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The definition of the timing (periodicity) of the metrological verification of measurement devices as used in 

business or health care,  while monitoring environmental conditions and proving health and safety at work, 

is an urgent issue in scientific research, upon which depends the quality of goods and services. Therefore, the 

article proposes a methodology for estimating intercalibration intervals, taking into account the concept of 

measurement uncertainty, which has been tested in tests of the inertia measure of electric motors.   

Introduction. It is accepted that measurement instruments are technical devices which are 

characterised by standardised metrological characteristics [1 - 7]. The reliability of measurement 

devices is determined by their ability to withstand the metrological parameters of regulated limits. A 

result obtained beyond these set boundaries is classified as a metrological failure. The correspondence 

of metrological characteristics to their standardised values is established during the course of 

verification (metrological control) or metrological certification of measurement devices. The 

introduction of the concept of measurement uncertainty to international standards for the evaluation 

and definition of the characteristics of precision measurements [1] and the evaluation of quality 

electrotechnical items [2] requires the development of methods for the assessment (establishment) of 

the inter-verification interval of the measurement device, the procedure of which should be based on 

the theory of uncertainty of measurement [8, 9].  

The development of evaluation methods for precision measurement and inter-verification interval 

measurement for measurement devices based on the concept of the uncertainty of measurement is 

needed in order to establish the timing of the next scheduled or unscheduled verification of the 

correspondence of metrological characteristics to their standardised values. The definition of the 

timing (periodicity) of the metrological verification of measurement devices as used in business or 

health care,  while monitoring environmental conditions and proving health and safety at work, is an 

urgent issue in scientific research, upon which depends the quality of goods and services. 

Analysis of the status of research and publications. The existing academic resources quite 

satisfactorily consider separate theoretical approaches to evaluating and expressing uncertainty [8 - 12] 

and the theoretical approaches to determine intermediate verification (inter-verification) intervals of 

measuring instruments based on the limits of metrological characteristics of instability. The leeway in 

metrological characteristics is based on the theory of measurement error and the reliability of means 

without regard to the concept of uncertainty of measurement [12 – 14]. Thus, to date, there is no 

approach to determining the inter-verification range of measuring instruments based on the theory of 

uncertainty of measurement. Therefore there is a need to develop mathematical tools to determine and 

define the inter-verification range of measuring instruments based on international standards for 

evaluation characteristics of measurement accuracy - the theory of uncertainty of measurement. 

We know that if it is possible to determine, at least to an approximate degree, the average number 

of metrological failures q in the general stream of rejections of measuring instruments, the estimated 

functional accuracy of measurements without measurement rejections Рм(t) during the duration of 

operation t [9, 14] may be demonstrated by [4, 10]: 

                    
      tP1tq1tPM 

,                            (1) 

where Р(t) is the probability of failure-free operation of the measuring device (technical reliability) for 

the time of operation t. 

Given the above, the purpose of this article is to develop a method for evaluating the accuracy of 

performance measurement and the inter-verification interval for measurement devices based on the 

theory of the uncertainty of measurement, that will allow the timing to be established for scheduled 

verification of measurement devices, according to international standards that apply to the assessment 

of the quality of electrical products. In addition, the proposed evaluation method of measuring 

accuracy must be tested during the metrological certification of measurement device for the moment 

of inertia of electric motors. 

mailto:o.vasilevskyi@gmail.com
User
Печатный текст

User
Печатный текст



If the average number of metrological failures q (t) cannot be determined, then РМ(t) = Р(t) 

should be used. 

We also know from the literature [6, 9, 10, 13, 14] that key indicators that can be used to 

calculate the characteristics of metrological reliability are: the probability of failure-free operation; the 

frequency of metrological failures; mean time to first failure in metrology; the parameter flow of 

metrological failures; and time to first metrological failure. 

However, in the information on the means of measurement that are submitted for testing to 

provide type approval or metrological certification of the means of measurement, there is often no 

reliable information about the instability of the metrological characteristics of the measurement means 

required for justifying the assignment of an initial inter-verification interval for the measurement 

instrument. In these cases, it is possible to estimate such intervals by using fixed values for the 

reliability parameters as specified in the technical specifications and documentation for the 

measurement devices, or by using analogue information on the inter-verification intervals, followed by 

correction of operational values on the basis of data on the frequency of usage and the measurement 

conditions. 

Theoretical approach to the definition of the inter-verification interval of measurement 

means based on the concept of the uncertainty of measurement. To determine the inter-verification 

interval of a measurement device based on the concept of measurement uncertainty, a theoretical 

approach is proposed below. 

Experimental evaluation of measurement uncertainty in the lower and upper measurement range 

of a measurement device through digitized gradations, a series of measurements must be conducted at 

the lower limits of measurement of the measuring device (minimum values standardised by 

measurement instruments) within the measurement range of the measuring device, and the upper limits 

of measurement of the measurement device (the maximum value that is specified in the technical 

documentation). At the same time the input of the measuring device must be sampled in the set of 

values of measurement signals that correspond to the specified measurement range in the technical 

documentation. Hence, experimental research into the gradated limits of measurements may be 

performed using the methodology of sample measurements, sample signals, sample devices or 

comparison methods. Based on the experimental data, the standard uncertainty of type A for the lower 

limit of measurement for measuring mid-range and upper limit of measurement may be determined 

using the equation as follows [8, 15]: 
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where хі,K is the quantity of values obtained in the K-th group of observations according to the lower 

limit of measurement within the measurement range, and the upper limit of measurement; K is the 

number of groups monitored in the gradated increments of range measurements; Kx
 is the mean value 

of each group of observations under investigation; n is the number of measured values in the k-th 

group of observations [2, 15, 16]. 

From the results obtained by formula (2) of the experimental standard uncertainties of type A, the 

largest value is set by as a maximum of the standard uncertainty of type A 
 xu maxA , which is then 

used to determine the inter-verification interval of the measuring instruments. 

The next stage in determining the inter-verification interval of the measurement device is the 

evaluation of the standard uncertainty of type B, which is determined by available information 

about the discarded remainder of repeatable effects that in theory, together with a justified degree 

of certainty, can be manifested in the process of measurement. In doing so, one should rely on 

information derived from prior measurements, acceptable working conditions for the means the 

measurement, the physical properties of the measured value, technical documentation data for the 

measurement device or means of reference data [17, 18]. After evaluating the theoretically possible 

components of standard uncertainties of type B, it is necessary to calculate the combined total 

standard uncertainty of type B cBu
based on the known forms of representation of combined 

uncertainty [17]. 
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 are the sensitivity coefficients for the equation of transformation of measurement; 

u(хi) is the standard uncertainty evaluated as type A where the maximum standard uncertainty of 

type А is 
 xu maxA ) according to type В. 

If we assume that the coefficient of sensitivity to uncertainty of type A is 1, and the sensitivity 

coefficient standard of uncertainty as estimated as type B is included in the calculation of the total 

uncertainty of type B, then equation (3) to estimate the total uncertainty of the measurement result 

may be written as: 
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If there is a correlation between the input variables, the equation for determining the total 

uncertainty of the measurement result will be: 
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  the correlation coefficient. 

After calculating the total uncertainty of the measurement result, it is necessary to define the 

expanded measurement of uncertainty, which is attributed to the measuring methods as a standardised 

value, and noted in the test report of the technical documentation for the measuring device. Expanded 

measurement uncertainty is obtained by multiplying the total uncertainty of the measurement result by 

the coverage coefficient [2, 8]: 

UN = kPuc(y),                                                           (6)  

where kP is the coverage coefficient, which is determined by information on the confidence probability 

P, and the effective number of degrees of freedom eff. 

The value of the confidence probability P is usually stated in the specifications or technical 

manuals for a given means of measurement. If the technical documentation does not specify a 

confidence probability, it is determined either experimentally or determined a priori [8].  

The effective number of degrees of freedom is calculated by the Welch–Satterthwaite equation: 
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On the basis of the confidence probability P and the effective number of degrees of freedom eff 

from the Student table, the coverage coefficient kP is determined. 

In the case that the effective number of degrees of freedom is greater than 30, eff > 30, the 

coverage coefficient is assumed to be  k0,9 = 1,64  when probability P = 0.9;   k0,95 = 1,96 when Р 

= 0,95; k0,99 = 2,58 when Р = 0,99 and k0,9973 = 3 when Р = 0,9973. 

After setting the standardised value of the expanded uncertainty of measurement under standard 

conditions, or the total measurement uncertainty value, it is necessary to define an operational 

longevity t for the use of the measurement instrument. This may be defined on the basis of information 

about the intensity of the exploitation of the measurement means (number of working hours of 

  

After calculating the total measurement uncertainty of type B, it is necessary to calculate the 

total uncertainty of the measurement result based on the maximum standard uncertainty of type A. 

The equation for calculating the total uncertainty of the measurement result in the absence of 

correlation is [8, 15, 19]: 



Having assigned certain standard values  for the metrological characteristics this device should be 

used or tested under real applied conditions that differ from laboratory benchmarking, such conditions 

under which the measuring device will actually be used. 

After lengthy trials of the measurement device, the total and summary expanded uncertainty is 

again calculated, based on the environmental conditions of actual use on-site. In this case, the 

calculations take into account the working conditions of operation, using real values of ambient 

temperature and other conditions of measurement. Thus, we may calculate operational uncertainty 

values using formulas (2) - (7). As a result of these calculations, operational values may be obtained 

for expanded uncertainty of measurement for UE  under operating conditions, which is then used to 

specify the inter-verification interval of measurement instruments. 

Based on the values of uncertainty of type A, standardised and theoretically possible expanded 

measurement uncertainty and operational expanded uncertainty of the measurement under the 

assumption of symmetry of the distribution of uncertainty, the first assessment of the inter-verification 

interval of the measurement device Т1 may be calculated using values of uncertainty as follows:  
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where 1P2k   is the coverage coefficient, corresponding confidence probability 2P-1, i.e. a probability 

value that corresponds to the probability of metrological serviceability of the measurement device at 

the time of the definition of the inter-verification interval of the measurement device; where t is the  

operational longevity of the measurement device [20]. 

The coverage coefficient ratio 1P2k   is determined from the Student table based information 

about the confidence probability 2P-1 and the effective number of degrees of freedom eff . 

The second evaluation of the inter-verification interval Т2 may be calculated by the formula:  
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Based on calculated values of inter-verification intervals Т1 and Т2 , an inter-verification interval 

is determined for a measurement device, which is assumed to be equal to the minimum value between 

the values of Т1 and Т2, i.e. [9, 20]: 

Т = min[Т1, Т2].                          (10) 

Thus, the proposed method of determining the inter-verification interval for the means of 

measurement permits the establishment or specification of an inter-verification interval based on the 

concept of the uncertainty of measurement. This method meets international requirements for 

evaluating the accuracy of measurements, adhering to international unity for measurement definitions 

and can be used in the metrological certification of measuring instruments. 

To verify the proposed theoretical statements used in calibration by a graduated method of 

determining inter-verification intervals of a measuring means, based on the concept of uncertainty, we 

consider the calculation of the inter-verification interval by taking the example of the metrological 

certification of a measurement device for measuring the moment of inertia of electric motors. 

Results of testing the proposed evaluation method for the inter-verification interval during 

metrological certification of a device measuring the moment of inertia of electric motors. The 

principle of operation and mathematical model of the device measuring the moment of inertia is 

described in [21 - 23]. The equation of the conversion device of the moment of inertia of the electric 

motor is: 

operation per day), and also by the mean time to failure of the device or the stated value for 

operational duration to first metrological failure. 
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δΔ  is the 

standardised value of the absolute deviation of the measuring transducer; J is the moment of inertia as 

measured; Р is the damping coefficient; T0  is the duration of sample pulses, which fills the measuring 

period of the moment of inertia after the completion of the transition process (when electric motor 

power is cut and torque is diminishing as Мk approaches zero) [23]. 

The essence of the method of measurement is the production of torque from the time that an 

electric motor is connected to a power supply, which is described by the Kloss formulae [23]. This 

production of torque through the measuring lever that is on one side attached to the rotor of the electric 

motor, and on the other side through the effort sensor, which is an elastic element. As later the electric 

motor is disconnected from the power supply, the resulting torque kM
 is reduced to zero during the 

time interval T0. As the rotor of the electric motor undergoes free damped oscillations whose duration 

is due to the value of the moment of inertia of the rotor J, and the rigidity C of the effort sensor, then 

measuring the magnitude of the torque and the time interval from the moment of power-down to zero 

and knowing the value of C of the rigidity of the effort sensor, it becomes possible to determine the 

value of the moment of inertia of the electric motor (11). 

So, for the metrological certification of the measurement device to determine the moment of 

inertia of electric motors, we need to set a fixed torque value kM
 and then in the self-braking mode of 

operation of the electric motor perform measurements of the moment of inertia. The sample moment 
exeM

is suggested as being that created by using a sample set of weights. The equation to define the 

procedure for production of the sample torque is: 

 exeexe gRmM 
,                                                                   (12) 

where g is the rate of acceleration of gravity, which corresponds to 9,8066 m/s2; R is the radius of the 

disk (9.9889 cm), secured to the shaft of an electric motor, which is part of the torque measurement 

transducer; mexe is the mass of standard weights. 

For calibration of a device to measure the moment of inertia, an  asynchronous electric motor 

type AIR56A4 was used, having a nominal value of the moment of inertia of J1=0,007Nm2. To 

produce torque with slip S=1, it is necessary to create on the shaft of the electric motor a sample 

torque that corresponds to Mk=0,85Nm. To produce torque on a disk of radius R which is fixed to the 

shaft of the electric motor via string length l, the value of the sample mass should equal 

mexe=867,726g. 

From the results of previous measurements of the radius of the disk, it is known that the standard 

uncertainty of measurement of the radius of the disk is uAr = 1,04·10-3  mm, and with the technical 

specification data on the sample means of measuring mass with a maximum load of 1000 gm, it is 

known that the mass of the weights may be measured with an absolute deviation in measurement of Δm 

= 1 mg. The uncertainty of mass measurement if it is assumed that the absolute deviation is distributed 

evenly may be calculated by: 
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Thus, the total uncertainty in producing torque may be calculated by the formula: 
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where NJ is the number of pulses to the input of the timer-counter microcontroller that is part of the 

device to measure the moment of inertia over a time period of free oscillations of the rotor of the 

electric motor; Мk is the torque at slip S = 1, which is described in the Kloss equations [14, 15]; l is the 

length of the measuring lever;  is the modulus of elasticity of the membrane of the effort sensor; h is 

the thickness of the membrane of the effort sensor; e = 0,17; r is the radius of the membrane of the 

effort sensor; C is the coefficient of rigidity of the membrane of the effort sensor; 
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 is the sensitivity coefficient dependent on the mass of a sample weight. 

 exe1c Mu
= 8.87·10-6 Nm. 

After setting the sample torque in the manner described above, a series of measurements of the 

moments of inertia is performed by using a device for the measurement of the moment inertia of 

electric motors. The results of measurements of moments of inertia are listed in the Table 1. 

 
Table 1. Results of measurements of moments of inertia 

№ 

 

Value of the moment 

of inertia  J×10-3, Nm2 

№ Value of the moment 

of inertia  J×10-3, Nm2 

№ Value of the moment 

of inertia  J×10-3, Nm2 

1 7,132 8 7,128 15 7,175 

2 7,197 9 6,855 16 6,878 

3 6,805 10 7,153 17 7,191 

4 7,157 11 7,192 18 6,823 

5 6,952 12 6,863 19 7,147 

6 7,134 13 7,176 20 6,792 

7 7,171 14 6,883 21 7,165 

 

Based on the results of measurements of moments of inertia (Table 1), we may calculate the 

standard uncertainty of type A by the equation (2). Substituting the results of measurements in 

equation (2), we obtain a value for a standard experimental uncertainty of measurement by: 
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For calibration of a device to measure the moment of inertia in a different range, an  

asynchronous electric motor type AIR80A2 was used [24], having a nominal value of the moment of 

inertia of J2 = 0,015 Nm2. To produce torque with slip S close to 1, the electric motor shaft must create 

an exemplary torque that corresponds to Mk = 5 Nm To produce torque on a disk of radius R which is 

fixed to the shaft of the electric motor via string length l, the value of the sample mass should equal 

mexe=5104,273 g. 

The total uncertainty in the production of a sample value of torque, which arises due to residual 

non-incorporated systematic effects related to the limited accuracy of measurement instruments of 

mass and the radius of the disk, is as according to formula (14): 
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; 
 exe2c Mu

= 5,21·10-5 Nm.        

Having assigned sample values  of the moments of inertia, a series of measurements was made 

that is listed in  Table 2.  

Substituting the experimental data as listed in Table 2, we may calculate the standard uncertainty 

of type A of the measurement of the moment of inertia of an electric motor (calibration uncertainty) by 

formula (2): 
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Substituting the calculated sensitivity coefficients and uncertainty in the formula (14), we obtain 

the value of the total uncertainty of the production of the sample torque as 



 

Value of the moment 

of inertia  J×10-3, Nm2 

№ Value of the moment 

of inertia  J×10-3, Nm2 

№ Value of the moment 

of inertia  J×10-3, Nm2 

1 15,121 8 15,315 15 15,205 

2 15,017 9 15,122 16 15,012 

3 14,89 10 15,112 17 15,323 

4 15,116 11 15,015 18 15,303 

5 15,102 12 15,313 19 14,97 

6 15,087 13 15,018 20 15,114 

7 15,211 14 14,91 21 15,196 

 

For calibration of a device to measure the moment of inertia J3 = 0,0042 Nm2, an  asynchronous 

The total uncertainty in the production of a sample value of torque, which arises due to residual 

non-incorporated systematic effects related to the limited accuracy of measurement instruments of 

mass and the radius of the disk, is as according to the formula (14): 
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; 
 exe3c Mu

= 6,69·10-6 Nm.        

The results of measuring the moment of inertia are presented in Table 3.  
 

Table 3. Results of measurements of moments of inertia 

№ 

 

Value of the moment 

of inertia  J×10-3, Nm2 

№ Value of the moment 

of inertia  J×10-3, Nm2 

№ Value of the moment 

of inertia  J×10-3, Nm2 

1 4,178 8 4,365 15 4,011 

2 4,388 9 4,085 16 4,391 

3 4,289 10 4,015 17 4,039 

4 4,394 11 4,011 18 4,383 

5 4,286 12 4,355 19 4,397 

6 4,378 13 4,054 20 4,289 

7 4,386 14 4,016 21 4,036 

 

Substituting the experimental data from Table 3 in equation (2), we obtain the standard 

uncertainty of type A measuring moment of inertia of the electric motor (calibration uncertainty), that 

is:  
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The formula for determining the inter-verification interval of a measurement device incorporates 

the highest value, maximum, experimental standard uncertainty of type A. From the conducting of 

experimental research, it may be shown that standard uncertainty of type A may reach its maximum 

value when the smallest moment of inertia is measured with the value of 3J
=0,0042 Nm2. Therefore, 

to assess the inter-verification interval of a measurement  device in subsequent calculations, we may 

use the maximum uncertainty of measurement of  a moment of inertia of type A equal to 
 3maxA Ju

 = 

35,72·10-6 Nm2. 

To calculate the total and expanded uncertainty of measurement, we should perform the 

evaluation of components with uncertainty of type B, which are manifested by non-incorporated 

residual systematic effects and limited properties of the constituent elements of a measurement means 

for the moment of inertia.  

electric motor type AIR56A2 was used [24]. For this type of electric motor to produce slip S close to 

1, the electric motor must create an exemplary torque that corresponds to Mk = 0,64 Nm. To produce 

torque on a disk of radius R which is fixed to the shaft of the electric motor, the value of the sample 

mass should equal mexe= 653,346 g. 

Table 2. Results of measurements of moments of inertia 

№ 




=0,15 % when the maximum effort  Q = 20 kg, assuming a uniform law of 

error distribution by the formula:  
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Uncertainty of type B, which is caused by the presence of non-incorporated  systematic effects 

associated with the presence of errors in the length of the measurement shaft which do not exceed Δl = 

± 0,01·10-3 m, may be shown by:  
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Let us place a value for the component of uncertainty due to the change in frequency of the quartz 

resonator during the formation period of sample pulses, when the frequency of the quartz resonator 

may be described by f0 = 20 MGz, T0 = 1/f0 = 0,05·10-6 s which fills the measurement interval of the 

moment of inertia, given a temperature deviation in the ambient air temperature where  tv=25°С, from 

a normal temperature where nt =20°С, through the temperature coefficient of frequency changes of the 

quartz resonator where kt = ±1,5·10-6/°С as specified in the technical documentation. This 

demonstrated by the equation:    1266
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The uncertainty caused by the presence of a certain response time by the analogue 

microcontroller comparator to the appearance of an input signal according to the specifications for the 

microcontroller does not exceed Δt = 0.5·10-6 s, as calculated by the formula: 
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The total standard uncertainty of type B with regard to the transformation equation (11) above 

and the estimated components of uncertainty of type B (14), (18) - (21), enables us to find the positive 

square root of the total variance of type B, which is described by the formula:  
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where 
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the 

sensitivity coefficients are for the torque, for sensor error effects, the length of the measuring shaft, the 

period of sample pulses, respectively.  

Substituting the calculated values of sensitivity coefficients and standard uncertainties of type B 

in equation (22), we obtain the value of the total standard uncertainty of type B, which is 
4

Bc 1016,11u 
 Nm2.  

The total uncertainty of the measurement result for the moment of inertia with regard to the 

maximum experimental uncertainty of type A (17) and the total uncertainty of type B (22) may be 

calculated by the formula:  
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In as much as the constituent elements of the moment of inertia of the measurement device 

includes an effort sensor, then we may estimate the uncertainty of type B, which is due to the existence 

of a consolidated error  



follows:   
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Next, using the Student table, let us define the coefficient of coverage  kP using the values of the 

effective number of degrees of freedom (24) and confidence probability, which is assumed to be P = 

0.95 based on information about the analogue probabilities [25]. This will be kP = 1.96.  

Knowing the coverage coefficient and the total uncertainty of the measurement result of the 

moment of inertia, we obtain an expanded uncertainty of measurement that is specified in the technical 

documentation for a measurement device for the moment of inertia of an electric motor, that is:  
34
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Next, assuming that the intensity of operation of the measurement device is 7 hours per day, and 

setting the experimentally determined time to first failure, which for the measurement device that 

determines the moment of inertia for the electric motors is 3500 hours, we define a calendar service 

life of t, which equates to some 2 calendar years.  

After prolonged use under real conditions using the measurement device, we may now calculate 

the components of uncertainty of type B.  

These type B uncertainties result from:  

- the presence of the consolidated errors of the effort sensor, as calculated by (18) and being 
3

s,B 1067,8u 
 kg;  

- the presence of the non-consolidated systematic effects related to the limits of the ability to 

measure the measuring lever, as calculated by (19) and being equal to 
6

l,B 1077,5u 
 m;  

- the presence of the response time of the analogue microcontroller comparator to the appearance 

of the input signal is calculated by formula (21) and is equal to the same value calculated by 
s1014,0u 6

t,B

 ; 

- the deviation of the ambient temperature of the environment during testing when tv2 = 18 °С 

from the temperature under normal conditions when nt
 = 20 °С, enables us to calculate through the 

temperature coefficient the change of frequency of the quartz resonator (kt=±1,5·10-6/°С) by the 

formula: 
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The value of combined measurement uncertainty of type B, Bceu
, may be calculated by formula 

(23) taking into account the calculated uncertainties of measurement of type B after the testing of the 

measurement device for the moment of inertia in actual use. As a result, we may obtain the value of 

the combined standard uncertainty of type B, which is 
4

Bce 1016,11u 
 Nm2. 

Because the value of the combined measurement uncertainty of type B remains unchanged, then 

the value of the combined uncertainty of the measurement resulting from real conditions remains as 
4

ce 1017,11u 
 Nm2. 

The effective number of degrees of freedom is determined by (24) and is also equal to the 

previous value

6

eff 1019 
. 

The coefficient of coverage 1P2k  , which corresponds to the confidence probability 2P-1, i.e. the 

probability value that corresponds to the probability of metrological serviceability of the measuring 

device under real conditions where the technical reliability of the measuring device is P = 0.95, and 

the probability of metrological serviceability is thus 2Р–1=2*0,95-1=0.9, may be determined from the 

To calculate the expanded uncertainty as defined in technical documentation for a device 

measuring the moment of inertia, we should calculate the effective number of degrees of freedom as 



When the coverage coefficient is 1P2k  = 1,64, the value of the extended uncertainty UE under real 

conditions of the operation of the measuring device is: 
34
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Nm2.              (27) 

Based on the values of the standardised expanded uncertainty that is theoretically possible, the 

expanded uncertainty under real conditions UE (assuming a probability of metrological serviceability 

2P-1 for the measurement device) and the maximum measurement uncertainty of type A 
 3A Ju

, let 

us calculate the initial assessment of the inter-verification interval Т1  of the measurement device for 

the moment of inertia of electric motors by formula (8), based on experimental period time to first 

failure t = 2 years. The value of the first inter-verification interval corresponds to:  
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The second value of the inter-verification interval for a measurement device for the moment of 

inertia of electric motors Т2, is calculated by formula (9), and is:  
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Thus, the inter-verification interval for a measurement device for the moment of inertia of electric 

motors according to formula (10) may be assumed to be equal to the minimum values between Т1 &Т2:  

Т = min[Т1, Т2] = min[1,99, 1,67] = 1,67 years = 20 months.         (30) 

The value of the inter-verification interval in months may best be chosen from a row of natural 

numbers: 0.25; 0.5; 1 and 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 15, 18; 21; 24; 30 and so on at 6-month 

intervals. 

So, as a result of the metrological certification of the measurement device for the moment of 

inertia of electric motors, the accuracy of the measurements of the moment of inertia is based on the 

concept of uncertainty of measurement, the characteristics of which include the standard value of 

expanded uncertainty, which is 
31019,2   Nm2 with probability P = 0.95 and the inter-verification 

interval of the measuring device which equals 20 months. 

Conclusion. The calibration method developed for inter-verification interval assessment of 

measurement devices allows standardised metrological characteristics of measurement devices to be 

set or refined and the timing of subsequent verifications may then be based on international 

requirements for the performance evaluation of the accuracy of measurement using the concept of 

uncertainty. This method allows for international consensus in measurements for the assessment of 

inter-verification intervals of measurement devices. Testing the calibration method of evaluating the 

accuracy of measurements and inter-verification intervals, made during the metrological certification 

of measuring devices for the moment of inertia of electric motors, demonstrates its validity and 

effectiveness. 
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