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Abstract 1 

In this study, the volumetric and gravimetric feeding behavior of 15 pharmaceutical 2 

powders on a low feed rate feeder was correlated with their material properties through a 3 

multivariate approach. The powders under investigation differ substantially in terms of 4 

material properties, making the selected powders representative for powders typically 5 

used in pharmaceutical manufacturing. The material properties were described by 25 6 

material property descriptors, obtained from a rational selection of critical characterization 7 

techniques that provided maximal information with minimal characterization effort. From 8 

volumetric feeding experiments (i.e., powder feed rate not controlled), the maximum 9 

feeding capacity (maximum feed factor (FFmax)) and optimal hopper fill level at which the 10 

feeder should be refilled during gravimetric feeding (feed factor decay (FFdecay)) were 11 

obtained. During gravimetric feeding experiments (i.e., powder feed rate controlled), the 12 

variability on the feed rate (relative standard deviation (RSD)) and the difference between 13 

the setpoint and mean feed rate (relative error (RE)) were determined. Partial least 14 

squares (PLS) regression was applied to correlate the volumetric and gravimetric feeding 15 

responses (Y) with the material property descriptors (X). The predictive ability of the 16 

developed PLS models was assessed by predicting the feeding responses of two new 17 

powders (i.e., validation set). Overall, the volumetric feeding responses (FFmax and 18 

FFdecay) were predicted better than the gravimetric feeding responses (RSD and RE), 19 

since in gravimetric mode the impact of material properties on the feeding behavior is 20 

reduced due to the control system of the feeder. Especially RE was weakly correlated with 21 

material properties as RE of most powders varied around zero with only a small numerical 22 

variation. Interestingly, this confirms that the control system is working properly and that 23 
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the feeder is capable of feeding different powders accurately at low feed rates. The 24 

developed models allowed to predict the feeding behavior of new powders based on their 25 

material properties. Consequently the number of feeding experiments during process 26 

development can be greatly reduced, thereby leading to a more efficient and faster 27 

development of new drug products. 28 

Keywords 29 

Continuous manufacturing, Twin screw feeding, Material properties, Material 30 

characterization, Multivariate data analysis. 31 

Abbreviations 32 

200M, lactose monohydrate; API, active pharmaceutical ingredient; API M, API 33 

micronized; API SD, spray dried API; AV, air velocity; CL, crospovidone; DCP, dibasic 34 

calcium phosphate; FFdecay, feed factor decay; FFmax, maximum feed factor; HD90, 35 

silicified microcrystalline cellulose; LIW, loss-in-weight; MgSt, magnesium stearate; P D, 36 

paracetamol dense; P M, paracetamol micronized; P P, paracetamol powder; PCA, 37 

principal component analysis; PH105, microcrystalline cellulose; PLS, partial least 38 

squares; PLSC, partial least squares component; Q2, predictive ability; R2, goodness of 39 

fit; RE, relative error; rpm, revolutions per minute; RSD, relative standard deviation; 40 

S1500, pre-gelatinized starch; SD, standard deviation; UV, unit variance. 41 

 42 

 43 

 44 
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1. INTRODUCTION 45 

In a continuous manufacturing line, feeding of the raw materials is generally the first unit 46 

operation and is crucial towards the success of the complete manufacturing process 47 

(Simonaho et al., 2016). Inaccurate and inconsistent feeding of raw materials can lead to 48 

an impaired product quality (e.g., incorrect active pharmaceutical ingredient (API) 49 

concentration), since the composition of the final product is determined by the feed rate 50 

of the individual raw materials (Ervasti et al., 2015). Loss-in-weight (LIW) feeders consist 51 

of a feeding device, weighing platform and control system (Engisch and Muzzio, 2015a). 52 

The feeding device is placed on the weighing platform, which measures the weight of the 53 

feeding device together with the powder in the feeding device. A LIW feeder can work in 54 

two modes, i.e., gravimetric or volumetric. In gravimetric mode, the control system 55 

acquires the mass of the feeding device and its content from the weighing platform as a 56 

function of time during feeding. The actual feed rate is calculated from the difference in 57 

mass, measured by the weighing platform, divided by the difference in time between 58 

consecutive measurements. The control system minimizes the difference between the 59 

actual feed rate and the feed rate setpoint by adjusting the dispensing rate (e.g., screw 60 

speed) of the feeding device (Coperion K-Tron, 2012). Thus in gravimetric mode the 61 

powder feed rate is controlled to account for sources of variability, such as variations in 62 

material density when the powder level in the hopper changes during feeding (Van Snick 63 

et al., 2017a). The volumetric mode is characterized by the displacement of a constant 64 

material volume per unit of time instead of a constant mass per unit of time as in 65 

gravimetric mode. The screw speed of the feeding device is kept constant during 66 

volumetric feeding, implying that the powder feed rate is not controlled (Blackshields and 67 
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Crean, 2017). For pharmaceutical applications, where the feeding accuracy of the 68 

individual raw materials is critical and the density of the processed powders can vary, the 69 

gravimetric feeding mode is preferred. A LIW feeder operating in gravimetric mode will 70 

switch to volumetric mode during hopper refill, because the weight loss cannot be 71 

accurately measured when material is entering and leaving the feeder at the same time 72 

(Engisch and Muzzio, 2015b). 73 

APIs and excipients used in pharmaceutical formulations differ a lot in terms of material 74 

properties (e.g., density, particle size, flowability) and these differences can be reflected 75 

in the process behavior (El Hagrasy et al., 2013; Engisch and Muzzio, 2015a; Fonteyne 76 

et al., 2015; Herting and Kleinebudde, 2007). Therefore, an approach that captures the 77 

variability in material properties of different powders and subsequently correlates this with 78 

process behavior at different unit operations can facilitate product and process 79 

development. The first step is to establish a database containing all the appropriate 80 

material properties from a wide selection of representative powders. Such an extensive 81 

raw material property database was recently developed by Van Snick et al. (Van Snick et 82 

al., 2018a), in which more than 50 pharmaceutical powders were characterized in detail 83 

using a wide variety of techniques resulting in more than 100 material property descriptors. 84 

The included raw materials ranged from excipients used during direct compression, roller 85 

compaction and wet granulation to different types of APIs. Subsequently, principal 86 

component analysis (PCA) was used to reveal the correlations between the included raw 87 

materials and their material properties. 88 

In a next step, the material properties can be linked via multivariate models with the 89 

process behavior at different unit operations of a continuous manufacturing line (e.g., 90 
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feeders, blenders) (Clayton, 2015). Research has already been successfully conducted 91 

using this approach for granulation and tableting processes (Fonteyne et al., 2014; 92 

Garcia-Munoz, 2014; Haware et al., 2009a, 2009b; Thoorens et al., 2015; Van Snick et 93 

al., 2018b; Willecke et al., 2017). Once a predictive platform is developed for a unit 94 

operation, the characterization of a small amount of powder is sufficient to predict the 95 

behavior of that material at the specific unit operation. This significantly reduces the 96 

otherwise numerous experiments to a handful of confirmatory experiments to verify the 97 

predicted process behavior. Such an approach is especially useful during the early stages 98 

of drug product development, when only a limited amount of API is available. By being 99 

able to predict the process and product performance, the material consumption and 100 

development time can be greatly reduced, leading to a more efficient and faster 101 

development of new drug products (Wang et al., 2017). In addition, a surrogate powder 102 

with similar material properties as the API can be selected and used during experiments 103 

instead of the original API, thereby further limiting the API consumption (Boukouvala and 104 

Ierapetritou, 2013). 105 

Wang et al. developed a model for predicting the gravimetric feeding behavior of a K-Tron 106 

KT20 twin screw LIW feeder based on the material flow properties of seven raw materials 107 

using PLS regression (Wang et al., 2017). Three feeder screws, differing in feeding 108 

capacity and self-cleaning ability, were tested and the gravimetric feeding performance 109 

was described by the consistency of the feed rate (RSD) and the difference between the 110 

mean and target feed rate (RE). They concluded that feeding performance was affected 111 

by the material flow properties and that the predicted feeding responses were in good 112 

agreement with the experimental results. In addition, a strong correlation between the 113 
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initial feed factor and the material flow properties was observed. This initial feed factor 114 

was determined during the volumetric calibration and refers to the maximum feeding 115 

capacity for a given screw and material (Engisch and Muzzio, 2012). Van Snick et al. 116 

investigated the importance of volumetric feeding experiments on a GEA compact feeder 117 

and introduced the feed factor profile, in which the feed factor was plotted as a function of 118 

hopper fill level (Van Snick et al., 2017a). From these feed factor profiles, the maximum 119 

feeding capacity was derived and a suitable refill strategy was selected for each tested 120 

material. The maximum feeding capacity correlated with bulk density and partly with flow 121 

properties, whereas highly compressible powders with a low density exhibited a feed 122 

factor decrease at higher hopper fill levels. 123 

The feeders used by Wang et al. and Van Snick et al. are high feed rate feeders (feed 124 

rate > 1 kg/h), while the correlation of material properties with the feeding behavior of low 125 

feed rate feeders (feed rate < 1 kg/h) is not yet described in literature. Developing such 126 

predictive models is especially relevant for low feed rate feeders as these feeders are 127 

generally used for low-dosed raw materials (e.g., APIs). In addition, the growing interest 128 

within the pharmaceutical industry for high-potency active pharmaceutical ingredients 129 

further encourages the need of a predictive platform for these types of feeders (Besenhard 130 

et al., 2016). 131 

This study is an application of the raw material property database developed by Van Snick 132 

et al (Van Snick et al., 2018a). While they developed a PCA model and identified the 133 

correlated and relevant material property descriptors, the current study aims at linking 134 

these relevant material property descriptors with the volumetric and gravimetric feeding 135 

behavior of a low feed rate feeder. The 15 pharmaceutical powders included in this study 136 
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were selected from the powders used by Van Snick et al., making the selection 137 

representative for powders commonly used in pharmaceutical manufacturing. The 138 

material properties of the powders were determined and described by 25 material property 139 

descriptors obtained from seven characterization techniques. These characterization 140 

techniques were identified by Van Snick et al. as the rational selection of critical 141 

characterization techniques that provide maximal information with minimal 142 

characterization effort. The volumetric feeding experiments were used to construct feed 143 

factor profiles, from which the maximum feed factor and feed factor decay were obtained. 144 

During gravimetric feeding experiments, the variability on the feed rate (RSD) and the 145 

difference between the setpoint and mean feed rate (RE) were determined. Next, the 146 

material property descriptors were correlated with both the volumetric and gravimetric 147 

feeding responses via PLS regression. The predictive performance of the models was 148 

assessed by predicting the feeding responses of two validation powders. 149 

2. MATERIALS AND METHODS 150 

2.1. Materials 151 

The raw materials included in this study were selected from the raw material database 152 

described by Van Snick et al (Van Snick et al., 2018a). Furthermore, additional APIs were 153 

included as these APIs will be used in an application where the studied feeder will be 154 

implemented in a continuous manufacturing line for pharmaceutical semi-solid and liquid 155 

formulations (Bostijn et al., 2018). The following 15 raw materials were used in this study: 156 

lactose monohydrate (200M) (Lactose 200M, DFE, Goch, Germany), microcrystalline 157 

cellulose (PH105) (Avicel PH-105, FMC, Philadelphia, PA, USA), dibasic calcium 158 
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phosphate (DCP) (Emcompress AN, JRS, Rosenberg, Germany), silicified 159 

microcrystalline cellulose (HD90) (Prosolv HD90, JRS, Rosenberg, Germany), 160 

crospovidone (CL) (Kollidon CL, BASF, Ludwigshafen, Germany), pre-gelatinized starch 161 

(S1500) (starch 1500, Colorcon, Dartford, UK), magnesium stearate (MgSt) (Ligamed MF-162 

2-V, Peter Greven, Bad Münstereifel, Germany), spray dried API (API SD) (Janssen, 163 

Beerse, Belgium), paracetamol dense (P D) (Mallinckrodt, Dublin, Ireland), paracetamol 164 

powder (P P) (Mallinckrodt, Dublin, Ireland), paracetamol micronized (P M) (Mallinckrodt, 165 

Dublin, Ireland), API 1 (Janssen, Beerse, Belgium), API 2 (Janssen, Beerse, Belgium), 166 

API 3 (Janssen, Beerse, Belgium) and API micronized (API M) (Janssen, Beerse, 167 

Belgium). In total, seven excipients and eight APIs were investigated. The powders were 168 

divided in a calibration and validation set (section 2.2.4.). S1500 (excipient) and API 3 169 

were selected as powders for the validation set since both exhibited a different feeding 170 

behavior and the values of their material property descriptors fell within the numerical 171 

ranges of the calibration set. The details of some APIs are not provided due to 172 

confidentiality reasons. 173 

2.2. Methods 174 

2.2.1. Equipment 175 

2.2.1.1. K-Tron MT12 LIW feeder 176 

The feeder used in this study was a K-Tron MT12 twin screw co-rotating LIW feeder 177 

(Coperion K-Tron, Niederlenz, Switzerland) (figure 1). The motor and weighing platform 178 

were enclosed within the feeder base and the feeding screws were connected to the motor 179 

via a gearbox (gear ratio of 1:1). A drive command of 100% corresponded to a maximum 180 



10 
 

 
 

screw speed of 60 rpm. Concave coarse screws were used with a diameter of 12 mm and 181 

a pitch distance of 5.75 mm. The hopper, having a volume of 1 L, was equipped with an 182 

agitator. At the bottom part of the agitator, three blades consistently filled the flights of the 183 

screws. The vertical rods of the agitator promoted the material flow in the hopper and 184 

prevented material from bridging on the side walls. The feeder was not equipped with a 185 

refill system and the hopper was not manually refilled during the experiments. 186 

Operating the feeder was done via the K-Tron control module. All feeder data (screw 187 

speed, net weight, …) was logged every 1 s during the experiments. Before the start of 188 

an experiment, the empty feeder was tared. Next, the hopper was filled and the screws 189 

were primed with powder. After priming, the hopper was filled up to 1 L and the 190 

corresponding weight was recorded and considered as maximal (i.e., 100% hopper fill 191 

level). 192 

2.2.1.2. Catch scale 193 

A catch scale (Coperion K-Tron, Niederlenz, Switzerland) was placed under the outlet of 194 

the feeder to record the powder feed rate every 1 s and the fed powder was collected in 195 

a beaker (figure 1). The catch scale was used to obtain the raw feed rate, because the 196 

feed rate calculated by the feeder is already pre-treated according to an algorithm from 197 

the feeder manufacturer. If the feed rate of the feeder would be used, it would be difficult 198 

to compare feeder performance between feeders of different manufacturers. 199 

2.2.2. Feeder characterization methodology 200 

2.2.2.1. Volumetric feeding 201 
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After performing the start-up feeder protocol (i.e., taring, priming of the screws and 202 

determining the maximum weight in the hopper), each powder was volumetrically fed at 203 

three different screw speeds: 10, 50 and 90% of the maximum screw speed (60 rpm), 204 

corresponding to screw speeds of 6, 30 and 54 rpm, respectively. These screw speeds 205 

cover the screw speed range that is generally used during manufacturing. Because the 206 

volumetric mode was selected, the control system did not control the feed rate by 207 

correcting the screw speed and thus the screw speed remained constant during each 208 

experiment. All volumetric experiments were stopped when the hopper ran empty. 209 

The aim of the volumetric experiments was to obtain a feed factor profile of each powder 210 

at each tested screw speed. In a feed factor profile, the feed factor is plotted as a function 211 

of the hopper fill level (%) (figure 2). The feed factor (g/revolution) (eq. 1) is the powder 212 

mass dispensed per screw revolution and was calculated from the actual feed rate (kg/h), 213 

obtained from the catch scale, and the screw speed (revolutions/s) using the following 214 

equation: 215 

𝑓𝑒𝑒𝑑 𝑓𝑎𝑐𝑡𝑜𝑟 (
𝑔

𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
) =

𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒 (
𝑘𝑔

ℎ
)

𝑠𝑐𝑟𝑒𝑤 𝑠𝑝𝑒𝑒𝑑 (
𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠

𝑠
) × 3.6

 (1) 216 

with 3.6 the conversion factor to convert kg/h into g/s. The feed rate (kg/h) (eq. 2) was 217 

calculated using the difference in weight (ΔWcatch scale) (g) measured by the catch scale 218 

divided by the difference in time (1 s) between consecutive catch scale measurements 219 

(Δt) (s): 220 

𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒 (
𝑘𝑔

ℎ
) =

𝛥𝑊𝑐𝑎𝑡𝑐ℎ 𝑠𝑐𝑎𝑙𝑒 (𝑔)

∆t (s)
 × 3.6 (2) 221 
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with 3.6 the conversion factor to convert g/s into kg/h. In order to compare feed factor 222 

profiles of powders with a different density (i.e., different net weight of a full hopper), the 223 

net weight of the hopper (kg) was normalized for the maximum powder mass in the hopper 224 

(kg) for a specific powder and expressed as the hopper fill level % (eq. 3): 225 

𝑓𝑖𝑙𝑙 𝑙𝑒𝑣𝑒𝑙 % =
𝑛𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)
 × 100 (3) 226 

Once a feed factor profile was obtained for a specific material at a given screw speed, the 227 

maximum feed factor (FFmax) and feed factor decay (FFdecay) were extracted (figure 2). 228 

Prior to the determination of these volumetric feeding responses, the disturbance of a 229 

beaker replacement was removed from the feed factor profile. The remaining data was 230 

averaged (i.e., moving average of 20 s) to enhance the interpretability of the feed factor 231 

profiles. FFmax expresses the maximum feeding capacity of a feeder for a specific material 232 

and can be used to calculate the maximum achievable feed rate in gravimetric mode. 233 

FFmax was determined from the feed factor profile as the highest observed feed factor at 234 

each tested screw speed (figure 2). 235 

In general, the feed factor is highest (i.e., FFmax) at 100% hopper fill level and gradually 236 

decreases during feeding (i.e., decreasing hopper fill level) (figure 2). This decrease in 237 

feed factor was described by FFdecay, defined as the % hopper fill level where the feed 238 

factor drops to 90% of FFmax. FFdecay can help to define the hopper refill strategy during 239 

gravimetric feeding, thereby reducing the variability induced by a hopper refill. Since the 240 

feeder is operating in volumetric mode during a hopper refill, the feeder is not able to 241 

compensate for the increasing density of the powder inside the hopper (i.e., increase in 242 

feed factor) when incoming material compresses this powder. In addition, the feeder 243 
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screw speed can suddenly change when the feeder returns to gravimetric mode after a 244 

refill because of the changed density (Nowak, 2016). Therefore, selecting the optimal 245 

hopper fill level at which the hopper should be refilled is essential to minimize the deviation 246 

from the feed rate setpoint during and after a refill. The threshold of 90% of FFmax was 247 

selected as a lower % will result in a larger difference in feed factor before and after a refill 248 

and a higher % will require the feeder to be refilled too frequently (Engisch and Muzzio, 249 

2015b). The impact of screw speed on FFmax and FFdecay was also investigated, since 250 

these volumetric feeding responses were determined at three different screw speeds. 251 

Hence, FFmax and FFdecay at a screw speed of 6, 30 and 54 rpm were obtained for each 252 

powder (from now on referred to as FFmax 6, 30 and 54 rpm and FFdecay 6, 30 and 54 rpm). 253 

2.2.2.2. Gravimetric feeding 254 

After performing the start-up feeder protocol (i.e., taring, priming of the screws and 255 

determining the maximum weight in the hopper), the feeder was calibrated in volumetric 256 

mode to determine the feed rate at the maximum screw speed (60 rpm). Next, the hopper 257 

was refilled to reach a fill level of 100% after the calibration. For the gravimetric 258 

experiments (i.e., controlled feed rate), the powders were tested at a low and high feed 259 

rate setpoint (0.1 and 0.55 kg/h) and each experiment was stopped after 20 minutes. 260 

These feed rate setpoints were selected based on another study where the gravimetric 261 

feeding behavior of a K-Tron KT20 and GEA compact feeder was determined (Van Snick 262 

et al., 2017b). By selecting the same feed rate setpoints, the gravimetric feeding 263 

performance between the different feeders can be directly compared. 264 
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The standard deviation (SD) (kg/h) (eq. 4), relative standard deviation (RSD) (%) (eq. 5) 265 

and relative error (RE) (%) (eq. 6) (i.e., relative difference between the mean and target 266 

feed rate) were calculated from the feed rate (kg/h) measured by the catch scale (figure 267 

3): 268 

𝑆𝐷 = √∑ (𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒−𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )2𝑘
1

𝑘
 (4) 269 

𝑅𝑆𝐷 =
𝑆𝐷

𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
× 100 (5) 270 

𝑅𝐸 =
|𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒|

𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑒𝑒𝑑 𝑟𝑎𝑡𝑒
× 100 (6) 271 

with feed rate̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  (kg/h) the mean feed rate and k the number of time points. RSD and RE 272 

were used to express the variability on the feed rate and deviation of the mean feed rate 273 

from the setpoint, respectively. Data outside the ± 3 SD interval were excluded together 274 

with 7 s of data before and after an outlier. After filtering, SD, RSD and RE were 275 

recalculated. This pre-treatment was necessary to remove disturbances that were not 276 

related to the feeding but rather to the sensitivity of the catch scale (e.g., opening and 277 

closing of a door). In total, four gravimetric feeding responses were obtained for each 278 

powder: RSD and RE at the feed rate setpoints of 0.1 and 0.55 kg/h (from now on referred 279 

to as RSD 0.1 and 0.55 kg/h and RE 0.1 and 0.55 kg/h). 280 

2.2.3. Powder characterization techniques 281 

An overview of the used characterization techniques, corresponding material property 282 

descriptors and abbreviations is provided in table 1. 283 

2.2.3.1. Laser diffraction 284 
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Laser diffraction (Mastersizer S, Malvern Instruments, Worcestershire, UK) was used to 285 

measure the particle size of the powders. All measurements were conducted with a MS64 286 

dry powder feeder unit using a 300 RF lens at a feed rate of 3.0 G. Each measurement 287 

was carried out in triplicate. The particle size was reported as a volume equivalent sphere 288 

diameter. The 50% cumulative undersize of the volumetric distribution was described as 289 

dv50 (µm). Particle size analysis was done via the Mastersizer S software. 290 

2.2.3.2. Density and porosity 291 

Bulk (ρb) and tapped (ρt) density (g/ml) were measured in triplicate with a graduated 292 

cylinder mounted on an automatic tapping device (PT TD200, PharmaTest, Hainburg, 293 

Germany). A known mass (M) (g) of powder was poured into a graduated cylinder and the 294 

initial volume (V0) (ml) was determined. After 1250 taps the volume (V1250) (ml) was also 295 

measured. The bulk density was calculated as M/V0 and the tapped density as M/V1250. 296 

Furthermore, the Hausner ratio (HR) was calculated as V0/V1250 and the Carr index (CI) 297 

as (V0 – V1250)/V0. 298 

The true density (ρtrue) (g/ml) was determined using an AccuPyc 1330 helium pycnometer 299 

(Micromeritics, Norcross, GA, USA). The equilibration rate was 0.0050 psig/min and the 300 

number of purges 10. The powder bed porosity (ε) (%) was calculated as described by 301 

equation 7:  302 

𝜀 = 1 −
𝜌𝑏

𝜌𝑡𝑟𝑢𝑒
 (7) 303 

2.2.3.3. Ring shear tester 304 
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The flowability of the powders was measured in triplicate with a ring shear tester (Type 305 

RST-XS, Dietmar Schulze Schüttgutmesstechnik, Wolfenbüttel, Germany). In a first step, 306 

the 30 cm³ XS-Mr shear cell was filled with powder and a normal load of 1000 Pa was 307 

applied during the pre-shear step. For the actual measurements, the powder was sheared 308 

under three different consolidation stresses (400, 600 and 800 Pa). The flowability of the 309 

powders was evaluated via the flow function coefficient (ffc) (eq. 8), which was calculated 310 

from the unconfined yield strength (σ1) (Pa) and major principal stress (FC) (Pa). The bulk 311 

density-weighed flow was expressed as ffp (eq. 9) and gives information about the flow 312 

under gravity. ρw is the density of water (1 g/ml). 313 

𝑓𝑓𝑐 =
FC

𝜎1
 (8) 314 

𝑓𝑓𝑝 = 𝑓𝑓𝑐 ×
𝜌𝑏

𝜌𝑤
 (9) 315 

The wall friction angle (WFA) (°) was measured in triplicate using a XS-WL shear cell with 316 

a 316 stainless steel bottom plate (surface roughness: 0.28 µm). After filling the cell with 317 

± 4 mm of powder, the wall friction was determined under decreasing wall normal stresses 318 

(4000, 3280, 2560, 1840, 1120 and 400 Pa). WFA was calculated from the resulting wall 319 

yield locus. 320 

2.2.3.4. FlowPro 321 

The flow rate (FR) (mg/s) through an orifice was measured (n = 5) using the FlowPro™ 322 

(iPAT, Turku, Finland). The system consists of a sample holder with orifice and analytical 323 

scale. The sample holder moves vertically and the upward motion breaks the powder arch 324 

enabling the powder to flow freely through the orifice. The volume of the sample holder is 325 
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5.96 ml and the diameter of the orifice 3 mm. The flow rate was calculated from the data 326 

obtained by the analytical scale (Seppälä et al., 2010). 327 

2.2.3.5. FT4 powder rheometer 328 

Cylindrical vessels (diameter: 50 mm) were used during material characterization with the 329 

FT4 powder rheometer. 330 

2.2.3.5.1. Stability and variable flow rate 331 

At the start of the stability and variable flow rate experiments, the vessel was filled with 332 

160 ml of sample. To ensure reproducible starting conditions, the sample was subjected 333 

to a conditioning cycle before the start of each experiment. Flow energy (mJ) data was 334 

collected from the energy generated by moving a blade through the powder from the top 335 

of the vessel to the bottom (test cycle) with a blade tip speed of 100 mm/s. The test cycle 336 

was repeated seven times to achieve stable flow energy (flow energy test 1 – 7). The 337 

sensitivity of the powder to shear rate was evaluated by gradually reducing the blade tip 338 

speed (100, 70, 40 and 10 mm/s) during cycle 8 – 11. The variables obtained from this 339 

experiment are the basic flow energy (BFE) (mJ) (eq. 10), RSD on basic flow energy (RSD 340 

BFE) (%) (eq. 11), normalized BFE (nBFE) (mJ/g) (eq. 12), flow rate index (FRI) (eq. 13) 341 

and specific energy (SE) (mJ/g) (eq. 14): 342 

𝐵𝐹𝐸 = 𝑓𝑙𝑜𝑤 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑒𝑠𝑡 7 (10) 343 

𝑅𝑆𝐷 𝐵𝐹𝐸 =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑓𝑙𝑜𝑤 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑒𝑠𝑡 1− 7)

𝑚𝑒𝑎𝑛 (𝑓𝑙𝑜𝑤 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑒𝑠𝑡 1− 7)
 × 100 (11) 344 

𝑛𝐵𝐹𝐸 =
𝐵𝐹𝐸

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠
 (12) 345 
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𝐹𝑅𝐼 =
𝑓𝑙𝑜𝑤 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑒𝑠𝑡 11

𝑓𝑙𝑜𝑤 𝑒𝑛𝑒𝑟𝑔𝑦 𝑡𝑒𝑠𝑡 8
 (13) 346 

𝑆𝐸 =
(𝑢𝑝 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑦𝑐𝑙𝑒 6+ 𝑢𝑝 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑦𝑐𝑙𝑒 7)/2

𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠 
  (14) 347 

2.2.3.5.2. Compressibility 348 

For the measurement of compressibility, the normal stress of a vented piston was 349 

gradually increased (0.5, 1, 2, 4, 6, 8, 10, 12 and 15 kPa) and the percentage of change 350 

in volume was recorded. The compressibility at 15 kPa was reported (C 15kPa) (%). 351 

2.2.3.5.3. Aeration 352 

A vessel with aeration base was filled with sample (160 ml) and pre-conditioned to 353 

standardize the state of the powder bed before each measurement. Initially, the flow 354 

energy (AE 0) (mJ) was measured without aeration. Next, the air velocity (AV) was 355 

gradually increased (AV: 0.5, 1, 2, 4, 6, 8, 10, 15, 20, 30 and 40 mm/s) while measuring 356 

the corresponding flow energy (AE AV) (mJ). The reduction in flow energy caused by 357 

transitioning from a densely stirred to a fluidized powder bed was quantified by normalizing 358 

the aerated flow energies with the initial flow energy (AR AV) (eq. 15). Finally, the 359 

maximum normalized aeration sensitivity (NAS) (s/mm) was calculated as the difference 360 

in normalized flow energy divided by the difference in air velocity. 361 

𝐴𝑅 𝐴𝑉 =
𝐴𝐸 𝐴𝑉

𝐴𝐸 0
  (15) 362 

2.2.3.6. Charge density 363 

Triboelectric charging of the powders was measured using a GranuCharge (GranuTools, 364 

Awans, Belgium). Powders were fed into the device using a vibratory feeder. Electrostatic 365 
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charge was created during flow through a 316L stainless steel V-shaped tubing system 366 

consisting of 2 separate tubes that form a 90° angle. The tubes have a combined length 367 

of 700 mm and an internal diameter of 47 mm. At the end of the tubing system, samples 368 

were collected inside a Faraday cup connected to an electrometer. Per test, 30 ml of 369 

powder was used and measurements were performed in triplicate. Charge density (CD) 370 

(nC/g) was calculated by dividing the net charge by the mass of the powder bed. 371 

2.2.4. Multivariate data analysis 372 

For each of the four determined feeding responses (FFmax, FFdecay, RSD and RE) a 373 

separate PLS model was developed (table 2). The models were developed by regressing 374 

the material property descriptors (X) versus the feeding responses (Y) of the powders 375 

included in the calibration set (13 powders). In the models of the volumetric responses, 376 

the applied screw speeds were also included in the X matrix since the volumetric feeding 377 

responses (FFmax and FFdecay) were determined at three screw speeds. Similarly, the feed 378 

rate setpoint was added to the X matrix in the RSD and RE model as these gravimetric 379 

feeding responses were measured at a low and high feed rate setpoint. Screw speed was 380 

not included because the screw speed did not remain constant during the gravimetric 381 

feeding experiments. 382 

Prior to PLS regression, the data was pre-treated. First, the absolute value of charge 383 

density was used in the PLS models, since charge density centered around zero and 384 

varied in both the positive and negative direction. Without using the absolute value of 385 

charge density, a powder with a very negative charge density value (i.e., highly charged) 386 

would otherwise be categorized as a powder with a very low electrostatic charge (Van 387 
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Snick et al., 2018a). Furthermore, the data was scaled to unit variance (UV) and mean-388 

centered prior to PLS regression. UV-scaling was performed by dividing each value by 389 

the standard deviation of that variable and was necessary to normalize for the different 390 

numerical ranges of the variables. For mean-centering, the mean of each variable was 391 

subtracted from the data of that variable. Mean-centering results in a repositioning of the 392 

coordinate system and makes the average point the origin, which improves the 393 

interpretability of the model. Finally, a logarithmic transformation was applied on non-394 

normally distributed variables (dv50, ffc, ffp, BFE, RSD and RE) to approximate a normal 395 

distribution (Eriksson et al., 2015). 396 

The goodness of fit and predictive ability of the developed PLS models were assessed by 397 

calculation of R2 and Q2, respectively. Q2 values were obtained after performing a leave-398 

one-out cross-validation, in which sub-models were developed from a reduced calibration 399 

dataset and the excluded data was predicted by the sub-models (Eriksson et al., 2015). 400 

The number of PLS components providing the highest Q2 value was selected. The 401 

predictive performance of the developed models was also assessed by predicting the 402 

feeding responses of two external validation powders (S1500 and API 3). The relative 403 

prediction error was calculated as the relative difference between the actual and predicted 404 

feeding responses of the validation set. 405 

Excluding some material property descriptors resulted in models with an improved 406 

predictive performance. A first explanation for an improved predictive ability is that some 407 

material property descriptors were highly correlated because they describe the same 408 

material property (e.g., HR and CI). The problem of multiple descriptors representing one 409 

material property, is that such a material property can artificially dominate the model due 410 
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to a numerical overweight. Therefore, some of these highly correlated descriptors were 411 

excluded, ensuring that the material properties had an equal weight in the model (Van 412 

Snick et al., 2018a). Finally, material property descriptors that correlated poorly with the 413 

feeding responses were excluded as these descriptors only introduce interfering variability 414 

in the model. By selecting the material property descriptors with the highest correlation for 415 

a specific feeding response, the predictive performance of the models was optimized 416 

individually. An overview of the excluded material property descriptors for each model is 417 

given in table 2. The PLS models were created using the SIMCA software (Version 15, 418 

Umetrics, Umeå, Sweden). 419 

3. RESULTS AND DISCUSSION 420 

3.1. Correlation between material properties and feeding behavior 421 

A four component PLS model was developed for FFmax which explained 81.1 and 97.1% 422 

of the variation in the X and Y dataset, respectively (table 2). The loadings plot was used 423 

to understand how the material property descriptors are related to each other and which 424 

material property descriptors have an impact on the feeding responses (Eriksson et al., 425 

2015). In the PLS component (PLSC) 1 vs 2 loadings plot of the FFmax model (figure 4b), 426 

FFmax, bulk and tapped density were located in the top right corner. This suggests a 427 

positive correlation between FFmax and density, signifying that the numerical value of 428 

FFmax, bulk and tapped density will change in the same way. Consequently, porosity (ε) 429 

was located at the opposite side of the origin (i.e., bottom left corner), meaning that FFmax 430 

was negatively correlated with porosity. The positive correlation between density and 431 

FFmax (i.e., negative correlation between porosity and FFmax) can be explained by the 432 
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constant volume that is dispensed per screw revolution. For the same volume, a powder 433 

with a high density will have a higher powder mass dispensed per screw revolution (i.e., 434 

feed factor) than a powder with a low density (Van Snick et al., 2017a). The scores plot 435 

reveals how the powders are related to each other based on their material properties and 436 

feeding behavior. The scores and loadings plots are complementary and superimposable, 437 

meaning that materials with a specific location on the scores plot possess high values for 438 

variables (i.e., material and feeding properties) with a similar location on the 439 

corresponding loadings plot and low values for variables at the opposite side of the origin. 440 

For the FFmax model, it was observed that APAP D was located in the top right corner of 441 

the PLSC 1 vs 2 scores plot (figure 4a). This is because APAP D possessed the highest 442 

FFmax, bulk and tapped density of the investigated powders. AE 10 and FFmax were also 443 

positively correlated and was related to density as a dense powder requires more flow 444 

energy to aerate its powder bed (figure 4b). 445 

FFmax was not only dependent on the density as FFmax 30 rpm of CL (0.244 g/revolution) 446 

was clearly higher compared to PH105 (0.172 g/revolution), despite the similar bulk 447 

density (± 0.32 g/ml) of both powders. The flow descriptors (ffp and BFE) and FFmax had 448 

similar PLSC 1 loadings, suggesting that powder flow and FFmax were positively correlated 449 

(figure 4b). The better flow of CL explains why the FFmax of CL was higher compared to 450 

PH105 (ffp of 1.88 (CL) compared to 0.55 (PH105)). Free-flowing powders flow more 451 

easily in the flight of the screws and therefore have a higher screw filling degree than 452 

powders with a poor flowability. Overall, the density and powder flow were the material 453 

properties with the largest impact on FFmax. Based on the loadings plot and the correlation 454 

matrix (- 7%) (not shown) it can be concluded that the screw speed (within the studied 455 
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ranges of 10 and 90% of the maximum screw speed) was weakly anti-correlated with 456 

FFmax. 457 

In the feed factor profiles of the tested powders, FFmax was located at 100% hopper fill 458 

level and the feed factor decreased when emptying the hopper (figure 2). At 100% hopper 459 

fill level, the powder mass in the hopper is at its maximum and the powder at the screw 460 

inlet is compressed under the influence of the high powder mass in the hopper (i.e., 461 

maximum density at the screw inlet). When the powder mass in the hopper decreases 462 

during feeding, the powder is less compressed resulting in a reduction of the density at 463 

the screw inlet and consequently the feed factor decreases. FFdecay was used to describe 464 

this decrease in feed factor and was defined as the % hopper fill level where the feed 465 

factor drops to 90% of FFmax. A model with three components was developed for FFdecay, 466 

explaining 55.8 and 80.9% of the variation in the X and Y dataset, respectively (table 2). 467 

FFdecay was positively correlated with the descriptors that describe the compressibility of 468 

a powder bed (C 15kPa, HR and CI) (figure 5b). Powders with a high compressibility had 469 

a high FFdecay, thus the decrease of feed factor already occurred at higher hopper fill 470 

levels. For powders with a low compressibility, the compressive forces (i.e., powder mass 471 

in the hopper) have a minimal impact on the density at the screw inlet resulting in an 472 

almost unchanged feed factor during emptying of the hopper. The lowest FFdecay was 473 

observed for powders with the lowest compressibility of the dataset (HD90 and DCP) 474 

(figure 5a). However, the FFdecay of 200M was lower than API SD (table 3), despite having 475 

a similar compressibility (C 15kPa: ± 22%). The reason for the lower FFdecay of 200M was 476 

due to its better flow properties and higher density. Consequently, 200M can longer 477 

maintain a constant feed factor because the powder flows more easily in the screw flights. 478 
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The negative correlation of flow and density with FFdecay was confirmed by their opposite 479 

location in the loadings plot (figure 5b). The loadings plot reveals that the screw speed 480 

was weakly anti-correlated with FFdecay (figure 5b). According to the correlation matrix (not 481 

shown), the magnitude of this correlation was low (- 11%) and was therefore considered 482 

as irrelevant. 483 

The model of the gravimetric feeding response RSD consisted of three PLSCs, which 484 

explained 63.1 and 77.8% of the variation in the X and Y dataset, respectively (table 2). 485 

From the PLSC 1 vs 2 loadings plot, it was observed that feed rate and RSD were clearly 486 

negatively correlated, since they were located at opposite sides of the origin (figure 6b). 487 

Consequently, a lower feed rate variability (RSD) will be observed when feeding at higher 488 

throughputs. However, the value of SD was similar at low and high feed rates, but because 489 

SD was divided by a higher mean feed rate for runs at a high feed rate, the calculated 490 

RSD was lower compared to low feed rate runs (Ervasti et al., 2015). The correlation of 491 

RSD with the material property descriptors was weaker as the highest correlation 492 

observed in the correlation matrix (not shown) was only 40% (HR). From the loadings plot, 493 

it can be concluded that the highest variability on the feed rate was observed for powders 494 

with a low density, poor flow, high compressibility and small particle size, and that this 495 

was primarily related to the ability to consistently fill the screws (figure 6b). 496 

Two components were fitted in the RE model explaining 52.4 and 51.6% of the variation 497 

in the X and Y dataset, respectively (table 2). From the PLSC 1 vs 2 loadings plot follows 498 

that RE was positively correlated with porosity and negatively with both bulk and tapped 499 

density (figure 7b). At the lowest feed rate setpoint of 0.1 kg/h, all powders could reach 500 

the setpoint and the observed RE was close to zero. In contrast, powders with a low 501 



25 
 

 
 

density were not capable of reaching the highest feed rate setpoint (0.55 kg/h). For these 502 

powders, the mean feed rate was much lower than 0.55 kg/h, resulting in a large RE. The 503 

maximum feeding capacity of these powders was not high enough due to their low density. 504 

This also explains why feed rate and RE were positively correlated because only for runs 505 

at a high feed rate (0.55 kg/h) a high RE was observed. The location of material properties 506 

such as flowability and compressibility with respect to RE can also be explained by the 507 

inability of low density powders to reach the highest feed rate setpoint as these powders 508 

typically possess a poor flow and high compressibility. RE of most powders at both the 509 

low and high feed rate setpoints, apart from the ones with a low density, was close to zero 510 

(table 3). 511 

3.2. Predicting of the feeding responses 512 

The actual and predicted feeding responses (FFmax, FFdecay, RSD and RE) of S1500 and 513 

API 3 are displayed in table 4. The highest relative prediction error for the FFmax was - 514 

5.01% (FFmax 6 rpm of S1500). For FFdecay, the highest relative prediction error was 515 

observed for FFdecay 54 rpm of S1500 (- 25.07%). All other FFdecay values were predicted 516 

with a relative prediction error lower than 10%. For both validation powders, FFmax was 517 

predicted better than FFdecay and can be explained by the stronger correlation of FFmax 518 

with the material properties. The strongest correlation between FFmax and a material 519 

property descriptor was - 91% (ε), whereas for FFdecay the strongest correlation was only 520 

- 63% (ffp). 521 

The highest relative prediction error for RSD was - 39.00% and was observed for the RSD 522 

0.1 kg/h of S1500, while the prediction error on the RSD 0.55 kg/h of S1500 and API 3 523 
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was - 8.53 and - 0.62%, respectively. The predictability of the RE model was low as the 524 

Q2 value of this model was only 0.033 and the highest relative prediction error was 525 

1895.97% (RE 0.1 kg/h of S1500). However, the magnitude of the relative prediction error 526 

should not be overestimated as the actual RE of this run was 0.01% and the predicted 527 

0.20%. More important for the RE model is that both the actual and predicted RE values 528 

were close to zero for both validation powders, meaning that the model captured that the 529 

density and maximum feeding capacity of these powders was high enough to reach the 530 

investigated feed rate setpoints. 531 

A reason for the low Q2 value of the RE model can be explained by the small numerical 532 

variation in this gravimetric feeding response. Furthermore, the low Q2 value is an 533 

indication of a weak relationship between the material properties and RE (Eriksson et al., 534 

2008), which is not desirable for an approach that aims to predict feeding behavior based 535 

on material properties. However, the question is whether it is relevant to predict this 536 

gravimetric feeding response, since a control system that is working properly will be able 537 

to feed different powders at a feed rate close to the setpoint (i.e., low RE value). 538 

Interestingly, since RE was close to zero and was similar for most powders, it can be 539 

concluded that the feeder was capable of feeding the powders accurately at the low feed 540 

rates tested in this study. The only powders for which a large RE value was observed, 541 

were powders with a low density that could not reach the highest feed rate setpoint of 0.55 542 

kg/h, even when the control system selected the maximum screw speed. For these 543 

powders, predicting RE is advantageous since it expresses the maximum feeding capacity 544 

of that powder. However, the maximum feeding capacity was already captured by FFmax 545 

and could be predicted with a very low prediction error. Therefore, when FFmax of a powder 546 
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is known, predicting RE does not provide additional information regarding the maximum 547 

feeding capacity of that powder. 548 

Overall, the volumetric feeding responses (FFmax and FFdecay) were predicted better than 549 

the gravimetric feeding responses (RSD and RE). This is because the material properties 550 

were more correlated with the volumetric feeding responses (FFmax: - 91% (ε); FFdecay: - 551 

63% (ffp)) than with the gravimetric feeding responses (RSD: 40% (HR); RE: - 60% (ρb)). 552 

In gravimetric mode, the control system tries to minimize the variability on the feed rate 553 

and keeps the feed rate as close as possible to the setpoint, independently from the 554 

powder that is being fed. This is in contrast with feeding in volumetric mode, where the 555 

differences in feeding behavior are entirely related to the material properties since the 556 

feed rate is not controlled. Finally, most feeding responses were predicted better for API 557 

3 compared to S1500. A two component PCA model (R2X: 0.617 and Q2: 0.313) was 558 

constructed, including all material property descriptors and all powders (both calibration 559 

and validation powders). This allowed to investigate how the validation powders were 560 

related to the calibration powders based on their material properties. The scores plot of 561 

this PCA model reveals that more calibration powders were situated in the same region 562 

as API 3 than in the region of S1500 (figure 8), meaning that the calibration set contained 563 

more powders with similar material properties as API 3. This emphasizes that the size of 564 

the calibration set is critical for this multivariate approach to be successful. Therefore, 565 

models should be updated when material properties and feeding responses of new 566 

powders are obtained (Wang et al., 2017). This will further improve the predictability of 567 

the models as the probability will increase that the material properties and feeding 568 

responses of a new powder are closely related to a powder in the calibration set. 569 
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 570 
4. CONCLUSIONS 571 

In this study, multivariate models (PLS) were developed that allow to predict the volumetric 572 

and gravimetric feeding behavior of a low feed rate feeder based on material properties. 573 

The maximum feed factor (FFmax) and decay in feed factor (FFdecay) were determined 574 

during volumetric feeding experiments. From gravimetric feeding experiments, the 575 

variability on the feed rate (RSD) and the difference between the mean feed rate and 576 

setpoint (RE) were obtained. Overall, the volumetric feeding responses (FFmax and 577 

FFdecay) were predicted with the highest accuracy as they correlated better with the 578 

material properties than the gravimetric responses. This is because in gravimetric mode, 579 

the feed rate is controlled by the control system, which reduces the impact of material 580 

properties on the feeding behavior. For RE, almost no variation was observed between 581 

the different powders. Only for low density powders, where the highest gravimetric feed 582 

rate setpoint could not be reached, RE was a measure of the maximum feeding capacity. 583 

However, the maximum feeding capacity was already obtained from FFmax. Therefore, 584 

developing a model that correlates material properties with RE might be unnecessary. 585 

Finally, API 3 was predicted better than S1500 since the calibration set contained more 586 

powders with similar material properties as API 3. Hence, updating the models with new 587 

powders is important to further improve the predictive performance. The used multivariate 588 

models assume linear relationships between the variables. However these relationships 589 

do not always tend to be linear. Therefore, one of the future perspectives is to investigate 590 

modelling approaches that can handle non-linearity in the data with the aim of further 591 

improving the predictive performance of the developed models. The approach applied in 592 
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this study will allow to reduce the number of feeding experiments during process 593 

development, leading to a more efficient and faster development of new drug products. 594 
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Characterization 
technique 

Material property descriptor Abbreviation 

Laser diffraction 50% cumulative undersize of the volumetric distribution dv50 

Tapping device 
and pycnometer 

Bulk density 
Tapped density 
Hausner ratio 

Carr index 
True density 

Porosity 

ρb 
ρt 

HR 
CI 

ρtrue 

ε 

Ring shear tester 

Flow function coefficient 
Unconfined yield strength 

Major principal stress 
Bulk density-weighed flow 

Wall friction angle 

ffc 
σ1 
FC 
ffp 

WFA 

FlowPro Flow rate FR 

FT4 powder 
rheometer 

Basic flow energy 
RSD on basic flow energy 

Normalized basic flow energy 
Flow rate index 
Specific energy 

Compressibility at 15 kPa 
Flowability energy at air velocity of 10 and 40 mm/s 

Normalized flowability energy at air velocity of 10 and 40 mm/s 
Normalized aeration sensitivity 

BFE 
RSD BFE 

nBFE 
FRI 
SE 

C 15kPa 
AE 10 and AE 40 
AR 10 and AR 40 

NAS 

GranuCharge Charge density CD 

 

Table 1. Overview of the characterization techniques, corresponding material property 

descriptors and abbreviations. 
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Table 2. Overview of the developed PLS models. 

 

 

 

 

 

 

 

 

 

 FFmax FFdecay RSD RE 

Excluded 
material 
property 
descriptors 

HR, σ1, FC, RSD 
BFE, FRI, SE, AR 

10 and CD 
ρtrue and FC CI, FRI and NAS HR 

R2X 0.811 0.558 0.631 0.524 

R2Y 0.971 0.809 0.778 0.516 

Q2 0.946 0.585 0.344 0.033 

# of PLS 
components 

4 3 3 2 
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Material 

FFmax 

6 rpm 

(g/revo

lution) 

FFmax 

30 rpm 

(g/revo

lution) 

FFmax 

54 rpm 

(g/revol

ution) 

FFdecay 

6 rpm 

(%) 

FFdecay 

30 rpm 

(%) 

FFdecay 

54 rpm 

(%) 

RSD 

0.1 kg/h 

(%) 

RSD 

0.55 kg/h 

(%) 

RE 0.1 

kg/h 

(%) 

RE 0.55 

kg/h (%) 

P M 

P P 

P D 

API SD 

200M 

PH105 

DCP 

HD90 

CL 

MgSt 

API 1 

API 2 

API M 

API 3 

S1500 

0.141 

0.302 

0.712 

0.148 

0.484 

0.175 

0.384 

0.263 

0.188 

0.140 

0.042 

0.205 

0.054 

0.226 

0.470 

0.082 

0.287 

0.703 

0.092 

0.473 

0.172 

0.400 

0.253 

0.244 

0.124 

0.045 

0.108 

0.027 

0.209 

0.426 

0.075 

0.267 

0.684 

0.109 

0.452 

0.164 

0.402 

0.251 

0.175 

0.116 

0.048 

0.089 

0.026 

0.191 

0.424 

86.8 

66.0 

53.5 

97.4 

36.0 

41.4 

15.5 

18.3 

61.2 

65.2 

84.2 

71.9 

85.7 

65.2 

33.7 

93.7 

70.2 

58.7 

69.8 

41.3 

38.5 

14.3 

15.4 

73.3 

91.1 

77.6 

47.4 

43.1 

62.6 

32.8 

68.3 

69.0 

52.1 

92.1 

43.9 

29.8 

18.0 

6.8 

85.8 

88.5 

79.4 

35.1 

21.5 

58.9 

35.7 

59.5 

87.3 

76.0 

220.0 

60.1 

29.0 

73.6 

57.7 

72.0 

106.7 

191.8 

140.6 

52.2 

124.3 

79.5 

27.3 

17.2 

12.3 

52.0 

6.1 

7.9 

12.4 

14.3 

12.3 

38.4 

115.5 

28.1 

69.0 

25.7 

13.2 

0.5 

1.9 

0.3 

1.0 

0.3 

0.1 

1.6 

1.9 

0.9 

4.1 

3.1 

1.2 

0.2 

1.9 

0.0 

46.2 

0.3 

0.0 

43.2 

0.4 

0.6 

0.0 

1.1 

0.8 

30.2 

64.4 

14.0 

76.7 

0.7 

0.5 

Table 3. Feeding responses of the tested powders. 
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S1500 API 3 

Actual Predicted 
Relative 

prediction error 
(%) 

Actual Predicted 
Relative 

prediction error 
(%) 

FFmax 6 rpm (g/revolution) 

FFmax 30 rpm (g/revolution) 

FFmax 54 rpm (g/revolution) 

FFdecay 6 rpm (%) 

FFdecay 30 rpm (%) 

FFdecay 54 rpm (%) 

RSD 0.1 kg/h (%) 

RSD 0.55 kg/h (%) 

RE 0.1 kg/h (%) 

RE 0.55 kg/h (%) 

0.470 

0.426 

0.424 

33.7 

32.7 

35.7 

79.5 

13.2 

0.01 

0.45 

0.447 

0.429 

0.411 

34.3 

30.5 

26.7 

48.5 

12.1 

0.20 

0.36 

- 5.01 

0.61 

-3.05 

1.87 

- 6.81 

- 25.07 

- 39.00 

- 8.53 

1895.97 

- 19.34 

0.226 

0.209 

0.191 

65.2 

62.6 

58.9 

124.3 

25.7 

1.94 

0.70 

0.224 

0.207 

0.189 

65.2 

61.4 

57.7 

102.7 

25.5 

0.78 

1.41 

- 0.88 

- 0.94 

- 1.01 

0.00 

- 1.88 

- 2.11 

- 17.41 

- 0.62 

- 60.07 

101.25 

Table 4. Overview of the actual and predicted feeding responses of the validation 

powders. 
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Figure 1. Overview of the experimental setup: K-Tron MT12 twin screw LIW feeder (left) 

and catch scale (right). 

Figure 2. Feed factor profile of lactose monohydrate (200M) at a screw speed of 6, 30 and 

54 rpm used to determine the volumetric feeding responses: maximum feed factor (FFmax) 

and feed factor decay (FFdecay). 

Figure 3. Gravimetric feeding data of lactose monohydrate (200M) at 0.55 kg/h used to 

determine the gravimetric feeding response: standard deviation (SD). 

Figure 4. PLSC 1 vs 2 scores (a) and loadings (b) plot of the FFmax model. The 

abbreviations of the powders in the scores plot and of the descriptors in the loadings plot 

are described in the materials and methods section. Only the runs performed at a screw 

speed of 30 rpm are displayed in the scores plot since the runs at the three screw speeds 

largely overlap in the scores plot (not shown). 

Figure 5. PLSC 1 vs 2 scores (a) and loadings (b) plot of the FFdecay model. The 

abbreviations of the powders in the scores plot and of the descriptors in the loadings plot 

are described in the materials and methods section. Only the runs performed at a screw 

speed of 30 rpm are displayed in the scores plot since the runs at the three screw speeds 

largely overlap in the scores plot (not shown). 

Figure 6. PLSC 1 vs 2 scores (a) and loadings (b) plot of the RSD model. The 

abbreviations of the powders in the scores plot and of the descriptors in the loadings plot 

are described in the materials and methods section. The runs performed at the low (L) 

and high (H) feed rate setpoint (0.1 and 0.55 kg/h) are displayed in the scores plot. 
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Figure 7. PLSC 1 vs 2 scores (a) and loadings (b) plot of the RE model. The abbreviations 

of the powders in the scores plot and of the descriptors in the loadings plot are described 

in the materials and methods section. The runs performed at the low (L) and high (H) feed 

rate setpoint (0.1 and 0.55 kg/h) are displayed in the scores plot. 

Figure 8. Scores plot of the PCA model constructed of the material properties of all 

investigated powders. The abbreviations of the powders in the scores plot are described 

in the materials section. 
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