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factorization of an explicit internal functor. We then analyse the Mal’tsev context where
similar results are obtained under weaker conditions on I .
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0. Introduction

Two well-known and, apparently, independent subjects are brought together in this work: central extensions and
factorization of functors. The aim is to make explicit the unexpected relationship between them in order to provide the
reflection of extensions to central extensions.

The categorical Galois theory developed by Janelidze in [22,23] gave a generalized interpretation of the classical Galois
theory, completing the work of other authors (see references in [22,23]). Several examples were investigated and exhibited,
eventually, a strong analogy between the notion of ‘‘covering’’ and the notion of a ‘‘central’’ morphism. This led to the
introduction of the definition of a central extension with respect to a reflection I : D → C associated with the inclusion
of an admissible subcategory of an exact category [1], j : C � D; see [24] and also [20]. These I-central extensions form, in
turn, a full subcategory of all extensions in D and simultaneously the question of its reflectiveness was raised.

Positive answers to this question have been given by several authors. For a quite general setting, G. Janelidze and
G.M. Kelly give in [25] sufficient conditions for the existence of such a reflector. In fact, the problem is successively reduced
to giving a reflection for more appropriate categories. Although the context that we work in does not fulfil these conditions,
it is still possible to adapt the process developed in [25],mainly because I-central extensions are I-normal (Proposition 2.10).
The resulting reflection can be shown to be the same as the one that we describe in Section 2. However, our construction is
fairly direct and simple, besides exploring the connection with a special factorization of functors. Some other known results
are given: Theorem 2.8.11 of [2] with an explicit description of the reflector for a finitely cocomplete Mal’tsev category D
and its subcategory of abelian objects C = DAb; Remark 4.4 of [26] for a description in the Mal’tsev varietal case; Lemma 4.3
of [18] where the reflector is expressed for a semi-abelian category D and any Birkhoff (and thus admissible) subcategory C
(also for higher-dimensional extensions).

The comprehensive factorization of a functor in the set-theoretical context gives a factorization into a final functor and
a discrete fibration [33]. The generalization of such a factorization into an exact context was first done in [4]. Such a
factorization represented an important tool in the development of the general non-abelian cohomology theory where
internal n-groupoids played the role of chain complexes [5]. It turns out that the factorization of specific internal functors
still holds in themore general context of efficiently regular categories [8], a notion intermediate between those of regular [1]
and exact categories. So, the range of examples can bewidened to includemany topological situations such as the categories
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of topological or Hausdorff (abelian) groups, topological or Hausdorff Lie algebras and, more generally, any category of
topological or Hausdorff algebras in the sense of [3].

The answer to our initial question (Theorem 2.17) is given for an efficiently regular category C such that the functor I
satisfies suitable left exact conditions: given any extension f : X � Y , the reflection to an I-central extension f̄ : X̄ � Y is
reduced to the comprehensive factorization of the upper internal functor η

1
f : R[f ] → IR[f ], of the following diagramwhere

R[f ] denotes the kernel equivalence relation of f , and f̄ the quotient of the domain R of the discrete fibration η
1
involved in

this factorization:

R[f ]
R(η̂) //

p1
��

p0
��

R
η1 // //

p1
��

p0
��

IR[f ]

Ip1
��

Ip0
��

X
η̂

//

f
����

X̄

f̄����

η0

// // IX

If
����

Y Y ηY
// // IY

The suitable but relatively strong left exact conditions needed in the general situation become much simpler in the
Mal’tsev context [15,16] on which we focus our attention and which deals with many subtle variations about the left
exactness of the functor I . These conditions hold for any inclusion j : C � D where D is a Mal’tsev variety and C is
any subvariety. In particular, they hold for the varieties D of (abelian) groups, quasi-groups, R-modules (for a fixed ring
R), (commutative) rings, associative algebras, Lie algebras and Heyting algebras. Given any finitely cocomplete efficiently
regular Mal’tsev category D, they also hold when C is the subcategory DAb of abelian objects of D. As shown in [10], an
application of our results to this last inclusion produces some cohomology isomorphisms.

The article is organized along the following lines: the first section refreshes the results of [4] concerning the
comprehensive factorization; Section 2 deals with the above specified result in the efficiently regular context; Section 3
modulates the assumptions to the regular Mal’tsev context, and finally the last section is devoted to the correlated, but
more specific question of whether the functor I preserves products.

1. The comprehensive factorization

In this section we recall the basic notions and properties concerning internal groupoids and internal functors needed to
obtain the comprehensive factorization of internal functors [4] for an efficiently regular context [8].

We shall suppose that all our categoriesE are finitely complete. Given the following right hand side commutative square,
we denote the kernel equivalence relation of f by R[f ] and the induced map between the kernel equivalences by R(x):

R[f ]

R(x)
��

p0 //

p1
// X

x
��

f //s0oo Y

y
��

R[f ′
]

//
// X ′

f ′
//oo Y ′

1.1. The shifting functor Dec

An internal groupoid X1 inEwill be presented (see [4]) as a reflexive graph (d0, d1) : X1 ⇒ X0 endowedwith an operation
p2 : R[d0] → X1:

R2
[d0]

R(p2)

��p2 //
p1 //
p0

// R[d0]

p2

��p1 //

p0
// X1

d1 //

d0
// X0s0oo

making the previous diagram satisfy all the simplicial identities, including the degeneracies, which express the usual axioms
for a groupoid. In a set-theoretical context, this operation p2 associates the compositeψ.φ−1 with any pair (φ, ψ) of arrows
of X1 with the same domain. In particular, any equivalence relation (p0, p1) : R ⇒ X on an object X in E provides an internal
groupoid.

Let GrdE denote the category of internal groupoids and internal functors in E, and ()0 : GrdE → E the forgetful functor
associating with an internal groupoid X1 its ‘‘object of objects’’ X0. This functor is a left exact fibration. Any fibre above an
object X has a terminal object ∇X , the indiscrete equivalence relation on the object X given by the product projections
(p0, p1) : X × X ⇒ X , and an initial object ∆X , the discrete equivalence relation on X given by (1X , 1X ) : X ⇒ X . They
produce respectively a right adjoint and a left adjoint of the forgetful functor ()0. An internal functor f

1
: X1 → Y 1 is
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()0-cartesian if and only if the following square is a pullback in E, or in other words if and only if it is internally fully faithful:

X1
f1 //

(d0,d1)
��

Y1

(d0,d1)
��

X0 × X0 f0×f0
// Y0 × Y0

We shall need the following definition:
Definition 1.1. An internal functor f

1
: X1 → Y 1 is said to be a discrete fibration when the following solid square is a

pullback:

X1

d0
��

d1
��

f1 // Y1

d0
��

d1
��

X0 f0
//

OO

Y0

OO

Since the codomain Y 1 is an internal groupoid, then the square with d0 is a pullback as well. It is easy to check that, when f
1

is a discrete fibration and its codomain Y 1 is an equivalence relation, then the same holds for its domain X1. The class Disf
of discrete fibrations contains the isomorphisms, is stable under composition and has the property that when g

1
.f

1
and g

1
are in Disf , then f

1
is in Disf . The discrete fibrations are also stable under pullbacks.

Given an internal groupoid X1, we define Dec X1 (the décalage of X1) as the following internal groupoid obtained by
shifting the indexation:

R3
[d0]

p3

��p2 //
p1 //
p0

// R2
[d0]

p2

��p1 //

p0
// R[d0]

p1 //

p0
// X1s0oo

It is the kernel equivalence relation of the map d0 : X1 → X0. We denote by ϵ1X1 : Dec X1 → X1 the following internal
functor:

R[d0]
p0 //

p1
//

p2
��

X1

d1
��

oo

X1

d0 //

d1
// X0oo

which is a discrete fibration and a regular epimorphism in GrdE, since it is levelwise split. It is clear that this shifting
construction Dec is functorial and left exact and that the internal functors ϵ1 determine a natural transformation Dec ⇒ Id
(which is actually underlying a comonad; see [4]). Moreover the following diagram, in the category GrdE, is a kernel
equivalence relation with its quotient:

Dec2X1

ϵ1Dec X1 //

Dec ϵ1X1

// Dec X1
ϵ1X1 // // X1 (1)

1.2. The support of an internal groupoid in the regular context

Recall that a category E is regular [1] when regular epimorphisms are stable under pullbacks and any effective
equivalence relation (i.e. which is the kernel equivalence relation of some map) admits a quotient. Regular categories are
also characterized by the existence of a pullback-stable (regular epimorphism, monomorphism) factorization system. Let us
begin by recalling a well-known theorem:
Theorem 1.2 (Barr–Kock). Let E be a regular category. Given any commutative diagram:

R[f ]

R(x)
��

p0 //

p1
// X

x
��

f // // Y

y
��

R[f ′
]

//
// X ′

f ′
// Y ′
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where f is a regular epimorphism, then the right hand side square is a pullback if and only if the internal functor R(x) : R[f ] →

R[f ′
] is a discrete fibration.

Corollary 1.3 ([24]). Let E be a regular category. Suppose that the following whole rectangle and the left hand side square are
pullbacks:

X ′
x // //

f ′

��

X

f
��

u // U

φ

��
Y ′

y
// // Y v

// V

If y is regular epimorphism, then the right hand square is a pullback.
Let E be a regular category. A regular epimorphism in a fibre, above an object X0, of the fibration ()0 : GrdE → E is an

internal functor f
1

= (f1, 1X0), where f1 is a regular epimorphism. Accordingly all of these fibres are regular, and any change
of base functor is left exact and preserves the regular epimorphisms. The canonical (regular epimorphism, monomorphism)
decomposition of the terminal map X1 → ∇X0 in the fibre:

X1 � Σ1X1 � ∇X0

gives an equivalence relation Σ1X1 called the support of the internal groupoid. Clearly the construction of the support
extends to a functor Σ1 : GrdE → ReqE, where ReqE denotes the category of equivalence relations in E; it is a reflection
of the inclusion ReqE � GrdE of the equivalence relations and, up to equivalence, a fibration, i.e. a fibred reflection in the
sense of [4].
Definition 1.4. An internal functor f

1
: X1 → Y 1 is called a Σ1-discrete fibration when f

1
and Σ1f 1 are both discrete

fibrations.
Immediately we get:

Lemma 1.5. A discrete fibration f
1

: X1 → Y 1 isΣ1-discrete if and only if the following square in GrdE is a pullback:

X1
// //

f 1
��

Σ1X1

Σ1f 1
��

Y 1
// // Σ1Y 1

Proof. This is a straightforward consequence of Corollary 1.3. �

Any discrete fibration between equivalence relations isΣ1-discrete. The classΣ1-dis ofΣ1-discrete fibrations contains
the isomorphisms, is stable under composition and has the property that when g

1
.f

1
and g

1
are in Σ1-dis, then f

1
is in

Σ1-dis. TheΣ1-discrete fibrations are stable under pullbacks andΣ1 preserves these pullbacks. Given an internal groupoid
X1, the discrete fibration ϵ1X1 isΣ1-discrete if and only if X1 is actually an equivalence relation (by Lemma 1.5 and by the
fact that ϵ1X1 is levelwise split).
Definition 1.6. An internal groupoid X1 is said to have effective support when the equivalence relation Σ1X1 is effective.
We shall denote by Gref E the full subcategory of GrdE whose objects are the internal groupoids with effective support.
The internal groupoids with effective support are stable under products. Note that, when E is exact [1] (i.e. when moreover
any equivalence relation is effective), any internal groupoid has effective support and we have Gref E = GrdE. We denote
by π0 : Gref E → E the functor which associates with an internal groupoid X1 the quotient qX1 : X0 � π0X1 of the effective
equivalence relation Σ1X1; it is a left adjoint to the inclusion ∆ : E → Gref E and consequently is right exact. When an
internal groupoid X1 has effective support, then the image under π0 of the above kernel equivalence relation with quotient
(1) in GrdE is the following coequalizer diagram in E:

X1

d0 //

d1
// X0

qX1 // // π0X1

Proposition 1.7. Any discrete fibration f
1

: X1 → Y 1 in Gref E isΣ1-discrete if and only if the following square is a pullback inE:

X0
qX1 // //

f0
��

π0X1

π0f 1
��

Y0 qY1

// // π0Y 1

The functor π0 preserves pullbacks, when they exist in Gref E, ofΣ1-discrete fibrations along any map.
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Proof. It is a straightforward consequence of the Barr–Kock Theorem 1.2. �

1.3. The efficiently regular context

We recall here from [8] a notion intermediate between those of regular and exact categories which allows us to integrate
many topological situations.

Definition 1.8. A regular category E is said to be efficiently regular when any equivalence relation T on an object X which is
a subobject j : T � R[f ] of an effective equivalence relation R[f ] on X by a regular monomorphism in E (i.e. j is the equalizer
of some pair of maps in E) is itself effective.

Example 1.9. Any exact category is always efficiently regular. The category of topological (abelian) groups is efficiently
regular, but not exact. The same holds for Hausdorff (abelian) groups and topological or Hausdorff Lie algebras. More
generally any category TopT (resp.HausT) of topological (resp. Hausdorff) protomodular algebras (whereT is a protomodular
theory) is efficiently regular: it is a regular category [3] and clearly an equivalence relation T on X is effective if and only
if the object T is endowed with the topology induced by the topological product, which is the case when j : T � R[f ] is
a regular monomorphism. When E is efficiently regular, so is any slice category E/Y , and any fibre of the fibration ()0 :

GrdE → E.

Let E represent an efficiently regular category. An important fact in such a context is that any discrete fibration above an
effective equivalence relation R[f ]:

S
d0 //

d1
//

f1
��

U

f0
��

q // // Q

φ

��
R[f ]

p0 //

p1
// X f

// Y

makes its domain S an effective equivalence relation on U , i.e. regular epimorphisms are effective for descent [28]. Then we
can complete the diagram with its quotient Q which makes the right hand side a pullback (by the Barr–Kock Theorem 1.2).
So, anyΣ1-discrete fibration f

1
: X1 → Y 1 having its codomain Y 1 with effective support has its domain X1 with effective

support. Consequently, in this context, the category Gref E admits pullbacks of Σ1-discrete fibrations along any map, and
the functor π0 : Gref E → E preserves them (Proposition 1.7).

Now suppose that we have a discrete fibration f
1

: R[q0] → Y 1 with q0 a regular epimorphism:

R[f1]
R(p0) //

R(p1)
//

����

R[f0]
q1 // //

����

T1

d1
��

d0
��

R[q0]
p0 //

p1
//

f1
��

X

f0
��

q0
// // T0

Y1

d0 //

d1
// Y0

(2)

Then completing the diagram by taking the vertical kernel equivalence relations makes the upper left hand side horizontal
diagraman effective equivalence relation,which produces, by its quotient T1, an internal groupoid T 1 (see [30]) and a discrete
fibration q

1
: R[f0] → T 1 (by the Barr–Kock Theorem 1.2). The following result enlarges a previous version only asserted in

an efficiently regular Mal’tsev context [9]:

Theorem 1.10. Let E be an efficiently regular category and consider the above construction (2). If Y 1 is an equivalence relation
(resp. has effective support), then T 1 is an equivalence relation (resp. has effective support); the converse is truewhen f0 is a regular
epimorphism.

Proof. According to Lemma 1.1 in [9], when Y 1 is an equivalence relation, then we have R[f0] ∩ R[q0] = ∆X , and since q0 is
a regular epimorphism, T 1 is an equivalence relation.

Now, suppose that Y 1 has effective support and let π0Y 1 = Q . Then consider the following diagram:
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R[f1]
R(p0) //

R(p1)
//

����

R[f0]
q1 // //

����

R(q0)

��
T1

d1
��

d0
��

ψ // R[q]

p1vvnnnnnnnnnnnnnp0

vvnnnnnnnnnnnnn

R[q0]
p0 //

p1
//

f1
��

R(f0)

!!

X

f0
��

q0
// // T0

q
��

Y1

d0 //

d1
//

σ1

����

Y0 qY1
// // Q

Σ1Y1

d0

BB������������� d1

BB�������������

Weare going to show that R(q0) is a regular epimorphism,whichwill imply that the factorizationψ is a regular epimorphism
and the effective equivalence relation R[q] is the support of T 1. This will come from the fact that σ1 is a regular epimorphism.
For that, consider the following diagram where P0 = Y0 ×Q T0, q0 = q̄ · π̂ , P1 = Σ1Y1 ×Y0 X and p0 = δ0 · σ̂1:

R[q0]
σ̂1 //

f1

��

p1

!!DD
DD

DD
D P1

δ0 //

��

δ1

!!DD
DD

DD
D X

f0

��

q0

�� ��?
??

??
??

X
π̂ //

f0

��

P0
q̄ // //

��

T0

q

��

Y1
σ1 // //

d1 !!DD
DD

DD
D Σ1Y1

d0 //

d1 ""

Y0

qY1 ��
Y0 Y0 qY1

// // Q

Since f
1
is a discrete fibration, the back left hand side square is a pullback, and the factorization σ̂1 is a regular epimorphism.

For the right hand side cube, the back, bottom and front faces are pullbacks. Thus the top right face is a pullback and,
consequently, the factorization δ1 is a regular epimorphism. It is easy to check that the factorization π̂ is such that π̂ .p1 =

δ1.σ̂1. This composite is a regular epimorphism since so are δ1 and σ̂1. Accordingly the map π̂ is a regular epimorphism.
Finally, by taking the vertical kernel pairs of the front rectangle we get R(q0) = R(q̄).R(π̂), which is a regular epimorphism
as a composite of regular epimorphisms: the map R(q̄) because the front right hand side square is a pullback and so R(q̄) is
a pullback of q̄; the map R(π̂) because it is the product of the regular epimorphism π̂ by itself in the regular category E/Y0.

The converse is true in both cases when f0 is a regular epimorphism, since, then, the roles of Y 1 and T 1 are totally
symmetric. �

1.4. The comprehensive factorization

We shall suppose from now on that E is an efficiently regular category. Let f
1

: X1 → Y 1 be an internal functor. Next,

we give sufficient conditions for the comprehensive factorization f
1

= f
1
.f̂

1
, into a final internal functor and a discrete

fibration, to hold. For that we consider the following diagram in GrdE with the right hand side pullbacks:

Dec2X1

ψ2
1 //

Dec2f 1

��

Dec ϵ1X1

��
ϵ1Dec X1

��

V 1

φ21 //

����

Dec2Y 1

Dec ϵ1Y1

��
ϵ1Dec Y1

��
Dec X1 ψ1

//

OO

ϵ1X1
����

U1 φ1

//

OO

e1
����

Dec Y 1

OO

ϵ1Y1
����

X1 X1 f 1

// Y 1

(3)
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The middle vertical diagram is then a kernel equivalence relation with quotient, since so is the right hand side vertical
one. Since the two upper right hand side vertical arrows are Σ1-discrete fibrations, so are the two unlabelled projections
V 1 ⇒ U1. Consequently, if U1 has effective support, then so does V 1; we denote their quotients by π0U1 = T0 and
π0V 1 = T1.

Proposition 1.11. Suppose that E is efficiently regular, f
1

: X1 → Y 1 is an internal functor and the internal groupoid U1 of the
previous construction (3) has effective support. Then the image by π0 of the upper part of (3):

X1
f̂1 //

d1
��

d0
��

T1
f 1 //

d1
��

d0
��

Y1

d1
��

d0
��

X0
f̂0

//

OO

qX1 ����

T0
f 0

//

OO

qT1����

Y0

OO

Q Q

produces the universal decomposition of f
1

= f
1
.f̂

1
: X1 → T 1 → Y 1 through a discrete fibration f

1
. If, moreover, the internal

groupoid X1 has effective support, then the internal groupoid T 1 has effective support and the same quotient Q as X1 (we can
extend the diagram with the dotted coequalizers).

Proof. The upper right hand side pullbacks in (3) having Σ1-discrete fibrations as vertical edges are preserved by π0

(Proposition 1.7) and produce the discrete fibration f
1
. Suppose now that f

1
= g

1
.h1 with g

1
a discrete fibration. In

the following diagram, the right hand side squares are pullbacks since g
1
is a discrete fibration, whence the following

factorizations with φ
1

= Dec g
1
.h̄1:

V 1
h̄21 //

��

φ21

��

��

Dec2Z1

Dec2g1 //

����

Dec2Y 1

Dec ϵ1Y1

��
ϵ1Dec Y1

��
U1

h̄1

//

OO

e1
��

Dec Z1 Dec g1

//

OO

ϵ1Z1
��

Dec Y 1

OO

ϵ1Y1

��
X1 h1

//

f 1

FF
Z1 g1

// Y 1

which make the left hand side squares pullbacks. The image by π0 of the upper pullbacks:

T1
τ1 //

d1
��

d0
��

f̄1

��
Z1

g1 //

d1
��

d0
��

Y1

d1
��

d0
��

T0 τ0
//

OO

f̄0

JJZ0 g0
//

OO

Y0

OO

produces the factorization τ 1 : T 1 → Z1 such that f̄
1

= g
1
.τ 1 that we were looking for. It is easy to check that

τ 1.f̂ 1 = h1.
When X1 has effective support, we can apply π0 to the left hand side of (3): both vertical coequalizers are preserved and

coincide. To see that T 1 has effective support, we just apply Theorem 1.10 to the following diagram:
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Σ1V1

d0 //

d1
//

����

V0
qV1 // //

����

T1

d1
��

d0
��

Σ1U1

d0 //

d1
//

ξ
����

Σ1e1

!! !!

U0

e0����

qU1

// // T0
q

����
Ξ1

d0 //

d1
//

ξ̄

��

X0 qX1
// // Q

Σ1X1

d0

DD												
d1

DD												

where Ξ1 denotes the quotient of the effective equivalence relation Σ1V1 ⇒ Σ1U1 (it is effective because it is a discrete
fibration above the effective equivalence relation V0 ⇒ U0 in an efficiently regular context). Note that, sinceΣ1e1 : Σ1U1 �
Σ1X1 is a regular epimorphism, so is the factorization ξ̄ : Ξ � Σ1X1. Thus the internal groupoids X1 andΞ 1 have the same
effective supportΣ1X1. �

Recall that the discrete fibrations are stable under composition and pullbacks. Then necessarily the factorization f̂
1

given in Proposition 1.11 belongs to the class of morphisms which is orthogonal to the class Disf of discrete fibrations (see
Theorem 1.8 in [17]) namely the class of those internal functors φ

1
: M1 → N1 such that any commutative square with k1

a discrete fibration produces a unique diagonal factorization:

M1
//

φ1
��

A1

k1
��

N1
//

>>

B1

So according to the terminology introduced in [33] when E is Set , and extended to any exact context in [4], we shall call
this orthogonal class the class of final internal functors and the previous decomposition the comprehensive factorization of
the internal functor f

1
. Clearly, when E is exact, any internal functor f

1
admits a comprehensive factorization. This was

first shown in [4]. Next, we describe two important situations where such a decomposition holds in an efficiently regular
context; we use the notation of diagram (3) and Proposition 1.11.

Corollary 1.12. Suppose that E is an efficiently regular category. Then the comprehensive factorization of an internal functor of
the form f

1
: R[q̂] → Y 1 exists. Moreover the internal groupoid T 1 is itself an effective equivalence relation which has the same

quotient as R[q̂].

Proof. The internal functor e1 : U1 → R[q̂] being a discrete fibration and E efficiently regular, the internal groupoid
U1 is an effective equivalence relation; the comprehensive factorization holds. By adapting the last diagram in the proof
of Proposition 1.11 to this context, the fact that X1 = R[q̂] is an effective equivalence relation implies that T 1 is the
effective equivalence relation R[q] (again Theorem 1.10). Not only does it have the quotient Q as R[q̂], but according to
Proposition 1.11, the internal functor f̂

1
: R[q̂] → R[q] induces the identity on Q . �

Corollary 1.13. Let E be an efficiently regular category. Then the comprehensive factorization of an internal functor of the form
f
1

: ∇X → Y 1 exists and is given by ∇X → ∇T → Y 1.

Proof. The indiscrete equivalence relation ∇X is effective and its quotient is a subobject Q of the terminal object 1. By the
previous proposition, the internal groupoid T 1 is then an effective equivalence relationwith quotientQ , namely an indiscrete
equivalence relation ∇T . �

2. Reflections and I-centralization functors

Given an extension f : X � Y , the comprehensive factorization of a specific internal functor provides the main tool
which allows the construction of the reflection of an extension to a central extension (with respect to a reflection functor I).
In this section we establish sufficient conditions for which such a construction holds (see also [25]).

Let j : C � D be a full replete reflective inclusion.
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2.1. The reg-epi reflections

Recall the following:

Definition 2.1. A reflection I : D → C of the inclusion j is said to be a reg-epi reflection when any reflection morphism
ηX : X � IX is a regular epimorphism.

When D is a regular category and I : D → C is a reg-epi reflection, a map in C is a regular epimorphism in C if and
only if it is a regular epimorphism in D and C is also a regular category. The fact that the reflection morphisms are regular
epimorphisms is equivalent to saying that C is closed under subobjects. If C is also closed under regular epimorphisms, then
it is called a Birkhoff subcategory of D [24]. For instance, a Birkhoff subcategory of a variety is just a subvariety. From now
on D represents a regular category and I : D → C a reg-epi reflection.

Following [24], we shall now be interested in certain classes of maps with respect to the reflection I:

Definition 2.2. Given a regular category D and a reg-epi reflection I : D → C, a map f : X → Y in D is said to be I-trivial
when the following square is a pullback:

X
ηX // //

f
��

IX

If
��

Y ηY
// // IY

Clearly the isomorphisms are I-trivial, and the I-trivial maps are stable under composition and have the property that,
when g.f and g are I-trivial, then f is I-trivial. Also I-trivial maps are stable under the pullbacks which are preserved by the
reflection I . This last point emphasizes the importance of those pullbacks inDwhich are preserved by I . In fact, analysing the
left exact properties of I plays a main role in this work; in particular, the preservation of products investigated in Section 4.
Finally, an I-trivial map f is certainly I-cartesian, namely universal among the maps above If .

Example 2.3. Suppose that D is a regular category.
1. The category GrdD is not necessarily regular, but the reflectionΣ1 : GrdD → ReqD is a reg-epi reflection. In this context,
any ()0-cartesian functor f

1
isΣ1-trivial. By Lemma 1.5, a discrete fibration isΣ1-discrete if and only if it isΣ1-trivial.

2. The category Gref D is not necessarily regular, but the reflection π0 : Gref D → D is a reg-epi reflection. An internal
functor is π0-trivial if and only if it isΣ1-discrete by Proposition 1.7.

Definition 2.4. Given a regular category D and a reg-epi reflection I : D → C, a map f : X → Y is called I-central when
it is I-trivial up to a regular epimorphism; that is, there exists a regular epimorphism along which f is pulled back onto an
I-trivial map. A map f is called I-normal, when its projection p0 : R[f ] → X (or p1) is I-trivial.

The class of I-central morphisms contains the I-trivial morphisms and thus the isomorphisms. It is not stable under
composition, nor under pullbacks, in general. Any I-normal extension f is I-central (pullback f along itself). Notice that,
although any I-trivial extension is I-central, it is not necessarily I-normal. However it is clear that when I-central extensions
and I-normal extensions coincide, any I-trivial extension is I-normal.

2.2. I-central and I-normal extensions

We now analyse under which conditions are we able to show that I-trivial extensions are I-normal, and that I-central
and I-normal extensions coincide. Eventually, thanks to the comprehensive factorization,we shall associatewith any regular
epimorphism an I-central (=I-normal) extension.

Proposition 2.5. Let D be a regular category and I : D → C a reg-epi reflection. Consider the following conditions for a regular
epimorphism f : X � Y :

1. f is an I-trivial extension;
2. f is an I-normal extension;
3. IR[f ] ≃ R[If ].

If any two conditions are satisfied, then the third one holds. More generally, an I-trivial map f is I-normal if and only if
IR[f ] ≃ R[If ].

Proof. It is a straightforward consequence of Corollary 1.3. �

Example 2.6. Let C be a Birkhoff subcategory of an exact Goursat [14] (and a fortiori Mal’tsev [15,16]) category D (with
reflection I). Then the notions of I-central and I-normal extensions coincide (Theorem 4.8 of [24]).

Definition 2.7. Given a regular category D, a reg-epi reflection I : D → C is called a regular reflection when it preserves
pullbacks of split epimorphisms along regular epimorphisms.
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Example 2.8. Regular reflections.
1. Let D be a semi-abelian category [27]. Then the abelianization functor I : D → DAb is a regular reflection (Lemma 8.2 of
[21]; see also Section 4.2 and Theorem 3.16).
2. If D is a regular Mal’tsev category, thenΣ1 : GrdD → ReqD is a regular reflection (Proposition 3.2).
3. Any Birkhoff subcategory of an exact Mal’tsev category determines a regular reflection (Theorem 3.16).

Regular reflections preserve, in particular, kernel equivalence relations of split epimorphisms, and thus preserve internal
groupoids. This produces a functor still denoted by I : GrdD → GrdC for the sake of simplicity.

Lemma 2.9. Let D be a regular category and I : D → C a regular reflection. Then any I-trivial map is I-normal.

Proof. When f : X → Y is I-trivial, the pullback defining it produces the following whole rectangle of pullbacks of split
epimorphisms along the regular epimorphism ηX :

R[f ]

R(ηX )

�� ��

p1
��

p0
��

ηR[f ] // // IR[f ]
χ //

Ip1
��

Ip0
��

R[If ]

p1
��

p0
��

X ηX
// //

ηX

JJ JJ
IX IX

It is preserved by I . This makes the right hand side squares pullbacks, and the factorization χ an isomorphism. Then
p0 : R[f ] → X is I-trivial and f is I-normal. �

Proposition 2.10. Given a regular category D and a regular reflection I : D → C, any I-central map is I-normal. Accordingly
the I-central extensions and I-normal extensions coincide.

Proof. Suppose that f is an I-central map and h : Y ′ � Y is the regular epimorphism along which f is pulled back onto an
I-trivial map f ′

: X ′
→ Y ′. Then consider the following diagram:

R[f ′
]

ηR[f ′] // //

p0

��

p1

��

R(g)
"" ""EE

EE
EE

E IR[f ′
]

Ip0

��
Ip1

��

IR(g)

## ##GG
GG

GG
G

R[f ]
ηR[f ] // //

p0

��

p1

��

IR[f ]

Ip0

��

Ip1

��

X ′
ηX ′

// //

g ## ##FF
FF

FF
FF IX ′

Ig ## ##
X ηX

// // IX

where g denotes the pullback of h along f . The left hand side and back faces (by Lemma 2.9 f ′ is I-normal) are pullbacks.
Since I preserves the left pullbacks, then the right faces are pullbacks. By Corollary 1.3, the front faces are pullbacks. So, the
projections pi : R[f ] → X are I-trivial, and the map f is I-normal. We conclude that any I-central extension is I-normal. �

It is known from Proposition 4.7 of [24] that, for an exact category D and an admissible reflection I : D → C
(Definition 2.12 below), the notions of I-centrality and I-normality coincide if and only if every split I-central extension
is I-trivial. In our context, we get the following:

Corollary 2.11. Given a regular category D and a regular reflection I : D → C, any split epimorphism f which is I-central is
I-trivial.

Proof. Being split and I-central, f is an I-central extension, and thus an I-normal extension. On the other hand, being split,
its kernel equivalence relation is preserved by I . According to Proposition 2.5, it is I-trivial. �
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2.3. The I-centralization functor

Given a regular category D and a reg-epi reflection I : D → C, we denote by Ext(Y ) the category of extensions over Y and
by CExtI(Y ) its full subcategory of I-central extensions. When C is also efficiently regular and I is a regular reflection, then
the inclusion functor j1 : CExtI(Y ) ↩→ Ext(Y ) admits a reflection I1 : Ext(Y ) → CExtI(Y ), called the (I-)centralization functor
(see [25]). We are going to show now that I1 can be defined through the comprehensive factorization given in Section 1.4,
combining two, apparently, independent subjects.

By Corollary 1.12, the internal functor η
1
f = (ηR[f ], ηX ) : R[f ] → IR[f ] factors through an effective equivalence relation

with the same quotient as R[f ]; say R[f ] → R[f ] → IR[f ]. So f : X � Y is an extension with the same codomain as f and
gives a candidate for the (I-)centralization of f . To be I-central (=I-normal), the projections pi : R[f ] → X must be I-trivial.
Since R[f ] → IR[f ] is a discrete fibration, these projections are pullbacks of the extensions Ipi : IR[f ] → IX (see the first
diagram of the proof of Theorem 2.17). Therefore, it is convenient for I to have the following property:

Definition 2.12. Given a regular category D, a reg-epi reflection I : D → C is said to be admissible when any pullback of a
regular epimorphism φ in C of the form

X
g // //

f ����

A

φ
����

Y ηY
// // IY

is I-trivial.

Lemma 2.13. Let D be a regular category and I : D → C a reg-epi reflection. Then I is admissible if and only if any pullback of a
regular epimorphism in C is I-trivial. Then I preserves such pullbacks. Hence a reg-epi reflection I is admissible if and only if the
I-trivial extensions are stable under pullbacks.

Proof. The first point is Proposition 3.3 of [24] and the second one a straightforward consequence of the first one. �

Remark 2.14. From the previous lemma, we conclude that when I is admissible, the I-trivial extensions, being also stable
under composition, are then stable under products and that I-normal maps and I-central extensions are stable under
pullbacks.

Example 2.15. For every Birkhoff subcategory C of an exact Goursat (and a fortiori Mal’tsev) category D, the reflection
I : D → C is admissible (Theorem 3.4 of [24]).

We shall suppose now that C is an efficiently regular category.

Proposition 2.16. Let D be a regular category, I : D → C a regular reflection and C an efficiently regular category. Then I is
admissible.

Proof. Consider the following diagram where the regular epimorphism φ is in C and the lower rectangle is a pullback:

R[f ]
ηR[f ] // //

p1
��

p0
��

R(g)

�� ��
IR[f ]

IR(g) //

Ip1
��

Ip0
��

R[φ]

p1
��

p0
��

X ηX
// //

g // //

f ����

IX

If����

Ig
// A

φ
����

Y ηY
// // IY IY

Then, so are the corresponding two upper ones. The maps g and R(g) being regular epimorphisms, these pullbacks are
preserved by I . This makes the internal functor IR(g) : IR[f ] → R[φ] a discrete fibration. Since its codomain is an effective
equivalence relation and C is efficiently regular, its domain IR[f ] is an effective equivalence relation whose quotient is
If ; we have IR[f ] ≃ R[If ]. Moreover, the top left hand squares are also pullbacks, i.e. f is I-normal. Thus f is I-trivial by
Proposition 2.5. �

Theorem 2.17. LetC be andD be efficiently regular categories and I : D → C a regular reflection. Then the centralization functor
I1 : Ext(Y ) → CExtI(Y ) assigns to each extension f : X � Y the I-central extension f̄ : X̄ � Y given by the comprehensive
factorization of the internal functor η

1
f : R[f ] → R[f̄ ] → IR[f ]. Moreover, we have IX̄ ≃ IX , I f̄ ≃ If and IR[f̄ ] ≃ IR[f ].
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Proof. Let η
1
f = (ηR[f ], ηX ) : R[f ] → IR[f ] represent the internal functor with codomain the internal groupoid IR[f ]. By

Corollary 1.12, its comprehensive factorization exists and has the form

R[f ]
R(η̂) //

p1
��

p0
��

R[f̄ ]
η1 // //

p1
��

p0
��

IR[f ]

Ip1
��

Ip0
��

X
η̂

//

f
����

X̄

f̄����

η0

// // IX

If
����

Y Y ηY
// // IY

The upper right hand side squares are pullbacks, so the projections pi : R[f̄ ] → X̄ are I-trivial (Proposition 2.16) and
the extension f̄ is I-normal and, therefore, I-central (Proposition 2.10). As pullbacks of split epimorphisms along regular
epimorphisms, they are preserved by I , and consequently the image Iη̄

1
of the discrete fibration η̄

1
is still a discrete fibration;

and so is IR(η̂) since Iη̄
1
· IR(η̂) = 1IR[f ]. This way we get the following diagram in GrdD:

R[f ]

R(η̂)
��

η1f // // IR[f ]

IR(η̂)
��

R[f̄ ]
η1 f̄

// //

η1
:: ::

IR[f̄ ]

which commutes by naturality. The internal functor R(η̂) being final and the internal functor IR(η̂) being a discrete fibration,
we have, thanks to the diagonality property associatedwith the comprehensive factorization system, a unique factorization,
necessarily η̄

1
(= Iη̄

1
· η

1
f̄ ), such that both triangles commute. The equality IR(η̂) · η̄

1
= η

1
f̄ comes from the uniqueness

of the diagonal induced by Iη̄
1
· IR(η̂) · η

1
f = Iη̄

1
· η̄

1
f̄ · R(η̂), where the internal functor R(η̂) is final and Iη̄

1
is a discrete

fibration. Thus IR(η̂) · Iη̄
1

= 1IR[f̄ ] and, consequently, IR(η̂) is an isomorphism of internal groupoids IR[f ] ≃ IR[f̄ ], which
determines the isomorphism of their quotient maps I f̄ ≃ If .

The definition of I1 for morphisms is obvious. The unit of the adjunction I1 ⊣ j1, for an extension f : X � Y , is given by η̂.
As for the universal property, suppose that we have a factorization f = f ′.h : X → X ′

→ Y with f ′ an I-normal extension.
We have then the following right hand side commutative square in GrdD:

R[f ]

η1f

��

R(h) //
R(η̂)

wwoooooo R[f ′
]

η1f
′

��
R[f̄ ]

η1
''OOOOOO

τ1

33

IR[f ]
IR(h)

// IR[f ′
]

The internal functor R(η̂) being final and the internal functor η
1
f ′ being a discrete fibration (f ′ is I-normal), we have,

thanks to the diagonality property associated with the comprehensive factorization system, a factorization τ 1 such that
τ 1.R(η̂) = R(h) and η

1
f ′.τ 1 = IR(h).η

1
. The first equality implies, at the level of objects, that τ0 : X̄ → X ′ is such that

τ0.η̂ = h. Moreover the image by π0 of this same equality gives π0(τ 1) = π0(R(h)) = 1Y , which implies that f ′.τ0 = f̄ . If we
suppose for the sake of simplicity that IR(η̂) is an identity (and thus η

1
= η

1
f̄ ), we have necessarily Iτ 1 = IR(h). Suppose

that we have another factorization τ : X̄ → X ′ such that τ .η̂ = h and f ′.τ = f̄ . Then the internal functor R(τ ) : R[f̄ ] → R[f ′
]

is such that R(τ ).R(η̂) = R(h) = τ 1.R(η̂) and consequently IR(τ ) = IR(h) = Iτ 1. Thanks to the unicity of the diagonality
condition, we get R(τ ) = τ 1 and τ = τ0. �

3. The regular Mal’tsev context

In this section we adapt the theory developed in Section 2 to the Mal’tsev context. The outcome provides similar results
with simpler initial conditions.

3.1. The definition and main properties

Recall that a finitely complete category D is called Mal’tsev when any reflexive relation is an equivalence relation
[15,16].
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Example 3.1. As examples of Mal’tsev categories there are the categories of groups (or any category of π-algebras, where
π is an algebraic theory which contains a group operation), Heyting algebras, topological or Hausdorff (abelian) groups
and the dual category of an elementary topos. Also, if D is a Mal’tsev category, then this is also the case for GrdD or any
(co)slice of D.

If D is a regular and Mal’tsev category, then the regular epimorphisms in GrdD are the internal functors which are
levelwise regular epimorphisms, and then GrdD is still a regular Mal’tsev category [19]. This context will allow us to give
many examples of regular reflections.
Proposition 3.2. LetD be a regularMal’tsev category. The functorΣ1 : GrdD → ReqD preserves pullbacks of split epimorphisms
along anymap. Hence the functorΣ1 is a regular reflection and the pullbacks of split epimorphisms along anymap exist in Gref D.
Proof. This a straightforward consequence of Lemma 2.5.7 in [2]. �

Recall Lemma 2.5.6 in [2]:
Lemma 3.3. Let D be a regular Mal’tsev category. Given a commutative diagram of vertical split epimorphisms:

X ′
x // //

f ′

��

X

f
��

Y ′

y
// //

s′

OO

Y

s

OO

where x (and thus y) is a regular epimorphism, then the factorization (f ′, x) : X ′
→ Y ′

×Y X is a regular epimorphism.
From that we get the following very powerful property:
Proposition 3.4. Let D be a regular Mal’tsev category. Suppose that the following whole rectangle is a pullback and the left hand
side is a commutative square of vertical split epimorphisms:

X ′
x // //

f ′

��

X

f
��

u // U

φ

��
Y ′

y
// //

s′

OO

Y

s

OO

v
// V

If x (and thus y) is a regular epimorphism, then the two squares are pullbacks.
Proof. By Lemma 3.3, the factorization (f ′, x) : X ′ � Y ′

×Y X is a regular epimorphism. But it is also amonomorphism, since
(f ′, u · x) is a monomorphism, and thus it is an isomorphism. This proves that the left hand side square is a pullback. Since
y is a regular epimorphism, then Corollary 1.3 allows us to conclude that the right hand side square is also a pullback. �

This result was stated in [20] (see Lemma 1.1) in the stricter context of exact Mal’tsev categories.

3.2. Left exact properties of reg-epi reflections

Thanks to this last property, we are going to be able to show that, in the Mal’tsev context, the reg-epi reflections I satisfy
some significant left exact properties which allow us to recover some aspects of regular reflections (Propositions 3.6, 3.7 and
3.19). This will eventually lead, by gradually increasing the assumptions (Definition 3.8), to the preservation of pullbacks of
split epimorphisms along regular epimorphisms, that is to the property of being a regular reflection (Theorem 3.16). Let us
begin with the following:
Proposition 3.5. Let D be a regular Mal’tsev category and I : D → C a reg-epi reflection. Consider any pullback with vertical
split epimorphisms:

X ′
x //

f ′

��

X

f
��

Y ′

y
//

s′

OO

Y

s

OO

Then the factorization γ towards the following pullback P is a regular epimorphism:

IX ′
Ix //

If ′

��

γ
!! !!DDD

IX

If

��

P

����
��
�

88ppppp

IY ′

OO

Iy
// IY

Is

OO

If moreover Ix is a monomorphism, then I preserves this pullback.



D. Bourn, D. Rodelo / Journal of Pure and Applied Algebra 216 (2012) 598–617 611

Proof. This is a consequence of the fact that the factorization η : X ′
→ P between the two pullbacks, induced by the three

regular epimorphisms ηX , ηY and ηY ′ , is a regular epimorphism in aMal’tsev category by Lemma 2.5.7 in [2].Whenmoreover
Ix is a monomorphism, then γ is also amonomorphism.We conclude that it is an isomorphism, and I preserves the pullback
in question. �

Then we get to the next important point:

Proposition 3.6. Let D be a regular Mal’tsev category and I : D → C a reg-epi reflection. The functor I preserves pullbacks of
pairs of split epimorphisms. Accordingly it preserves kernel equivalence relations of split epimorphisms, and the image I(X1) of
any internal groupoid X1 is an internal groupoid.

Proof. Using the same notation as in the last proposition, suppose that the map y is split by ξ . It suffices to prove that the
factorization γ is a monomorphism, which we shall obtain by proving that the two kernel equivalence relations R[ηX ′ ] and
R[η] are the same. Consider now the following diagram:

R[ηX ′ ]
R(x) //

R(f ′)

��

γ̄
%%LLL

R[ηX ]

R(f )

��

oo

vvmmmmm
R[η]

~~~~
~~

~~

66mmmmm

R[ηY ′ ]

>>~~~~~~ R(y) //

OO

R[ηY ]

R(s)

OO

oo

The lower quadrangle is a pullback of split epimorphisms since it is constructed from the pullbacks defining P and X ′. The
factorization γ̄ comes from the factorization γ . It is amonomorphism since it compares the two kernel equivalence relations
R[ηX ′ ] and R[η]. But also it is a regular epimorphism by Lemma 3.3. We have R[ηX ′ ] ≃ R[η], and, as expected, γ is an
isomorphism. �

In Section 2, we saw that, in a regular context, regular reflections have the properties stated in Proposition 3.6. Now, in a
regular Mal’tsev context, these properties are still fulfilled just by reg-epi reflections. This is also the case for the following
property (cf. Lemma 2.9):

Proposition 3.7. Let D be a regular Mal’tsev category and I : D → C a reg-epi reflection. If a morphism f is I-trivial, then we
have IR[f ] ≃ R[If ]. So, any I-trivial map (and a fortiori any I-trivial extension) is I-normal.

Proof. Let f be an I-trivial map. We want to show that the factorization γ :

IR[f ]
Ip1 //

Ip0

��

γ %%KKK
IX

If

��

oo

wwooooo

R[If ]
p0

��~~
~~

~~

p1
77ooooo

IX

??~~~~~~
If

//

OO

IY

is an isomorphism. To do so, we use arguments similar to those used in the last two proofs. In the first place, here
η = R(ηX ) : R[f ] � R[If ] is a regular epimorphism since f is I-trivial (R(ηX ) is the pullback of the regular epimorphism
ηX ). So, γ is a regular epimorphism as well. Secondly, γ̄ : R[ηR[f ]]

∼
→ R[R(ηX )] is an isomorphism and implies that γ is a

monomorphism. According to Proposition 2.5, the I-trivial map is I-normal. �

Unlike what happens in a regular context for regular reflections (Proposition 2.10), I-central extensions and I-normal
extensions donot coincide in general. However, fromPropositions 3.6 and 2.5, it is straightforward to see that, in this context,
any I-normal split epimorphism is I-trivial (cf. Corollary 2.11).

3.3. The Birkhoff reflections

We just saw that in a regular Mal’tsev context, reg-epi reflections I : D → C recover some aspects of the regular
reflections. However, the construction of the centralization functor given in Section 2.3 was based on the property of I being
a regular reflection (and thus admissible), so I-central extensions are I-normal. Having this in mind, we shall require a
slightly stronger assumption for the reg-epi reflection I .
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Definition 3.8. Given a regular categoryD, a reg-epi reflection I : D → C is said to be a Birkhoff reflectionwhen any regular
epimorphism f : X � Y induces a regular epimorphic factorization R(f ):

R[ηX ]
p0 //

p1
//

R(f ) ����

X
ηX // //

f
����

IX

If
����

R[ηY ]
p0 //

p1
// Y ηY

// // IY

When I is a Birkhoff reflection, it is easy to check that the right hand square above is a pushout for any regular epimorphism
f . Then C is closed under regular epimorphism (Proposition 3.1 in [24]). Since C is also closed under monomorphism, we
conclude that C is a Birkhoff subcategory of D. When D is an exact Mal’tsev category, we have the converse: if C is closed
under regular epimorphism, then the right hand square above is a pushout for any regular epimorphism f and, consequently,
any reg-epi reflection is a Birkhoff reflection (see Theorem 5.7 in [14]). So any Birkhoff subcategory C of an exact Mal’tsev
category D determines a Birkhoff reflection, therefore justifying this choice of designation.

Counterexample 3.9. The reg-epi reflectionΣ1 : GrdD → ReqD is not a Birkhoff reflection, since ReqD is not closed under
regular epimorphisms in GrdD (see the projections ϵ1X1).

Example 3.10. Let D be a finitely cocomplete exact Mal’tsev category. Then the abelianization functor I : D → DAb is a
Birkhoff reflection (Section 4.2).

Remark 3.11. Let D be a regular Mal’tsev category and I : D → C a reg-epi reflection. Given a regular epimorphism
f : X � Y , the factorization R(f ) is a regular epimorphism if and only if the factorization R(ηX ) is a regular epimorphism by
the denormalized 3 × 3 lemma [7]. This provides an alternative characterization for Birkhoff reflections in this context.

Lemma 3.12. Let D be a regular Mal’tsev category and I : D → C a reg-epi reflection. Then I is a Birkhoff reflection if and only if,
given any regular epimorphism f : X � Y , the internal groupoid IR[f ] has effective support. Accordingly I is a Birkhoff reflection
if and only if I preserves the internal groupoids with effective support.

Proof. In this proof we use Remark 3.11. Suppose that I is a Birkhoff reflection. Consider the following diagram:

R[f ]
p0 //

p1
//

ηR[f ] ����
R(ηX )## ##FF

FF
FF

F X
f // //

ηX
����

Y

ηY
����

IR[f ]
γ

// R[If ]
p0 //

p1
// IX If

// // IY

As the map R(ηX ) is a regular epimorphism, so is the dotted factorization γ which makes R[If ] the effective support of the
internal groupoid IR[f ]. As a consequence I preserves any internal groupoid with effective support.

Conversely suppose that the internal groupoid IR[f ] has effective support R. Since the map If is the coequalizer of IR[f ], it
is the effective quotient of R, and we get R = R[If ]. So R[If ] is the support of the internal groupoid IR[f ] and the factorization
R(ηX )

R[f ]
ηR[f ] // //

R(ηX )

�� ��
IR[f ] // // R = R[If ]

is a regular epimorphism. �

Corollary 3.13. Let D be a regular Mal’tsev category. Any exact reg-epi reflection I : D → C is a Birkhoff reflection (a functor is
called exact when it preserves the kernel equivalence relations of any regular epimorphism).

The following result is also stated in Theorem 3.5 of [32] for any Birkhoff subcategory of a regular Gumm category [12]
such that regular epimorphisms are effective for descent. The proof follows the same structure as is given below, although
we get some extra simplifications from working in a Mal’tsev context. See also Theorem 3.4 of [24] for the proof in an exact
Mal’tsev context.

Proposition 3.14. Let D be a regular Mal’tsev category and I : D → C a Birkhoff reflection. Then I is admissible.

Proof. Consider the diagram in the proof of Proposition 2.16. The map ηR[f ] (and ηX ) is a regular epimorphism; then
any of the upper squares are pullbacks by Proposition 3.4. This makes f an I-normal extension and the internal functor
IR(g) : IR[f ] → R[φ] a discrete fibration. Since its codomain is an equivalence relation, its domain IR[f ] is an equivalence
relation, which is effective by Lemma 3.12. We have IR[f ] ≃ R[If ] and f is I-trivial by Proposition 2.5. �
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Corollary 3.15. Under the conditions of the previous proposition, a regular epimorphism f is I-cartesian if and only if it is I-trivial.

Proof. We already noticed that an I-trivial map is certainly I-cartesian. Conversely, consider a regular epimorphism f : X �
Y . By the previous proposition, the pullback f̄ of If along ηY is I-trivial and thus I-cartesian above I f̄ = If . So, the maps f and
f̄ are I-cartesian above the same map If = I f̄ ; they are the same up to isomorphism and f is I-trivial. �

Eventually, we get a large class of examples of regular reflections:

Theorem 3.16. Let D be a regular Mal’tsev category and I : D → C a Birkhoff reflection. Then I is a regular reflection.

Proof. We can use the proof of Proposition 3.6, where x and y are now just regular epimorphisms. Knowing that R(x) and
R(y) are regular epimorphisms since x and y are such, the monomorphic factorization γ̄ is still a regular epimorphism by
Lemma 3.3. �

This result was already noticed in Lemma 8.2 of [21] in the special case of the abelianization functor for a semi-abelian
context.

3.4. The reg-epi reflection I1

Recall from Section 2.3 that, when D is an efficiently regular Mal’tsev category and I : D → C is a Birkhoff reflection
(and thus a regular reflection), we can define the centralization functor I1 : Ext(Y ) → CExtI(Y ). The Mal’tsev context yields
an important extra property:

Lemma 3.17. Let D be an efficiently regular Mal’tsev category, I : D → C a Birkhoff reflection and f
1

: X1 � Y 1 a regular

epimorphic internal functor. When it exists, the comprehensive factorization of f
1

= f
1
· f̂

1
is such that the internal functor f̂

1
is

a regular epimorphism.

Proof. Let us go back to the structural diagram (3) and the diagram of Proposition 1.11. When D is a regular Mal’tsev
category, then the internal functorψ

1
: Dec X1 → U1 is a regular epimorphism, since it is a levelwise regular epimorphism

by Lemma 3.3. So f̂0 = π0(ψ1
) is a regular epimorphism (and similarly for f̂1); thus f̂ 1 is a regular epimorphism in GrdD. �

Corollary 3.18. Let D be an efficiently regular Mal’tsev category and I : D → C a Birkhoff reflection. Then the centralization
functor I1 is a reg-epi reflection.

As mentioned before, the construction of the centralization functor was based on the property of I being a regular
reflection (and thus admissible), so I-central extensions are I-normal. However, when considering efficiently regular
Mal’tsev categories, it is possible to proceed just with reg-epi reflections.

Proposition 3.19. Let D be a regular Mal’tsev category, I : D → C a reg-epi reflection and C an efficiently regular category.
Then I is admissible.

Proof. We can follow exactly the proof of Proposition 3.14. The only difference is the reason why the equivalence relation
IR[f ] is effective. This time, it comes from the fact that the discrete fibration IR(g) : IR[f ] → R[φ] lies in an efficiently regular
category. �

Remark 3.20. Under the conditions of Proposition 3.19, we can define a reg-epi (I-)normalization functor just like the
centralization functor given in Theorem 2.17 and with the same properties. In fact, in the proof of Theorem 2.17, the
assumption ‘‘I is a regular reflection’’ was mainly used since it implied the coincidence of I-central and I-normal extensions,
but the construction itself dealt with the associated I-normal extension. We can mimic here, step by step, the proof of this
theorem. The main point was that the regular reflection I preserved the following pullbacks of split epimorphisms along
regular epimorphisms:

R[f̄ ]
η1 // //

p1
��

p0
��

IR[f ]

Ip1
��

Ip0
��

X̄
η0

// // IX

But, in the Mal’tsev context, thanks to Proposition 3.4, this is true for this particular pullback even when I is only a reg-epi
reflection.
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4. Preservation of products

Given a regular category D and a full replete reflective inclusion j : C � D, we investigated the preservation by a
reflection I : D → C of certain kinds of pullbacks in the previous two sections. Now, we shall have a look at the particular
case of the preservation of (binary) products. To do this we analyse the special product of an object with itself. We give
a necessary and sufficient condition for this product to be preserved by I , through the behaviour of I-normal objects, i.e.
objects whose terminal map is I-normal. Then we see how this applies to the case where I is the abelianization functor. In
this setting we also explore the link between (algebraically) central maps and I-normality and I-centrality.

When D is pointed (i.e. when it has a zero object), any terminal map is split and any product is a special case of a pullback
of a split epimorphism along a split epimorphism. Then, products are preserved by regular reflections. If D is also Mal’tsev,
then products are preserved by reg-epi reflections (Proposition 3.6). So we shall be interested in the non-pointed case.

Given an object X , the (regular epimorphism, monomorphism) factorization of the terminal map, X � Q � 1, is made
through an object Q , the support of X , that belongs to C since it is a subobject of 1. We say that X has global support when
the terminal map X � 1 is a regular epimorphism, i.e. the support of X is 1.

4.1. Special products and I-normal objects

Proposition 4.1. Let D be a regular category and I : D → C an admissible reflection. If the projection pX : X × C � X is a
regular epimorphism, with C ∈ C, then it is I-trivial and we have I(X × C) ≃ IX × C.

Proof. Since the following rectangle is a pullback, the regular epimorphism pX is I-trivial (Lemma 2.13). So the following
left square is also a pullback:

X × C
ηX×C // //

pX ����

ηX×1C

�� ��
I(X × C)

(IpX ,IpC ) // //

IpX����

IX × C

pIX����
X ηX

// // IX IX

Accordingly the right hand square is a pullback (by Corollary 1.3) and, consequently, I(X × C) ≃ IX × C . �

Note that such projections are regular epimorphisms when C has global support, or when there is a map x : X → C . In
particular, we have I(X × IX) ≃ IX × IX . Also, for the support Q of X we have I(X × Q ) ≃ IX × Q .

Proposition 4.2. Let D be a regular category, I : D → C a regular reflection and C an efficiently regular category. If X is an
object such that I(X × X) ≃ IX × IX and if X and Y have global supports, then I preserves their product.

Proof. Consider the following diagram where Y has global support. Its left hand part is made of pullbacks of split
epimorphisms along a regular epimorphism:

X × X × Y
p0×1Y //

p1×1Y
//

pX×X ����

X × Y
pY // //

pX����

Y

����
X × X

p0 //

p1
// X // // 1

Then the left pullbacks are preserved by I and produce a vertical discrete fibration on the left:

I(X × X × Y )
I(p0×1Y ) //

I(p1×1Y )
//

IpX×X ����

I(X × Y )
IpY // //

IpX����

IY

����
I(X × X)

Ip0 //

Ip1
// IX // // 1

Since I∇X = ∇IX is an effective equivalence relation and C is efficiently regular, the upper horizontal internal groupoid is
an effective equivalence relation. If, moreover X has global support, then pY : X × Y � Y is a regular epimorphism and
is the quotient of the upper equivalence relation in our first diagram. Accordingly IpY is the quotient of the upper effective
equivalence relation in the second one. Then the Barr–Kock Theorem 1.2 makes the right hand side square a pullback which
shows that I preserves the product in question. �



D. Bourn, D. Rodelo / Journal of Pure and Applied Algebra 216 (2012) 598–617 615

Concerning objects with global support, the problem of preserving products is reduced to that of the preservation of
products of an object with itself. So we are now looking for those objects X such that I(X × X) ≃ IX × IX . For that let us
call I-normal an object X which has an I-normal terminal map X → 1, i.e. such that the projections p0, p1 : X × X → X are
I-trivial.

Lemma 4.3. Suppose that D is a regular category and I : D → C a reg-epi reflection. An I-normal object X is such that
I(X × X) ≃ IX × IX if and only if X is in C.

Proof. It is clear that if X is in C, we have I(X × X) ≃ IX × IX . Conversely let X be an I-normal object such that
I(X × X) ≃ IX × IX . Consider the following diagram:

X × X
ηX×X // //

p1
��

p0
��

I(X × X)

Ip1
��

Ip0
��

X ηX
// //

q
����

IX

Iq����
Q

ηQ

∼ // // IQ

where Q is the support of X . Then I∇X ≃ ∇IX is an effective equivalence relation, and the upper squares are pullbacks since
X is I-normal. Hence the lower square is a pullback (by Barr–Kock Theorem 1.2), ηX is an isomorphism and X is in C. �

Proposition 4.4. Let C and D be efficiently regular Mal’tsev categories and I : D → C a reg-epi reflection. Then I(X × X) ≃

IX × IX for all objects X if and only if all I-normal objects are in C.

Proof. Suppose that all I-normal objects are inC. Given any objectX , we take the comprehensive factorization of the internal
functor ∇X → I∇X:

X × X // //

p1
��

p0
��

X̄ × X̄ // //

p1
��

p0
��

I(X × X)

Ip1
��

Ip0
��

X // //

q
����

X̄

q̄����

// // IX

Iq
��

Q Q
ηQ

// // IQ

It is the same construction as was mentioned in Remark 3.20 (see also Corollary 1.13). Then X̄ is I-normal, and thus in C.
We have moreover IX ≃ IX̄ = X̄ , which implies that I(X × X) ≃ X̄ × X̄ ≃ IX × IX . Conversely suppose that we have
I(X × X) ≃ IX × IX for any X . In particular, this holds for any I-normal object X which must be in C by the previous
lemma. �

4.2. The reflection to abelian objects

We are now going to study the particular case of the abelianization functor I : D → DAb for a finitely cocomplete
efficiently regular Mal’tsev category D. We will prove that all I-normal objects are abelian to conclude that I preserves
products of the type X × X (Proposition 4.7) and all products of objects with global support in an exact context
(Proposition 4.8).

It appears that the context of Mal’tsev categories D particularly fits with the notion of the commutator of equivalence
relations [11]; see also [31]. It is then possible to define an object X in D as being abelian when we have [∇X,∇X] = 0,
i.e. when the commutator [∇X,∇X] is trivial, or, equivalently, when the object X is equipped with a (necessarily uniquely
determined) Mal’tsev operation p : X × X × X → X (see also Remark 2.6.2 of [2]). We shall denote by DAb the subcategory
of the abelian objects in D. It is easy to see that the subcategory DAb is stable under finite limits and under subobjects.
It also clear that DAb is a naturally Mal’tsev category in the sense of [29]: any object is endowed with a natural Mal’tsev
operation, or, equivalently, any reflexive graph is an internal groupoid. Another equivalent property is given by the fact
that any pair of equivalence relations R and S on the same object is such that [R, S] = 0, i.e. admits a centralizing double
(equivalence) relation (see also Corollary 2.7.6 of [2]).WhenmoreoverD is regular,DAb is stable under regular epimorphisms
(by Proposition 4.1 of [11]). If D is efficiently regular, then so is DAb [8]. When D is also finitely cocomplete, the inclusion
j : DAb � D admits a (reg-epi) reflection (see [2,21]) I : D → DAb. Then DAb is a Birkhoff subcategory of D and, when D is
exact, I is a Birkhoff reflection (Section 3.3).

In this section we shall suppose that D is a finitely cocomplete efficiently regular Mal’tsev category. Let us begin by
recalling the following two results of [13].
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Lemma 4.5 ([13]). Let A be an efficiently regular naturally Mal’tsev category and f : X → Y a morphism in A. Then there is an
object N[f ] in A such that the following right hand side square is a pullback:

Θ

p0 //

p1
//

p0
��

p1
��

R[f ]

p0
��

p1
��

ν(f ) // // N[f ]

��
X × X

p0 //

p1
//

OO

X //

OO

f
��

1

Y

Proof. Since A is naturally Mal’tsev, the pair of equivalence relations ∇X and R[f ] on X admit a centralizing double relation
represented by the left hand side pullbacks. So the vertical maps p0 produce a discrete fibration between the two horizontal
equivalence relations. Now, the lower one, ∇X , is effective and, since A is efficiently regular, the same holds for the upper
one which, consequently, admits a quotient ν(f ) : R[f ] � N[f ]. The Barr–Kock Theorem 1.2 implies that the right hand side
square is a pullback. �

The object N[f ] (actually the pair (N[f ], ν(f ))) is called themetakernel of the map f . The terminology is motivated by the
fact that, when A is pointed and, thus, additive, this metakernel N[f ] coincides with the kernel K [f ] of the map f . When f is
a terminal map X → 1, we call its metakernel the direction of the object X . The terminology is adopted from affine geometry
(see [6] for further reading).

Proposition 4.6 ([13]). Let A be an efficiently regular naturally Mal’tsev category, and X1 an internal groupoid in A. Then the
following square is a pullback:

X1
ν(d0).s1 //

d0
��

N[d0]

��
X0 // 1

Proof. Consider the following two pullbacks:

X1
s1 //

d0
��

R[d0]
ν(d0) //

p0
��

N[d0]

��
X0 s0

// X1 // 1

where s1 = (s0 · d0, 1X1). We shall set λX1 = ν(d0).s1. �

Proposition 4.7. Let D be a finitely cocomplete efficiently regular Mal’tsev category. Then the reg-epi reflection I : D → DAb
satisfies I(X × X) ≃ IX × IX for all objects X.

Proof. Using Proposition 4.4, we have to show that any I-normal object is abelian. For that consider the following diagram,
with X an I-normal object:

Θ

p1
��

p0
��

p0 //

p1
// X × X

ηX×X //

p0
��

p1
��

I(X × X)

Ip0
��

Ip1
��

λI∇X // N[Ip0]

��
X × X

p0 //

p1
// X ηX

// IX // 1

The middle square is a pullback since X is I-normal, and the right hand side one too according to the previous proposition,
so the right hand side rectangle is a pullback. Its completion by the horizontal kernel equivalence relations produces the
centralizing double relation on the left which shows that we have [∇X,∇X] = 0, and that X is abelian. �

Proposition 4.8. LetD be a finitely cocomplete exactMal’tsev category. Suppose that X and Y are two objects with global support.
Then the Birkhoff reflection I : D → DAb preserves their product.

Proof. The category D being an exact Mal’tsev category, the reg-epi reflection I is a Birkhoff reflection, and thus a regular
reflection (Theorem 3.16). So we can apply Proposition 4.2. �
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We conclude this work with a remark on centrality. In the Mal’tsev context, a morphism f : X → Y is classically said to
be (algebraically) centralwhen we have [R[f ],∇X] = 0. The following proposition gathers parts of Theorem 4.6 of [32] and
Theorem 6.1 of [21]:

Proposition 4.9. LetD be a finitely cocomplete efficiently regular Mal’tsev category. Amap f is central if and only if it is I-normal.
When D is exact, f is a central extension if and only if f is an I-central extension.

Proof. Suppose that f is I-normal. Consider the following rectangle:

R[f ]
ηR[f ] //

p0
��

p1
��

IR[f ]

Ip0
��

Ip1
��

λIR[f ] // N[Ip0]

��
X ηX

// IX // 1

It is a pullback made of two pullbacks. The completion by the horizontal kernel equivalences produces the centralizing
double relation which gives us [∇X, R[f ]] = 0. Conversely suppose that f is central. Then we can adapt Proposition 5.3 of
[11] to an efficiently regular context to get R[f ] ≃ X × C , with C an abelian object. So the following rectangle is a pullback:

R[f ]

q

�� ��

p0
��

ηR[f ] // // IR[f ]

Ip0
��

Iq // // C

��
X

OO

ηX
// // IX

OO

// 1

and, by applying Proposition 3.4, we conclude that f is I-normal. When D is exact, I is a Birkhoff reflection, and therefore a
regular reflection (Theorem 3.16), and the I-normal and I-central extensions coincide (Proposition 2.10). �
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