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Abstract
Existing parametric regression models in the literature for response data on the unit sphere assume that the covariates have
particularly simple structure, for example that they are either scalar or are themselves on the unit sphere, and/or that the
error distribution is isotropic. In many practical situations, such models are too inflexible. Here, we develop richer parametric
spherical regression models in which the covariates can have quite general structure (for example, they may be on the unit
sphere, in Euclidean space, categorical or some combination of these) and in which the errors are anisotropic. We consider
two anisotropic error distributions—the Kent distribution and the elliptically symmetric angular Gaussian distribution—and
two parametrisations of each which enable distinct ways to model how the response depends on the covariates. Various
hypotheses of interest, such as the significance of particular covariates, or anisotropy of the errors, are easy to test, for
example by classical likelihood ratio tests. We also introduce new model-based residuals for evaluating the fitted models. In
the examples we consider, the hypothesis tests indicate strong evidence to favour the novel models over simpler existing ones.

Keywords Angular Gaussian distribution · Kent distribution · Model selection · Residuals · Spherical data

1 Introduction

Spherical data are observations that lie on the unit sphere
S
p−1 = {

y ∈ R
p : y�y = 1

}
. They arise in many scientific

disciplines, including shape analysis, geology and meteorol-
ogy [e.g. Mardia and Jupp (2000)] and more recently areas
as diverse as genome sequence representations and text anal-
ysis [e.g. Hamsici and Martinez (2007)]. In this paper, we
consider the regression problem in which the data are pairs
{xi , yi }, i = 1, . . . , n, involving a q × 1 covariate vector, xi ,
and a spherical response variable, yi ∈ S

2. The aim of regres-
sion modelling is to establish how the response variable yi
depends on xi .
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Typical parametric regression models currently in use for
spherical responses in dimension p ≥ 3 are fairly restrictive
in the sense that (i) the covariates are assumed to have special
structure, e.g. that the covariate is a scalar (such as time) or
is itself on the sphere (i.e. a direction); and/or (ii) the models
assume isotropic error distributions. Examples of (i) and (ii)
in the literature are Chang (1986), Rivest (1989) and Rosen-
thal et al. (2014), see also Di Marzio et al. (2014) in a
nonparametric context. Recent work in regression modelling
on general Riemannian manifolds, for which the unit sphere
is a special case, includes the nonparametric approach of Lin
et al. (2017), who develop local regression models assum-
ing Euclidean covariates, and the semi-parametric approach
of Cornea et al. (2017), who use parametric link functions
mapping from a general covariate space to themanifold, with
a nonparametric error distribution; though in neither is the
possibility of anisotropic errors explicitly considered.

The principal contribution of this paper is to introduce
parametric regression models for spherical response data
that relax both (i) and (ii). The motivation for doing so is
that in many applications the covariates do not have the
simple structure described in (i), and that there is rarely
any basis for assuming a priori that the error distribution
is isotropic.
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There are twomain ingredients of the spherical regression
models we develop: a distribution on the sphere, to play the
role of an error distribution, and a structural model linking
the parameters of this error distribution to the covariates. Our
approach is similar in spirit to generalised linear models in
the sense that we express parameters of the distribution of yi
in terms of Bxi , where B is a matrix of parameters. Two sim-
ple distributions on the sphere, each broadly analogous to the
isotropic normal distribution inR2, are the vonMises–Fisher
and isotropic angular Gaussian (IAG) distributions. Both are
“isotropic” (or equivalently “rotationally symmetric”) on the
sphere at the mean direction, μ̃ ∈ S

2, meaning that their con-
tours are small circles centred on μ̃. The von Mises–Fisher
distribution arises from conditioning an isotropic multivari-
ate normal random variable z ∈ R

p to have unit norm. On S2,
to whichwe specialise henceforth, it is often called the Fisher
distribution. It has three free parameters: two to define the
mean direction, μ̃ ∈ S

2, and another scalar parameter, κ > 0,
that controls concentration. Its density function on S2 is

fFisher(y|κ, μ̃) = κ

4π sinh(κ)
exp

(
κy�μ̃

)
. (1)

The IAG distribution arises from projecting (as opposed to
conditioning) z to lie on S

p−1. On S2 its density function is

fIAG(y|μ) = 1

2π
exp

[
1

2

{(
y�μμμ

)2 − μμμ�μμμ

}]
M

(
y�μμμ

)
,

(2)

where M(α) = αφ(α) + (1 + α2)�(α), and where φ(·)
and �(·) are the standard normal probability density func-
tion and cumulative distribution function, respectively. It is
parametrised by the vector μ ∈ R

3. In terms of μ, the mean
direction is μ/‖μ‖ and the concentration is determined by
‖μ‖. Note that (2) could equally be re-parametrised in terms
of μ̃ = μ/‖μ‖ and κ = ‖μ‖, analogous to the parametri-
sation of (1), and likewise (1) could be re-parametrised in
terms of a parameter κμ̃ ∈ R

3; the distinction between
parametrisations is a matter of modelling convenience and
in the following we shall make use of both.

Because they are isotropic, the 3-parameter Fisher and
IAG distributions are too restrictive for many applications.
Each, however, has a 5-parameter anisotropic generalisation:
the Kent (1982) distribution, and the elliptically symmetric
angular Gaussian (ESAG) distribution (Paine et al. 2017),
respectively. Both the Kent and ESAG distributions have
elliptical symmetry about the mean direction, that is, they
have ellipse-like contours centred on the mean direction.
The two extra parameters over their isotropic counterparts
control the orientation and eccentricity of the elliptical con-
tours. We describe the Kent and ESAG distributions in more
detail in Sect. 2, but here introduce two parametrisations
we shall use for each. The first parametrisation we shall

consider is in terms of (κ, β,�), in which κ > 0 is a con-
centration parameter, β ≥ 0 is an eccentricity parameter,
and � = (μ̃ ξ1 ξ2) ∈ O(3) is an orthogonal matrix (i.e.
��� = I, where I is the identity matrix), in which μ̃ is the
mean direction (having 2 degrees of freedom) and (ξ1, ξ2)

are the major and minor axes that identify the orientation of
the elliptical contours (together having 1 remaining degree
of freedom). This parametrisation generalises that of (1).

The second parametrisation we consider, generalising (2),
is in terms of a pair of vectors,μ ∈ R

3 and γ ∈ R
2, in which,

as in (2), μ controls the mean direction and concentration;
then γ ∈ R

2 controls eccentricity and orientation of the ellip-
tical contours.

These two parametrisations lend themselves to different
ways of modelling how the response variable depends on
covariates.We consider models with the following structures

Structure 1: Q�yi ∼ H(κ, β,�(xi )); (3)

Structure 2: Q�yi ∼ H(μ(xi ), γ (xi )); (4)

where H(·) is one of Kent(·) or ESAG(·) andQ is an orthog-
onal matrix, discussed later in Sect. 3 and the “Appendix”,
which is needed so that inference does not depend in undesir-
ableways on the particular, and possibly arbitrary, coordinate
system in which the yi are defined. A primary difference
between (3) and (4) is that in Structure 1 we allow the
mean direction and orientation of the dispersion to depend
on the covariate vector, but the magnitude of dispersion and
anisotropy is fixed. For Structure 2, all of these depend on the
covariate. We specify in Sect. 3 particular functional forms
for the �(·), μ(·) and γ (·), but for now note that we will
consider four models that result from the different combina-
tions of these two structures and two error distributions. We
will call these Kent1, ESAG1, Kent2, and ESAG2, where, for
example, ESAG1 means using H(·) = ESAG(·) as the error
distribution and Structure 1 to model dependence on covari-
ates. This modelling approach, in which we assume that the
parameters of the error distribution depend on the covariates
in particular functional ways, closely parallels generalised
linear modelling, although rather than having a single linear
predictor, here we have several.

Before giving more details about the parametrisations and
models, we briefly discuss some earlier papers on spherical
regression. Rivest (1989) considered the case with covariates
themselves on the sphere, xi ∈ S

2, and a Fisher error distri-
bution with the mean direction modelled as μ̃(xi ) = Rxi ,
where R ∈ SO(3) is a rotation. Rosenthal et al. (2014)
replaced the rotation with the “projective linear transforma-
tion” (PLT), μ̃(xi ) = Axi/‖Axi‖, with A ∈ SL(3) where
SL(3) = {A ∈ R

3×3 : det(A) = 1} is the special linear
group. This is a generalisation of Rivest’s model since SL(3)
contains SO(3). We consider the PLT later, using it to bench-
mark performance of the new models we introduce.
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Besides regressionmodels on the unit sphere, S2, there are
several models for regression on the unit circle, S1. Presnell
et al. (1998) considers regression onS1 for a general covariate
xi , assuming IAG errors.Wemention this model in particular
because it is a close analogue on S

1 of our ESAG2 model
on S

2 in the isotropic case (which corresponds to γ = 0),
as discussed later. Related work includes the S

1 regression
model of Fisher and Lee (1992), but this is less relevant to
the present paper because it does not generalise conveniently
to S

2 or higher dimensional spheres; see Mardia and Jupp
(2000) for a discussion of this and of the wider context of
regression on S

1. We also mention a regression model for
data on the simplex introduced by Scealy and Welsh (2011).
Their approach is to use a “square-root transformation” to
map the data from the simplex to the positive orthant of the
sphere, then to develop regressionmodels for the transformed
data using the Kent distribution. On the sphere, as opposed to
the simplex, however, we believe it is especially important to
allowwhat Scealy andWelsh (2011) refer to asK∗ to depend
on regression variables, something that they do not consider
due to the fact they focus on transformed compositional data;
see the discussion in the concluding section of their paper.

The main goals of this paper are: to explore and compare
the modelling Structures 1 and 2; to investigate in the regres-
sion context the advantages and disadvantages of the Kent
and ESAG distributions as error distributions; and to develop
hypothesis tests for the significance of particular covariates,
and of anisotropy.

In the following section, we introduce the Kent and ESAG
distributions in each of the two parametrisations, then in
Sect. 3 we develop the two modelling structures and hypoth-
esis testing procedures. In Sect. 4, we introduce some novel
residuals for model fitting diagnostics; then in Sect. 5, we
implement the models and methods on various examples
involving both synthetic and real data. Code for fitting the
models in this paper is available on the second author’s web
page.

2 Elliptically symmetric distributions on S
2

Here, we give details of the (μ, γ ) and (κ, β,�) parametri-
sations of the Kent and ESAG distributions.

2.1 Kent distribution

Kent (1982) introduced this distribution using a (κ, β,���)

parametrisation, in terms of which the density is

fKent( y|κ, β,�) = C(κ, β)−1

× exp

(
κ y�μ̃ + β

((
y�ξξξ1

)2 −
(
y�ξξξ2

)2))
,

(5)

where C(κ, β) is the normalising constant.

Lemma 1 The Kent density in a (μ, γ ) parametrisation is

fKent (y|μ, γ ) = C(κ, β)−1

× exp
(
μ�y + y�(

γ1

(
ξ̃ξξ1ξ̃ξξ

�
1 −ξ̃ξξ2ξ̃ξξ

�
2

)

+ γ2

(
ξ̃ξξ1ξ̃ξξ

�
2 +ξ̃ξξ2ξ̃ξξ

�
1

))
y
)
, (6)

where κ = ‖μ‖, β =
√

γ 2
1 + γ 2

2 and (ξ̃1 ξ̃2) = (ξ1 ξ2)

R(ψ)�, withR(ψ) defined as in (14), and where ψ ∈ (0, π ]
is the solution of γ1 = β cos 2ψ and γ2 = β sin 2ψ .

The proof of Lemma 1 is in the “Appendix”.

2.2 Elliptically symmetric angular Gaussian (ESAG)
distribution

The general angular Gaussian distribution is the marginal
distribution of the directional component of the multivariate
normal distribution; that is, for a general mean μ ∈ R

p and
covariance matrix V, let z ∼ N (μ,V) ∈ R

p, then z/‖z‖
has a general angular Gaussian distribution. The elliptically
symmetric angular Gaussian (ESAG) distribution, developed
in Paine et al. (2017), is a subfamily of the general angular
Gaussian distribution. It is defined by the two conditions

Vμμμ = μμμ, det(V) = 1, (7)

and on S
2 has density

fESAG(y|μ,V) = 1

2π(y�V−1y)3/2

× exp

[
1

2

{ (
y�μμμ

)2

y�V−1y
− μμμ�μμμ

}]

× M

{
y�μμμ

(
y�V−1y

)1/2

}

, (8)

where M(·) is defined as in (2). Distribution (8) has 5 free
parameters, which can be seen by first fixing the 3 free
parameters of μ = (μ1, μ2, μ3)

� then observing that con-
ditions (7) leave 2 degrees of freedom in V. Let ρ1, ρ2, ρ3
be the eigenvalues of V, with corresponding orthonormal
eigenvectors ξξξ1, ξξξ2, ξξξ3, respectively. Then, by the spectral
decomposition theorem,

V−1 = ρ−1
1 ξ1ξ

�
1 + ρ−1

2 ξ2ξ
�
2 + ρ−1

3 ξ3ξ
�
3

= ρ−1
1 ξ1ξ

�
1 + ρ1ξ2ξ

�
2 + μ̃μ̃�, (9)

where μ̃ = μ/‖μ‖. The final term in (9) is a consequence
of the constraint Vμ = μ, and ρ−1

2 = ρ1 then follows from
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det(V) = 1. Once μ is fixed, then in V−1 there is one degree
of freedom from ρ1, and one degree of freedom from fixing
the orientation of ξ1 and ξ2.

Lemma 2 The ESAG density in a (κ, β,�) parametrisation,
where � = (μ̃ ξ1 ξ2), is given by (8) withV = V(β, ξ1, ξ2)

defined by

V−1 = I + β
(
ξ1ξ

�
1 − ξ2ξ

�
2

)

+
(√

β2 + 1 − 1

) (
ξ1ξ

�
1 + ξ2ξ

�
2

)
, (10)

with β = 2−1
(
ρ−1
1 − ρ1

)

Lemma 2 follows directly from substituting (10) and μ =
κμ̃, with κ ≥ 0 and μ̃ ∈ S

2, into (8). Note that β = 0 in (10)
implies isotropy.

Paine et al. (2017) chose to parametrise V−1 via

ξ̃ξξ1 ≡ ξ̃ξξ1(μμμ) =
(
−μ2

0, μ1μ2, μ1μ3

)�/
(μ0‖μμμ‖) (11)

and

ξ̃ξξ2 ≡ ξ̃ξξ2(μμμ) = (0,−μ3, μ2)
�/

μ0, (12)

where μ0 = (μ2
2 + μ2

3)
1/2 > 0. Hence, ξ̃1 and ξ̃2 are unit

vectors which are orthogonal to each other and to the mean
direction μ̃ = μ/‖μ‖. Each is a function of μ and related to
ξ1 and ξ2 via a rotation

(ξ1 ξ2) = (ξ̃1 ξ̃2)R(ψ), (13)

where

R(ψ) =
(
cosψ − sinψ

sinψ cosψ

)
. (14)

Substituting (13) into (9), and using the fact that ξ1ξ
�
1 +

ξ2ξ
�
2 + μ̃μ̃� = I, where I is the identity matrix, leads to

V−1 = I + γ1

(
ξ̃ξξ1ξ̃ξξ

�
1 − ξ̃ξξ2ξ̃ξξ

�
2

)
+ γ2

(
ξ̃ξξ1ξ̃ξξ

�
2 + ξ̃ξξ2ξ̃ξξ

�
1

)

+
{
(γ 2

1 + γ 2
2 + 1)1/2 − 1

} (
ξ̃ξξ1ξ̃ξξ

�
1 + ξ̃ξξ2ξ̃ξξ

�
2

)
, (15)

where
(

γ1
γ2

)
= 2−1

(
ρ−1
1 − ρ1

) (
cos 2ψ
sin 2ψ

)
;

See Lemma 1 in Paine et al. (2017). The (μ, γ ) parametri-
sation of the density, fESAG(y|μ, γ ), is hence given by (8),
with V = V(μ, γ ) defined by (15). An advantage of this
parametrisation is that γ1 and γ2 are unconstrained, which

is helpful for regression modelling. The isotropic subfamily,
IAG, is the special case with γγγ = (0, 0)�.

2.3 Practical differences between Kent and ESAG
distributions

Both the Kent and ESAG distributions have similar char-
acteristics from a modelling perspective: each typically has
ellipse-like contours of constant probability density centred
on the mean direction in the unimodal case and for different
parameter values each has unimodal and bimodal cases. On
practical grounds, the two distributions have different advan-
tages and disadvantages. The Kent distribution belongs to
the exponential family, and hence, its density, (5), has a sim-
ple mathematical form. In comparison, the ESAG density,
(8), is rather cumbersome. On the other hand, the ESAG
density and likelihood can be computed exactly, whereas the
Kent density and likelihood involves a normalising constant,
C(κ, β) in (5), which is not known in closed form and hence
needs to be approximated, by truncating an infinite series
(Kent 1982), or else by saddlepoint or holonomic gradient
methods (Kume and Sei 2017; Kume et al. 2013). In the
present context, we maximise the likelihood for the regres-
sion models numerically, so the ESAG likelihood having a
cumbersome form is no drawback, and the fact that it can be
computed exactly is an advantage. For simulation, the Kent
distribution requires a rejection algorithm (Kent et al. 2018),
whereas ESAGcan be simulated quickly and easily. Fast sim-
ulation is especially helpful in simulation-heavy inference
procedures, e.g. the parametric bootstrap.

3 Regressionmodel structures

In this section, we specify the two model structures in (3)
and (4) and then discuss the advantages and disadvantages of
each. It is assumed throughout the paper that the first element
of xi is 1, which is analogous to the inclusion in linear mod-
elling of an “intercept term”. For Structure 2 models, see (4),
this means that the simpler model of {yi } being IID, i.e. not
depending on the covariates, is nested in the general regres-
sion model and this is helpful for testing the significance of
regression. The motivation for including the intercept term is
less clear-cut a priori for Structure 1 models, see (3), though
empirical results, for example in Table 2 later, suggest there
is sometimes a benefit from doing so.

Each model structure is defined in terms of a prelimi-
nary orthogonal transformation, Q. For Structure 1 models,
Q is assumed to be a population quantity, defined explicitly
in the “Appendix”, and estimated by a sample version Q̂.
For Structure 2 models, Q is treated as a tuning parameter
and optimisedwith respect to. These preliminary transforma-
tions are needed so that desirable invariance and equivariance
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properties, discussed in the “Appendix”, hold when an arbi-
trary orthogonal transformation is applied to the yi .

3.1 Structure 1: Q�yi ∼ H(�, ˇ, 0(xi))

In this structure, Q is a population quantity, as defined in
the “Appendix”, and in all calculations involving data it is
replaced by a sample version Q̂ = [ξ̂ξξ ξ̂ξξ1 ξ̂ξξ2] with ξ̂ξξ =∑n

i=1 yi/||
∑n

i=1 yi || and ξ̂ξξ1 and ξ̂ξξ2 unit eigenvectors cor-
responding to the larger and smaller positive eigenvalues of

(
I3 − ξ̂ξξξ̂ξξ

�) n∑

i=1

yiy�
i

(
I3 − ξ̂ξξξ̂ξξ

�)
.

Here, Q̂ is themoment estimator defined inKent (1982, p. 74)
of� in defined inKent (1982, p. 74) (5) under the assumption
of IID yi .

We consider for �(xi ) viewed as a function of xi :

�(xi ) = R(xi )diag[1,S(xi )], i = 1, . . . , n, (16)

where the R(xi ) are orthogonal 3-by-3 matrices, the S(xi )
are orthogonal 2-by-2 matrices, diag[., .] is a 3-by-3 block
diagonal matrix with 1× 1 and 2× 2 blocks, and xi is q × 1.

The dependence of R(xi ) and S(xi ) on the covariate vec-
tor xi needs to be prescribed. We choose to do so using the
Cayley transform: for any skew-symmetric matrix A, i.e.
A = −A�, the matrix (I − A)(I + A)−1 is a 3-by-3 rota-
tion matrix (i.e. an orthogonal matrix with determinant +1).
The Cayley transform maps the skew-symmetric matrices
onto the set of rotations minus a set of lower dimension (see
the “Appendix”). This is an injective mapping, which is the
reason we favour it over, e.g., the exponential of A. Define

R(xi ) = (I − AR,i )(I + AR,i )
−1, and

S(xi ) = (I − AS,i )(I + AS,i )
−1 (17)

where

AR,i =
⎛

⎝
0 β�

1 xi β�
2 xi

−β�
1 xi 0 β�

3 xi
−β�

2 xi −β�
3 xi 0

⎞

⎠ , and

AS,i =
(

0 β�
4 xi

−β�
4 xi 0

)
, (18)

are skew-symmetric. Here, R(·) and S(·), and hence �(·),
are playing a role analogous to link functions in generalised
linear models, linking linear predictors to the parameters of
the distributionof the response variable. Thenature of the link
functions means that interpreting the influence of individual
β j s is somewhat harder for this model than for Structure 2
models described below. This model is fitted by maximising
the likelihood function of observed data with respect to the
4-by-q parameter matrix B = (

β1,β2,β3,β4
)�.

3.2 Structure 2: Q�yi ∼ H(�(xi), �(xi))

In this parametrisation, μ ∈ R
3 and γ ∈ R

2 are unrestricted,
andμ(xi ) and γ (xi ) are easy to specify as functions mapping
from the q-dimensional domain of the {xi } to R

3 and R
2,

respectively. Here, we limit attention to linear functions,

μ(xi ) =
⎛

⎝
β�
1 xi

β�
2 xi

β�
3 xi

⎞

⎠ = B1xi , and

γ (xi ) =
(

β�
4 xi

β�
5 xi

)
= B2xi , (19)

where B1 = (β1,β2,β3)
� and B2 = (β4,β5)

�. In keeping
with the notation of the preceding model, we collect these

parameters together into a 5-by-q matrix B = (
B�
1 ,B�

2

)�
,

where the influence of the subsets of parameters can be
clearly distinguished:B1 controls the influence of the covari-
ates, via μ, on the concentration and mean direction; and B2

controls influence, via γ , on the degree and orientation of
anisotropy. This leads to natural tests, e.g. for anisotropy,
discussed below.

Unlike in Structure 1, in which model (16) is naturally
tied to the particularly defined Q, for Structure 2 and model
(19) there is no a priori reason to select a particular Q ∈
O(3); hence, we treat Q as a tuning parameter, seeking to
maximise the likelihood of the data

{
Q�yi

}
over {Q,B}. A

practical way to do so at least approximately is via a brute-
force search for Q over O(3), for each value of Q on a grid
over O(3) computing the maximum likelihood estimator B̂

of B, then selecting the pair
{
Q, B̂

}
corresponding to the

largest maximised likelihood. In this paper, when comparing
models for a particular data set, we compute Q for the most
general ESAG2 model and keep this Q fixed for submodels
and Kent2 models.

Model (19) with ESAG errors,

yi ∼ ESAG(B1xi ,B2xi ), (20)

is close in spirit to the circular p = 2 regression models
of Presnell et al. (1998) and Wang and Gelfand (2013), par-
ticularly in the isotropic special case, with B2 = 0, in which
this model is a direct analogue for p = 3 of Presnell et al.’s
regression model on the circle.

A helpful property proved by Presnell et al. in the circular
case is that the log-likelihood function is a concave func-
tion of the regression parameters—in our notation B1—that
determine μ; this guarantees that the MLE of B1 is unique
and easily determined by numerical optimisation. The cor-
responding result holds for ESAG2 (20) in the p = 3 case
with isotropic errors, i.e. B2 = 0, as follows [in which vec
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is the standard vectorisation operator; see e.g. Mardia et al.
(1979)].

Proposition 1 Consider model (20), let B2 = 0, and let
l(B1) denote the log of the likelihood function for param-
eter B1 given observations (x1, y1), . . . , (xn, yn). Provided
(x1, . . . , xn)� has full rank, the negative Hessian

− ∂2l(B1)

∂ vecB1∂ vecB�
1

is positive definite, hence l(B1) is a concave function of B1,
and the MLE of B1 is unique.

The proof of this Proposition is given in the “Appendix”.

3.3 Tests for the significance of anisotropy and
regression

In this section, we discuss procedures for performing hypoth-
esis tests required for model selection and inference. To
do so, we introduce the notation for the parameters B =(
β(1),β(2), . . . ,β(q)

)
, i.e. such that β( j) is the j th column

of B and corresponds to the covariate appearing as the j th
element of xi . A test of the significance of this particu-
lar covariate corresponds to a test with null and alternative
hypotheses

H0:β( j) = 0 versus H1:β( j) free.

Since the null hypothesis is nested in the alternative then by
Wilks’ theorem, subject to the usual regularity conditions,
under H0,

T = −2 log (L0/L1) ∼ χ2
ν , (21)

asymptotically as n → ∞, where L0 and L1 are the max-
imised likelihood functions under H0 and H1, respectively;
and ν is the difference in the number of free parameters
between H0 and H1, here equal to 4 or 5 for the Structure
1 and 2 models, respectively. The significance of the param-
eter can be assessed by referring the observed test statistic,
T , to the χ2

ν distribution. An alternative possibility, prefer-
able when n is insufficiently large for the null asymptotic
distribution (21) to be reasonable, is to approximate the null
distribution using a bootstrap procedure.

Within Structure 2 models, it may be relevant to consider
whether particular covariates are significant in μ or γ dis-
tinctly. For example, for the covariate corresponding to the
j th element of xi , a test that the covariate is significant in γ

corresponds to the hypotheses

H0:(β( j))4 = (β( j))5 = 0 versus

H1:(β( j))4, (β( j))5 free, (22)

for which the degrees of freedom in (21) is ν = 2. Having
isotropic errors corresponds to γ = 0, so for a test of the
significance of anisotropy the hypotheses are H0:B2 = 0
versusH1:B2 free,whereB2 is as defined in (19), and ν = 2q.

4 Residuals for model diagnostics

For spherical regression models, there are many possible
ways to define a residual. Here, we describe some general
spherical residuals defined by Jupp (1988) before defining
some particular model-based residuals for regression mod-
els with ESAG and Kent errors.

For observations y1, . . . , yn denote the fitted values by
ŷ1, . . . , ŷn . Jupp defined “crude residuals” as

ri =
(
I − ŷi ŷ�

i

)
yi ,

i.e. as projections of each observation, yi , into the tangent
plane at its fitted value, ŷi . Since the r1, . . . , rn lie in different
tangent planes, Jupp defined the “rotated residuals”

si = R(ŷi , y0)ri , (23)

where y0 is an arbitrary point on the sphere which is not
dependent on i , and R(ŷi , y0) is a rotation from ŷi to y0,
where R(·, ·) does not depend on i . Then, the s1, . . . , sn lie
in the plane tangent to the sphere at y0. Let ζ 1, ζ 2 be an
arbitrary pair of unit vectors orthogonal to each other and to
y0, then a plot of the projected residuals

ti =
(

ζ�
1

ζ�
2

)
si , (24)

can be inspected to identify structure amongst residuals that
could indicate a shortcoming of the model.

For parametric regression models with ESAG or Kent
errors, Jupp’s residuals are potentially limited in that they
are not model-based and hence do not take into account the
dispersion of errors in the fitted model, i.e. (23) is a function
of the fitted value ŷi but not of the parameters that determine
dispersion.

We define model-based residuals for ESAG and Kent
error models as follows, in each case motivated by high-
concentration Gaussian limits of each distribution, although
we expect the residuals to be useful for detectingmodel inad-
equacy even in non high-concentration settings. For a random
variable y ∼ ESAG(μ, γ ) consider the corresponding ran-
dom variable

ηESAG(y;μ, γ ) =
(

η1
η2

)
= ‖μ‖

(
ρ

−1/2
1 ξ�

1

ρ
1/2
1 ξ�

2

)

y,
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Fig. 1 Data and residuals for the model described in Sect. 5.1: a A
data set with n = 41 plotted on the sphere; points with indices i =
1, 11, 21, 31, 41 are marked in red with corresponding 90%-coverage
contours of ESAG(μi , γ i ), shown in red for the true parameters and

black for the fitted. b the same data projected into the tangent plane
at the sample mean, and c η-residuals (25) for the fitted model. d, e,
respectively, show η-residuals and Jupp residuals (24) for a larger data
set of n = 401 data points from the same model

where ρ1, ξ1, ξ2 are as defined in (9). From Proposition 2
in Paine et al. (2017), provided ‖μ‖ is large then, approxi-
mately, ηESAG ∼ N2(0, I). Hence for regressionmodels with
ESAG errors, we define residuals

ηi = ηESAG(yi ; μ̂i , γ̂ i ) for i = 1, . . . , n, (25)

where μ̂i = B̂1xi and γ̂ i = B̂2xi . Then, a scatterplot of
η̂1, . . . , η̂n can be compared with random N2(0, I) scatter;
see Fig. 1 for examples.

Similarly, for a random variable y ∼ Kent(κ, β,�) then

ηKent(y; κ, β,�) = √
κ

(
β−1/2ξ�

1
β1/2ξ�

2

)
y ∼ N2(0, I),

approximately, for large κ; see property (e) in Kent (1982).
For models with Kent errors, writing �̂i = �̂(xi ), we hence
define the residuals

ηi = ηKent(y; κ̂, β̂, �̂i ).

5 Applications

Here, we consider three applications, in each investigating
the spherical regression models towards different statistical
goals.

The first involves a simulated data set with a scalar covari-
ate, t ∈ R.We exploit having a simple data-generatingmodel
to illustrate the flexibility within this regression framework
for themean direction and dispersion to depend on the covari-
ate; to investigate the performance of hypothesis tests in
detecting anisotropy and regression; and to compare Jupp
and η-residuals in the special setting where the model being
fitted is the true one.

The second data set concerns the movement of clouds
between two consecutive days. The cloud shapes are repre-

123



Statistics and Computing

Table 1 Results from fitting
various models to the synthetic
data, which were generated
from model M1 with H taken to
be ESAG, n = 41, and using
parameters described in
Sect. 5.1

Model Model for yi Log-lik. ESAG Log-lik. Kent (d.f.)

Structure 2

M1 H(B1xi ,B2xi ) 91.7 81.5 (10)

M2 H(B1xi , γ ) 63.5 62.3 (8)

M3 H(B1xi , 0) Isotropic errors 28.5 28.0 (6)

M4 H(μ, γ ) IID observations 9.6 10.2 (5)

Structure 1

M5 H(κ, β,�(xi )) 89.7 88.9 (10)

M6 H(κ, β,�(xi )), β4 = 0 88.6 87.6 (8)

M7 H(κ, 0,�(xi )) Isotropic errors 29.2 28.9 (7)

M8 H(κ, β,�) IID observations 2.5 2.8 (2)

sented by landmarks spaced around the cloud outline, and the
position of these landmarks is regressed on their positions the
previous day. This data set has been considered previously
in the context of spherical–spherical regression models with
isotropic errors (Rosenthal et al. 2014); hence, it makes for
an interesting comparison with the more general framework
developed in this paper.

The third data set is derived from vectorcardiogram mea-
surement of heart activity in children. These data too have
been studied in the context of spherical–spherical isotropic
regression (Chang 1986), but with the non-spherical covari-
ates disregarded. The primary goal is inference, to understand
which covariates are significantly related to the response.
The framework of the present paper enables us to incorpo-
rate easily the additional non-spherical covariates, as well
as anisotropic errors, and furthermore then to test formally
whether such generalisations are warranted by the data.

5.1 Simulated data set (involving a scalar covariate)

Denote by M1 the ESAG2 regression model with μi =
(1 − ti )μ(0) + tiμ(1), γ i = (1 − ti )γ (0) + tiγ (1), and
ti = (i − 1)/(n − 1) for i = 1, . . . , n. In the notation of
(20), B1 = (

μ(0),μ(1) − μ(0)
)
, B2 = (

γ (0), γ (1) − γ (0)
)
,

and xi = (1, ti )�. Figure 1a–c is plot for a synthetic data
set generated from M1 using μ(0) = (5, 10, 2)�, μ(1) =
(−5, 10, 2)�, γ (0) = (2, 3)�, γ (1) = (−2, 5)�, and n = 41.
As a visual aid, plot markers corresponding to the subset
of points with indices i = 1, 11, 21, 31, 41 are coloured
red. Figure 1a shows the data, together with contours of
constant probability density with 90% coverage for the true
and fitted parameters, for the covariates corresponding to
the red-marked points. The data-generating parameters are
deliberately chosen here to produce highly anisotropic dis-
persion, as can be seen from the highly eccentric contours.
These contours are well matched by corresponding contours
of the fitted model, indicating that the parameters have been
estimatedwell. Figure 1b shows the same data projected onto

the tangent plane at the sample mean, with the index used as
the pointmarker so that the ordering of the points can be seen.
Figure 1c is a plot of η-residuals, which seem consistent with
IID bivariate normal scatter, indicating that the model is rea-
sonable. This is expected since the data-generating model
is a special case of the model being fitted. Exploring resid-
uals further, Fig. 1d shows residuals analogous to those in
c but this time for a larger sample size of n = 401, with
the corresponding Jupp projecting residuals (24) shown in
e. The Jupp residuals appear non-Gaussian and anisotropic,
even though the fitted model is appropriate to the data, mak-
ing these residuals harder in general to interpret for model
diagnostics.

We can use the inference procedures described in Sect. 3.3
to test for significance of anisotropy and regression. Table 1
shows the maximised log-likelihood for the true model, M1,
and some different models involving various combinations
of the two model structures and two error distributions.
Using Wilks’ statistic and the null asymptotic χ2 approxi-
mation (21) to compare M1 with each of models M2, M3,
M4 with errors assumed to be ESAG results in p values
< 10−5 in each case, indicating very strong evidence to
favour the data-generating model over the simpler alterna-
tives, which include the isotropic (M3) and IID (M4) models.
When Kent errors are assumed for the fitted model, i.e. in
contrast to the ESAG errors used in generating the data, the
statistical conclusions (and even to some extent the numeri-
cal values of the maximised log-likelihoods) are very robust
to this misspecification. This is probably a consequence of
how similar the ESAG and Kent densities are in practise,
especially if the concentration is reasonably high. The table
also shows the results of fitting Structure 2 models M5–M8

to the Structure 1-generated data. Here, model M5 is not
favoured strongly over M6, in contrast to how M1 is strongly
favoured over M2. The explanation is that models M2 and
M6 are only loosely analogous as submodels of M1 and
M5, respectively. A major difference is that M2 cannot cap-
ture the way the orientation of the anisotropy substantially
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Fig. 2 aThe cloud formation data described in Sect. 5.2. The red points
are landmarks on the outline of the cloud on a particular day, and the yel-
low points connected by blue lines are the corresponding landmarks on
the following day. In the regression, we treat the red points as covariates
and the yellow points as the response. b η-residuals (25) for the fitted

ESAG2 model; the residuals are numbered clockwise starting from the
point indicated in a. The table in c results from fitting various models to
the cloud data. For the PLT model, A ∈ SL(3), and the covariate vec-
tor is ui ∈ S2, without an “intercept” element included. (Color figure
online)

depends on the covariate, because γ does not depend on the
covariate, whereas M6 can still do so via R(xi ) even when
S(xi ) is fixed to be the identity matrix. The conclusion to
reject isotropy (M7) and the assumption of IID data (M8)
in favour of M5 are both robust to the model misspecifica-
tion.

5.2 Cloud formation data (involving a spherical
covariate)

These data involve 29 landmarks spaced around the outline
of a cloud to represent its shape on each of two consec-
utive days, 4th and 5th Sept 2012. The data, see Fig. 2,
are from NASA’s Visible Earth project [with original cloud
images fromXPlanet (2018)] andwere used as an application
by Rosenthal et al. (2014) in assessing accuracy of their PLT
model, albeit with a focus on prediction rather than inference.
The goal is to regress the landmarks {yi }29i=1 for the second
day on those {ui }29i=1 of the first. We hence define a covariate

vector, including “intercept”, as xi = (
1, u�

i

)�
.

The models we fitted to these data and the corresponding
values of the maximised log-likelihood, are shown in Fig. 2c.
The maximised log-likelihood values show that each of the
models with anisotropic errors is very strongly favoured over
its isotropic counterpart. The non-nestedness of the mod-
els otherwise makes them hard to select between formally.
Model ESAG2 has substantially the largest log-likelihood
value, although recall that the transformation Q used for the
Structure 2 models is chosen specifically to maximise the
ESAG2 log-likelihood.

The residuals of the fittedESAG2model, shown in Fig. 2b,
show a small amount of serial correlation (points 21–27), but
otherwise little to suggest the model is poorly fitting.

5.3 Vectorcardiogram data (involving amixed-type
covariate)

This data set was considered by Chang (1986) in the context
of his spherical–spherical regression models. Here, our more
general model enables incorporation of other covariates, and
of anisotropic errors.

The data themselves are derived from vectorcardiogram
measurements of the electrical activity of the heart of chil-
dren of different ages and genders. The vectorcardiogram
involves three leads being connected to the torso produce
a time-dependent vector that traces approximately closed
curves, each representing a heartbeat cycle, in R

3. Some-
times used as a summary for clinical diagnosis is a unit vector
defined as the directional component of the vector at a partic-
ular extremum across the cycles. The data comprise such unit
vectors derived from data for two different lead placement
systems, the Frank system (yi ∈ S

2) and for the McFee sys-
tem (ui ∈ S

2), for each of 98 children of different ages and
gender. Age is represented by a binary variable Ai ∈ {0, 1} (0
meaning aged 2–10 years, and 1 meaning aged 11–18 years)
and gender by a variable Gi ∈ {0, 1} (0 for a boy, and 1
for a girl). We aim to regress yi on the other variables, and

hence take the covariate to be xi = (
1, u�

i , Ai , Gi
)�

, for
i = 1, . . . , 98.

To identify themeaning of the parameters in the parameter
matrix B, we write it in the block structure

B =
(
βββ0
1 Bu

1 βββ A
1 βββG

1
βββ0
2 Bu

2 βββ A
2 βββG

2

)
, (26)

where βββ0
1, βββ

A
1 and βββG

1 are 3× 1 and Bu
1 is 3× 3; and βββ0

2, βββ
A
2

and βββG
2 are s × 1 and Bu

2 is s × 3, where s = 1 for Structure
1 models and s = 2 for Structure 2 models. Setting any of
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Table 2 Results for Structure 1 models and submodels fitted to the vectorcardiogram data shown in Fig. 3, and described in Sect. 5.3

Model AR params set to zero AS params set to zero Log-lik. ESAG1 Log-lik Kent1 (d.f.)

M1 − − 32.12 27.46 (26)

M2 − βG
2 31.79 27.45 (25)

M3 − β A
2 31.22 26.70 (25)

M4 − βG
2 , β A

2 28.78 25.34 (24)

M5 βββG
1 βG

2 31.79 27.45 (22)

M6 βββ A
1 β A

2 31.20 26.70 (22)

M7 βββG
1 ,βββ A

1 βG
2 , β A

2 28.78 25.34 (18)

M8 − Bu
2 , β

G
2 , β A

2 30.81 26.26 (21)

M9 βββG
1 ” 30.80 26.24 (18)

M10 βββ A
1 ” 30.06 25.47 (18)

M11 βββG
1 ,βββ A

1 ” 28.03 24.18 (15)

M12 − β0
2 ,Bu

2 , β
G
2 , β A

2 30.79 26.12 (20)

M13 βββG
1 ” 28.68 24.87 (17)

M14 βββ A
1 ” 29.95 25.15 (17)

M15 βββG
1 ,βββ A

1 ” 28.00 23.94 (14)

M16 − β = 0 (isotropic errors) 10.26 4.11 (18)

Table 3 Results for Structure 2 models and submodels fitted to the vectorcardiogram data

Model μ params set to zero γ params set to zero Log-lik. ESAG2 Log-lik Kent2 (d.f.)

M1 − − 54.88 50.54 (30)

M2 − βββG
2 50.04 47.65 (28)

M3 − βββ A
2 54.56 50.43 (28)

M4 − βββG
2 ,βββ A

2 49.80 47.58 (26)

M5 βββG
1 βββG

2 46.78 45.35 (25)

M6 βββ A
1 βββ A

2 48.23 42.81 (25)

M7 βββG
1 ,βββ A

1 βββG
2 ,βββ A

2 43.23 38.93 (20)

M8 − Bu
2 ,βββ

G
2 ,βββ A

2 (γ = const) 33.64 28.77 (20)

M9 βββG
1 ” 30.94 25.96 (17)

M10 βββ A
1 ” 29.38 22.99 (17)

M11 βββG
1 ,βββ A

1 ” 26.16 19.87 (14)

M12 − βββ0
2,B

u
2 ,βββ

G
2 ,βββ A

2 (isotropic error) 25.18 15.38 (18)

M13 βββG
1 ” 20.48 10.66 (15)

M14 βββ A
1 ” 21.06 12.56 (15)

M15 βββG
1 ,βββ A

1 ” 16.60 7.85 (12)

these blocks equal to zero amounts to removing the influence
of a particular covariate on particular parameters in the error
model. For example, in Structure 2 models, setting βββ A

1 = 0
means that the covariate Ai does not influence μ.

Tables 2 and 3, respectively, show the results of fitting
Structure 1 and 2 models, and several submodels, to the
vectorcardiogram data. Within each table, each of the sub-
models is nested within M1, and some of the submodels are
further nestedwithin each other. Pairwise comparisons of rel-
evant nested models using likelihood ratio tests described in

Sect. 3.3 at 5% level suggest that for both ESAG1 and Kent1
the preferred model is M15. This suggests that Structure 1
is poor for characterising how the response depends on the
covariates for this application, to the extent that there is little
benefit to retaining the covariates in the model. In contrast,
for both ESAG2 and Kent2 the preferred model is M3, which
retains all of the covariates.

Figure 3b shows η-residuals for ESAG2 models M3 and
M15. For M3, which is the preferred model, the residuals are
reasonably consistent with N2(0, I) scatter. For M15, which
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Fig. 3 a The vectorcardiogram data described in Sect. 5.3. Red and
yellow markers, respectively, indicate covariates, {ui }, and responses,
{yi }, and the blue lines indicate the pairings. b The η-residuals for fit-
ted ESAG2 models M3 (the preferred model) and M15 (the model in

which age and gender covariates are ignored and errors are assumed
isotropic). Red point markers denote girls and blue denotes boys; dia-
monds denote the 2–10 age group and crosses denote the 11–19 age
group. (Color figure online)

assumes isotropic errors and neglects the age and gender
covariates, the scatter appears less isotropic, and there are
slight differences in the scatter according to age and gender,
consistent with there being residual variation due to these
factors not being incorporated in the model.

6 Conclusions

The regression models we have introduced are rather more
general than existing regression models in the literature,
allowing covariates with general structure, and errors that
are nonisotropic.Wehave also introduced novelmodel-based
residuals that enable simple visual diagnostics to check fitted
models, to identify for example any residual structure depen-
dent on a covariate, any serial correlation or any outliers, and
to explore adequacy of the error models.

For the anisotropic error model, there is little to choose
on statistical grounds between using Kent or ESAG, though
we have found occasions for models based on the Kent that
the likelihood function is harder to maximise numerically
(perhaps owing to roughness in the likelihood approxima-
tion arising from approximating the normalising constant).

Models based on ESAG are free from this issue, and the
computation of the ESAG likelihood is much faster. Of the
two model structures we considered, models with Structure
2 tended to perform better; such models are also simpler
and enable the influence of particular covariates to be related
more directly to the response variable. On the foregoing
grounds, ESAG2 models are our preferred ones.

The likelihood framework in which we have developed
the models makes it very easy to use classical methods to
compare nested models of different complexity, in particu-
lar to test hypotheses about significance of regression or the
anisotropyof errors. Indeed, applying such tests for the exam-
ples considered provides strong support that the regression
modelling generalisations we have developed are warranted.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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Appendix

Preliminary transformation in Sect. 3. In this section, we
define the orthogonal matrix Q = [ξξξ, ξξξ1, ξξξ2] in (3). In the
“correlation” approach to regression,whereweview the pairs
(yi , xi ) as being independent and identically distributed, we
define FX(.) to be the marginal distribution of the xi ; and
in the “conditional” approach to regression, where only the
conditional distributions of yi given xi are specified, define
FX(.) = n−1 ∑n

i=1 δxi (.), where δx(A) = 1 if x ∈ A and
δx(A) = 0 otherwise, with A ⊆ R

p. Then, we define

ξξξ =
∫

x∈Rp
g(x)dFX(x)

/∣∣∣∣

∣∣∣∣

∫

x∈Rp
g(x)dFX(x)

∣∣∣∣

∣∣∣∣, (27)

where g(x) = E[y|x] denotes conditional expectation under
the population model, and ξξξ1 and ξξξ2 are unit eigenvectors
corresponding to the larger and smaller positive eigenvalues
of

(
I3 − ξξξξξξ�) ∫

x∈Rp
g(x)g(x)�dFX(x)

(
I3 − ξξξξξξ�)

. (28)

A key point to note is that, when we apply an orthogonal
transformation y → Uy to y, then Q → UQ and

Q�y → (UQ)� Uy = Q�U�Uy = Q�y,

so that structures (3) and (4) are invariant with respect to
orthogonal transformations of the yi .

When fitting models with structures (3) and (4) we esti-
mate Q using its sample analogue defined in Sect. 3.1.
Providing the yi have absolutely continuous distributions and
the sample size n is at least 3, Q̂ is well defined with proba-
bility 1 even if the population version Q is not well defined,
i.e. even if the denominator of (27) is 0 and/or the positive
eigenvalues of (28) are equal. If Q is well defined then Q̂
estimates Q consistently.

Finally,we considerwhat happens ifwe startwith the orig-
inal coordinate system for the yi , in which case the models
concerned are equivariant rather than invariantwith respect to
orthogonal transformations of the yi . In the case of Structure
1 in (3), the orthogonal matrices ���(xi ) transform according
to���(xi ) → Q���(xi ), i = 1, . . . , n, with κ and β unchanged.

For Structure 2, in whichQ ∈ O(3) is considered a tuning
parameter and optimised with respect to, theμμμ(xi ) andγγγ (xi )
are invariant to orthogonal transformations of the yi .

The range of the Cayley transform. Write

A =
⎛

⎝
0 a b

−a 0 c
−b −c 0

⎞

⎠ .

Then, elementary calculations show that

(I3 − A)(I3 + A)−1 = 1

1 + a2 + b2 + c2
B (29)

where B = (Bjk)
3
j,k=1, with B11 = 1 + c2 − a2 − b2,

B22 = 1 + b2 − a2 − c2, B33 = 1 + a2 − b2 − c2,

B12 = 2(a − bc), B13 = 2(ac + b), B21 = −2(a + bc),

B23 = 2(c − ab), B31 = 2(ac − b), B32 = −2(ab + c).

To identify the set of rotations not in the range of the Cayley
map, we need to consider all limits as subsets of a, b and c
go to±∞. In the most general case, if a → λa, b → λb and
c → λc, then as λ → ∞ and assuming not all of a, b and c
are 0, the matrix in (29) converges to

1

a2 + b2 + c2

⎛

⎝
c2 − a2 − b2 −2bc 2ac

−2bc b2 − a2 − c2 −2ab
2ac −2ab a2 − b2 − c2

⎞

⎠ .

The trace of this matrix is equal to −1, and in a certain sense
thesematrices are as different from the identitymatrix (which
has trace +3) as it is possible for a 3-by-3 rotation matrix to
be. Moreover, this family can be parametrised by τ1 = a/R,
τ2 = b/R and τ3 = c/R where R = √

a2 + b2 + c2 and,
since τ 21 +τ 22 +τ 23 = 1, it follows that this set is 2-dimensional
rather than 3-dimensional, and so has measure 0 with respect
to Haar (or geometric) measure on the space of rotations.
A similar result holds for the Cayley transform in higher
dimensions. That the Cayley transform is not a surjection
seems to be of no practical or computational significance in
the present setting, however.
Proof of Lemma 1 Start with the Kent density function as
given in (5). In this parametrisation, we already have the
mean vector μμμ as an unconstrained vector of parameters.
Now, to allow the axes of symmetry, ξξξ1 and ξξξ2, to be an
arbitrary rotation of ξ̃ξξ1 and ξ̃ξξ2 as defined in (12) write the
matrix ξξξ1ξξξ

�
1 − ξξξ2ξξξ

�
2 as follows:

ξξξ1ξξξ
�
1 − ξξξ2ξξξ

�
2

=
(
cosψξ̃ξξ1 + sinψξ̃ξξ2

) (
cosψξ̃ξξ1 + sinψξ̃ξξ2

)�

−
(
− sinψξ̃ξξ1 + cosψξ̃ξξ2

) (
− sinψξ̃ξξ1 + cosψξ̃ξξ2

)�

= ξ̃ξξ1ξ̃ξξ
�
1

(
cos2 ψ − sin2 ψ

)
+ ξ̃ξξ2ξ̃ξξ

�
2

(
sin2 ψ − cos2 ψ

)

+ ξ̃ξξ2ξ̃ξξ
�
1 (sinψ cosψ + cosψ sinψ)

+ ξ̃ξξ2ξ̃ξξ
�
1 (cosψ sinψ + sinψ cosψ)

=
(
ξ̃ξξ1ξ̃ξξ

�
1 − ξ̃ξξ2ξ̃ξξ

�
2

) (
cos2 ψ − sin2 ψ

)

+
(
ξ̃ξξ1ξ̃ξξ

�
2 + ξ̃ξξ2ξ̃ξξ

�
1

)
2 cosψ sinψ
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= cos(2ψ)
(
ξ̃ξξ1ξ̃ξξ

�
1 − ξ̃ξξ2ξ̃ξξ

�
2

)
+ sin(2ψ)

(
ξ̃ξξ1ξ̃ξξ

�
2 + ξ̃ξξ2ξ̃ξξ

�
1

)
.

As in the parametrisation of the ESAG distribution, we
want the unknown parameters to be unconstrained, therefore
define parameters γ = (γ1, γ2)

�

γ1 = β cos(2ψ), γ2 = β sin(2ψ).

Proof of Proposition 1 This proof follows a similar course to
the proof in Presnell et al. (1998). The log-likelihood is

l(B1) =
n∑

i=1

−3

2
log(2π) − 1

2
μ�
i μi + ψ(μ�

i yi ),

where μi = B1xi = (xi ⊗ I3)� vecB1 and ⊗ denotes Kro-
necker product, and

ψ(α) = log

(
α + (1 + α2)�(α)

φ(α)

)
. (30)

Then,

− ∂2l(B1)

∂ vecB1 ∂ vecB�
1

=
n∑

i=1

(xi ⊗ I3)
(
I3 − ψ ′′(μ�

i yi )yiy
�
i

)
(xi ⊗ I3)�, (31)

which is positive definite if
(
I3 − ψ ′′(μ�

i yi )yiy
�
i

)
is positive

definite for all i . Since the eigenvalues of the latter matrix are
1, 1, 1−ψ ′′(μ�

i yi ), it is sufficient to show that 1−ψ ′′(α) >

0 for all α. From (30), following some re-arrangement,

1 − ψ ′′(α) = 1

(1 + α2)2�(α)2
(1 − α exp (−ψ(α)))2 h(α),

where

h(α) = −2�(α)(αφ(α) + (1 + α2)�(α))

+4(φ(α) + α�(α))2, (32)

and hence it is sufficient now to show that h(α) > 0 for all α.
For α < 0, using Mills’ ratio �(α) > −αφ(α)(1 + α2)−1,
and substituting for the second instance of�(α) in (32) gives

h(α) > 4 (φ(α) + α�(α))2 > 0.

For 0 ≤ α < 1, h′(α) ≥ 0 since

h′(α) =
(
2 − 2α2

)
φ(α)�(α) − 2αφ(α)2 + 4α�(α)2

> 2α(2�(α)2 − φ(α)2)

and 2�(α)2 − φ(α)2 > 0; since also h(0) > 0 therefore
h(α) > 0. Finally, for α ≥ 1,

h(α) = 6αφ(α)�(α) + 2
(
2φ(α)2 + (α2 − 1)�(α)2

)
> 0.

��
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