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Abstract. The Casimir effect is one of the most remarkable consequences of the nonzero
vacuum energy predicted by quantum field theory. In this contribution we study the Lorentz-
violation effects of the minimal standard-model extension on the Casimir force between two
parallel conducting plates in the vacuum. Using a perturbative method, we compute the
relevant Green’s function which satisfies given boundary conditions. The standard point-
splitting technique allow us to express the vacuum expectation value of the stress-energy tensor
in terms of this Green’s function. Finally, we study the Casimir energy and the Casimir force
paying particular attention to the quantum effects as approaching the plates.

1. Introduction
Interest in Lorentz violation has grown rapidly in the last decades since many candidate
theories of quantum gravity [1, 2], such as string theory [3, 4] and loop quantum gravity
[5, 6, 7], possess scenarios involving deviations from Lorentz symmetry. Nowadays, investigations
concerning Lorentz violation are mostly conducted under the framework of the standard model
extension (SME), initiated by Kostelecký and Colladay [8, 9]. The SME is an effective field
theory that contains the standard model, general relativity, and all possible operators that
break Lorentz invariance. The Lorentz-violating (LV) coefficients arise as vacuum expectation
values of some basic fields belonging to a more fundamental theory, such as string theory
[10, 11]. Some important features of the minimal SME comprise invariance under observer
Lorentz transformations, energy-momentum conservation, gauge invariance, power-counting
renormalizability [12], causality, stability and hermiticity [13].

The main goal of this contribution is to provide additional results regarding the local effects
of the quantum vacuum in a particular sector of the electrodynamics limit of the SME, namely,
the CPT-odd Maxwell-Chern-Simons term [14]. Concretely, we study the Casimir effect (CE)
between two parallel conducting plates using a local approach based on the calculation of the
vacuum expectation value of the stress-energy tensor via Green’s functions satisfying the suitable
boundary conditions.

In its simple manifestation, the CE is a quantum force of attraction between two parallel
uncharged conducting plates [15]. More generally, it refers to the stress on bounding surfaces
when a quantum field is confined to a finite volume of space. The boundaries can be material
media, interfaces between two phases of the vacuum, or topologies of space. In any case, the
modes of the quantum fields are restricted, giving rise to a macroscopically measurable force
[16]. The CE has been previously considered within the SME framework in Refs. [17, 18, 19].

http://creativecommons.org/licenses/by/3.0
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The authors in Ref. [18] used the zeta-function-regularization technique to compute the
Casimir force between two parallel conducting plates within the (3+1)D Maxwell-Chern-Simons
theory. The first attempt to tackle this problem was due to M. Frank and I. Turan [17]; however,
as pointed out by O. G. Kharlanov and V. Ch. Zhukovsky [18], they used misinterpreted
equations which led to an oversimplified treatment of the problem. More precisely, they
considered that the photon dispersion relation corresponds to that for a massive photon; however,
unlike the (2+1)D case, in (3+1)D the effect of the Maxwell-Chern-Simons term is a more
complicated dispersion relation for the photon. Due to this wrong equation, Frank and Turan
constructed also incorrectly the relevant Green’s function (GF). One of the specific aims of this
contribution is the construction of the correct Green’s function within the (3+1)D Maxwell-
Chern-Simons theory and the calculation of the Casimir-energy density and stress between two
parallel conducting plates.

The outline of this contribution is as follows. Section 2 reviews some basics of the particular
sector of the minimal SME to be considered in this work, namely, the (3+1)D Maxwell-Chern-
Simons model. Using a perturbative method similar to that used for obtaining the Born series
for the scattering amplitudes in quantum mechanics, in section 3 we compute the leading-
order Green’s function which satisfies given Dirichlet, Neumann or Robin boundary conditions,
provided the smallness of the LV coefficients. In section 4 we use the standard point-splitting
technique to express the vacuum expectation value of the stress-energy tensor in terms of the
Green’s function. The concrete calculation of the renormalized vacuum stress (and the Casimir
force) between two parallel conducting plates is performed in section 5. We also discuss the local
energy density, which is found to diverge as approaching the plates. We demonstrate that the
divergent term does not contribute to the observable force. We summarize our results in section
6. Details about this investigation were recently published in Ref. [20].

2. Lorentz-violating electrodynamics
In the present contribution we are concerned with the CPT-odd sector of the SME. The relevant
Lagrangian is

L = −1
4
FμνF

μν + (kAF )μAνF̃
μν − jμA

μ. (1)

Here, jμ = (ρ,J) is the 4-current source that couples to the electromagnetic 4-potential Aμ,
Fμν = ∂μAν − ∂νAμ is the electromagnetic field strength and F̃μν = 1

2ε
μναβFαβ its dual. From

now on, we omit the subscript AF of the Lorentz- and CPT-violating (kAF )
μ coefficients and set

(kAF )
μ ≡ kμ = (k0,k). A nondynamical fixed kμ determines a special direction in spacetime.

For example, certain features of plane wave propagating along k might differ from those of waves
perpendicular to k. Thus, particle Lorentz transformations are violated.

Varying the action S =
∫
L d4x with respect to Aμ yields the equations of motion:

(
�ημ ν − ∂μ∂ν − 2kβε

μβα
ν∂α

)
Aν = jμ, (2)

which extend the usual covariant Maxwell equations to incorporate Lorentz violation. Of course,
the homogeneous Maxwell equations that express the field-potential relationship

∂μF̃
μν = 0, (3)

are not modified due to the U(1) gauge invariance of the action. The stress-energy tensor for
this theory is, up to a total-derivative term, given by [9]

Θμν = −FμαF ν
α +

1

4
ημνFαβFαβ − kνF̃μαAα. (4)
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Here ημν = diag(1,−1,−1,−1) denotes the usual Minkowski flat space-time metric. Unlike the
conventional case, Θμν cannot be symmetrized because its antisymmetric part is not longer a
total derivative. By virtue of the equations of motion (2) and (3), the energy-momentum tensor
obeys

∂μΘ
μν = jμF

μν . (5)

Although the energy-momentum tensor is gauge dependent, it only changes by a total derivative
under the gauge transformation Aμ → Aμ + ∂μΛ, i.e.

F̃μαAα → F̃μαAα − ∂α(F̃
μαΛ). (6)

Consequently, the integrals over all space are gauge invariant. Note that the energy

E =
∫
Θ00d3x =

∫
1

2

(
E2 +B2 − k0B ·A

)
d3x, (7)

is not positive definite due to the term k0B · A, which may be negative. The appearance of
this term in the energy density can introduce instability in the theory [21, 22], and it can be
resolved by requiring that only spacelike components of kμ are nonzero. However, this condition
depends on the observer frame, so even an infinitesimal boost to another observer frame would
reintroduce instability. Despite arising from a hitherto unobserved spontaneous breaking of
the electromagnetic U(1) gauge symmetry, the photon mass can be introduced in this theory
to eliminate the linear instability [23]. Although this idea might be physically acceptable, in
this work we restrict ourselves to the minimal extension with a purely spacelike background
kμ = (0,k), which is fundamentally different from the theory with the purely timelike case
kμ = (k0,0), as reviewed extensively in Refs. [24, 25].

3. Green’s function method
To derive the GF for the previously discussed LV electrodynamics one can employ standard
Fourier methods. As in conventional electrodynamics, the modified Maxwell operator appearing
in parentheses in Eq. (2) is singular. To circumvent the non invertibility of the corresponding
Minkowski matrix one can further work in the Lorentz gauge. The free-space GF (satisfying
the standard boundary conditions at infinity) in momentum [26, 27] and coordinate [24, 25]
representations can be obtained in a simple fashion. In the present work we are concerned with
the effects of this Lorentz-violating electrodynamics on the Casimir force between two parallel
conducting plates in the vacuum. To this end we employ a local approach consisting in the
evaluation of the vacuum expectation value of the stress-energy tensor of the system, which can
be expressed in terms of the appropriate Green’s function. The presence of boundaries (e.g. the
plates) makes the GF derived in Refs. [24, 25, 26, 27] not suitable for our purposes. Thus the
aim of this section is the construction of the Green’s functions which incorporates the presence
of boundaries.

In the Lorentz gauge ∂μA
μ = 0, the field equations (2) take the form

(
�ημ ν − 2kβε

μβα
ν∂α

)
Aν = jμ, (8)

where � = ∂μ∂
μ = ∂2

t −∇2 is the D’Alembert operator. To obtain the general solution of Eq.
(8) for arbitrary external sources, we introduce the GF matrix Gμ

ν(x, x
′) solving Eq. (8) for a

pointlike source, (
�ημ ν − 2kβε

μβα
ν∂α

)
Gν

γ(x, x
′) = ημ γδ

4(x− x′), (9)
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in such a way that the general solution for the 4-potential in the Lorentz gauge is

Aμ(x) =

∫
Gμ

ν(x, x
′)jν(x′)d4x. (10)

Since the timelike theory, without a photon-mass term, appears to be inconsistent (that is, the
theory violates unitary and causality, or both), in this work we specialize to the purely spacelike
case kμ ≡ (0,k) ≡ (0, 0, 0, κ). Without loss of generality, we consider surfaces Σi which are
orthogonal to k in which Dirichlet, Neumann or Robin boundary conditions have been imposed.
In this way, the GF we consider has translational invariance in the directions x and y, while
this invariance is broken in the z-direction. Exploiting this symmetry we further introduce the
Fourier transform in the direction parallel to the surfaces Σi, taking the coordinate dependence
to be R = (x− x′, y − y′), and define

Gμ
ν(x, x

′) =
∫

d2p

(2π)2
eip·(x−x

′)
∫

dω

2π
e−iω(t−t

′)gμ ν(ω,p, z, z
′), (11)

where p = (px, py) is the momentum parallel to Σi. Hereafter we will suppress the dependence
of the reduced GF gμ ν on ω and p. The substitution of Eq. (11) into Eq. (9) yields the reduced
GF equation (

�̃ημ ν − 2iκε3μβ νpβ

)
gν α(z, z

′) = ημ αδ(z − z′), (12)

where pα = (ω,p, 0) and �̃ = p2 − ω2 − ∂2
z . We now must solve the reduced GF equation for

the various components. The solution to Eq. (12) is simple but not straightforward. Since the
coefficient κ is assumed to be small, to solve it we employ a method similar to that used for
obtaining the scattering amplitudes in quantum mechanics, in which the Schrödinger equation
can be written as an integral equation, the Lippmann-Schwinger equation, which can be iterated
to obtain the Born series. Indeed, the Lippmann-Schwinger equation for Green’s operator is
called the resolvent identity. In the problem at hand let us consider that the free (with κ = 0)
reduced GF is known, being the solution of �̃g(z, z′) = δ(z − z′) in the region D ⊆ R and
satisfying appropriate boundary conditions on the surfaces Σi ⊆ R

2. Now Eq. (12) can be
directly integrated using the free reduced GF. We thus establish the integral equation

gμ ν(z, z
′) = ημ νg(z, z

′) + 2iκε3μα βpα

∫
D
g(z, z′′)gβ ν(z

′′, z′)dz′′. (13)

Suppose we take this expression for gβ ν , and plug it under the integral sign. Iterating this
procedure, we obtain a formal series for gμ ν . At leading order in the LV coefficient κ, the
reduced GF can be written as the sum of two terms, gμ ν(z, z

′) = ημ νg(z, z
′)+gμ ν(z, z

′), where
the first term provides the propagation in the absence of Lorentz violation, while the second
term, to second order in the LV coefficient κ, encoding the Lorentz symmetry breakdown is
given by

gμ ν(z, z
′) = 2iκεμ ν

α3pαN(z, z′)− 4κ2
[
pμpν − (ημ ν + nμnν)p

2
]
M(z, z′), (14)

where nμ = (0, 0, 0, 1) is the normal to the surfaces Σi. In deriving Eq. (14) we have used the
identity ε3μβ αε

3αγ
νpβpγ = pμpν − (ημ ν + nμnν)p

2, with the definitions

N(z, z′) =
∫
D
g(z, z′′)g(z′′, z′)dz′′, M(z, z′) =

∫
D
g(z, z′′)N(z′′, z′)dz′′. (15)
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To calculate the M(z, z′) and N(z, z′) functions we require the suitable reduced Green’s
functions, which are given by

g0(z, z
′) =

i

2p
eip(z>−z<), g‖(z, z′) =

sin[pz<] sin[p(D − z>)]

p sin[pD]
, (16)

in the free space g0, which is defined on the real line, i.e. D = R, and g‖ in presence of two parallel
conducting plates separated by a distance D, which is defined on the domain D‖ = [0, D] and
satisfies the boundary conditions g‖(0, z′) = g‖(D, z′) = 0, respectively. In the above expressions
z> (z<) is the biggest (smaller) of z and z′.

Notice that the full GF matrix Gμ
ν can be written as the sum of two terms, Gμ

ν(x, x
′) =

ημ νG(x, x′) + Gμ
ν(x, x

′), where G and Gμ
ν are the Fourier transformations of g(z, z′) and

gμ ν , respectively, as defined in Eq. (11). It is worth mentioning that the second term satisfies
the Lorentz gauge condition, i.e. ∂μG

μ
ν = 0. The proof follows from the reduced GF:

∂μG
μ
ν ∝

∫
pμg

μ
ν , which vanishes given that ε

μ
ν
α3pμpα = 0 and pμn

μ = 0.

4. Vacuum stress-energy tensor
In section 2 we gave the stress-energy tensor (SET) for this theory and we showed that it can
be written as the sum of two terms:

Θμν = Tμν + Ξμν . (17)

The first term,

Tμν = −FμαF ν
α +

1

4
ημνFαβFαβ , (18)

is the standard Maxwell stress-energy tensor, while the second,

Ξμν = −kνF̃μαAα, (19)

explicitly depends on the LV coefficients kμ. Now we address the problem of the vacuum
expectation value of the SET, to which we will refer simply as the vacuum stress (VS). This VS
can be obtained from appropriate derivatives of the GF, in virtue of the formula

Gμν
(
x, x′

)
= −i 〈0| T̂ Aμ (x)Aν

(
x′
)
|0〉 . (20)

Using the standard point splitting technique and taking the vacuum expectation value of the
SET we can obtain

〈Θμν〉 = 〈Tμν〉+ 〈Ξμν〉 , (21)

where the first term,

〈Tμν〉 = i lim
x′→x

[
− ∂μ∂′νGλ

λ + ∂μ∂′λG
λν + ∂λ∂′νGμ

λ − ∂′λ∂λGμν +
1

2
ημν

(
∂α∂′αG

λ
λ − ∂α∂′βG

β
α

) ]
,

(22)

is the VS of the standard Maxwell SET, and

〈Ξμν〉 = −2ikνεμαβγ lim
x′→x

∂′βGγα, (23)

encodes Lorentz-violating contributions.
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5. Casimir effect
Now let us to consider the renormalized VS 〈Θμν〉ren, which is obtained as the difference between
the VS in the presence of boundaries and that of the vacuum. For two parallel conducting plates
separated by a distance D in the z direction, one can construct the renormalized expectation
value of the stress-energy tensor, using conservation, tracelessness and symmetry arguments. We
simplify our configuration by orienting the coordinate frame so that the plates are perpendicular
to the background LV vector kμ = (0,k) = κnμ, however the general case proceeds along the
same lines.

The explicit calculation of Eqs.(22)-(23), in the case of two parallel plates, allows us to derive
〈Θμν〉ren, which is given by

〈Θμν〉ren = 〈tμν〉ren + (ημν + 4nμnν) fren(κ, z) + nμnνgren(κ, z), (24)

where nμ = (0, 0, 0, 1) is the unit normal to the plates,

〈tμν〉ren = −
π2

720D4
(ημν + 4nμnν) , (25)

is the VS in the absence of Lorentz violation [28] and the functions f(κ, z) and g(κ, z), coming
from the calculation of the GF function in Eq. (11), are defined as

f(κ, z) =
4κ2

i

∫
d2p

(2π)2

∫
dω

2π
ω2 lim

z′→z

(
p2 + ∂z∂

′
z

)
M(z, z′), (26)

g(κ, z) = −8iκ2
∫

d2p

(2π)2

∫
dω

2π
p2 lim

z′→z
N(z, z′). (27)

5.1. Global Casimir energy density
The Casimir energy is defined as the energy per unit area stored in the electromagnetic field
between the plates, i.e.

EC =

∫ D

0

〈
Θ00

〉
ren

dz, (28)

where
〈
Θ00

〉
ren

is the renormalized 00-component of the stress-energy tensor, which according
to the procedure described above, it is obtained as the difference between the energy density in
the presence of the plates and that of the free vacuum, i.e.

〈
Θ00

〉
ren

=
〈
Θ00

〉
‖ −

〈
Θ00

〉
0
. (29)

Here, the labels ‖ and 0 mean that the expectation value is evaluated with the Green’s function
in the presence of the parallel plates and that of the vacuum, respectively. The final expression
for the Casimir energy becomes

EC = − π2

720D3
+

κ2

32D
. (30)

The Casimir stress is obtained by differentiating the Casimir energy with respect to D, i.e.

FC = −dEC
dD

= − π2

240D4
+

κ2

32D2
. (31)

The first term is recognized as the usual Casimir force in Lorentz-symmetric electrodynamics,
while the second represents the Lorentz-violating contribution. We observe that unlike the
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1/D4 dependence of the usual Casimir force, the LV part depends on 1/D2. As discussed in
section 1, the authors in Ref. [18] analyzed the same Casimir configuration within the (3+1)D
Chern-Simons extended electrodynamics. They obtained an attractive correction of the form

−25k2AF
720D2 , while our result (31) is evidently repulsive. The origin of such disagreement is the

Chern-Simons background tensor we work with; while the authors in Ref. [18] used a timelike
background kμ = (kAF ,0), we have chosen the spacelike vector k

μ = (0,k). Here we point out
that the difference between our work and that of Ref. [18] is beyond the background tensor used.
For example, they used standard techniques in Casimir physics (zeta function regularization and
series summation via the residue theorem), while here we tackle the problem by means of Green’s
function techniques. The advantage of the local approach over the standard techniques is quite
subtle: the former provides information about the local behavior of the quantum fields near a
boundary, while the later only allows the calculation of the Casimir force. In 5.2 we discuss
the local effects in (3+1)D Chern-Simons electrodynamics, which is the main aim of the present
work.

5.2. Local effects
Heretofore, we have considered the global Casimir effect: the total energy of a field configuration
or the force per unit area on a bounding surface [29, 30]. Local properties of the quantum vacuum
induced by the presence of boundaries are of broad interest in quantum field theory [31] and
they must be understood if one is to correctly interpret the inherent divergences in the theory.

The local energy density in Lorentz-symmetric electrodynamics has been discussed extensively
in the literature [29, 30, 32]; however, the local effects in Lorentz-violating theories have not
been considered. Here we aim to fill in this gap. We begin the analysis by considering an
electromagnetic field confined between two parallel conducting plates at z = 0 and z = D, for
which the energy density per unit volume between the plates is

〈
Θ00

〉
(z) =

〈
t00

〉
(z) +

〈
T00

〉
(z). (32)

A detailed analysis of the local effects due to the first term (in the absence of Lorentz violation)
is presented in Ref. [29, 30]. Here we concentrate on the Lorentz-violating contribution,

〈
T00

〉
(z) =

κ2

32D2

[
1− 2 csc2(πZ)

]
, Z =

z

D
. (33)

We observe that the z-independent term, κ2

32D2 , corresponds to the global renormalized Lorentz-
violating energy density obtained in 5.1. The second term encodes the local effects and it can
be expressed as follows:

S(Z) ≡ − κ2

16D2
csc2(πZ). (34)

We observe that it diverges quadratically as z → 0, D. Its z integral over the region between
the plates diverges linearly. This result reveals a close analogy with the one obtained from the
Lorentz-symmetric part. In that case, the singular part diverges quartically as z → 0, D. The
less divergent Lorentz-violating contribution (34) can be understood as due to the dimension of
Chern-Simons coupling κ. It is worth to mention that integrating this term over z,

∫ D

0
S(Z)dz = − κ2

16π2

2

Γ(2)

∫ ∞

0
dρ, (35)

we obtain a divergent constant term (D-independent), so it does not contribute to the observable
force.
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6. Conclusions
Let us summarize the main aims of the present contribution. We analyze the local effects of
the quantum vacuum in a particular sector of the minimal SME, namely, the (3+1)D Maxwell-
Chern-Simons term with a spacelike Lorentz-violating background field. Concretely, we use
Green’s function techniques to calculate the Casimir force between two parallel conducting plates
separated by a distance D, focusing on the local properties of the quantum vacuum induced by
the presence of the boundaries.

One of the contributions of the present work is the construction of the correct (indexed)
Green’s function for the theory we dealt with. We also analyze the behavior of the local energy
density when approaching the plates.

The present work can be further generalized in a variety of ways. For example, the Green’s
function for different geometries can also be constructed using the same perturbative procedure.
On the other hand, our analysis can also be applied to ponderable media. More precisely, we can
consider a semi-infinite planar material medium with dielectric constant ε for which the reduced
Green’s function gε(z, z

′) is known. Now we can use it to evaluate the associated Nε(z, z
′) and

Mε(z, z
′) functions, which are what we require to study the Lorentz-violating effects.
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