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Hopf bifurcation in an age-structured SIR epidemic model

Toshikazu Kuniyaa

aGraduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

Abstract

In this paper, we study the occurrence of a sustained periodic solution via the Hopf bifurcation in an
age-structured SIR epidemic model. Under the assumption that the transmission rate depends on the age
of infective individuals and the product of the transmission rate and the population age distribution is
concentrated in a specific age, we reformulate the model into an integral equation of Fredholm type. We
then define the basic reproduction number R0 and show that the unique positive endemic equilibrium of
the integral equation exists if and only if R0 > 1. We derive a characteristic equation for the endemic
equilibrium, and regarding the specific age as a bifurcation parameter, we obtain a sufficient condition for
the occurrence of the Hopf bifurcation. Finally, we provide a numerical example that supports our theoretical
result.
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1. Introduction

SIR epidemic models are known as one of the most basic epidemic models in which total population is
divided into three classes called susceptible, infective and recovered. Since the first work [1] by Kermack
and McKendrick in 1927, many authors have developed the theory of SIR epidemic models with various
structures such as time-delay structure [2], multigroup structure [3] and age structure [4].

The basic reproduction number R0 is known as one of the key concepts in the theory of epidemic models,
which represents the expected number of secondary cases produced by a typical infective individual during
its entire period of infectiousness in a fully susceptible population [5]. For an SIR epidemic model in a simple
form of ordinary differential equations, R0 determines the complete global dynamics of the solution, that is,
if R0 ≤ 1, then the disease-free equilibrium with no infective population is globally asymptotically stable,
whereas if R0 > 1, then the endemic equilibrium with positive infective population is so [6, Section 5.5.2].

In contrast, this is not the case for a class of age-structured SIR epidemic models in forms of partial
differential equations. For an age-structured SIR epidemic model, the global asymptotic stability of the
disease-free equilibrium for R0 < 1 has been proved [4], however, the stability of the endemic equilibrium
for R0 > 1 has been proved in some restricted special cases [4, 7, 8], and the instability of the endemic
equilibrium for R0 > 1 has also been proved in some other cases [9–12]. One of the most important
questions in the cases of unstable endemic equilibria for R0 > 1 is whether a sustained periodic solution can
arise via the Hopf bifurcation since such a solution can be responsible for the biennial outbreaks of diseases
such as measles [9]. The purpose of this study is to obtain a new sufficient condition for the Hopf bifurcation
in an age-structured SIR epidemic model.

The organization of this paper is as follows. In Section 2, we formulate an age-structured SIR epidemic
model. Based on [9], we assume that the transmission rate depends only on the age of infective individuals
and the product of the transmission rate and the population age distribution is concentrated in a specific
age a∗ in the sense of the Dirac delta function. We then reformulate the model into an integral equation of
infective population with age a∗. In Section 3, we define the basic reproduction number R0 and show that
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the unique endemic equilibrium exists if R0 > 1. We then derive a characteristic equation for the stability
analysis of the endemic equilibrium. By regarding a∗ as a bifurcation parameter and applying a method
for delay differential systems in [13], we obtain a sufficient condition for the Hopf bifurcation. Finally, in
Section 4, we provide a numerical example that supports our theoretical result.

2. Model

As in [9], we focus on the following normalized SIR epidemic model with age structure.

(
∂

∂t
+

∂

∂a

)
s(t, a) = −s(t, a)

∫ +∞

0

κ(a)p∗(a)i(t, a)da, t > 0, a > 0,(
∂

∂t
+

∂

∂a

)
i(t, a) = s(t, a)

∫ +∞

0

κ(a)p∗(a)i(t, a)da− γi(t, a), t > 0, a > 0,(
∂

∂t
+

∂

∂a

)
r(t, a) = γi(t, a), t > 0, a > 0,

s(t, 0) = 1, i(t, 0) = r(t, 0) = 0, t > 0,

(2.1)

where s(t, a), i(t, a) and r(t, a) denote the fractions of susceptible, infective and recovered individuals of
age a at time t, respectively. κ(·) denotes the transmission rate, p∗(·) denotes the stable population age
distribution and γ > 0 denotes the recovery rate. In [9], it was shown that the endemic equilibrium can
loose its stability if κ(a)p∗(a) is sufficiently concentrated in one particular age in the sense of the Dirac delta
function. However, any specific parameter regions for the instability of the endemic equilibrium and the
occurrence of the Hopf bifurcation were not obtained in [9]. In this study, motivated by [9], we make the
following assumption.

(A1) There exist a∗ > 0 and β > 0 such that κ(a)be−
∫ a
0
µ(σ)dσ = βδ(a−a∗) for all a ≥ 0, where δ(·) denotes

the Dirac delta function.

Under assumption (A1), model (2.1) can be rewritten as follows.

(
∂

∂t
+

∂

∂a

)
s(t, a) = −βs(t, a)i(t, a∗), t > 0, a > 0,(

∂

∂t
+

∂

∂a

)
i(t, a) = βs(t, a)i(t, a∗)− γi(t, a), t > 0, a > 0,

s(t, 0) = 1, i(t, 0) = 0, t > 0.

(2.2)

By integration along the characteristic line, we obtain s(t, a) = e−β
∫ a
0
i(t−a+ρ,a∗)dρ, t− a > 0, and

i(t, a) =β

∫ a

0

e−γ(a−σ)s(t− a+ σ, σ)i(t− a+ σ, a∗)dσ = β

∫ a

0

e−γ(a−σ)e−β
∫ σ
0
i(t−a+ρ,a∗)dρi(t− a+ σ, a∗)dσ

=β

∫ a

0

e−γτe−β
∫ a−τ
0

i(t−a+ρ,a∗)dρi(t− τ, a∗)dτ = β

∫ a

0

e−γτe−β
∫ a
τ
i(t−η,a∗)dηi(t− τ, a∗)dτ, t− a > 0.

Let Y (t) := i(t, a∗). We then obtain the following integral equation of Fredholm type.

Y (t) = β

∫ a∗

0

e−γτe−β
∫ a∗
τ

Y (t−η)dηY (t− τ)dτ, t > a∗. (2.3)

The main interest in this paper is to study the occurrence of a sustained periodic solution via the Hopf
bifurcation in equation (2.3).
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3. Stability analysis

Let Y ∗ > 0 denote a positive equilibrium of equation (2.3). We see from (2.3) that Y ∗ should be a
positive root of the following equation.

1 = β

∫ a∗

0

e−γτe−βY
∗(a∗−τ)dτ (3.1)

We define the basic reproduction number by R0 := β
∫ a∗
0

e−γτdτ = (β/γ)
(
1− e−γa

∗)
and establish the

following proposition.

Proposition 3.1. (2.3) has the unique positive endemic equilibrium Y ∗ > 0 if and only if R0 > 1.

Proof. Since the right-hand side of (3.1) is monotone decreasing with respect to Y ∗ and converges to zero

as Y ∗ → +∞, R0 = β
∫ a∗
0

e−γτdτ > 1 is equivalent to the existence of the unique positive root Y ∗ > 0 of
(3.1). This completes the proof. �

In what follows, we assume that R0 > 1. We then obtain the following linearized equation of (2.3) around
Y ∗ (note that ex ≈ 1 + x if |x| � 1, x ∈ R).

Z(t) =β

∫ a∗

0

e−γτe−βY
∗(a∗−τ)Z(t− τ)dτ − βY ∗

∫ a∗

0

e−γτβ
∫ a∗

τ

Z(t− η)dηe−βY
∗(a∗−τ)dτ

=

∫ a∗

0

p(τ)Z(t− τ)dτ − βY ∗
∫ a∗

0

p(τ)

∫ a∗

τ

Z(t− η)dηdτ, (3.2)

where p(τ) := βe−γτe−βY
∗(a∗−τ), 0 ≤ τ ≤ a∗. We now prove the following lemma on p(·).

Lemma 3.1. (i) p′(τ) = (βY ∗ − γ) p(τ), 0 ≤ τ ≤ a∗. (ii)
∫ a∗
0
p(τ)dτ = 1. (iii) p(a∗)− p(0) = βY ∗ − γ.

Proof. (i) is obvious. (ii) follows from (3.1). From (i) and (ii), we have βY ∗−γ = (βY ∗ − γ)
∫ a∗
0
p(τ)dτ =∫ a∗

0
p′(τ)dτ = p(a∗)− p(0) and hence, (iii) holds. This completes the proof. �

Substituting Z(t) = Zeλt, Z 6= 0, λ ∈ C into (3.2) and dividing both sides by Z, we obtain the following
characteristic equation.

1 =

∫ a∗

0

p(τ)e−λτdτ − βY ∗
∫ a∗

0

p(τ)

∫ a∗

τ

e−ληdηdτ. (3.3)

Note that λ 6= 0 since
∫ a∗
0
p(τ)dτ − βY ∗

∫ a∗
0
p(τ)dτ = 1− βY ∗ < 1. We then have∫ a∗

0

p(τ)e−λτdτ =
p(0)− p(a∗)e−λa∗

λ
+
βY ∗ − γ

λ

∫ a∗

0

p(τ)e−λτdτ (3.4)

and ∫ a∗

0

p(τ)

∫ a∗

τ

e−ληdηdτ =

∫ a∗

0

p(τ)

[
e−λτ − e−λa

∗

λ

]
dτ =

1

λ

∫ a∗

0

p(τ)e−λτdτ − e−λa
∗

λ
. (3.5)

We have from (3.4) that

[λ− (βY ∗ − γ)]

∫ a∗

0

p(τ)e−λτdτ = p(0)− p(a∗)e−λa∗ . (3.6)

From (3.5) and (3.6), multiplying λ [λ− (βY ∗ − γ)] by both sides of (3.3), we obtain

λ [λ− (βY ∗ − γ)] = (λ− βY ∗) [p(0)− p(a∗)e−λa∗ ] + βY ∗e−λa
∗

[λ− (βY ∗ − γ)] . (3.7)
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Rearranging (3.7), we obtain

λ2 − [p(0) + (βY ∗ − γ)]λ+ βY ∗p(0) + [(p(a∗)− βY ∗)λ+ βY ∗(βY ∗ − γ − p(a∗))] e−λa
∗

= 0 (3.8)

By Lemma 3.1 (iii), we can rewrite (3.8) as

P (λ) +Q(λ)e−λa
∗

= 0. (3.9)

where P (λ) := λ2 − p(a∗)λ + βY ∗p(0) and Q(λ) := (p(a∗) − βY ∗)λ − βY ∗p(0). Characteristic equations
with forms similar to (3.9) have appeared in the stability analysis of many delay differential systems (see,
for instance, [13–20]). Substituting λ = iω, ω > 0 into (3.9), we obtain as in [13] that

(
cos(ωa∗)
sin(ωa∗)

)
=

1

|Q(iω)|2
(
−ReQ(iω) − ImQ(iω)
− ImQ(iω) ReQ(iω)

)(
ReP (iω)
ImP (iω)

)
=

 −Re

(
P (iω)

Q(iω)

)
Im

(
P (iω)

Q(iω)

)
 , (3.10)

and thus, 1 = |P (iω)|2/|Q(iω)|2. To apply the method in [13], we define F (ω) := |P (iω)|2 − |Q(iω)|2 and
find a positive real root of F (ω) = 0.

Proposition 3.2. If 2γ − βY ∗ > 0, then F (ω) = 0 has a positive real root ω∗ =
√
βY ∗(2γ − βY ∗) > 0.

Proof. We have P (iω) = −ω2 + βY ∗p(0)− ip(a∗)ω and Q(iω) = −βY ∗p(0) + i (p(a∗)− βY ∗)ω, and thus,

F (ω) =
[
−ω2 + βY ∗p(0)

]2
+ [p(a∗)]2ω2 − [βY ∗p(0)]2 − [p(a∗)− βY ∗]2 ω2

=ω2
{
ω2 − 2βY ∗p(0) + [p(a∗)]2 − [p(a∗)− βY ∗]2

}
= ω2

{
ω2 − βY ∗ [2p(0)− 2p(a∗) + βY ∗]

}
=ω2

[
ω2 − βY ∗ (2γ − βY ∗)

]
. (3.11)

Hence, F (ω) = 0 has a positive real root ω∗ =
√
βY ∗ (2γ − βY ∗) if 2γ−βY ∗ > 0. This completes the proof.

�

In what follows, we regard a∗ > 0 as the bifurcation parameter under fixed R0 and γ. Note that β =
R0γ/(1−e−γa

∗
) and Y ∗ are functions of a∗ if we fixR0 and γ. Thus, we see that p(0) = βe−βY

∗a∗ and p(a∗) =
βe−γa

∗
are also functions of a∗. Let us define a set A ⊂ R+ by A := {a∗ ∈ R+ : 2γ − β(a∗)Y ∗(a∗) > 0}.

By Proposition 3.2, for any a∗ ∈ A, ω∗(a∗) =
√
β(a∗)Y ∗(a∗)[2γ − β(a∗)Y ∗(a∗)] satisfies F (ω∗(a∗)) = 0. By

(3.10), we define θ(a∗) ∈ [0, 2π) as the solution of cos θ(a∗) = −Re (P (iω∗(a∗))/Q(iω∗(a∗))) and sin θ(a∗) =
Im (P (iω∗(a∗))/Q(iω∗(a∗))). To apply the method in [13], we define the following function.

Sn(a∗) := a∗ − θ(a∗) + 2nπ

ω∗(a∗)
, a∗ ∈ A, n ∈ N0 = {0, 1, 2, · · · }.

By [13, Theorem 2.2], we obtain the following theorem.

Theorem 3.1. If Sn(a∗) = 0 holds for some a∗ = τ∗ ∈ A and n = n∗ ∈ N0, then the characteristic equation
(3.9) has a pair of simple conjugate pure imaginary roots ±ω∗(τ∗) and it crosses the imaginary axis from
left to right if δ(τ∗) > 0, and from right to left if δ(τ∗) < 0, where δ(τ∗) = sign {dSn∗(τ∗)/da∗}.

Proof. By [13, Theorem 2.2], we have δ(τ∗) = sign {dF (ω∗(τ∗))/dω} sign {dSn∗(τ∗)/da∗}. Hence, it suf-
fices to show that dF (ω∗(τ∗))/dω > 0. In fact, by (3.11), we have dF (ω)/dω = 2ω

[
ω2 − βY ∗ (2γ − βY ∗)

]
+

2ω3, and hence, dF (ω∗(τ∗))/dω = 2 [ω∗(τ∗)]3 > 0. This completes the proof. �
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Figure 1: Variation of each function for a∗ ∈ [0, 1] ((a) and (b)), and for a∗ ∈ A = {a∗ ∈ R+ : 0.016 . a∗ ≤ 1} ((c) and (d)).
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Figure 2: Variation of S0(a∗), S1(a∗) and S2(a∗) for a∗ ∈ A = {a∗ ∈ R+ : 0.016 . a∗ ≤ 1}.

4. Numerical simulation

We fix R0 = 5 and γ = 100 and manipulate the bifurcation parameter a∗ in [0, 1]. By applying the
Newton method to nonlinear equation βY ∗ − γ − p(a∗) + p(0) = βY ∗ − γ − βe−γa

∗
+ βe−βY

∗a∗ = 0, we
obtain Y ∗ = Y ∗(a∗) for a∗ ∈ [0, 1] as shown in Figure 1 (a). Using this Y ∗(·), we obtain 2γ − β(a∗)Y ∗(a∗)
for a∗ ∈ [0, 1] as shown in Figure 1 (b). In this case, we see that 2γ − β(a∗)Y ∗(a∗) > 0 for 0.016 . a∗ ≤ 1.
Thus, A = {a∗ ∈ R+ : 0.016 . a∗ ≤ 1}. For a∗ ∈ A, we obtain ω(a∗) and θ(a∗) as shown in Figure 1 (b)
and (c), respectively. Using these ω(·) and θ(·), we obtain S0(a∗), S1(a∗) and S2(a∗) for a∗ ∈ A as shown
in Figure 2. From Figure 2, we see that S0(a∗) = 0 for a∗ = τ∗ ≈ 0.047, and dS0(τ∗)/da∗ > 0. Hence,
by Theorem 3.1, we see that the Hopf bifurcation occurs at a∗ = τ∗ ≈ 0.047. In fact, Figure 3 illustrates
that the endemic equilibrium is stable for a∗ = 0.04 < τ∗, whereas it is unstable and a sustained periodic
solution exists for a∗ = 0.05, 0.06 > τ∗. Finally, Figure 4 illustrates that the solution i(t, a) of the original
model (2.2) can also oscillate when a∗ varies in a similar way as in Figure 3.
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