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RESUMO 

 

Uma característica inerente ao ser humano é a sua capacidade para adquirir 

competências ou conhecimentos sem intenção de o fazer, resultando essa 

aprendizagem da mera exposição às regularidades do ambiente que nos circunda. Este 

tipo de aquisição designa-se por aprendizagem implícita e o seu exemplo mais marcante 

é talvez a aquisição da linguagem. Nesta tese procurámos investigar os mecanismos de 

aprendizagem implícita em duas vertentes. Por um lado, estudámos a deteção da 

aprendizagem implícita através do rastreamento de movimentos oculares; por outro, 

procurámos investigar a associação entre a aprendizagem implícita e as competências 

relacionadas com a literacia, tanto em leitores típicos como em leitores com dificuldades 

de leitura (dislexia de desenvolvimento). 

O estudo da aprendizagem implícita é complexo, pois é difícil aceder ao que 

efetivamente foi aprendido sem que, ao fazê-lo, haja interferência explícita. No entanto, 

alguns paradigmas experimentais foram desenvolvidos para aceder a este tipo de 

aprendizagem com um mínimo de interferência da aprendizagem explícita. Em comum 

têm o facto de serem constituídos por uma fase de familiarização ou exposição e uma 

fase de teste ou classificação. Na fase de familiarização, os participantes têm de realizar 

uma tarefa (por exemplo, uma tarefa de memória, de cópia ou de simples visualização 

de estímulos) em que são incidentalmente expostos a determinadas regularidades sem 

terem consciência das mesmas. O objetivo, nesta fase, é que os participantes 

apreendam implicitamente as regularidades dos estímulos apresentados. 

Posteriormente, na fase de classificação ou teste, é-lhes pedido para distinguirem, de 

uma maneira intuitiva, estímulos que apresentam as regularidades a que foram 

expostos de outros estímulos semelhantes, mas que não possuem essas regularidades. 

Considera-se existir aprendizagem implícita quando o desempenho dos participantes é 

significativamente superior ao que seria esperado apenas pela sorte (acima de 50% de 

acertos) e não há conhecimento explícito desta aprendizagem (isto é, os participantes 

não conseguem relatar o que os levou a distinguir os estímulos e o conhecimento que 

possuem é insuficiente para explicar o seu desempenho). A natureza da informação 
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extraída em tarefas de aprendizagem implícita pode variar, observando-se 

aprendizagens ao nível da abstração de regras, da representação de fragmentos dos 

exemplares a que o participante foi exposto, ao nível dos próprios exemplares ou ainda 

ao nível da sua distribuição probabilística. 

Uma das críticas mais frequentemente apontadas a este tipo de tarefas é a 

necessidade de, imediatamente antes da fase de classificação, revelar aos participantes 

a existência de regras ou regularidades nos estímulos apresentados. O conhecimento da 

existência destas regras pode levar à interferência de processos explícitos no 

desempenho durante a fase de classificação, retirando o caráter puramente implícito da 

tarefa. Adicionalmente, verifica-se uma dificuldade acrescida na aplicação destes 

paradigmas em crianças pequenas, pois não há um entendimento claro das instruções 

em idades mais jovens. Coloca-se então a necessidade de avaliar a existência de 

aprendizagem implícita através de métodos indiretos. 

O primeiro estudo desta tese pretendeu investigar se medidas derivadas do 

rastreamento dos movimentos oculares podem ser úteis na deteção de aprendizagem 

implícita, num paradigma de aprendizagem de uma gramática artificial. Neste 

paradigma, os participantes são expostos a sequências de estímulos (por exemplo, 

consoantes) cuja composição obedece a um conjunto complexo de regras. 

Posteriormente é-lhes pedido que classifiquem novas sequências, umas gramaticais 

(que obedecem às regras da gramática a que foram expostos anteriormente) e outras 

não-gramaticais (que violam a gramática em apenas uma posição não-terminal da 

sequência). O objetivo deste primeiro estudo foi explorar a sensibilidade dos 

movimentos oculares (por exemplo, número e duração das fixações) às violações 

gramaticais. Numa primeira experiência, registaram-se os movimentos oculares dos 

participantes enquanto executavam a tarefa clássica de classificação de sequências 

gramaticais e não-gramaticais (teste ativo). Na segunda experiência, registaram-se 

também os mesmos movimentos oculares, mas sem a presença de uma tarefa ativa de 

classificação, tendo os participantes apenas de observar ambos os tipos de sequências 

(teste passivo). Verificou-se que o padrão de movimentos oculares diferia perante 

sequências gramaticais e não-gramaticais, tanto em testes passivos como ativos 

(embora nestes últimos o efeito seja maior). Os resultados demonstram assim que é 
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possível avaliar indiretamente a aprendizagem implícita de uma gramática artificial 

através do registo de movimentos oculares, um método com claras vantagens pois não 

exige que haja a revelação da existência de regras, diminuindo o risco de interferência 

explícita na testagem. Este procedimento pode ser especialmente adequado para 

avaliar aprendizagem implícita em crianças mais novas, pois não implica a compreensão 

exigida pelas instruções complexas da fase de classificação. 

No segundo estudo da tese, investigou-se a relação entre a aprendizagem 

implícita e competências ligadas à literacia. Neste estudo, os participantes 

desempenharam uma série de tarefas destinadas a avaliar a aprendizagem implícita, as 

competências e hábitos de leitura e o conhecimento ortográfico implícito. Nas provas 

de conhecimento ortográfico implícito, os participantes deveriam optar entre duas 

formas alternativas de representar ortograficamente o mesmo fonema, uma delas 

marcadamente mais frequente na ortografia do Português Europeu (por exemplo, após 

o ditongo [a:ɪ] o fonema [ʃ] é escrito mais frequentemente com <x> do que com <ch>). 

Verificou-se que, tanto na prova de escrita por ditado, como na prova de escolha 

forçada, os participantes optam pelo padrão que é mais frequente e fazem-no de modo 

implícito, pois esta assimetria não é ensinada formalmente durante a aquisição da 

leitura e escrita e os participantes não souberam relatar o que os levou a escolher um 

padrão ortográfico em detrimento do outro. A correlação significativa entre a 

capacidade de aprendizagem implícita dos participantes e o seu desempenho nas provas 

de leitura e de conhecimento ortográfico implícito reforça a sugestão de que 

mecanismos implícitos podem facilitar a extração das regularidades presentes na 

ortografia e na leitura, contribuindo assim para uma maior proficiência ao nível da 

leitura e escrita. Por último, verificou-se também que a aprendizagem implícita modera 

a influência da exposição à ortografia nas competências de leitura, potenciando esta 

relação. Todos estes resultados levam-nos a sugerir que a aprendizagem implícita tem 

um papel determinante na aquisição de competências de leitura e escrita e que 

indivíduos com melhores capacidades de aprendizagem implícita beneficiam mais da 

exposição à ortografia. 

O terceiro estudo pretendeu explorar se uma dificuldade ao nível da 

aprendizagem implícita poderia contribuir para os défices de leitura apresentados por 
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crianças disléxicas. Os estudos prévios sobre esta temática apresentam resultados 

contraditórios que poderão dever-se à heterogeneidade, tanto ao nível das tarefas 

utilizadas na avaliação da aprendizagem implícita, como ao nível dos critérios de 

inclusão dos participantes com dislexia. Um dos fatores que contribui para esta 

disparidade de resultados parece ser o tempo de exposição durante a fase de 

familiarização, sugerindo que os disléxicos poderão beneficiar de uma exposição mais 

prolongada. Assim, desenhou-se uma tarefa de aprendizagem implícita com um período 

mais longo de exposição às regularidades da gramática artificial, estendendo a fase de 

familiarização por três dias consecutivos. Recorrendo a esta tarefa, comparou-se o 

desempenho de um grupo de crianças disléxicas que frequentavam o 1º ciclo de 

escolaridade com o desempenho de dois grupos de controlo: um emparelhado por idade 

e o outro por nível de leitura. Os participantes disléxicos apresentaram níveis de 

aprendizagem implícita semelhantes aos observados nos grupos de controlo. Estes 

resultados sugerem que crianças disléxicas não apresentam défice ao nível da 

aprendizagem implícita e que esta capacidade preservada pode ser explorada em 

programas de intervenção na dislexia. 

Em suma, os estudos apresentados nesta tese apresentam evidências de que: 1) 

a aprendizagem implícita pode ser avaliada com interferência mínima de processos 

explícitos, recorrendo à análise dos movimentos oculares; 2) a aprendizagem implícita 

tem um papel relevante na extração de regularidades ortográficas, estando relacionada 

com as competências de leitura e escrita; e 3) as crianças disléxicas não apresentam 

défices na aprendizagem implícita quando lhes é apresentada uma tarefa que potencie 

a extração de regularidades, sugerindo que as dificuldades de leitura destas crianças não 

podem ser explicadas por mecanismos de aprendizagem implícita ineficientes. 

 

Palavras-chave: aprendizagem implícita; aprendizagem de uma gramática artificial; 

aprendizagem estatística; registo de movimentos oculares; leitura; conhecimento 

ortográfico implícito; dislexia 
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ABSTRACT 

 

 In this thesis, we conducted three studies to shed light on implicit learning 

mechanisms and their association with reading and writing processes, both in typical 

readers and in readers with dyslexia. 

 In the first study, we explored whether the outcomes of implicit structural 

sequence learning could be captured in eye movement responses. We tested for 

sensitivity effects (increased eye movements on a printed violation in an implicit 

artificial grammar learning task) in two experiments that manipulated the presence of a 

concurrent behavioural classification test. Results show different eye movement 

patterns when participants discriminate grammatical and non-grammatical sequences 

in passive viewing of sequences and that this effect is boosted when participants 

perform a concomitant classification task. This study shows that implicit acquired 

knowledge can be detected through the analysis of eye-movement patterns, enabling 

the study of implicit learning without explicit processing interference. 

 In study two, we investigated the influence of implicit learning in the literacy 

skills of adult typical readers. Three main results prompt us to conclude that implicit 

learning contributes to reading and writing proficiency: 1) in implicit orthographic 

knowledge tasks where the frequency of orthographic patterns is manipulated, 

participants tend to choose the most frequent pattern; 2) reading proficiency and the 

implicit orthographic knowledge decision task were related to an implicit learning task; 

and 3) implicit learning increases the impact of exposure to print on reading fluency. 

Altogether, these results suggest a role of implicit learning capacity in the extraction the 

written language regularities and in the improvement of literacy skills. 

In study three, we tested whether dyslexic children present an implicit learning 

deficit that could contribute to their reading disability. An implicit artificial grammar 

learning task designed to optimize exposure to regularities was presented to dyslexic 

children and to two control groups matched by age and reading level. Results showed 

that dyslexics’ implicit learning abilities are at same level as both control groups, 
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suggesting that the characteristic reading difficulties presented by dyslexics cannot be 

explained by implicit learning deficits. 

 In conclusion, the studies presented in this thesis provide evidence that: 1) 

implicit learning can be tested with minimal interference of explicit processes by 

measuring eye movement sensitivity patterns; 2) implicit learning intervenes in the 

extraction of written regularities, contributing to literacy proficiency; and 3) dyslexic 

children do not present an implicit learning deficit and thus can benefit from this 

preserved ability to improve their reading skills. 

 

Key words: implicit learning; artificial grammar learning; statistical learning; eye-

tracking; reading; implicit orthographic knowledge; dyslexia 
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CHAPTER ONE 

GENERAL INTRODUCTION 

 

IMPLICIT LEARNING MECHANISMS 

Every person has experienced learning outside of any form of planned instruction 

(either academic, parental or self-motivated) and, more generally, without intention to 

acquire this information about the surrounding world. This kind of learning can be 

found, for example, in domains as diverse as first and second language acquisition, 

sensitivity to musical structure, acquisition of knowledge about the physical world and 

various social skills. This type of learning was named implicit learning by Reber in 1967. 

In his seminal work, Reber (1967) observed that subjects presented a sensitivity to the 

statistical properties of the environment without using explicit or verbalizable strategies 

and that this phenomena should be present in language learning. Although it is well 

established that there is learning occurring without a conscious effort to learn (the most 

striking example being learning and using language), some implicit learning mechanisms 

and their influence on cognitive processes are not fully understood, and therefore they 

are the scope of this dissertation. 

 

WHAT IS IMPLICIT LEARNING? 

Implicit learning is the non-declarative learning of complex information in an 

incidental manner, without awareness of what has been learned (Reber, 1967; Seger, 

1994). This type of learning occurs by constant exposure to environmental regularities, 

in an automatic and unintentional fashion, without explicit verbalizable knowledge of 

what was acquired – in contrast to explicit learning (Kaufman, Deyoung, et al., 2010). 

Implicit learning differs from explicit learning in its inaccessibility (i.e. subjects typically 

cannot provide a sufficient or, in many cases, any explicit account of what they have 

learned), robustness (in the face of time, lack of attentional resources and psychological 

disorders) and intentionality (tends to be associated with incidental rather than with 

intentional learning conditions) (Dienes & Berry, 1997). These differences also support 
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the notion that implicit learning depends on cognitive mechanisms separate from those 

used in inducing explicit knowledge (Seger, 1994). 

Several studies have demonstrated that implicit learning is an evolutionarily 

early process (Marcus, 1999; Saffran, Aslin, & Newport, 1996), independent of age and 

developmental level (Karatekin, Marcus, & White, 2007; Meulemans, Van der Linden, & 

Perruchet, 1998; Vinter & Detable, 2003), that it presents an IQ independence (Allen & 

Reber, 1980; Don, Schellenberg, Reber, DiGirolamo, & Wang, 2003; Reber, 1992) and 

that it does not decline with age (Cherry & Stadler, 1995; Simon, Howard, Howard, & Al, 

2010). Furthermore, and as aforementioned, it does not even decline after occurrence 

of a brain lesion (Meulemans & Van Der Linden, 2003; Shanks, Channon, Wilkinson, & 

Curran, 2006) or in the presence of a psychiatric or neurological disorder (Eldridge, 

Masterman, & Knowlton, 2002; Schwartz, Howard, Howard, Hovaguimian, & Deutsch, 

2003), in which cases subjects still retain implicit learning. Implicit learning has even 

been observed in non-human primates (Hauser, Newport, & Aslin, 2001), indicating that 

this kind of learning has been in place for a long time, from an evolutionary perspective. 

 

BRAIN REGIONS ASSOCIATED WITH IMPLICIT LEARNING 

Implicit learning involves activity in multiple brain regions. In general, studies 

suggest that distinct networks might be involved depending on whether subjects are 

aware of the material they learn. Learning seems to directly produce changes in the 

brain regions involved in performance, and evidence suggests that additional regions 

are involved when subjects report awareness (Cleeremans, Destrebecqz, & Boyer, 

1998). In the literature, the brain regions most related to implicit learning are the basal 

ganglia, the association cortex and the frontal cortex. The basal ganglia appears to be 

involved in aspects of response programming, the association regions appear to be 

involved in perceptual aspects of implicit learning and the frontal lobes appear to be 

involved in the evaluation of implicit knowledge in making fluency judgments (Forkstam, 

Hagoort, Fernandez, Ingvar, & Petersson, 2006; Forkstam & Petersson, 2005; Seger, 

1994). Moreover, some studies have suggested that the medial temporal lobe memory 

system, including the hippocampus, may be involved in implicit learning (Schendan, 
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Searl, Melrose, & Stern, 2003; David R. Shanks et al., 2006). However, the role of the 

medial temporal lobe memory system remains unclear, as amnesic patients with medial 

temporal lobe lesions are still capable of implicit learning acquisition, showing that this 

region has a limited role in several implicit learning tasks (Gagnon, Foster, Turcotte, & 

Jongenelis, 2004). 

 

HOW TO STUDY IMPLICIT LEARNING? 

The paradigms employed to assess implicit learning typically involve complex, 

semantically neutral and arbitrary stimulus domains, in order to minimize the influence 

of the subject’s prior knowledge when executing the task. Usually, these implicit 

learning paradigms consist of two phases: first, there is an exposure to some complex, 

rule-governed environment under incidental learning conditions, followed by a measure 

that tracks how well subjects can express their newly acquired knowledge about this 

environment through performance on the same or on a different task. Most studies also 

present a measure of the extent to which subjects are conscious of the knowledge they 

have acquired (Cleeremans et al., 1998). 

The paradigms used to study implicit learning can vary in the stimulus structure 

and the response modality. The most common stimulus types are visual patterns, 

sequences and functions. Tasks also vary in the different response modalities: 

conceptual fluency (subjects make ratings or classify items, usually reporting that they 

rely on their intuition to make such judgments), efficiency (subjects show that they have 

induced knowledge by their increased speed or accuracy in processing the information) 

or prediction and control (subjects demonstrate learning by accurately predicting or 

controlling some aspect of the stimuli) (Forkstam & Petersson, 2005; Seger, 1994). 

Different paradigms result from a combination of these two properties (stimuli structure 

and response modality), but the most intensely investigated are the serial reaction time 

task, the contextual cueing paradigm and the artificial grammar learning paradigm. 
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The serial reaction time task (SRT - Nissen & Bullemer, 1987) is a visual-motor 

procedural learning task, i.e., it has a motor component. In this task, usually, participants 

have to press a button that corresponds to a stimulus light (see Figure 1.1). The light 

appears in a set sequence of typically 10 positions. Implicit learning is inferred from 

faster reaction times in responding to reoccurring versus, for example, random 

sequences, while the participants typically report no or little awareness of re-occurring 

sequences. 

 

In the standard version of the contextual cueing paradigm (see Figure 1.2), 

participants are instructed to search for a target (e.g., the letter “T”) among distractors 

(e.g., the letter “L”) as quickly as possible. Detecting the target becames faster in 

configurations that are systematically repeated across many blocks of trials compared 

to when different configurations are presented (Chun & Jiang, 1998; Chun & Jiang, 

1999). This learning seems to occur implicitly, as participants do not report remembering 

such repeated configurations during the visual search. The dominant interpretation of 

FIGURE 1.1. A representation of the serial reaction time task. In these tasks, participants have to press 

the button that corresponds to a stimulus light as fast as they can. The stimulus presentation 

corresponds to a fixed sequence, and participants become faster when compared to a random 

sequence. 
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the observed benefit is that learning of associations between spatial configurations and 

target locations guides attention to the target location (Chun, 2000; Higuchi & Saiki, 

2017). 

 

In contrast with the previously described tasks, the artificial grammar learning 

task (AGL - Reber, 1967) seems to be a more complex implicit learning paradigm that 

relies on cognitive processes. In the studies that use the artificial grammar learning 

paradigm, participants are exposed to a sample of grammatical sequences (see Figure 

1.3) during the acquisition phase (usually, they are asked to memorize or merely observe 

the acquisition sequences). It is common to observe that participants become better at 

memorizing sequences as this acquisition phase progresses, which suggests that the 

sequence’s regularities may be facilitating learning (Reber, 1967). Afterwards, 

participants are informed that the sequences were generated by a complex set of rules, 

and new sequences are classified as grammatical or non-grammatical on the basis of the 

immediate intuition (“guessing”). The typical result observed is that participants 

perform reliably above the level of chance with little or no explicit knowledge about the 

rules followed by the stimuli. Participants can also be instructed to classify the new 

FIGURE 1.2. The left panel shows a search display used in contextual cueing experiments, where 

participants are instructed to search for a T-shaped target among a series of L-shaped distractors. 

Some search displays are systematically repeated across several blocks of trials, and others are 

random. The right panel shows the typical result in contextual cuing tasks: participants become faster 

in identifying the target in repeated trials (red dots) when compared to random trials (blue triangles) 

(taken from Chun, 2000). 
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sequences with a preference judgment (like/dislike). In this case, no reference to the 

underlying grammar is needed, and therefore participants are completely uninformed 

about the underlying structure of the acquisition material. This classification variant is 

sensitive to the same knowledge as grammaticality judgments and is related to these 

judgments (Forkstam, Elwér, Ingvar, & Petersson, 2008). 

In order to measure awareness in these implicit learning tasks, researchers 

frequently use verbal reports (that is, asking participants to describe verbally the 

structure of the material to which they were exposed), forced-choice tests (e.g. 

recognition tests or free generation tasks, where it is required that subjects reproduce 

the sequences they observed, and complete portions of sequences) and subjective tasks 

(such as confidence ratings, that appear to be unrelated to the performance in the 

implicit task, or when subjects report guessing, or following their gut feeling, but are 

performing above chance level). These options, however, are not immune to criticism, 

as they appear to not be systematic in their measure of awareness (Cleeremans et al., 

1998). 

 

 

FIGURE 1.3. An example of a finite state grammar (adapted from Reber & Allen, 1978) required to 

generate the sequences presented in artificial grammar learning tasks. Grammatical strings are 

generated by entering the grammar through the ‘in’ node and by moving from node to node until the 

‘out’ node is reached. Non-grammatical strings are produced by switching at least one letter to 

another. An example of a grammatical sequence would be MTTTVRXM, and an example of a non-

grammatical sequence would be MTTTVMXM. The sequences can be presented as strings of letters, 

symbols, colour patches and tones, amongst others. 
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WHAT IS THE KNOWLEDGE ACQUIRED? 

In artificial grammar learning, one of the main topics of discussion concerns what 

is acquired by the participants. In the earlier years of the implicit learning study, it was 

assumed that learning was unconscious and abstract (Reber, 1967). These claims 

generated controversy, and several studies provided evidence that there are different 

types of information extracted in implicit learning tasks (see Figure 1.4), including 

exemplar-specific knowledge. 

According to the abstract view, and in the context of AGL tasks, where 

participants show better than chance performance on novel letter stings, it is assumed 

that participants are learning the abstract rules that govern the formation of letter 

sequences (Allen & Reber, 1980; Reber, 1992). The same argument is used in sequence 

learning tasks, where it is assumed that the reduced reaction times reflect the 

abstraction of the rules presented by the stimuli material (Lewicki, Czyzewska, & 

Hoffman, 1987). This view assumes that the structure of the stimuli and their 

relationships are abstracted independently of the surface features of the presented 

material. In fact, there is evidence from the paradigm of transfer in AGL that even if the 

letters forming the study items are changed in a consistent way for the test of 

FIGURE 1.4. A representation of the knowledge extracted from the AGL task, according to the different 

described views. Participants that perform above chance in AGL tasks might have learned something 

about the rules of the grammar from which the strings have been generated (red); they may have 

memorized frequently occurring fragments or chunks of the strings (green); they may have memorized 

entire strings from the learning phase (black); or they may have become sensitive to the statistical 

structure of the entire set of training exemplars (blue) (taken from Cleeremans, 2009). 
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grammaticality (e.g., S is always replaced by T), participants still outperform chance level 

(Altmann, Dienes, & Goode, 1995). This transfer phenomena occurs even if one stimulus 

modality is transferred to another modality (Gomez, 1997). However, a decrease in 

performance is usually observed (Pacton, Perruchet, Fayol, & Cleeremans, 2001). 

Furthermore, on one hand, the abstract view is vague and does not specify how the 

process occurs and what information is stored, and on the other hand, there is evidence 

that other mechanisms than the abstract ones can account for performance in implicit 

learning tasks. 

Some studies suggested that participants were gaining knowledge specific to the 

training exemplars, and this exemplar-specific knowledge is used to make their 

judgments (Vokey & Brooks, 1992). The instance-based model suggests that participants 

store the different exemplars in memory and then judge whether the novel items 

present a similarity with the stored items to classify them. However, the grammaticality 

factor also presented a significant and additive effect, that is, the similar non-

grammatical items were less classified as grammatical than the similar grammatical 

items. Furthermore, Vokey and Brooks (1992) suggested that the similarity may also be 

computed with the whole set of study items instead of a single item. The currently 

prevalent interpretation keeps the idea of some kind of pooling or summation over 

multiple episodes, but privileges a formulation in terms of statistical regularities. 

While the instance-based model considers whole exemplars, the fragment-based 

approach considers elementary components (e.g., the individual letters or small groups 

of letters in the AGL task). It was observed that participants demonstrate sensitivity to 

chunk strength: the number of times the bi-gram or tri-gram chunks within the item 

have been repeated across the training set. For each letter sequence, the overall chunk 

strength can be calculated by averaging the chunk strength of the bi-grams and tri-grams 

(Meulemans & Linden, 1997). Nevertheless, there is also evidence that significant 

sensitivity to grammaticality remains even when similarity and fragment overlap is 

carefully controlled for (e.g. Forkstam, Elwér, Ingvar, & Petersson, 2008). A combination 

of several learning processes, both rule-based and exemplar-based, seems to take place 

in implicit learning. Depending on the specific constraints of the tasks, different 
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mechanisms might underlie the performance: either knowledge based on n-grams or 

knowledge based on abstracting grammatical structure (Meulemans & Linden, 1997). 

Several factors might intervene in the outcomes of implicit learning tasks. It has 

been shown that intention to learn has an influence on the results. Subjects perform 

better if they are instructed to discover the rules (Ziori & Dienes, 2012), although this 

advantage disappears if the sequence presented is probabilistic (Jimenez, Mendez, & 

Cleeremans, 1996). However, this result is not straightforward, since some studies 

suggest that instructions to learn can also disrupt implicit learning (Fletcher et al., 2005). 

Furthermore, and despite it has been extensively said that implicit learning involves 

automatic processes that engage independent systems, a decrease in implicit learning 

has been observed when attention is not fully available (e.g. Cohen, Ivry, & Keele, 1990). 

Nevertheless, several studies suggest that implicit learning is relatively robust in the face 

of distraction and independent of subjects’ orientation to learn (see, for a brief review, 

Cleeremans et al., 1998). 

For several years, the focus of the field was to determine whether implicit 

learning could be entirely isolated from explicit learning. However, it has been observed 

that there might be different degrees of implicit learning and different kinds of implicit 

learning, along with relations between them, as well as different degrees of implicit and 

explicit knowledge interactions. 

 

 STATISTICAL LEARNING 

In 1996, Saffran and colleagues presented a pioneer study, where 8-month-old 

infants, who were briefly exposed to a continuous stream of repeating three-syllable 

nonsense words, showed sensitivity to the difference between the three-syllable 

sequences and foil sequences made up of the same syllables recombined in a different 

order. This study demonstrated that infants are able to use the statistics of the input 

stream to discover word boundaries in connected speech, a process labelled by the 

authors as statistical learning (Saffran et al., 1996). Statistical learning is closely related 

to implicit learning, as both approaches rely on the capacity that humans have to learn 

without awareness of the products of learning (Perruchet & Pacton, 2006). 
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In statistical learning experiments (see Figure 1.5), such as in the already 

described implicit learning experiments, participants are exposed to material that 

contains a hidden, repetitive structure, and consequently, learning occurs as a 

consequence of exposure to positive examples (Batterink, Reber, Neville, & Paller, 

2015). The difference between the implicit learning and statistical learning approaches 

emerges in the views of the to-be-learned stimuli. In the former, the influence of 

multiple past events is based on rules, and in the latter, is based on statistics (specifically, 

frequency, probability or contingency). No one disputes the existence of statistical 

learning (in the implicit learning literature, it refers to fragment-based knowledge), but 

the necessity to extract the rules (in addition to statistical learning) is a more 

controversial subject. Some authors claim the necessity of this rule-based knowledge, 

and others claim that the sensitivity to statistical regularities is able to account for 

performance in most of the experimental situations that were initially devised to provide 

an existence proof for rule learning, including transfer settings (Perruchet, 2008). 

Despite these differences, both statistical learning and implicit learning are 

thought to be domain-general phenomena, focusing on the learning mechanisms acting 

on attended information in incidental, unsupervised learning situations. In recent 

studies, it has been observed that researchers of implicit and statistical learning assume 

that this kind of learning arises from the same general mechanism, leading to a growing 

number of cross-references and to the occasional use of the two expressions as 

synonymous (Batterink et al., 2015; Perruchet & Pacton, 2006). 

FIGURE 1.5. An example of a statistical learning task. In the familiarization phase, participants are 

exposed to sequences of doubles in a continuous stream, without awareness that a pattern exists. In 

the test phase, participants are asked which double was previously presented together. Results 

typically show that participants can distinguish what was the previously presented double above 

chance (adapted from Bogaerts, Siegelman & Frost, 2016). 
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 WHAT DO THE EYES TELL US ABOUT IMPLICIT LEARNING?  

Eye-tracking measures reflect acquired knowledge when learning is implicit, in 

contextual cueing tasks. In these tasks, implicit learning of the contextual information 

(the spatial configuration) facilitates visual search performance throughout an internal 

“saliency map” for a scene currently in view. Attention and eye movements are 

deployed to regions of high saliency, facilitating an observer’s ability to acquire or react 

to objects or events within that area of a scene (Chun, 2000; Jiang, Won, & Swallow, 

2014). The eye movements appear to be related to the behavioural performance in 

contextual cueing paradigms: it has been shown that the number of fixations and 

saccades required to scan a scene before the target is found decreases along with a 

decrease in search time (Hout & Goldinger, 2012; Li & Tseng, 2004; Manelis, Reder, 

Manelis, & Reder, 2012; van Asselen, Sampaio, Pina, & Castelo-Branco, 2011). It has also 

been observed that the anticipation of the spatial position of a target has relied on 

saccade latency (Amso & Davidow, 2012) and saccade length (Jiang et al., 2014). In SRT 

tasks (both with and without manual response), it was also observed that anticipatory 

eye movements reflected sequence learning, thus serving as a direct measure of implicit 

sequence learning (Marcus, Karatekin, & Markiewicz, 2006; Vakil, Bloch, & Cohen, 2017). 

Studies using the eye-tracking methodology with AGL paradigms are scarce and, 

because there are no spatial targets, different approaches are required. In order to 

perform in AGL tasks, participants are typically informed that the sequences to which 

they have been exposed present an underlying grammar. It has been suggested that 

such a disclosure might lead to explicit processing (Buchner, 1994; Manza & Bornstein, 

1995), making it difficult to assess to implicit knowledge. Indirect measures such as 

preference judgments (like/dislike) have been proposed as a sensitive alternative, with 

the advantage of providing for a baseline measure (see, for example, Forkstam et al., 

2008). However, an involuntary index of learning would be even more akin to the 

implicit character of the process, and it would facilitate expanding AGL research to 

populations such as infants and animals. 

Only three studies have explored the outcomes of AGL with eye-tracking 

measures. In the first one, Heaver (2012) measured the size of pupil dilatations when 

observing grammatical and non-grammatical sequences at the test phase of an AGL task. 
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She found no difference in the pupillary response to the different sequences, unlike the 

behavioural response, where participants showed that they were able to distinguish 

grammatical from non-grammatical sequences. In the testing phase of two studies, 

Wilson and colleagues (Wilson et al., 2013; Wilson, Smith, & Petkov, 2015) presented to 

macaques and humans auditory grammatical and non-grammatical sequences through 

speakers and analysed the time participants gazed at the speaker area as a function of 

the grammatical status of the sequence. The primates showed longer gaze times for the 

sequences that violated the grammar (Wilson et al., 2013; Wilson et al., 2015), but this 

paradigm did not show any effect in humans (Wilson et al., 2015). Nevertheless, in the 

behavioural task, participants could identify the sequences that violated the artificial 

grammar relative to those that did not. 

Taken together, these results seem to suggest that AGL effects do not show up 

in eye-tracking measures. However, the paucity of studies and methodologies employed 

does not allow us to draw definitive conclusions about if and how AGL effects can be 

measured with the eye-tracking methodologies. For example, these studies did not 

probe sensitivity effects in visually presented sequences (increased eye movements on 

the target letter or event, the one violating the grammar), and so the possibility of 

observing sensitivity effects in implicit AGL remains untested. In this context, we aimed, 

in the first study of this dissertation, to test for these sensitivity effects in an implicit AGL 

paradigm and to determine the type of sensitivity effect associated with implicitly 

acquired knowledge, expecting to find an involuntary index of implicit learning 

processes measured by AGL tasks. 

 

THE INFLUENCE OF IMPLICIT LEARNING IN READING AND WRITING PROCESSES 

It has been shown that from a very early age, humans can extract the regularities 

in the surrounding environment, supporting the acquisition and development of 

different skills, such as language (Kaufman, DeYoung, et al., 2010; Saffran et al., 1996; 

Saffran, Pollak, Seibel, & Shkolnik, 2007). Languages are a well-structured environment, 

with strings of words that present statistical correlations and transitional probabilities, 

constraining them and determining their internal structure (Frost, Siegelman, Narkiss, & 
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Afek, 2013). Infants acquire these linguistic statistical patterns just from exposure to 

them, supporting language acquisition (Saffran et al., 1996), and these implicit processes 

might also occur when children acquire literacy skills. Upon the probabilistic patterns 

observed in the language, the written patterns of the alphabetic systems that represent 

these languages are also characterized by a set of correlations that determine the 

possible co-occurrences of letter sequences that culminate in several orthographic 

patterns, which can vary in their occurrence (Frost et al., 2013). These probabilistic 

orthographic patterns are not explicitly taught, but they are known by children even in 

early stages of reading and writing acquisition, suggesting that implicit learning has a 

role in literacy skills acquisition (Treiman, 2018). 

Learning to read and write requires explicit instruction, and one cannot learn 

how to read and write just by exposure to print. Despite the different written languages 

that present several statistical regularities, it seems that implicit processes only operate 

when they have importance to the learner and capture his or her attention (Treiman, 

2018). Nevertheless, this acquisition is an obligatory event in most cultures, and as soon 

as explicit instruction about how to read and write is given, we observe implicit 

mechanisms taking place (for a review, see Arciuli, 2018 and Treiman, 2018). 

In addition to the probabilistic patterns observed in the written language, each 

writing system denotes a different level of consistency (i.e., high or low correlations) in 

the mapping of graphemes to phonemes (Frost et al., 2013). Although these mappings 

between graphemes and phonemes are explicitly taught, in several languages, 

particularly in the ones with a deeper orthography, these mappings are not one-to-one, 

but many-to-many, meaning that one grapheme can correspond to several different 

graphemes, and one grapheme can correspond to several phonemes. Furthermore, 

several of these mappings depend upon positional and other contextual regularities, 

making it difficult to teach them explicitly (Arciuli, 2018). 

Although many phonological, orthographic and morphological rules that enable 

us to read and write correctly are taught explicitly during reading acquisition, the total 

amount and complexity of the combinations that the written language presents and that 

are required to become a proficient reader and speller would be overwhelming, and 

thus statistical learning has to play a role (Steffler, 2001). According to the statistical 
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learning perspective on literacy development, even from an early age, and before formal 

instruction begins, some properties are acquired in the form of the written words to 

which children are exposed, such as their own name or the text presented in children’s 

books. It has been shown that these pre-learners use the letters that appear more 

frequently in the material to which they are exposed more often in their initial spellings 

(without real correspondence to the phonology) (e.g. Pollo, Kessler, & Treiman, 2009; 

Treiman, Kessler, Boland, Clocksin, & Chen, 2017). For example, pre-learners of 

Portuguese present more vowels in their attempts to write words than pre-learners of 

English, which actually corresponds to the higher proportion of vowels in Portuguese 

words when compared to English words (Pollo et al., 2009). 

Overall, there is evidence that suggests that children must benefit from implicit 

learning mechanisms to extract the written language regularities in order to become 

proficient readers and spellers. However, typically, such evidence comes from the use 

of some of these regularities by children or adults, which are not taught in an explicit 

manner, and so it is deducted that such knowledge is acquired implicitly. In the second 

study of this dissertation, we aimed to assess whether implicit statistical learning is 

related with reading proficiency and implicit orthographic knowledge. Specifically, we 

first intend to assess if an individual that presents a better performance in a visual 

statistical learning task also has better skills in using the implicit regularities that exist in 

the Portuguese written language, but that are not explicitly taught. Secondly, we intend 

to assess if reading in Portuguese is related to statistical learning, such as in English, an 

opaque orthography (Arciuli & Simpson, 2012b) or if there is no such relationship, as in 

Spanish (a more transparent orthography) (Nigro, Jiménez-Fernández, Simpson, & 

Defior, 2015). 

 

IMPLICIT LEARNING AND DYSLEXIA 

Developmental dyslexia (hereafter, dyslexia) is characterized by severe and 

persistent difficulties in learning how to read in children and adults who otherwise 

possess average intelligence and motivation necessary for accurate and fluent reading. 

It occurs in the absence of other cognitive disabilities and is not due to extraneous 
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factors, such as sensory acuity deficits, socio-economic disadvantage or lack of exposure 

to high quality literacy instruction (Lyon, Shaywitz, & Shaywitz, 2003; Tunmer & 

Greaney, 2011; Vellutino, Fletcher, Snowling, & Scanlon, 2004). Dyslexia is probably the 

most common learning disorder in children and affects approximately 5.4% of 

Portuguese students from the second to the fourth grade (Vale, Sucena, Viana, & 

Correia, 2011). The deficits presented by dyslexics typically persist throughout 

adulthood, even though the individual might develop compensating strategies (Shaywitz 

& Shaywitz, 2005; Vellutino et al., 2004). Behavioural and brain-based research indicates 

that the manifestations observed in dyslexia are complex, making it difficult to provide 

a unitary account of the etiology of this common and heritable learning disability. It 

seems that there is a consensus, however, that dyslexia is a neuro-developmental 

disorder with a biological origin, which affects written language and which has a range 

of clinical manifestations (Frith, 1999). 

The most dominant feature associated with dyslexia is the phonological 

processing difficulty, specifically, underspecified or/and less accessible phonetic 

representations in dyslexic readers (e.g., Boets et al., 2013; Ramus et al., 2003). In fact, 

dyslexic individuals seem to perform bellow average in a variety of phonological tasks, 

including tasks requiring verbal short-term memory (e.g. digit span), phonological 

awareness (e.g., phoneme deletion and rhyme judgments), phonological decoding (e.g., 

pseudoword reading) and lexical retrieval (e.g., rapid automatized naming) (Hulme, 

Snowling, & Carroll, 2005; Ramus et al., 2003; Ramus & Szenkovits, 2008; Shaywitz, 

2003; Tijms, 2004; Wagner, Torgesen, & Rashotte, 1994). Additionally, dyslexia has been 

linked to non-linguistic processing deficits, including visual and auditory processing 

(Sela, 2014), visual spatial attention (Franceschini, Gori, Ruffino, Pedrolli, & Facoetti, 

2012) and, discussed more recently, implicit learning (for a review, see Lum, Ullman, & 

Conti-Ramsden, 2013; Schmalz, Altoè, & Mulatti, 2016; van Witteloostuijn, Boersma, 

Wijnen, & Rispens, 2017). 

In the last decade, a significant interest in implicit learning in dyslexia culminated 

in several studies, although the link between reading disabilities and implicit learning is 

still not well understood. Few explanations, however, of how a weakness in implicit 

learning of sequential information could account for the phonological processing and 
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reading problems in dyslexia have been proposed. Nicolson and Fawcett (Nicolson & 

Fawcett, 1999; Nicolson, Fawcett, & Dean, 2001) proposed that the reading problems in 

dyslexia are linked to problems with learning and/or adapting the phonological 

knowledge and automatizing skills necessary to support reading. Specifically, the 

cerebellar deficit hypothesis of dyslexia (Nicolson & Fawcett, 1999; Nicolson et al., 2001) 

claims that children with dyslexia have unusual difficulty in automatizing any skill, 

whether motor or cognitive. Because implicit learning has been closely linked with 

automatic learning mechanisms (Conway & Pisoni, 2008), it may well be that an implicit 

learning deficit would affect learning of grapheme-phoneme associations in children 

with dyslexia and eventually prevent them from reaching a high degree of automaticity 

in reading (Sperling, Lu, & Manis, 2004). 

Howard, Howard, Japikse and Eden (2006) also suggest that poor implicit 

learning could hinder the establishment of adequate phonological processing, as well as 

learning orthographic-phonological representations. The authors propose that a 

combination of a phonological deficit with an impaired sequence learning system could 

manifest as a failure in applying implicit or probabilistic rules required for fluent 

application of grapheme-phoneme correspondences and, therefore, leading to reading 

difficulties (see also Sperling et al., 2004). 

Implicit learning in dyslexia has typically been studied with the serial reaction 

time task and the artificial grammar learning task, although with variations in the 

complexity and length of the stimuli used (in the rare exception, the contextual cueing 

task was used - see Howard et al., 2006). Many of these studies have reported an implicit 

learning deficit in dyslexics (Du & Kelly, 2013; Ise, Arnoldi, Bartling, & Schulte-Körne, 

2012; Jiménez-Fernández, Vaquero, Jiménez, & Defior, 2010; Kahta & Schiff, 2016; 

Laasonen et al., 2014; Deny Menghini, Hagberg, Caltagirone, Petrosini, & Vicari, 2006; 

Pavlidou, Kelly, & Williams, 2010; Pavlidou, Williams, & Kelly, 2009; Stoodley, Harrison, 

& Stein, 2006; Stoodley, Ray, Jack, & Stein, 2008; Vicari et al., 2005; Vicari, Marotta, 

Menghini, Molinari, & Petrosini, 2003), but this finding has not always been replicated 

(Deroost et al., 2010; Gabay, Schiff, & Vakil, 2012; Howard et al., 2006; Kelly, Griffiths, & 

Frith, 2002; Menghini et al., 2010; Nigro, Jiménez-Fernández, Simpson, & Defior, 2016; 

Pothos & Kirk, 2004; Rüsseler, Gerth, & Münte, 2006). The variability of these findings 
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prevents any reliable conclusion, and the question of whether implicit learning deficits 

are indeed found in dyslexia remains unanswered. 

Two recent meta-analyses combined the information provided by these studies, 

one for the SRT task (Lum et al., 2013) and the other for the AGL task (van Witteloostuijn 

et al., 2017). Both meta-analysis provided evidence supporting the hypothesis that 

implicit learning is impaired in dyslexia. However, the findings of the AGL meta-analysis 

might be contaminated by the presence of a publication bias, and thus no solid 

conclusions can be drawn (van Witteloostuijn et al., 2017). Furthermore, both meta-

analytic studies suggest that age has a moderating impact on the difference between 

participants with and without dyslexia: studies with adult samples showed smaller effect 

sizes than studies with child participants (Lum et al., 2013; van Witteloostuijn et al., 

2017). In addition, Lum and colleagues’ (2013) study also found an interaction between 

age and the amount of exposure to the sequences, showing that differences between 

groups might be minimal when participants are older and there is more exposure to the 

sequences. 

Taken together, these findings seem to suggest that it is still unclear whether 

dyslexics present an implicit learning deficit when tested with AGL tasks, whether the 

development of the implicit learning abilities is delayed in dyslexia and if differences 

between individuals with dyslexia and individuals in control groups emerge only when 

participants have a limited opportunity to implicitly learn the sequences. In the third 

study of this dissertation, we aimed to clarify this issue by comparing the performance 

of dyslexic children and their typically developed age matched pairs in an AGL task 

specifically designed to maximize the exposure to sequences. Additionally, we also 

compare the performance of dyslexic children with a younger control group matched by 

reading level in order to verify if a given deficit is a consequence of the reduced reading 

experience or a delay in the implicit learning abilities. 
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CHAPTER TWO 

STUDY 1 - Eye Movements in Implicit Artificial Grammar Learning 

 

 

ABSTRACT 

Artificial grammar learning (AGL) has been probed with forced-choice behavioral 

tests (active tests). Recent attempts to probe the outcomes of learning (implicitly 

acquired knowledge) with eye-movement responses (passive tests) have shown null 

results. However, these latter studies have not tested for sensitivity effects, for example, 

increased eye movements on a printed violation. In this study, we tested for sensitivity 

effects in AGL tests with (Experiment 1) and without (Experiment 2) concurrent active 

tests (preference- and grammaticality classification) in an eye-tracking experiment. Eye 

movements discriminated between sequence types in passive tests and more so in 

active tests. The eye-movement profile did not differ between preference and 

grammaticality classification, and it resembled sensitivity effects commonly observed in 

natural syntax processing. Our findings show that the outcomes of implicit structured 

sequence learning can be characterized in eye tracking. More specifically, whole trial 

measures (dwell time, number of fixations) showed robust AGL effects, whereas first-

pass measures (first-fixation duration) did not. Furthermore, our findings strengthen the 

link between artificial and natural syntax processing, and they shed light on the factors 

that determine performance differences in preference and grammaticality classification 

tests. 
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INTRODUCTION 

The artificial grammar learning (AGL) paradigm probes implicit sequence learning 

(Forkstam & Petersson, 2005; Reber, 1967; Seger, 1994; Stadler & Frensch, 1998; van 

den Bos & Poletiek, 2008) and models aspects of the acquisition of structural knowledge 

such as linguistic syntax (Christiansen, Conway, & Onnis, 2012; Christiansen, Louise 

Kelly, Shillcock, & Greenfield, 2010; Conway, Karpicke, & Pisoni, 2007; Lelekov-Boissard 

& Dominey, 2002; Silva, Folia, Hagoort, & Petersson, 2016; Tabullo, Sevilla, Segura, 

Zanutto, & Wainselboim, 2013; Zimmerer, Cowell, & Varley, 2014). The paradigm 

involves exposure and test phases. In the exposure phase, participants are given positive 

examples of a grammar, often letter sequences. In implicit versions of AGL, participants 

are kept unaware that the sequences are constructed according to rules (Figure 2.1) and 

may thus be referred to as grammatical sequences. In the test phase, novel grammatical 

sequences are presented together with sequences containing at least one violation of 

grammar rules (i.e., non-grammatical sequences). Participants are asked to make 

grammaticality judgments under forced-choice conditions, and any implicitly acquired 

knowledge is inferred from the accuracy of those judgments—that is, from behavioral 

discrimination between grammatical and non-grammatical sequences. 

 

 

 

FIGURE 2.1. The artificial grammar used in this study. Grammatical sequences are generated by 

traversing the transition graph along the indicated directions (e.g., MSVRXVS). An example of a non-

grammatical counterpart would be MSXRXVS, with X being the violating target letter and V a legal 

target letter. 
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 The importance of keeping participants unaware of the learning targets has 

generated some discussion on grammaticality judgment tasks because the test-

instructions highlight the existence of rules and might therefore lead to explicit 

processing (Buchner, 1994; Manza & Bornstein, 1995). Indirect accuracy-free 

judgments, such as preference classification (like/dislike), have been proposed as an 

alternative (Forkstam et al., 2008; Gordon & Holyoak, 1983; Manza & Bornstein, 1995), 

with the advantage of allowing for a baseline (pre-exposure) measure of accuracy 

underlying a proper-learning design (Petersson, Elfgren, & Ingvar, 1999b, 1999a). Even 

though preference judgments are sensitive (Folia et al., 2008; Folia & Petersson, 2014; 

Forkstam et al., 2008; Silva et al., 2016; Uddén, Ingvar, Hagoort, & Petersson, 2012), an 

involuntary index of learning would be even more akin to the implicit character of the 

process, and it would afford expanding AGL research to populations such as infants and 

animals. Eye movements are not always involuntary (Hayhoe & Ballard, 2011), but the 

probability of being so is high, in the context of viewing AGL test sequences. In addition, 

eye-tracking measures reflect acquired knowledge when learning is implicit (Giesbrecht, 

Sy, & Guerin, 2013; Jiang, Won, & Swallow, 2014, but see Coomans, Deroost, 

Vandenbossche, Van Den Bussche, & Soetens, 2012, for the potential role of covert 

attention). In this study, we investigate the suitability of eye-tracking measures in 

characterizing the outcomes of AGL (implicitly acquired knowledge), focusing on the 

possibility that some form of ocular discrimination of sequence types parallels the 

behavioral discrimination that is observed in successful implicit AGL. 

 Eye-tracking measures have been extensively used in spatial implicit learning, 

where space is the learning target. Paradigms measuring the anticipation of the spatial 

position of a target have relied on saccade latency (Amso & Davidow, 2012) and saccade 

length (Jiang et al., 2014). Visual search paradigms relating to contextual cuing effects 

(implicit learning of spatial context) have measured the number of saccades (Hout & 

Goldinger, 2012) or fixations (Manelis, & Reder, 2012) required to scan a scene before 

the target is found. Scan-path measures, defining the exploration overlap of scenes, 

have been used to index implicit memory (Ryals, Wang, Polnaszek, & Voss, 2015). 

 In AGL there are no spatial targets and different approaches are required. To our 

knowledge, only three studies have probed the outcomes of AGL with eye-tracking 



21 
 

methodologies. Heaver (2012) tested participants for pupillary responses to 

grammatical and non-grammatical sequences at the test phase, and found no 

discrimination of sequence types based on pupil size. Wilson and colleagues (Wilson et 

al., 2013; Wilson, Smith, & Petkov, 2015) delivered auditory stimuli through speakers 

and analyzed the time participants gazed at the speaker area as a function of the 

grammatical status of the sequence. The paradigm worked for primates (Wilson et al., 

2013, 2015), who showed longer gaze times for non-grammatical sequences, but it did 

not show any effects in humans (Wilson et al., 2015). However, a behavioral forced-

choice (grammaticality classification) did work in humans, and it was suggested that this 

might be due to increased levels of attention in the active (forced-choice) compared 

with the passive (eye-tracking only) task. A slightly different, yet related explanation for 

why eye-tracking measures alone might fail to capture AG knowledge relates to the 

processes that may or may not be recruited depending on the behavioral task (e.g., 

Leeser, Brandl, & Weissglass, 2011). Given that AGL involves syntax-like processing (e.g., 

Christiansen et al., 2010) - and hence a focus on dependencies between sequence 

elements—the required type of analysis may not be recruited unless there is an active 

and suitably syntax-oriented task. The results on implicit AGL with preference 

classification— apparently a nonsyntax-oriented task—contribute to argue against this 

possibility (Folia et al., 2008; Folia & Petersson, 2014; Forkstam et al., 2008; Silva et al., 

2016; Uddén et al., 2012), but it may nevertheless be considered. 

 Whether passive tests fail in facilitating attention in general, or in eliciting 

syntactic analysis in particular, one may expect that the eye-tracking signatures of AGL 

resemble the so-called sensitivity effects. Sensitivity effects have been described in the 

literature on natural syntax processing, and they refer to the fact that readers fixate 

longer or regress more frequently from a violating word compared with its syntactically 

correct counterpart (Godfroid et al., 2015; Keating, 2009; Lim & Christianson, 2014; 

Sagarra & Ellis, 2013). The reason why sensitivity effects may be expected is not that 

AGL materials resemble written words: AGL sequences are meaningless and 

unpronounceable, and they are presented one at a time, so interword regressions do 

not exist. Instead, sensitivity effects may be expected on the grounds that AGL models 

the acquisition and the processing of natural syntax (Christiansen et al., 2012, 2010; 
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Conway et al., 2007; Lelekov-Boissard & Dominey, 2002; Silva et al., 2016; Tabullo et al., 

2013; Zimmerer et al., 2014), and so the processing of dependencies among sequence 

items (letters, in this case) is likely to mirror the processing of dependencies among 

words (sentence subunits) in natural language. Moreover, sensitivity effects have been 

obtained in natural language without readers being specifically asked to do syntactic 

judgments, so it is possible that they emerge in passive eye-tracking tests, when no 

additional task is requested. However, natural language is different in one fundamental 

aspect. Unlike AGL stimuli, natural language sentences have both lexical and sentence-

level meaning. The presence of semantic content may be sufficient to increase the levels 

of attention or to drive syntactic analysis. From this viewpoint, it is less certain that 

sensitivity effects emerge in AGL, which is semantic-free. As already noted above, 

Wilson and colleagues (2015) suggested that AGL effects do not show up in eye-tracking 

measures. However, Wilson and colleagues (2015) did not probe sensitivity effects 

(increased eye movements on the target letter or event, the one violating the grammar) 

and so the possibility of observing sensitivity effects in implicit AGL remains untested. 

 The first objective of our study was to test for sensitivity effects in a proper-

learning implicit AGL paradigm (pretest-posttest design, with pre-exposure and post-

exposure measures of knowledge) with and without a concurrent forced-choice, active 

test. In the first experiment (see Table 2.1), we used active tests and participants were 

also tested in a baseline (pre-exposure) preference classification task. We compared this 

with a final (post-exposure) preference classification as well as with a grammaticality 

classification test. In Experiment 2, we started with passive tests and added a final active 

test (grammaticality classification) for within-subject comparisons. We predicted that 

sensitivity effects would be weaker with passive, eye-tracking only tests (Experiment 2) 

than with active ones (Experiment 1), and that the introduction of an active test would 

boost ocular discrimination in Experiment 2. An issue of interest was the comparison 

between ocular discrimination in final preference versus grammaticality classification in 

Experiment 1. Several AGL studies have shown quantitative differences in behavioral 

performance for final preference versus grammaticality classification (Folia et al., 2008; 

Folia & Petersson, 2014; Forkstam et al., 2008; Silva et al., 2016; Uddén et al., 2012). 

Behavioral tests completely depend on offline (final) decision processes, which are 
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highly susceptible to the self-monitoring of performance (e.g., ‘Should I say I like it?’ in 

preference, vs. ‘Should I say it is correct?’ in grammaticality). Differences between 

preference and grammaticality decisions concerning the processes engaged may be 

responsible for the quantitative differences observed so far in behavioral tests. In 

contrast, eye-tracking measures are online measures that capture the whole judgment 

process. This may include final decision processes and influences of self-monitoring, but 

it also includes the whole processing time before a specific response is planned, making 

eye-tracking measures less susceptible to decision-related influences than behavioral 

ones. Thus, if differences between preference and grammaticality classification show up 

in behavioral tests but not in concurrent eye-tracking measures, this would suggest that 

final decision processes are critically involved in behavioral differences. 

Table 2.1 

Design of the Two Experiments 

Phase Day 1 Day 2 Day 3 Day 4 Day 5 

Experiment 1      

      Exposure (G) Yes Yes Yes Yes Yes 

      Active test (G-NG) Baseline preference    Final preference 

     Grammaticality 

Experiment 2      

      Exposure (G) Yes Yes Yes Yes Yes 

      Passive test (G-NG) Passive baseline Passive Test 2 Passive Test 3 Passive Test 4 Passive Test 5 

 Passive Test 1a     

      Active test (G-NG)     Grammaticality 

Note. G and NG refer to sequence types (G = grammatical; NG = non-grammatical). Text in bold indicates eye-tracking 

recordings. 

a Passive 1 was run after exposure on Day 1. 

 

 The second objective of this study was to determine the type of sensitivity effect 

associated with implicitly acquired knowledge. Despite claims that there is no one-to-

one mapping between eye movements and awareness (Godfroid & Schmidtke, 2013) 

and that triangulation with verbal data is required to determine whether learning was 

implicit or not (Godfroid & Winke, 2015), it has been proposed that regressions 

(movements from right to left) are associated with explicit knowledge (Godfroid et al., 

2015). This claim was based on the assumptions that regressions are controlled 

processes (Reichle, Warren, & McConnell, 2009), and that implicit knowledge is 

accessed by automatic rather than controlled processing. In our study, we tested for the 
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more general concept of second-pass reading, including regressions (right to left 

movements) as well as progressions (left to right) to the violating (target) letter after the 

first-fixation on it. For this reason, we used measures related to whole-trial time (dwell 

time, number of fixations), considering first-pass (first-fixation duration) and second 

pass measures (dwell-to-first-fixation ratio) separately. 

 In the two experiments, we controlled for the effects of local subsequence 

familiarity, measured as associative chunk strength (ACS, Knowlton & Squire, 1996; 

Meulemans & Linden, 1997), to rule out the possibility that learning is based on overt, 

surface features of the sequences (D R Shanks & John, 1994) instead of structural 

features of the underlying grammar (Folia et al., 2008; Folia & Petersson, 2014; Forkstam 

et al., 2008; Silva et al., 2016; Uddén et al., 2012). As in our previous studies, we used a 

multiday paradigm to allow abstraction and consolidation processes to take place (e.g., 

Nieuwenhuis, Folia, Forkstam, Jensen, & Petersson, 2013). 

 

 EXPERIMENT 1: EYE MOVEMENTS IN ACTIVE TESTS 

In the first experiment, we tested whether eye movements concurrent with 

active, forced-choice classification tests reveal artificial grammar learning (AGL). We 

used a proper-learning paradigm (Folia et al., 2008; Folia & Petersson, 2014; Petersson 

et al., 1999b, 1999a), where the focus is on changes in discrimination between sequence 

types (grammatical vs. non-grammatical) after exposure. 

 

METHOD 

PARTICIPANTS 

Thirty-three healthy adults with normal or corrected-to-normal vision 

volunteered to take part in the experiment. Due to excessive eye-tracking artifacts, 

three participants were excluded from further analysis. From the remaining 30 

participants, 13 were female (M age ± SD = 26 ± 5). All participants were prescreened 

for medication use, history of drug abuse, head trauma, neurological or psychiatric 
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illness, and family history of neurological or psychiatric illness. Written informed consent 

was obtained from all according to the protocol of the Declaration of Helsinki. 

 

STIMULUS MATERIAL 

Sequences were generated from the Reber grammar represented in Figure 2.1 

(5 to 12 consonants long, from the alphabet [M, S, V, R, X], see the Appendix 1). For a 

detailed description of the procedure to generate the stimulus material, see Forkstam, 

Hagoort, Fernandez, Ingvar, & Petersson, 2006). For the exposure phase (see Table 2.1), 

we generated one acquisition set with 100 grammatical sequences (G). To engage 

participants in same/different judgments (cf. Procedure section), we paired 50 of these 

sequences with themselves (“same”) and the remaining 50 with another string from the 

set (“different”). We created five different pairings for presentation in each of the 5 days 

of exposure, using the same 50/50 proportion. For the test phase, we generated three 

additional classification sets, each with 60 novel grammatical (G) and 60 non-

grammatical (NG) sequence pairs that were matched for associative chunk strength 

(ACS). In sum, each classification set consisted of 30 sequences of each sequence type: 

high ACS grammatical (HG), low ACS grammatical (LG), high ACS non-grammatical (HNG), 

and low ACS non-grammatical (LNG). HG sequences were paired with HNG, and LG with 

LNG, such that each pair differed in one letter, named the target letter (legal in G vs. 

violating in NG). The target letter appeared in random, nonterminal positions. 

 

PROCEDURE 

Participants were exposed to implicit acquisition sessions over 5 days (see Table 

2.1). The sessions were constructed as short-term memory tasks of visually presented 

grammatical sequences. Each sequence from the 100-sequence set was presented 

during 4 s on a computer screen, followed by a fixation cross for 1 s. After the cross, 

either the same or a different sequence was presented for 4s. The participant responded 

whether the sequences were either the same or different, in a self-paced manner and 

without performance feedback. Each session lasted approximately 30 min. In the test 

sessions, participants performed a forced-choice classification task. On the first day, 
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before the first acquisition session, participants classified 120 sequences according to 

whether they liked it or not, based on their immediate intuitive impression, or “gut 

feeling” (i.e., baseline preference classification). They did the same with novel sequences 

on the fifth day, after the last acquisition session (i.e., final preference classification). 

Then we informed participants about the existence of an underlying complex set of rules 

generating the acquisition sequences, and they performed the third and last 

classification session. They classified sequences in the new set as grammatical or not 

(grammaticality classification) on the basis of their immediate intuitive impression (“gut 

feeling”). The three classification sets were disjoint (no overlap) and balanced across 

participants. Each sequence was presented for four seconds, after which the participant 

responded with a button press. At the end of the experimental procedure, participants 

filled in a questionnaire to assess potential explicit knowledge of the grammar. They 

were asked whether they had noticed any regularity in the stimuli. They were also asked 

about any technique they might have used for classification, including any combination 

of letters and/or the location or pattern of letters within the sequences. Finally, they 

were invited to generate 10 grammatical sequences. 

 

EYE –TRACKING DATA RECORDING AND PREPROCESSING 

Eye movements from test sessions were recorded with an EyeLink 1000 eye-

tracking system (http://sr-research.com). Sequences were presented centrally on the 

computer screen, and they were preceded by fixation crosses aligned with the first (left-

most) letter. The monitor, 55.8 cm wide, was placed 70 cm away from the participant. 

At this distance, each letter (font size 36) encompassed approximately 1° of the 

horizontal visual angle. Before each classification session, a five-point calibration 

procedure was implemented, and calibration was repeated after tracking errors larger 

than 0.5°. Participants placed their head on a chin rest. They were asked to stand still, 

relax, and blink as little as possible during sequence presentation. The raw signal was 

inspected, such that participants with high levels of artifacts (blinks and signal loss) were 

excluded from the analysis (n = 3). The analysis was based on the number and duration 

of events (fixations and saccades). Each letter sequence and target letter was 

surrounded by rectangular areas of interest, such that four target-letter-related eye-



27 
 

movement features would be computed: the dwell-time proportion (fixation and 

saccade times on the letter, relative to dwell time on the whole sequence), the 

proportion of fixations (number of fixations on letter relative to those on sequence), the 

(absolute) duration of the first-fixation, and the ratio between dwell time on the target 

letter and the first-fixation on it (dwell/first-fixation). The first two features provide an 

overall picture of the processing of the target letter. First-fixation duration indicates the 

first-pass response to the violation, whereas the ratio between dwell and first-fixation 

signals the amount of second-pass responses in relation to first-fixation duration, which 

may vary across participants/trials and thus becomes normalized. We preferred this 

relative measure of second-pass over an absolute one because it seemed to better 

capture how much the participant needed to expand her/his first (variable) contact with 

the target. Data were inspected for outliers (±3 SD > M), and outlier trials were removed 

from the analysis. Null values for first-fixation duration and dwell-to-first-fixation ratio 

were classified as missing values (no fixation on the critical letter). The data points that 

entered the analysis (out of 7200 potential data points—30 participants x 120 items x 2 

tests) are quantified in Tables 2.2 and 2.3. 

 

STATISTICAL ANALYSIS 

Behavioral and eye-tracking data were analyzed with linear mixed-effects models 

as implemented in the lme4 package (Bates, 2010; Bates, Maechler, Bolker, & Walker, 

2014) for R (http://www.R-project.org/). We focused on changes in the effects of 

grammatical status (gram, G vs. NG) and/or ACS (high vs. low) across tests. We compared 

baseline preference with final preference to check for learning (increased discrimination 

between G and NG), and then we compared the two active tests (final preference and 

grammaticality). The primary interaction of interest was Test x Gram, defining grammar-

based learning. Conversely, Test x ACS tested for learning based on the knowledge of 

surface features. The Test x Gram x ACS interaction defined the extent to which 

grammaticality or ACS effects depended on each other. 

The full model had test (baseline preference vs. final preference or final 

preference vs. grammaticality), grammatical status (gram, G vs. NG), and ACS (high vs. 
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Low) as fixed factors, together with random intercepts for participants. The model was 

fitted using the ML criterion so as to allow significance testing, which was achieved by 

comparing the full model with models without the interactions whose significance was 

being tested. Namely, we first tested the Test x Gram x ACS interaction by comparing 

the full model with a second one (Model 2, without the third-order interaction), testing 

for (Test x Gram) + (Test x ACS). Then we tested Test x Gram and Test x ACS by 

respectively comparing Model 2 with Model 3a (without Test x Gram), defined by (Test 

x ACS) + Gram, and Model 2 with Model 3b (without Test x ACS), defined by (Test x Gram) 

+ ACS. Additionally, and given the large sample size, absolute t values larger than 2 were 

taken as indicators that the fixed-effects parameters were significant at the 5% level 

(Baayen, Davidson, & Bates, 2008). When significant, Test x Gram x ACS interactions 

were broken down (Test x Gram in high ACS vs. low ACS). For significant Test x Gram 

interactions, we ran post hoc tests of grammatical status effects on pre-exposure and 

post-exposure tests separately. Ideally, there should be no pre-exposure grammatical 

effects (no grammar knowledge), but these do not contradict learning evidence as long 

as significant Test x Gram interactions exist, and this is why a proper-learning design is 

important. Concerning post-exposure grammatical effects, these should be observed as 

evidence that effective sensitivity to grammatical status resulted from exposure. 

We used a similar approach to analyze behavioral data. Here, the dependent 

variable was the participant’s endorsement rate, defining the proportion of items that 

were classified as grammatical (endorsed G items are correct responses, whereas 

endorsed NG items are incorrect). We complemented the analysis of behavioral data 

with estimates of accuracy and d’ against chance levels by means of one-sample t tests. 

Post-experimental data (questionnaires) were analyzed for indices of structural 

explicit knowledge: Verbal reports concerning awareness of rules were checked for 

consistency with the grammar (full consistence would indicate awareness), and the 

accuracy in generating grammatical sequences was computed (proportion of valid 

sequences, among the 10 sequences requested). Valid (grammatical) sequences were 

then analyzed one-by-one, so as to exclude generated sequences that had been 

presented during the acquisition or classification tasks. Our assumption was that the 

generation (recall) of sequences that were previously seen by participants is not a valid 
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expression of structural knowledge because it may simply reflect participants’ memory 

for concrete exemplars (see, e.g., Pothos, 2007). Memory for concrete exemplars is 

highly unlikely to account for eye-tracking sensitivity effects (response to violation 

letters) and is thus irrelevant for understanding our results. After excluding non-novel 

sequences, we were left with generator participants (those generating novel 

grammatical sequences) and nongenerators (generated none). Generators may be 

considered potential explicit learners but it may also not be the case: a small number of 

novel grammatical sequences may result from chunk memory (i.e., memory of frequent 

fragments, which may be concatenated as legal sequences by chance; see Pothos, 2007), 

and chunk memory is also irrelevant for understanding ocular responses to a violating 

letter. Still, we wanted to grant that the whole group’s pattern of results did not reflect 

the influence of generators (potential explicit learners). To that end, we did a control 

analysis in which we considered the behavioral and eye-tracking data of nongenerators 

(strict implicit learners) separately. If nongenerators replicated the pattern of the whole 

group and survive the exclusion of potential explicit learners, this would be evidence 

that our pattern of findings reflects implicitly acquired knowledge. 

 

RESULTS 

BEHAVIORAL RESULTS 

Accuracy was at chance levels in baseline preference (M = 49%), t(29) = -0.539, p 

> .59, and above chance levels after exposure (final preference: M = 59%, t[29] = 4.32, p 

< .001; grammaticality: M = 63%, t[29] = 4.85, p < .001). Discrimination between G and 

NG sequences (difference between endorsement rates) increased after exposure (see 

Figure 2.2), as shown by a significant Test x Gram interaction for baseline preference 

against final preference (see Table 2.2). The non-significant Test x Gram x ACS 

interaction indicated that increased discrimination did not depend on ACS. The Test x 

ACS interaction was non-significant, ruling out ACS-based learning. Comparisons 

between final preference and grammaticality classification showed increased 

discrimination in the latter (see Table 2.3), and again there were no significant effects 

involving ACS. In line with this, d’ did not differ significantly from zero in baseline 
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preference (M = -0.045), t(29) = -0.56, p > .57, but it did so in final preference (M = 

0.544), t[29] = 3.99, p < .001, and grammaticality (M = 0.878), t(29) = 4.75, p < .001. In 

summary, the results showed that the exposure to grammatical examples induced the 

acquisition of knowledge based on grammatical status and not on ACS, entirely 

consistent with previous findings (Folia et al., 2008; Folia & Petersson, 2014; Forkstam 

et al., 2008; Silva et al., 2016; Uddén et al., 2008). 

Post-experimental verbal reports showed no evidence of explicit learning or 

awareness of the underlying grammar. Some participants reported decision criteria 

other than gut-feeling (e.g., terminal letters), but these were never fully consistent with 

the grammar. In the sequence generation task, some participants generated valid 

(grammatical) sequences. However, only a few of these were novel relative to the 

acquisition and classification sets, suggesting that most sequences were memorized 

exemplars. Novel sequences were generated by 13 participants (17 generated none), 

and the mean accuracy level for the whole group was 7%. A closer inspection showed 

that the structure of the successfully generated novel sequences (as well as that of 

unsuccessfully generated ones) was based on the concatenation of frequent chunks 

(e.g., MS + VRX), indicating that the generation of novel sequences was based on 

memory for chunks rather than structural knowledge. Altogether, these facts strongly 

FIGURE 2.2. Mean endorsement rates (classification as grammatical) in Experiment 1 as a function of 

test, grammatical status (G = grammatical; NG = non-grammatical) and associative chunk strength 

(ACS). Error bars indicate the standard error of the mean. 
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suggest that structural explicit knowledge did not take place. Nevertheless, we analyzed 

the behavioral accuracy levels for the nongenerators (17 participants with successful 

generation = 0) separately, so as to make sure that the global indices of knowledge were 

not expressing the performance of generators (generation > 0), who might be 

considered potential explicit learners under utmost skepticism. In line with our 

expectations, the accuracy of nongenerators (strict implicit learners) was at chance 

levels in baseline preference (M = 51%), t(16) = .298, p > .76, and above chance levels 

after exposure (final preference: M = 59%, t[16] = 4.07, p = .001; grammaticality: M = 

62%, t[16] = 3.94, p = .001). Therefore, the grammar-based learning pattern observed in 

the whole group did not result from the influence of potential explicit learners. We 

repeated this control analysis for eye-tracking data, as shown subsequently. 

Table 2.2 

Experiment 1: Comparison between Baseline Preference and Final Preference 

 Behavioral 

(endorsement rates) 

Eye-tracking 

Effect First-fixation duration Dwell time (proportion) Fixation (proportion) Dwell/first-fixation 

Fixed effect      

      Test x Gram x ACS 𝑋2(2) = 1.63, 𝑝 =  .44 𝑋2(2) = 1.17, 𝑝 =  .56 𝑋2(2) = 7.46, 𝑝 <  .05 𝑋2(2) = 14.0, 𝑝 <  .001 𝑋2(2) = 0.48, 𝑝 =  .78 

      Test x Gram 𝑋2(1) = 33.4, 𝑝 <  .001 𝑋2(1) = 1.18, 𝑝 =  .28 𝑋2(1) = 18.7, 𝑝 <  .001 𝑋2(1) = 19.1, 𝑝 <  .001 𝑋2(1) = 15.8, 𝑝 <  .001 

      Test x ACS 𝑋2(1) = 0.58, 𝑝 =  .44 𝑋2(1) = 0.03, 𝑝 =  .87 𝑋2(1) = 0.14, 𝑝 =  .70 𝑋2(1) = 0.14, 𝑝 =  .71 𝑋2(1) = 1.89, 𝑝 =  .17 
 

     

Random effect Var (SD) Var (SD) Var (SD) Var (SD) Var (SD) 

      Participant (intercept) 77.2 (8.79) 651.8 (25.5) 0.0003 (0.0173) 0.0002 (0.0159) 0.0240 (0.1551) 

      Residual 326.6 (18.1) 12060 (109.8) 0.0044 (0.0662) 0.0056 (0.07514) 1.0529 (1.0261) 

      Number of observations 480 4188 6095 6240 4246 

Note. N = 30. Test = Baseline Preference vs. Final Preference; Gram = Grammatical status (grammatical vs. non-grammatical); ACS = Associative Chunk Strength (high vs. low); 

Var = variance. 

 

EYE-TRACKING RESULTS 

The comparison between baseline preference and final preference showed 

increased post-exposure discrimination (significant Test x Gram interactions; see Figure 

2.3 and Table 2.2) in all eye-tracking measures but first-fixation duration. Consistent 

with this, post hoc comparisons revealed significant differences between G and NG 

sequences in final preference for dwell time, 𝑋2(1) = 77.8, p < .001, fixations, 𝑋2(1) = 

72.1, p < .001, and dwell/first-fixation, 𝑋2(1) = 51.1, p < .001, but not for first-fixation 

duration (p > .14). At baseline preference, there were grammatical effects on dwell, 
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𝑋2(1) = 10.8, p < .001, and fixations, 𝑋2(1) = 7.33, p < .01, but not on dwell/first-fixation 

(p > .18) or first-fixation (p > .91). Comparisons between final preference and 

grammaticality (see Table 2.3) showed no changes. In both comparisons (baseline 

preference vs. final preference, final preference vs. grammaticality), there were 

significant Test x Gram x ACS interactions, but they were merely quantitative and did 

not affect the learning pattern. From baseline preference to final preference, 

discrimination increased for both High ACS (dwell: 𝑋2[1] = 16.7, p < .001; fixations: 𝑋2[1] 

= 14.9, p < .001) and Low ACS sequences (dwell: 𝑋2[1] = 5.06 p < .05; fixations: 𝑋2[1] = 

6.43, p < .05), and from final preference to grammaticality it remained constant in both 

FIGURE 2.3. Mean eye-tracking measures for the target letter in Experiment 1 as a function of test, 

grammatical status (G = grammatical; NG = non-grammatical) and associative chunk strength (ACS). 

Error bars indicate the standard error of the mean. 
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ACS levels (High ACS: dwell: 𝑋2[1] = 0.84, p = .36; fixations: 𝑋2[1] = 0.16, p = .69; Low 

ACS: dwell: 𝑋2[1] = 0.12, p = .73; fixations: 𝑋2[1] = 0.42, p = .51). There was no evidence 

of ACS-based change (Test x ACS) in eye movements. 

Table 2.3 

Experiment 1: Comparison between Final Preference and Grammaticality Classification 

 Behavioral 

(endorsement rates) 

Eye-tracking 

Effect First-fixation duration Dwell time (proportion) Fixation (proportion) Dwell/first-fixation 

Fixed effect      

      Test x Gram x ACS 𝑋2(2) = 1.26, 𝑝 =  .53 𝑋2(2) = 1.17, 𝑝 =  .56 𝑋2(2) = 7.46, 𝑝 <  .05 𝑋2(2) = 12.6, 𝑝 <  .01 𝑋2(2) = 0.48, 𝑝 =  .78 

      Test x Gram 𝑋2(1) = 4.45, 𝑝 <  .05 𝑋2(1) = 1.20, 𝑝 =  .27 𝑋2(1) = 0.13, 𝑝 =  .72 𝑋2(1) = 0.06, 𝑝 =  .81 𝑋2(1) = 2.78, 𝑝 =  .10 

      Test x ACS 𝑋2(1) = 2.32, 𝑝 =  .13 𝑋2(1) = 0.58, 𝑝 =  .45 𝑋2(1) = 0.14, 𝑝 =  .70 𝑋2(1) = 1.11, 𝑝 =  .29 𝑋2(1) = 3.80, 𝑝 =  .05 

Random effect Var (SD) Var (SD) Var (SD) Var (SD) Var (SD) 

      Participant (intercept) 70.2 (8.38) 580.7 (24.1) 0.0003 (0.0183) 0.0003 (0.0172) 0.0278 (0.1666) 

      Residual 428.6 (20.7) 12023 (110) 0.0048 (0.0649) 0.0059 (0.0769) 1.1184 (1.057) 

      Number of observations 480 4425 6098 6264 4246 

Note. N = 30. Test = Final Preference vs. Grammaticality Classification; Gram = Grammatical status (grammatical vs. non-grammatical); ACS = Associative Chunk Strength (high 

vs. low); Var = variance. 

 

The ocular patterns of nongenerators (participants generating no valid 

sequences, n = 17) were similar to those of the whole group (see Figure 2.4). In the 

comparison between baseline preference and final preference, there were significant 

Test x Gram interactions for dwell time, 𝑋2 (1) = 4.37, p = .036, number of fixations, 

𝑋2(1) = 4.92, p = .026, a marginal interaction for dwell/first fixation, 𝑋2(1) = 2.81, p = 

.093, and no interaction for first fixation duration, 𝑋2(1) = 1.73, p = .18. Interactions 

among test, grammaticality, and ACS were non-significant (all ps > .13), and so were Test 

x ACS interactions (all ps > .30). Comparisons between final preference and 

grammaticality classification showed non-significant effects. 

 

DISCUSSION 

With the exception of first-fixation duration, all eye-tracking measures paralleled 

behavioral findings and showed increased discrimination between grammatical and 

non-grammatical sequences after exposure. Thus, eye-tracking measures showed 

sensitivity effects in our active forced-choice test. First-fixation duration did not show 

any significant sensitivity effects, an issue we return to in the General Discussion. Unlike 

behavioral measures, eye movements revealed no differences between preference and  
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grammaticality classification, suggesting that previous evidence of quantitative 

differences in the sensitivity of both tests (e.g., Folia et al., 2008) may reflect decision-

related processes (see General Discussion). Neither behavioral nor eye-tracking results 

indicated learning based on surface features (ACS). The observed pattern of eye-tracking 

results remained after the exclusion of potential explicit learners. In summary, this 

experiment showed that eye movements capture the outcomes of implicit AGL when 

participants are engaged in an active, forced choice task. In Experiment 2, we test 

whether this is or is not the case during passive testing, where no instruction is provided. 

FIGURE 2.4. Mean eye-tracking measures for the target letter in Experiment 1 as a function of test, 

grammatical status (G = grammatical; NG = non-grammatical) and performance in the sequence 

generation task (between-subjects factor: nongenerators [generation = 0, n = 17] vs. generators 

[generation = 0, n = 13]). Error bars indicate the standard error of the mean. 
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EXPERIMENT 2: EYE MOVEMENT IN PASSIVE TESTS 

As in Experiment 1, we approached AGL with a proper-learning paradigm using 

passive tests (see Table 2.1). A group of participants different from that of Experiment 1 

was exposed to the artificial grammar, and eye movements were recorded before and 

after exposure, under no instruction other than to look at the sequences. To reach a 

within-subjects comparison of test effects (passive vs. active), we added an active test 

upon completion of the experiment (see Table 2.1). If discriminative eye movements are 

facilitated by active tests, ocular discrimination should be less apparent in the present 

experiment compared with the previous one, and the introduction of an active test in 

the present experiment should boost discrimination. 

 

METHOD 

PARTICIPANTS 

Twenty-nine participants took part in the experiment, and 1 was excluded for 

excess of artifacts. The remaining 28 (M age ± SD = 25 ± 8; 23 female) complied with the 

selection criteria of Experiment 1. 

 

STIMULUS MATERIALS 

The grammar from Experiment 1 was used to generate one acquisition set (64 

items) and seven test sets (16 x 4 = 64 items each). The structure of the stimulus material 

was identical to Experiment 1. 

 

PROCEDURE 

Participants were exposed to five acquisition sessions (see Table 2.1), on five 

different days. Sessions were approximately 20 min long. As in Experiment 1, they did 

same/different judgments on paired sequences (32 same/32 different, five different 

pairings across the five sessions). Before the first session, they underwent a passive 

baseline test, where eye-tracking measures were collected in response to 32 G and 32 
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NG sequences (16 high and 16 low ACS in each group). At the end of each acquisition 

session, a passive test was run (Passive Tests 1 through 5). In all passive tests, 

participants were instructed to look at the sequences. On Day 5, the passive test was 

followed by a grammaticality classification (active) test similar to Experiment 1. 

 

EYE-TRACKING DATA RECORDING AND PREPROCESSING 

Data recording and preprocessing followed the steps described for Experiment 

1. Artifact inspection led to the exclusion of 1 participant. The data points that entered 

the analyses (out of 10752 potential data points—28 participants x 64 items x 6 tests, 

for the first comparison; out of 3584 data points—28 participants x 64 items x 2 tests, 

for the other comparison) are quantified in Table 2.4 and Table 2.5, respectively. 

 

STATISTICAL ANALYSIS 

The analysis was similar to that in Experiment 1. We focused on two different 

comparisons: across all passive tests (six levels for test factor), and between the last 

passive test and the active grammaticality test (two levels). In this experiment, 

behavioral data could not be analyzed with a proper learning approach because no 

active baseline was included. Therefore, we analyzed endorsement rates, accuracy and 

d’ in the (single) active test of this experiment. 

 

RESULTS 

BEHAVIORAL RESULTS  

Accuracy was significantly above chance levels (M = 65%), t(27) = 4.99, p < .001. 

Participants discriminated between grammatical and non-grammatical sequences in 

grammaticality classification (see Figure 2.5; gram: 𝑋2[2] = 48.1, p < .001), and this was 

independent from ACS (Gram x ACS: 𝑋2[1] = 66.2, p = .18). The d’ was significantly 

different from zero (M = 0.90), t(29) = 4.92, p < .001. 
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Post-experimental data paralleled that of Experiment 1. Participants showed no 

evidence of explicit knowledge of the artificial grammar in their verbal reports, although 

some participants generated valid sequences. As in Experiment 1, only a few sequences 

were novel (M = 7% novel, correct sequences provided by 11 participants), and these 

were made up of frequent chunks. The accuracy level of nongenerators (n = 17) in the 

grammaticality classification task was above chance (M = 59%), t(16) = 2.52, p = .023. As 

in Experiment 1, we analyzed separately the ocular patterns of these 17 nongenerators 

for control (see subsequent text). 

 

EYE-TRACKING RESULTS 

Discrimination based on grammatical status increased across passive tests 

(baseline plus five subsequent tests) for the proportion of dwell time and dwell-to-first-

fixation ratio (see Figure 2.6 and Table 2.4). There were also marginal changes for the 

proportion of fixations. Nevertheless, individual comparisons between baseline and 

each subsequent test indicated significant differences in only one case, namely for dwell 

time on Day 4 against baseline (b = 0.0105, SE = 0.00519, t = 2.02). 

FIGURE 2.5. Mean endorsement rates (classification as grammatical) in Experiment 2 as a function of 

test, grammatical status (G = grammatical; NG = non-grammatical) and associative chunk strength 

(ACS). Error bars indicate the standard error of the mean. 
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Table 2.4 

Experiment 2: Comparison across Passive Tests (Passive Baseline and Passive Tests 1 Through 5) 

Effect First-fixation duration Fixation (proportion) Dwell time (proportion) Dwell/first-fixation 

Fixed effect     

      Test x Gram x ACS 𝑋2(6) = 2.41, 𝑝 =  .88 𝑋2(6) = 3.73, 𝑝 =  .71 𝑋2(6) = 4.05, 𝑝 =  .67 𝑋2(6) = 3.53, 𝑝 =  .74 

      Test x Gram 𝑋2(5) = 5.72, 𝑝 =  .33 𝑋2(5) = 9.35, 𝑝 =  .10 𝑋2(5) = 14.1, 𝑝 <  .05 𝑋2(5) = 11.2, 𝑝 <  .05 

      Test x ACS 𝑋2(5) = 4.07, 𝑝 =  .54 𝑋2(5) = 5.89, 𝑝 =  .32 𝑋2(5) = 6.19, 𝑝 =  .29 𝑋2(5) = 3.24, 𝑝 =  .66 

Random effect Var (SD) Var (SD) Var (SD) Var (SD) 

      Participant (intercept) 1245 (35.3) 0.00016 (0.01246) 0.00012 (0.01082) 22020 (0.04849) 

      Residual 11597 (107.7) 0.00382 (0.06180) 0.00260 (0.05095) 1.45024 (1.20430) 

      Number of observations 7034 9032 8820 6869 

Note. N = 28. Test = Passive Baseline vs. Passive Tests 1 through 5; Gram = Grammatical status (grammatical vs. non-grammatical); ACS = 

Associative Chunk Strength (high vs. low); Var = variance. 

 

Nongenerators alone (participants generating zero valid sequences, n = 17) were 

not able to fully provide the pattern of Test x Gram interactions seen for the whole group 

(see Figure 2.7): The interaction was marginal for dwell time, 𝑋2(1) = 10.33, p = .066, 

and non-significant for fixations (p > .14) as well as dwell/first-fixation time (p > .46). For 

dwell time and number of fixations, this seemed to be due to loss of statistical power 

because the group of generators (participants generating valid sequences, n = 11) 

showed even fewer significant interactions (dwell: p > .50; fixations: p > .61). Thus, the 

ocular pattern of generators (potential explicit learners) does not seem to have been 

responsible for the results of the whole group. A different scenario showed up for 

dwell/first-fixation, where the Test x Gram interaction was significant for generators, 

𝑋2(1) = 13.38, p = .023, and non-significant for nongenerators (p > .46). Still, the 

interaction among test, grammaticality, and generation (generators vs. nongenerators) 

was non-significant, 𝑋2(1) = 6.38, p > .38. For nongenerators, the interaction among test, 

grammaticality, and ACS was never significant (all ps > .40), and so was the interaction 

between test and ACS (all ps > .09). 

Comparisons between Passive Test 5 and the active grammaticality test that was 

performed immediately after (see Table 2.5) revealed significant increases in 

discrimination for first-fixation duration and proportion of dwell time. There was a 

marginal increase for proportion of fixations. Consistent with the learning profile 

signaled by interactions, passive baseline did not show any grammaticality effects (ps > 

.31), Passive Tests 1 through 5 (collapsed) showed significant grammaticality effects on  
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dwell time, 𝑋2(1) = 24.9, p < .001, fixations, 𝑋2(1) = 34.9, p < .001, and dwell/first-

fixation, 𝑋2(1) = 24.8, p < .001, but not on first-fixation duration (p > .44), and the active 

grammaticality test showed significant grammaticality effects on all measures (first-

fixation: 𝑋2[1] = 14.4, p < .001; dwell: 𝑋2[1] = 24.4, p < .001; fixations: 𝑋2[1] = 21.2, p < 

.001; dwell/first-fixation: 𝑋2[1] = 7.82, p < .001). 

Nongenerators alone did not show the grammaticality-related changes of the 

whole group (dwell: p > .22; fixations: p > .16; first-fixation: p > .12), but generators alone 

did not show it either (dwell: p > .11; fixations: p > .33; first-fixation: p > .16). So, once 

FIGURE 2.6. Mean eye-tracking measures for the target letter in Experiment 2 as a function of test 

(Passive bl = passive baseline; Passive 1–5 = Passive Tests 1 through 5; Active gr = active grammaticality 

classification), grammatical status (G = grammatical; NG = non-grammatical) and associative chunk 

strength (ACS). Error bars indicate the standard error of the mean. 
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again, the global pattern of results was not due to the influence of generators. 

Nongenerators showed no Test x Gram x ACS interactions (p > .05), and they showed a 

significant Test x ACS interaction for first-fixation duration (p > .05). 

 

Table 2.5 

Experiment 2: Comparison between Passive Test 5 and Grammaticality Classification 

Effect First-fixation duration Fixation (proportion) Dwell time (proportion) Dwell/first-fixation 

Fixed effect     

      Test x Gram x ACS 𝑋2(2) = 0.59, 𝑝 =  .74 𝑋2(2) = 2.56, 𝑝 =  .28 𝑋2(2) = 4.86, 𝑝 =  .09 𝑋2(2) = 2.27, 𝑝 =  .32 

      Test x Gram 𝑋2(1) = 4.30, 𝑝 <  .50 𝑋2(1) = 2.81, 𝑝 =  .09 𝑋2(1) = 5.07, 𝑝 <  .05 𝑋2(1) = 0.77, 𝑝 =  .38 

      Test x ACS 𝑋2(1) = 5.45, 𝑝 <  .05 𝑋2(1) = 5.22, 𝑝 <  .05 𝑋2(1) = 1.87, 𝑝 =  .17 𝑋2(1) = 0.99, 𝑝 =  .32 

Random effect Var (SD) Var (SD) Var (SD) Var (SD) 

      Participant (intercept) 1502 (38.8) 0.00020 (0.01421) 0.00019 (0.01380) 0.03600 (0.18970) 

      Residual 11462 (107.1) 0.00443 (0.06657) 0.00344 (0.05864) 1.57400 (1.25440) 

      Number of observations 2368 3020 2892 2329 

Note. N = 28. Test = Passive Test 5 vs. Grammaticality; Gram = Grammatical status (grammatical vs. non-grammatical); ACS = Associative Chunk 

Strength (high vs. low); Var = variance. 

 

DISCUSSION 

As predicted, the absence of an active test weakened ocular discrimination. 

Compared with Experiment 1 (eye-tracking coupled with an active task), the Test x 

Grammatical status interactions— which once again excluded first-pass measures—

were less significant for the passive tests in Experiment 2. For proportion of fixations, 

the effect went from significant to marginally significant. Critically, introducing an active 

test immediately after the last passive test boosted ocular discrimination in three of the 

four measures (first-fixation duration, proportion of dwell time, and proportion of 

fixations). Therefore, an active test seems to facilitate the ocular expression of artificial 

grammar learning. Similar to Experiment 1, the eye-tracking pattern observed in the 

whole group did not result from the influence of potential explicit learners, with a 

possible exception from dwell/first-fixation. We return to this issue in the General 

Discussion. 
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GENERAL DISCUSSION 

In this study, we wanted to determine whether eye-tracking captures the 

implicitly acquired knowledge of an artificial grammar and shed light on some 

restrictions to this possibility. Our first goal was to test the hypothesis that an eye-

tracking AGL test shows more robust discrimination between grammatical and non-

grammatical sequences when it is coupled to an active test than when this is not the 

FIGURE 2.7. Mean eye-tracking measures for the target letter in Experiment 2 as a function of test, 

grammatical status (G = grammatical; NG = non-grammatical), and performance in the sequence 

generation task (between-subjects factor: nongenerators [generation = 0, n = 17] vs. generators 

[generation = 0, n = 11]). Error bars indicate the standard error of the mean. 
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case. In line with our hypothesis, eye movements were significantly sensitive to the 

outcomes of implicit AGL during both the active final preference classification 

(Experiment 1) and the active grammaticality classification (Experiments 1 and 2), but 

less during passive tests, when no instructions were provided other than looking at the 

sequences (Experiment 2). In addition, eye movements reflected the knowledge of 

participants who showed no awareness of the grammar by all standards (verbal reports, 

sequence generation, performance in preference, implicit tests). Thus, we showed that 

eye-tracking measures alone are able to capture the outcomes of implicit artificial 

grammar learning and that the sensitivity of eye-tracking measures to implicit 

knowledge is boosted in the presence of an active forced-choice task. 

The most important contribution of our study was to show that implicitly 

acquired AG knowledge may be captured with eye-tracking. Capturing implicit AGL 

outcomes in humans with eye-tracking measures has failed in previous studies. Wilson 

and colleagues (2015) found null results when using an auditory paradigm probing 

ocular responses to the whole sequence, and it was suggested that eye-tracking-only, 

passive tests are unable to capture AG knowledge in humans. In line with this, Heaver 

(2012) probed pupillary responses to visual (whole) AG sequences and also found null 

results. In both studies, behavioral discrimination was observed after exposure, 

suggesting that knowledge had been acquired but it was not being properly captured by 

eye-tracking measures. Drawing on sensitivity effects, which rely on responses to the 

violating event rather than the whole sequence, we captured eye-tracking signatures of 

implicitly acquired AG knowledge. 

The sensitivity of eye-tracking measures to implicit artificial grammar learning 

occurred in the expected direction, that is, as post-exposure increases in proportion of 

dwell time, proportion of fixations and dwell-to-first fixation ratio for non-grammatical 

target letters. The presence of sensitivity effects in AGL tests, paralleling the ones 

observed in tests of natural syntax knowledge, is consistent with the idea that the 

outcome of AGL is structural, syntax-like knowledge (Christiansen et al., 2012, 2010; 

Conway et al., 2007; Lelekov-Boissard & Dominey, 2002; Silva et al., 2016; Tabullo et al., 

2013; Zimmerer et al., 2014). 
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Eye-tracking measures were not sensitive to the learning of subsequences (ACS). 

ACS effects on eye movements were not expected from the behavioral results of 

Experiment 1 because these showed no ACS-based learning (no Test x ACS interactions), 

in line with previous studies of ours (Folia et al., 2008; Folia & Petersson, 2014; Forkstam 

et al., 2008; Silva et al., 2016; Uddén et al., 2012). However, even if behavioral ACS 

effects on endorsement rates had been observed, it is unclear whether ocular effects on 

a single violating letter would also be observed. The ACS of a letter sequence presented 

at the final test phase quantifies how often the bigrams and trigrams of that sequence 

appeared at the exposure phase, and thus it concerns units larger than one single letter. 

Therefore, there might be a lack of sensitivity in this respect. Nevertheless, this lack of 

local subsequence familiarity (ACS) effect is consistent with previous and current 

behavioral results. 

Our second goal was to determine specific eye-tracking signatures of implicitly 

acquired knowledge. Previous literature has suggested that implicit knowledge on 

structured sequences, including natural syntax, is better expressed in first-pass eye-

tracking measures compared with second-pass measures. Going against this 

expectation, whole-trial measures (dwell time and number of fixations) revealed AG 

knowledge in both the active and passive conditions (Experiment 1 and 2) of our study, 

whereas first-pass measures (first-fixation duration) did not. Critically, we ruled out the 

possibility that this eye-tracking pattern resulted from explicit learning. Concerning 

dwell/first-fixation (second-pass measure), we saw sensitivity to acquired knowledge, 

but our results were not clear as to whether it reflected knowledge that may be 

considered implicit beyond any doubt: In Experiment 2, unsuccessful generators (strict 

implicit learners) did not show learning effects on dwell/first fixation, whereas 

successful generators (potential explicit learners) did so. Moreover, in Experiment 1, the 

significant interaction for the whole group became marginal after the exclusion of 

potential explicit learners. Therefore, for second-pass measures (dwell/first-fixation), 

two different scenarios seem possible: Either our potential explicit learners were 

effectively explicit and dwell/first-fixation reflects mostly explicit knowledge as 

suggested in the literature, or these learners were actually implicit and second-pass 

measures may express implicitly acquired knowledge. As we stressed throughout this 
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article, the first scenario is unlikely: Potential explicit learners performed above chance 

levels in the preference classification test (an implicit behavioral test), they did not show 

awareness of the grammar in their verbal reports, they generated only a small amount 

of novel grammatical sequences, and these novel sequences could be explained by 

memory for chunks rather than structural knowledge. Therefore, the most likely 

scenario is that all participants— even those who generated new strings—acquired 

implicit knowledge, that dwell/first-fixation patterns reflect implicit knowledge, and 

some reason other than explicit learning made successful generators more responsive 

in terms of second-pass eye signatures. In this view, the assumption of a strong 

association between implicit knowledge and first-pass reading (Godfroid et al., 2015) 

may be premature, either because second-pass reading is not always a reflection of 

controlled (vs. automatic) processing or because cognitive control is not incompatible 

with access to implicitly acquired knowledge (Schott et al., 2005). 

Finally, concerning the reasons why an active test boosts ocular discrimination, 

these remain unspecified. One could think that repeated testing throughout the learning 

phase (alternate learn-test design, Experiment 2) would introduce noise by forcing 

participants to process a repeated proportion of non-grammatical sequences, thus 

leading to weaker learning outcomes. Alternate designs have been shown to elicit 

weaker learning results when compared with continuous learning designs (Citron, 

Oberecker, Friederici, & Mueller, 2011) as the one we used in Experiment 1 (but see 

Forkstam et al., 2006). However, the behavioral and the eye-tracking results of the active 

test (immediately following passive tests in Experiment 2) provided evidence that 

knowledge was being concealed - rather than impeded - by passive tests. Earlier in this 

article, we raised two possible explanations for why passive tests may conceal acquired 

knowledge: either passive, eye-tracking-only tests are generally unable to provide 

optimal levels of attention because there is no goal other than looking at the sequences, 

or passive tests do not specifically elicit the syntactic (structure-related) analysis of AGL 

sequences needed for expressing knowledge. Further work on this issue should compare 

eye-tracking sensitivity to AGL classification instructions that activate syntactic analysis 

to different degrees (e.g., instructions focusing on the visual properties of letters may 

weaken syntactic analysis). 
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CONCLUSION 

Our results are novel in showing that eye-tracking measures alone are able to 

express the implicit knowledge resulting from learning an artificial grammar, even 

though adding an active, forced-choice test boosts ocular discrimination. The possibility 

of using instruction-free settings such as eye-tracking to measure the outcomes of 

implicit structured sequence learning opens new avenues in research. When using eye-

tracking concurrently with two different forced-choice active tests, preference and 

grammaticality classification, we also found highly similar eye-movement profiles. This 

overcomes behavioral differences observed so far and indicates that differences 

observed in behavioral testing may result from processes related to final decisions, 

namely participants’ self-monitoring of response direction. Finally, our findings suggest 

that whole-trial measures may be relevant, and even crucial, to capture the outcomes 

of implicit structured sequence learning. 
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CHAPTER THREE 

STUDY 2 - Statistical learning is related to implicit orthographic 

knowledge and reading proficiency 

 

 

ABSTRACT 

Several studies of reading suggest that statistical learning might contribute to the 

acquisition of literacy competences. In this study, we aimed to investigate if there is a 

relationship between statistical learning and three literacy measures. Eighty-five 

Portuguese adults performed a statistical learning task, two different implicit 

orthographic knowledge tasks (where the frequency of orthographic patterns was 

manipulated) and a reading fluency task. Results showed that participants chose the 

most frequent orthographic pattern, although without awareness of such trend. 

Nevertheless, the implicit orthographic knowledge tasks correlated differently with the 

statistical learning task: while a significant correlation with an implicit orthographic 

knowledge decision task was observed, the same result was not observed in a 

pseudoword dictation task. Reading performance was also significantly correlated with 

statistical learning, suggesting a contribution of implicit learning to reading proficiency 

in an orthography more transparent than English. Furthermore, statistical learning 

seems to boost the impact of exposure to print on reading fluency. These results suggest 

a role of implicit learning capacity in the extraction the written language regularities and 

in the improvement of literacy skills. 

 

 

 

  



47 
 

INTRODUCTION 

It has been proposed that proficiency in reading and writing depends on implicit 

processes beyond the conscious effort to learn (Arciuli, 2018; Ehri, 2005; Seidenberg, 

2014; Treiman, 2018). However, the relationship between implicit processes and 

reading and writing skills is not yet fully characterized. In the present study, we explore 

this relationship in an effort to better understand if an ability to extract environmental 

regularities is related to reading proficiency and to the implicit knowledge of 

orthographic patterns. 

Statistical learning refers to the capacity to acquire aspects of probabilistic 

spatio-temporal associations present in a wide range of input stimuli and occurs without 

awareness or intention to learn (Pierre Perruchet & Pacton, 2006). From an early age, 

and before formal instruction begins, children can implicitly pick up visual patterns in 

written text they are exposed to, including the arrangement and sequencing of elements 

(Pacton, Fayol, & Perruchet, 2005a; Treiman, Gordon, Boada, Peterson, & Pennington, 

2014; Treiman, Kessler, Boland, Clocksin, & Chen, 2017; Tucker, Castles, Laroche, & 

Deacon, 2016). Thus, part of learning to read and write could involve abstracting 

structure and regularities from text exposure and contribute to the development of 

reading and writing proficiently (Steffler, 2001). According to this perspective, during 

reading and writing acquisition children implicitly extract a variety of information from 

text exposure that can be described as rules (e.g. in Portuguese, consonants cannot be 

doubled in the beginning of a word), letter specific properties (e.g. the s can be doubled 

in the middle of a word, but the h cannot) and probabilistic properties (e.g. the sound 

[ʃ]1 after the diphthong [a:ɪ] is more commonly spelled with a <x> than with <ch>) 

(Deacon, Conrad, & Pacton, 2008; Sébastien Pacton, Borchardt, Treiman, Lété, & Fayol, 

2014; Pacton et al., 2005). 

 

 

 

                                                           
1 We used the International Phonetic Association notational standard for the phonetic representation 
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STATISTICAL LEARNING AND IMPLICIT ORTHOGRAPHIC KNOWLEDGE 

Orthographic knowledge refers to the representation of spoken language in 

written form, stored in memory (Apel, 2011) and has an impact on reading and writing 

proficiency (Ehri, 2005). The grapheme-phoneme correspondences are typically 

acquired through explicit instruction, but aspects can also be picked up implicitly 

through exposure to written language (Ehri, 2005). In fact, although many phonological, 

orthographic and morphological rules that enable us to write correctly are taught 

explicitly during literacy acquisition, the number and complexity of the combinations 

that the written language presents and that are required to become a proficient speller 

are very large and thus statistical learning may play a role in acquisition (Steffler, 2001). 

It has been suggested that exposure to written text is critical to reading efficiency 

(Protopapas et al., 2017) and to spelling competence (Pacton et al., 2014). Recently, 

Protopapas and collaborators (2017) explored the role of incidental exposure to print, 

without requiring explicit reading, in orthographic learning. The authors found that 

reading and spelling performance for targeted words were substantially enhanced after 

increased exposure to training items. Furthermore, this knowledge was also generalized 

to words with similar properties (same derivational affixes) and were long lasting 

(observed after a week), demonstrating that exposure to print per se improve reading 

and spelling skills (Protopapas et al., 2017). 

However, orthographic knowledge refers not only to word-level orthographic 

representations but also to orthographic pattern knowledge, that is, specific letter 

combinations and constraints within words (Apel, 2011). According to several studies 

(Deacon et al., 2008; Pacton et al., 2014, 2005; Treiman & Wolter, 2018) knowledge of 

these patterns might be acquired by exposure to text. The use of a certain spelling 

arrangement among several possibilities for the same phoneme has been associated 

with the frequency that it occurs or with the frequency with which letters co-occur. 

Furthermore, the impact of statistically learned orthographic regularities could 

modulate the use morphological rules and explicitly acquired, taught rules (Deacon et 

al., 2008; Pacton et al., 2005). Several studies have shown that the context can influence 

people’s decisions about the spelling they choose to resolve an ambiguity (Pacton et al., 

2005; Treiman & Boland, 2017; Treiman & Wolter, 2018). According to Steffler (2004), 
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the decision to use of one spelling over another is frequently implicit, as we are not 

aware of the orthographic convention that underlies certain spelling structures. In the 

present study, we tested the implicit knowledge of these orthographic patterns 

incorporated in pseudowords in a forced-choice task and a spelling task. In these tasks, 

the phonemes selected can be correctly spelled in two different ways, but one is clearly 

more frequent than the other in the Portuguese lexicon (for example, the sound [a:ɪ ʃ] 

could be correctly spelled with either <x> or <ch>, but it is more frequent to find words 

spelled with <aix> than with <aich>). Although the frequency of these orthographic 

patterns is different, this difference is not explicitly taught. The frequent pattern must 

then be acquired implicitly by exposure and the infrequent use of the alternative spelling 

pattern could be achieved through word-specific memorization (Deacon et al., 2008). 

Therefore, if statistical learning plays a role in the acquisition of these patterns (Pacton, 

Perruchet, Fayol, & Cleeremans, 2001; Pacton et al., 2014; Treiman & Wolter, 2018), 

participants will tend to choose the more frequent pattern. In children, It has been 

shown that a correlation between the knowledge of the doubling rule in spelling and 

implicit learning capacity is significant, suggesting that the ability to abstract patterns is 

correlated with spelling ability (Steffler, 2004). Therefore, we expected that participants 

with a better statistical learning ability would show a higher sensitivity to these 

orthographic regularities, resulting in a better performance in both the forced-choice 

and pseudoword spelling task. 

 

STATISTICAL LEARNING AND READING PROFICIENCY 

Reading acquisition implies to learn and automatize the correspondences 

between letters and phonemes. Although these correspondences are mostly explicitly 

taught, not every correspondence is taught and the automatization of the mapping 

between graphemes and phonemes also rely on statistical learning through regular 

exposure to text (Stoodley & Stein, 2011a). As children progress in their reading abilities, 

they get more exposure to written language and consequently become sensitive to 

contextual cues such as the co-occurrence of letters (Ehri, 2005). There are several 

statistical regularities that are extracted and used without awareness. It has been 

showed that there are several probabilistic orthographic cues to lexical stress in word 
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beginnings and word endings that adult and children are sensitive to that are not taught 

(for a review see Arciuli, 2018). For example, children learning Portuguese acquire 

knowledge that words with the letter <o> in the stressed syllable, despite rarely being 

accentuated, should be read as [o] or [ɔ]; as far as we know, this is not explicitly brought 

to their attention during formal instruction.  

Furthermore, statistical learning has been associated with vocabulary growth 

(Evans, Saffran, & Robe-torres, 2009), vocabulary knowledge, oral language skills and 

phonological processing (Spencer, Kaschak, Jones, & Lonigan, 2015), which can boost 

reading performance (Arciuli & Simpson, 2012b). 

In the last decade, several studies have examined the link between implicit 

learning and reading in dyslexic adults and children (e.g. Kahta & Schiff, 2016; Laasonen 

et al., 2014). These studies suggest that poor implicit learning could hamper the 

establishment of adequate phonological processing as well as learning orthographic-

phonological representations. Therefore, dyslexics might present a combination of a 

phonological deficit with an impaired sequence learning system that manifested in a 

failure to abstract the probabilistic regularities present in the grapheme-phoneme 

correspondences leading to reading difficulties (Howard et al., 2006). However, there is 

no consensus that dyslexia is associated with an implicit learning deficit (see, for 

example, Inácio et al., 2018; Lum, Ullman, & Conti-Ramsden, 2013; van Witteloostuijn, 

Boersma, Wijnen, & Rispens, 2017) and therefore it is difficult to draw conclusions about 

the relationship between reading abilities and implicit learning capacities. In typical 

readers, it has been shown that a variability in statistical learning capacity is moderately 

related to reading performance, both in adults and children (Arciuli & Simpson, 2012b). 

However, Nigro, Jiménez-Fernández, Simpson, and Defior (2015) were not able to find a 

correlation between reading and implicit learning abilities and suggested that this 

association is present only in English, an opaque orthography. In transparent 

orthographies such as Spanish, the language used in the Nigro et al. (2015) study, this 

relationship might not be present. 

In the present study, we aimed to replicate the Arciuli and Simpson (2012) 

findings in a more transparent orthography (Seymour et al., 2003), by presenting to 

typical Portuguese readers the same statistical learning task as they used and a reading 
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task, to investigate whether the relationship between reading and implicit learning only 

emerges in opaque orthographies. 

Additionally, we explored the role of statistical learning skills on the relationship 

between exposure to print, reading and orthographical knowledge. Therefore, we 

designed a reading habits questionnaire, with several questions aiming to quantify 

present and past exposure to print. We predicted that exposure to text has an influence 

on reading skills and orthographical knowledge and that this influence is boosted by 

individual statistical learning skills. 

 

METHOD 

PARTICIPANTS 

Eighty-five undergraduate students (60 females; aged between 18 and 44; mean 

± SD = 21.6 ± 5.0 years; grade mean ± SD = 13.4 ± 2.2) participated in this study in return 

for course credits. All participants were native Portuguese speakers with normal or 

corrected-to-normal vision and none indicated a history of head injury or other 

neurological or psychiatric problems. Participants read and signed an informed consent 

form describing the procedures, which adhered to the guidelines set out by the 

Declaration of Helsinki. 

 

STIMULUS MATERIAL 

Statistical Learning task 

The statistical learning task used was a slightly modified version of Arciuli & 

Simpson's task (2011, 2012). This task comprises an exposure phase and a test phase. 

The stimuli used in both phases were eighteen drawings of “monsters” specifically 

designed so they do not resemble any known cartoon character and hence cannot be 

easily labelled. Six of these monsters were used as practice items and the remaining 

twelve were grouped in four base triplets (named ABC, DEF, GHI, JKL, see Appendix). 

In the exposure phase participants engage in a covert task where they were 
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exposed to a continuous stream of monsters, presented one at a time for 400 ms with 

an interstimulus interval of 200 ms. The base triplets were embedded in this sequence: 

the three monsters from a triplet were shown sequentially before a new triplet appears 

and so on, until the complete sequence was displayed; the order of the monsters within 

triplets was fixed (e.g., for triplet ABC, the monster A was always displayed before B, and 

B before C). Each base triplet appeared 24 times. The order of the triplets in the 

exposure stream was randomized with two constrains: neither consecutive repeated 

triplets (e.g. … ABCABC …) nor repeated sequences of two triplets (e.g. … ABCDEFABCDEF 

…) were allowed. To ensure that participants were paying attention to the exposure 

phase, participants pressed a button whenever they saw a repeated monster. Hence, in 

six of the 24 appearances of each triplet, the initial or the final monsters were presented 

twice in a row (e.g. three occurrences of AABC and three occurrences of ABCC). We 

choose not to repeat the middle element of the triplet in order not to break the base 

triplet. 

For the test phase, four new triplets were created with the same monsters, but 

ordered in a way that never appeared during the exposure phase. These four new 

triplets contained one monster of each of three base triplets (referred as AEI, DHL, GKC 

and JBF). In this way, the transitional probability (probability of event B occur after event 

A) of the internal pairs inside the new triplets based on the exposure phase was zero, 

clearly contrasting with the transitional probability for the internal pairs inside the base 

triplets that was .945 (not 1 because of the repetition of some elements of the base 

triplet for the cover task). In each trial of the test phase, a sequence of six monsters (a 

base triplet presented together with a new triplet) was presented, one at a time, with 

the same pace as during the exposure phase, but with a 1000 ms gap between the two 

triplets. Afterwards, a screen appeared asking participants to choose, in a self-paced 

manner, which of the two previous triplets had appeared in the exposure phase. Each 

base triplet was presented with each new triplet, creating 16 pairs of base-new triplets. 

These 16 pairs were displayed on four separate occasions, in a randomized and 

counterbalanced order, in a total of 64 trials. Both base triplets and new triplets were 

seen 16 times each. 
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Implicit Orthographic Knowledge tasks 

In order to assess the implicit orthographic knowledge of the participants we first 

evaluated the frequency of European Portuguese orthographic patterns associated with 

certain phonemes. Specifically, we searched for distributional asymmetries in two 

alternative orthographic patterns that can be used to represent a specific phoneme. For 

example, in the European Portuguese, the phoneme [ʃ] can be graphed as <x> or <ch>, 

but after the diphthong [a:ɪ] it is more frequent to use <x> (<aix> is more frequent than 

<aich>, although both are allowed). These distributional asymmetries do not obey to 

any specific rule and neither are taught explicitly during formal training. Any sensitivity 

to these asymmetries will therefore be acquired implicitly throughout the exposure to 

printed text. Using the European Portuguese word frequency database P-Pal (Soares et 

al., 2014), we searched for cases where there was a clear asymmetric preference for 

using one of two possible graphemes for the same phoneme (for example, the absolute 

frequency of <auch> is 151 whether the frequency of <aux> is 10209). Forty-one 

different cases were selected where this asymmetry was expressed by an frequency 

difference > 2198 occurrences in the lexical database. Pseudowords were created to 

incorporate these and used in two tasks designed to assess implicit orthographic 

knowledge. All pseudowords had three to four syllables and none had orthographic 

neighbors, in order to not resemble any real word and thus be selected or written by 

analogy, which would reveal a different type of implicit memory (Steffler, 2001). 

In the Implicit Orthographic Knowledge Decision task, the two possible forms 

were presented on a computer screen and participants were instructed to select the one 

that seemed more orthographically accurate if it was a real Portuguese word (e.g. 

mupaixo vs. mupaicho). In this task, two different pseudowords were presented for each 

case, counter balancing the right-left presentation of each case. In total, the stimulus 

set comprises 82 pseudowords that were randomly presented to participants. We 

scored 1 if the participant chooses the most frequent orthographic representation and 

0 if he/she selected the less frequent orthographic representation. 

In the second task, Dictation of Pseudowords, participants heard an audio record 

of 41 new pseudowords with same cases as the previous task and had to write them 

down. The presentation of the items was randomized and the task self-paced: 
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participants heard the pseudoword, wrote it down and then pressed the space bar of 

the computer to hear the next pseudoword. Participants were instructed to write the 

pseudoword in a way they thought was correct. We scored 1 if the participant wrote the 

pseudoword using the most frequent orthographic representation and 0 if he/she wrote 

the less frequent orthographic representation. 

 

Reading task 

We used the 3DM reading test (Andreia Pacheco et al., 2014) to assess the 

participants’ reading skills. This test is a time-limited reading-aloud task composed of 

three lists of words and pseudowords, presented in a fixed order. Participants were 

asked to read aloud as fast and accurately as possible the stimuli presented in the 

computer screen (for 30 s per list). The number of correctly read words per second was 

taken as the reading fluency measure. 

 

Reading Habits Questionnaire 

A questionnaire was constructed to assess the reading habits of the participants, 

as an indirect measure of the exposure to print. Participants were asked how many 

minutes of the previous month they spent reading material from several sources (e.g., 

novels, technical text, movie subtitles, blogs, news, etc.), both in digital and printed 

form. Additionally, some questions were asked about exposure to text in earlier years 

(e.g., how many books they had at home around the age of 14; if their parents read for 

them during childhood; how frequently participants saw their relatives reading). The 

questionnaire was sent by email to all 85 participants and 76 responded (89%). 

 

PROCEDURE 

The statistical learning task was presented as an attention task (covert task) and 

participants were instructed to press the space bar whenever they detected two equal 

monsters in a row within a continuous presentation stream of different monsters. After 
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this exposure phase, participants were informed that the monsters they saw were in 

fact lined up in groups of three fixed elements. During the test phase, participants had 

to choose which of two groups of three monsters was lined together in the previous 

task. Participants were advised to follow their gut feeling and not overthink or try to 

analyze the triplets in the test phase. 

After the statistical learning task, participants performed the reading task and 

the two implicit orthographic knowledge tasks. Half of the participants performed the 

implicit orthographic knowledge task first and then the dictation of pseudowords task 

and the other half of the participants did the opposite. All tasks were preceded by a 

practice trial and testing would only proceed if the experimenter was sure that the 

instructions were understood. Participants were informally interviewed after each task 

to assess if they had explicit knowledge of the implicit characteristics of the stimuli (both 

in the statistical learning task and in the implicit orthographical knowledge tasks). 

Subsequently to the testing, participants were asked to fill an online questionnaire to 

assess their reading habits. 

 

RESULTS 

Accuracy in the Statistical Learning exposure phase ranged from 29 to 100%, with 

a mean of 71% (±SD = 18). A lower score on this task might indicate that participants 

were not attending to the stimuli. However, a correlation analysis between this task and 

the test phase indicated that the two were not related (r = .08, p = .455) and therefore 

all subjects were considered for further analysis. 

In order to evaluate if the participants learn the statistical regularities during the 

Statistical Learning Test, the percentage of triplets correctly identified was calculated 

(mean ± SD = 55% ± 15). A one-sample t-test demonstrated that this performance was 

significantly better than chance (50%; t(84) = 3.31, p < .001, d = 0.36). Nevertheless, 

these results were lower than expected for adult participants (Arciuli & Simpson, 

2012b), so we further analyzed the statistical learning performance . We observed a 

trend toward a lower performance as the task progressed. We speculate that this was 

due to the exposure to new triplets during the test – participants might start to assume 
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that a repeated new triplet was actually correct and started to classify new triplets as 

previously seen triplets. To control for this confound, we decided to consider only the 

first half of the statistical learning test. Therefore, the percentage of triplets correctly 

identified was recalculated (mean ± SD = 57% ± 13) and a one-sample t-test confirmed 

that this performance was significantly better than chance (50%; t(84) = 5.34, p < .001, 

d = 0.58). Furthermore, when asked after the exposure phase if they notice any set of 

“monsters” that accompanied each other, the majority of the participants indicated that 

they were not aware of this and the ones that noticed some connections between the 

“monsters” were not able to reproduce a whole triplet. 

In the Implicit Orthographic Knowledge Decision task, total scores were 

converted into percentage (mean ± SD = 63% ± 10) and a one-sample t-test was 

performed to test whether this performance was significantly better than chance (50%). 

Results show that participants opted for the most frequent orthographic representation 

(t(84) = 12.22, p < .001, d = 1.33). A correlation analysis of this task with the statistical 

learning task revealed that both tasks are significantly correlated (r = .26, p = .016). 

Regarding the Dictation of Pseudowords task, a significant amount of errors was 

produced, since participants often wrote variations of the pseudowords presented. Only 

the well-written pseudowords were counted and the total score was converted into 

percentage. Results show a mean of 70% (± SD = 8) and a one-sample t-test confirmed 

that participants opted for the most frequent orthographic representation (50%; t(84) = 

22.24, p < .001, d = 2.41). No correlation was found between the dictation of 

pseudowords and the statistical learning task (r = -.04, p = .748). Still, both implicit 

orthographic knowledge tasks were significantly correlated (r = .23, p = .038). 

In the Reading task, participants showed a mean of 2.0 (± SD = .3) correctly read 

words per second and a mean of 1.45 (± SD = .31) correctly read pseudowords per 

second. Results showed a significant correlation between the statistical learning task 

and the performance on the overall reading task (r = .35, p = .001). Specifically, we 

observed a correlation between the statistical learning task and the number of correct 

words (r = .37, p < .001) and pseudowords (r = .26, p = .017). 

 



57 
 

Table 3.1. Hierarchical multiple regression analysis of the reading and implicit orthographical knowledge tasks as a 

dependent factors. 

 Step 1 Step 2 

 Exp SL R2 Exp SL Exp*SL R2 

Reading        

Present print exposure .05 .33* .11** -.01 .33* -.10 .01 

Past print exposure .15 .30* .13* .03 .23** .28** .06** 

Implicit orthographic knowledge        

Present print exposure -.05 .21 .05 -.12 .21 -.11 .01 

Past print exposure .05 .21 .05 .09 .23 -.08 .01 

Dictation of pseudowords        

Present print exposure .01 -.05 .00 .15 -.05 .23 .03 

Past print exposure -.03 -.05 .00 .05 .00 -.19 .03 

Note: Exp = Exposure; SL = Statistical Learning; Exp*SL = interaction Exp and SL; R2 = variance explained by Exp 

and SL; R2 = increment of variance explained by the interaction. * p < .01; ** p < .05. 

Two composite measures were created from the responses to the Reading 

Habits Questionnaire, one regarding the present exposure to print, and the other 

regarding past exposure to print. Past exposure correlated with word reading (r = .25, p 

= .028), but not with implicit orthographic knowledge tasks (p > .4). Present exposure 

did not correlate with the literacy measures (p > .4). We tested for the moderating 

effects of statistical learning on the association between exposure to print and literacy 

skills (reading and orthographical knowledge) following the Baron and Kenny (1986) 

procedure (see Table 3.1). In the first step, print exposure and statistical learning 

entered as predictors in three regression models with reading, implicit orthographical 

knowledge and dictation of pseudowords tasks as dependent variables. In a second step, 

the interaction term between print exposure and statistical learning was introduced in 

the models. The association between present exposition to print and literacy measures 

was always non-significant (ps > .32) and statistical learning does not show any 

moderator role. However, we found that statistical learning significantly moderates the 

influence of past exposure to print in reading skills: the interaction term added a 

significant contribution to the reading score variance (ΔR2 = .06, p = .028); the coefficient 

of this interaction term is positive (b = 5.97,  = .28, t(75) = 2.25, p = .028), indicating 

that the positive influence of past exposition to print to reading performance is 

amplified in the presence of good statistical learning capacity. Statistical learning had no 
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moderator effect on the contribution of past exposition to print to other literacy 

measures. 

 

DISCUSSION 

Overall, there is evidence that suggests that children benefit from implicit 

learning mechanisms to extract the written language regularities to become skilled 

readers and spellers. In this study, we investigated the relationship between statistical 

learning, reading and implicit orthographic knowledge in typical adult readers. We 

employed a statistical learning task used in previous studies (Arciuli & Simpson, 2011, 

2012b) and observed that participants were able to distinguish between correct and 

incorrect triplets significantly better than chance. This effect occurred despite the fast 

presentation rate in the exposure phase, the fact that during this phase participants 

looked at a stream of stimuli without any indication that they were structured, and 

despite the presentation of unfamiliar stimuli difficult to verbally label. Moreover, 

participants were unaware of the existence of the triplets after the exposure phase. 

Thus, evidence suggests that participants learned the statistical pattern they were 

exposed to implicitly. Nevertheless, the performance was lower than expected. 

Siegelman, Bogaerts, and Frost (2017) suggest that an extensive repetition of incorrect 

targets throughout the test phase might induce a progressive acceptance of the 

incorrect stimuli. In these situations, the score obtained might reflect learning of the 

exposure phase or memory of the new triplets presented during the test phase. This 

might have been the case in our task, since we observed a significant decrease in 

performance from the first to the second half of the test phase, reflecting an increased 

acceptance of the repeated incorrect triplets. We therefore only analyzed the first half 

of the task, ensuring less exposure to incorrect triplets, while preserving reliability 

(Siegelman, Bogaerts, & Frost, 2017). 

Implicit orthographic knowledge was assessed with a forced-choice and a 

pseudoword dictation task. In both tasks, participants performed above chance, that is, 

they chose or spelled the pseudoword with the most frequent orthographic pattern, 

although they did not know why they chose that pattern, suggesting that this knowledge 
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was implicit. While both tasks correlated with each other, their relationship with the 

statistical learning task differed, as we observed a correlation with the forced-choice 

task but not in the pseudoword dictation task. In the dictation of pseudowords, 

participants need to produce the orthographic patterns that represent the uttered 

phonological patterns. On the other hand, to perform the force-choice task, participants 

do not need to generate the pronunciations and may therefore rely entirely on their 

orthographic knowledge. Thus, the stronger correlation between the statistical learning 

task and the forced-choice task might be because both tasks rely on visual patterns more 

strongly. Therefore, although statistical learning seems to contribute for learning 

orthographic patterns, phonological patterns and the link between both, this influence 

seems to occur in different ways (Treiman & Wolter, 2018). 

This study replicates the findings of Arciuli and Simpson (2012), the significant 

correlation between reading and statistical learning. Participants that extracted the 

regularities present in the statistical learning task better are also more fluent readers. 

This observed correlation was found not only in word reading, but also in pseudoword 

reading. These results support the suggestion that the grapheme-phoneme 

correspondence, although taught explicitly, might be reinforced and benefit from 

statistical learning mechanisms during acquisition. On the other hand, the results also 

suggest that an individual that is better at extracting environmental regularities will also 

be more sensitive to regularities present in text and speech, such as co-occurrence of 

letters and lexical stress, facilitating reading fluency (Arciuli, 2018). 

The reading and statistical learning relationship found is not in line with the 

suggestion by Nigro, Jiménez-Fernández, Simpson, and Defior (2015) that implicit 

learning would not be related to reading in relatively transparent orthography. A few 

explanations for the different results between our study and Nigro and collaborators 

(2015) study can be advanced: the Spanish orthography is more transparent than the 

Portuguese and thus statistical learning might play a greater role in reading Portuguese. 

In Spanish, reading can be accomplished by grapheme-to-phoneme conversions that are 

explicitly taught and thus statistical learning would play a limited role. In contrast, 

reading proficiency in Portuguese might benefit from the implicit extraction of 

regularities that are not covered in formal instruction. Additionally, it might be the case 
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that in the study of Nigro et al. (2015) the correlation was absent due to the age of the 

participants: they tested 8- and 9-years old children while we tested adults – 8- and 9-

years old children are still acquiring reading competences and their exposure to text is 

necessarily limited compare to adults, therefore providing less opportunities to extract 

regularities. Overall, these results indicate that the transparency/opacity of an 

alphabetic written language might modulate how much the acquisition of reading and 

writing skills can benefit from implicit learning. A cross-linguistic study would help to 

clarify this issue. 

Furthermore, we assessed the reading habits of the participants to have an 

indirect measure of participants’ exposure to text and to evaluate its impact on the 

literacy measures used in our study. The results show that past exposure to print 

influenced word reading. Interestingly, this influence was moderated by statistical 

learning skills. It has been suggested that orthographic knowledge accumulates in early 

childhood (Steffler, 2001) and that adults do not extract the details of spelling during 

reading because they pay more attention to the ideas being conveyed (Treiman, 2018). 

This suggests an explanation for the past exposure to print effect on reading. Exposure 

to print had no significant impact on the implicit orthographic knowledge, although a 

more reliable retrospective measure and a larger sample would be useful to assess the 

impact of previous exposure to text on literacy measures. Nevertheless, it is clear that 

statistical learning has a role in boosting the impact of print exposure on reading. 

In conclusion, this study provides further evidence that statistical learning is 

associated with implicit orthographical knowledge and reading. Although individuals are 

largely unaware of the different frequencies of orthographic patterns, they still show 

knowledge of these frequencies and use them. Exposure to text seems to be one of the 

most valuable contributions to reading performance. 

 

This study is under review in: 

Inácio, F., Petersson, K.M., Morais, S., Reis, A., & Faísca, L., (2018). Statistical 

learning is related to implicit orthographic knowledge and reading proficiency. Cognitive 

Science.   
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CHAPTER FOUR 

STUDY 3 - Implicit sequence learning is preserved in dyslexic children 

 

 

ABSTRACT 

 This study investigates the implicit sequence learning abilities of dyslexic children 

using an artificial grammar learning task with an extended exposure period. Twenty 

children with developmental dyslexia participated in the study and were matched with 

two control groups – one matched for age and other for reading skills. During three days 

all participants performed an acquisition task, where they were exposed to colored 

geometrical forms sequences with an underlying grammatical structure. On the last day, 

after the acquisition task, participants were tested in a grammaticality classification task. 

Implicit sequence learning was present in dyslexic children, as well as in both control 

groups, and no differences between groups were observed. These results suggest that 

implicit learning deficits per se cannot explain the characteristic reading difficulties of 

the dyslexics. 
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INTRODUCTION 

Developmental dyslexia (henceforth, dyslexia) is the most common learning 

disorder and it is characterized by severe and persistent difficulties in learning how to 

read, despite normal intelligence, adequate cognitive abilities, and appropriate 

instruction (Lyon et al., 2003; Tunmer & Greaney, 2011; Vellutino et al., 2004). A vast 

number of studies have identified a phonological processing difficulty as a core feature 

of dyslexia, specifically, underspecified or/and less accessible phonetic representations 

in these readers (e.g., Boets et al., 2013; Ramus et al., 2003). Indeed, individuals with 

dyslexia have been shown to perform below average on a range of tasks that require 

phonological processing skills (e.g., phonological awareness, phonological decoding, 

rapid automatized naming and verbal short-term memory) (Ramus et al., 2003; S. 

Shaywitz, 2003; Tijms, 2004; Wagner et al., 1994). In addition, dyslexia disorder has been 

linked to non-linguistic processing deficits, including visual and auditory processing 

(Sela, 2014), visual spatial attention (Franceschini et al., 2012), and, discussed more 

recently, to implicit learning (for a review, see Folia et al., 2008; Lum, Ullman, & Conti-

Ramsden, 2013; Schmalz, Altoè, & Mulatti, 2016; van Witteloostuijn, Boersma, Wijnen, 

& Rispens, 2017). The term implicit learning was introduced by Reber (1967) and refers 

to a type of unintentional learning that results from constant exposure to environmental 

regularities, without awareness of what has been learned. This process is not voluntary 

mediated, yet it is still controversial to what extend implicit learning drives abstract and 

unconscious knowledge (Cleeremans et al., 1998). 

A crucial phase during the development of reading abilities is to learn and 

automatize the associations between letters and sounds. Fluent reading will benefit 

from the extraction of regularities from visual and auditory sequences (e.g., co-occurring 

letters), important for the formation of letter and word representations (Ehri, 2005). 

This occurs through both explicit and implicit learning processes: the former takes place 

throughout formal instruction and the last merely through exposure to text (Stoodley & 

Stein, 2011b). Hence, impaired reading in dyslexia may be related to a deficit in implicit 

learning. A few plausible mechanisms have been suggested to explain how a weakness 

in implicit learning of sequential information could account for the phonological 

processing and reading problems in dyslexia. The cerebellar deficit hypothesis of 
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dyslexia (Nicolson & Fawcett, 1999; Nicolson et al., 2001) claims that children with 

dyslexia have unusual difficulty in automatizing any skill, whether motor or cognitive. 

Because implicit learning has been closely linked with automatic learning mechanisms 

(Conway & Pisoni, 2008) it may well be that an implicit learning deficit would affect 

learning of grapheme-phoneme associations in children with dyslexia and eventually 

prevent them from reaching a high degree of automaticity in reading (Sperling et al., 

2004). Howard, Howard, Japikse, & Eden (2006) also suggest that poor implicit learning 

could hinder the establishment of adequate phonological processing as well as learning 

orthographic-phonological representations. The authors propose that a combination of 

a phonological deficit with an impaired sequence learning system could manifest as a 

failure in applying implicit or probabilistic rules required for fluent application of 

grapheme-phoneme correspondences and, therefore, leading to reading difficulties (see 

also Sperling et al., 2004). 

The capacity of implicit learning of dyslexics has been tested in a number of 

studies, however with contradictory results. Some studies have found that dyslexic 

readers have an implicit learning deficit, especially when the task has a strong 

sequencing component (Kahta & Schiff, 2016; Deny Menghini et al., 2006; Stoodley et 

al., 2006; Stefano Vicari et al., 2003), and a correlation between implicit learning and 

individuals’ reading ability as been reported (Sperling et al., 2004). Other studies, 

however, have found null results, i.e., implicit learning abilities were apparently intact 

both in children and adults with dyslexia when compared to typical readers (e.g. Kelly, 

Griffiths, & Frith, 2002; Nigro, Jiménez-Fernández, Simpson, & Defior, 2016; Roodenrys 

& Dunn, 2008). Furthermore, Waber and collaborators (2003) have found no evidence 

that reading ability is associated with implicit sequential learning. 

Factors that varied between studies may explain the apparent discrepancies, 

including the tasks used to assess implicit learning (Howard et al., 2006; Roodenrys & 

Dunn, 2008). For example, studies that employed two different implicit learning tasks 

(Howard et al., 2006; Jiménez-Fernández et al., 2010) found evidence for a deficit on the 

serial reaction time tasks in dyslexics compared with typical readers, while there were 

no differences between these groups on other implicit learning tasks, such as the spatial 

context learning task. Additionally, when we look in to the studies with dyslexics that 
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employed another implicit learning task, the artificial grammar learning paradigm, we 

also find contradictory results (Laasonen et al., 2014; Pavlidou et al., 2010; Pothos & 

Kirk, 2004; Rüsseler et al., 2006). Artificial grammar learning (AGL) tasks differ from the 

SRT tasks in the sense that they require less involvement of the motor system and 

represent a more complex and abstract implicit learning situation. Consequently, both 

tasks are thought to reflect different cognitive and neural processes (Laasonen et al., 

2014). However, a closer look into these discrepant results presented by studies with 

dyslexics using the AGL task will show an important difference between them: the 

participants’ age. While some studies with dyslexic children reported poor performance 

in implicit learning (Pavlidou et al., 2010, 2009), others show that dyslexic adults even 

outer perform the typical readers (Pothos & Kirk, 2004). Russeler, Gerth and Munte 

(2006) studied the implicit learning abilities of dyslexic adults using both AGL and SRT 

paradigms and observed that these individuals were unimpaired in both tasks. Laasonen 

and collaborators (2014), in turn, found no major differences between dyslexic adults 

and typical readers in the SRT task, only in the AGL task. In this study, there was a non-

significant main effect of group, but while in control readers the grammaticality accuracy 

was above chance levels, in the dyslexic readers performance did not exceeded the 

chance level. The authors suggested that these findings could be explained by the 

shorter presentation time and the reduced number of items used in the learning phase 

that might have hampered dyslexics’ performance. Overall, studies using the AGL 

paradigm with dyslexic children report poor implicit learning, but this deficit is probably 

mitigated in dyslexic adult samples. Nevertheless, it is not clear whether the poorer 

results presented by dyslexic children are due to participants’ characteristics beyond age 

or to the AGL task characteristics, such as short exposure periods. 

In sum, there is considerable debate on whether implicit learning is affected and 

contributes to impaired reading in dyslexia. In the present study we aim to further 

investigate the implicit sequence learning abilities in dyslexic children, using an AGL task 

that was designed to minimize factors that might prevent implicit learning from 

occurring (such as slower performance) and, importantly, to maximize the exposure to 

the sequence regularities. For this, we used an extended acquisition phase (three days), 

unlike prior studies. This is important because consolidation promoted by sleep fosters 
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optimal performance in implicit learning (Nieuwenhuis et al., 2013). Another novelty of 

this study is that we compared the performance of dyslexic children with that of a 

control group matched for chronological age and a control group matched by reading 

level. The lack of such a reading-matched control group is an important gap in the 

previous studies, as its inclusion allows us to exclude that a given deficit is simply a 

consequence of the less reading experience in dyslexic children. If dyslexic children do 

have an implicit learning deficit, one would expect them to perform more poorly on the 

AGL task even when compared with the reading-matched controls, indicating therefore 

a disrupted implicit learning ability in this population. 

 

METHODS AND MATERIALS 

PARTICIPANTS 

All participants were children recruited from Portuguese elementary schools 

(2nd – 4th grade), with normal or corrected to normal vision. Informed consent was 

obtained from their parents. Twenty children (12 male and 8 female, mean age ± SD = 

9.5 ± 1.1 years; mean grade ± SD = 3.1 ± 0.9) with either a formal dyslexia diagnosis or a 

suspicion of dyslexia (as indicated by their teachers) were further assessed in order to 

confirm if they met all the inclusion criteria. The inclusion criteria for the dyslexia group 

were: 1) absence of neurological or emotional problems (including ADHD); 2) normal 

range non-verbal IQ as measured by the Raven Coloured Matrices (Raven, Raven, & 

Court, 2009); 3) reading abilities significantly below grade mean level in the reading and 

spelling subtests (i.e., either a reading speed score ≥ 1.25 SD below the grade mean or 

a reading speed score ≥ 0.75 SD below the grade mean combined with a spellings score 

≥ 1.25 SD below the grade mean) of the Differential Diagnosis Dyslexia Battery of 

Maastricht-3DM (Blomert & Vaessen, 2009; A. Pacheco et al., 2014); 4) reading scores 

below the 25th percentile on a reading comprehension test (Teste de Idade de Leitura - 

TIL; Santos & Castro, 2010). 

Two control groups were selected to match the dyslexic group: one group 

matched for age (age-matched control) and other matched for reading skills (reading-

matched control). For the age-matched control group, twenty children (12 male and 8 
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female, mean age ± SD = 9.1 ± 0.6 years; mean grade ± SD = 3.5 ± 0.8) classified by their 

teachers as average pupils were selected. For the reading-matched control group, 

twenty children (12 male and 8 female, mean age ± SD = 7.1 ± 0.4 years; mean grade ± 

SD = 1.4 ± 0.5) were selected from the same schools as the other children. At the time 

of testing these children were at the end of the first grade or beginning of second grade 

and were already able to read (they were all classified by their teachers as average or 

above average pupils). Specific inclusion criteria for the control groups were: 1) absence 

of neurological or emotional problems (including ADHD); 2) normal range non-verbal IQ 

as measured by the Raven Coloured Matrices; 3) reading abilities within or above the 

grade mean level in the 3DM reading and spelling tests; and 4) reading scores above the 

25th percentile in TIL.  

 

TABLE 4.1. Group performance on the reading, spelling, phonological awareness, rapid automatized 

naming, vocabulary and phonological short-term memory tasks (mean ± SD). Raw scores were used in all 

tasks (Note that the reading-matched control group performance is adequate for their age when values 

are converted to standardized scores). 

 

 

Dyslexic 

group 

(n = 20) 

Age-matched 

control group 

(n = 20) 

Reading-matched 

control group 

(n = 20) 

Word reading (word/sec) 0.35 ± 0.18 1.27 ± 0.29* 0.45 ± 0.13 

Spelling (%) 65.16 ± 12.89 85,86 ± 6.00* 72.39 ± 11.27 

Phoneme deletion (%) 33.04 ± 21.20 79.96 ± 13.74* 49.89 ± 27.74* 

Rapid naming (item/sec) 1.14 ± 0.22 1.76 ± 0.24* 1.27 ± 0.19 

Vocabulary (score) 16.00 ± 3.93 19.75 ± 5.06* 14.15 ± 2.74 

Digit span (score) 8.00 ± 1.81 10.80 ± 1.80* 9.10 ± 1.94 

* = mean scores significantly different from dyslexic group mean scores (p’s < .05). 
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A t-test for independent samples confirmed that the reading and spelling scores 

of the dyslexic group were significantly lower compared with those of the age-matched 

control group (both p’s < .01), but not compared with the reading-matched control 

group (p = .26, for reading and p = .08, for spelling). The dyslexic and the age-matched 

control group did not differ from each other in terms of age and years of education (p = 

.24 and p = .30, respectively), and both groups were significantly older and from a higher 

grade than the reading-matched control group (both p’s < .01). Additionally all groups 

were initially tested on phonological awareness, rapid automatized naming [subtests 

selected from the 3DM battery (A. Pacheco et al., 2014)], vocabulary and phonological 

short-term memory [from the Wechsler Intelligence Scale for Children (Wechsler, 

2006)]. The dyslexic group showed significantly lower scores compared with both 

control groups in all tasks (table 4.1). No differences emerged between the two control 

groups when raw values were converted into standardized values (all p’s ≥ .37). 

STIMULUS MATERIAL 

Using a regular grammar defined by the finite-state generator described in Figure 

4.1, we generated the complete set of grammatical (G) stimulus sequences with a length 

of 4 to 7 elements from a symbol alphabet with coloured geometrical forms (green 

triangle, yellow square, red circle, blue diamond; see Figure 4.1). The coloured 

geometrical forms were used instead of orthographic material in order to facilitate 

acquisition by all children and to not benefit those without dyslexia. The stimulus 

material includes one acquisition set and one classification set. In order to quantify 

differences in subsequence familiarity between acquisition and classification items, 

associative chunk strength (ACS) was calculated for each sequence. The ACS captures 

the frequency distribution of 2- and 3-letters chunks for the complete sequence 

positions (Knowlton & Squire, 1996; Meulemans & Linden, 1997). Of the total set of 

grammatical sequences, 36 items were selected for the acquisition set using an iterative 

random procedure. This procedure guaranteed that the acquisition set was comparable 

in terms of ACS familiarity to the complete set. Non-grammatical (NG) items were 

generated by switching two geometrical forms in non-terminal positions from each 

remaining grammatical items, keeping the ACS score balanced with its original template 

item (see appendix 3). For the classification set, 20 grammatical and 20 non-grammatical 
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pairs were selected from the remaining items in an iterative random procedure, while 

ensuring that 10 items were equivalent in ACS to the acquisition set and the remaining 

10 items showed a significantly lower ACS score. In this way, the classification set was 

organized in a 2x2 factorial design, with grammaticality (grammatical/non-grammatical) 

and ACS (high/low) as factors, including 10 sequences of each category: high ACS 

grammatical (HG), low ACS grammatical (LG), high ACS non-grammatical (HNG), and low 

ACS non-grammatical (LNG). 

 

 

 

 

 

 

 

 

 

FIGURE 4.1. The transition graph representation of the regular grammar used in the present study. 

Sequences that follow the transitions in this graph are grammatical while sequences that do not are not. 

An example of a grammatical sequence would be "square-circle-square-diamond-triangle" and a non-

grammatical sequence would be "square-circle-diamond-circle-square". 

 

PROCEDURE 

All sessions were conducted in the schools of the children, in a quiet and 

undisturbed room. First, reading and cognitive assessment was performed in order to 

select our participants. Afterwards, participants performed the AGL experiment, divided 

in three sessions conducted over three consecutive days. All tasks were presented 

visually on a computer screen and responses were recorded using a Cedrus RB series 

response pad, connected to the laptop. All sessions started with a short-term memory 

cover task, the acquisition task. During this task, participants were exposed to and had 

to memorize grammatical sequences, which remained on the screen for 8 seconds each. 

After that, participants were asked to reproduce the sequence, in a self-paced manner, 

using the response pad to type the coloured geometrical forms (one button per 
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geometrical form). The sequences presentation order was randomized for each 

acquisition session and each session lasted for approximately 20 minutes. After the 

acquisition task, participants were interviewed in order to assess the level of 

experienced difficulties in fulfilling this task. 

 On the third day, after the short-term memory task, participants engaged in an 

intermediate irrelevant task, in order to divert attention from the acquisition task. In 

this task, subjects had to press one of four buttons whenever they saw a frog in one of 

four matching positions of the computer screen. Subsequently, the participants’ 

knowledge about the underlying grammatical structure was tested using a 

grammaticality classification test. The participants were informed about the existence 

of a complex set of rules that underlies the acquisition sequences structure and were 

instructed to classify new sequences (20 grammatical and 20 non-grammatical) in 

sequences that followed those rules and sequences that did not comply with those rules 

(i.e., grammatical or non-grammatical). Each sequence was presented on the screen for 

3 seconds followed by a grammaticality judgement (forced yes/no choice). The 

participants were instructed to base their decision on their immediate intuition and to 

avoid any attempt to explicitly analyse the sequences. The presentation order was 

randomized and the classification test lasted for approximately 10 minutes. The session 

finished with an interview in order to assess their explicit knowledge about any pattern 

or rule system. 

 

RESULTS 

ACQUISITION TASK 

The accuracy in the acquisition task was analysed with a repeated-measures 

ANOVA with the group as between-subject factor (dyslexics/age-matched 

controls/reading-matched controls) and the acquisition days as within-subject factor 

(day 1/day 2/day 3). The results showed a large main effect of group [F (2, 57) = 14.78, 

p < .001; partial ƞ2 = .34]. A post-hoc analysis (Tukey HSD) revealed that age-matched 

controls performed more accurately (percentage mean ± SD = 57.46 ± 7.20) than the 

dyslexic (percentage mean ± SD = 40.69 ± 4.19; Cohen's d = 2.85) and reading-matched 



70 
 

control groups (percentage mean ± SD = 36.88 ± 5.15; Cohen’s d = 3.29) (all p’s < .001). 

The performance of the dyslexics and reading-matched controls did not significantly 

differ from each other (p = .61; Cohen’s d = 0.81). A large main effect of acquisition day 

was also observed [F (2, 114) = 55.12, p < .001; partial ƞ2 = .49], revealing an increase in 

performance over the three days (all p’s < .001). There was no significant interaction 

between the factors acquisition day and group [F (4, 114) =1.98, p = .10; partial ƞ2 = .07]. 

 

CLASSIFICATION PERFORMANCE: ENDORSMENT RATES 

The classification performance was analysed in terms of endorsement rate (i. e., an item 

classified as grammatical independent of the real grammaticality status of the sequence, 

cf. Meulemans & Linden, 1997). Both grammaticality and ACS status influenced the 

endorsement rate (Figure 4.2 and Figure 4.3). A repeated-measures ANOVA with 

grammaticality (G/NG) and ACS (High - H/Low - L) as within-subject factors and group as 

a between-subject factor (dyslexics/age-matched controls/reading-matched controls) 

showed a large main effect of grammaticality [F (1, 57) = 23.74, p < .001; partial ƞ2 = 

.29], because the endorsement rate was higher for grammatical than for non-

grammatical sequences (percentage mean ± SD = 52.88 ± 2.10 and 39.36 ± 2.50, 

respectively), and a main effect of ACS [F (1, 57) = 50.93, p < .001; partial ƞ2 = .47], 

because the endorsement rate was higher for high compared to low ACS sequences 

(percentage mean ± SD = 53.53 ± 2.08 and 38.71 ± 2.15, respectively). The interaction 

between grammaticality and ACS [F (1, 57) = 18.00, p < .001; partial ƞ2 = .24] was also 

significant. A post-hoc analysis revealed that there is an ACS effect only in the 

grammatical sequences: endorsement rates were significantly superior for high ACS 

grammatical sequences (percentage mean ± SD = 64.33 ± 18.61) versus low ACS 

grammatical sequences (percentage mean ± SD = 41.43 ± 19.75; p < .001). Although the 

performance on high ACS non-grammatical sequences (percentage mean ± SD = 42.72 ± 

24.22) was higher than that on low ACS non-grammatical sequences (percentage mean 

± SD = 36.00 ± 19.76), this difference was only near significance (p = .07). 

 Importantly, there was no main effect of group [F (2, 57) = .10, p = .903; partial 

ƞ2 = .004]. Furthermore, neither the effect of grammaticality nor of ACS interacted with 
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the factor group, as indicated by the non-significant two-way interactions (group by 

grammaticality: F (2, 57) = .18, p = .83; partial ƞ2 = .01; group by ACS: F (2, 57) = .78, p = 

.46; partial ƞ2 = .03) and the non-significant three-way interaction [F (2, 57) = .49, p = 

.62, partial ƞ2 = .017]. 

 In addition to the endorsement rate analysis, we performed further a response 

time analysis as, despite unimpaired accuracy performance, dyslexics showed slower 

response times which could reflect different cognitive processes when dealing with the 

task (see, for example, Kelly et al., 2002). However, we find no significant differences 

between groups or conditions in the response times (all p’s ≥ .08). 

 

FIGURE 4.2. Endorsement rates over grammaticality and ACS as main factor categories. (G: Grammatical 

sequences; NG: Non-Grammatical sequences; H: High ACS sequences; L: Low ACS sequences). Error bars 

correspond to standard error of the mean. * = average endorsement rate is significantly different from 

chance (T-test, p < .05). 
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FIGURE 4.3. Endorsement rates over grammaticality and ACS levels (GH: Grammatical High ACS 

sequences; GL: Grammatical Low ACS sequences; NGH: Non-Grammatical High ACS sequences; NGL: Non-

Grammatical Low ACS sequences). Error bars correspond to standard error of the mean. * = average 

endorsement rate is significantly different from chance (T-test, p < .05). 

 

INDIVIDUAL ANALYSIS 

While we found no differences between groups on the classification task 

performance, it may be that by performing a group level analysis we have missed 

relevant individual aspects. Thus, we further used an individual-level approach to 

investigate performance on the AGL task (Figure 4.4). In this analysis, four dyslexic 

children performed high above the chance level, indicating that these participants were 

able to discriminate between grammatical and non-grammatical items. Four 

participants in the age-matched control group and seven participants in the reading-

matched control group were also very good on the classification task, as shown by their 

d' values. Some children presented very high levels of discrimination in the opposite 

direction (expressed by their strong negative d' values), probably because of 

misinterpretation of the instructions or confusion with the response buttons. We re-

analysed the data excluding these participants and no changes were observed in the 

overall pattern of results. 
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FIGURE 4.4. d’ for grammaticality by participant [age controls = age-matched control group; reading 

controls = reading-matched control group; filled dots for accuracy level above chance (binomial test p < 

.05, two-tailed)]. 

 

EXPLICIT KNOWLEDGE 

In order to assess if participants were using or were aware of any rule system 

underlying the sequences, they were interviewed at the end of the acquisition and 

classification tasks. After the classification task, the participants were asked to 

reproduce grammatical sequences using cards with the coloured geometrical forms that 

they had been previously presented. Participants were aware of a few salient 

characteristics (namely, all sequences started with triangles or squares and these 

shapes, contrary to others, were never repeated in a sequence). These salient features 

were uncovered in the acquisition task for some children, others only reported them 

after the classification task. Some of the children were able to create grammatical 

sequences with the cards (maximum of five correct sequences), all corresponding to 

sequences that they saw in the acquisition task. This ability to generate grammatical 
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sequences did not correlate with the grammatical discrimination index, d’ (r = .11, p = 

.39). Therefore, there is evidence of explicit knowledge for the sequences presented in 

the acquisition task, but there is no evidence of such knowledge for the grammatical 

rules, since the children could not produce new grammatical sequences or made explicit 

rules that are more complex. Furthermore, the fragmented explicit knowledge the 

participants have (i. e. which geometrical forms can be repeated and those used to start 

the sequences) does not benefit them since all sequences in the classification task – both 

grammatical and non-grammatical – display those features. 

 

DISCUSSION 

This study aimed to investigate whether dyslexic children can accomplish implicit 

sequence acquisition in an artificial grammar learning paradigm. In the classification 

task, new grammatical and non-grammatical sequences were presented and 

participants were asked to classify them. In this test there were no differences between 

dyslexic and any of the control groups (age- and reading-matched control), indicating 

that regardless of their reading status all participants acquired the stimulus regularities 

at a similar level. The endorsement rates were also influenced by grammaticality 

likewise: all participants rejected non-grammatical sequences and there was a leaning 

to accept grammatical sequences. 

Regarding the acquisition task, we did observe an effect of group as the age-

matched control group performed better than both the dyslexic and the reading-

matched control groups (which in turn did not differ from each other). This result is 

somehow expected as dyslexic children have been shown to present poor short term 

memory (e.g. Trecy, Steve, & Martine, 2013; or Wang & Gathercole, 2013) and the 

acquisition task relies strongly on this skill. In reading-matched controls, we do not 

believe this is the case, their lower performance probably reflect their development 

stage (Gathercole, Pickering, Ambridge, & Wearing, 2004). Nevertheless, the 

performance in this task did not mirror the performance in the classification task. It has 

been already shown that implicit learning is not related with working memory (Kaufman, 

DeYoung, et al., 2010). Furthermore, a poorer working memory capacity (as dyslexics in 
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our group present - see Table 4.1) did not prevent them from extracting the regularities 

of the sequences presented in the acquisition task. In line with this results, Conway, 

Bauernschmidt, Huang, & Pisoni (2010) suggested that even if the ability to encode and 

hold a series of items in immediate memory is necessary to learn a sequence structure, 

this ability per se is not sufficient, and a well-functioning mechanism involved in learning 

the underlying regularities is also needed. Consequently, a reduced memory capacity 

might actually be beneficial for learning complex input because it can act as a filter to 

reduce the complexity of the problem space, making it more manageable. The 

participants’ working memory capacity could aid the sequence learning in both 

directions but through different mechanisms: for the controls, a better working memory 

helps them to encode and hold the sequence items more efficiently, improving the 

sequence structure learning. For the dyslexics, a poorer working memory capacity may 

force them to transform the sequence items into more manageable units that would 

support the capture of the sequence structure. 

For all tested groups the performance in the classification task was below what 

was expected. Most of our participants, either dyslexic or typical readers, performed at 

chance level. Specifically, and as Siegelman and collaborators noted (see Siegelman, 

Bogaerts, Christiansen, & Frost, 2017; Siegelman, Bogaerts, & Frost, 2017), this may 

have occurred because of the reduced number of trials or the homogeneous level of 

difficulty across trials in the classification task. The effect sizes observed in the group 

analysis and the individual participants’ performance showed that at least some of the 

dyslexic children did reach high levels of grammaticality discrimination, like typical 

readers do. Additionally, the post-experimental interviews and sequence generation 

task results confirmed that no group in our study acquired explicit knowledge of the 

underlying grammatical system. Therefore, the overall pattern of results seems to 

indicate that implicit learning of the artificial grammar is preserved in dyslexic children. 

Our results diverge from those obtained by Pavlidou and colleagues, who also 

tested dyslexic children using an AGL task with similar set of stimuli, but with a different 

paradigm (Pavlidou et al., 2010, 2009). Their results showed that while dyslexic children 

were performing at chance levels, the typically developing children were able to 

successfully distinguish between grammatical and non-grammatical items. From these 
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results the authors suggested that dyslexic children were not as able as typical readers 

in abstracting implicit knowledge, that is, to extract the regularities of highly complex 

structured patterns such as AGL (Pavlidou et al., 2010). However, we might argue that 

in Pavlidou’s studies the acquisition process employed did not allow the dyslexic 

children to extract and/or consolidate the regularities of the sequences. It has already 

been shown that dyslexic individuals may need different strategies to cope with implicit 

learning tasks. For example, Kelly and colleagues (2002) and Roodenerys and Dunn 

(2008) showed that although dyslexics performed at the same level as typical readers in 

a SRT task, they were slower. In the studies performed by Pavlidou and colleagues (2010, 

2009) there was a limited exposure to grammatical items (only one acquisition session 

followed by an immediate classification test) that might led to a poor consolidation 

(Nieuwenhuis et al., 2013), probably hampering dyslexics’ performance. To our 

knowledge, the present study was the first to extend the acquisition phase to three days 

with an AGL task in children with dyslexia. We did not measure the classification 

performance in the first two days, but still we consider that overnight consolidation 

processes and extended practice might have enhanced participants’ performance for all 

groups (but see also Hedenius et al., 2013). A longer period of practice and exposure to 

grammatical sequences would perhaps even increase their classification performance 

and eliminate the ACS effect observed: the regularity extraction might have been placed 

into the smaller units due to still weak consolidation processes. On the other hand, the 

ACS effect might have been enhanced by the instruction given in the acquisition task 

(memorize and reproduce the grammatical sequences), which emphasizes lower 

(constituent element) and mid-level knowledge (bigrams) (cf. Pavlidou, 2010). Future 

studies favoring the consolidation processes with a less demanding load on item 

memorization might help to unravel if the observation of an impaired performance by 

dyslexic children in previous AGL studies (Pavlidou et al., 2010, 2009) is due to 

insufficient exposure to grammatical regularities, and if the ACS effect is due to task 

demands. 

Finally, another aspect that deserves consideration is the focus on group level 

analysis in prior studies of implicit learning in dyslexia. This kind of analysis may conceal 

positive individual achievements and one wonder whether there were in these studies 
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at least some dyslexic individuals who have their implicit learning abilities intact. In fact, 

in the present study and consonant with Stoodley and colleagues (2006), in the 

individual level analysis we observed that some dyslexics present a high level of 

discrimination between grammatical and non-grammatical sequences. This finding 

might reflect the substantial heterogeneity of deficits found in dyslexia (Stoodley et al., 

2006). It is also possible that the divergent results in the literature reflect both the 

variation of tasks used (see, for example, Howard et al., 2006; Jiménez-Fernández et al., 

2010; Rüsseler et al., 2006) but also sample characteristics, as studies typically differ in 

their operational definitions of dyslexia (e.g., cut-off levels for reading and IQ). In our 

study, we tried to disentangle if those dyslexic children who presented a high 

performance in the AGL classification had different cognitive characteristics from those 

who had a worse performance, but we did not find any consistent pattern; therefore, 

we cannot draw any conclusion on this issue. Future studies using a larger sample of 

dyslexics, a more detailed assessment of their deficits and including individual level 

analysis could clarify this question. 

In conclusion, the present study showed that dyslexic children are able to extract 

the implicit regularities of an artificial grammar to a similar degree as typical readers do, 

at least as long as sufficient consolidation is allowed. Remediation programs are 

encouraged to exploit this implicit learning ability, trough the promotion of ludic 

pedagogical activities in which children are incidentally exposed to linguistic regularities 

(such as orthographic patterns) outside reading and writing tasks. Further research is 

needed to evaluate the impact of such pedagogical interventions based on implicit 

learning strategies for dyslexia remediation. 

 

 

This study was published in: 
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K.M. (2018). Implicit sequence learning is preserved in dyslexic children. Annals of 

dyslexia,68 (1), 1-14. DOI: https://doi.org/10.1007/s11881-018-0158-x. 
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CHAPTER FIVE 

GENERAL DISCUSSION - Main results, limitations and future studies 

 

The present dissertation aimed to investigate whether the implicit learning 

mechanisms could be captured with the eye-tracking measures and whether these 

mechanisms have an impact on reading and writing processes, both in typical readers 

and dyslexics. 

In the first study, we aimed to explore whether eye-tracking captures the effects 

associated with the implicit acquired knowledge in artificial grammar learning tasks. 

With two experiments, in which we manipulated the presence of a concomitant active 

test, we showed that eye-tracking measures are sufficient to capture implicit 

knowledge, although the sensitivity of these measures is boosted in the presence of an 

active forced-choice task. We showed that the eye-tracking signature of the sensitivity 

effects in artificial grammar learning tasks can be translated into whole-trial (dwell time 

and number of fixations) eye-tracking responses to the violating event, rather than first-

pass measures (first-fixation duration) to the whole sequence. 

An issue of importance in this study is if the improved sensitivity of the eye-

tracking measures with active tests imply that we are in the presence of explicit 

knowledge. We consider this not to be the case. In fact, and in line with the behavioural 

results, we observed that an improved ocular discrimination of grammatical and non-

grammatical sequences occurs even when participants perform the active preference 

test, where there is no disclosure about the presence of a set of rules underlying the 

presented sequences. Moreover, although some participants could generate 

grammatical sequences, we are convinced that they were unaware of the grammar and 

that these sequences were produced, by chance, with memory of chunks, ruling out the 

hypothesis of explicit knowledge interference. On the other hand, passive tests only 

required that participants looked into the sequences. This procedure might have lead to 

a lack of optimal levels of attention, or to the structure analysis of the sequences not 

being extracted. Is therefore possible that the display of implicit knowledge to be 
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captured by eye-tracking measures was concealed, leading to the need for further 

studies to clarify this issue. 

In the second study, we aimed to assess whether implicit learning was related to 

literacy skills and to what extent exposure to print could be related to these skills. 

Specifically, we intended first to establish if there was a trend of using the most frequent 

orthographic pattern out of two correct and phonologically equal choices. Our results 

showed that participants chose the most frequent orthographic pattern, either when 

presented with two choices or when asked to spell a pseudoword and, in both cases, 

without an explanation for such choice. These results already indicate that the 

preference for spelling the most frequent orthographic pattern was acquired implicitly 

by exposure to the regularities of text. However, we went further and analysed whether 

the implicit orthographic knowledge presented by our participants was related to their 

performance in an implicit statistical learning task. Unexpectedly, we observed that the 

statistical learning skills were related to the implicit knowledge of frequent orthographic 

patterns in the implicit orthographic knowledge decision task, but not to the dictation 

of pseudowords. This difference in the correlations between the implicit orthographical 

knowledge tasks and the statistical learning task might be merely due to the nature of 

the presented tasks, which require different cognitive processes. To perform the 

statistical learning and the implicit orthographic decision tasks, one can rely only on the 

visual patterns, while in the dictation of pseudowords task, we need to convert the 

phonologically uttered patterns into orthographic patterns, necessarily implying other 

resources than merely visual. It seems, then, that implicit learning contributes in 

dissimilar ways to the acquisition of orthographic patterns, phonological patterns and 

the link between both, but further studies are necessary to explore the details of this 

differentiated contribution. 

The second goal of this study was to test the hypothesis that implicit learning 

could have less importance for reading competence in orthographies more transparent 

than English (Nigro et al., 2015). Although not being transparent, the Portuguese 

orthography is less opaque than English’s, and thus, correlations should be weaker or 

null. Our results showed that this is not the case, as a moderate correlation between the 

reading and the statistical learning tasks emerged, similarly to the original study, with 
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English-speaking participants (Arciuli & Simpson, 2012b). It seems, then, that 

participants that better extract the environmental regularities use these abilities to 

extract the regularities present in print, becoming better readers. These results were 

further supported by the moderator role that we found for statistical learning in the 

influence of exposure to print on reading competence. Statistical learning abilities 

appear to bolster the role of print exposure for reading proficiency. However, we did 

not find similar results for the other literacy measures related to orthographic 

knowledge. It would be interesting if a more comprehensive study, with more 

participants and more detailed measures of exposure to print, could highlight the role 

of the reinforcement that implicit learning has in the literacy measures other than 

reading. 

Following this second study, where we observed an association between literacy 

competence and implicit learning abilities, we aimed to test, in the third study, whether 

an implicit learning deficit could be an underlying cause for the reading difficulties 

presented by dyslexic children. This study provided evidence that dyslexics perform as 

well as typical readers (both matched by age and by reading level) in an artificial 

grammar learning task. Furthermore, the individual analysis of participants’ 

performance clearly showed that in each group (including the dyslexic group) there were 

participants that showed very high levels of discrimination between grammatical and 

non-grammatical sequences, suggesting that an implicit learning deficit does not 

prevent dyslexics from extracting the regularities present in the orthography. From this 

study, we can, however, acknowledge that the dyslexics’ implicit acquisition processes 

might be different from the typical readers’ processes. This hypothesis can be inferred 

because although dyslexics performed poorly in the acquisition phase, compared to the 

typical readers matched by age, they were still as able as the former group to implicitly 

extract the underlying structure of the presented grammar and thus perform at the 

same level as the control group in the acquisition phase. Furthermore, we showed that 

with an extended period of exposure to the grammatical regularities (in this case, three 

sessions in consecutive days) dyslexics can successfully learn an implicit artificial 

grammar task, as opposed to previous studies, with only one exposure session (as in 

Pavlidou, Kelly, & Williams, 2010; Pavlidou, Williams, & Kelly, 2009 studies). Further 
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studies would help to clarify whether the implicit regularity extraction occurs through 

different processes by manipulating the amount of exposure or assessing this implicit 

knowledge with methods beyond the behavioural measures, such as eye-tracking 

measures. 

In studies 1 and 3, we opted to study the implicit learning mechanisms, 

employing a core experimental tool for the study of the implicit learning phenomenon: 

the artificial grammar learning paradigm. This paradigm is thought to require less 

involvement of the motor system and represents a more complex and abstract implicit 

learning situation than other implicit learning paradigms. However, we obtained 

unexpected results in study 3, with all groups performing below what was expected (e.g. 

Folia et al., 2008; Folia, Uddén, Forkstam, & Petersson, 2010). Although the designed 

task allowed some dyslexics (and some typical readers) to apprehend the grammar 

implicitly, the mean results were not so robust, being only slightly above chance level. 

In order to be more child-friendly, we opted to shorten the exposure phase (in relation 

to study 1) to three sessions, which might have led to insufficient consolidation 

processes (Nieuwenhuis et al., 2013). An additional confounding factor that could have 

lowered the children’s performance was the copy procedure in the acquisition phase. 

This was a cover task designed to expose participants to the implicit grammar that 

required that participants copied a previously presented sequence, by memory, without 

performance feedback. This procedure, however, might have led to the production of 

errors in the copied sequences, leading to the acquisition of the error or to no 

acquisition at all (as, in fact, some participants of all groups demonstrated). To 

strengthen the results presented in study 3, further studies could benefit from an 

acquisition phase that eliminated the aforementioned confounding factor (providing, 

for example, the sequence to be copied while the copy was made), on the one hand, 

and also providing a more extensive period of exposure, on the other, eventually leading 

to an overall better performance of all groups. A similar confounding factor could have 

arisen in experiment 2 of study 1. In this experiment, after the exposure phase, 

participants had to observe grammatical and non-grammatical sequences passively, 

which we can argue could have led to the acquisition of the error. However, this did not 
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lower the results in the final grammatical test, probably due to the extended exposure 

period of five days. 

In study 2, we opted for a significant change in the method used to assess implicit 

learning by employing a statistical learning task instead of the artificial grammar learning 

paradigm used in the other studies. This choice was essentially due to practical issues, 

namely, the fact that we wanted to replicate Arciuli and Simpson's (2012) study with a 

different orthography and with a larger sample (making the option of presenting the 

artificial grammar learning task for several days impractical). In addition, previous 

studies showed that the statistical learning task provided evidence for long-lasting 

implicit learning (e.g. Arciuli & Simpson, 2012a; Kim et al., 2009). As already argued in 

the study 2 discussion section, the performance on the test phase was disrupted in the 

course of the task, and participants’ performance begin to decline throughout the task. 

Approximately half-way through the task, participants that were able to distinguish 

between previously presented triplets and new triplets unexpectedly showed a 

performance at chance level or reversed performance (choosing the new triplets as 

previously presented). This occurred because participants were not instructed that the 

same amount of new and old triplets appeared in the test phase, and since each new 

triplet appeared 16 times each, participants started to second-guess their choices and 

accept the new triplets as old ones. Due to this unforeseen setback, we decided to 

perform all the posterior analysis considering only the first half of the test, but future 

studies should consider making alterations to this test or, at least, drawing the attention 

of participants of the repetitive nature of the stimuli, minimizing the acquisition of new 

triplets knowledge during the test phase. 

Despite of the method employed in each study and the described limitations that 

occurred, we believe that there is evidence of implicit learning in all studies. In addition 

to the essential criteria of performance above chance levels (or above preference 

baseline performance), both in the artificial grammar learning tasks presented in studies 

1 and 3 and in the statistical learning task adopted in study 2, there were no reports of 

explicit knowledge by the participants. There was, however, partial knowledge of 

fragments of the grammatical strings (in the AGL tasks) or of two out of three triplets (in 

the statistical learning task). Furthermore, even when it did not reach significance (as in 
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study 1), we observe an influence of this fragment knowledge in participants’ 

performance. Despite this influence, performance on the implicit learning tasks cannot 

be explained only by this fragment knowledge, and thus implicit processes still occurred. 

Although the focus of these studies was to isolate the implicit learning processes in order 

to study them (in line with what it is done in the implicit learning literature), implicit and 

explicit learning might not operate separately in real-world situations. It is probable that 

in real contexts, there is mixture of implicit (or incidental) and explicit (or intentional) 

learning, implying that implicit processes typically do not operate on their own (Pacton 

& Perruchet, 2008). This combination was probably reflected in our studies, where we 

observe an influence of explicit knowledge (the fragment knowledge) and implicit 

processes (demonstrated by the performance above chance level/baseline despite 

unawareness of the underlying rules/triplet sequences). Further studies are needed to 

assess how explicit knowledge can be combined with implicit learning and how these 

processes interact. 

In this thesis, we explored the use of written language regularities that are not 

taught when formal literacy is acquired. Although those orthographic regularities have 

not been explicitly addressed in formal teaching, we observed a trend for the use of 

specific frequent orthographic patterns. The most common and logical assumption is 

that if these patterns are used and not explicitly taught, then they must have been 

implicitly acquired. An important approach in study 2 was the establishment of a link 

between literacy skills and implicit learning through a correlational study with typical 

adult readers. Although we cannot infer causality from a correlational study, our results 

present evidence that the participants’ variance in the literacy measures goes hand-in-

hand with their implicit learning skills variability. This evidence led to the questioning of 

whether dyslexics’ deficits could be, at least in part, due to implicit learning deficits. We 

saw that this was not the case, as dyslexic children present a similar implicit learning 

performance as typical readers do. Our studies open the way to new studies that can 

test the impact of the implicit learning skills on the extraction of the implicit regularities 

present in the conversion between written and oral language. For example, it would be 

interesting to study whether individuals extract reading regularities, such as untaught 

stress syllable patterns. It would be also interesting to assess whether dyslexics extract 
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the implicit regularities present in written language, as typical readers do. If this 

extraction depends only on implicit learning processes, then the performance would be 

similar to that of typical readers, and this opens up new fields in remediation 

programmes. 

There are several possibilities to extend the research presented in this thesis into 

research from a more practical perspective. One straightforward suggestion that can be 

offered is that it is important that children read a lot. By doing so, they will learn about 

the orthographic patterns in written words and about links between spellings and 

linguistic units through exposure to words as they read. The implicit extraction of the 

untaught written regularities will also take place (boosted, as we saw, by implicit 

learning abilities), thus reinforcing the reading and writing proficiency. Although this 

suggestion is very attractive, it is usually not viable for either motivational reasons (in 

children that do not find reading a pleasant activity), or for clinical difficulties that 

prevent proficient reading (such as in dyslexia). It is important, however, to find 

alternatives that are more appealing, such as computer games that include specific 

regularities embodied in stimuli, potentiating the acquisition of these implicit 

regularities in both typical readers and individuals with reading and writing disorders 

(Apfelbaum, Hazeltine, & McMurray, 2013; Protopapas et al., 2017). It would therefore 

be useful to create materials that take advantage of these implicit learning processes for 

clinical and educational purposes. 

In conclusion, the work presented in this thesis has a twofold contribution to the 

discussion of the mechanisms of implicit learning. First, we showed how implicit learning 

can be measured without explicit interference, presenting, for the first time, evidence 

of an eye-tracking signature of implicit knowledge in artificial grammar learning tasks. 

This method can be particularly useful, for example, in studying implicit learning in 

children. Secondly, we investigated the influence of implicit learning in literacy 

proficiency and how implicit learning operates in reading disabilities. This thesis provides 

evidence that implicit knowledge variability goes hand-in-hand with literacy proficiency, 

and that an implicit learning deficit does not seem to be an underlying cause of dyslexia. 
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APPENDIX 1 

Example of Stimulus Material Used in Experiment 

HG items ACS  HNG items ACS 

M-S-S-S-V-R-X-V-R-X-V-S 61.47  M-X*-S-S-V-R-X-V-R-X-(S)-S 61.79 

M-S-V-R-X-V-R-X-R-R-R-R 53.38  M-S-V-R-X-V-R-X-(S)-X*-R-R 53.33 

M-V-R-X-S-S-S-V-R-X-R 63.63  M-V-R-X-(R)-X*-S-V-R-X-R 61.32 

M-S-V-R-X-S-S-S-S-S-S-V 58.52  M-S-V-R-X-S-S-(V-R)-S*-S-V 58.76 

V-X-V-R-X-S-S-S-S-S-S-V 55.48  V-X-V-R-X-S-S-(V-R)-S*-S-V 55.71 

     

LG items ACS  LNG items ACS 

V-X-S-V-R-X-R-R-R-M 46.76  V-X-S-V-R-X-(V)-X*-R-M 46.82 

M-S-S-S-V-R-X-R-R-R-M 48.05  M-S-S-S-V-R-X-(V)-X*-R-M 48.11 

M-S-S-S-S-S-S-S-V-S 44.76  M-S-S-(V-R)-S*-S-S-V-S 45.06 

V-X-S-S-S-S-S-S-S-V-S 44.95  V-X-S-S-(V-R)-S*-S-S-V-S 45.21 

M-S-S-S-S-S-S-S-S-V-S 44.95  M-S-S-(V-R)-S*-S-S-S-V-S 45.21 

Note. Associative chunk strength (ACS) frequency distribution of two and three letter chunks in relation to the 

acquisition stimuli: Each letter sequence is decomposed into two and three letter chunks, and the frequency of these 

chunks in the acquisition sequences is calculated. Example of the calculation of ACS: MSSVRXVRXVS is decomposed 

in the bigrams MS (40), SS (59), SV (87), VR (97), RX (97), XV (50), VR (97), RX (97), XV (50), VS (16). The frequencies 

of these bigrams in the learning sequences are shown in parenthesis. The sequence was also decomposed in the 

trigrams, MSS (27), SSV (59), SVR (75), VRX (97), RXV (37), XVR (41), VRX (97), RXV (37), XVS (8). The ACS of this item 

was calculated by averaging its different bigram and trigram frequencies. The obtained ACS is 61.47. It indicates that 

the item’s fragments were highly frequent in the acquisition set (high ACS item). The non-grammatical (NG) items 

were derived from the grammatical (G) sequences by, first, switching letters in two nonterminal positions (in bold). 

In most cases,  switched letters violated the grammar (X in M-X*-S-S-V-R-X-V-R-X-(S)-S), in other cases they did not 

(the second S in M-S-V-R-X-VR-X-(S)-X*-R-R, in parenthesis). So, we then looked for the first violating letters (X, 

marked with an asterisk) and selected it as the critical trigger event. HG = high grammatical; HNG = high non-

grammatical; LG = low grammatical; LNG = low non-grammatical. 
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APPENDIX 2 

“Monster” stimuli used in the statistical learning task 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Stimulus A Stimulus B Stimulus C 

Stimulus D Stimulus E Stimulus F 

Stimulus G Stimulus H Stimulus I 

Stimulus J Stimulus K Stimulus L 
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APPENDIX 3 

Stimulus material. Mean ACS (standard deviations in parenthesis and range 

in brackets) and length distribution for sequences used in acquisition and 

classification tasks. 

 

 n Mean ACS % of stimulus type per sequence length 

   4 letters 5 letters 6 letters 7 letters 

Acquisition Set 36 
15.73 (1.49) 

[10.40 - 18.33] 
13.9 22.2 25.0 38.9 

Classification Set       

GH 10 
15.61 (1.75) [12.64 

- 17.45] 
0 10 30 60 

GL 10 
8.37 (2.46) 

[4.73 - 12.09] 
0 20 30 50 

NGH 10 
15.45 (1.87) [12.36 

- 17.64] 
0 10 30 60 

NGL 10 
8.11 (2.44) 

[4.45 - 12.00] 
0 20 30 50 

ACS = Associative chunk strength, G = Grammatical, NG = Non Grammatical, H = High ACS, L = Low ACS 
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