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Abstract

Protein stability arises from a combination of factors which are often difficult to rationalise. Therefore its improvement is
better addressed through directed evolution than by rational design approaches. In this study, five rounds of mutagenesis/
recombination followed by high-throughput screening (<10,000 clones) yielded the hit 1B6 showing a 300-fold higher half
life at 50uC than that exhibited by the homodimeric wild type PpAzoR azoreductase from Pseudomonas putida MET94. The
characterization using fluorescence, calorimetry and light scattering shows that 1B6 has a folded state slightly less stable
than the wild type (with lower melting and optimal temperatures) but in contrast is more resistant to irreversible
denaturation. The superior kinetic stability of 1B6 variant was therefore related to an increased resistance of the unfolded
monomers to aggregation through the introduction of mutations that disturbed hydrophobic patches and increased the
surface net charge of the protein. Variants 2A1 and 2A1-Y179H with increased thermodynamic stability (10 to 20uC higher
melting temperature than wild type) were also examined showing the distinctive nature of mutations that lead to improved
structural robustness: these occur in residues that are mostly involved in strengthening the solvent-exposed loops or the
inter-dimer interactions of the folded state.
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Introduction

Thermal stability is relevant for biological function and

molecular evolution of proteins. The thermal denaturation process

of proteins is usually complex, but often for monomeric proteins

can be simplified to the classical two step process: N«URD

where N, U and D are the native, the reversible unfolded and the

irreversible denatured enzyme. The first step involves unfolding of

the polypeptide’s native structure. The unfolded protein may

refold to the native conformation or in a second step undergo

irreversible denaturation to permanent inactivation. This may

result from protein aggregation, misfolding and covalent changes

such as the deamidation of asparagine or glutamine residues and

oxidation of cysteine or methionine residues [1]. Enzyme

thermostability encompasses thermodynamic and kinetic stabilities

[2,3]. Thermodynamic stability is defined by the enzymes’s free

energy of stabilization (DGstab reflecting the difference between the

free energies of the folded and the unfolded states of the protein)

and by its melting temperature (Tm, the temperature at which

50% of the protein is unfolded). Kinetic or long-term stability

depends on the energy barrier to irreversible inactivation and is

generally expressed as the enzyme’s half-life (t1/2) at a defined

temperature. Most frequently the two stabilities correlate since

increasing the enzyme resistance to unfolding (higher Tm) also

increases its resistance to inactivation (higher t1/2); firstly, an

increase in the stability of the native state leads to slower

accumulation of the unfolded state and secondly, the unfolded

state is usually the ground state leading to irreversible denatur-

ation/inactivation.

Directed evolution is considered to be the most powerful

approach for improving the thermostability of proteins. In fact,

comparative studies performed with hyperthermostable enzymes

and their mesophilic counterparts have shown nearly superimpos-

able three-dimensional structures suggesting that in nature extreme

thermostability seems to be achieved by distributing different types

of additional intramolecular interactions throughout the protein [4].

Moreover our understanding of these interactions is incomplete and

often does not allow to reliably predicting how they combine to yield

a more stable protein. Therefore, rational approaches such as site-

directed mutagenesis shows often a limited efficiency and the

random introduction of a small number of amino acid changes by

error prone PCR or DNA shuffling emerges as the most appropriate

methodology to improve protein stability. In recent years these

methods have been fine-tuned and a different number of properties

in various target enzymes have been successfully improved using

directed evolution approaches [5–7]. Thermal stability is a critical

property for many biotechnological applications of proteins as it

implies longer life-times and frequently higher tolerance to the

presence of organic co-solvents, extreme pH values and high salt

concentration or pressures. Several examples of successfully evolved

lipases, b-glucuronidases, ligninolytic oxidoreductases, xylanases,
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cytochrome P450 peroxygenases, phytases and glucose dehydroge-

nase have been reported [8–15].

Flavin-dependent azoredutases have been identified in a wide

range of synthetic dye decolourising bacteria including Escherichia

coli, Bacillus sp. SF, Bacillus sp. OY1–2, Pseudomonas aeruginosa,

Enterococcus feacalis, Salmonella typhimurium [16–20]. Enzymatic

bioreduction of synthetic azo dyes or nitroaromatics, prevalent

anthropogenic pollutants, are environmental friendly strategies for

bioremediation of e.g. dye-containing effluents from textile

industries [21–23]. These enzymes share some similarities with

regard to sequence, structure, and reaction mechanism with the

larger family of flavin-dependent quinone reductases such as,

Lot6p from Saccharomyces cerevisiae or the mammalian NQO1 [24].

Azoreductases are proposed to take part in the organism’s

enzymatic general detoxification systems; e.g. in the cellular

response to thiol-specific stress [25,26] or in the response to

oxidative stress [27,28]. These enzymes require two cycles of

NADPH-dependent reduction of FMN to FMNH2 for reducing

the azo substrate to two amines and the quinone substrate to a

hydroquinone. Pseudomonas putida MET94 is a bacteria that

degrades a wide range of structurally distinct azo dyes with high

efficiency and the azoreductase PpAzoR was shown to play a key

role in this process [29]. Its broad substrate specificity makes it

attractive for bioremediation processes [30] but its low kinetic

stability impairs exploitation of its full potential for environmen-

tally related applications.

In this study, we generated thermostable PpAzoR variants by

directed evolution. We investigated the molecular determinants

associated with the thermostability of 1B6 variant which reveals a

significantly increased kinetic stability when compared to the wild

type. Thermoresistant variants (2A1 and 2A1-Y179H) that

denature irreversibly similarly to the wild type but show an

increased stability of the native state were also characterized.

Based in the recently solved crystal structure of the homodimeric

wild type enzyme [31] we rationalize the molecular basis behind

the increased kinetic or thermodynamic stability of PpAzoR

enzyme.

Materials and Methods

Bacterial strains, plasmids and media
Escherichia coli strain DH5a (Novagen) was used for routine

propagation and amplification of plasmid constructs. E. coli Tuner

(DE3, Novagen) and KRX (Promega) strains were used to express

the ppAzoR and variant genes cloned in pET-21a (+) plasmid

(Novagen). In the Tuner strain the target genes are under the

control of T7 promotor, induced by isopropyl b-D-1-thiogalacto-

pyranoside (IPTG) and in the KRX strain the genes are under the

control of the rhaPBAD promoter, induced by rhamnose. Luria-

Bertani medium (LB) and Terrific Broth medium (TB) were used

for the maintenance and growth of E. coli strains, supplemented

with appropriate antibiotics when needed.

Growth of recombinant strains and ppAzor
overexpression

The plasmid pLP-1 [29], containing the ppAzoR gene, was

transformed into E. coli Tuner (DE3, Novagen) or E. coli KRX

(Promega), producing LOM528 and LOM531 strains, respective-

ly. Single colonies were used to inoculate 20 mL of LB medium

supplemented with 100 mg/mL ampicillin, grown overnight at

37uC, 160 rpm. Fresh cultures were transferred to 100 mL of TB

medium supplemented with 100 mg/mL ampicillin, in order to

start the growth with an OD600 nm = 0.05. Cultures were

incubated at 30uC, 160 rpm and when OD600 nm<0.6, 100 mM

IPTG was added to LOM528, and 0.1% rhamnose to LOM531.

After 24 h of cultivation, cells were collected by centrifugation

(10,000 rpm, 15 min at 4uC). The cell pellets were suspended in

1.5 mL of 20 mM Tris-HCl buffer, pH 7.6, containing 5 mM

MgCl2, 1 U/mL of DNAse I, and 2 mL/mL of a mixture of

protease inhibitors: antipain and leupeptin. Cells were disrupted

by French Press (Thermo EFC) and then centrifuged at

18,000 rpm for 2 h at 4uC. The supernatants (cell crude extracts)

were collected and used to perform enzymatic assays. The protein

concentration was determined using the Bradford assay with

bovine serum albumin (BSA) as standard. SDS-PAGE electro-

phoresis was performed to visualize protein overproduction in

crude extracts.

Enzymatic assays
Enzymatic activities were measured using five quinone

substrates, anthraquinone-2-sulfonic acid (AQS), 1,4-benzoqui-

none (BZ), 1,2-dihydroxybenzene (catechol), 2-hydroxy-1,4-naph-

thoquinone (Lawsone), 1,2-naphthoquinone-4-sulfonate (NSA), at

50–100 mM, in the presence of 250 mM NADPH. Enzymatic

assays were performed at 30uC, in 100 mM sodium phosphate

buffer, pH 7. The reactions were initiated by the addition of crude

extracts and followed by monitoring the decrease in absorbance of

NADPH at 340 nm (e= 6,220 M21 cm21) on a Nicolet Evolution

300 spectrophotometer (Thermo Industries).

Random mutagenesis by error-prone PCR (ep-PCR) and
mutant library construction

Variation in the ppAzoR gene was generated by using ep-PCR.

Primers 59-GGAGAGTCATATGAAACTGTTGC-39 (PpaF)

and 59-CAACCAAAGGATCCCTTGATCAGG-39 (PpaR) were

used for amplification. Nucleotides for restriction sites of NdeI and

BamHI are underlined. ep-PCR was carried out in 50 mL reaction

volumes containing 3 ng of DNA template (plasmid pLP-1, where

ppAzoR gene [29] and variants are cloned), 0.5 mM of primers,

200 mM of dNTPs, 7 mM MgCl2, Taq polymerase buffer, and

5 U of Taq polymerase (Fermentas). The effect of MnCl2 was

tested at 0.1–0.25 mM concentrations. After an initial denatur-

ation period of 10 min at 94uC, the following steps were repeated

for 30 cycles in a thermal cycler (MyCyclerTM thermocycler,

Biorad): 1 min at 94uC, 1 min at 55uC and 45 s at 72uC followed

by a final 10 min period at 72uC. The amplified products were

purified using GFX PCR DNA and Gel Band Purification kit (GE

Healthcare). The final PCR products were digested with NdeI/

BamHI (Fermentas) and cloned into pET-21a (+) (Novagen).

Ligations were performed with T4 DNA ligase (Fermentas) using a

1:8 vector to insert ratio. Reaction mixtures were incubated

overnight at room temperature, incubated at 65uC for 10 min,

and then used to transform electrocompetent E. coli KRX cells.

Recombination by DNA Shuffling and mutant library
construction

DNA shuffling was performed as described previously

with some modifications [32,33]. Selected genes coding for the

ppAzoR variants were amplified by PCR using primers pET21D

(59-CTTCCCCATCGGTGATGTCGGCGATATAG-39) and

pET21R (59-CCAAGGGGTTATGCTAGTTATTGCTCAG-

39). A mixture containing 200 ng of each parental gene was

digested with 2.5 U/mL of DNase I in a 200 mM Tris-HCl buffer,

pH 7 with 80 mM MnCl2 for 15 min at 15uC in a thermocycler

(MyCyclerTM Thermal Cycler, Biorad). Digestion was stopped by

adding 6 mL of 0.5 M EDTA. The PCR reassembly was carried

out in a 20 mL reaction volume containing 3 mL of DNA
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fragments, 200 mM of dNTPs, NZYProof polymerase buffer and

2.5 U of NZYProof polymerase (NZYTech). After an initial

denaturation period of 3 min at 96uC, the following steps were

repeated for 45 cycles in a thermal cycler (MyCyclerTM

thermocycler, Biorad): 1 min at 94uC, 90 s at 59uC, 90 s at

56uC, 90 s at 53uC, 90 s at 50uC, 90 s at 47uC, 90 s at 44uC, 90 s

at 41uC, and 1 min + 5 s/cycle at 72uC followed by a final 10 min

period at 72uC. The PCR reassembly products were amplified by

PCR using primers PpaF (59-GGAGAGTCATATGAAACT-

GTTGC-39) and PpaR (59-CAACCAAAGGATCCCTTGAT-

CAGG-39). PCR was carried out in a 50 mL reaction volume

containing 1 mL of PCR reassembly products, 1 mM of primers,

200 mM of dNTPs, NZYProof polymerase buffer, and 2.5 U of

NZYProof polymerase (NZYTech). After an initial denaturation

period of 3 min at 94uC, the following steps were repeated for 20

cycles in a thermal cycler (MyCyclerTM thermocycler, Biorad):

30 s at 94uC, 1 min at 55uC, 90 s at 72uC followed by a final

10 min period at 72uC. The amplified products were purified

using GFX PCR DNA and Gel Band Purification kit (GE

Healthcare). The final PCR products were digested with NdeI/

BamHI (Fermentas) and cloned into pET-21a (+) (Novagen) as

described above. Ligation reaction mixtures were used to

transform electrocompetent E. coli KRX cells.

Site directed mutagenesis
Single amino acid substitutions were created using the QCM

protocol developed by Strategene. Plasmid containing the 2A1

variant gene was used as template and the forward 59-

CCCACGGCCTGGCCCATGGCCCGGAGCAG-39 and re-

verse 59-CCCACGGCCTGGCCCATGGCCCGGAGCAG-39

primers were used to generate the 2A1+Y179H variant. Plasmid

containing the 1B6 variant gene was used as a template and the

forward 59-GGCTGCCGATCCCATCCCCCACTTCTCCG-39

and reverse 59-CGGAGAAGTGGGGGATGGGATCGGCA-

GCC-39 primers were used to generate the mutant 1B6+A48P.

The presence of the desired mutations in the resulting plasmids

and the absence of unwanted mutations in other regions of the

insert were confirmed by DNA sequence analysis. PCR was

carried out in a 50 mL reaction volume containing 3 ng of DNA

template, 2 mM of primers, 200 mM of dNTPs, NZYProof

polymerase buffer, and 1.25 U of NZYProof polymerase (NZY-

Tech). After an initial denaturation period of 2 min at 95uC, the

following steps were repeated for 30 cycles in a thermal cycler

(MyCyclerTM thermocycler, Biorad): 1 min at 95uC, 1 min at

68uC, 7 min at 72uC followed by a final 10 min period at 72uC.

The amplified product was purified using GFX PCR DNA and

Gel Band Purification kit (GE Healthcare). The final PCR product

was used to transform electrocompetent E. coli KRX cells.

Overexpression of ppAzoR variants in E. coli
From a fresh agar plate, individual colonies were randomly

picked and transferred to a 96 well-plate containing 200 mL of LB

medium supplemented with ampicillin (100 mg L21). In order to

avoid evaporation, only the interior wells were used for cell growth

while perimeter wells were filled with water and the plates were

sealed with a foil and a plastic cover, closed with parafilm. Four

wells in each plate were used to inoculate the parent strain of each

generation. Cultures were incubated at 30uC for 24 h, at 750 rpm

in a Titramax 1000 shaker (Heidolph). Twenty microliters of these

cultures were used to inoculate new 96 well-plates containing

180 mL TB medium supplemented with ampicillin (100 mg L21)

and incubated at 30uC for 3 h at 750 rpm. After this period 0.1%

rhamnose was added to induce gene expression and cells were

harvested by centrifugation (4,000 rpm for 20 min at 4uC) after

24 h of growth.

Cell disruption in 96-well plates
The 96 well-plates were submerged in liquid nitrogen and then

thawed at room temperature for 5 min. After 3 cycles of freeze

and thaw, cell pellets were resuspended in 100 mL of 20 mM Tris-

HCl buffer, pH 7.6. After cell disruption, plates were centrifuged

at 4,000 rpm for 30 min at 4uC and supernatants (cell crude

extracts) used for enzymatic activity measurements.

High-throughput screening for thermostability
Cell crude extracts (20 mL) were transferred into two replica 96

well-plates. One plate was assayed for initial activity (Ai) by adding

180 mL of 100 mM sodium phosphate buffer, pH 7 containing

100 mM AQS and 250 mM NADPH. The decrease of NADPH

absorption was followed during 5 min at 340 nm (e= 6,220 M21

cm21) on a Synergy 2 (Biotek) micro plate reader. The crude

extracts in the second plate were incubated at different temper-

atures for a defined time period, cooled on ice for 5 min,

incubated at room temperature for 5 min and afterwards assayed

for residual activity (Ar) using the same conditions indicated for

assaying the initial activity. Thermostability was assessed using the

ratio of the residual activity to the initial activity of the variant (v),

normalized to the parent type (p) – (Ar/Ai)v/(Ar/Ai)p. The variants

activity relative to the parent was calculated using the ratio of the

initial activity of the variant to the parent type (Aiv/Aip). Variants

exhibiting either the highest initial activity or the highest

thermostability were re-screened to rule out false positives.

Mutations were verified by DNA sequencing analysis using T7

terminator universal primers. In each generation, the variant with

the highest stability yet unchanged activity was chosen to be the

parent for the next generation and the initial and residual activity

was measured in tree different 96-well plates, ensuring the

reproducibility.

Production and purification of selected variants
Plasmids of ppAzoR variants were introduced into the host E. coli

Tuner (DE3, Novagen) and recombinant enzymes were produced

and purified as previously described [29]. Enzyme concentration

was estimated using the Abs455 nm value [29].

Kinetic analysis
Enzymatic activities of purified variants were measured at 30uC,

in 100 mM sodium phosphate buffer, pH 7, with 100 mM AQS

and 250 mM NADPH as substrates. Reactions were initiated by

the addition of enzyme and followed by monitoring the decrease in

absorbance of NADPH at 340 nm (e= 6,220 M21 cm21) on a

Nicolet Evolution 300 spectrophotometer (Thermo Industries).

Optimal temperatures were determined between 23 and 65uC.

Enzyme stability assays
Residual activities were determined at 30uC after incubating

purified enzyme preparations at a range of temperatures (40–

85uC) for 1 h. Kinetic stability studies were performed as

described by Martins et al. [34]. In brief, the enzymes were

incubated at 50uC in 20 mM Tris-HCl buffer, pH 7.6 and, at

fixed time intervals, sample aliquots were withdrawn and tested for

activity at 30uC. Thermodynamic stability was assessed by steady-

state fluorescence measured with a Carry Eclipse spectrofluorim-

eter using excitation wavelengths of 280 nm and 296 nm and an

emission wavelength of 340 nm [35,36]. Samples containing

PpAzoR and its variants (Abs280 = 0.1) in 20 mM Tris–HCl buffer,
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pH 7.6 were placed onto a thermostatically controlled thermal

block and then heated at a rate of 1uC/min up to 100uC. For the

chemical stability studies, increased guanidinium hydrochloride

(GdnHCl) concentrations were used to induce protein unfolding,

monitored through a combination of fluorescence intensity and

emission maximum as previously described. The thermodynamic

stability of both enzymes was analyzed based on a two-state

process using the equations described in Durão et al [35] and

Fernandes et al [36]. Protein aggregation occurring upon thermal

unfolding was monitored by measuring static light scattering at

500 nm as excitation and emission wavelengths. Differential

scanning calorimetry (DSC) measurements were carried out by

Figure 1. Directed evolution landscape for the first generation mutant library. (A) Initial activity vs thermostability of 2214 clones screened
relative to the wild type. (B) Re-screening of the best mutants identified. Stability was measured by the ratio of residual activity following incubation
at 55uC for 60 min to initial activity.
doi:10.1371/journal.pone.0087209.g001

Table 1. Summary of library screening conditions, amino acid substitutions accumulated in PpAzoR variants and initial activity and
thermostability relative to their parents.

Generation
Temperature and
incubation period Variants Mutations

Initial activity
relative to parent1)

Thermostability
relative to
parent2)

1st 55uC, 60 min B1G6 Q192R 1.260.1 3.760.5

K7E3 Y179H 2.860.2 0.860.3

2nd 55uC, 90 min 16B7 Q192R, A46P, V159A 0.760.1 3.260.9

12B8 Q192R, Y179H 5.460.5 0.660.1

3rd 60uC, 45 min 23C10 Q192R, A46P, V159A, C129S 1.460.1 2.560.1

2A1 Q192R, A46P, V159A, A48P 0.560.2 2.660.4

19E4 Q192R, A46P, V159A, Y179H 3.260.2 1.460.1

4th 80uC, 60 min 13G10 Q192R, A46P, V159A, C129S, D7H, A178D 0.860.1 3.960.2

6F10 Q192R, A46P, V159A, C129S, N14D, L143Q 1.060.1 3.860.2

27E4 Q192R, A46P, V159A, C129S, L161M, L169P 0.960.1 3.160.2

23C5 Q192R, A46P, V159A, C129S, K74E, A88G 0.960.1 2.960.4

1C11 Q192R, A46P, V159A, C129S, E36D, L143Q 1.660.4 2.860.3

14D4 Q192R, A46P, V159A, C129S, A77T, N131D 1.060.1 2.560.2

32F5 Q192R, A46P, V159A, C129S, I6V, T79R, Y179H 2.560.2 1.460.2

23E4 Q192R, A46P, V159A, C129S, Y179H 2.160.2 0.960.2

5th 85uC, 150 min 1B6 Q192R, A46P, V159A, C129S, A178D, A88G, N131D, L143Q 1.860.1 2.260.2

2E4 Q192R, A46P, V159A, C129S, A178D, K74E, L143Q 1.76 0.01 2.260.2

2F11 Q192R, A46P, V159A, C129S, A178D, A31S, K74E, A88G, L143Q 1.960.1 2.260.4

6F11 Q192R, A46P, V159A, C129S, A178D, N131D, L143Q 1.760.1 2.360.2

3B9 Q192R, A46P, V159A, C129S, A178D, A77T, F98L, N131D 1.460.4 2.360.3

1)Ratio of the initial activity of the variant to the parent type (Aiv/Aip),
2)Ratio of the residual activity to the initial activity of the variant (v), normalized to the parent type (p) – (Ar/Ai)v/(Ar/Ai)p

The parents for the next generations are in bold.
doi:10.1371/journal.pone.0087209.t001
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VP-DSC from MicroCal at a scan rate of 1uC/min. The

experimental calorimetric trace was obtained with 0.2 mg/mL

of protein in 20 mM Tris-HCl buffer, pH 7.6. The data were

processed and fitted using OriginH software supplied by the DSC

manufacturer. The progress baseline-subtracted and concentra-

tion-normalized DSC curve was fitted to non-two-state transitions.

Results and Discussion

Validation of high-throughput screenings
The measurement of enzymatic activity in crude extracts of E.

coli strains overexpressing ppAzoR was tested using AQS, BZ,

catechol, Lawsone and NSA as substrates. AQS was selected based

on the highest activity differences (40 times) in induced vs. non

induced strains. LOM531 (E. coli KRX) strain was selected for

further studies since 1) the differences in activity are 8 times higher

as compared with LOM528 (E. coli Tuner) and 2) KRX is a

cloning as well as an expressing strain, allowing avoiding

additional steps of plasmid transfer during the laboratory evolution

process. Coefficients of variance (CV = standard deviation/mean

x 100%) of <15% were achieved for final OD600 nm of cell

cultures as well as for total protein content and maximal rates of

enzymatic activity in cell crude extracts using six different 96-well

plates, ensuring the aimed reproducibility of the ppAzoR expression

system. For the set-up of the thermostability assays the temper-

ature and the time of incubation (55uC/60 min for the screening

of the 1st generation) were selected based on conditions that

resulted in a residual activity of about one-third of the initial

activity [37]; the thermostability assays showed a CV of <17%.

Directed evolution of PpAzoR
Around 10,000 clones were examined in five rounds of

laboratory evolution for improved thermostability. The libraries

were constructed to attain 1–3 amino acid changes which

correspond roughly to 30 to 45% of the total number of clones

with less than 10% activity of wild type [38]. For this purpose

MnCl2 concentrations were varied and 0.2 mM MnCl2 was

selected. In the 1st generation a total of 2214 clones were screened

(Figure 1A) and 18 variants were identified with increased

thermostability or activity and re-screened to rule out false

positives (Figure 1B). The B1G6 variant with one amino acid

substitution (Q192R) showed around 3.5-fold higher thermosta-

bility while maintaining a similar enzymatic activity when

compared to the wild type and was selected as parent for the

2nd generation (Table 1 and Figure 2). The heat treatment was

adjusted to 55uC for 90 min and 2052 clones were screened and

hit 16B7 was identified showing a 3.2-fold higher thermostability

as compared with the parent. In the 3rd generation the heat

treatment was further adjusted to 60uC for 45 min and the

screening of 2160 clones resulted in the identification of two hits,

2A1 and 23C10, exhibiting similar (2.5-fold) improvements in

thermostability. The selection of the 23C10 as parent for the 4th

generation was based on its higher enzymatic activity in

comparison to variant 2A1. Both variants shared mutations

Q192R, A46P, V159A from the previous generations and while

23C10 acquired the additional mutation C129S, 2A1 acquired

mutation A48P. In the 4th generation the heat treatment was

further adjusted to 80uC for 60 min and the screening of 2160

clones resulted in 6 variants with additional 1–3 different new

mutations but showing similar thermostability (Table 1). Therefore

a recombination approach through DNA Shuffling using the 6

Figure 2. Lineage of PpAzoR variants generated in this study. Only non-synonymous mutations are shown. The mutants with higher stability
are in white and the mutants with higher activity are in grey.
doi:10.1371/journal.pone.0087209.g002
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variants and 2A1 from the previous generation was followed

(Figure 2). A total of 702 clones were screened with a heat

treatment adjusted to 85uC for 150 min and 1B6 was selected after

re-screening as the most thermostable variant (Table 1, Figure 3)

and was purified.

Characterization of 1B6, a variant resistant to
aggregation

Purified 1B6 variant maintains its full activity after incubation

for 1 h at temperatures between 40 and 85uC in clear contrast

with the wild type that loses activity after one hour at 50–55uC
(Figure 4A). First, kinetic stability, that quantifies the amount of

enzyme that loses activity irreversibly during incubation at a

certain temperature, was measured (Figure 4B). 1B6 is remarkably

more stable than the wild type with a 300-fold longer half-life (t1/

2), i.e. retaining 50% of activity after 68 h at 50uC, while the wild

type enzyme half-life is around 13 min. The optimum temperature

of 1B6 (around 30uC) is however slightly lower than that of the

wild type (around 35uC) (Figure 4C).

The thermodynamic stability of wild type enzyme and 1B6

variant was first addressed by differential scanning calorimetry

(DSC) (Figure 5A). Besides the measurement of protein unfolding

temperatures DSC gives unique information on thermal stability

of proteins based on heat changes. The DSC thermogram of wild

type shows the typical protein aggregation fingerprint character-

ized by an abrupt drop of the baseline after the endothermic peak

leading to 100% irreversibility, a Tm,47uC could be roughly

estimated. This feature remains at least up to the 3rd generation of

evolution as clearly shown by the profile DSC trace of 2A1 variant

(Fig. 5 dashed line). The variant 1B6 does not aggregate after

thermal unfolding (no drop in the base line) and displays two

distinct endothermic transitions (Figure 5B). For a homodimeric

protein as PpAzoR two distinct endothermic transitions were

assigned to the dimer dissociation (Tm(1B6) = 39uC, around 8uC
lower than that of wild type) and monomer unfolding

(Tm(1B6) = 55uC). Interestingly, thermal unfolding of 1B6 variant

followed by fluorescence, apparently displayed a single transition

with a melting temperature of 4461uC (Figure 5B inset). This Tm

value is in between dimer dissociation and monomer unfolding

temperatures probed by DSC, indicating that tryptophan fluores-

cence was affected upon dimer dissociation. Moreover, this variant

showed nearly complete reversibility of thermal unfolding. The

wild type could not be followed by fluorescence due to protein

aggregation upon temperature increase. However, two endother-

mic transitions are still perceptible in the wild type thermogram

Figure 3. Residual activity of variants from the 5th generation.
Activity was measured after incubation at different temperatures (55–
70uC) for 30 min: 1B6 (black), 2E4 (grey), 2F11 (diagonal), 6F11 (dot),
3B9 (white). Reactions were performed in 100 mM sodium phosphate
buffer pH 7, 100 mM AQS and 250 mM NADPH.
doi:10.1371/journal.pone.0087209.g003

Figure 4. 1B6 variant characterization. (A) Activity remaining at
30uC following heating to the indicated temperature for 1 h of wild
type PpAzoR (circles) and 1B6 variant (squares). Reactions were
performed in 100 mM sodium phosphate buffer pH 7, 100 mM AQS
and 250 mM NADPH. (B) Thermal inactivation of wild type PpAzoR
(circles) and 1B6 variant (squares). Enzyme samples were incubated at
50uC and activity measured at 30uC in aliquots taken at different time
intervals. (C) Temperature dependence of wild type PpAzoR (circles)
and 1B6 variant (squares).
doi:10.1371/journal.pone.0087209.g004
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(Figure 5A). Nevertheless, protein aggregation occurring concom-

itantly with monomer unfolding abolished almost completely the

second transition. The inactivity of the monomer was confirmed

by enzymatic assays after its generation by size-exclusion

chromatography in the presence of 0.35 M GdnHCl (data not

shown).

Based on the data discussed above, thermal deactivation of

PpAzoR can be described by the following pathway

N2«2N«2URD (where N2 is the homodimer, N the folded

Figure 5. Differential scanning thermograms. (A) Wild type PpAzoR (thin line), 2A1 variant (dash line) and 1B6 variant (thick line). Arrows
indicate the optimal temperature for activity which occurs in the initial part of the endothermic peak. (B) 1B6 variant fitted by non-two-state
transitions (red line); Inset - Fraction of 1B6 variant unfolded (fUnf) by temperature at pH 7.6 as measured by fluorescence emission. The solid line is
the fit according to the equation fU = e(2DGu/RT)/(1+e (2DGu/RT)).
doi:10.1371/journal.pone.0087209.g005
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monomer, U the unfolded monomer) that lead to the irreversible

aggregate state D in the wild type enzyme. The stabilization of

1B6 variant, leading to the large increase in the kinetic stability, is

achieved by preventing the aggregation of the unfolded monomers

(i.e. N2«2N«2U can be proposed for the studied T interval)). A

slight simultaneous decrease of the stability of the dimeric folded

state of the enzyme (lower optimal temperature (Topt) and lower

Tm of the first endothermic peak) as compared with the wild type

was also observed.

Identification and characterization of thermodynamically
resistant variants

In order to find hit variants with increased thermodynamic

stability and explore further the stability pathways of PpAzoR, we

have measured the optimal temperature of several variants found

in the 1st, 2nd and 3rd generation (Figure 6). An upward shift in the

optimum temperature by approx. 10uC in the hit of the 1st

generation (Topt B1G6 = 40uC), 15uC in the hit of the 2nd

generation (Topt 16B7 = 45uC) and 20uC in one of the hits of the

3rd generation (Topt 2A1 = 50uC) was observed. It is now clear that

the similar thermal stabilities measured for 23C10 and 2A1

(Table 2) arise apparently from different phenomena: in 23C10

(Topt of 35–40uC) from the impeded aggregation of the unfolded

state and in 2A1 from the stabilization of the folded state.

The successive improvements in ‘‘thermostability’’ as indicated

by the increased optimal temperature of hits in the first

generations arises with a simultaneous decrease in activity

(Figure 6), revealing a trade-off between high activity and high

stability [39]. This is particularly evident in 2A1 variant which, in

spite, of the significant up-shift of 20uC of its Topt shows a 2-fold

decrease in the enzymatic activity when compared to the wild type

enzyme. In order to improve its activity the mutation Y179H was

introduced by site-directed mutagenesis since all variants showing

increased activity share this mutation (Figure 2 and Table 1).

Tyr179 is located in the surroundings of the substrate binding site

close to the FMN cofactor and it is likely that the smaller volume

of the histidine residue as compared to tyrosine may account for a

slight enlargement of the cavity, contributing to an increased

activity. Remarkably, the resulting variant 2A1-Y179H indeed

shows an 8-fold higher activity than 2A1 corresponding to a 4-fold

higher specific activity in relation to wild type (Figure 7A). A

compromise between high activity and high stability is also present

in 2A1-Y179H since it has a lower optimal temperature in relation

to variant 2A1; however it still shows a 10uC up-shift in the Topt in

relation to the wild type and 1B6 variant (Figure 7A). Aggregation

impeded probing the unfolding process by fluorescence in 2A1 and

2A1-Y179H variants but static light scattering confirmed that

unlike 1B6 variant, 2A1 variant as wild type aggregate at the

highest temperatures tested (Figure 7B). Furthermore, we observed

only one endothermic peak in the DSC thermogram, suggesting

the simultaneous occurrence of dimer dissociation and monomer

unfolding with a increased melting temperature of around 8uC
over that of the wild type (Tm,55uC, Figure 5A). Overall, our

data reveal that although variant 2A1-Y179H unfolds irreversibly

similarly to the wild type, it shows a higher stabilization of the

dimeric folded state with a higher melting temperature (and thus

up-shifted Topt) and 100-fold increased half-life at 50uC (t1/

2 = 23 h; Figure 7C).

Characterization of chemical stability of variants
The thermodynamic stability of the tertiary structure of

PpAzoR wild type and hit variants upon addition of GdnHCl

was assessed by fluorescence (Figure 8). The wavelengths at the

emission maxima reflect clearly the exposure of tryptophan

residues to the high polarity of water molecules at the surface of

the protein upon unfolding [40]. The wild type PpAzoR displays a

GdnHCl concentration of 1.1 M at the mid-point (where 50% of

the molecules are unfolded) and the native state is more stable than

the unfolded state by 4.2 kcal/mol at 25uC (Table 2). The

unfolding process can be accurately described according to a two-

state process with folded and unfolded states of the monomers

being the only ones that accumulate significantly. Hit variants

follow approximately the same trend upon increased GdnHCl

concentrations, however noteworthy 50% of the 1B6 molecules

unfolded at half of the GdnHCl concentrations required to unfold

the wild type. The native state of 1B6 is more stable than the

unfolded state by only 2.3 kcal/mol. This result shows that

mutations leading to the drastic reduction of the irreversible

aggregation result in an overall folded structure which is less stable

than the wild type enzyme, as also observed previously for thermal

inactivation by DSC (Figure 5). Variant 2A1 is clearly more stable

against chemically induced unfolding displaying the largest free-

energy difference between the folded and the unfolded state

(7.5 kcal/mol). This large free-energy gap may result from a more

restricted conformational freedom (lower entropy) of the unfolded

state due to the introduction of two proline residues (A46P and

particularly A48P which is not present in variant 1B6). Interest-

ingly the cooperativeness of the unfolding transition (m parameter)

also increases very significantly in the variant 2A1. This parameter

is a measure of the degree of solvent exposure for a given

Figure 6. Temperature dependence of PpAzoR wild type and
variants measured in crude cell extracts. Wild type PpAzoR
(circles), B1G6 from 1st generation (squares), 16B7 from 2nd generation
(triangles), 2A1 from 3rd generation (diamonds) and 23C10 from 3rd

generation (stars). Reactions were performed using crude extracts in
100 mM sodium phosphate buffer, pH 7, in the presence of 100 mM
AQS and 250 mM NADPH.
doi:10.1371/journal.pone.0087209.g006

Table 2. Thermodynamic stability of the tertiary structure of
PpAzoR wild type, 2A1, 2A1-Y179H and 1B6 variants as
assessed by fluorescence spectroscopy.

Wt 2A1 2A1-Y179H 1B6

DGwater

(kcal/mol)
4.260.4 7.560.7 3.960.3 2.360.2

m (kcal/mol M) 3.360.2 6.960.6 3.960.3 4.260.4

[GdnHCl]50% (M) 1.160.2 1.360.2 1.060.3 0.660.1

doi:10.1371/journal.pone.0087209.t002
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transition; the higher value in 2A1 shows that the level of the

solvent exposure is larger than in the wild type and in the other

variants analysed. Since the conformational freedom of the

unfolded state may be restricted by the introduction of the two

prolines, the larger m value may be rationalized by the higher

degree of compactness of variant 2A1 in the folded state. These

two residues are located in the interface of the two monomers [31]

and the introduction of a proline in position 48 most probably

enhances the homodimer stabilization. The higher exposition to

the solvent (m value) observed in the variant 2A1 may then relate

to an almost simultaneous dimer dissociation and chemical

unfolding while in the other proteins the dissociation of the

homodimer occurs first followed by monomer unfolding in

accordance with DSC data (Figure 5A). The replacement of

Y179 by a histidine residue in this variant, despite the

improvement in activity, results in decreased free energy

differences and cooperativeness of transition (m) to values similar

to wild type.

Molecular details of mutations that improve stability
PpAzoR (PDB code 4C0W) is a homodimer and its tertiary

structure adopts a flavodoxin-like fold characterized by a central

twisted five parallel b-sheet connected by a-helices, which flank

the sheet from the front and the back [31,41]. The arrangement of

the a-helices and b-stands is identical to structures of azoreduc-

tases from E. coli (PDB code 2Z98) [16] Pseudomonas aeruginosa (PDB

code 2V9C) [20], Enterococcus feacalis (PDB code 2HPV) [17] and

Salmonella typhimurium (PDB code 1T5B). Moreover, it contains the

conserved motif patterns of flavin-dependent azoreductases, i.e.

the sequence involved in the binding of FAD/FMN cofactors, the

sequence involved in the dimerisation of the two monomers of the

enzyme and the possible putative NAD(P)H binding motif [29,31].

All the mutations identified in both the aggregation or

thermodynamically-resistant hit variants are spread on or near

the surface of the protein (Figure 9), underscoring the importance

of protein surface for stability as found in most of the enzymes

showing improved thermostability [42,43]. In addition the

majority of mutations occur in loops in accordance with previous

studies that show that reduction of flexibility of surface loops

generates more stable proteins [44,45]. It is expected that the less

ordered regions, loops and turns, would be more accommodative

to the substitutions while disruption of packing in the core may

interfere with the folding of the protein.

Aggregation-resistant 1B6 hit shares mutations with thermody-

namically-resistant 2A1 variant introduced in the early generations

of directed evolution (Figure 9). The substitution Q192R from the

Figure 7. 2A1 and 2A1-Y179H variants characterization. (A)
Temperature dependence of purified wild type PpAzoR (circles), 2A1
(diamonds) and 2A1-Y179H (triangles) variants. Reactions were per-
formed in 100 mM sodium phosphate buffer, pH 7, in the presence of
100 mM AQS and 250 mM NADPH. (B) Light scattering of wild type
PpAzoR (circles), 1B6 (squares) and 2A1-Y179H (triangles) variants. (C)
Thermal inactivation of wild type PpAzoR (circles) and 2A1-Y179H
(triangles) variant; enzyme samples were incubated at 50uC and activity
measured at 30uC in aliquots taken at different time intervals.
doi:10.1371/journal.pone.0087209.g007

Figure 8. Chemical stability. Unfolded fraction (fUnf) of wild type
PpAzoR (circles) and 1B6 (squares), 2A1 (diamond) and 2A1-Y179H
(triangles) variants by GdnHCl at pH 7.6 as measured by fluorescence
emission. The solid line is the fit according to the equation fU = e(2DGu/

RT)/(1+e (2DGu/RT)).
doi:10.1371/journal.pone.0087209.g008
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1st generation (Figure 2 and Table 1) most probably relates to the

well documented deamidation of glutamine and asparagine

residues triggered by high temperatures that contributes to

inactivation of irreversibly denaturated proteins [4]. This substi-

tution in an a-helix has an additional advantage as arginine is

known to enhance polar interactions, formation of hydrogen

bonds and/or salt bridges, resulting in an increased overall

stability. A46P and V159A mutations were picked up in the 2nd

generation. V159A is located in a a-helix and the replacement of a

valine by a smaller alanine, considered to be the best helix-forming

residue, may enhance stability by increasing the helical propensity

[4]. The A46P mutation occurs in the longest stretch of amino acid

residues (20) of the enzyme without any regular secondary

structure [31]. In protein structures, loops are flexible regions,

and protein unfolding supposedly starts from loops. Proline can

adopt only a few conformations showing the lowest conforma-

tional entropy among amino acids, restricting therefore the

backbone configurations which result in the stabilization of the

native state [46–48]. The hits from the 1st and 2nd generations

have increased optimal temperatures in respect to that of the wild

type (Figure 6) therefore it is expectable that they also presented

higher melting temperatures. Therefore we can conclude that the

mutations Q192R, A46P and V159A stabilised mainly the dimeric

native state of the enzyme.

Variant 2A1 from the 3rd generation showing the highest

melting temperature and stability of the dimeric native state

carries a second Pro (A48P) in the same loop as A46P. A fraction

of this loop (Ile47, His49, Phe50) is involved in a complex net of

hydrogen bonding interactions with the same stretch of residues of

the second monomer of the PpAzoR dimer [31]. Thus, it is

probable that Pro48 apart from imposing constraints in backbone

conformations of the native state, by decreasing flexibility,

contribute critically to the stabilization of the homodimer in

solution in accordance with the DSC (Figure 5A) and chemical

stability (Figure 8) results.

The aggregation-resistant 1B6, the variant with the longest half-

life and dramatically less aggregation-prone, shows not A48P but

C129S mutation (Figure 2 and Table 1), located in the putative

NAD(P)H binding motif [31]. Cysteines are the most reactive

amino acids in proteins which is the reason behind their

involvement in specific interactions within proteins (e.g., disulfide

bridges or metal ligand binding) and/or their localization in

positions inaccessible to the solvent [4]. Importantly, serine with a

hydroxyl group allows for the potential formation of additional

hydrogen bonds within the protein structure or with the solvent.

Figure 9. Mapping of key amino acids for protein thermostabilization in PpAzoR crystal structure (PDB code 4C0W). (A) 2A1 and (B)
1B6 variants. Mutations responsible for the thermodynamic stability are in red; mutations responsible for aggregation-resistance are in blue; the FMN
is in orange.
doi:10.1371/journal.pone.0087209.g009

Table 3. Mechanisms of protein thermostabilization present in PpAzoR variants created by directed evolution [4,46–48,54–57].

Protein thermostabilization Mutation

Increasing structure robustness

replacing temperature-sensitive residues by polar or charged residues C129S; Q192R; N131D

strengthening solvent-exposed loops by restricting the number of available main-chain conformations A46P; A48P

dimer stabilization A48P

increasing helical propensity V159A

conformational strain release A88G

Resistance to aggregation

residual repulsive interactions between partially unfolded structures N131D; L143Q; A178D

disruption of surface hydrophobic patches L143Q; A178D

doi:10.1371/journal.pone.0087209.t003
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Interestingly, three out of four mutations introduced in the 4th

generation are substitutions to surface charged (N131D, A178D)

or polar (L143Q) residues. Notably, five out of the six hit variants

from the 4th generation have at least one mutation introducing a

charged residue and all variants from the 5th generation have 3 to

4 charged residues in a total of 7 to 8 mutations (Table 1). It has

been proposed that the presence of charged residues on the protein

surface may lead to residual repulsive interactions increasing the

solubility and preventing native state aggregation [49]. The

introduction of the positively charged residue R28 was identified

as the key determinant of aggregation resistance of the unfolded

state of human antibody variable domains created by directed

evolution [50] while A281E and V221D mutations inhibited

protein aggregation and facilitated refolding of the catalytic active

conformation of a Candida antartica lipase [51]. In the case of a

lipase from Bacillus subtilis the simultaneous improvement in

thermodynamic stability and non-aggregating properties was

achieved by the introduction of two proline residues that led to

a better anchoring of loops, disturbing the exposed hydrophobic

patches of 6B lipase and one charged residue, E134 [52].

Moreover, we observe here that mutations L143Q and A178D

in 1B6 variant are close to a hydrophobic patch present on the

protein surface in the surroundings of the FMN molecule,

potentially decreasing the association of exposed hydrophobic

patches and the formation of aggregate compatible structures.

Therefore the combination of the increased surface charge/

polarity with disturbance of hydrophobic patches even though

resulting in a decreased inter-dimer association, i.e. lower stability

of the native state, lead to the abolishment of the aggregational

pathway with a critical gain in the kinetic stability of the enzyme.

In an attempt to create an aggregation and thermodynamically-

resistant variant we have introduced by site-directed mutagenesis

the mutation A48P, present in the 2A1, into the 1B6 variant. In

contrast to the 1B6, the resulting variant 1B6-A48P aggregates

upon temperature raise while maintaining a similar Topt (data not

shown). These results suggest the absence of a synergistic

interaction between A48P mutation and the mutations present

in 1B6 variant, in accordance with our DNA-shuffling results. In

fact, none of the five variants selected in the 5th generation as a

result of the shuffling among variant 2A1 and variants of the 4th

generation, including A48P mutation (Table 1 and Figure 2). Most

probably the surface mutations of 1B6, which are not present in

2A1, and A48P comprise an opposite effect in the stability of the

native state of the variants since the endothermic transitions in the

DSC assigned to dimer dissociation occur at ,55uC for 2A1 and

at 39uC for 1B6 (i.e. 8uC higher and lower, respectively) than the

wild type Tm ,47uC.

Conclusions

Directed evolution is an effective and reliable approach to

engineer proteins contributing simultaneously to our understand-

ing of protein function and adaptation mechanisms. Two types of

protein stability (thermodynamic and kinetic) are of interest from a

fundamental and applied perspective. Increasing the thermody-

namic thermostability is the main issue when an enzyme is used

under denaturing conditions (i.e. high temperatures or organic

solvents) [2]. Industrial applications require active enzymes rather

than enzymes that are in a reversibly inactivated state. For other

enzymes, for example those that can be utilized for diagnostic

puroposes, to ensure a suitable shelf-life, it is often long term

stability that needs to be improved. Most frequently both stabilities

correlate since increasing the enzyme resistance to unfolding state

also increases its resistance to inactivation. Remarkably in the

present study we have identified a hit variant of PpAzoR, 1B6,

with increased resistance to inactivation by aggregation. This was

accomplished by drastically decreasing the rate of the irreversible

step of denaturation (the aggregation of the unfolded monomers)

upon thermal stress. Although variant 1B6 is less stable for thermal

or chemically induced unfolding when compared to the wild type,

lower amounts of the irreversibly denatured state accumulated in

the long-term stability assay. The identification of this hit

correlates well with the experimental screening strategy followed.

In order to select for mutations that improve the stability of the

catalytically competent native state a secondary screen strategy

was implemented based on activity measurements at increasing

temperatures i.e. by probing the dissociation of the dimer.

Importantly our work shows that the resistance of the unfolded

monomers to aggregation (resulting also in a destabilization of the

dimeric folded state) is achieved through a delicate disturbance of

hydrophobic patches and to a clearly increased surface net charge.

On the other hand, the increase of robustness of the native

structure is mainly an outcome of strengthening of solvent-exposed

loops and inter-dimer interactions (Table 3). Overall, this work

suggests that protein charge can be exploited to impart robust

resistance to protein aggregation with implications on de novo

protein design efforts, where unpredictable protein properties,

including aggregation, remain a significant challenge. From the

point of view of protein evolvability mutations that prevent the

aggregation of the unfolded state, increasing thus the level of

soluble protein, contribute to protein fitness [53], and therefore

variant 1B6 is potentially a good candidate to be evolved for new

functions of PpAzoR.
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