM HEPES, 3.1mM CaCl2, 1.3 mM MgCl2, pH 7.4, all chemicals 

from Sigma, USA) was applied between thinning steps. The bone begins to flex to the touch of 

the drill when it becomes approximately 50µm thick, and application of ACSF allows visualization 

of pial vessels through the wet bone. The final thickness of the bone should be about 15-20µm 

thick, at which point the bone is dried with a gentle stream of air from a dust can, cryano-acrylate 

glue is applied to the whole of the exposed skull, and a custom-shaped glass coverslip is gently 

lowered over the layer of glue. More glue is applied at the edges of the coverslip until there are 



100 
 

no gaps or bubbles between the cover slip and skull. The animal is placed back in its cage on a 

heating pad to recover from surgery and monitored over the next 24 hours for signs of stress or 

discomfort.  

 

4.2.4. In-vivo assessment of Cerebrovascular Reactivity  

9 or 15-month old male C57BL6 mice were evaluated for cerebrovascular reactivity in 

vivo, at 3 or 9-months post-injury, respectively, using Laser Speckle Contrast Imaging (FLPI2, 

Moor Instruments). As a positive, age-matched control for the in vivo experiments, we used 9 

month-old male transgenic Apolipoprotein E Familial Alzheimer’s Disease (EFAD) mice, as these 

mice not only recapitulate some of the neuro-vascular pathology characteristic of AD218, in which 

CVR is well known to be compromised140,223-226, but also as the FAD mouse has been shown to 

exhibit a pronounced deficit in cerebrovascular reactivity to hypercapnic challenge in-vivo227-230. 

Mice were anesthetized under 3% isoflurane in 100% oxygen, and anesthesia maintained at 2% 

isoflurane in oxygen for all surgical procedures. Prior to the in-vivo experiment, animals had an 

external pin-port catheter (custom) introduced in to the left femoral artery, in order to obtain 

blood draws for arterial blood gas analysis prior to and following hypercapnic challenge. After 

having cannulated the femoral artery, the mouse was orotracheally intubated, and connected to 

a ventilator (Mini-vent, Model 845, Harvard Apparatus), and Capnograph (Type 340, Harvard 

Apparatus), and the gas mixture was switched from 2% isoflurane in 100% Oxygen, to 1.1 - 1.5% 

Isoflurane in medical grade room air (21% O2, balance N2) for the duration of the experiment. 

The animal’s body temperature was kept constant at 37 degrees Celsius using a body 
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temperature regulated homeothermic infrared heat pad and mean arterial blood pressure 

(MABP) was recorded constantly using a non-invasive tail-cuff monitor (CODA, Kent Scientific). 

The tidal volume and respiratory rate analog settings on the mini-vent were manipulated to keep 

the animal’s baseline end-tidal CO2 (ETCO2) readings between 35 and 38 mmHg, and MABP, body 

temperature, respiratory rate, tracheal pressure, ET CO2, and airflow recordings were monitored 

and recorded throughout the experiment via PowerLab/LabChart (AD Instruments. Upon 

establishment of steady baseline physiological readings, a 50-60µL blood draw was made from 

the femoral artery for baseline Arterial Blood Gas (ABG) analysis. 2 minutes following the blood 

draw, the laser speckle camera was placed directly perpendicular to the cranial window and 

images were collected at a frequency of 1Hz for the duration of the experiment. Following 60 

seconds of steady baseline readings the gas mixture was switched from 1.1-1.5% Isoflurane in 

medical grade room air, to 1.5% isoflurane in a custom mix of 21% O2, 5% CO2, and balance N2, 

for 60 seconds. Following the 60 seconds of hypercapnic challenge, the inhalation gas was 

switched back to 1.1-1.5% isoflurane in medical grade room air, and a further 4 minutes of 1 

second recordings were collected, after which a second 50-60µL blood draw was made from the 

femoral artery, for ABG analysis, using the iSTAT®1 Vetscan (Abaxis, CA, USA). Any animal 

displaying a base excess outside of -4 to +4, a HCO3
- (bicarbonate) level of less than 18mM/L, a 

pH of less than 3.5, or more than 4.5, or a saturated O2
 (sO2) level of less than 90% before or after 

hypercapnic challenge was omitted from the study. Likewise, any mice displaying irregular 

breathing, as per their Labchart recordings, during any part of the experiment, or displaying an 

average MABP below 60mmHg, were not included in the analysis. After one or more successful 

hypercapnic challenges had been completed, the isoflurane was increased to 3% for 
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approximately 30 seconds, and the animal was extubated, removed from the experimental setup, 

and sacrificed under heavy isoflurane anesthesia. 

 

 

 

 

Figure 4.1. Experimental preparation of male C57BL/6 mice prior to in-vivo assessment of cerebrovascular reactivity. 
24 hours prior to hypercapnic challenge, the skull was bilaterally thinned to transparency, and a cranial window 
installed over the thinned surface (B). A close-up inset of the cranial window in (B) is shown in (C).  Immediately prior 
to the in-vivo experiment, the animal was anesthetized and the left femoral artery was dissected and cannulated 
with an external pin-port connected cannula (for measurement of arterial blood gas values during the experiment). 
The animal was then orotracheally intubated and ventilated with medical grade room air and 1.1 - 1.5% Isoflurane. 
The head was fixed in position via a custom fixation apparatus,  with a  setscrew attached to the baseplate of the 
animal’s skull (installed at the time of thinning), mean blood pressure was monitored using a non-invasive tail cuff 
blood pressure monitor, and body temperature and end-tidal CO2 readings maintained at 37 °C ad 35 – 37 mmHg, 
respectively. Images D and E show the thinned and transparent surface of the skull of the animal depicted in (B) and 
(C) following animal sacrifice and trans-cardial perfusion with Phosphate Buffered Saline. The schematic shown in 
(F) depicts the timeline of the study, and the timepoints at which assessment of CVR was conducted.  
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4.2.5. In-vivo Imaging Analysis 

The Moor FLPI2 image files (each 6 minutes in length), comprising 360 images taken at 1 

second intervals, under the high resolution, low speed, spatial setting on the camera setup menu, 

were analyzed using the dedicated Moor Image Review software. A region of interest (ROI) 

measuring 0.3mm2 was placed at a location within the area of thinned skull of the animal 

proximal to, and approximately 1.5mm from, the midline suture, and devoid of any large vessels, 

which may be meningeal or pial in nature, and so may not correspond to the brain parenchyma 

from which measurements were intended to be made. A second 0.3mm2 ROI was placed at a 

similarly parenchyma-like region approximately 2.5mm distal to the midline, within the area of 

thinned skull. All image files from animals within the same time-point were set to the same 

threshold, and the image files scrolled through to correct for any head or camera movement 

during the experiment. If there was shifting of the image due to movement, the software’s “Shift 

Image” application was used to correct it. Both proximal and distal ROIs were exported as 

separate graph Excel files, the flux data normalized to the 60 seconds’ worth of baseline 

immediately prior to hypercapnic challenge, and so, expressed as percentage change from 

baseline (see Figure 4.2). Every image file’s correlative Labchart was downsized by a factor of 

100, and all continuous physiological parameter data for that experiment were plotted parallel 

to the flux data.  

4.2.6. Statistical Analysis. 

For the measurement of CBF, all Area Under Curve (AUC) and Cerebrovascular Reactivity 

Index (CVRx) data were tested for normality using skewness and kurtosis, and the effect of r-mTBI 
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analyzed across groups at proximal or distal ROIs using One-way ANOVA, and multiple 

comparisons t-test with Tukey post-hoc analysis. A given effect was considered significant at 

p<0.05, and indicated by asterisks in the Figures. Error bars represent the standard error of the 

mean. Statistical analyses were performed using JMP 11.1.1 (SAS) and graphs were created using 

GraphPad Prism 5.0. 

 

Figure 4.2. Time course of experimental assessment of cerebrovascular reactivity in male C57BL/6 mice. 
Representative laser speckle contrast flux and bright field images taken from the dorsal view by the Moor FLPI2 Laser 
Speckle Contrast Imager of fixed heads of a r-sham and r-mTBI mouse as viewed during the 60 second baseline 
immediately prior to hypercapnic challenge (A, first and second images from left, respectively, of top and bottom 
panels), during the peak response to hypercapnia (B, third image, top and bottom panel), and during the final return 
to baseline flux (C, fourth image, top and bottom). The time course of the experiment with relation to the 
representative images is shown in (D). Two 0.3mm squared rectangular regions of interest (ROIs) were positioned 
over areas of the cranial window with no obvious large arteries or transparency occlusion, with one ROI being 
positioned proximal to the midline site of injury (A, top panel, second image, closed arrowhead) and the second 
being positioned distally to the midline site of injury (A, top panel, second image, open arrowhead). The flux data 
for the entirety of the experiment duration for each mouse was normalized to the 60 second baseline of the animal, 
and ABG analysis was evaluated immediately before and after the experiment (D). 
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4.3. Results  

4.3.1. Validation of In Vivo Assessment of Cerebrovascular Reactivity 

The cerebrovascular reactivity of 9 month wild mice  in response to inhalation of 5% CO2 in 

medical grade room air for 60 seconds, and concomitant transient increase in ETCO2 to 55-

60mmHg, was markedly decreased in ApoE3FAD mutant mice, compared to r-sham controls. The 

mean response of CBF from ROIs both proximal and distal to the midline site of injury of 9 month 

old r-sham and ApoE3FAD mice (Figure 4.3, A and B, respectively) was analyzed using both area 

under the curve (Figure 4.3, C) and the CVRx, a more clinically relevant index of CVR compared 

to the AUC, expressed by further normalizing the peak response percentage change in CBF from 

baseline, to the peak change in ETCO2 from baseline for each animal. AUC analysis demonstrates 

a significantly greater response of r-sham mice, compared to ApoE3FAD controls, at both 

proximal and distal ROI locations (Figure 4.3, C; one-tailed student t-test, P<0.05), and CVRx 

analysis showed a decrease in peak CBF response, normalized to peak change in ETCO2, of 

ApoE3FAD positive controls, relative to r-sham mice, at both the proximal and distal ROI (Figure 

4.3, D, one-tailed student t-test, P<0.05).  
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Figure 4.3. Cerebrovascular reactivity at 9 months of age. CO2 evoked responses of the cerebrovasculature of 
positive control ApoE3FAD mutant mice are diminished, as compared to the responses of C57BL/6 mice, at 9 months 
post-injury. Representative traces of CBF flux, as measured by laser speckle contrast imaging, show a reduced mean 
response in CBF at ROIs both proximal (A) and distal (B) to the site of injury, in the brains of age-matched positive 
control ApoE3FAD mice, versus r-sham controls, following 60 seconds of 5% C02 hypercapnic challenge. The area 
under the curve (C, AUC) and peak response of each individual mouse, normalized to the animal’s peak change in 
ETCO2 (D, CVRx) were both analyzed using a one-tailed student t-test, within ROI and between groups. The AUC of 
the proximal ROI CBF of ApoE3FAD mice was significantly less than that or age-matched r-sham animals (Student’s 
t-test, P<0.05). The AUC of the distal ROI CBF was not significantly different between ApoE3FAD and r-sham mice, 
however, there was a trend towards significance (One-tailed Student t-test, P=0.054). There was a statistically 
significant difference in CVRx ratio between groups at the proximal and distal ROIs at 9 months of age (Student t-
test, P<0.05), with a significantly lower value in CVRx of ApoE3FAD mice of 0.64 ± 0.04, compared to a value of 1.27 
± 0.06 for age-matched r-sham controls (Student t-test; r-Sham vs ApoE3FAD, P<0.05). R-sham mice; n = 5 per group. 
ApoE3FAD; n = 3 per group. CVRx; % Peak Response in CBF/Change in ETCO2 (mmHg). Statistical analysis was 
conducted using a one-tailed student t-test analysis 
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4.3.2. Cerebrovascular Reactivity at 3 Months Post-Injury 

The cerebrovascular reactivity of 9 month old mice in response to inhalation of 5% CO2 in 

medical grade room air for 60 seconds, and concomitant transient increase in ETCO2 to 55-

60mmHg, was markedly decreased in r-mTBI mice, compared to r-sham controls, at 3 months 

post-last mTBI. The mean response of CBF from ROIs both proximal and distal to the midline site 

of injury of 9 month old r-sham and r-mTBI mice (Figure 4.4, A and B, respectively) was analyzed 

using both area under the curve (Figure 4.4, C) and the CVRx, a more clinically relevant index of 

CVR compared to the AUC, expressed by further normalizing the peak response percentage 

change in CBF from baseline, to the peak change in ETCO2 from baseline for each animal. The 

AUC analysis demonstrates a significantly greater response of r-sham mice, compared to r-mTBI 

(Figure 4.4, C; two-tailed student t-test, P<0.05), and CVRx analysis showed a decrease in peak 

CBF response, normalized to peak change in ETCO2, of r-mTBI mice, relative to r-sham controls, 

at both the proximal and distal ROI (Figure 4.4, D, Student t-test, P<0.05).  
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Figure 4.4. Cerebrovascular reactivity at 3 months post-injury. CO2 evoked responses of the cerebrovasculature of 
C57BL/6 mice are diminished at 3 months post-injury. Representative traces of CBF flux, as measured by laser speckle 
contrast imaging, show a reduced mean response in CBF at ROIs both proximal (A) and distal (B) to the site of injury, 
in the brains of both r-mTBI mice, versus r-sham controls, following 60 seconds of 5% C02 hypercapnic challenge. 
The area under the curve (C, AUC) and peak response of each individual mouse, normalized to the animal’s peak 
change in ETCO2 (D, CVRx) were both analyzed using a one-tailed student t-test analysis. The AUC of both the 
proximal and distal ROI CBF of r-mTBI mice were significantly less than that of r-sham controls (C, two-tailed student 
t-test, P<0.05). There was a statistically significant difference in CVRx ratio between groups at both the proximal and 
distal ROIs at 3 months post-injury (D, two-tailed student t-test, P<0.05), with a significantly lower value in proximal 
CVRx of r-mTBI mice of 0.97 ± 0.06, compared to a value of 1.27 ± 0.06 for r-sham controls (D, two-tailed student t-
test; r-sham vs r-mTBI, P<0.05), and a significantly lower value of distal CVRx of r-mTBI mice of 0.95 ± 0.13, compared 
to a value of 1.11 ± 0.13 (D, two-tailed student t-test, P<0.05). R-sham and r-mTBI mice; n = 5 per group. CVRx; % 

Peak Response in CBF/Change in ETCO2 (mmHg). Statistical analysis was conducted using one-tailed student t-test.  
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4.3.3. Cerebrovascular Reactivity at 9 Months Post-Injury 

The cerebrovascular reactivity of 14-15 months old mice in response to inhalation of 5% CO2 

for 60 seconds, and concomitant transient increase in ETCO2 to 55-60mmHg, was markedly 

decreased in 14-15 months old r-mTBI mice, compared to r-sham controls, at 9 months post-last 

mTBI. The mean response of CBF from ROIs both proximal and distal to the midline site of injury 

of 15 month old r-sham and r-mTBI mice (Figure 4.4, A and B, respectively) was analyzed using 

both area of curve (AUC, Figure 4.5, C) and the CVRx, a more clinically relevant index of CVR 

compared to the AUC, expressed by further normalizing the peak response percentage change in 

CBF from baseline, to the peak change in ETCO2 from baseline for each animal. AUC analysis 

demonstrates a statistically significant decrease in AUC of r-mTBI mice, compared to r-sham 

controls (Figure 4.5, C; Student t-test, P>0.05), however, CVRx analysis shows no correlate 

decrease in peak CBF response, normalized to peak change in ETCO2, of r-mTBI animals, relative 

to r-sham controls, at the proximal or distal ROI (Figure 4.5, D, Student t-test, P<0.05), but a trend 

towards a decrease at the proximal ROI (Figure 4.5, D, P = 0.14).  
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Figure 4.5. Cerebrovascular reactivity at 9 months post-injury. CO2 evoked responses of the cerebrovasculature of 

C57BL/6 mice at 9 months post-injury. Representative traces of CBF flux, as measured by laser speckle contrast 

imaging, showed the response in CBF at ROIs both proximal (A) and distal (B) to the site of injury, in the brains of r-

mTBI mice, versus r-sham controls, following 60 seconds of 5% C02 hypercapnic challenge, at 9 months post-injury. 

The area under curve (C, AUC) and peak response of each individual mouse, normalized to the animal’s peak change 

in ETCO2 (D, CVRx) were both analyzed within ROI using a two-tailed student t-test. There was a statistically 

significant decrease in AUC of r-mTBI mice, compared to r-sham controls, at the proximal ROI at 9 months post-injury 

(C, two-tailed student t-test, P<0.01). There was no statistically significant difference in CVRx between groups at 

either the proximal or distal ROI at 9 months post-injury (D, One-way ANOVA, P>0.05). Neither the AUC, nor the 

CVRx analysis of the distal ROI reported statistically significant difference between r-sham and r-mTBI at 9 months 

post-injury (P = 0.14, Student t-test). Wild type mice; r-sham, n = 5, r-mTBI, n = 6. CVRx; % Peak Response in 

CBF/Change in ETCO2 (mmHg). Statistical analysis was conducted using One-way ANOVA and Tukey HSD post-hoc 

analysis. 
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4.3.4. Physiological Parameters Affecting Cerebrovascular Reactivity 

The mean ETCO2 and MABP recordings for the first 60 seconds of baseline prior to 

hypercapnic challenge onset, the timepoint corresponding to the peak ETCO2 value reached, and 

the last 60 seconds of baseline before the end of the experiment, were analyzed for each group 

at both 3 months (Figure 4.6, C) and 9 months (Figure 4.6, D) post-injury. ETCO2 values at peak 

were significantly higher than those at baseline levels in r-sham, r-mTBI, and ApoE3FAD groups 

(One-way ANOVA, P<0.001). ETC02 values for r-sham, r-mTBI, and ApoE3FAD mice were no 

different between baseline and final baseline (Figure 4.6, C, One-way ANOVA, P>0.05). There was 

no difference in ETCO2 or MABP between r-sham, r-mTBI, and ApoE3FAD groups at either initial 

baseline, or the final baseline, at 3 months post-injury (Figure 4.6, C, one-way ANOVA, multiple 

comparisons t-test). However, there was a statistically significantly lower peak ETCO2 reading of 

56.38 ± 0.26 mmHg in r-mTBI mice, compared to a value of 58.03 ± 0.37 mmHg for r-sham 

controls (Figure 4.6, C, top panel, one-way ANOVA, multiple comparisons t-test, P<0.05), but no 

difference between r-sham or r-mTBI peak ETCO2 value and the ApoE3FAD group value of 56 ± 

1.14 mmHg, at 3 months. The difference in peak ETCO2 level reached at 3 months was not 

accompanied by a difference in MABP across groups. At 9 months post-injury, ETCO2 values at 

peak response were significantly higher than those at baseline levels in r-sham and r-mTBI groups 

(Figure 4.6, D, One-way ANOVA, P<0.001). There was no statistically significant difference in 

ETCO2 or MABP across groups at baseline, peak, or final baseline during the experiment at 9 

months, however, there was a significantly greater ETCO2 value at final baseline of 37.92 ± 1.37 

mmHg for r-mTBI mice, compared to baseline value of 36.73 ± 0.34 mmHg (Figure 4.6, D, One-

way ANOVA, P = 0 0453).  
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Figure 4.6. Physiological parameters at initial baseline, peak response to hypercapnic challenge, and final baseline 
prior to end of experiment, in C57BL/6 mice at 3 and 9 months post-injury. A and B show representative traces of 
the ETCO2 increase, as recorded by capnography, in r-sham and r-mTBI mice, in response to hypercapnic challenge, 
at 3 and 9 months post-injury, respectively. ETCO2 and MABP values corresponding to the peak ETCO2 time-point, 
and continuous 60 second blocks of data from the initial and final baselines of the experiment were analyzed via 
one-way ANOVA (C, and D). ETC02 values for r-sham, r-mTBI, and ApoE3FAD mice were no different between baseline 
and final baseline (Figure 4.5, C, One-way ANOVA, P>0.05). There was no difference in ETCO2 or MABP between r-
sham, r-mTBI, and ApoE3FAD groups at either initial baseline, or the final baseline, at 3 months post-injury (C, one-
way ANOVA, P>0.05), however, there was a statistically significantly lower peak ETCO2 in r-mTBI mice, compared to 
r-sham controls (C, one-way ANOVA, P<0.05), but no difference between r-sham or r-mTBI peak ETCO2 and 
ApoE3FAD ETCO2, at 3 months. Peak ETCO2 response was significantly greater in comparison to baseline values, in r-
sham and r-mTBI groups  at 9 months post-injury (D, One-way ANOVA, P<0.001). There was no statistically significant 
difference in ETCO2 or MABP between groups at baseline, peak, or final baseline at 9 months, however, there was a 
significantly greater ETCO2 value at final baseline for r-mTBI mice, compared to initial baseline (D, One-way ANOVA, 
P = 0 0453). 3 months; wild type mice, n = 5 per group. ApoE3FAD; n = 3 per group. 9 months; wild type mice, r-sham, 
n = 5; r-mTBI, n = 6. Statistical analysis was conducted using One-way ANOVA and multiple comparisons with 
Wilcoxon t-test. 
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4.4. Discussion 

The recapitulation of relevant and early occurring physiological hallmarks in preclinical animal 

models of neurodegenerative disease is a prerequisite for successful understanding of, and 

therapeutic action against, deleterious biological mechanisms. In this report, using our mouse 

model of r-mTBI related chronic neurodegenerative illness, we have emulated clinical studies in 

the human r-mTBI population142,143,231 and demonstrated a severe deficit in cerebrovascular 

reactivity at chronic time-points post-injury, coinciding with dysregulation of vascular cellular and 

functional markers and neurobehavioral deficit, as demonstrated in Chapter 3. 

Despite the preponderance of TCVI throughout the preclinical TBI literature, and across near 

moderate to severe head trauma186,232 and CTE-like human case report41,46, relatively few pre-

clinical studies have characterized TCVI at a chronic time-point post-last injury, and none in 

tandem with clinically relevant in-vivo physiological recording, and neurobehavioral and vascular-

directed biochemical analyses. This is perhaps due to the only recent emergence of CVR deficit 

as an endophenotype of both acute and chronic mTBI in civilian, military, and athlete populations 

alike. However, this is most likely due to the difficulty in conducting controlled in-vivo 

experiments in general, and a clinically representative in-vivo hypercapnic challenge in particular, 

on laboratory rodents across an age range comparable to the time typical of r-mTBI related 

neuropsychological and pathological manifestation in humans. Our animal model has already 

been shown to mimic some signs of the pathognomonic CTE-like neuropathology in the human 

population, such as cortical pTau accumulation and neuroinflammation, when the injury 
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paradigm is administered to hTau mice62, and has herein been further validated in replicating the 

TCVI-specific CVR deficit in human patients.  

Although CVR deficit has been implicated as a symptom of many neurodegenerative diseases, 

including the inheritable small vessel disease CADASIL148,233 and AD140, recent work by a number 

of research groups has galvanized CVR as a forerunner in TCVI diagnosis, and potentially as a 

treatment outcome metric, in the field of human TBI. Recent studies by Diaz-Arrastia and 

colleagues100,142,143,231 have demonstrated global, whole gray, and white matter CVR deficit in 

moderate-to-severe TBI patients over as chronic a timeframe as 6 months to 8 years following 

injury, typically as a result of automotive accident100,142,143,231.  Amyot et al reported patchy 

“moth-eaten” multifocal BOLD MRI-assessed regions of CVR deficit throughout the gray matter 

of brains of these 27 moderate-to-severe TBI patients, in comparison with 15 healthy controls, 

and a correlation of global gray matter CVR, but not CBF, defect with chronic TBI symptoms, such 

as fatigue, irritability, and depressed mood, in these patients142, but no correlation between CVR 

or CBF and neuropsychological symptoms across healthy and TBI groups. Interestingly, 

neuropsychological score, as assessed by the wide range achievement test (WRAT) scores and 

the Rivermead post-concussive symptoms questionnaire, showed a trend towards correlation 

between individual TBI CVR and individual Rivermeaad score, as compared to healthy age and 

gender matched controls, where no such correlation existed142. The group further expanded on 

these data in this same group of patients by demonstrating that regions of parenchymal tissue 

distant from areas of encephalomalacia and gross tissue damage, as identified through FLAIR 

MRI, exhibited resting CBF comparable to healthy control brain, but showed a CVR deficit via 

BOLD MRI hypercapnia, insinuating that normal appearing areas of tissue with apparently 
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adequate vessel density and resting state perfusion are still damaged enough to have decreased 

response to vasoactive stimulus142,143. Moreover, while the study cited the largest decreases in 

CVR and CBF to occur within regions of structural MRI-identified encephalomalacia, and 

exaggerated and decreased mean diffusivity (MD) and fractional anisotropy (FA), respectively, 

the magnitude of functional loss was not consistent between imaging modalities, indicating that 

vascular and structural tissue damage, traditionally identified via MD and FA, may be separate 

endophenotypes of chronic TBI within an individual143. Indeed, the fact that the above studies 

cited CVR deficit diffusely and distinct to the structural lesions exemplifies the relative 

redundancy of structural MRI based methods in the assessment of TCVI.  Perhaps most 

interesting of the findings from this cohort of patients is the study by Haber et al143 is that, when 

comparing lesion-negative whole brain CVR from TBI patients with marked encephalomalacia, to 

whole brain CVR from those patients without detectable parenchymal lesion, there was no 

difference in response, indicating that , although this is a moderate-to-severe TBI cohort, gross 

tissue damage may not be necessary for the diffuse TCVI associated pathophysiology seen here, 

and in lesser severities of TBI. 

Though the above studies142,143,231, and the work carried out by the aforementioned group in 

general, could be argued to be the most comprehensive of longitudinal CVR analyses conducted 

thus far in the human TBI population, the prevalence of CVR perturbation is not limited to the 

chronic phase following the more severe forms of injury, and has been seen across a range of 

studies of athletes at varying times following mTBI. One such study, mentioned previously, by 

Mutch et al144,217, has demonstrated patient-specific alterations in global CVR via BOLD MRI 

hypercapnic challenge in 15 sports related concussion (SRC) patients of 13 – 21 years old, with 
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structurally-normal brain scans, at time-points of 7-279 days following onset of symptoms, 

compared to 17 healthy control subjects. Although there was no detectable difference in whole-

brain resting CBF between SRC patients and healthy controls at either initial or follow-up MRI 

testing, there was an initial mean global decrease in CVR across the 6 SRC patients on average, 

compared to healthy subjects. Additionally, all 6 SRC patients displayed ongoing and individual 

patient-to-patient signature regional CVR increases and decreases, at both initial examination 

and following symptom resolution144,217. A follow-up study by the same group, examining 15 SRC 

subjects in a more acute-to-subacute phase following concussion, and required to be 

symptomatic at rest, or demonstrating a symptom-limited threshold during aerobic treadmill 

training234, were shown to exhibit a predominant pattern of increased CVR, relative to a brain 

atlas from 27 healthy control participants,  

The above findings of altered CVR in adolescent PCS following r-mTBI have been corroborated 

in older individuals. Using NIRS and TCD, Bailey et al235 have shown that the magnitude of 

decreased CVR in boxers, of 27 years and older, correlated directly with both the number of 

mTBIs sustained and the degree of neuropsychological deficit at chronic time-points post injury. 

Seemingly contradictory data from a report by Svaldi et al145 shows only a transient CVR deficit 

in asymptomatic 18 year old  female soccer players following a single season of play, and 

correlating with number and degree of high acceleration events (HAEs), as assessed by 

hypercapnic breath hold fMRI, and xPatch head acceleration sensors. Individual CVR returned to 

baseline pre-season levels within 2 month following end of season for all participants, however, 

it was reported that the players exhibiting greatest correlation between magnitude of CVR 

impairment and HAEs were those experiencing the highest proportion of HAEs over 50g in 
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force145. The fact that both symptomatic boxers235 and asymptomatic soccer players145,146 exhibit 

decreased CVR, assessed via different imaging modalities, supports the use of CVR as an imaging 

biomarker of TCVI across mTBI populations. Furthermore, the apparent recovery of normal CVR 

in the female athletes mentioned, as compared to the ongoing deficit in said boxers, is possibly 

due to comparatively greater load and frequency of mTBIs attained during a boxing season, as 

compared with that over a season of soccer. As mentioned, those soccer players sustaining 

greatest load of higher force HAEs demonstrated worst CVR, indicating there may be a threshold 

of mTBIs needed for prolonged CVR perturbation in humans, much as is the case in animal models 

of r-mTBI, where, typically, the highest frequencies of repeat closed head impact head trauma 

have resulted in AT8-positive and pTau accumulation62,63. Regardless, the previous reports posit 

CVR analyses as a definitive alternate non-invasive and sensitive approach for examining r-mTBI 

in the human population.  

To ascertain whether there was an observable effect of r-mTBI on CVR in our animal model, 

and if so, whether it was similarly representative of behavioral and pathological burden, we 

employed laser speckle contrast imaging, at a high temporal resolution of 1 Hz acquisition, to 

measure CBF flux in relation to baseline readings, in response to hypercapnic challenge (Figure 

4.2). The high temporal resolution of this approach allows for a representative analysis of peak 

vasodilatory response of the cerebrovasculature to increased arterial paCO2 concentration, 

however, the method is also limited in terms of the depth of parenchymal tissue analyzed, 

approximated to be no more than 500µm below the surface of the brain. The results of this report 

can thus be considered reflective of superficial gray matter CVR changes. The stability and 

reproducibility of the experimental design is demonstrated in Figure 4.5, whereby there was no 
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difference in MABP or ETCO2, the two main determinants of CBF alongside paO2 and neuronal 

function, at baseline between groups at either time-point evaluated.  Additionally, the animals’ 

physiology, on average, demonstrated the ability to eliminate supra-normal physiological levels 

of paCO2 (Figure 4.5, A and B).  We further validated the in-vivo experiment by assessing CVR in 

age-matched ApoE3FAD mice, which express 5 familial AD mutations218, and confirmed both a 

lower AUC and CVRx of peak response in these transgenic mice, compared to either r-sham or r-

mTBI animals (Figure 4.3). EFAD mice were chosen as a positive signal for functional hyperemic 

deficit on account of published data demonstrating transgenic mice harboring FAD mutations to 

exhibit decreased CVR in response to hypercapnia227,236,237, much as is the case in the AD 

population140,223,225,226,228. In fact, one study by Shin et al229 describes a progressive age-

dependent decrease in both CBF flux value and CVRx ratio in the Tg2576 mouse, compared to 

age-matched wild type mice, at 3, 8, and 15 months of age, indicating the impact that just one 

FAD mutation has on CVR. The same study also shows decreased CVR response with age within 

the wild type group229, similar to the decreased response we see in sham mice at 9 months post-

injury (15 months of age), compared to sham mice at 3 months post-injury (Figures 4.3 & 4.4, A 

and C) when exposed to hypercapnia. Indeed, it is worth noting that the modest difference in 

CVRx between r-sham and r-mTBI mice at 9 months post-injury (15 months of age) in our study 

may have been significant had it not been for the confounding age-dependent decrease in CVR 

at this time-point. The difference in peak ETCO2 levels between r-sham and both r-mTBI mice and 

E3FAD controls at 3 months post-injury should not be considered to be driving the CVRx 

difference between groups, as this is controlled for by normalization of percentage change in flux 
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to the change in ETC02 readings when generating the CVRx value (Figures 4.3, D, and 4.4, D), as 

is frequently done in the clinic. 

In agreement with the aforementioned human TBI studies, we report a significant and 

profound multifocal (both proximal and distal to the site of injury, Figures 4.3 and 4.4) reduction 

in CVRx at the chronic 3 month post-injury time-point in our animal model of r-mTBI. As 

mentioned, this CVR deficit is likely to be central and representative of TCVI in the r-mTBI mice, 

and not driven by peripheral physiological determinants, as mice with signs of alkalosis, acidosis, 

sub-normal bicarbonate, or saturated O2 concentrations less than 95% prior to hypercapnic 

challenge were not included in the analyses. The difference in CVR at both time-points analyzed 

seems to be less exaggerated at the ROI distal to the site of r-mTBI, with apparent restoration of 

normal function at 9 months post-last injury (Figure 4.4, D), alongside a trend in persistent CVRx 

deficit in tissue nearest the impact area (Figure 4.4, D, P = 0.07). While this apparent restoration 

in vascular function may be a false negative, as mentioned in regards to the possible confounding 

effects of age at this time-point, if taken as representative, the seemingly transient nature of the 

CVRx impairment seen here can be interpreted in one of two ways; either the CVRx sequelae of 

r-mTBI induced TCVI in our animal model is short-lived, and shows a propensity to resolve 

following reprieve from trauma, or the effect at the more chronic 9 months following r-mTBI is 

more global, and requires a much larger sampling of a greater depth of tissue, as has been used 

in identification of chronic human TBI CVR dysfunction142,143,231, than was possible in this study. 

Both interpretations of this data would agree with the literature at large, as our biochemical 

analyses from Chapter 2 show a possible biphasic reaction of the cerebrovasculature to injury, 

akin to the compensatory response seen across animal models of TCVI100, which could account 
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for the disappearance of CVR deficit with age in our animals, much as with the human population 

of athletes145,146,217,238. Likewise, studies investigating moderate to severe TBIs142,143 postulate a 

CVR deficit detectable only by global CVR analyses at the more chronic time-point post-injury, 

and so, elusive to the localized ROI measurements in this study.  

Only one other study has examined CVR deficit in a mouse model of repetitive head trauma. 

Adams et al239 have administered 3 unilateral closed head impacts to Thy1-ChR2 mice at 3 day 

intervals and assessed CVR in repetitively injured mice and controls at 2 weeks post-injury via 

ASL, and inhalation of 10% CO2 for 60 seconds for evocation of hypercapnic challenge239. 

Although this group reported a severe decrease in CVR in the cortex ipsilateral to injury, the study 

has several caveats, not least of all the high incidence of attrition within the TBI group of mice 

within 2 weeks post-injury, the use of a greater percentage of CO2 above than that used in the 

clinic, and the lack of data on MABP and ETCO2 at baseline or peak levels in mice during the 

experiment. As such, the effects seen in the study may be regarded as somewhat representative 

of CVR deficit following a moderate to severe TBI, but certainly not applicable in the context of 

repetitive mild head trauma.  

In summary, we have in this Chapter for the first time shown a functional physiological deficit 

by the cerebral vasculature following repeat mild head trauma coinciding with cerebrovascular-

specific pathology and neurobehavioral decline in an animal model of r-mTBI. These findings not 

only recapitulate those seen across a spectrum of mTBI patients in the human population, but 

also provides the first evidence of a causative role for TCVI in preclinical r-mTBI related 
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pathogenesis, and justification for the use of CVR measurements as a prospective diagnostic and 

therapeutic metric in research.  
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Chapter 5.  Discussion and Conclusions. 

5.1. Overview. 

Traumatic brain injury is a major cause of chronic disability worldwide, and despite the 

incidence and impact of the so-called ‘silent epidemic’ of mild TBI, there is an unmet need to 

understand the biological mechanisms underpinning onset and evolution of TBI-related 

neurodegeneration in both human patients and animal models of the disease. Researchers 

attempting to emulate the pathological sequelae most typically seen in r-mTBI patients have 

failed to reproduce many of the trademark pathological lesions seen at autopsy of those 

diagnosed with CTE or dying in the acute to subacute phase following a mTBI, and so, the validity 

of relying upon these hallmarks of repetitive injury-related disease that are seemingly 

monogamous for the human condition is speculative at best. Ergo, validation of a physiological 

biomarker common across the spectrum of mTBIs both developed in various animal models, and 

sustained by human patients, would eliminate the reliance of the preclinical field on 

neuropathological end-points of longitudinal studies, and represent an in vivo diagnostic 

alternative in mouse and man. Currently available clinical imaging modalities such as pseudo 

carotid Arterial Spin Labelling (pcASL) are especially sensitive to changes in vascular perfusion, 

commonly seen in chronic TBI. Traumatic Cerebral Vascular Injury (TCVI) is a non-invasively 

demonstrable endophenotype which manifests as a lack of cerebrovascular reactivity (CVR) in 

vivo in human patients and is shared across the spectrum of r-mTBI in mouse and man. However, 

this physiological deficit, typical of TCVI, has until now eluded measurement in preclinical models 

of r-mTBI.  
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5.2. Summary of Findings. 

Given the heterogenous nature of the head trauma accrued by the more than 2.5 million 

patients each year in the United States alone, early occurring and injury-specific biomarkers will 

be paramount in the development of therapeutic strategies, as they can demonstrate target 

engagement, or lack thereof, with the hypothesized mechanism of injury, and provide proof of 

principle by indication of efficacy on a preclinical screening platform. Arguably the most 

immediate central phenomena following TBI and meeting the criteria of a non-invasively 

quantifiable biomarker is a decrease or abnormal patient cerebral blood flow (CBF). A greater 

proportion of moderate-to-severe TBI patients have marked reduction in resting state CBF within 

12 hours following head injury240, and individuals with a history of r-mTBI demonstrate 

alterations in regional and global brain perfusion many days and weeks following traumatic 

insult138,141. Severe TBI is known to result in potentially fatal ischemia through vasospasm and 

hypoperfusion135, and so, therapeutic intervention to augment CBF acutely is predicted to have 

clinical benefit241. However, there is currently no cerebrovascular oriented therapy considered 

protective against chronic r-mTBI symptoms, chiefly because so little is known regarding the 

vascular mechanics underlying its pathogenesis. For this reason, we aimed to conduct the first 

characterization of chronic cerebrovascular pathophysiology in an animal model of repetitive 

mild traumatic brain injury155. Our model recapitulated the long-term decrement in cognition, 

and neuroinflammatory phenotype archetypal of murine model CTE-like neurodegeneration, 

alongside vascular marker and, most importantly, CBF decrement, seen in individuals suspected 

at risk for development of the pathognomonic pTau pathology of CTE. These findings provide 

rationale for using this model as a validation of the preclinical relevance of the CVR 
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endophenotype seen in the mTBI population, and a potential alternative and more 

mechanistically telling outcome measure to Tau pathology.  

Over the course of this thesis, we have designed and validated a sensitive and relatively non-

invasive experiment to elucidate the degree of CVR in our relevant animal model of r-mTBI and 

demonstrated a deficit in CVR representative of that seen across select studies of chronic TBI in 

human patients. Specifically, we have identified a chronic CVR pathophysiology, akin to the 

profile of cerebrovascular responsiveness seen under similar conditions and experimental 

interrogation in a proportion of studies conducted on human athletes145,146,238. Furthermore, we 

have demonstrated evidence of a parallel biphasic TCVI pathology occurring at the time-points 

of in vivo analysis, providing a biological mechanistic rationale for the observed physiological 

phenomena, adding further credence to the significance of TCVI as a distinct endophenotype of 

chronic TBI-related illness, and bridging a gap in knowledge in the literature.  

The exact cause of CVR deficit in human TBI is not understood, though it is believed to be due 

to an inherent inability of the cerebral vessels to react normally to vasoactive stimuli, rather than 

a decreased presence of the vessels themselves143. This hypothesis is supported by several 

studies in animal models, one such example being a report by Wei et al242, using cranial windows 

to visualize pial vessels and parenchymal vasculature as we did, to show that while Fluid 

Percussion Injury mTBI in rats elicited a pronounced decrease in CVR via hypercapnic challenge 

for up to 3 weeks post-injury, the degree of deficit in response to either hypercapnia or topical 

application of acetylcholine was quantitatively greater than that observed with application of the 

nitric oxide donor Sodium Nitroprusside (SNP)242. This result indicates that the smooth 
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musculature of the endothelium retains the ability to respond to NO in this animal model of 

chronic TBI, however, the signaling mechanisms governing NO production itself seem 

impaired242.   This hypothesis is mirrored in our findings at 3 months post-injury in our own model 

of chronic r-mTBI, whereby profoundly reduced expression of eNOS, without concomitant 

decrease in markers of vascular mural or endothelial cellularity, throughout the cortices of r-mTBI 

mice is seen in unison with CVR decrease in response to hypercapnia. The results of our study 

and of Wei et al242 falls in line with the proposed mechanistic modus operandi, recently 

proposed231, for the augmentation of chronic CVR deficit in moderate-to-severe TBI patients by 

treatment with Sildenafil, a PDE5 inhibitor, which indirectly increases the vasodilatory effects of 

NO in vivo231. Kenney et al231 demonstrated that a single oral 25mg dose of sildenafil is sufficient 

to potentiate CVR in TBI patients exhibiting both global and regional CVR deficit in lesioned and 

normal appearing gray matter tissue. Once again, the CVR in these patients is seen to be 

compromised in areas exhibiting normal resting CBF, indicating intact and functional vessel 

density. Furthermore, patients receiving a twice daily dose of 25mg sildenafil for a course of 8 

weeks showed improved CVR, relative to baseline, with two patients self-reporting increased 

processing speed and concentration. The lack of an overall effect of prolonged treatment with 

sildenafil on neurocognitive parameters in these patients beyond self-report may have been as 

much due to small sample sizes as to the very late time-point analyzed. However, the studies of 

both Kenney et al231, and Wei and colleagues242 provide proof of concept for the targetability and 

therapeutic efficacy of treatment of TCVI via CVR analyses in vivo.  

 The next most prescient finding of our study was the fact that alterations in normalized 

CVR index appear to dissipate by the second, most chronic time-point post-injury analyzed in our 
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r-mTBI paradigm. This can be interpreted as the cerebrovasculature’s latent plasticity and 

adaptability in the response to TCVI, as seen in animal models of r-mTBI171,194-197,206,211, and is 

encouraging in the context of prospective prophylactic and other therapeutic interventions. 

However, marked neurobehavioral impairment was still observed, despite the modest resolution 

in CVR deficit (P = 0.14), perhaps indicating that, as detrimental as TCVI may be early on in disease 

pathogenesis, the poly-pathological burden of white matter tract damage and 

neuroinflammation endured through to chronic time-points post-injury alongside vascular 

pathology may be sufficient to continue to advance disease progression despite possible 

TCVI/CVR recovery. It should be noted that the modest resolution in CVR signal at 9 months post-

injury in our animal model may have been statistically significant were it not for a possible 

masking effect of decreased vascular responsiveness in the sham animals at this very chronic 

time-point post-injury, such as is possible and has been noted by a separate group229. This is not 

necessarily a disparaging result, as early treatment of TCVI with angiogenic therapeutics has been 

shown to ameliorate cognitive symptoms in animal models of brain injury, with one group 

reporting improved neurologic recovery following experimental ischemic stroke with Sildenafil 

treatment204. Another team has recently demonstrated that infusion of the vascular-associated 

sulfonlylurea urea pathway antagonist Gilbenclamide, following polytraumatic CCI and 

hemorrhagic shock injury in wild type mice, results in decreased cerebral edema243. Statins, 3-

hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase inhibitors, prescribed universally 

for treatment of high cholesterol and lowering of incidence of vascular and cardiac-related 

adverse events in the human population, have shown great promise in treatment of mTBI 

preclinically, with one study by Xu et al244 showing acute treatment following CCI in wild type 
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mice to have neuroinflammatory and neurobehavioral outcome benefits. Tong and Hamel245 

have shown that chronic treatment of 18 month old Transforming Growth Factor-β 1 (TGF-1) 

mice, considered a model of cerebrovascular disease, with Simvastatin managed to restore nitric 

oxide levels to baseline in vivo and to rescue Acetylcholine-induced deficit in cerebrovascular 

reactivity ex vivo245.  The same group previously confirmed synergistic rescue of impaired spatial 

memory, as assessed by Morris Water Maze, and cerebrovascular reactivity deficit in response 

to the Acetylcholine and Calcitonin Gene-Related Peptide (CGRP) stimulation ex vivo in cerebral 

arteries from double transgenic FAD mice following treatment with Simvastatin228. Most 

importantly, these neurocognitive and physiological improvements occurred without obvious 

resolution of amyloid pathology, and only in adult treated mice, and not aged animals228. The 

reversal of both cognitive and CVR deficits by statins at an earlier stage of neuropathology in 

animal models of Alzheimer’s disease, taken together with the above success in rescue of 

vascular responsiveness and behavioral phenotype in animal models of TBI, suggest that 

treatment of TCVI early on may have broad spectrum therapeutic efficacy past just vascular 

health, and independent of other persistent co-pathology. Our animal model and current 

optimized experimental setup is the first attempt in the field of preclinical neurotrauma research 

to investigate vascular health and physiology following r-mTBI and is ideal for testing of these 

hypotheses. The findings from this thesis support the involvement of TCVI as a key pathology of 

chronic r-mTBI-related neurodegeneration in both the human population of mTBI survivors and 

our animal model thereof. Furthermore, the results described herein are the first to resemble 

the physiological in vivo endophenotype of TCVI of the human population in the preclinical arena 
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and demonstrate sound mechanistic basis for compromised cerebrovascular health and 

responsiveness following repeat head trauma. 

 

5.3. Future Directions 

As with any novel approach, the sensitivity and application of the in vivo methodology 

outlined in this thesis can be advanced upon. Though replicate cohorts of age matched male mice 

were used for the two time-points at which CVR and neurobehavioral assessment was conducted, 

and the results can thus be assumed to be representative of those had the same animals been 

analyzed across all metrics, future investigations will involve the longitudinal and repeated CVR 

and cognitive testing in each biological replicate mouse. This approach will give greater insight in 

to individual animal to animal variability in response to injury and allow for longitudinal 

treatments, with the benefit of sensitive and telling multivariate analyses of each biological 

replicate across time. In addition, the CVR index of each animal can be measured against the 

animal’s Barnes Maze probe memory assessment in both treated and untreated sham and TBI 

mice, in an aim to answer whether the degree of CVR deficit correlates directly with learning and 

memory impairment.  

The complement biochemical analyses to the in vivo data herein, though in agreement with 

relevant studies in the field, incorporated the whole of the cortical vasculature, and so, arteriolar 

or capillary-specific alterations in mural cellular or functional markers may have been 

underestimated. Future research will build upon this more global biochemical assessment by 

examining high magnification confocal images of immunohistochemically stained cortical vessels 
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for the same markers as were examined in Chapter 3, to determine whether the downregulation 

seen for cellular markers, such as PDGFRβ, was representative of a decreased pericyte 

population, or a decreased presence of the receptor itself, relative to mural cell count. Another 

complement technique, alongside the immunoblot analyses from Chapter 3, to further 

interrogate the extent, if any, of BBB permeability throughout the cortices of r-mTBI mice would 

be the inclusion of a low molecular weight fluorescent dye in to the femoral artery catheter 

perfusate following the hypercapnic challenge, immediately prior to euthanasia. This would allow 

cerebral vascular circulation and in vivo imaging of dye extravasation from the vessels via 

fluorescent microscopy, and post mortem confocal microscopy of said fluorescent marker 

throughout the parenchyma, as an indicator of BBB leakage.  

Although the above histopathological approaches would address whether changes in the 

gross vascular density and structure may be partly responsible for the diminished CVR seen 

following r-mTBI, they would not provide insight in to the underlying signaling pathways, or 

aberrations therein, mediating vessel dilation in response to increased arterial pCO2. The 

transient activation of the intracellular pathways leading to production of vasodilatory 

substances, such as NO and Prostaglandin E2, is likely to subside, and vasoactive mediator 

concentrations probable to return to baseline physiological levels soon after cessation of 

hypercapnia. Additionally, the biological mechanisms governing the chemosensory response of 

the cerebral vasculature to hypercapnia are thought to be multi-faceted and are not very well 

defined in health, let alone in a neurodegenerative disease state such as chronic head trauma-

related illness. Nonetheless, it is essential to dissect the molecular cascade upstream of 

hypercapnia-elicited CVR in both the healthy and r-mTBI rodent if we are to adequately 
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understand and target the pathogenesis of this aspect of TCVI, and due to the short-lived 

signaling involved, this would be best done in real time in an intact cranial window imaging setup 

used in this and a few other studies.  Recent such efforts by other groups have demonstrated the 

astrocytic release of COX-1 derived PGE2 to be in part responsible for the cerebral vasodilation in 

response to hypercapnia246 in the rodent, and the aforementioned studies by Wei et al242 have 

shown facilitation of CVR in both lateral fluid percussion-injured animals and control sham rats 

upon administration of Sodium Nitroprusside (SNP), implicating Nitric Oxide as a key potentiator 

of CVR in vivo, much as has been shown by the work of Kenney et al143 in chronic TBI in human 

patients. Ergo, there may be several vasodilators, released from more than one mural or 

endothelial cell type acting synergistically to initiate and facilitate CVR in the cerebral cortex.  

The most obvious future experiment may be to eliminate each potential vasoactive substance 

one at a time, such as has been done with regards to Adenosine in a study by Miekisiak et al247, 

which demonstrates a similar CVR response to hypercapnia, as measured by laser Doppler 

Flowmetry, in anesthetized, intubated and artificially ventilated wild type and age-matched 

Adenosine A2A receptor knockout mice, suggesting that Adenosine may not be essential to 

induction or facilitation of hypercapnia-induced hyperemia247, and so, not a compelling line of 

inquiry or therapeutic candidate in the study of physio-normal vasoreactivity or r-mTBI related 

CVR impairment, respectively. The most pronounced CVR deficit in our animal model of r-mTBI 

was seen at 3 months post-injury, coinciding with an apparent decrease in cortical expression of 

eNOS, suggesting either a downregulation of the essential NO-producing enzyme. This 

interpretation would agree with the data presented by both Wei et al242 and Haber and 

colleagues143,231, invoking an intact endothelium, but a reduced permissive action of NO during 
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hypercapnia. To test if this is the case in our animal model, we could expose the 9 month old 

sham and r-mTBI mice to two sequential hypercapnic challenges separated by a femoral artery 

catheter infusion of SNP, in order to normalize NO activity between groups. Under this 

experimental setup, if the decrease in CVR is solely endothelium-dependent, and not caused by 

other factors, such as smooth muscle loss, or vasoactive signaling dysfunction separate to NO, 

then the CVR response should be rescued in r-mTBI mice, compared to sham. The SNP 

administration could also be coupled with a pretreatment, following the first hypercapnic 

stimulus, of 2,4-diamino hydroxyl pyrimidine (DAHP), a specific inhibitor of guanosine 

triphosphate cyclohydrolase (GCH1), the rate-limiting enzyme in the de novo biosynthesis of 

tetrahydrobiopterin (BH4)248, an essential co-factor for eNOS activity249. This pretreatment would 

ensure depletion of endogenous NO reserves and activity, and in so doing, aid in normalizing the 

response across biological replicates.  

The decrease in PDGFRβ expression, without a concomitant decrease in the aminopeptidase 

N marker CD13, arguably a much more membranous ubiquitously expressed marker of pericytes, 

might suggest a downregulation of receptor function with little or no decrease in pericytic 

cellularity or vessel coverage. This is an important finding with regards to the profound decrease 

in CVR at the 3 months post-injury time-point, as, not only is PDGFRβ receptor expression loss 

implicated in cerebrovascular dysregulation in AD, but pericytes and smooth muscle cells are 

known to secrete, and express receptors for, the potent vasoconstrictor Endothelin-1 (ET-1) in 

vivo following TBI121, and inhibition of ET-1 signaling following experiment TBI has been shown 

to protect against hypoperfusion181,  so it is possible that an enhanced ET-1 mediated tone may 

be in part responsible for the decreased CVR in response to hypercapnia seen at the earlier of 
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the two chronic time-points. The first future experiment to determine the role of ET-1 would be 

to assess concentrations of this vasoconstrictor in the cortices of sham and r-mTBI mice via 

immunoblot and ELISA analyses. An in vivo approach to further confirm the role of ET-1, if any, 

in dampening of the CVR response in the cortices of r-mTBI mice would be to replicate the cohort 

and paradigm and give two hypercapnic challenges separated by a treatment, analogous to the 

above proposed SNP, but to instead administer an intracerebral ventricular infusion of antisense 

ET-1 oligodeoxynucleotides before the second of the two consecutive hypercapnic challenges. A 

restoration of CVR to sham levels would indicate an involvement of aberrant ET-1 tone in the 

blunting of vascular responsiveness to hypercapnia.  

The recent observations of CVR impairment as an easily detectable and early occurring in vivo 

physiological symptom, if not biomarker, of mild TBI have been recapitulated here in this report. 

However, it has also been reported that, although CVR deficit can be targeted and rescued in 

chronic TBI in human patients, this amelioration of vascular responsiveness is not accompanied 

by neurological improvement as assessed by standardized clinical tests231, a result which begs 

the question whether resolution of CVR insult will be of any biological or clinical relevance if 

patients are treated acutely following head trauma. Moreover, as the interrogation of cerebral 

vasoreactivity in the human TBI population is a relatively new field of research, there has yet to 

be a post mortem confirmation of TCVI or CTE-like pathology in patients with a history of mild 

head trauma and concurrent aberrant CVR readings. The in vivo platform presented here offers 

the first opportunity to assess the therapeutic implications of CVR restoration acutely post-injury 

on chronic r-mTBI-related neuropathological and behavioral outcome in an animal model also 

displaying CTE-like symptoms. Although CVR is seen to improve with time following injury in our 
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animal model, as it is in some reports of sports related CVR impairment, even a transient inability 

of the cerebral vasculature to react to the metabolic demands of the brain could lead to cortical 

infarcts and ischemia, which are frequently reported across moderate to severe degrees of TBI 

in human patients31,250-252, and indeed, in the cortices of the patients exhibiting rescued CVR upon 

treatment with the Phosphodiesterase 5 (PDE5) inhibitor, Sildenafil143,231, one of the many FDA-

approved and tolerable drugs believed to be protective against ischemic injury253. We have not 

thus far investigated ischemia in our animal models of r-mTBI, however, Bolton et al254 have 

reported ischemic injury and neuronal degeneration in wild type mice at an acute time-point 

post-injury using our lab’s original r-mTBI model59, and so, it is conceivable that ischemia and 

concomitant neuronal injury may occur downstream of compromised CVR, contributing to the 

neurobehavioral deficits in learning and memory at 3 and 9 months post-injury in our chronic r-

mTBI paradigm described here. A pertinent future experiment would thus be to have a 

longitudinal treatment of the r-sham and r-mTBI animals with Sildenafil, and vehicle, coupled 

with survival CVR analyses and Barnes Maze learning and memory assessment at both an acute 

and chronic time-point post-injury, and a detailed immunohistochemical assessment of diffuse 

ischemic brain injury. Such an experiment will give both a proof of concept confirmation that CVR 

can be rescued with therapeutic intervention and will also determine whether CVR normalization 

translates in to meaningful symptom resolution.  
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5.4. Concluding Remarks 

It is clear from the recent literature pertaining to the frequency of occurrence of CVR 

perturbations across multiple mild and moderate TBI patient populations that measurement of 

cerebral vascular responsiveness may represent a more compelling and clinically feasible 

alternative biomarker to conventional less validated and post mortem analyses. The fact that CVR 

detriment appears transiently in asymptomatic contact sports athletes suffering repeat mTBIs, 

persisting in others experiencing a greater burden of TBI intensity and frequency, and chronic 

TBI-related cognitive disability, implicates this easily assessable and robust physiological 

biomarker as an endophenotype of underlying TCVI, and so, a candidate criterium for patient 

diagnosis and stratification in to cerebral vascular directed clinical trials. 

A review of what is currently understood about the response of the cerebral vasculature to 

TBI, alongside parallel neuropathology and symptom onset, in both human patients and animal 

models thereof, suggests that there is an acute rarefaction of the cerebrovasculature following a 

critical load of TBI, and a chronic neovascularization or normalization, which perhaps represents 

a latent reparative mechanism to compensate for the infringed vasoreactivity and capacity of the 

cerebral vessels to supply adequate perfusion (Figure 5.1). The results from this thesis 

corroborate these insights from other studies and clinical observations, recapitulating the 

persistently compromised CVR seen in symptomatic human patients, in unison with chronic 

learning and memory impairment. The hypothesized TCVI progression (Figure 5.1) may allow for 

early therapeutic intervention with drugs such as Sildenafil, which can potentiate CVR, and 

facilitate adequate perfusion for prophylactic angiogenic and neuroprotective effect in 
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individuals identified by CVR assessment as being at risk for development of chronic TVBI-related 

illness.  

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Cerebrovascular response to injury. Hypothesized timeline of the degree and direction of Traumatic 
Cerebral Vascular Injury (TCVI) and Cerebral Vascular Reactivity (CVR) alongside neurodegenerative and 
symptomatic sequelae following repetitive mild, or moderate-to-severe head trauma. Whereas cerebral vascular 
reactivity (CVR) deficit is observed in human patients following both a mild TBI with or without transient post-
concussive symptoms (A), prolonged CVR impairment is observed at chronic time points post-injury in conjunction 
with chronic TBI-related neurocognitive and neurodegenerative illness (B), with all current preclinical animal model 
vascular interrogation indicating a parallel biphasic response of the cerebral vascular tissue density and vasoactive 
capacity to injury (B). Reports of an initial rarefaction in the vascular network, followed by a chronic 
neovascularization may indicate a latent recovery of the cerebral vessel network in response to TBI to compensate 
for diminished hyperemic response seen post-injury (B), and may represent a therapeutic window of vascular-
directed prophylactic therapy before chronic neurodegenerative and neuroinflammatory pathologies fully manifest.  
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