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Abstract: Following the derivation presented by Press and Ewing
[Geophysics 15, 426-446 (1950)], a normal mode solution for the Pekeris
waveguide problem with an elastic bottom is outlined. The analytic solu-
tion is benchmarked against data collected in an experiment performed
at the Naval Research Laboratory [Collis et al, J. Acoust. Soc. Am.
122, 1987-1993 (2007)]. Comparisons reveal a close match between the
analytic solution and experimental data. Results are strongly dependent
on the accuracy of the horizontal wavenumbers for the modes, and hori-
zontal wavenumber spectra are compared against those from the
experimental data.
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1. Introduction

Ocean acoustic studies generally assume that the ocean bottom is fluid, and normal mode
solutions for seismo-acoustic environments have received limited attention because effects
due to elasticity in the bottom may not be a significant factor in many propagation scenar-
ios.! The seismo-acoustic environment considered here, that of an oceanic fluid layer over-
lying an elastic half space, will be referred to as the elastic Pekeris waveguide. In this pa-
per, we compare normal mode solutions for the elastic Pekeris waveguide problem against
data from a seismo-acoustic tank experiment performed in 2004 at the Naval Research
Laboratory.”> Close agreement between normal mode solution predictions and measured
experimental data is obtained for nearly range-independent propagation problems.

2. Normal mode solution

Among the first mathematical solutions to a shallow-water acoustic propagation problem
was the Pekeris waveguide in 1948.> This waveguide was extended to include an elastic
solid bottom by Press and Ewing in 1950,* and it is their solution that is employed here.
The bottom is assumed to be an isospeed solid half space of constant density p,, compres-
sional wave speed ¢,, and shear wave speed ¢,. The water layer assumes constant com-
pressional wave speed ¢; and density p;. Field and environmental quantities will be
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denoted by a subscript (1) in the water, (2) in the bottom, and quantities associated with
the shear wave field by an (s). An axially symmetric cylindrical coordinate geometry is
assumed, the z-coordinate positive downwards, with the waveguide boundaries assumed
planar and parallel. A time-harmonic point source of angular frequency w and time de-
pendence exp(—iwt?) is assumed in the water at depth z;< H, with H the depth of the
water.

Pressure fields are determined from the compressional and shear displacement
potentials, ¢(r, z) and Y(r, z), by

2
C
p=poidr pr =22, M
B Ow _ 0 o _0¢, Py,
b=l +50 = g =g Ttk

where A is the dilatation, p is the acoustic pressure, u is the horizontal particle dis-
placement in the r direction, w is the vertical particle displacement, and k is the me-
dium wavenumber. The potentials are solutions to the Helmholtz equations

(V2+ k)¢, =0, j=1,2, )
(V> + k) =0, 3)

for medium wavenumbers k; = w/c; and k, = w/c,, with the V? operator in cylindrical
coordinates. Loss in the bottom is included by using complex wave speeds
G, =c/(1 +inoy) and Cs = ¢,/(1 + ir/ocs),5 where «, and o, are the compressional and
shear wave attenuations in decibels per wavelength, and 5 = (40zlog,se) . The poten-
tials must satisfy a pressure-release surface boundary condition, and continuity of verti-
cal particle displacement, normal stress, and tangential stress at the bottom interface

(rbl = Oa at z = 07 (4)
wp = Wy, (O-zz)l = (6':)27 (Gzr)z = 07 at z = H7 (5)

with the normal and tangential stresses given by

(©)

ow du Ow
Ozz = )°V2¢+2'ME» Oz = ﬂ(E—FE)a

where 4 and u are Lamé constants.

Boundary conditions are satisfied explicitly, and the point source singularity is
treated using the approach of Ref. 4, which involves separating the fluid layer into two
layers at the source depth and applying continuity of pressure and discontinuity of ver-
tical displacement across this interface. The particle displacement potential above the
source is denoted without a prime as ¢, and the potential below the source is denoted
with a prime as ¢|. The particle displacement potentials satisfying the two-dimensional
Helmbholtz equations and boundary conditions are of the form

) = 2J (A sin(k.2)Jo (k)] oy, 0 < 2 < 2, ™
0
¢ = 2J [(Bsin(k.1z) + Ccos(k.12))Jo(kr)|kdk,, zy <z < H, 8)
0
¢y = 2J [De %% Jy (kr) kodk,, z > H, )
0
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V= 2J [Ee™%=5 Jo (k)] kvddhey, z > H, (10)
0

where k;, k.1, k-, and k. are found by substituting the arguments of Egs. (7)-(10) into
the respective Helmholtz equations, and 4, B, C, D, and E are constants determined by the
boundary and interface conditions. The Vertlcal and horizontal wavenumber components
in the fluid are related to the medium wavenumber by k-1 = (k2 — k2)'/?. In the bottom,
k- and k. ; are defined following the convention® of Pekeris

7 2 _ 2 _q 2 _ 2
. iJk2— k2, k| < ks ke ik — k2, k| < ks

V-8B, lkl>k K-k, |kl >k,

to satisfy the radiation condition for z — oco.

Applying boundary and interface conditions results in a linear system with a
solution having poles for values of the horizontal wavenumber where the determinant
of the coefficient matrix vanishes. The determinant for the elastic Pekeris waveguide is
given by

PlCUk2

det(k,
(kr) = oy & ooy

tan(k. H) — [4k2k.2k., — (2k> — 0 /c2)?). (11)

The transcendental equation det(k,) = 0 is referred to as the characteristic equation for
this problem and its roots are found numerically. For the elastic Pekeris waveguide prob-
lem, finding these complex roots accurately is challenging. A useful discussion and analy-
sis of root finding for the elastic Pekeris waveguide problem can be found in Ref. 6.

The integrals in Egs. (7)—(10) can be expressed exactly as the sum of a contour
integral and two branch line mtegrals corresponding to the branch points k, = k; and
k, = kz " The contour integral is evaluated as a sum of residues,® which vary as r~ 2
and give the normal mode solution, while the branch line integrals (continuum contri-
bution) vary as r~2 and are neglected by assuming kr > 1 (far field assumption). Find-
ing roots to the characteristic equation locates the residues and yields the horizontal
wavenumbers for the system k.

Writing the modal phase speed corresponding to the horizontal wavenumbers &,
as ¢, = o/k,, the normal mode solution in the fluid far from the source is found to be

2n [2 | . :
¢y(r,z) = ¢ (r,2) = ﬁn \/—rz\/?e“km'*“/“)q)l(k,.,z)sm(kﬂzs)sm(kz,lz), 0<z<H,
T m '
(12)
where

pl(’ kzz

O = —k,,H—
: Py ey

( 2/ — 1M cos(kz,lﬂ))_l, (13)

and

4 . L H 1 — 2 /.2 k)nH 1765/62
_me sin(k. 1 H) {1 n Cn/c2:| _ ﬁsec(kz,lH)
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Note that although the vertical wavenumber k. ; has no subscript #, it is a function of &,
and so varies with n. The displacement potential solutions for ¢,(r, z) and ¥ (r,z) are not
given here, as they are not needed for comparisons, but may be found in Refs. 4 or 7.

3. The NRL experiment

In April 2004, a series of scale-model tank experiments were performed, in part to test
the validity of parabolic equation seismo-acoustic solutions. The experimental data col-
lected was shown to have excellent agreement with an elastic parabolic equation solu-
tion for both range-dependent and range-independent environments.> In the current
work, only the range-independent case is considered. In the experiment, a large fresh-
water tank represented the ocean, and an elastic bottom was represented by a
122 x 122 x 10cm PVC slab suspended in the water by cables. Material properties of
the slab were estimated in a separate laboratory test.> Source and receiver hydrophones
were positioned over the slab using a robotic apparatus for accurate positioning. The
source position was fixed and the receiver was moved in 2 mm increments away from
the source at constant depth, creating a virtual aperture of 551 receiver elements.
Experiments were performed using a broadband source whose frequency response was
nominally flat between 100 and 300 kHz. Calculations with the normal mode solution
are presented at a scale of 1000:1 in order to compare with the experimental data and
to simulate an actual oceanic waveguide. For a more complete discussion of the experi-
ment, the reader is referred to the paper by Collis ez al.”

4. Propagation calculations

Geometric parameters used in normal mode solution calculations are from Ref. 2, spe-
cifically those determined through the use of a simulated annealing inversion scheme.
Comparisons between the experimental data and the normal mode solutions are made
using mid-depth and deep source positions and a deep receiver position. The depth of
the PVC plate at the source was 14.47 cm, while the depth of the slab edge near the
end of the propagation track was 14.54 cm. For normal mode calculations, the plate
depth is approximated as flat, parallel to the water surface, at 14.50 cm.

Solutions provided by normal mode calculations are highly sensitive to errors
in horizontal wavenumber estimates. In order to accurately determine the complex hor-
izontal wavenumbers the KRAKENC code is used.” Using the parameters discussed
previously, there are 19 wavenumbers corresponding to propagating modes for a
f=100kHz source; 39 propagating modes at f=200kHz; and 58 propagating modes
at f=300kHz. Note that the horizontal wavenumbers are independent of source
depth.

5. Comparisons of measurements and calculations

Data comparisons are made with the elastic Pekeris waveguide normal mode solution
for the compressional field in the water, Eq. (12). Results are presented for select
source frequencies of 100, 200, and 300 Hz. For all calculations, the water sound speed
is 1482 m/s and the slab density, sound speeds, and attenuations are the measured val-
ues given in Table 1. Computations are made to the effective maximum range of

Table 1. Values for the PVC plate used in the NRL experiment estimated at 300 kHz.

Parameter Value
Density (g/cm?) 1.378
Compressional speed (m/s) 2290
Compressional attenuation (dB/wavelength) 0.76
Shear speed (m/s) 1050
Shear attenuation (dB/wavelength) 1.05
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120 cm. All comparisons are made at the fixed receiver depth of z,=13.71 cm and two
source depths: mid-depth, z,=6.91cm, and deep z;=13.68cm. Comparisons are
shown for transmission loss (TL), calculated from the acoustic pressure in Eq. (1) as
TL(r,z) = —201log,, (abs(p(r,z)/po)), where py is the pressure 1 m from the source.

For the mid-depth source case, Fig. 1 shows transmission loss versus range of
the elastic Pekeris waveguide normal mode solution versus the experimental data.
There is close agreement between the calculated elastic bottom solution and the experi-
mental data. The solution follows even detailed variations in the transmission loss pat-
tern. As the frequency increases, there are amplitude differences between the patterns
closer to the source. Agreement between the elastic Pekeris waveguide solution and the
experimental data moderately differs beyond approximately 106.8 cm. This is due to
the fact that the PVC plate ends, introducing range-dependent bathymetry, which is
not accounted for by the normal mode solution.

For the deep source case, Fig. 2 shows transmission loss comparisons. Again,
agreement is excellent between the normal mode solution and measured data. The
transmission loss patterns are much more complicated due to source proximity to the
bottom, yet the solution does a generally excellent job of reproducing the field. Ampli-
tude differences are primarily observed near the source, and these increase with fre-
quency. As the range from the source increases, these differences decrease. This sug-
gests that the amplitude differences may be a result of the neglected mode continuum
due to the proximity to the source, which is in actuality about 10cm from the begin-
ning of the propagation track.

To consider the effects of modal content on field calculations, Hankel transfor-
mations are taken of the complex pressure data to generate wavenumber spectra shown
in Fig. 3. In Figs. 3(a) and 3(b), the elastic Pekeris solution closely matches the experi-
mental modal content at both source positions for a 100 Hz source frequency. Note
that below the compressional wavenumber for the bottom (approximately 0.27m™'),
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Fig. 1. Transmission loss versus range for the mid-depth source at 6.91cm and near-bottom receiver at

13.71 ecm. Comparisons show data (solid curve) and calculations from the elastic Pekeris waveguide normal
mode solution (dashed curve), for source frequencies: (a) 100 kHz, (b) 200 kHz, and (c) 300 kHz.
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solutions. Comparisons show data (solid curve) and calculations from Pekeris waveguide normal mode solu-
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except deep source; (c) same as (b) except fluid solution; (d) same as (b) except 200 Hz.
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the data and elastic solutions indicate modes in the sediment. A spectrum from a fluid
Pekeris waveguide solution® is shown in Fig. 3(c) for the deep source case. The fluid
solution does not capture all of the modal content when compared against the data;
however, it does capture major aspects such as the dominant second mode and also
the first compressional mode in the bottom. For a 200 Hz source [Fig. 3(d)], the wave-
number spectrum is more complex than for a 100 Hz source, yet the data and elastic
solution capture compressional modes (below approximately 0.55m™') in the bottom.
Note that for all cases, wavenumber spectra for the data and the simulations do not
capture any explicit information about modes associated with the shear field in the
bottom.

6. Summary

An adiabatic normal mode solution for the elastic Pekeris waveguide problem is
benchmarked against experimental data, and solutions are shown to be in close agree-
ment with the data. When effects due to elasticity are significant, the elastic Pekeris
waveguide solution accurately represents range-independent shallow water environ-
ments. Note that these results are specific to solutions far from the source. Horizontal
wavenumber spectra demonstrate that the elastic Pekeris waveguide solution captures
the modal content of the pressure field well, although there are differences that may be
used to explain discrepancies in field calculations. While modal content in the experi-
mental data could be used to invert for compressional field properties, there is no evi-
dence in this data that inversion could be performed for shear field properties.
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