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Abstract5

We develop an idealised one dimensional (cross-shore) morphodynamic model that6

couples wave, tide and sediment dynamics to study the effect and evolution of a7

shoreface nourishment. Sediment fluxes driven by wave skewness, wave asymmetry8

(both onshore) and return flow (offshore) are considered. With the aid of new an-9

alytical expressions for the skewness and standard deviation of wave velocity and10

acceleration, sediment fluxes are calculated. Nourishment is viewed as a perturba-11

tion to the system in equilibrium that is subject to the divergence of the perturbed12

sediment flux and a gravity driven diffusion term. Depending on the location, a13

nourishment may provide a feeder or lee effect. In moderate and mild wave con-14

ditions, the evolution of a nourishment primarily depends on the relative location15

of nourishment and break point. Placed well offshore of the break point, the nour-16

ishment induces an overall positive perturbation in sediment flux, resulting in on-17

shore migration (feeder effect). Located closer to the break point, the nourishment18

induces an earlier wave breaking, which dissipates part of the wave energy (lee ef-19

fect), leading to a negative sediment flux perturbation around this break point and20

a positive sediment flux perturbation around the break point of the un-nourished21

beach. Depending on the intensity of the earlier breaking, the nourishment either22

migrates onshore (weak break) or splits into onshore and offshore moving parts23

(strong break). The relative importance of the diffusion term and the divergence of24

perturbed sediment flux may lead to a primarily migrating or decaying evolution of25

nourishment. In storm wave conditions, the nourishment tends to move offshore due26

to the predominance of return flow driven sediment flux. The sensitivity to wave27

period and tide are also studied. Model results are consistent with observations, as28

well as prevailing theory on cross-shore sediment transport.29

Key words: Shoreface nourishment, wave skewness, wave asymmetry, return flow,30

lee effect, feeder effect31
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1 Introduction32

A nourishment placed in the shoreface region is considered as an effective33

treatment against a shore erosion problem (Capobianco et al., 2002). Based34

on the so called ‘lee’ effect (Ojeda et al., 2008), which refers to the ability of35

nourishment to increase wave dissipation, a shoreface nourishment is expected36

to reduce the wave energy approaching the shore, thus providing protection.37

Moreover, the nourishment serves as a source for the onshore movement of38

sediment, which is often described as the ‘feeder’ effect (van Duin et al., 2004).39

Compared with traditional technologies, e.g., offshore breakwater, such ‘soft’40

engineering is considered more environmentally friendly and incurs less cost41

(Hamm et al., 2002). A thorough understanding of the subsequent evolution42

of a nourishment can aid design of the nourishment project so as to achieve43

the maximum effect. Therefore, it is important to understand the underlying44

physics involved in the nourishment evolution.45

A common way to study the evolution of a nourishment is using complex46

numerical models which couple wave, tide and sediment dynamics (van Duin47

et al., 2004; Roelvink and Reniers, 2011; Samaras et al., 2016). The placement48

of the nourishment changes the topography and thus affects the hydrodynam-49

ics which in turn drives the evolution of the nourishment. This method aims at50

accurate simulation of the actual topography, and thus is useful for practical51

purposes. However, the evolution of the nourishment is embedded in the evo-52

lution of the whole coastal area, which makes it difficult to isolate the role of53

various physics in the evolution of the nourishment alone. Furthermore, run-54

ning a complex numerical model is very time consuming, and can thus limit55

the use of such models.56

Alternatively, van Leeuwen et al. (2007) in an approach also used by van57

Veelen et al. (2018) considered a shoreface nourishment as a perturbation.58

The linear evolution of a nourishment is then studied using a linear stability59

model. A longer nourishment (in a longshore sense) is found to decay more60

slowly than a short one, and shows a shoreward movement during its decay.61

However, only decaying behavior of the nourishment is considered. Larson and62

Hanson (2015) also considered a nourishment as a perturbation on a sea bed63

initially in equilibrium, in which the onshore sediment transport, driven by64

wave asymmetry, and down-slope transport driven by gravity are in balance.65

The introduction of the nourishment is assumed to perturb the down-slope66

transport only. Larson and Hanson (2015) then use a diffusion equation to67

describe the response of the nourishment. The model provides the information68

on how quickly a nourishment disperses, but the on- or off-shore movement of69

the nourishment is not captured.70

The placement of a nourishment also changes other on- and off-shore sediment71
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processes, such as the sediment flux driven by wave skewness, wave asymmetry,72

and the return flow. As a wave shoals, the wave shape changes from sinusoidal73

to an increasingly skewed shape, with a narrow accentuated crest followed by74

a broad flat trough. Assuming no phase shift as the free stream wave velocity75

is translated into a near bed velocity, the sediment flux, which is proportional76

to the cubic or higher order of near bed velocity under this wave shape, then77

shows a net onshore value in a wave averaged sense (Roelvink and Reniers ,78

2011). After breaking, the wave shape progressively changes to a highly asym-79

metrical shape, i.e., a pitched-forward shape with a steep front face (Hoefel and80

Elgar , 2003). Henderson et al. (2004) suggested that the phase shift between81

near bed velocity and free stream velocity depends on the free-stream asymme-82

try. Under asymmetrical waves, the phase shift introduces skewness in the near83

bed velocity and hence leads to an onshore wave averaged sediment flux. Hoe-84

fel and Elgar (2003) used free stream velocity acceleration as a proxy for this85

onshore sediment flux. Such a mechanism is critical in explaining the onshore86

migration of a sandbar, as further identified by Fernández-Mora et al. (2015).87

Additionally, near bed return flow occurs to compensate for the onshore mass88

flux driven by wave drift and surface roller in the surf zone (Kuriyama and89

Nakatsukasa, 2000). Thus the vertical structure of wave-averaged cross-shore90

flow shows a two-dimensional circulation, with onshore flow near surface and91

an offshore component near the bed. This offshore flow near the bed is also92

known as undertow, and leads to an offshore directed sediment flux (Fredsøe93

and Deigaard , 1992). How the introduction of the nourishment affects and is94

affected by these on- and off-shore sediment dynamics is a question that we95

aim to address here.96

Therefore, the goal of this study is to identify the influence of a nourishment97

on various sediment dynamics and their possible effect on the evolution of the98

nourishment.99

To this end, we develop an idealised model, in which the un-nourished beach is100

assumed to be in equilibrium. As a first step, we focus on cross-shore process101

and assume longshore uniform dynamics. Cross-shore sediment flux due to102

wave skewness, asymmetry, and return flow are considered. The evolution of103

the nourishment is determined by the perturbation in sediment flux due to104

the nourishment together with a diffusion term due to down-slope gravity105

effect, which again acts only on the nourishment (i.e., the deviation from the106

un-nourished beach).107

The model formulation is described in the second section, where wave energy108

balance, sediment dynamics and nourishment updating are introduced. The109

model is applied to study the effect and evolution of the nourishment. Model110

results are presented and analysed in the third section. In section four, the111

limitations of the model are discussed. Finally, conclusions are given.112
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Fig. 1. Geometry and coordinate system.

2 Model Formulation113

In this section we develop the evolution equation that describes the nourish-114

ment dynamics. To this end we must consider wave height transformation,115

nonlinear properties associated with the wave, and sediment transport. To116

begin with, we set out the model geometry.117

2.1 Model geometry118

A nourishment (b(x)) is imposed on a longshore uniform beach (denoted as119

zb,0(x)). x is the cross-shore coordinate, positive onshore. The total water120

depth is h(x) = η(x)−zb,0(x)− b(x). η is the water surface which can shift pe-121

riodically with tide (see §3.4), otherwise it remains 0. A sketch of the geometry122

is given in Fig. 1.123

2.2 Wave energy balance124

Considering a steady, normally incident wave along the offshore boundary,
the cross-shore wave energy density (Ew = 1

8
ρgH2) transformation follows

(Battjes and Janssen, 1978)

∂(Ewcg)

∂x
= −Dw, (1)

where ρ = 1027 kg/m3 is the water density, g = 9.81 m/s2 the gravitational125

acceleration,H the wave height, x the cross-shore coordinate, positive onshore,126

and cg is the group velocity resulting from linear wave theory.127

Following van Leeuwen et al. (2006), the wave energy dissipation (Dw) is pa-
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rameterized as

Dw =
ρgωB3

rH
3

8πh

(

H

γbh

)m (

1− exp

(

−
(

H

γbh

)n))

. (2)

ω = 2π
T

is the radial frequency of wave of period T , Br = 1.0 is the breaking128

coefficient, γb = 0.6 the breaker index, and h is the total water depth. Co-129

efficients m and n determine the type of wave. Here we choose m = 0 and130

n = 20, which describes a monochromatic wave dissipation based on the bore131

dissipation model continuously throughout the domain.132

To account for the delay in the dissipation process, the roller formulation of
Roelvink and Reniers (2011) is adopted. The balance of roller energy (Er)
reads

∂(Erc)

∂x
= Dw −Dr, (3)

where c = ω
k
is the phase velocity with k being wave number satisfying ω2 =

gk tanh kh. Dr is the roller energy dissipation representing the roller energy
transfer to turbulent kinetic energy, parameterized as

Dr = 2gEr
sin(βr)

c
, (4)

with the slope of the roller/wave front βr set to 0.1 (Ruessink et al., 2001).133

The balance of wave and roller energy, i.e., Eq. (1) and (3), are solved using a134

forward finite difference scheme. On the offshore boundary, a wave of heightHo135

is imposed, and Er is set to be 0. The calculation is iterated until convergence136

in the wave and roller energy are reached. This leads to cross-shore profiles of137

H(x) and Er(x) for a given h(x) profile.138

2.3 Skewness of wave velocity and acceleration139

Using linear wave theory, the cross-shore distribution of wave energy is solved
in section 2.2. However, as the wave propagates toward the coast, the wave
shape continuously changes from a sinusoidal to a skewed shape in the shoal-
ing region and thereafter to a highly asymmetrical shape after breaking. To
account for these wave non-linearities, Abreu et al. (2010) proposed a param-
eterised expression for the near-bed intra-wave orbital velocity:

u(t) = uw
√
1− r2







sin (ωt) + r sin (φ)

1+
√
1−r2

1− r cos (ωt+ φ)







, (5)

with uw = H
2

gk
ω

cosh kz0
cosh kh

being the wave orbital velocity at the boundary layer
edge z0 (0.01 m). Ruessink et al. (2012) linked parameters r and φ to the
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Ursell number (Ur =

3
8

kH
(kh)3

), such that

r =
2
√
18B2 + 4B4

9 + 4B2
, φ = −ψ − π

2
, (6)

with B denoting the total non-linearity of the wave, and phase ψ being ex-
pressed as

B =
p1

1 + exp
(

p2−log10 (Ur)
p3

) , ψ = −π
2
+
π

2
tanh

(

p4
Up5
r

)

. (7)

p1 = 0.79, p2 = −0.61, p3 = 0.297, p4 = 0.64 and p5 = 0.6 are obtained from140

Ruessink et al. (2012); they result from a least-square fitting with observations.141

Notice that B and ψ → 0 as Ur → 0; B → p1 and ψ → −π
2
as Ur → ∞.142

By definition, the skewness of velocity (Svel) and acceleration (Sacc) are written
as

Svel =
< u3 >

σ3(u)
, Sacc =

< a3 >

σ3(a)
, (8)

where a = ∂u
∂t

denotes the local wave acceleration and < . > an average over143

the wave period. σ refers to the standard deviation of the variable. In this144

way, Svel and Sacc can be calculated with a discretized time series of near-bed145

intra-wave orbital velocities. This causes a huge calculation burden for the146

long term evolution, since the discretization, wave averaging and calculation147

of standard deviation are to be repeated at every node and at every time step.148

Here, making use of the expression proposed by Ruessink et al. (2012), we149

develop closed form expressions for σ(u), σ(a), Svel and Sacc.150

σ(u) and σ(a) can be approximated as

σ(u) = uw(1− r2)1/2l(r), (9)

σ(a) = uwω(1− r2)1/2f(r), (10)

with

l(r) =
1

(1− r2)1/4(1 +
√
1− r2)1/2

(11)

f(r) =
√

1/2 + (C1 −
√

1/2)
l(r)−

√

1/2

l(r∞)−
√

1/2
(12)

r∞ = lim
Ur→∞

r. The constant C1 can be straightforwardly obtained numerically,

the method is illustrated in appendix A. Svel and Sacc are given as:

Svel = B cosψ (13)

Sacc = αB sin (ψ + π). (14)
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α is the ratio Sacc

B
as Ur → ∞. Detailed derivations are presented in Appendix151

B.152

The expressions in (9), (10), (13) and (14) are used throughout the remainder153

of the paper for σ(u), σ(a), Svel and Sacc .154

2.4 Return flow155

Following e.g., Kuriyama and Nakatsukasa (2000), we assume that in and out
of the surf zone, the return flow (uret) balances the onshore mass flux driven
by wave drift (Qd), surface roller (Qr)

uret = −Qd +Qr

h
, (15)

in which
Qd = Ew/(ρc), Qr = 2Er/(ρc). (16)

2.5 Sediment transport156

The wave-skewness-driven near-bed sediment transport follows the form of the
Bailard (1981) wave-averaged bed sediment flux equation, i.e.,

qsk = Ks < u >3= KsSvelσ
3(u), (17)

where Ks = 3.5 × 10−4 ms−2 (from Bailard (1981)). The wave-asymmetry-
driven bed-load is based on the expression of Hoefel and Elgar (2003), i.e.,

qas =











Ka(aspike − sign[aspike]acrit) , if |aspike| ≥ acrit

0 , if |aspike| < acrit
(18)

where Ka = 2.6× 10−5 ms (Drake and Calantoni , 2001), and aspike =
<a3>
<a2>

=
Saccσ(a). For simplicity, acrit is set to be 0 in this study. The current driven sed-
iment flux is calculated with the formula of Soulsby-VanRijn given by Soulsby

(1997),

qc =











Asbuc
[

(u2c +
0.018
CD

u2w)
1/2 − ucr

]2.4
, if (u2c +

0.018
CD

u2w)
1/2 ≥ ucr

0 , if (u2c +
0.018
CD

u2w)
1/2 < ucr

(19)

For the wave only problem, the current is return flow only, i.e., uc = uret. qc
is therefore offshore directed. When tide effect is considered, the contribution
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of tidal current has to be included, as discussed in section 3.4. We neglect the
slope effect in the Soulsby-VanRijn formula. CD = 0.005 is the drag coefficient
due to current alone. ucr is the threshold current velocity, here we set it as 0
to simplify the problem.

Asb =
0.005h(d50/h)

1.2

[(s− 1)gd50]1.2
, (20)

where s = 2.65 is the relative density of sediment, d50 is median sediment157

diameter, see Soulsby (1997).158

The total sediment transport is therefore the summation of wave skewness,
wave asymmetry and return flow driven sediment flux,

q = qsk + qas + qc. (21)

Note that we therefore neglect sediment transport due to streaming processes,159

Stokes drift, and injection of turbulence from breaking (Roelvink and Reniers,160

2011).161

2.6 The evolution equation of nourishment162

We assume that a nourishment b(x) is added onto an equilibrium seabed (re-
ferred to as zb,0(x)). The evolution of the nourishment is subject to

∂b

∂t
+

1

1− p

∂q′

∂x
− γ

∂2b

∂x2
= 0, (22)

where p = 0.4 is the porosity of sediment. The perturbed sediment transport
q′ is given by

q′ = q(Ew(x), Er(x), zb,0(x) + b(x))− q(Ew,0(x), Er,0(x), zb,0(x)), (23)

and therefore is the cross-shore sediment flux induced by the nourishment. Ew,0163

and Er,0 refer to the wave energy density and roller energy on the equilibrium164

beach (zb,0). The third term in (22) represents the diffusion of the nourishment165

due to gravity. A value of γ = 3.5 × 10−4 m2s−1 is adopted here as suggested166

by Larson and Hanson (2015).167

The divergence of perturbed sediment transport and the diffusion term are168

calculated using a finite difference scheme. A uniform grid spacing ∆x in the169

cross-shore x axis is considered, with ∆x = 1 m. A so-called Euler-Heun170

method (Süli and Mayers , 2003), i.e., a predictor and corrector algorithm, is171

applied to update the the shape of the nourishment. In return, the updated172

nourishment is added to the water depth to calculate the perturbed sediment173
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transport at a new time step. A 0.5 s morphodynamic time step is chosen as174

a compromise between calculation burden and accuracy. A test with smaller175

time step showed little difference.176

3 Results177

The model is first applied to study the evolution of a nourishment deployed on178

a plane beach in §3.1. The effects of the nourishment on sediment dynamics179

are then analyzed. Thereafter, we study the effect of nourishment strategy180

by varying the location of the nourishment while keeping the nourishment181

volume constant in §3.2. The evolution of the nourishment under various wave182

conditions (§3.3), i.e., different wave height and period, is also studied. We183

then consider the effect of the shifting water surface and current due to a tide184

(§3.4).185

3.1 Nourishment deployed on a plane beach186

3.1.1 Bathymetry and hydrodynamics187

Consider a longshore uniform plane beach, with cross-shore slope of 0.01, see
Fig. 1. The offshore boundary is located at x = 0, where the water depth is 15
m (zb,0 = −15 m), the shoreline is at x = 1500 m but we terminate the model
domain for h < 0.15 m. Below this water level, swash zone processes become
important which are not accounted for in this model (see Fernández-Mora

et al., 2015). A nourishment of the following shape is considered:

b(x) =











An

[

1− |x−xn|
Ln

− sin(2π(1−|x−xn|/Ln))
2π

]

, if |x− xn| < Ln,

0 , otherwise,
(24)

where An, xn and Ln are the amplitude, center and half-width of the nour-188

ishment. Sand of total amount AnLn for every meter is placed. We study189

here a representative nourishment of 400 m3/m with An = 2m, spreading190

over 700 < x < 1100 m (Ln = 200, xn = 900). The median grain size is191

d50 = 250 µm. The size and location of the nourishment and grain size is192

similar to those implemented along the Dutch coast (Ojeda et al., 2008). The193

nourishment has a form of a hump on the seabed (see Fig. 1), with minimum194

total water depth slightly shoreward of xn, i.e., x = 950 m, due to the presence195

of the background slope.196

Wave height (Ho) of 1 m and period (T ) of 6 s, is applied at the offshore bound-197

9
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Fig. 2. Cross-shore hydrodynamics: (a), wave height; (b), near bed wave orbital
velocity; (c), depth averaged return flow; (d), wave skewness; (e), wave asymmetry,
and (f), seabed profile. The thick grey curve refers to the hydrodynamics with
original sea bed, the blue curve refers to that with nourished seabed. Blue circle
denotes the centre xn = 900m of the nourishment, and vertical dashed line denotes
the breaking location (xb). Notice that grey and blue dashed lines overlap.

ary. This is to represent a moderately energetic wave condition. In Fig. 2, the198

cross-shore hydrodynamics with original and nourished seabed is presented.199

The wave first shoals, then breaks at around xb = 1280 m, and gradually200

decays in the surfzone. The wave orbital velocity follows the distribution of201

wave height. uret has its peak further shoreward of the break point. This is due202

to a phase lag between roller energy (Er) and wave energy dissipation (Dw)203

peaks (Fredsøe and Deigaard , 1992). The skewness has its peak just prior to204

breaking. Asymmetry increases monotonically as the shore is approached.205

In this example, the introduction of the nourishment does not move the break206

point. Its effect is to reduce the water depth and thus increase wave height. The207

near bed wave orbital velocity (uw) and the return flow (uret) also increase, as208

does the wave skewness (Svel). The wave asymmetry (Sacc) increases too, but209

to a lesser extent than Svel.210
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Fig. 3. Sediment flux of: (a), return-flow-driven offshore component qc; (b), wave
skewness driven onshore component qsk; (c), wave asymmetry driven onshore com-
ponent qas; (d), total perturbed transport q′, and (e), seabed profile. Blue circle
and vertical dashed line are as in Fig. 2. Similarly, thick grey and thin blue curves
represent the case of sea bed without and with nourishment.

3.1.2 Sediment dynamics211

Wave skewness and asymmetry drive onshore sediment fluxes (qsk and qas),212

whereas return flow drives off-shore sediment flux (qc). The distribution of qsk213

is a combined effect of Svel and uw, and so has a peak slightly shoreward of the214

break point, see Fig 3. qc has a peak further shoreward of that of qsk, which is215

due to the delayed peak in uret. qas, on the other hand, keeps increasing until216

the post breaking decrease in uw overwhelms the increase in Sacc.217

With the implementation of the nourishment, the increase in uw, uret, Svel and218

Sacc lead to amplified sediment fluxes, both in the on- and off-shore direction.219

However, the onshore increase is greater than the equivalent offshore directed220

sediment flux, resulting in a mostly positive perturbation in the total sediment221

flux, see Fig 3d. The divergence of a positive q′ has positive (negative) value on222

seaward (shoreward) side of the nourishment (see Fig.4a). This causes erosion223

on the seaward side of the nourishment and deposition on the shoreward side,224

and thus leads to an onshore nourishment migration.225
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Fig. 4. The evolution of the nourishment for xn = 900 m. a, initial condition for the
nourishment: the divergence of q′ (black solid line), and the nourishment shape (blue
solid line) and movement of the nourishment (indicated by black arrows, upward for
deposition and downward for erosion); b, shape of the nourishment at t = 0 (blue
solid line), and every 30 days after implementation (blue dashed lines), black dots
denoting the corresponding location of break point.

3.1.3 Nourishment evolution226

Onshore migration of the nourishment is observed (see the hump on the shore-227

ward side of the nourishment in Fig.4b). In the mean time, the diffusion term228

disperses the nourishment in both on- and off-shore direction. It appears that229

in this case the diffusion effect is stronger than the divergence of q′, since230

the reduction of the nourishment height is more pronounced than the onshore231

migration.232

The feeder effect of the nourishment located seaward of the breaker zone in233

moderate wave conditions is in agreement with field observation (Ojeda et al.,234

2008). Forced by (yearly averaged) Hrms of 1 m and Ts = 6 s period, the235

nourishment placed seaward of sandbar (approximately 900 m away from the236

coast) at Noordwijk (the Netherlands) migrated more than 300 m onshore in237

4 years.238
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Fig. 5. Cross-shore hydrodynamics and seabed profile for nourishments of xn = 900
m (blue), xn = 1050 m (black) and xn = 1200 m (red). Thick grey (thin) curves rep-
resents the case without (with) nourishment. Vertical dashed lines are the location
of break points, and circles the location of nourishments.

3.2 Effect of nourishment location239

Here, we study the effect of more shoreward nourishment locations by taking240

xn = 1050 m and xn = 1200 m in (24). The perturbed hydrodynamics are241

shown in Fig. 5.242

The nourishment at xn = 1050 m triggers a first wave break at xb = 1079 m243

(see vertical black dashed lines in Fig 5). uw, uret, Svel and Sacc form a peak244

around this break point. Shoreward of the nourishment, the wave experiences245

a second shoaling process; as can be seen from Fig. 5, all black curves almost246

rejoin the thick grey curve at the onshore edge of the nourishment. A second247

(main) break happens at a location slightly shoreward of the break point of248

the un-nourished case, with a smaller breaking wave height (Hb). The first249

wave break is weaker than the second one, as less energy is dissipated (see250

black curve in Fig. 6).251

The perturbed sediment flux (q′) for xn = 1050 m has three positive peaks252

and a negative one (see black curve in Fig. 7d). Seaward of the first break253
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Fig. 6. The distribution of wave energy dissipation Dw for sea bed with (thin curves)
and without nourishment (thick grey), for nourishment placed at xn = 900 m (blue),
xn = 1050 m (black) and xn = 1200 m (red). Vertical dashed lines indicate the
location of break points.

point, the increase in sediment flux induced by the nourishment is more in the254

onshore direction than in the offshore, giving a positive q′. qc predominates255

during the first wave break, so q′ < 0 immediately shoreward of the first break256

point. Further shoreward, the wave stops breaking and shoals, leading to the257

second positive q′. A third positive q′ is shoreward of the nourishment, i.e,258

x > 1250 m, because the effect of a wave energy reduction on qc is more than259

that on qsk and qas.260

The divergence of q′ has a complicated form (see Fig.8a), leading to deposition261

on top of the nourishment and erosion on both seaward and shoreward sides.262

Consequently, the nourishment evolves into a skewed shape (see Fig.8c). At263

the same time, the peak of the nourishment is consistent with the break point264

and gradually migrates onshore.265

The nourishment at xn = 1200 m induces a major break at x = 1131 m266

(see red vertical dashed line in Fig. 5 and Fig. 6). Hydrodynamic quantities267

achieve local or global maximum around the break point. Compared with the268

un-nourished case, the majority of wave energy is dissipated further offshore269

(see red curve in Fig. 6), resulting in the quick drop of H , uw and uret after270

the break.271

The profile of q′ now has a prominent negative trough and a positive peak272

further shoreward (see red curve in Fig 7d). The negative perturbation is due273

to the dominance of qc in the breaking zone. q′ thereafter increases to a peak274

shoreward of the old break point (grey dashed line). The divergence of q′275

has a positive value on top of the nourishment and negative value on both276

seaward and shoreward sides of the nourishment, see Fig. 8b. As a result, a277

severe erosion is observed on top of the nourishment, which splits the nourish-278

ment into two parts, one moving onshore and another offshore (see Fig. 8d).279
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Fig. 7. Sediment fluxes and seabed profile for nourishments of xn = 900 m (blue),
xn = 1050 m (black) and xn = 1200 m (red). Thick grey (thin) lines refers to
the case without (with) nourishment. Vertical dashed lines describe the location of
break point and circles indicate xn. q

′ for xn = 900 m and xn = 1050 m (blue and
black curve in d panel) are amplified with a factor of 3 for the purpose of better
illustration.

The onshore moving nourishment appears to come to rest at the coast and280

the offshore moving part stabilises with its peak being the new break point.281

Thereafter, the offshore peak of the nourishment follows the break point and282

gradually moves onshore, resembling the behaviour of the nourishment placed283

at xn = 1050 m.284

The quick erosion of the nourishment is very close to the evolution of Ter-285

schelling (the Netherlands) nourishment (Grunnet and Ruessink , 2005). The286

sand placed in the trough between the middle and the outer bar quickly erodes287

and forms a new trough within months. Sediment is moved in both directions288

and incorporated in the middle and outer bar. The markedly different be-289

haviour of xn = 1200 m from xn = 1050 m occurs because of the qualitatively290

different q′ profiles (see Fig. 7d).291

As the location of the nourishment moves to the coast, the magnitude and292

divergence of the q′ increases (see Fig 9). As a result, the evolution of the nour-293

ishment is much quicker. A nourishment in the offshore causes shoaling and a294
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Fig. 8. The evolution of nourishments for xn = 1050 m (a,c) and 1200 m (b,d), under
wave of T = 6 s, Ho = 1 m. a and b, showing the initial condition for nourishments:
the divergence of q′ (blue curves), nourishment shape (black in a and red in b) and
movement (black arrows); c and d, showing the shape of nourishments at every 30
days after implementation (dashed lines in c (black) and d (red)), with blue dots
denoting the corresponding break point position.

positive q′. The nourishment will then gradually move to the coast. A nour-295

ishment placed close enough to the break point induces an earlier breaking,296

resulting in a negative q′ around the newly formed break point and a positive297

q′ around the break point of the un-nourished beach (see the blue and yellow298

area in Fig 9). Wave energy is dissipated in this process, the nourishment thus299

provides a so-called lee effect (Grunnet et al., 2005). The magnitude of q′ de-300

pends on the intensity of the wave break triggered by the nourishment. The301

initial evolution of the nourishment then either forms a skewed shape with its302

peak migrating onshore (weak break) or splits into onshore and offshore parts303

(strong break).304

The original nourishment tends to have a steep (flattened) shape on its seaward305

(shoreward) side. This is due to the asymmetry in the bed slope. So on the306

seaward side of the peak of the nourishment, the sea bed has a steeper slope,307

and the wave shoals and breaks in a shorter distance, with the opposite effect308

on the shoreward side. Consequently, the magnitude of the divergence of q′ is309

bigger (smaller) on the seaward (shoreward) side of nourishment. The erosion310
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Fig. 9. Sensitivity of the sediment flux perturbation (q′) to the location of the
nourishment xn. Color indicates the value of q′, with blue for negative and yellow
for positive value. Dashed contour lines represents the wave energy dissipation (Dw).

on the seaward side is then quicker than the deposition on the shoreward side,311

which in turn contributes to the asymmetry of the total sea bed slope.312

3.3 Sensitivity to wave parameters313

3.3.1 Effect of wave height314

To investigate the effect of wave height variation, we consider waves of Ho =315

0.5 m and 2 m (with T = 6 s), for xn = 900 m, An = 2 m and Ln = 200316

m. With increased Ho, Hb increases and xb moves offshore. Subsequently, the317

magnitude of uw and uret are bigger. Svel and Sacc have the same peak value.318

However, they achieve maximum value further offshore. For higher Ho, the319

wave shape evolves at a deeper water depth.320

The magnitude of qc and qsk significantly increase with increased Ho (see321

Fig. 10). The maximum magnitude of qc increases from 4.34×10−5 m3/s (Ho =322

0.5 m) to 30× 10−5 m3/s (Ho = 2 m). Similarly, the maximum magnitude of323

qsk increases from 3.31× 10−5 m3/s to 14.9× 10−5 m3/s. The nearshore peak324

of qas, on the other hand, remains fixed. With higher Ho, the increase in qc325

is more than the increase in qsk, which results in the domination of offshore326

directed sediment flux for wave in storm conditions.327

For all Ho, introduction of the nourishment increases the magnitude of both328

on- and off-shore directed sediment fluxes. For Ho = 0.5 m, the nourishment329

serves a shoaling effect and induces a positive (onshore) q′ (see Fig. 10). The330
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Fig. 10. Sediment dynamics and seabed profile of Ho = 0.5 m (black), Ho = 1 m
(blue) and Ho = 2 m (red). Vertical dashed lines indicate the location of break
points and circles denoting xn. The thick and thin lines in each color represent the
situation without and with nourishment, respectively. q′ for Ho = 0.5 m and Ho = 1
m (black and blue curve in panel d) are amplified with a factor of 10 for the purpose
of better illustration.

divergence of q′ thus drives onshore migration of the nourishment, see Fig. 11a.331

For Ho = 2 m, the nourishment induces a wave break at xb = 894 m, leads332

to a negative (positive) q′ around the new (old) break point, see Fig. 10d.333

The divergence of q′ drives offshore nourishment migration, see Fig. 11b. The334

magnitude of q′ increases considerably as Ho increases.335

For Ho = 0.5m, the diffusion term outweighs the divergence of q′. Therefore,336

the nourishment disperses in both direction with slightly onshore movement337

(see Fig.11c). ForHo = 2 m, most of the nourishment moves offshore at a much338

faster speed (see Fig.11d). The transition of onshore migrating nourishment339

in mild wave conditions to offshore migration in stormy waves is consistent340

with an earlier study (Spielmann et al., 2011).341
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Fig. 11. The evolution of the nourishment for xn = 900 m, under waves of T = 6
s, Ho = 0.5 m (a,c) and 2 m (b,d). a and b, showing the initial condition for
nourishment, the divergence of q′ (blue curves), nourishment shape (black curves in
a and red in b) and movement (black arrows); c and d, showing the shape of the
nourishment at every 30 days after implementation (dashed lines in c (black) and
d (red)), with blue dots denoting the corresponding break point position.

3.3.2 Effect of wave period342

We consider waves of T = 3 s and 10 s (with Ho = 1 m), for xn = 900 m,343

An = 2 m and Ln = 200 m. For T = 3 s, H gradually reduces as it propagates344

to the coast until it breaks at xb = 1358 m. For T = 10 s, H keeps growing345

until it breaks at xb = 1238 m. For larger T , Hb, Ew and Er increase and so346

uret is stronger in the surf zone, and uw is larger everywhere (also because of347

smaller kh). Similarly, Svel and Sacc reach their maximum value at a deeper348

water depth. A larger T increases the maximum value of qc and qsk, but has349

little influence on that of qas, see Fig. 12. Varying wave period also changes350

the peak location of sediment dynamics.351

For all waves, the nourishment induces a shoaling effect. The effects of nour-352

ishment on sediment dynamics are similar for intermediate and long period353

waves, resulting in a positive q′, see Fig. 12. For short wave, in contrast, the354

increase in qc due to the presence of the nourishment outcompetes the increase355

in qsk, therefore leads to a negative q′.356
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Fig. 12. Sediment fluxes seabed profile for wave of T = 3 s (black), T = 6 s (blue)
and T = 10 s (red). Vertical dashed lines indicate the location of break point and
circles denoting xn. The thin and thick lines in each color represent the situation
with and without nourishment, with nourishment of xn = 900 m, Ln = 200 m and
An = 2 m. Ho for all cases are 1 m. q′ for T = 3 s and T = 10 s (black and blue curve
in panel d) are amplified with a factor of 2 for the purpose of better illustration.

This negative q′ for T = 3 s is due to an overestimation of uret in the offshore357

in the expression for Qd (Eq. (16)). In the model it is implicitly assumed that358

the onshore flux driven by Stokes drift and wave roller are confined in the359

upper part of the water column, with return flow in the bottom. Therefore,360

the current near the bottom is always offshore directed. This is mostly true361

in the surf zone. However, in the offshore region, the return flow typically362

happens near the surface (Lentz et al., 2008). Our model thus overestimates363

uret in offshore. For T = 3 s, use of a more sophisticated model (Roelvink and364

Reniers , 2011) for return flow yields a positive q′.365

For T = 3 s, diffusion effect remains dominant over the divergence of q′. The366

nourishment thus spreads in both directions with slightly offshore migration367

due to the divergence of a negative q′ (see Fig.13a and c). For T = 10s,368

the divergence of q′ overwhelms the diffusion effect, leading to erosion on369

seaward of the nourishment and deposition on the peak and shoreward of370

the nourishment. As a result the nourishment migrates onshore and forms a371

skewed shape (see Fig.13b and d).372
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Fig. 13. The evolution of the nourishment for xn = 900 m, under waves of Ho = 1 m,
T = 3 s (a,c) and 10 s (b,d). a and b, showing the initial condition for nourishment,
the divergence of q′ (blue curves), nourishment shape (black in a and red in b) and
movement (black arrows); c and d, showing the shape of the nourishment at every
30 days after implementation (dashed lines in c (black) and d (red)), with blue dots
denoting the corresponding break point position.

3.4 Effect of tide373

The effect of tide is accounted for by considering the shifting water surface and
periodic changing tidal current. An M2 tide signal with 6 m range is applied.
The tidal free surface deviation (η) is assumed to be uniform over the domain.
The tidal current (uT ) simply follows the continuity equation (Schuttelaars
and De Swart , 1999).

η = AT cos (ωT t), (25)

uT =
∂η

∂t

xs − x

h
, (26)

with AT = 3 m being tide amplitude, ωT = 2π/Tt the tidal angular frequency374

with Tt = 12h. xs refers to the shoreline location, which shifts periodically375

with tidal level variations. Thus, a nourishment at xn = 900 m, at low tide376

induces an earlier breaking (see thin red curve Fig.14a), whereas at high tide377

it just induces a shoaling modification (thin black curve in Fig.14a). The378

current (uc) in Eq. (19) is now the combination of tidal current and return379
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Fig. 14. Hydrodynamics at t = 0 T (black), T
4 (blue), T

2 (red) and 3T
4 (magenta). (f)

shows the seabed profile with (thin black) and without (thick grey) nourishment,
horizontal dashed lines denoting corresponding tidal level. Vertical dashed lines
describe the location of break point and circles indicate xn. The thin and thick line in
each color represents the situation with and without nourishment, with nourishment
of xn = 900 m, Ln = 200 m and An = 2 m. The calculation starts from high tide.

flow, i.e., uc = uT + uret. Tidal current is maximum at the middle of flood380

and ebb. On the flood, the onshore directed uT reduced qc (magenta curve in381

Fig.15a), whereas on the ebb, the offshore directed uT amplifies qc (blue curve382

in Fig.15a). Therefore, q′ is positive (negative) at t = T
4
(3T

4
), as shown in383

Fig.15d. The perturbed sediment flux at low tide is the same as the case of384

xn = 1200 m without tide.385

The evolution of the nourishment depends on the the tidally averaged di-386

vergence of q′. As shown in Fig.15d, q′ at low tide is most significant. The387

nourishment splits into two parts that migrate in on- and off-shore direction388

(see Fig.16). The evolution type resembles the case of xn = 1200 m without389

tide, i.e., Fig.8d, but migrates at a slower rate. The changes on qc imposed390

on uT in flood and ebb tend to compensate for each other. A study was done391

(not presented) without the tidal current, and results show little difference.392
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Fig. 15. Sediment dynamics at t = 0 T (black), T
4 (blue), T

2 (red) and 3T
4 (magenta).

(e) shows the seabed profile and corresponding tidal level. Vertical dashed lines
describe the location of break point and circles indicate xn. The thin and thick line in
each color represents the situation with and without nourishment, with nourishment
of xn = 900 m, Ln = 200 m and An = 2 m.
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Fig. 16. Nourishment evolution with (black dashed line) and without tide (blue solid
lines).

4 Discussion393

This model starts with an assumption of an equilibrium beach state, which ac-394

cording to Dean (1991) is a profile where all sediment transports are in balance.395
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Due to the complexity of nearshore sediment dynamics, it takes a long time396

to obtain an equilibrium beach profile numerically or experimentally. More-397

over, with varying wave conditions, such profile can only be approximated by398

averaging the cross-shore profile over a long period. Since the interest of this399

paper is in the evolution of the nourishment rather than the coastal profile, we400

therefore assume that the given beach state is in equilibrium. By doing this,401

we implicitly assumed a balance between sediment flux driven by wave skew-402

ness, wave asymmetry, return flow and gravity driven down slope transport.403

As such, we interpret the perturbation in down slope transport as the diffu-404

sion term in Eq. (22). Studies (not shown here) with different beach profiles,405

i.e., plane beaches with different slope and beaches with nearshore sand bar,406

show that the physics examined in this paper pertains to other initial beach407

profiles. Despite its simplicity, an equilibrium beach assumption is useful for408

interpreting the coastal engineering process (Dean, 2003).409

In this model we considered dominant processes in the complex nearshore410

sediment dynamics, i.e., the wave skewness and asymmetry-driven onshore411

sediment flux, the return flow driven offshore sediment flux, and the gravity412

driven diffusion effect. As mentioned in §2.4, Stokes drift drives a net onshore413

water mass. The associated sediment flux is thought to be small compared414

with other mechanisms, for the Stokes drift exists in the upper part where415

the sediment concentration is relatively small. Streaming-driven sediment flux416

is also neglected due to its weak magnitude (Roelvink and Reniers, 2011).417

Suspended-load is not included in this model. This is because in many wave-418

averaged formulas suspended-load is found to be roughly proportional to bed-419

load (Fernández-Mora et al., 2015). Thus, inclusion of suspended-load makes420

no qualitative difference to the balance of sediment fluxes considered here.421

For a nourishment project, a primary concern is the direction of migration422

of the nourishment, which depends on the divergence of q′. Theoretically, the423

divergence of q′ can be written as ∂q′

∂x
= ∂q′

∂b
∂b
∂x

+ ∂q′

∂E′

w

∂E′

w

∂x
+ ∂q′

∂E′

r

∂E′

r

∂x
, with b the424

bed perturbation, and E ′
w and E ′

r denoting the perturbation in wave and roller425

energy.426

We can thus rewrite Eq. (22) (excluding diffusion) as:

∂b

∂t
+

1

1− p

∂q′

∂b

∂b

∂x
= − 1

1− p

{

∂q′

∂E ′
w

∂E ′
w

∂x
+

∂q′

∂E ′
r

∂E ′
r

∂x

}

, (27)

where it can be seen that cn = 1
1−p

∂q′

∂b
represents its intrinsic propagation427

speed, whereas ∂q′

∂E′

w

and ∂q′

∂E′

r

are part of a forcing term. Assuming a bed per-428

turbation, i.e., nourishment, of small amplitude (ǫ), which induces a corre-429

sponding small change in total water depth but a negligible change in wave430

and roller energy, i.e., E ′
w ≈ E ′

r ≈ 0, then the nourishment is subject only to431

migration at its intrinsic propagation speed cn. Expanding q
′ in a Taylor ex-432
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Fig. 17. Sensitivity of cn to: a, Ho (from 0.1 to 2 m), with T = 6 s; b, T (from 3 to
10 s), with Ho = 1 m; c, Ho (from 0.1 to 2 m) and T (from 3 to 10 s), evaluated at
x = 1000 m. Zero contour lines are highlighted as thick dashed lines.

pansion of ǫ, q′ = ∂q
∂b
|b=0ǫ+O(ǫ2), cn is then approximated based on dynamics433

of the basic state. Here we take the linear term. We can then examine cn as a434

function of x for varying T and Ho; see Fig.17a and b.435

For Ho = 1 m and T = 6 s (see horizontal dashed lines in Fig.17a and b),436

cn changes from positive (onshore migrating) in the shoaling zone to nega-437

tive (offshore migrating) shoreward of the break point. cn is again negative438

offshore for smaller periods (see Fig.17 b), but this is due to breakdown of439

the approximation of uret in that region (see §3.3.2). Note that the onshore440

propagation of the nourishment for xn = 900 m and An = 2 m (in §3.1) is not441

captured in Fig.17a and b. This is in part because of the aforementioned uret442

approximation, and also because the small nourishment yields a larger water443

depth compared with that for the An = 2 m nourishment.444

Consistent with our model results, cn is mostly positive for mild and moderate445

wave, and negative for stormy wave, see Fig.17a. For waves of longer period,446

the magnitude of cn is larger (see Fig.17b). Meanwhile, the change from pos-447

itive to negative cn is shifted offshore for long period waves due to relatively448

shallower water further offshore.449

For a nourishment at a particular location, this method provides a straight-450

forward way to illustrate the possible migration direction (see Fig.17c, for451
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x = 1000 m).452

The analysis applied here only considers the linear term and neglects the453

change in Ew and Er, but it gives a reasonable first approximation of the454

migrating direction of the nourishment, particularly in the shoaling zone. In455

the surf zone, we may expect the forcing term in Eq. (27) to be prominent,456

and so this approximation analysis will be less appropriate.457

For simplicity, our model neglects the threshold of motion of sediment, which458

leads to an overestimation of sediment flux. However, the qualitative behav-459

ior of sediment dynamics remains the same. The effect of nourishment and460

its evolution will therefore be qualitatively the same with the inclusion of a461

threshold.462

In this study, we adopt an idealised method in order to isolate physics and for463

rapid numerical solution. In principle the approach we use could be undertaken464

with a complex numerical model.465

5 Conclusion466

In this paper, we have developed an idealised model to study the cross-shore467

evolution of a nourishment. Wave and roller energy balance are solved to ob-468

tain wave height, near bed wave orbital velocity and return flow. Following469

Ruessink et al. (2012), the wave nonlinearity is parameterized using a formula470

based on the Ursell number. New expressions for skewness and standard de-471

viation of wave velocity and acceleration are introduced. The new expressions472

greatly accelerate the calculation. Sediment flux driven by wave skewness,473

asymmetry (both onshore) and return flow (offshore) are calculated. The im-474

plementation of the nourishment perturbs the wave and sediment dynamics475

previously assumed to be in equilibrium. The evolution of the nourishment476

thus is subject to the divergence of total sediment flux perturbation (q′), and477

a diffusion term simulating downslope movement of the bed sediment due to478

gravity.479

The divergence of a positive (negative) q′ results in onshore (offshore) migra-480

tion of the nourishment. For waves in stormy weather, the return-flow-driven481

sediment flux dominates the sediment dynamics. In these circumstances, the482

nourishment tends to induce a negative q′ and migrates offshore, which is483

consistent with earlier observations.484

In the shoaling zone, under moderate and mild waves, onshore sediment fluxes485

outcompete the offshore flux. The nourishment in general migrates onshore,486

but its evolution is sensitive to the relative location of the nourishment and487
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wave break point. Deployed at a location well away from the break point (sea-488

ward), the nourishment induces a shoaling effect and amplifies all sediment489

processes. Due to the dominance of onshore directed sediment transport in490

this region, the nourishment causes a positive q′. The nourishment diffuses491

and slowly moves onshore, therefore provides a ‘feeder’ effect. Positioned close492

enough to the break point, the nourishment induces an earlier breaking, dissi-493

pates wave energy and provides a so-called ‘lee’ effect. Around the new break494

point, q′ < 0 due to the predominance of return flow driven sediment flux.495

The energy being dissipated in this process results in a diminution in all sedi-496

ment processes shoreward of the nourishment. However, the return flow driven497

offshore flux is particularly reduced and leads to a positive q′. Depending on498

the intensity of the earlier breaking, the nourishment either moves onshore499

or splits into two parts. For a weak break, the nourishment formed a skewed500

shape and its peak follows the break point and gradually migrates onshore. For501

a strong break, i.e., when most of the wave energy is been dissipated, severe502

erosion is observed on the peak of the nourishment. The nourishment then503

splits into two parts, one moving onshore and another offshore. The offshore504

moved nourishment stops as its peak coincide with the wave break point, and505

thereafter, gradually migrates onshore.506

The effects of a longer wave period on the nourishment are twofold. Firstly,507

the magnitude of q′ increases with T , resulting in a quicker evolution of the508

nourishment. Secondly, the active zone of wave dynamics is shifted offshore509

for longer period wave, which changes the relative location of the nourish-510

ment and break point, thus changing the evolution type of the nourishment.511

Furthermore, tide affects nourishment evolution through shifting the relative512

location of the nourishment and break point as the water surface changes pe-513

riodically. Tidal elevation is shown to be more important than tidal current.514

The q′ at low tide determines the evolution of the nourishment.515

We also studied the intrinsic propagation speed of the nourishment which516

shows that it can be used as a first approximation of the migrating direction517

of the nourishment.518

Our model neglects a few processes including the sediment flux due to Stokes519

drift and streaming and the threshold of sediment initiation. At present, the520

model only considers a shoreface nourishment. To study the evolution of a521

beach nourishment, a wetting and drying scheme must be included. The model522

is limited to cross-shore evolution of the nourishment, whereas in reality, fur-523

ther complexity arises from two dimensional dynamics. A next step would be524

to extend this model to two horizontal dimensions.525
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A Standard deviation of u and a619

By definition, σ(u) is written as

σ(u) =

√

√

√

√

1

N − 1

N
∑

i=1

(ui− < u >)2, (A.1)

where ui denotes the discretized intra-wave velocity. Assuming that the water
particle follows a closed orbital trajectory, so < u >= 0, then σ(u) is

σ(u) =
√
< u2 > = Uw

√
1− r2

√

√

√

√

1

T

∫ T

0

(

sin(ωt) + r sin(φ)/(1 +
√
1− r2)

1− r cos(ωt+ φ)

)2

dt.

(A.2)

Now let ũ = sin(θ)+r sin(φ)/(1+
√
1−r2)

1−r cos(θ+φ)
with θ = ωt, σ(u) is then

σ(u) = Uw

√
1− r2

√

1

2π

∫ 2π

0
ũ2dθ. (A.3)

The integration
√

1
2π

∫ 2π
0 ũ2dθ is solved analytically, and is found to be only

dependent on r. Therefore,

σ(u)

Uw

√
1− r2

= l(r) =
(1− r2)−1/4

(1 +
√
1− r2)1/2

. (A.4)

Similarly, the standard deviation of acceleration σ(a) is620

621

σ(a) =
√
< a2 > = ωUw

√
1− r2

√

1

2π

∫ 2π

0
ã2dθ, (A.5)
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Fig. A.1. a, comparison of σ(u) (black) and σ(a) (blue) calculated by definition
(dots) and expressions (A.4), (A.6) (solid curves). b, comparison of Svel (black) and
Sacc (blue) calculated by definition (dots) and equation (B.2), (B.3) (solid curves).

with ã = cos(θ)−r cos(φ)−r2 sin(φ) sin(θ+φ)/(1+
√
1−r2)

(1−r cos(θ+φ))2
. The integration of

√

1
2π

∫ 2π
0 ã2dθ

is found to be dependent on r and can be approximated as

σ(a)

ωUw

√
1− r2

≈ f(r) =
√

1/2 + (C1 −
√

1/2)
l(r)−

√

1/2

l(r∞)−
√

1/2
(A.6)

where C1 is the value of the
√

1
2π

∫ 2π
0 ã2dθ as Ur → ∞, and is numerically622

obtained by evaluating
√

1
2π

∫ 2π
0 ã2dθ with Ur = 600. A comparison of σ(u)623

and σ(a) calculated by definition (i.e., (A.1)) and our expressions (A.4, A.6)624

is given in Fig. A.1a.625
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B Skewness of wave velocity Svel and acceleration Sacc626

With the expression of ũ and ã, the skewness of wave velocity and acceleration
can be written as,

Svel =
√
2π

∫ 2π
0 ũ3dθ

√

∫ 2π
0 ũ2dθ

3 , Sacc =
√
2π

∫ 2π
0 ã3dθ

√

∫ 2π
0 ã2dθ

3 . (B.1)

Exact expression of Svel and Sacc are relying on the expression of the integra-
tions, which are very complicate. Luckily, early study by Ruessink et al. (2012)
can be used to achieve simple forms for Svel and Sacc. In Ruessink et al. (2012),
the skewness of wave velocity (denoted as Su) and hilbert transformation of
wave velocity (denoted as Au) were combined into the total non-linearity B
and phase ψ, implying that Su = B cos(ψ) and Au = B sin(ψ). Therefore, the
skewness of velocity is simply

Svel = B cos(ψ). (B.2)

We found that the skewness of acceleration (Sacc) follows the same shape as
Au but with a phase shift and a multiplication factor.

Sacc = αB sin(ψ + π), (B.3)

ideally, α is the limit of Sacc

B
as Ur → ∞. Here, the value of α is numerically627

obtained by evaluating Sacc

B
with Ur = 600, where Sacc is calculated using628

equation (B.1). A comparison of Svel and Sacc calculated by definition (i.e.,629

Eq. (8)) and our expressions (A.4) and (A.6) is given in Fig. A.1b.630
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Highlight

• An idealised one dimensional (cross-shore) morphodynamic model that
couples wave, tide and sediment dynamics is developed to study the
effect and evolution of a shoreface nourishment.

• In moderate and mild wave conditions, a nourishment placed well
offshore from the break point induces an overall positive perturbation in
sediment flux, resulting in onshore migration (feeder effect). Located
closer to the break point, the nourishment induces an earlier wave
breaking, which dissipates part of the wave energy (lee effect), resulting
in onshore migration (weak break) or splitting into onshore and offshore
moving parts (strong break). In storm wave conditions, nourishment
moves offshore due to the predominance of return-flow-driven sediment
flux.

• Tide affects nourishment evolution through shifting the relative location
of the nourishment and break point. The sediment dynamics at low tide
dominate the evolution of the nourishment.


