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Abstract
Six major groups of trilobites from the Silurian and Devonian of Japan are evaluated for their

paleobiogeographical signature. Silurian illaenids and scutelluids show four generic-level and at

least two species-level links with the Australian segment of the Gondwana paleocontinent; encri-

nurids also indicate two generic-level links with Australia and also the South China paleocontinent;

whilst Devonian phacopids, and possibly proetids, suggest at least two generic-level links with the

North China paleocontinent. These different patterns may reflect the fragmentary biostratigraphi-

cal record of Japanese trilobites, but they also appear to reflect paleoenvironmental parameters

associated with lithofacies, and paleoecology. Thus, Japanese assemblages of proetids and phaco-

pids occurring in deep-water clastic lithofacies have counterparts in similar settings in North

China, and Japanese scutelluids and illaenids are strongly associated with shallow marine carbon-

ate lithofacies that are similar to those of their occurrences in Australia. Japanese encrinurids

occur in carbonate rocks indicative of shallow marine settings in the Kurosegawa Terrane, and

they demonstrate a consistent paleobiogeographical affinity with Australia and South China. Larval

ecology cannot be directly assessed for Japanese trilobite groups. However, proetids have consis-

tently been shown to have planktonic protaspides, whereas illaenids, scutelluids, and encrinurids

have benthic protaspides. Planktonic protaspides would have a greater propensity for distribution

in ocean currents than benthic ones, and therefore may be of more limited paleobiogeographical

utility. The combined data from the six different groups indicates that the complex paleobiogeo-

graphical patterns of the Japanese trilobite assemblages need to be interpreted with caution, and

similarity of taxa does not necessarily denote paleogeographical proximity to other regions.
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1 | INTRODUCTION

The Silurian and Devonian marine sedimentary successions of Japan

comprise those of the South Kitakami Terrane (SKT) of north-eastern

Honshu, the Hida Gaien Terrane (HGT) of central Honshu, and the

Kurosegawa Terrane (KT), which extends from the Kii Peninsula in

southwest Honshu to the islands of Shikoku and Kyushu (Figure 1).

Strata in each of these terranes contain locally abundant fossil inverte-

brate faunas including brachiopods, cephalopods, ostracods and trilo-

bites (see Williams, Wallis, Oji, & Lane, 2014 for an overview of

Japanese lower Paleozoic stratigraphy). Trilobites have been reported

from each of these terranes (see Table 1), with the most diverse

faunas reported from the Silurian Fukata Formation (approximately

32 species), and the Devonian Fukuji Formation and its lateral equiva-

lent the Kamianama Formation (together ~ 22 species).

In this paper we focus on six groups of Japanese trilobites that have

recently undergone taxonomic revision, and which are interpreted to have

a range of paleoecologies. Recent revision of the Illaenidae and Scutellui-

dae (Holloway & Lane, 1998, 2012, 2016) has demonstrated links

between the trilobite faunas of Japan and Australia. It should be noted

that the composition and delimitation of the families Illaenidae and Scutel-

luidae remain contentious, particularly so far as their effaced (illaenimorph)
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taxa are concerned (Holloway & Lane, 1998, 2012, 2016; Lane & Thomas,

1980; Whittington, 1999). Of the taxa belonging to those families dealt

with in this paper, Bumastella, Rhaxeros and Lalax are assigned to the Illae-

nidae and Japonoscutellum, Illaenoscutellum, Kosovopeltis and Borenoria to

the Scutelluidae, following Holloway and Lane (1998, 2012, 2016). Revi-

sion of Encrinuridae by Holloway (1994), Ramsköld (1986), Strusz (1980),

and Zhang (1983) suggests links between Australia, Japan, and South

China. Additionally, revision of the Phacopidae by Kaneko (1990, 2007),

Stocker et al. (2018), and Zhou and Campbell (1990) has demonstrated

links between the KT and SKT as well as with the North China paleoconti-

nent. However, a recent review of the Proetidae and Aulacopleuridae of

Japan (Stocker et al., 2018), considered both of these groups to be

endemic at the species level, even between the Japanese terranes, though

proetids suggested links with North China at the genus-level. These stud-

ies represent trilobite groups occurring in a range of lithofacies, and with a

range of paleoecologies.

In this paper we evaluate the significance of the distribution pat-

terns of Japanese trilobites from the Silurian and Devonian. We con-

sider whether geography, lithofacies or ecology provides the

strongest influence on the biogeographical patterns of the Japanese

Silurian and Devonian trilobite faunas and assess whether biogeo-

graphical patterns changed over time.

2 | BIOSTRATIGRAPHICAL RANGES OF THE
SILURIAN AND DEVONIAN TRILOBITES OF
JAPAN

The trilobite material used in this study has been collected at different

times, and by different authors over the past century (e.g. Kobayashi,

1988a, 1988b, 1988c; Kobayashi & Hamada, 1974, 1976, 1977,

1985, 1987; see summary in Williams et al., 2014). As a result, piecing

together the stratigraphical ranges of the different taxa relies on a

detailed assessment of the trilobite literature, of geological maps of

the various regions (e.g. see Stocker et al., 2018), and analysis of the

most up-to-date literature on paleontological and radiometric dates

for the region. Seven formations are trilobite-bearing (Figure 2). Here

we summarize the data and approach we have used to assemble a

composite trilobite biostratigraphy based on the six groups studied.

Graptolite biostratigraphy underpins the international correlation

for rocks of Silurian and Early Devonian age, and provides a strati-

graphical resolution in the Silurian of less than 1 million years for some

biozones (Zalasiewicz et al., 2009). Palynological biozonations based

on chitinozoans provide similar resolution (e.g. Steeman et al., 2016).

However, the Japanese succession is so far devoid of graptolites, and

biostratigraphically significant chitinozoans have only now been

reported (Vandenbroucke et al., 2018). The biostratigraphical
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represented by areas with dark grey shading. Open circles denote areas containing trilobite-bearing rocks within each terrane, solid circles
represent cities, and dashed lines highlight the three terranes

2 of 15 STOCKER ET AL.



T
A
B
LE

1
Su

m
m
ar
y
o
f
Si
lu
ri
an

an
d
D
ev

o
ni
an

Ja
pa

ne
se

tr
ilo

bi
te
s
an

d
th
ei
r
pa

le
o
bi
o
ge

o
gr
ap

hi
ca
lc
o
nn

ec
ti
o
ns

T
er
ra
ne

T
ri
lo
bi
te

gr
o
up

T
o
ta
ld

iv
er
si
ty

T
er
ra
ne

en
de

m
ic
ta
xa

Ja
pa

n
en

de
m
ic
ta
xa

Lo
ca
liz
ed

ta
xa

an
d
re
le
va

nt
te
rr
an

e(
s)

P
an

d
em

ic
ta
xa

M
aj
o
r
b
io
ge

o
gr
ap

h
ic
al

lin
ks

G
en

er
a

Sp
ec

ie
s

G
en

er
a

Sp
ec

ie
s

G
en

er
a

Sp
ec

ie
s

G
en

er
a

Sp
ec

ie
s

G
en

er
a

Sp
ec

ie
s

Ja
p
an

es
e
te
rr
an

es
O
th
er

te
rr
an

es

So
ut
h
K
it
ak

am
i

E
nc

ri
nu

ri
da

e
2

2
0

2
0

0
2
(S
o
ut
h
C
hi
na

,
A
us
tr
al
ia
)

0
0

0
B
at
oc
ar
a
al
so

o
cc
u
rs

in
th
e
H
G
T
an

d
th
e

K
T
.C

or
on

oc
ep
ha

lu
s

al
so

o
cc
u
rs

in
th
e

K
T
an

d
p
o
ss
ib
ly
in

th
e
H
G
T
.

C
or
on

oc
ep
ha

lu
s
is

d
iv
er
se

in
So

u
th

C
h
in
a
an

d
A
u
st
ra
lia
.

Sc
ut
el
lu
id
ae

1
1

0
1

1
0

0
0

0
K
ob

ay
as
hi
pe
lt
is

pa
uc
is
pi
no

sa
al
so

o
cc
u
rs

in
th
e
K
T
.

N
o
n
e

P
ro
et
id
a

4
[1
]

1
[5
]

0
0

0
1

1
(N

o
rt
h
C
hi
na

)
0

1
0

D
ec
he
ne
lla

m
in
im

a
al
so

o
cc
u
rs

in
th
e

K
T
,L
at
ip
ro
et
us

al
so

o
cc
u
rs

in
th
e
K
T
.

D
ec
h
en

el
lid

s
ar
e

al
so

d
iv
er
se

in
N
o
rt
h
C
h
in
a.

O
to
de
ch
en
el
la

su
gg

es
ts

lin
ks

w
it
h
N
o
rt
h
C
h
in
a.

P
ha

co
pi
da

e
2
[1
]

3
[1
]

0
0

0
1
[1
]

2
(N

o
rt
h
C
hi
na

)
1
(N

o
rt
h
C
hi
na

)
0

0
To

xo
ph

ac
op

s
(A
to
po

ph
ac
op

s)
no

na
ka
ia
n
d

P
h
ac
o
p
id
ae

sp
.A

o
f
K
an

ek
o
(2
0
0
7
)

al
so

o
cc
u
r
in

th
e

K
T
.

Su
b
-f
am

ily
E
ch

in
o
p
h
ac
o
p
in
ae

fo
u
n
d
in

N
o
rt
h

C
h
in
a
an

d
Ja
p
an

o
n
ly
.

R
hi
no

ph
ac
op

s
an

d
To

xo
ph

ac
op

s
o
n
ly

fo
u
n
d
in

Ja
p
an

an
d
N
o
rt
h
C
h
in
a.

R
.s
ch
iz
ol
om

a
F
o
u
n
d
in

b
o
th

ab
o
ve

re
gi
o
n
s.

H
id
a
G
ai
en

E
nc

ri
nu

ri
da

e
1
[2
]

1
[2
]

0
1

0
[2
]

1
(A
us
tr
al
ia
,

So
ut
h
C
hi
na

)
0

1
0

B
at
oc
ar
a
an

d
C
or
on

oc
ep
ha

lu
s

al
so

o
cc
u
r
in

th
e

SK
T
an

d
th
e
K
T
.

B
at
oc
ar
a
is
d
iv
er
se

in
A
u
st
ra
lia

an
d

al
so

o
cc
u
rs

in
So

u
th

C
h
in
a

Sc
ut
el
lu
id
ae

4
4

1
4

0
0

0
0

2
0

Ja
po

no
sc
ut
el
lu
m

al
so

o
cc
u
rs

in
th
e
K
T
.

N
o
n
e

P
ro
et
id
a

2
8

0
8

0
0

1
(N

o
rt
h
C
hi
na

,
Si
be

ri
a)

0
1

0
C
on

ip
ro
et
us

al
so

o
cc
u
rs

in
th
e
K
T
.

G
an

in
el
la
is
d
iv
er
se

in
Si
b
er
ia
,b

u
t
al
so

fo
u
n
d
in

N
o
rt
h

C
h
in
a

A
ul
ac
o
pl
eu

ri
da

1
1

0
1

0
0

0
0

1
0

N
o
n
e

N
o
n
e

STOCKER ET AL. 3 of 15



T
A
B
LE

1
(C
o
nt
in
ue

d)

T
er
ra
ne

T
ri
lo
bi
te

gr
o
up

T
o
ta
ld

iv
er
si
ty

T
er
ra
ne

en
de

m
ic
ta
xa

Ja
pa

n
en

de
m
ic
ta
xa

Lo
ca
liz
ed

ta
xa

an
d
re
le
va

nt
te
rr
an

e(
s)

P
an

d
em

ic
ta
xa

M
aj
o
r
b
io
ge

o
gr
ap

h
ic
al

lin
ks

G
en

er
a

Sp
ec

ie
s

G
en

er
a

Sp
ec

ie
s

G
en

er
a

Sp
ec

ie
s

G
en

er
a

Sp
ec

ie
s

G
en

er
a

Sp
ec

ie
s

Ja
p
an

es
e
te
rr
an

es
O
th
er

te
rr
an

es

K
ur
o
se
ga

w
a

E
nc

ri
nu

ri
da

e
4

8
0

8
0

[1
]

2
(S
o
ut
h
C
hi
na

,
A
us
tr
al
ia
)

0
2

0
B
at
oc
ar
a
al
so

o
cc
u
rs

in
th
e
SK

T
an

d
H
G
T
.

C
or
on

oc
ep
ha

lu
s

al
so

o
cc
u
rs

in
th
e

SK
T
an

d
p
o
ss
ib
ly

th
e
H
G
T
.

En
cr
in
ur
us

no
da

i
m
ay

al
so

b
e

p
re
se
n
t
in

th
e

H
G
T
.

C
or
on

oc
ep
ha

lu
s
is

d
iv
er
se

in
So

u
th

C
h
in
a
an

d
A
u
st
ra
lia
.

B
at
oc
ar
a
is

d
iv
er
se

in
A
u
st
ra
lia

an
d
al
so

o
cc
u
rs

in
So

u
th

C
h
in
a.

Sc
ut
el
lu
id
ae

4
[2
]

9
(2
)

0
6
[2
]

1
1

2
(A
us
tr
al
ia
)

1
(A
us
tr
al
ia
)

2
0

Ja
po

no
sc
ut
el
lu
m

al
so

o
cc
u
rs

in
th
e
H
G
T
,

K
ob

ay
as
hi
pe
lt
is

pa
uc
is
in
os
a
al
so

o
cc
u
rs

in
th
e
SK

T
.

B
or
en
or
ia

an
d

Ill
ae
no

sc
ut
el
lu
m

o
n
ly

o
cc
u
r
in

A
u
st
ra
lia

an
d

Ja
p
an

.
Ja
po

no
sc
ut
el
lu
m

ja
po

ni
cu
m

al
so

o
cc
u
rs

in
A
u
st
ra
lia
.

J.
la
ti
ce
ph

al
um

m
ay

b
e

co
n
sp
ec
if
ic
w
it
h

J.
m
ag
nu

m
fr
o
m

A
u
st
ra
lia

an
d

C
h
u
-i
li
te
rr
an

e
(K
az
ak
h
st
an

).

P
ro
et
id
a

6
[1
]

7
[3
]

1
5
[2
]

0
1

1
(S
o
ut
h
C
hi
na

)
0

4
[1
]

0
D
ec
he
ne
lla

m
in
im

a
al
so

o
cc
u
rs

in
th
e

SK
T
,L
at
ip
ro
et
us

m
ay

b
e
p
re
se
n
t
in

th
e
SK

T

La
ti
pr
oe
tu
s
is
a

co
m
m
o
n
ge

n
u
s
in

So
u
th

C
h
in
a.

P
ha

co
pi
da

e
2
[1
]

3
[1
]

0
2

0
1
[1
]

1
(N

o
rt
h
C
hi
na

)
0

1
0

To
xo
ph

ac
op

s
(A
to
po

ph
ac
op

s)
no

na
ka
ia
n
d

P
h
ac
o
p
id
ae

sp
.A

o
f
K
an

ek
o
(2
0
0
7
)

al
so

o
cc
u
r
in

th
e

SK
T
.

E
ch

in
o
p
h
ac
o
p
in
ae

is
a
su
b
-f
am

ily
d
iv
er
se

in
N
o
rt
h

C
h
in
a
an

d
Ja
p
an

o
n
ly
.T

ox
op

ha
co
ps

is
o
n
ly

fo
u
n
d
in

Ja
p
an

an
d
N
o
rt
h

C
h
in
a.

Ill
ae

ni
da

e
4

6
0

5
0

0
2
(A
us
tr
al
ia
)

1
(A
us
tr
al
ia
)

2
0

N
o
ill
ae

n
id
s
fo
u
n
d
in

o
th
er

Ja
p
an

es
e

te
rr
an

es
.

B
um

as
te
lla
,R

ha
xe
ro
s

an
d
La
la
x
ar
e
al
l

d
iv
er
se

in
A
u
st
ra
lia
.

B
um

as
te
lla

sp
ic
ul
a

al
so

o
cc
u
rs

in
A
u
st
ra
lia
.

A
dd

it
io
na

lt
ax
a
(in

sq
ua

re
br
ac
ke

ts
)
re
fe
r
to

th
o
se

w
hi
ch

ar
e
he

re
le
ft
in

o
pe

n
no

m
en

cl
at
ur
e
o
r
co

ns
id
er
ed

to
be

o
f
un

ce
rt
ai
n
af
fi
ni
ty
.T

he
te
rm

‘J
ap

an
es
e
en

d
em

ic
ta
xa
’i
s
u
se
d
fo
r
th
o
se

th
at

o
cc
u
r
in

m
o
re

th
an

o
n
e
o
f

th
e
Ja
pa

ne
se

te
rr
an

es
;t
he

te
rm

‘L
o
ca
liz
ed

ta
xa
’i
s
us
ed

fo
r
th
o
se

ta
xa

th
at

ha
ve

bi
o
ge

o
gr
ap

hi
ca
ll
in
ks

w
it
h
o
th
er

no
n-
Ja
pa

ne
se

te
rr
an

es
.

4 of 15 STOCKER ET AL.



assignment of different formations also depends on the interpreta-

tion of shelly faunas, or on the intermittent and serendipitous

occurrence of biostratigraphically significant conodonts and radio-

larians (e.g. Aitchison, Hada, Ireland, & Yoshikura, 1996; Kurihara,

2003a, 2003b, 2004, 2007; Kurihara, Sato, & Tazawa, 2005; Man-

chuk et al., 2013; Männik et al., 2018; Tsukada & Koike, 1997;

Umeda, 1998a, 1998b). The biostratigraphical and sometimes

absolute ages of Japanese trilobites are here constrained by a

combination of previously published microfossil biostratigraphy

and zircon geochronology (Figure 2), enhanced by the new

research on chitinozoans (Vandenbroucke et al., 2018), conodonts

(Männik et al., 2018) and ostracods (Siveter, Tanaka, Williams, &

Männik, 2018).

3 | STRATIGRAPHY OF THE TRILOBITE-
BEARING FORMATIONS OF JAPAN

3.1 | South Kitakami Terrane

The Kawauchi Formation of the Hikoroichi area of Iwate Prefecture,

Honshu, comprises strata of the Silurian Wenlock and Ludlow series

based on biostratigraphical data from corals, conodonts and trilobites
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FIGURE 2 Temporal distribution of trilobites recorded across seven formations in the South Kitakami, Hida Gaien, and Kurosegawa terranes of

Japan. Silurian stages are the Homerian, Sheinwoodian, Gorstian, and Ludfordian. Proetidae group A comprises the following species of the genus
Ganinella (sensu Stocker et al., 2018): G. fukujiensis, G. oisensis, G. antijuba, G. angustus, G. latipolus, and G. longiconus. Proetidae group B comprises
the following species: Interproetus sp. A, Eremiproetus? magnicerviculus, Eremiproetus? subcarinatus, Coniproetus subovalis, Gomiites granulatus, and
Gomiites latiaxis. Encrinuridae group B comprises the following species: Batocara yokokurensis, Batocara mamelon, Encrinurus stenorhachis, Batocara
tosensis, Encrinurus nodai, and Staurocephalus trichonin. Scutelluidae group A comprises the following species of the genus Japonoscutellum:
J. japonicum, J. laticephalum, J. puteatum, J. angusticostatum, J. primigenium, as well as Kosovopeltis fungiformis, Kosovopeltis? geniculata,
‘Japonoscutellum’ tumidum (see Holloway & Lane, 2012), Borenoria trinodosa and Illaenoscutellum platiceps. Illaenidae group A comprises the
following species: Bumastella spicula, Rhaxeros subquadratus, Rhaxeros shinoharai, Lalax kattoi, Lalax sakoi, and Bumastus agmakros
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(Kato et al., 1980; Kido & Sugiyama, 2011; Kobayashi, 1988c; Kobaya-

shi & Hamada, 1974). The ‘Encrinurus bed’ of the Kawauchi Formation

sensu Sugiyama (1940) is considered to represent the lower to middle

Ludlow (Kobayashi & Hamada, 1976). Conodonts reported from this

formation (Harashinai (1981) suggest the lower Sheinwoodian Stage

of the Wenlock Series (Männik et al., 2018), though only a selected

few taxa were illustrated by Harashinai (1981).

The N3 Member is a formal stratigraphic unit of the upper Nakazato

Formation, also in the Hikoroichi area, is correlated by trilobites (Kaneko,

1990; Zhou & Campbell, 1990), and gastropods (Pan & Cook, 2003) with

the Zhusileng Formation of Inner Mongolia, North China, where ammo-

noids and conodonts indicate the Emsian Stage. Brachiopods from another

horizon within the N3 Member (Tazawa, 2002) correlate with the Eifelian

Yikewusu Formation in the same region of North China, therefore effec-

tively constraining the age of the N3Member to Emsian–Eifelian by a chain

of correlation. Kaneko (2007, p. 6, Figure 5) shows trilobites of the N3

Member straddling the boundary between the Emsian and Eifelian stages.

3.1.1 | Hida Gaien Terrane

The Hitoegane Limestone member is not a formal stratigraphic unit (see

Williams et al. 2014) within the upper part of the Hitoegane Formation in

the Hitoegane area of Gifu Prefecture, Honshu has yielded a diverse trilo-

bite fauna suggesting either the middle or upper Ludlow Series (Kobayashi,

1988a, 1988b; Kobayashi & Hamada, 1987), and a coral fauna indicative

of the Ludlow (Niko, 2004). Radiolarians from tuffaceous clastic rocks of

the upper Hitoegane Formation suggest an age range from the Ludlow to

Early Devonian, but the relationship of the tuffaceous clastic rocks to the

Hitoegane Limestone member is uncertain. Felsic tuffs in radiolarian-barren

rocks intercalated between these radiolarian-bearing clastic strata provide

a mean radiometric age of (426.6 �3.7) Ma (Manchuk et al., 2013), which

would indicate the Gorstian Age of the Ludlow Epoch.

New research on chitinozoans (Vandenbroucke et al., 2018) has

refined the biostratigraphy of the Yoshiki Formation, also of the Hitoe-

gane area, and established a biostratigraphical tie with the Ludlow Series

(Gorstian or lower Ludfordian Stage) of the type Silurian in the Welsh

Borderland. Approximate equivalence between the upper Hitoegane and

Yoshiki formations is suggested by their similar radiolarian assemblages

(Futobari solidus–Zadrappolus tenuis Zone), though this assemblage is long-

ranging in the upper Silurian to lowest Devonian (Kurihara, 2007).

Silurian strata have been reported at the Hakubado locality, Izumi

Village, Ohno County in the Kuzuryu Lake–Upper Ise river area of

Fukui Prefecture (Ohno, Okazaki, & Hirano, 1977) and Kobayashi and

Hamada (1987) reported ‘Encrinurus cf. similis' that might suggest a

Wenlock age similar to the Fukata Formation, where E. similis was first

described (E. similis was synonymized with E. nodai from the same

locality by Edgecombe & Ramsköld, 1996).

The Devonian Fukuji Formation of the Fukuji area of Gifu Prefec-

ture, Honshu, contains ostracods and conodonts that indicate Lower

Devonian, Lochkovian to Emsian stages (Kuwano, 1987). The Kamia-

nama Formation in the Kuzuryu Lake–Upper Ise river area of Fukui

Prefecture is Lower to Middle Devonian based on radiolarians

(Kurihara, 2003b, 2004; Niko & Senzai, 2010), and the common occur-

rence of the trilobites Gravicalymene yamakoshii, Hidascutellum

multispiniferum, and Crotalocephalina (Pilletopeltis) japonica suggests a

correlation with the Fukuji Formation (Kobayashi & Hamada, 1977).

3.1.2 | Kurosegawa Terrane

The Silurian Fukata Formation of the Yokokurayama Group, Kochi Pre-

fecture, Shikoku has been biostratigraphically dated using conodonts,

cephalopods and trilobites that collectively indicate the upper Wenlock

or lower Ludlow (Kobayashi & Hamada, 1985; Kuwano, 1976, 1980);

however, see Männik et al. (2018) for uncertainties with the conodont

data. The Silurian Joryu Formation of Ehime Prefecture, Shikoku has

been dated as Pridoli based on radiolarians (Kurihara, 2009).

The Silurian Gionyama Formation of Miyazaki Prefecture, Kyushu

was divided by Hamada (1959) into four lithostratigraphic and bio-

stratigraphic units, termed ‘Members G1 to G4’ in ascending strati-

graphic order. Subsequent work (e.g. Kido & Sugiyama, 2007, 2011)

has shown this subdivision to be untenable. Kido and Sugiyama

(2007) divided the Gionyama Formation into Lower, Middle, and

Upper members whose lithostratigraphical relationships to each other

are complex and may in part be structural. The Silurian Middle Mem-

ber of the Gionyama Formation (sensu Kido & Sugiyama, 2011; equiv-

alent to part of the ‘G2’ and ‘G3’ limestones of Hamada, 1959) has

been dated from outcrop using conodonts (Männik et al., 2018), and

these indicate the lower Wenlock (Sheinwoodian Stage). This horizon

is from a black limestone conglomerate about 6 m below the trilobite-

bearing nodules evaluated herein (Figures 3 and 4). Ostracods in the

same conglomerate suggest the Wenlock or lower Ludlow Series

(Siveter et al., 2018). It should be noted, however, that these ostra-

cods and conodonts are recovered from pebbles within a conglomer-

ate, and therefore provide only a maximum age. Conodonts recovered

from a loose boulder nearby, and likely also from the Middle Member,

are indicative of the upper Llandovery (Männik et al., 2018).

The Lower Member of the Devonian Naidaijin Formation of

Kumamoto Prefecture, Kyushu is dated via a chain of correlation with

trilobites of the Nakazato Formation (see above). Detrital zircons from

a sandstone bed 2 m above the trilobite-bearing horizon evaluated

herein have yielded a radiometric age of (383.9 �4.4) Ma that is likely

Givetian (late Mid-Devonian; Stocker et al., 2018).

4 | JAPANESE PALEOGEOGRAPHY DURING
THE EARLY AND MID-PALEOZOIC

As highlighted by Williams et al. (2014) the biogeographical patterns of

Japanese Ordovician to Devonian faunas are ambiguous, with links sug-

gested with all of the major paleocontinents in the eastern peri-

Gondwanan region. Several competing paleogeographical reconstructions

of this region for the early- and mid-Paleozoic exist, based on a combina-

tion of faunal and other data (see below for examples), but the position of

Japan relative to the Gondwana, North China, or South China paleoconti-

nents remains controversial with, for example, Cocks and Torsvik (2013)

concluding that the paleontology of Japan is of limited biogeographical

utility. They chose to place Japan as a unified island arc terrane off the

margin of South China (Figure 5).

By contrast, Metcalfe (2006), who also noted that the position of

Japan is at best speculative, suggested a position adjacent to eastern

South China on the margin of the Australian part of Gondwana for the
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KT (Hisada, Arai, & Negoro, 1994; Saito, 1992), and an origin along the

North China paleocontinent for the SKT (Yoshida & Machiyama, 2004).

Metcalfe (2006, p. 27, Table 1) summarized the multidisciplinary data that

his reconstructions were based on, which included (but were not limited

to) data from paleobiogeographic constraints, paleoclimatology, paleo-

magnetic data, detrital zircon provenance, and the positions of volcanic

intrusions. In the reconstruction presented by Metcalfe (2006, p. 39,

Figure 6) South China is over the paleo-equator, with Tarim to the north-

northwest, and North China to the northwest of Tarim. This is in contrast

to Cocks and Torsvik (2013, p. 57, Figure 11) who presented North China

far to the west of South China, and Tarim even further west. In contrast,

Tazawa (2002) suggested an origin along the northern or eastern margin

of the North China paleocontinent for all three of the Japanese terranes

discussed here (see also Tazawa, 1993, 2000, 2001, 2004).

5 | PALEOBIOGEOGRAPHICAL AFFINITY
OF JAPANESE SILURIAN AND DEVONIAN
TRILOBITES

The diversity of trilobites of each of the six groups studied here, along

with their paleobiogeographical affinities, is represented in Table 1.
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Figure 6 summarizes the paleobiogeographical links for the Silurian and

Devonian between each of the Japanese terranes and other regions,

and Figure 7 illustrates a representative sample of Silurian and Devo-

nian trilobites from the three terranes.

5.1 | Silurian links with the Australian segment of
East Gondwana

Illaenidae and Scutelluidae (Holloway & Lane, 1998, 2012) from the

Silurian Fukata Formation of the KT show four species links, through

Bumastella spicula, Borenoria trinodosa, Japonoscutellum japonicum and

J. magnum (Table 1), with the Molong and Mirabooka Formations of

the Australian Benambra Terrane. The illaenids Bumastella and

Rhaxeros, and scutelluid genera Borenoria and Illaenoscutellum are also

only found in Australia and the KT of Japan.

Similarities between Silurian encrinurids of the Benambra Terrane

of Australia and the KT and HGT of Japan were suggested by Strusz

(1980), who included the Japanese Encrinurus species E. ishii,

E. mamelon, E. tosensis, and E. yokokurensis from the KT, and

E. fimbriatus from the HGT, in the ‘mitchelli-Plexus’, species of which

were subsequently assigned to Batocara (see Edgecombe & Ramsköld,

1992; Holloway, 1994). Another species from the SKT has been

assigned to Batocara as part of our study. The encrinurid Batocara is

common in Australia, and also occurs in the Fukata Formation of the

KT, and the upper Hitoegane Formation of the HGT. Species of Coro-

nocephalus occur in the Benambra Terrane of Australia and the Silu-

rian Gionyama and Kawauchi Formations of the KT and SKT,

respectively; the genus may also occur in the upper Hitoegane Forma-

tion of the HGT (see below).

5.2 | Silurian links with South China

As noted above, species of the encrinurid Batocara are common in

Australia, but also occur in the South China paleocontinent as well as the

Fukata Formation of the KT, the upper Hitoegane Formation of the HGT,

and the Kawauchi Formation of the SKT. There are no species-level links

between these terranes, however. Species of Coronocephalus are diverse

throughout the South China paleocontinent, and also occur in Australia and

the Gionyama and Kawauchi Formations of the KT and SKT, respectively.

Again, there are no species-level links between any of these terranes.

5.3 | Silurian links with North China

Proetids from the upper Hitoegane Formation in the HGT suggest

generic links with North China. Ganinella tenuiceps is found in the upper

Hitoegane Formation. There are several Silurian species of Ganinella in

Siberia, and the genus has representatives in North China. However,

Ganinella may be a biogeographically widespread genus (see below).

5.4 | Devonian links with North China

At least two species of the proetid genus Ganinella, G. fukujiensis and

G. oisensis, occur coevally in the Fukuji and Kamianama Formations of

the HGT. Ganinella is a common Siberian genus, which also occurs in

North China, but it may be widespread, with closely related genera

such as Lacunoporaspis having a global distribution; relationships

between these closely related genera, however, are difficult to resolve

at present, and require a detailed phylogenetic analysis (see Stocker

et al., 2018).

Devonian phacopids of the KT and SKT of Japan (Kaneko, 1990,

2007; Stocker et al., 2018) show strong generic links, and one spe-

cies link with North China (Kaneko, 1990, 2007; Zhou & Campbell,

1990). The sub-family Echinophacopinae, including Toxophacops and

Rhinophacops, are only found in the Zhusilenghaierhan region of

Inner Mongolia, North China, and the KT and SKT of Japan. The spe-

cies Rhinophacops schizoloma is also only found in the SKT and North

China.
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The Devonian proetids from the Nakazato Formation also indi-

cate generic links with North China, with, Dechenella, Otodechenella,

and Paradechenella occurring in both regions (Kaneko, 2007), although

Dechenella has a global distribution. Otodechenella is only found in the

Zhusilenghaierhan region of Inner Mongolia, North China, and the

SKT of Japan.

FIGURE 7 Legend on next page.
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5.5 | Intra-Japanese terrane links

In the Silurian there are no species links between the three terranes

(Figure 6). ‘Encrinurus cf. similis’, reported by Kobayashi and Hamada

(1987) from the Silurian of Hakubado in the HGT, is too poorly pre-

served to compare with material of Encrinurus from the KT. The encri-

nurid genus Batocara occurs in all three Japanese terranes, but is more

species diverse in the Fukata Formation of the KT, and the encrinurid

genus Coronocephalus occurs in the Kawauchi Formation of the SKT,

the Gionyama Formation of the KT, and possibly the upper Hitoegane

Formation of the HGT (Encrinurus cf. kitakamiensis of Kobayashi and

Hamada (1987)). The scutelluid genus Japonoscutellum occurs in the

Fukata Formation of the KT and the upper Hitoegane Formation of

the HGT. The proetid genus Coniproetus also occurs in the Fukata and

upper Hitoegane formations, but it is a globally distributed taxon. Illae-

nids only occur in the KT.

In the Middle Devonian phacopids and proetids of the Naidaijin

Formation of the KT and the Nakazato Formation of the SKT of Japan

(Kaneko, 1990, 2007; Stocker et al., 2018) show species-level links

between these two terranes; the phacopid species Toxophacops

(Atopophacops) nonakai, the proetid Dechenella minima, and the scutel-

luid Kobayashipeltis paucispinosa also occur in the Naidaijin and Naka-

zato Formations (Kaneko, 2007) of the KT and SKT terrane,

respectively. Kobayashipeltis is endemic to these two Japanese terranes.

5.6 | Summary

In a general sense then, the Silurian trilobites of all three terranes sug-

gest closest links with the South China and East Gondwanan regions

(Figure 6; Table 1). Ganinella in the HGT is the only common link with

North China during the Silurian. By contrast, Devonian trilobites con-

sistently show strongest affinities with those of North China, including

material from all three Japanese terranes examined here.

In terms of intra-Japanese terrane connections, in the Silurian

there are no species-level biogeographical links between the three

terranes (Figure 6). The strongest generic links between all three ter-

ranes are represented by the encrinurids Batocara and Coronocephalus,

both of which also occur in South China and Australia.

In the Devonian there are strong specific and generic links between

the SKT and KT (Figure 6), but similar links with the HGT are only sug-

gested by limited material of a calymenid species, Nipponocalymene

hamadaiwhich occurs in the Rosse Formation, as well as the Nakazato and

Naidaijin Formations (Kaneko, 2007); the trilobite fauna from the Fukuji

Formation (HGT) is very different from that of the other two terranes.

Some groups, e.g. the proetids from the Fukata Formation of the

KT, appear to be more endemic than other trilobite groups with which

they co-occur, such as scutelluids, illaenids and encrinurids. The Devo-

nian proetids from the upper Hitoegane and Fukuji Formations of the

HGT appear to indicate generic links with North China and Siberia,

whereas other co-occurring trilobite groups (Calymenidae, Cheiruri-

dae, Lichida) have demonstrated generic links with the South China

paleocontinent (Kaneko, 2007; Wang, Boucot, Rong, & Yang, 1987)

and in the case of Lichida also with Australia (Sherwin & Meakin,

2010). This suggests that factors in addition to paleogeography are at

play. In the following section, we examine the significance of lithofa-

cies relationships and ecology in this context.

6 | PALEOENVIRONMENTAL AND
PALEOECOLOGICAL CONTROLS ON
TRILOBITE DISTRIBUTION

6.1 | Lithofacies

The Silurian and Early Devonian trilobite-bearing lithofacies of Japan

are dominated by shallow marine carbonate rocks, but in the Devonian

the trilobite lithofacies are characteristically deeper-water siliciclastics

(see Figure 8). The taxa from all three Japanese terranes in the Silurian

suggest links with Australia and South China, where carbonate lithofa-

cies contain similar faunas, whereas in the Devonian the Japanese trilo-

bites show clear links with North China. Given the change of

predominant lithofacies between the Silurian and Devonian (carbonate

to siliciclastic), this may suggest some degree of environmental control

on trilobite distribution that has also been noted for other invertebrate

faunas of Japan (Williams et al., 2014). Thomas (1979) suggested that

FIGURE 7 Representative Silurian and Devonian Japanese trilobites: (a–d,g), South Kitakami terrane; (e,f,j–l,n) Hida Gaien terrane; (i,m,o–v)
Kurosegawa terrane. (a) Rhinophacops cf. schizoloma Kaneko, 1990 cephalon (OCM.G000588). (b) Kobayashipeltis paucispinosa (Okubo, 1951),
holotype pygidium (PA08001). (c) Dechenella minima Okubo, 1951, holotype cranidium (PA8006). (d) Batocara sp. A, cranidium (OCM.G000638).
(e) ‘Maurotarion megalops’ (Kobayashi & Hamada, 1977), juvenile cephalon (OUMNHDY.15). (f) Batocara fimbriatus Kobayashi & Hamada, 1974),
pygidium (PA18108). (g) Dechenella cf. minima, pygidium (OCM.G000578). (h) Batocara sp., cranidium (OCM.G00627). (i) Interproetus sp. A,
cephalon (SGMX1-11). (j) Ganinella oisensis (Kobayashi & Hamada, 1977), pygidium (NUM-Fa218). (k) Ganinella fukujiensis (Kobayashi & Hamada,
1977), paratype cranidium (PA8963). (l) Japonoscutellum hidense (Kobayashi & Hamada, 1987), holotype cranidium (PA18095). (m) Batocara
yokokurensis (Kobayashi & Hamada, 1974), holotype cranidium (KPFM618). (n) Japonoscutellum hidense, pygidium (PA18096). (o) Coronocephalus
kobayashii, holotype cranidium (PA07280). (p) Batocara yokokurensis, thoracopygon (SGMX1-15). (q) Bumastella spicula (Kobayashi & Hamada,
1974), juvenile cephalothorax (KPFM15155). (r) Japonoscutellum japonicum Kobayashi & Hamada, 1974, holotype cranidium (PA07353).
(s) Coronocephalus kobayashii, paratype pygidium (PA7294). (t) Gomiites latiaxis (Kobayashi & Hamada, 1986), holotype cephalon (PA18078).
(u) Toxophacops (Atopophacops) fujiwara, composite image of part and counterpart of topotype cephalon (OUMNH DY4a,b). (v) J. japonicum,
paratype pygidium (PA7354). (a–c,g) from the Devonian (Emsian to Eifelian) Nakazato Formation, Hikoroichi, Iwate Prefecture, Honshu; (d,h) from
the Silurian (Wenlock) Kawauchi Formation Hikoroichi, Iwate Prefecture, Honshu Island; (e,j,k) are from the Devonian (Lochkovian to Emsian)
Fukuji Formation, Okuhida-onsen-gou, Takayama City, Gifu Prefecture, Honshu Island; (f,l,n) from the Silurian (Ludlow) upper Hitoegane
Formation, Kamitakara-mura, Yoshiki-gun, Gifu Prefecture, Honshu Island; (u) from the Devonian (Emsian to Givetian) Lower Member of the
Naidaijin Formation, Shimomashiki District, Kumamoto Prefecture, central Kyushu Island, Japan; (o,s) are from the Silurian (Wenlock,
Sheinwoodian) Gionyama Formation, Kuraoka, Miyazaki Prefecture, central Kyushu Island; (i,m,p,q,r,t,v) from the Silurian Fukata Formation of
Yokokurayama, Ochi, Kochi Prefecture, Shikoku Island. All specimens are in dorsal view. Scale bars represent 2 mm
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in the Wenlock of the UK, trilobite distribution reflects original envi-

ronmental variables, so that there is a close but not invariable correla-

tion between the distribution of trilobite taxa and lithofacies. Some of

the trilobite groups that occur in the Japanese formations, including

some Proetida and Phacopidae, occur in both carbonate and clastic

lithofacies. This is the case for the proetids of the carbonate dominated

Fukuji and Kamianama Formations in the HGT and those in the silici-

clastic dominated Nakazato Formation of the SKT, which nevertheless

show consistent generic links with North China.

6.2 | Paleoecology

Of the Japanese trilobite groups discussed here, the majority are

interpreted to be predators/scavengers (Fortey & Owens, 1999), with

only one, the proetids, being considered as detritivores (Fortey &

Owens, 1999)

The Japanese scutelluids are in general somewhat restricted bio-

geographically, but with one species with a very broad distribution,

Japonoscutellum magnum, which occurs in Australia, possibly Japan

(Holloway and Lane (2012) suggested that J. laticephalum may be

conspecific with magnum), and Kazakhstan. Illaenids are very

restricted, with two genera and one species restricted to Australia and

the KT of Japan. Japanese proetids are endemic to each terrane at the

species-level, but some genera are globally distributed (Coniproetus

and Interproetus for example), others have wide distributions across

Asia and to Siberia (Ganinella for example), and some are more restricted

to South China and Australia (Latiproetus); there is only one endemic

genus, Gomiites. Suggestions of other behavior relating to lifestyle have

been offered for some of these groups. For example, scutelluids with

flat exoskeletal morphologies have been interpreted as capable of swim-

ming, using their large paddle-like pygidia (Chatterton, 1971; Feist &

Lerosey-Aubril, 2008; Selwood, 1966), whereas some illaenids have

been interpreted as burrowing into sediment. Proetids, however, have

been interpreted in some cases as inhabiting sheltered cavities in the

surface of reefs (Hughes & Thomas, 2011). These interpretations sug-

gest that autecology has a variable effect on biogeography, but perhaps

even more important is larval-stage ecology.

The majority of trilobite groups have been found to possess a cal-

cified larval stage known as a protaspid. Protaspides have been shown

to occupy either planktonic or benthic lifestyles of different duration

(Chatterton & Speyer, 1989; Speyer & Chatterton, 1989). Groups with

planktonic protaspides include proetids and phacopids, whereas encri-

nurids, scutelluids, and illaenids have been determined to have benthic

protaspides. It is assumed that planktonic protaspides would be capa-

ble of more widespread distribution, and therefore such groups would

be more geographically disparate than those with benthic protaspides.

7 | CONCLUSIONS

There are stronger paleobiogeographical links between the trilobites

of the three Japanese terranes in the Devonian than in the Silurian. In
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the Silurian, scutelluids and illaenids of the KT show strong overall

generic- and species-level links with the Australian segment of eastern

Gondwana, and encrinurids from all three Japanese terranes indicate

generic-level links with the South China paleocontinent and the

Australian segment of eastern Gondwana. A single proetid genus from

the HGT suggests links with the North China paleocontinent, although

this genus may in fact be pandemic. In the Devonian, phacopids indi-

cate strong overall generic-level links between the KT and SKT and

the North China paleocontinent, with a single species-level link

between the Nakazato Formation of Iwate Prefecture and the Zhusi-

leng Formation of Inner Mongolia. Proetids from the Early Devonian

of the HGT and the Middle Devonian of the SKT, both suggest

generic-level links with the North China paleocontinent. Of those gen-

era and species with links to North China, the vast majority are from

deeper-water siliciclastic facies, whereas genera with links to Australia

and South China are all from shallow water carbonate facies. Scutel-

luids and illaenids are strongly restricted to limestone facies, and this

may have an influence on links with Australia, where they occur in

similar limestone facies. These data suggest that in the Silurian and

Devonian of Japan, environmental setting may have exerted a strong

influence on the biogeographical signal of trilobites, and thus infer-

ences about paleogeography need to be made with caution.
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