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Abstract. Long ago, Carroll, Field and Jackiw introduced CPT-violation in the photon sector
by adding a dimension-3 gauge-invariant term parametrized by a constant four-vector parameter
kAF to the usual (Maxwell) Lagrangian, deriving an ultra-tight bound from astrophysical data.
Here, we will discuss recent work studying the extension of this term to the full electroweak
gauge sector of the Standard Model. In the context of the Standard Model Extension, CPT and
Lorentz violation arises from two gauge-invariant terms parametrized by the four vectors k1 and
k2. First we will show how upon spontaneous breaking of the electroweak gauge symmetry these
two terms yield Lorentz-violating terms for the photon and the W and Z bosons. As it turns
out, the resulting modified dispersion relations for the W bosons yield spacelike momentum for
one of its propagating modes at sufficiently large energy. This in turn allows for the possibility
of Cherenkov-like W -boson emission by high-energy fermions such as protons, provoking their
decay. Analysis of ultra-high-energy cosmic ray data allows for bounding the previously unbound
parameter k2, and, by combination with the ultra-tight bound on kAF , the parameter k1.

1. The CPT-odd gauge sector of the minimal Standard Model Extension

In the past two decades there has been a considerable interest in the possibility that Lorentz
symmetry may not be exact in nature. The main theoretical motivation for this idea comes from
a number of candidate theories for quantum gravity that have been shown to involve Lorentz-
invariance violation as a possible effect. This may come about by spontaneous breaking of
Lorentz symmetry in theories with Lorentz-invariant dynamics, such as in string field theory [1]
or loop quantum gravity [2], or in theories that violate Lorentz invariance at a fundamental level,
such as noncommutative geometry [3] (aspects of which are discussed by Orfeu Bertolami in this
workshop) or Hořava-Lifshitz gravity [4, 5] (see the talks by Diego Blas and Kevin Grosvenor).

From the experimental point of view, the development of low-energy effective field theories
with Lorentz-invariance violation, in particular the Standard-Model Extension (SME) [6], has
been instrumental. If this framework, the Lagrangian of the matter sector contains all Lorentz-
violating gauge-invariant effective operators that can be build from the conventional Standard-
Model fields, coupled to vector and tensor coefficients that parametrize the Lorentz violation.
The SME also contains all CPT-violating operators, since in any local interacting quantum field
theory CPT violation implies Lorentz violation [7]. The SME can thus be used to provide a
general quantification of the exactness of Lorentz and CPT symmetry in the form of observational
constraints on the SME coefficients [8].

In 1991, well before the full SME was formulated, Carroll, Field and Jackiw introduced CPT-
violation in the photon sector by adding a dimension-3 gauge-invariant term parametrized by a

http://creativecommons.org/licenses/by/3.0


2

1234567890 ‘’“”

International Workshop on CPT and Lorentz Symmetry in Field Theory IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 952 (2018) 012021  doi :10.1088/1742-6596/952/1/012021

constant four-vector kAF to the usual (Maxwell) Lagrangian [9]:

1

2
εμνρσk

μ
AFA

νF ρσ. (1)

They managed to extract an ultra-tight bound |(kAF )
κ| ≤ O(

10−43GeV
)
by analyzing

astrophysical data. In the context of the SU(2) × U(1) electroweak sector of the Standard
Model, CPT and Lorentz violation arises from two Chern-Simons-like SME terms parametrized
by the four-vectors k1 and k2 [6]:

εμνρσk1μBνBρσ +
1

2
εμνρσk2μ

[
Aa

νA
a
ρσ +

2

3
g2ε

abcAa
νA

b
ρA

c
σ

]
, (2)

where Bμ and Aa
μ (with a = 1, 2, 3) represent the U(1)Y and SU(2)L gauge fields, Bμν =

∂μBν − ∂νBμ and Aa
μν = ∂μA

a
ν − ∂νA

a
μ, while g2 denotes the SU(2) coupling constant. Both

terms in expression (2) are gauge invariant up to a total derivative. There is a similar term
corresponding to the strong-interaction sector, which we will ignore in this paper.

In the Standard Model, spontaneous symmetry breaking

SU(2)L × U(1)Y → U(1)EM , (3)

is provoked by assuming a Mexican-hat-type potential for the Higgs field SU(2) doublet

φ =

(
φ+

φ0

)
. In the unitary gauge, φ is taken to assume the vacuum expectation value 1√

2

(
0
v

)
.

The quadratic CPT- and Lorentz-violating Lagrangian of the electroweak gauge sector then
becomes, in terms of the photon and the W and Z boson fields:

LAWZ =
1

2
AμD

μνAν +
1

2
ZμD

μνZν +WμD
μνW ∗

ν +
1

2
m2

ZZμZ
μ +m2

WWμW
∗μ

+
1

2
εμνρσ

(
kμAFA

νF ρσ + kμZZZ
νZρσ + 2kμWWW νW ∗ρσ + 2kμmixZ

νF ρσ
)
, (4)

where Dμν = ∂2ημν − (1− ξ−1)∂μ∂ν , mW = cwmZ = g2v/2 as usual, and

kμAF = 2c2wk
μ
1 + s2wk

μ
2 , (5)

kμZZ = 2s2wk
μ
1 + c2wk

μ
2 , (6)

kμWW = kμ2 , (7)

kμmix = cwsw(k
μ
2 − 2kμ1 ) , (8)

with cw = cos θw and sw = sin θw. The physical gauge boson fields are defined as usual

Wμ =
1√
2

(
A1

μ − iA2
μ

)
, W ∗

μ =
1√
2

(
A1

μ + iA2
μ

)
, (9)

Zμ = cwA
3
μ − swBμ , Aμ = swA

3
μ + cwBμ . (10)

2. Dispersion relations in the photon–Z-boson sector

The mixing term between the photon and the Z boson in (4) presents a considerable complication
in interpreting the quadratic Lagrangian, as the asymptotic propagating modes no longer
correspond exactly to the photon and Z-boson fields, but rather linear combinations thereof
(and their derivatives).

As the existing bounds on kAF are so stringent we will assume kAF can be neglected with
respect to kZZ , kWW and kmix. It is valid to do so as long as the bounds we consider on the
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latter parameters remain much larger than the bounds on kAF . In that case, we see from (5)
that kμ1 = −1

2 tan
2(θw)k

μ
2 such that kμmix =

1
2 tan(2θw)k

μ
ZZ . We now define the eight-component

bi-four-vector A, given by
Aμ =

(
Aμ

Zμ

)
. (11)

Lagrangian (4), when restricted to the photon and Z boson fields, then becomes:

LAZ =
1

2
AT

μD
μνAν +

1

2
AT

μMAμ −AT
μXkμνZZAν , (12)

where kμνZZ = εμνρσ(kZZ)ρ∂σ, and

M =

(
0 0
0 m2

Z

)
, (13a)

X =

(
0 1

2 tan(2θw)
1
2 tan(2θw) 1

)
. (13b)

Passing to momentum space, the equations of motion corresponding to Lagrangian LAZ become[
(p2 −M)ημν − (1− ξ−1)pμpν − 2iX εαβμν(kZZ)αpβ

]
τ (λ)νσ ≡ Sμ

ντ
(λ)ν
σ = 0 (14)

where τ
(λ)ν
σ (	p), with σ = ±1 and λ ∈ {0, 3,+,−}, represent the eight eigenvectors of the

equation-of-motion operator Sμ
ν .

It can be shown [10] that the corresponding eigenvalues Ωλ
σ(p) of Sμ

ν are given by

Ω0
+1(p) =

1

ξ
p2 , (15a)

Ω0
−1(p) =

1

ξ
(p2 − ξm2

Z) , (15b)

Ω3
+1(p) = p2 , (15c)

Ω3
−1(p) = p2 −m2

Z , (15d)

Ω±+1(p) = p2 − 1

2
m2

Z ± δ(p) +
1

2

√
(m2

Z ∓ 2δ(p))2 + 4 tan2(2θw)δ(p)2 , (15e)

Ω±−1(p) = p2 − 1

2
m2

Z ± δ(p)− 1

2

√
(m2

Z ∓ 2δ(p))2 + 4 tan2(2θw)δ(p)2 . (15f)

with δ(p) =
√
(p · kZZ)2 − p2k2ZZ = 2

tan(2θw)

√
(p · kmix)2 − p2k2mix. The conditions Ωλ

σ(p) = 0

define the dispersion relations of the corresponding polarization modes τ
(λ)ν
σ (	p).

For “small” energies we can expand the square roots of the final two expressions and obtain

Ω±+1(p) = p2 + tan2(2θw)
δ(p)2

m2
Z

± 2 tan2(2θw)
δ(p)3

m4
Z

+ · · · , (16a)

Ω±−1(p) = p2 −m2
Z ± 2δ(p) − tan2(2θw)

δ(p)2

m2
Z

∓ 2 tan2(2θw)
δ(p)3

m4
Z

+ · · · . (16b)

From Eqs. (15) and (16) it is clear that the σ = +1 modes are massless and the σ = −1 modes
are massive, at least in the limit of small Lorentz violation and low energies. We can therefore
identify the former mode with the photon and the latter mode with the Z boson.
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Figure 1. The dispersion relations (19) of the W boson for purely timelike kμ2 , where we chose
k02 =

mW

4 , in arbitrary units. Indicated in red is the + mode, which has spacelike four-momenta
above an energy threshold.

It is not difficult to see from the Lorentz-violating dispersion relations (15e) and (15f) that

p2
{ ≤ 0 for σ = +1

> 0 for σ = −1 . (17)

This shows that, if kAF = 0 and kZZ �= 0, the photon mode always has spacelike momenta,
while the Z-boson momentum is always timelike. Note from (15c) that the longitudinal photon
mode (λ = 3) is purely massless. It is unphysical and decouples, together with the gauge modes
λ = 0, as usual upon applying, e.g., a BRST quantization procedure.

A more detailed analysis of the dispersion relations can be found in [10].

3. Cherenkov-like emission of W bosons

Let us now restrict Lagrangian (4) to the W boson field:

LW =WμD
μνW ∗

ν +m2
WWμW

∗μ + εμνρσk
μ
2W

νW ∗ρσ . (18)

It has been shown in [11] that (18) can be consistently quantized, as long as the components of
k2 are smaller than of the order of mW , which we will of course assume to be the case.

As we will see, the resulting modified dispersion relations for the W bosons yield spacelike
momentum for one of its propagating modes at sufficiently large energy. This makes it possible
for Cherenkov-like W -boson emission to take place by fermions coupling to the W boson whose
momentum exceeds a certain threshold value. In the case of composite fermions, such as protons,
such a process will provoke their decay into lower-energy particles. Analysis of ultra-high-energy
cosmic ray data allows for bounding the parameter k2 and, by combination with the ultra-tight
bound on kAF , the parameter k1.

The Lorentz-violating Lagrangian implies the dispersion relations

Λ3(p) = p2 −m2
W = 0, Λ±(p) = p2 −m2

W ± 2
√
(p · k2)2 − p2k22 = 0 , (19)

(Here we suppressed the unphysical gauge mode λ = 0.) These dispersion relations are
represented in Fig. 1 for the case of purely timelike kμ2 . As it turns out, the λ = 3 and λ = −
gauge-boson polarization modes are timelike for any momentum. On the other hand, it follows
from (19) that the gauge-boson momentum is spacelike for the λ = + mode, if and only if

(p · k2)2 > 1

4
m4

W . (20)
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Since spacelike momenta are a necessary condition for the desired Cherenkov-like processes, we
will only consider W bosons in the + polarization mode.

q

m1

p
+

q′
m2

Figure 2. Relevant Feynman diagram for W -boson emission by an incoming fermion.

3.1. Emission by an elementary Dirac fermion

We will first consider the process indicated in Fig. 2 in which an elementary Dirac fermion with
a mass m1 decays to a W boson in the mode λ = + and a Dirac fermion with a mass m2. The
Dirac fermions are taken to satisfy regular non-Lorentz-violating dispersion relations. We label
the momenta of the particles as follows: the incoming fermion has momentum q, the emitted W
boson has momentum p, and the out-going fermion has momentum q′ = q − p.

Phase-space considerations show that a necessary condition for the decay to take place is

4(p · k2)2 > (M2 − (m1 −m2)
2)2 + 4k22(m1 −m2)

2. (21)

Note that if m1 = m2 this condition reduces to the space-like condition (20).
The expression for the differential decay rate is

dΓ =
1

2q0
d3p

(2π)3
1

Λ′+(p)
d3q′

(2π)3
1

2q′0

⎛
⎝1

2

∑
spins

|M|2
⎞
⎠ (2π)4δ4(q − p− q′) . (22)

The squared matrix element |M|2 is summed (averaged) over the final (initial) fermion spin.
The unconventional factor

Λ′+(p) =
∂Λ+(p)

∂p0
, (23)

in the denominator defines a positive definite normalization in which the phase space and the
matrix element are separately observer Lorentz invariant [11], i.e., invariant under simultaneous
Lorentz transformations of the momenta and the Lorentz-violating four-vector. Note that this
would not be the case if we were to choose a more conventional phase space normalization.

The matrix element corresponding to the process denoted in Fig. 2 is

iM =
ig2

2
√
2
ū(q′)γμ(1− γ5)u(q)e(+)∗

μ (p) , (24)

where u(q) and u(q′) are conventional Dirac spinors. (Analogous expressions can be written

down for the case of anti-particles.) The four-vector e
(+)
μ (p) is the gauge-boson polarization

vector that corresponds to the dispersion relation in Eq. (19). The explicit expression for the
latter can be found in Ref. [11].

The decay rate can be evaluated to yield [12]

dΓ = − g22
64π2q0

∫
d3p

Λ′+(p)
θ(q0 − p0)δ((q − p)2 −m2

2)p
2

[
(1∓X)2 − (m2

1 −m2
2)

2

p4

]
. (25)
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where the upper (lower) sign holds for a decaying particle (antiparticle) and

X =
p2(p · k2 − 2q · k2) + (m2

1 −m2
2)(p · k2)

p2
√
(p · k2)2 − p2k22

. (26)

It follows from formula (25) that for the decay to take place, the incoming fermion momentum
has to exceed a threshold value:

|	q| > |	q|th, where |	q|th ≈ M(M + 2m2)

2|κ| , (27)

where κ is a quantity of the order of the components of k2: κ ∼ ±|kμ2 | (see [12] for the exact
expressions).

Another result that can be extracted from (25) is that the gauge bosons are emitted in a very
narrow forward cone around the direction of the incoming fermion:

cos θpq = 1 +O
(

κ2

M2

)
, (28)

where θpq is the angle between 	p and 	q.
Integrating expression (25) over all W -boson momenta yields the total decay rate:

Γ =
g2|κ|
64π

G(a)θ(a− 1). (29)

where

G(a) = α(a)

[
1

a
(−7 + 3y)

(
1− m2

M

)
− 1

a2
(1− y)

(
1− 3m2

M

)]

− 4

(
1 +

1

a
(1− y)

)(
1− 2m2

M

)
log

(
1 + a−m2(1− a)/M − α(a)

1 + a−m2(1− a)/M + α(a)

)

+O
(
m2

1,2

M2
,
κ2

M2

)
. (30)

Here a is defined as the ratio of |	q| to its threshold value, i.e., a = |	q|/|	q|th. The function

α(a) =
√
(a− 1)2 + 2m2(a2 − 1)/M and y = ±sgn(κ), where the upper (lower) sign applies to

the particle (antiparticle).
A fermion that couples to a CPT -violating W boson will emit W bosons if it has an energy

above threshold, each of which will take away an energy of at least the value |	q|th. From (29) it
follows that the typical decay rate is of the order of 10−15 s if O(κ) = 10−7 GeV, corresponding
to a bound we will find below. It also follows that it will approximately take a time of order
a× 10−15 s for all fermions in a decay cascade to fall below threshold for such values of κ.

3.2. Cherenkov emission by a proton

In case the incoming fermion is a composite particle such as the proton, the emission of a W
boson will provoke a break-up, since the typical momentum transfer lies in the range of the
W -boson mass, which is well within the energy range of for example deep inelastic scattering.
In this case, the proton-decay rate can be written as

Γ =
1

2q0

∫
d3	p

(2π)3
4π

Λ′+(p)
e(+)
μ (p)e(+)∗

ν (p)W μν , (31)
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where W μν is the hadronic part, given by

W μν =
1

8π

∑
σ

〈q, σ|Jν(−p)
∑∫
X

|X〉〈X|Jμ(p)|q, σ〉 . (32)

|q, σ〉 is a proton state with momentum q and spin σ, Jμ(p) is the hadronic current, while
∑∫

X
indicates a sum over all hadronic final states X along with the corresponding integrations over
phase space. W μν can be evaluated in the parton model (see, e.g., Ref. [13] for a pedagogical
introduction).

The final result for the proton decay rate is

Γ =
g2|κ|
64π

∑
q

∫ 1

0
dx (fq(x) + f̄q(x))G̃q(ax)θ(ax− 1) . (33)

Here the functions fq(x) and f̄q(x) are the parton distributions functions (PDFs) for the quarks
and antiquarks of flavor q, respectively. They represent the chance of finding a quark with
momentum fraction x inside the proton. The function G̃q(ax) in Eq. (33) is the function in

Eq. (30) with the substitutions m2 → xm2 and y → ỹq = sgn(κ)
fq(x)−f̄q(x)
fq(x)+f̄q(x)

. The integral over

x in Eq. (33) can be carried out numerically using fits for the PDFs. We refer to Ref. [12] for
details.

The most important conclusion for us is that the threshold value for W emission by a proton
to occur is still given by formula (27). The decay rate will depend on the details of the PDFs,
but its order of magnitude value is the same as for the elementary fermion case (at least for
values of a not very close to 1).

4. Limits from ultra-high-energy cosmic rays

We can use the fact that a proton with an energy above threshold will disintegrate to use
astrophysical data to limit kμ2 . More precisely, such a proton cannot reach Earth if its mean free
path L is much smaller than the distance from its source to Earth. Since many ultra-high-energy
cosmic ray particles (UHECR) with energies above 57EeV ≡ |	q|obs have been observed, more or
less from all directions [14], it follows that

|κ| � M2

|	q|obs ≈ 1.1× 10−7GeV ≡ |κ|0. (34)

We see from (33) that the mean lifetime of protons (in the Earth’s frame) tp is proportional to
|κ|−1. A conservative (large) estimate gives a mean free path of

L  ctp ∼ (�c/|κ|0)× 1015 ∼ 103 km . (35)

It is clear that protons with an energy above this threshold will not be able to reach Earth from
any viable UHECR source. This allows us to conclude that

|kμ2 | < 1.1 × 10−7GeV . (36)

Combining this with the ultra-tight bound on the components of kAF and its expression (5) in
terms of k1 and k2, we find the bound

|kμ1 | < 1.7 × 10−8GeV . (37)

on the components of k1.
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