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Abstract
Cholangiocarcinoma (CCA) is a deadly disease. While surgery may attain cure in a 
minor fraction of cases, therapeutic options in either the adjuvant or advanced set‐
ting are limited. The possibility of advancing the efficacy of therapeutic approaches 
to CCA relies on understanding its molecular pathogenesis and developing rational 
therapies aimed at interfering with oncogenic signalling networks that drive and sus‐
tain cholangiocarcinogenesis. These efforts are complicated by the intricate biology 
of CCA, which integrates not only the driving force of tumour cell‐intrinsic alterations 
at the genetic and epigenetic level but also pro‐tumorigenic cues conveyed to CCA 
cells by different cell types present in the rich tumour stroma. Herein, we review our 
current understanding of the mechanistic bases underpinning the activation of major 
oncogenic pathways causative of CCA pathogenesis. We subsequently discuss how 
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1  | INTRODUC TION

Cholangiocarcinoma (CCA), the second most frequent primary 
liver cancer, is characterized by high mortality, clinical silence at 
early stages and rapid disease development and progression.1 The 
unfavourable clinical history of the disease is largely caused by 
the aggressive biology of the malignancy, the nature and mecha‐
nisms of which are still largely obscure.1 A major consequence of 
our poor understanding of CCA molecular pathobiology is the lim‐
ited range of therapeutic options currently available.1 Risk factors 
for CCA are chronic inflammatory conditions of the biliary tree, 
such as primary sclerosing cholangitis (PSC).1 Initial investigations 
focused on the molecular links between the inflammatory milieu 
and CCA development. Those studies led to the identification of 
several cytokines and pathways that may have a relevant role in 
CCA initiation and progression. More recently, attention has also 
been drawn to genetic and epigenetic abnormalities as well as 
alterations of signalling pathways involved in cholangiocyte re‐
sponses to physical, chemical or biological damaging agents. This 
knowledge is now being exploited to design novel, rationale‐based 
therapeutic approaches to CCA clinical management. A vexing 
issue affecting CCA treatment is chemoresistance and strategies 
aimed at counteracting chemoresistance remain an unmet clinical 
need in CCA. The purpose of this manuscript is to (a) provide an 

overview of our current understanding of the molecular patho‐
genesis of CCA and (b) discuss present and future directions in 
the implementation of targeted therapies in CCA management. 

Funding information
LF and JV are funded by the LABEX Plas@
par project and received financial state 
aid managed by the Agence Nationale de 
la Recherche, as part of the programme 
‘Investissements d'avenir’ under the 
reference ANR‐11‐IDEX‐0004‐02. CC 
is funded by Inserm, Univ Rennes, INCa 
and ITMO Cancer AVIESAN (Alliance 
Nationale pour les Sciences de la Vie 
et de la Santé) dans le cadre du Plan 
cancer (non‐coding RNA in cancerology: 
fundamental to translational). KG is funded 
by the UK Medical Research Council (MR/
N012615/1) and the Thailand Research 
Fund (TRF) (DBG5980005). OS is funded by 
AIRC (IG 16726). JJM is funded by Fondo 
de Investigaciones Sanitarias, Instituto 
de Salud Carlos III, Spain (PI16/00598, 
co‐funded by the European Regional 
Development Fund/European Social 
Fund, ‘Investing in your future’); the 
Spanish Ministry of Economy, Industry 
and Competitiveness (SAF2016‐75197‐R); 
the Regional Government of Castile 
and Leon (SA063P17). The authors of 
this review article are members of the 
European Network for the Study of 
Cholangiocarcinoma and participate 
in the initiative COST Action EURO‐
CHOLANGIO‐NET granted by the COST 
Association (CA18122)

Handling Editor: xxx.

this knowledge is being exploited to implement rationale‐based and genotype‐
matched therapeutic approaches that predictably will radically transform CCA clinical 
management in the next decade. We conclude by highlighting the mechanisms of 
therapeutic resistance in CCA and reviewing innovative approaches to combat resist‐
ance at the preclinical and clinical level.

Key points
•	 Cholangiocarcinoma (CCA) is a deadly cancer world 

wide as a result of limited therapeutic options and 
chemoresistance.

•	 CCA pathogenesis is associated with genetic and epige‐
netic alterations in tumour cells as well as important 
changes in the tumour microenvironment, which, collec‐
tively, lead to the activation of multiple signalling path‐
ways responsible for driving tumour onset and 
progression. These pathways are linked to the control of 
cell proliferation, cell survival/death, metabolism, tissue 
morphogenesis and inflammation.

•	 A better characterization of the molecular mechanisms 
involved in CCA pathogenesis and chemoresistance is 
predicted to pave the way to the rational design of in‐
novative therapies and to the prevention/bypass of 
chemoresistance.

9
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Immunotherapy will be discussed at length in another review in 
this special issue.

2  | MOLECUL AR SIGNALLING MAP

Cholangiocarcinogenesis is associated with not only genetic and 
epigenetic alterations but also with important modifications of the 
tumour microenvironment. These changes lead to the activation of 
multiple signalling pathways capable of driving tumour onset and 
progression.

2.1 | Microenvironment and inflammation‐related  
pathways

2.1.1 | IL‐6/STAT3 pathway

Interleukin (IL)‐6 plays a critical role in the context of acute phase 
response upon liver injury and in systemic inflammation. In the 
CCA tumour microenvironment, IL‐6 is produced by activated 
Kupffer cells, tumour‐associated macrophages (TAM), cancer‐as‐
sociated fibroblasts (CAF) and CCA cells, subsequently driving an 
iterative process that comprises cellular stress and damage, inflam‐
mation and compensatory proliferation.2 IL‐6 signals upon binding 
to the IL‐6 receptor via gp130 and intracellular activation of Janus 
kinases (JAK), signal transducers and activators of transcription 
(STAT), mitogen‐activated protein kinases (MAPK) and phospho‐
inositide 3‐kinase (PI3K)/AKT serine‐threonine kinase (AKT) path‐
ways. STAT3 expression and pSTAT3 staining are increased in most 
intrahepatic CCA (iCCA) and correlate with worse prognosis in pa‐
tients.3-5 Stat3 is also activated in rat liver cells upon 3’‐methyl‐4 
dimethylaminoazobenzene‐induced CCA formation.6 These data 
indicate that the epithelial compartment is the predominant target 
of IL‐6 in CCA.

Functional evidence for a tumour promoting role of IL‐6 arises 
from STAT3 overexpression experiments, which resulted in in‐
creased proliferation and survival potential of CCA cell lines as 
well as faster growth of CCA xenografts in mice.4 Mechanistically, 
IL‐6/STAT3 and IL‐6/p38 directly induce myeloid cell leukaemia‐1 
(MCL‐1) expression, a key anti‐apoptotic BCL‐2 family member that 
inhibits cell death.7-9 Further studies in CCA patients and cell lines 
indicated coexistence of MCL‐1 expression and phosphorylated/
activated (p)AKT. A functional relationship was shown by anti‐
IL‐6 neutralizing serum, which reduced pAKT levels, as well as by 
AKT inhibitors that reduced MCL‐1 expression and increased cell 
death.10

Loss of negative feedback regulation of JAKs caused by 
hypermethylation of SOCS3 promoter sequences and leading  
to oncogenic STAT3 activation was described in iCCA.11  
Vice versa, IL‐6 signalling itself can trigger aberrant DNA meth‐
ylation, resulting in up‐ or downregulation of critical genes, as 
shown in detail for epidermal growth factor receptor (EGFR)12 
(Figure 1).

2.1.2 | TGFβ/SMAD pathway

Transforming growth factor beta (TGFβ) is a cytokine involved in 
multiple cell fate decisions that are strongly context dependent. 
Nearly any cell type can produce and/or respond to TGFβ and there 
are multiple TGFβ receptors and co‐receptors as well as multiple 
TGFβ family members. As a driver of liver fibrosis, TGFβ induces ac‐
tivation of hepatic stellate cells. Stimulation of liver epithelial cells 
by TGFβ can produce either cytostatic or tumour promoting effects, 
therefore affecting CCA pathogenesis in a complex manner.13

Mutational analysis of biliary tract cancers (BTC) highlighted 
frequent SMAD4 mutations in extrahepatic CCA (eCCA).14-16 Loss 
of SMAD4 expression was reported in 45% of iCCA,17 with TGFβ‐
associated gene expression signatures being correlated to patient 
survival.18-20 Besides exploiting SMAD4 loss, CCA cells may escape 
from TGFβ‐mediated suppression of cell proliferation via upregu‐
lation of cyclin D1.21 In a rat model of CCA, TGFβ and TGFβ type 
II receptor (TbRII) expression were induced in preneoplastic and 
fully transdifferentiated tumour cells.22 As for its tumour promot‐
ing activity, TGFβ induces mesenchymal features in CCA cell lines, 
including decrease in E‐cadherin and cytokeratin (CK) 19 expres‐
sion, increase in vimentin, N‐cadherin and S100A4 expression and 
nuclear presence of Snail. Epithelial‐mesenchymal transition (EMT) 
enhances migration, invasiveness and peritoneal dissemination of 
eCCA cells.23,24 Nuclear Snail immunoreactivity correlates with re‐
duced CK19, increased vimentin, lymph node metastasis and poor 
survival. In addition, Twist was identified as a critical downstream 
target of TGFβ‐induced EMT in CCA.25 Interestingly, TGFβ partic‐
ipates in iCCA formation in the context of hepatocyte to cholan‐
giocyte conversion in regeneration processes and in intermediate 
hepatocellular carcinoma (HCC)/CCA phenotypes.26 In an elegant 
study delineating the consequence of TbRII depletion in hepatocytes 
or cholangiocytes, Schwabe et al found that loss of TGFβ signalling 
in either hepatocytes or cholangiocytes facilitates CCA formation by 
enhancing cholangiocyte proliferation upon carcinogenic damage27 
(Figure 1).

2.2 | Cell survival/death‐related pathways

2.2.1 | Oncogenic pathways linked to FGFR2 fusions

RNA sequencing analyses led to the discovery of fibroblast growth 
factor receptor 2 (FGFR2) fusion transcripts in 10%‐15% of iCCA 
cases.28 The predicted translation products of iCCA FGFR2 fusion 
transcripts span aa. 1‐762 of FGFR2IIIb joined C‐terminally to se‐
quences contributed by any of a long list of fusion genes (at least 40 
identified so far).29-34 FGFR2 fusions (FFs) display constitutive ty‐
rosine kinase activity,29,34-36 which is caused by forced dimerization 
of the FGFR2 kinase domain imposed by protein‐protein interaction 
motifs located in the fusion sequences.34,35 FFs display transforming 
activity in vitro and in vivo, which was found to be kinase activity de‐
pendent and as such subject to inhibition by pharmacological target‐
ing of the FGFR2 kinase29,34,35 (Figure 1). Activation of extracellular 
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F I G U R E  1   Major signalling pathways involved in cholangiocarcinoma (CCA). The signalling pathways involved in CCA progression can 
be classified into three main types: (i) microenvironment and inflammation‐related pathways, including TGFβ and IL6 signalling pathways; 
(ii) proliferation/survival/death‐related pathways ignited by constitutive activation of receptor tyrosine kinases such as FGFR2 and ERBB 
receptors or components of downstream signalling modules, such as JAK/STAT, RAS/RAF/MEK/ERK and PI3K/; (iii) development‐related 
pathways, including Notch, Hedgehog and WNT/β‐catenin. Note that membrane receptors displayed by CCA cells may be activated by 
ligands provided by the tumour microenvironment including CAFs, mast cells and TAMs, that produce HB‐EGF, histamine and WNT7b, which 
in turn activate EGFR, histamine receptor, Frizzled/β‐catenin respectively. In addition, ERRB1/EGFR can be indirectly activated by other 
molecules, such as PGE2, BA and LPS. Several components of these signalling pathways can be targeted by monoclonal antibodies or small 
molecule inhibitors, as indicated. Stars indicate signalling molecules that may be affected by recurrent pathogenic mutations in CCA and are 
candidates for therapeutic targeting. Abbreviations: ADAM17, ADAM metallopeptidase domain 17; BA, bile acids; CAF, cancer‐associated 
fibroblast; CCA, cholangiocarcinoma; DLL, delta‐like ligand; EGFR, epidermal growth factor receptor; ERK, extracellular signal‐regulated 
kinase; FGFR2, fibroblast growth factor receptor 2; GLI, glioma‐associated oncogene; HB‐EGF, heparin‐binding EGF‐like growth factor; 
IL6, interleukin 6; IL6R, IL6 receptor; JAK, janus kinase; JAG, jagged; LPS, lipopolysaccharide; MMP, matrix metalloproteinase; NICD, notch 
intracellular domain; PGE2, prostaglandin E2; PI3K, phosphatidylinositol 3‐kinase; PTCH, patched receptor; PTEN, phosphatase and tensin 
homologue; SMO, smoothened; SOCS3, suppressor of cytokine signalling 3; STAT3, signal transducer and activator of transcription 3; TAM, 
tumour‐associated macrophage; TGFβ, transforming growth factor‐β; TGF‐βR, transforming growth factor‐β receptor
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signal‐regulated kinase (ERK)1/2 appears to be a major oncogenic 
pathway activated by FFs.29,36 However, the routes of FF signalling 
which are necessary to maintain the oncogenic phenotype in iCCA 
have not been fully detailed as yet, because of lack of cellular and 
animal models of FF‐driven iCCA.

2.2.2 | Oncogenic pathways linked to BRAF, 
KRAS and TP53 mutations

Mutations of BRAF occur mostly in iCCA, with a prevalence of 
1%‐3%.37 BRAF mutations affect most frequently the V600 position, 
thus generating class 1 mutants, that is, BRAF oncoproteins that 
signal as monomers and are sensitive to currently licensed inhibi‐
tors, such as vemurafenib and dabrafenib.38 Mutations generating 
class 2 (eg K601E, G469A and F595L) or class 3 (eg G469E) mutants 
have also been described in iCCA.37 Class 2 and class 3 mutants are 
oncogenic, but insensitive to currently available BRAF inhibitors.38 
Regardless of the structural bases underpinning their signalling ac‐
tivity, all classes of BRAF mutants drive cell transformation through 
activation of the MEK/ERK module, which creates the opportunity 
of interfering with their activity through MEK1/2 blockade.38 KRAS 
and TP53 mutations occur in both iCCA and eCCA. Genetic experi‐
ments in mice have ascertained a role for Kras mutations in the de‐
velopment of iCCA, in cooperation with Tp53 or Pten mutations,39 
and eCCA, in cooperation with ablation of Tgfbr2 and Cdh1.40 
Despite the availability of these models, mechanisms underpinning 
oncogenic RAS signalling have not been studied in detail in CCA 
cells. Thus, current modelling of KRAS biology in CCA is essentially 
built on assumptions which assign key roles to usual suspects acting 
downstream to RAS, that is, MEK1/2 and the PI3K/AKT/mTOR axis.

2.2.3 | EGFR pathway

The ERBB/HER family of receptor tyrosine kinases comprises EGFR/
ERBB1 (HER1), ERBB2 (HER2), ERBB3 (HER3) and ERBB4 (HER4). 
While mutations in ERBB family members are not frequent in CCA, 
overexpression of ERBB1‐4 has been widely described, both in iCCA 
and eCCA, and frequently associated with poor prognostic features, 
especially in the case of EGFR and ERBB2.41 While the pathophysi‐
ological mechanisms underlying the role of ERBB3 and ERBB4 in 
CCA are still unknown, multiple studies describe the impact of EGFR 
and ERBB2 in promoting CCA proliferation, migration and invasion 
through activation of downstream signalling pathways, including 
JAK/STAT, RAS/MEK/ERK and PI3K/AKT.42,43

ErbB signalling is very complex because the four members can 
heterodimerize and be activated by different transmembrane pro‐
ligands (ie EGF, HB‐EGF, amphiregulin, neuregulin 1‐4, etc) that are 
released upon proteolytic cleavage by the ADAM family metallopro‐
teinases. In addition, EGFR activation can be promoted indirectly by 
various compounds known to participate in CCA pathogenesis, such 
as conjugated bile acids, lipopolysaccharide and prostaglandin E2 
(Figure 1). These molecules, through activation of their membrane 
receptors (TGR5, TLR4 and EP1 respectively), trigger intracellular 

signalling pathways that lead to metalloproteinase activation and 
the consequent release of different ErbB ligands46,47 (Figure 1). 
Moreover, oxidative stress activates the MK2‐dependent transduc‐
tion pathway, which induces HB‐EGF expression in CCA cells.48 It 
was also reported that CAFs express EGFR ligands, including HB‐
EGF, which promote activation of EGFR signalling in CCA tumour 
cells (Figure 1). In turn, EGFR activation induces the production of 
TGFβ by CCA cells, thereby generating a vicious cycle between CCA 
cells and CAFs.49 Thus, EGFR acts as a hub by integrating multiple 
external signals including its own ligands and other compounds such 
as bile acids, bacterial products and inflammatory factors, promoting 
initiation and progression of CCA.

2.2.4 | Secretin and histamine pathways

The role of secretin receptors (SCTR) is poorly known in CCA.50,51 
While SCTR play fundamental functions in normal cholangiocyte 
physiology because they are exclusively expressed in biliary tree, 
the expression of SCTR is downregulated in human CCA contrasting 
with its upregulation in proliferative cholangiocyte during choles‐
tatic diseases. However, in vitro and in vivo studies show that secre‐
tin decreases CCA cell proliferation and tumour burden by inducing 
cell death.50 CCA cells express histamine receptors (HisR) H1‐H4,52 
produce histamine and show upregulated expression of histidine de‐
carboxylase, the enzyme responsible for histamine synthesis via his‐
tidine decarboxylation, as well as reduced expression of monoamine 
oxidase B, the enzyme responsible for histamine breakdown.53 In 
addition, mast cells (MC), that is, the professional histamine‐produc‐
ing cell type, populate the iCCA stroma,53 possibly because iCCA 
cells produce stem cell factor, an established MC chemoattractant.54 
These observations have raised interest in the possibility that an au‐
tocrine/paracrine histamine circuit supports the malignant pheno‐
type of iCCA cells. In vitro and in vivo experiments provide support 
to this hypothesis,53,54 although it remains unclear whether phar‐
macological manipulation of histamine signalling will ever gain rele‐
vance in CCA clinical management. Perhaps, a more viable approach 
is the use of HisR antagonists, which are used in medical conditions 
such as allergies and gastro‐oesophageal reflux, for iCCA chemopre‐
vention in patients diagnosed with PSC. Thus, in the Mdr2(‐/‐) PSC 
mouse model, pharmacological blockade of H1/H2 HisR reduced 
cholangiocyte proliferation, fibrosis and inflammation.56,58 These 
effects were the end result of direct inhibition of histamine activ‐
ity on cholangiocytes as well as dampened MC activation, which, in 
turn, blunted the release of pro‐inflammatory cytokines in the liver 
microenvironment.56 It remains to be seen whether chronic H1/H2 
HR blockade is capable of modifying PSC clinical course in humans.

2.2.5 | PI3K/AKT pathway

The PI3K/AKT pathway regulates several cellular processes, in‐
cluding proliferation, apoptosis and cytoskeletal rearrangement. 
AKT is a serine/threonine kinase, which, upon being activated 
downstream to PI3K, integrates various signalling cascades in a cell 
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context‐dependent manner. The oncogenic activity of AKT in liver 
depends on enhanced cell survival.59 Ectopic expression of activated 
forms of AKT with Yap or Notch1 was found to promote CCA for‐
mation in mice.60,61 Gain of function mutations in PI3K is evident in 
CCA31 and AKT2 expression is found predominantly in pCCA.62 AKT 
activation is induced in eCCA and correlates with phospho‐mTOR, 
loss of PTEN and shorter patient survival63 (Figure 1).

14‐3‐3ζ, which acts by binding to phosphorylated serine/thre‐
onine residues, is upregulated in CCA and correlates with poor 
survival and metastasis. 14‐3‐3ζ contributes to AKT activation and 
promotes cell cycle progression and chemoresistance in CCA.64 In 
contrast, expression of PIP60, a catalytic subunit of the NuA4 acet‐
yltransferase that is consistently downregulated in CCA, acts as a 
tumour suppressor via controlling the PI3K/AKT pathway, thereby 
predicting tumour progression and poor outcome.65 The long non‐
coding RNA MALAT1, whose expression correlates with a poorer 
prognosis in CCA, is implicated in AKT regulation and was found to 
promote CCA cell proliferation.66

2.2.6 | Apoptosis and necroptosis pathways

Apoptosis and necroptosis are two distinct forms of regulated cell 
death. Necroptosis was recently discovered as an immunogenic cell 

death subroutine that critically depends on receptor‐interacting pro‐
tein kinase (RIPK)1 and RIPK3 activities, and mixed lineage kinase 
domain‐like oligomerization and translocation to cell membranes.67 
Necroptosis has been found to be triggered in liver parenchymal cells 
under acute and chronic injury in humans and experimental mod‐
els of disease.68,69 Importantly, mounting evidence suggests that 
necroptosis plays an intricate and often cell autonomous‐independ‐
ent role in carcinogenesis. In pancreatic ductal adenocarcinoma, 
necroptosis impinges on the tumour microenvironment by inducing 
the expression of the chemokine attractant CXCL1/Mincle pathway, 
thus promoting macrophage‐induced adaptive immune suppres‐
sion.72 Furthermore, RIP3‐dependent signalling promotes vascular 
permeability by both triggering necroptosis in vascular endothelial 
cells73 and activating p38/heat shock protein 27.74 Similarly, the 
necroptosis‐associated hepatic cytokine microenvironment gov‐
erns iCCA development from oncogenically transformed hepato‐
cytes. Indeed, Seehawer et al showed that in vivo electroporation 
of hepatocytes with transposon vectors co‐expressing oncogenic 
mouse Myc and mouse NrasG12V or mouse Myc and human AKT1 
resulted mainly in iCCA because of necroptosis‐driven epigenetic 
changes. Conversely, the delivery of the same oncogenic drivers by 
hydrodynamic tail‐vein injection promoted liver apoptosis and solid 
or trabecular hepatocellular carcinomas. This lineage commitment 

F I G U R E  2   Schematic model depicting the interplay between necroptosis, immune milieu and epigenetics in intrahepatic 
cholangiocarcinoma (iCCA). During the execution of necroptotic cell death, phosphorylated receptor‐interacting protein kinase 3 (RIPK3) 
recruits and phosphorylates mixed lineage kinase domain‐like pseudokinase (MLKL), which oligomerizes and causes cell permeabilization 
with concomitant leakage of damage‐associated molecular patterns (DAMPs). Stimulation of toll‐like receptors (TLR) in immune cells by 
danger signals induces a particular profile of cytokine secretion. In turn, the necroptosis‐associated hepatic cytokine microenvironment may 
trigger intracellular signalling cascades in transformed hepatocytes, which regulate chromatin accessibility of T‐Box 3 (Tbx3) and PR domain 
containing 5 (Prdm5) genes. The epigenetic regulation of Tbx3 and Prdm5 directs the lineage commitment in liver tumorigenesis towards iCCA
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was determined by decreased T‐Box 3 (Tbx3) and increased PR 
domain containing 5 (Prdm5) mRNA levels in iCCA compared with 
HCC. Similar findings were conserved in human tumours. Likewise, 
using the same experimental models, pharmacological or genetic in‐
hibition of necroptosis efficiently dampened necroptosis‐associated 
hepatic cytokine microenvironment, also switching iCCA outgrowth 
towards HCC development.75 Overall, necroptosis activation could 
dramatically impinge on hepatic microenvironment guiding lineage 
commitment towards iCCA (Figure 2).

2.3 | Development‐related pathways

2.3.1 | Notch pathway

Notch signalling is implicated in differentiation of bipotent hepato‐
blasts towards the cholangiocyte lineage.76,77 In mammals, there are 
four Notch receptors (NOTCH1‐4) and five ligands, Jagged (JAG1, 2) 
and Delta‐like (DLL1, 3 and 4). Notch signalling is activated through 
cell‐cell contacts that lead to its interaction with cognate ligands ex‐
pressed by adjacent cells. Following activation, proteolytic cleavage 
by the γ‐secretase complex allows the release of the Notch intracel‐
lular domain from the plasma membrane, its translocation into the 
nucleus and the eventual activation of Notch target genes via the 
nuclear effector RBPJ. The signals exchanged between cells through 
these interactions determine cell fates, while its dysfunction is in‐
volved in developmental defects and postnatal pathologies, includ‐
ing CCA.78 Aberrant expression of NOTCH1‐4 and their downstream 
target HES1 has been reported in eCCA, with NOTCH1 and 3 being 
correlated with a poorer histological differentiation.79 In iCCA, 
NOTCH1 was associated with increased proliferation and survival of 
CCA cells, upregulation of pro‐survival MCL‐1 and BCL‐XL80 and en‐
hanced cell migration through RAC1 activation and EMT induction.81 
Overexpression of NOTCH2 was reported in well‐differentiated 
iCCA. In mice, Notch2 drives hepatocyte‐derived CCA formation.82 
Notch3 overexpression was shown to drive CCA onset and progres‐
sion as well through activation of the PI3K‐AKT cascade rather than 
through canonical Notch‐RBPJ signalling.83 NOTCH4 was upregu‐
lated in iCCA as well and was associated with a poor prognosis.84 In 
addition, JAG1 overexpression was observed in human iCCA concur‐
rently with activated AKT. In mice, Akt/Jag1 overexpression in the 
liver induces iCCA exhibiting increased cell proliferation and exten‐
sive stromal reaction, confirming the importance of Notch signalling 
in iCCA85 (Figure 1).

2.3.2 | Hedgehog pathway

The evolutionarily conserved Hedgehog (HH) pathway is implicated 
in tissue patterning during embryonic development and carcinogen‐
esis in postnatal life.78,86 Its activation involves a family of ligands, 
named Sonic (SHH), Indian (IHH) and Desert (DHH) Hedgehog, 
which interact with the patched cell surface receptor. In response 
to HH binding, Patched inhibits Smoothened (SMO), thus initiating 
a downstream signalling pathway cascade that culminates in nuclear 

localization of the Glioblastoma (Gli) family transcription factors 
and the attendant transcriptional regulation of Gli‐target genes78 
(Figure 1). HH pathway activation in liver progenitors expands the 
pool of cells available to restore liver integrity following acute or 
chronic liver damage. However, constitutive activation of the HH 
pathway promotes dysfunctional repair and results in chronic he‐
patic inflammation, fibrosis and cholangiopathies.87,88 Notably, SHH 
was found to be significantly expressed in iCCA.90 It must be noted 
that canonical HH signalling requires that cells express cilia, yet CCA 
cells do not display cilia on their surface.91 Interestingly, it was re‐
ported that non‐canonical HH signalling may be triggered in CCA 
cells via Gi‐protein‐coupled receptors, as also reported in the fruit 
fly Drosophila melanogaster,92 thereby promoting cytoskeletal re‐
modelling and cell migration through RhoA and Rac activation.91,93

2.3.3 | Wnt/β‐catenin pathway

The Wnt/β‐catenin signalling pathway regulates hepatobiliary de‐
velopment and promotes cell survival in CCA.94,95 The function 
of β‐catenin is central in the canonical Wnt signalling cascade that 
comprises a large family of Wnt ligands and Frizzled lipoprotein re‐
ceptors. While, in normal epithelial cells, β‐catenin is mostly bound 
to the E‐cadherin pool engaged in cell‐cell junctions in many trans‐
formed epithelia, including BTC cells, loss of E‐cadherin promotes 
accumulation of β‐catenin in the nucleus. Nuclear β‐catenin associ‐
ates with the LEF/TCF transcription factor to regulate the expres‐
sion of target genes involved in cell proliferation, differentiation, 
migration and apoptosis (eg CCND2, CDKN2A, BIRC5).96,97

Numerous studies have shown that CCA has a high desmoplastic 
stroma in which inflammation influences tumour growth.98,99 In a rat 
model of CCA and in human tumours, WNT7B was present in the 
stroma and often co‐localized with a subset of CD68 + macrophages 
surrounding the tumour cells.96 These macrophages were identified 
as a source of WNT signals that acted to enhance CCA cell prolifer‐
ation via β‐catenin96 (Figure 1). Wnt/β‐catenin signalling regulates 
SRY‐box 17 (SOX17) expression, a transcription factor which is key 
to the differentiation of pluripotent stem cells to cholangiocytes.100 
Downregulation of SOX17 during CCA development promotes chol‐
angiocyte dedifferentiation and is correlated with worse outcomes 
after tumour resection. Additionally, overexpression of SOX17 in 
CCA cells decreased their tumorigenic capacity by increasing oxida‐
tive stress and apoptosis, also inhibiting cell migration and Wnt/β‐
catenin‐dependent proliferation.100

2.4 | Metabolic and epigenetic pathways linked to 
IDH1/2 mutations

Recurrent mutations of the isocitrate dehydrogenase (IDH) genes 
IDH1 and IDH2 were reported exclusively in iCCA, with a prevalence 
of 15%‐20%. IDH1/2 mutations generate neomorphic IDH enzymes 
which convert α‐ketoglutarate, that is, the normal end product of 
IDH1/2 activity, to 2‐hydroxyglutarate (2‐HG).101 In cells express‐
ing mutant IDH enzymes (mIDH1/2), 2‐HG accumulates at levels 
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(5‐30 mmol/L) that are orders of magnitude higher than those de‐
tected in normal cells (100 µmol/L) (Figure 3). In cancer cells, 2‐HG 
appears to be a terminal metabolite, the accumulation of which has 
been shown to affect several metabolic pathways, with a major im‐
pact on epigenetic regulation.101 Thus, 2‐HG‐dependent inhibition of 
histone N‐methyl‐lysine demethylases and 10‐11 translocation (TET) 
5‐methylcytosine hydroxylases has been linked to the markedly 
increased levels of histone and DNA methylation, respectively, in 
mIDH tumour cells.101 In line with this, the mIDH subgroup showed 

the greatest level of DNA methylome alterations among iCCA sam‐
ples classified on the basis of the three most frequently mutated 
genes, that is, TP53, KRAS and IDH1/2.102 A major consequence of 
the prominent epigenetic changes in mIDH cells appears to be altered 
cell differentiation.101 IDH1/2 mutations were shown to block the 
differentiation of bipotent mouse liver cells towards the hepatocyte 
lineage, an effect ascribed to inhibition of hepatocyte nuclear factor 
4α expression.103 This, in turn, pushed oncogenic conversion of liver 
progenitors along the biliary epithelial lineage.91 Additional potential 
roles of 2‐HG in mIDH cells include the disruption of HIF‐1α regula‐
tion, altered collagen biogenesis and increased DNA damage.101

2.5 | Epigenetic and/or DDR pathways linked to 
BAP1, PBRM1 and ARID1A mutations

Genes encoding proteins involved in the regulation of chromatin 
organization, including ARID1A, PBRM1 and BAP1, are frequently 
mutated in CCA104 (Figure 3). These mutations are predicted to be 
loss of function and causative of transformation.104 ARID1A, which 
has DNA binding activity, and PBRM1, which binds to histones, are 
non‐catalytic subunits of BAF and PBAF complexes (Figure 3) re‐
spectively.105 BAF and PBAF complexes mediate chromatin remod‐
elling and are involved in regulating transcription, DNA replication 
and DNA repair.105 Arid1a deletion in mice is sufficient to initiate 
tumour development in some contexts, while being implicated only 
in advanced stages of tumorigenesis in others.106 ARID1A has been 
implicated in the control of cell cycle, possibly via regulation of p53 
target genes,106 reactive oxidative species production, cell motility 
and DNA damage response (DDR) via double‐strand break (DSR) and 
mismatch (MMR) repair.107,108 A recent study has proposed a role 
for ARID1A in negative regulation of YAP/TAZ activity in the nu‐
cleus, linking this regulatory mechanism to mechanosignalling.109 In 
that model, liver‐specific Arid1a ablation was per se inconsequential, 
but led to the development of iCCA in the context of liver damage 
and was associated with tissue stiffening.109 Loss of PBRM1 was re‐
ported to occur late in iCCA.110 In line with its role in tumour sup‐
pression, PBRM1 was shown to be required for efficient DSR111 and 
also for maintaining genome integrity.112 BAP1 is a nuclear deubiq‐
uitinating enzyme, involved in chromatin remodelling, transcrip‐
tional regulation and DSR.105,113,114 Inherited heterozygous BAP1 
mutations predispose to a wide range of malignancies,115 including 
CCA.116 BAP1 tumour suppressor activity was linked to increased 
ERK and JNK activity in CCA cell lines.117

3  | TARGETED THER APIES

3.1 | Microenvironment and inflammation‐related 
pathways

3.1.1 | IL‐6/STAT3

In 2007, the utility of increased serum IL‐6 values as a biomarker for 
CCA tumour burden and therapy response was reported. Therefore, 

F I G U R E  3   Inactivation of epigenetic regulators may affect 
double‐strand break repair in intrahepatic cholangiocarcinoma 
(iCCA) cells, thus generating synthetic lethality with poly ADP 
ribose polymerase (PARP) inhibitors. The nuclear proteins ARID1A 
and PBRM1 (drawn as circles labelled by A and P respectively) 
are subunits of the large BAF and PBAF multi‐protein complexes 
(both drawn as an oval for the sake of simplicity), which 
regulate chromatin remodelling. BAP1 is a chromatin‐associated 
deubiquitinating enzyme. Loss of function mutations of ARID1A, 
PBRM1 and BAP1 (indicated by a yellow symbol) compromise the 
DNA damage response (DDR) involved in double‐strand break 
repair and therefore sensitize tumour cells to PARP inhibitors 
(PARPi). IDH1 and IDH2 are metabolic enzymes located in the 
cytosol and mitochondria respectively. Neomorphic IDH1/2 
mutations (dark grey symbol) lead to excess production of 2‐
KG. This oncometabolite is capable of inhibiting the histone 
demethylases KDM4A/B, which are involved in double‐strand 
break repair; thus, functional inactivation of KDM4A/B by excess 
2‐KG may be synthetic lethal with PARPi
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targeting IL‐6 was suggested as a promising therapy for CCA.118,119 
However, anti‐IL‐6 therapies have not been translated into the clinic 
as yet. Even though IL‐6 can act through a membrane‐bound recep‐
tor alpha‐chain (mIL‐6R, the so‐called classic IL‐6 signalling) or via 
soluble forms (sIL‐6R, trans‐signalling), Kleinegger and co‐workers 
found that IL‐6Rα expression is downregulated in CCA, which was 
correlated with poor overall survival. Furthermore, by discriminat‐
ing classic and trans‐signalling in CCA cell lines, it was found that 
the blockade of IL‐6 trans‐signalling and the activation of IL‐6 classic 
signalling are tumour promoting.120 These findings suggested that an 
IL‐6R‐directed therapy in CCA may facilitate tumorigenesis and were 
in keeping with the datum that IL‐6Rα expression is rather a good 
prognostic marker.

However, many compounds in experimental cancer trials exert 
at least some of their tumour suppressing action by inhibiting the 
activation of STAT3, instead of directly targeting IL‐6 and its re‐
ceptors. For example, the EGFR inhibitor afatinib reduces prolif‐
eration of iCCA cell lines and sensitizes them to cell death signals 
concomitantly with pSTAT3 reduction5; SC‐43, a sorafenib deriv‐
ative, inhibits STAT3 phosphorylation by a Src homology region 2 
domain‐containing phosphatase‐1 (SHP1)‐dependent mechanism, 
inducing cell cycle arrest/apoptosis in cultured CCA cell lines and 
growth inhibition of CCA xenografts in the mouse.121 Other drug 
candidates with similar outcome are metformin, natural compounds 
from plants (berberine, cryptotanshinone, xanthohumol, matrine), 
genestein and the synthetic sphingosine immunosuppressant 
FTY720.122,123 Despite these data, the assessment of pSTAT3 ex‐
pression has not been translated into the clinic as a biomarker for 
CCA management.

3.1.2 | TGFβ/SMAD pathway

Targeting TGFβ signalling via LY2157299, an inhibitor of the TGFβ 
receptor kinase, or CX4945, a Protein Kinase CK2 (formerly casein 
kinase II) inhibitor that blocks TGFβ‐mediated EMT, resulted in re‐
duction of CCA cell migration and survival.128 Since TGFβ is a known 
driver of myofibroblast generation, this is also relevant regarding 
cancer feeding fibroblasts and in a rat model of thioacetamide (TAA)‐
induced fibrosis that progresses to CCA, the anti‐TGFβ neutralizing 
monoclonal antibody 1D11, inhibited tumour formation, presumably 
by reducing pro‐tumorigenic fibrosis/stroma.129

3.2 | Cell survival/death‐related pathways

3.2.1 | FGFR2 fusions

As discussed above, the transforming activity of FFs, assessed 
through their ectopic expression in a number of cellular models, 
was found to require FF catalytic activity.29,34,35 In line with these 
preclinical studies, a seminal paper by Borad and co‐workers re‐
ported encouraging clinical responses to non‐selective FGFR in‐
hibitors in FF‐positive patients carrying chemorefractory iCCA.30 
Subsequently, the ad hoc analysis of a small group of BTC patients 

enrolled in the multicancer MOSCATO 01 trial revealed that iCCA 
patients carrying FF benefitted from the FGFR‐specific tyrosine 
kinase inhibitor (F‐TKI) therapy to which they were assigned based 
on the tissue‐agnostic and genotype‐matched therapeutic pro‐
tocol informing the MOSCATO 01 trial design.130 More recently, 
a phase II clinical trial tested the activity of the F‐TKI BGJ398 
in 61 advanced/metastatic chemorefractory iCCA patients with 
FGFR genomic alterations (79% of which were FGFR2 fusion 
genes). Focusing on FF‐positive patients, objective responses 
were documented in 18.8% of the cases, while disease control 
rate (DCR) was about 80%.131 ARQ 087/derazantinib, another 
orally bioavailable small molecule F‐TKI, was tested in a phase 
I/II trial that enrolled 29 patients. Partial responses were ob‐
served in 20.7% of patients, while the overall DCR was 82.8%.132 
Collectively, results from the MOSCATO 01, BGJ398 and ARQ 
087 trials indicate that F‐TKIs show promising activity in iCCA 
patients selected on the basis of FF expression. Additional F‐TKIs 
are currently being tested in phase II clinical trials enrolling FF‐
positive iCCA patients, namely pemigatinib (NCT02924376) and 
TAS‐120 (NCT02052778). The clinical development of BGJ398 in 
iCCA is also progressing. Thus, BGJ398 will be compared against 
the standard of care gemcitabine + cis‐platinum combination in 
a phase III multicenter, open‐label, randomized, controlled study 
(NCT03773302) that will enrol unresectable or metastatic iCCA 
patients.

3.2.2 | BRAF‐, KRAS‐ and ERK‐targeted therapies

Oncogenic RAS proteins have been notoriously difficult to target. 
Consequently, signalling molecules acting downstream to RAS, such 
as MEK1 and PI3K‐AKT‐mTOR, have been the focus of clinical inves‐
tigations in RAS‐mutated tumours. These studies have not been met 
by appreciable success in CCA, and therefore, genotype‐matched 
therapeutic approaches remain problematic in KRAS‐mutated CCA 
patients.133

Although present at low prevalence and exclusively in iCCA to 
date, BRAF mutations at codon 600, mostly V600E, are of inter‐
est because they are potentially predictive of clinical response to 
BRAF kinase inhibitors. Disappointingly, responses to single agent 
vemurafenib were observed only in 1 of 12 BRAF V600E iCCA 
patients enrolled in a Phase 2 basket trial.134 Primary resistance 
to vemurafenib in iCCA might therefore recapitulate the paradigm 
observed in colorectal cancer, where feedback reactivation of 
EGFR upon BRAF V600E inhibition restores signal flow through 
the RAS‐ERK pathway, thereby nullifying the effects of BRAF 
blockade.135 In line with this model of primary resistance, two in‐
dependent reports described impressive and durable responses 
to the dabrafenib and trametinib combination (ie dual BRAF/MEK 
blockade) in three BRAF V600E iCCA patients, who were assigned 
to this therapeutic protocol after being evaluated by an institu‐
tional molecular tumour board.136,137 Thus, for the time being, 
double blockade of BRAF and MEK1/2, which is already approved 
in melanoma,138 appears to deserve consideration as a valuable 
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off‐label therapeutic option in BRAF V600E chemorefractory 
iCCA.

3.2.3 | EGFR pathway

Two major classes of anti‐ErbB therapies are used in cancer, that 
is, monoclonal antibodies, which block ligand binding, and TKIs, 
which target the catalytic domain of the receptor. Treatment of 
CCA cell lines with anti‐EGFR therapies inhibits cell prolifera‐
tion45,139 and induces G1‐phase arrest and apoptosis.139,140 ErbB2 
inhibitors alone were also effective in vitro in CCA cell lines141 
and dual EGFR/ErbB2 inhibitors, such as lapatinib,141 afatinib5 or 
NVP‐AEE788,142 are even more efficient than anti‐EGFR thera‐
pies alone. Besides cell proliferation, EGFR TKIs, such as gefitinib, 
reduce the migratory and invasive properties of CCA cells42,43 by 
interfering with EMT. In a mouse CCA xenograft model, gefitinib 
was efficient in reducing CCA tumour growth43 and restoring E‐
cadherin membrane expression in CCA cells,43 implying that ge‐
fitinib can reverse EMT in CCA cells in vivo. Anti‐EGFR therapies 
have also been tested in combination with other types of treat‐
ments, including chemotherapy (gemcitabine),143 other anti‐ErbB 
144 and non‐ErbB‐targeted therapies (including MEK,145 mTOR146 
or VEGFR147 inhibitors). All these combinations showed enhanced 
inhibition both in vitro and in vivo. At the clinical level, anti‐EGFR 
therapies have been the most studied, either as single agents or in 
combination regimens.41 However, although they showed efficacy 
in preclinical studies, they did not provide significant improvement 
in overall survival in phases II and III clinical trials.41 Interestingly, 
a recent phase Ib study showed longer median overall survival 
in CCA patients treated with pulsatile erlotinib combined with 
chemotherapy compared to patients treated with standard chemo‐
therapy alone, suggesting an effect for pulsatile administration of 
anti‐EGFR.148

3.2.4 | PI3K/AKT pathway

In one clinical investigation, all tested CCA patient samples dis‐
played AKT activity, as measured by in vitro kinase assays. 
Furthermore, combined targeting of mTOR and AKT using RAD001 
and MK‐2206 small molecule inhibitors shows significant antitu‐
mour effects in vitro and in preclinical models,149,150 suggesting a 
promising potential for clinical use. When comparing the responses 
of HCC and CCA cell lines to sorafenib, the latter were found to 
be less sensitive, because of lower inhibition of both ERK signal‐
ling and cell proliferation. When compared to HCC, CCA cells 
showed also increased pAKT. Accordingly, combined inhibition 
of both ERK and AKT/mTOR pathways by sorafenib + everolimus 
(mTOR inhibitor) resulted in superior CCA cell proliferation inhibi‐
tion.152 Celecoxib, a cyclooxygenase‐2 (COX‐2) inhibitor, was found 
to inhibit the proliferation of CCA cells and to induce cell death 
in vitro and in vivo by reducing pAKT levels and subsequently fa‐
cilitating pro‐apoptotic events. This drug effect could be rescued 
by prostaglandin E2 treatment,153 which supported the rationale 

underpinning the therapeutic strategy. Finally, the natural com‐
pound genestein showed experimental antitumour effects against 
CCA by interfering with AKT activation.126

3.2.5 | Apoptosis and necroptosis pathways

The knowledge of the association between necroptosis, immune 
milieu, epigenetics and cancer 75 has not yet translated into a pro‐
phylactic pharmacological strategy against CCA. One of the reasons 
for this is the lack of specific pharmacological necroptosis inhibitors, 
further to eventual concerns regarding the safety of long‐term inhi‐
bition of necroptosis. The first clinical trials with a specific necrop‐
tosis inhibitor GSK2982772, a RIPK1 kinase inhibitor, are ongoing 
for psoriasis (NCT02776033), rheumatoid arthritis (NCT02858492) 
and ulcerative colitis (NCT02903966).154 Ponatinib and pazopanib, 
multitarget TKIs clinically used in the treatment of cancer, were 
also reported to inhibit necroptosis at low doses; RIPK1 is the main 
functional target of pazopanib, whereas ponatinib directly binds 
and inhibits both RIPK1 and RIPK3.155 Finally, dabrafenib, used for 
the treatment of BRAF(V600)‐mutated metastatic or unresectable 
melanoma, selectively inhibits RIPK3 kinase activity, ameliorating 
early necroptosis and liver injury associated with acetaminophen 
overdosed in mice.156

Conversely, evasion from programmed cell death is also a can‐
cer hallmark. In that regard, RIPK3 expression is often silenced 
through methylation of its promoter in cancer cells, including 
hepatoblastoma cell lines, and restoring RIPK3 expression through 
genomic demethylation could promote sensitivity to chemother‐
apeutics.157 RIPK3 was weakly expressed but not silenced in a 
cohort of 42 CCA patients with no preoperative radiation or che‐
motherapy. The potential of the pharmacological induction of this 
immunogenic cell death pathway as an individualized approach 
to overcome chemoresistance in CAA was further highlighted by 
the ability of a natural alkaloid component to specifically induce 
necroptosis in two human CCA cell lines.158 Overall, the modula‐
tion of necroptosis in CCA is a double‐edge sword; the inhibition 
of necroptosis, as a chemopreventive approach, and its induc‐
tion, as a therapeutic strategy, is simultaneously promising and 
challenging.

3.3 | Development‐related pathways

3.3.1 | Notch pathway

Several Notch signalling inhibitors, different from each other in 
terms of classification, molecular target and mechanism of action, 
are currently being tested in clinical trials. Monoclonal antibodies 
against Notch1 or Notch2 display antitumour and anti‐angiogenic 
properties with limited gastrointestinal toxicity, while the simul‐
taneous inhibition of Notch1 and 2 leads to gastrointestinal tox‐
icity.159,160 Likewise, mAbs targeting the DLL4 Notch ligand (ie 
REGN421 and OMP‐21M18) disrupt tumour angiogenesis, com‐
promising solid tumour growth, in the absence of intestinal toxicity 
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in vivo.161 Another class of drugs that is suitable for targeting the 
Notch pathway is that of γ‐secretase inhibitors (GSI), which pre‐
vent the final proteolytic cleavage of Notch receptors.162 Recently, 
a study on patients with advanced or metastatic solid tumours, in‐
cluding participants who have a histological prevalence of CCA and 
mutations, amplification or alterations in the expression of genes/
proteins related to the Notch pathway, was conducted using GSI 
LY3039478 (NCT02784795), which had been shown to inhibit Notch 
activation and downstream biological effects. LY3039478 was well 
tolerated in heavily pretreated patients. Ongoing studies are testing 
LY3039478 as single agent or in combination with a targeted agent 
or chemotherapy.163,164

Further approaches to inhibit Notch signalling come from the use 
of proteins, fragments or peptides that have recently been discov‐
ered as a new class of small molecule inhibitors of protein‐protein 
interactions (PPIs) capable of targeting the assembly of NOTCH 
transcription. These include CB‐103 (NCT03422679), a first‐in‐class 
orally available small molecule with an excellent non‐clinical safety 
profile.159,165 CB‐103 (NCT03422679) is being evaluated in ongoing 
clinical trials that enrol patients with advanced or metastatic solid 
tumours, including gastrointestinal cancers that include colorectal 
cancer, CCA carcinoma, gastric cancer in phase I/IIA.

3.3.2 | HH pathway

Several studies suggest that activation of the non‐canonical HH sig‐
nalling pathway is a potent mechanism for the initiation and main‐
tenance of CCA.91,166 As reported by Khatib et al, treatment with 
cyclopamine, a specific inhibitor of Hedgehog signalling by direct 
binding to the heptahelical bundle of Smo, and human chimeric 5E1 
(ch5E1) that binds Shh with enhanced calcium ions inhibited the pro‐
liferation of human CCA cell lines and downregulated the Hedgehog 
target genes Gli1 and Gli2. The downregulation of these target genes 
was correlated with an increased number of apoptotic cells. In vivo, 
blockage of the Hedgehog pathway led to a significant inhibition 
of tumour growth.167,168 However, Fingas and colleagues reported 
that secretion of platelet‐derived growth factor (PDGF) by CCA‐as‐
sociated myofibroblasts promotes resistance to apoptosis in CCA 
cells and may prevent them from responding to cyclopamine. This is 
because CCA cells are able to activate the Hedgehog pathway in a 
HH‐independent fashion via PDGF‐mediated activation of SMO.168

The SMO inhibitor vismodegib was tested in in vivo models and 
showed significant antitumour activity. The efficacy of vismodegib 
was also highlighted in the most advanced stage of cancer, demon‐
strating a reduction in migration and dissemination of CCA cells after 
the initial implantation of the tumour in vivo.91 Going forward, an‐
other powerful SMO inhibitor, sonidegib, has been tested in numer‐
ous clinical trials of several solid tumours including liver tumours.169 
Sonidegib has shown remarkable antitumour activity with a favour‐
able clinical safety profile; therefore, sonidegib and vismodegib have 
received Food and Drug Administration (FDA) approval as inhibitors 
of the Hedgehog pathway for the treatment of solid tumours includ‐
ing CCA (NCT02465060).

3.3.3 | Wnt/β‐catenin pathway

Suppression of Wnt/β‐catenin signalling could be a potential target 
for inhibition of CCA growth. Boulter et al96 showed that inflamma‐
tory macrophages are necessary to increase the activation of WNT 
pathway in CCA cells. Accordingly, two specific inhibitors of the 
canonical Wnt pathway, ICG‐001 and C‐59, which act by inhibiting 
the CTNNB1‐CTBP signal or WNT ligand secretion reduced CCA 
tumour growth in vivo. CGX1321, a small peptide that inhibits an O‐
acyltransferase necessary for the secretion of Wnt ligands, is being 
evaluated in a phase I clinical trial (NCT02675946). Another ongoing 
clinical trial is on DKN‐01, a humanized monoclonal antibody that 
inhibits DKK1. Although DKK1 is a WNT antagonist, it appears to 
increase tumour growth and metastasis in preclinical models and 
its high expression correlates with poor prognosis in a series of 
tumours, indicating that DKK1 has more complex cellular and bio‐
logical functions than those already investigated. In this regard, it 
has been observed that DKN‐01 inhibits invasion and migration in 
CCA.170 DKN‐01 is in a phase I trial in combination with gemcitabine 
and cisplatin in patients with hepatocellular carcinoma, CCA or gall‐
bladder cancer, amongst others (NCT02375880). Finally, Wnt‐β‐
catenin is targeted in patients with other forms of advanced tumours 
in which only few of them show an activation of Wnt‐β‐catenin sta‐
tus and/or genetic mutations (NCT02013154, NCT02655952 and 
NCT02020291).

3.4 | Metabolic and epigenetic pathways linked to 
IDH1/2 mutations

Several compounds capable of inhibiting mIDH1/2 enzymatic ac‐
tivity, and therefore curbing the accumulation of the pathogenic 
2‐HG oncometabolite in mIDH cancer cells, are in clinical devel‐
opment.101 Among them, AG120 (ivosidenib), which has already 
gained FDA approval for the treatment of mIDH1 AML, is the most 
clinically advanced IDH inhibitor in iCCA and is being currently 
tested in a phase III clinical trial (NIH identifier: NCT02989857). 
As an alternative to direct IDH1/2 targeting, synthetic lethality 
screenings have been exploited as a strategy to discover vulner‐
able dependencies associated with the mIDH status. Using this ap‐
proach, Saha and colleagues identified dasatinib, a multi‐TKI, that 
inhibits BCR‐ABL and Src kinase amongst others, as a synthetic 
lethal drug in IDH1/2‐mutated iCCA cells.171 Notably, dasatinib 
scored poorly against non‐iCCA mIDH1/2 tumours,172 which again 
emphasizes the often cell context‐dependent nature of synthetic 
lethal interactions.173 The tyrosine kinase Src was identified as the 
critical dasatinib target in iCCA cells, but the molecular mechanism 
underpinning this vulnerability was not clarified.171 Preclinical 
studies in glioma, AML and sarcoma cells identified a synthetic le‐
thal interaction between mIDH1/2 and poly ADP ribose polymer‐
ase inhibitors (PARPi).174,175 Mechanistically, 2‐HG inhibits histone 
lysine demethylases, which in turn inhibit homologous recombina‐
tion (HR)‐dependent DSR and therefore generate dependence on 
PARP activity.175 Based on these results, the activity of olaparib 
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against mIDH tumours, including iCCA, is being evaluated in a 
phase II clinical trial (NCT03212274).

3.5 | Epigenetic and/or DDR pathways linked to 
BAP1 and ARID1 mutations

As noted above, mutations of ARID1A and BAP1 may also inhibit 
DSR and therefore confer sensitivity to PARPi.108,113,114 This no‐
tion informed the design of an ongoing phase II clinical trial that 
will evaluate the activity of the PARPi Niraparib in CCA and other 
solid tumours carrying mutations of HR genes, including ARID1A and 
BAP1 (NCT03207347). ARID1A mutations may also sensitize cancer 
cells to inhibitors targeting Aurora kinase A176 and ATR,177 although 
direct demonstration that this is actually the case in CCA models is 
still lacking.

The HR defect caused by BRCA1/2 mutations sensitizes tumour 
cells to therapies based on immune checkpoint inhibitors blockade 
(ICB).178 Although it is still to be proved that mutational inactiva‐
tion of any HR gene suffices to cause a bona fide ‘BRCAness’ pheno‐
type, the question arises whether CCA patients carrying mutations 
of ARID1A, BAP1, PBRM1 or any other HR gene could benefit from 
ICB‐based therapies. This appears to be relevant for two reasons. 
First, a recent study ranked BTC as the second malignancy, among 
21 tumour lineages analysed, for frequency of mutations of HR 
genes. Specifically, HR gene mutations were detected in 28.9% of 
342 BTC samples, with two‐third of the mutations affecting ARID1A 
and BAP1.179 Second, ARID1A and PBRM1 mutations were reported 
to be determinants of clinical responses to ICB in some tumour 
types and experimental models.108,180,181 Clinical trials are cur‐
rently evaluating ICB in unselected BTC patients (NCT03473574, 
NCT02834013, NCT03250273). Thus, it will be interesting to evalu‐
ate whether therapeutic responses to ICB in CCA patients correlate 
with mutations affecting HR genes. Remaining in the vein of puta‐
tive ‘BRCAness’, it will be important to assess whether HR gene mu‐
tations predict responsiveness of CCA patients to platinum‐based 
chemotherapy.

Finally, mutations in epigenetic regulators such as BAP1, ARID1A 
and PBRM1 may render tumour cells dependent on EZH2 activity 
and, consequently, highly sensitive to epigenetic drugs.182 In line, 
pharmacological inhibition of EZH2 was reported to be detrimental 
to iCCA cell proliferation in vitro,183 an observation that needs to be 
further substantiated in genetically defined CCA models.

3.6 | FXR‐ and TGR5‐mediated pathways

In previous studies, expression of the bile acid nuclear receptor FXR 
has been shown markedly reduced in iCCA.184 This was accompa‐
nied by a reduction (from 80% to 50%) in the predominance of the, 
in general, more active isoform FXR‐α1 vs FXR‐α2.185 In contrast, 
expression of the bile acid plasma membrane receptor TGR5 seems 
to be relatively well preserved in iCCA.186 Based on data showing 
the ability of obeticholic acid (FXR agonist) and INT‐777 (TGR5 ago‐
nist) to affect the biology of two CCA cell lines (EGI1 and TFK1), FXR 

and TGF5 have been suggested as potential therapeutic targets for 
the treatment of CCA.186 In the same study, mice with orthotopic 
intrahepatic implant of EGI1 cells were treated with obeticholic acid 
or INT‐777. Of note, FXR, but not TGR5 activation, inhibited tumour 
growth. Since the expression levels of FXR in implanted EGI1 cells 
were negligible, whereas TGR5 expression was relatively well pre‐
served, the actual mechanistic implications of pharmacological ac‐
tivation of FXR and TGR5 remains uncertain. The question arises as 
to whether indirect effects through changes in bile acid homoeosta‐
sis because of activation of FXR in surrounding hepatocytes might 
be involved in the inhibitory effect of obeticholic acid observed in 
this model. In addition, since FXR expression has been identified in 
hepatic stellate cells, one of the precursors of CAFs,187 other pos‐
sibility is that the inhibitory action of obeticolic acid is mediated 
by a direct action on these stromal cells, as it has been described 
in breast cancer.188 Thus, further preclinical investigations are still 
needed to support a beneficial effect of obeticholic acid treatment 
on CCA outcome.

4  | MECHANISMS OF CHEMORESISTANCE

4.1 | Molecular bases of multidrug resistance 
phenotype

The response of CCA to the currently available conventional and tar‐
geted chemotherapy is extremely poor because of the existence of 
complex and very efficient mechanisms of chemoresistance (MOC) 
that help cancer cells to escape from the effects of cytostatic drugs. 
The result of the combination of all MOC expressed by tumour cells 
characterizes the so‐called multidrug resistance (MDR) phenotype. 
Although most genes involved in MDR are also expressed in normal 
cholangiocytes, where they play a variety of roles in the physiology 
of these cells, they are usually upregulated (in some cases downreg‐
ulated) during carcinogenesis accounting for constitutive chemore‐
sistance. Moreover, in response to pharmacological treatment, their 
expression may be further altered contributing to acquired chem‐
oresistance. More than 100 genes involved in chemoresistance have 
been identified and classified into seven groups of MOC based on 
their mechanism of action.189,190

4.2 | Lack of response to conventional and targeted 
chemotherapy

The molecular targets of many antitumour drugs are located intra‐
cellularly, and therefore, they need to be taken up to reach their 
sites of action inside the cell to carry out the desired pharmaco‐
logical action. Accordingly, to become effective, these drugs must 
cross the plasma membrane by simple diffusion or more frequently 
through carrier proteins. Thus, changes in the expression and/or 
function of uptake transporters and export pumps can determine 
final intracellular concentrations of active agents and hence the 
overall response to the chemotherapy. These MOC have been in‐
cluded into the MOC‐1 subgroup, which includes MOC‐1a (leading 



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

     |  13FOUASSIER et al.

to impaired drug uptake) and MOC‐1b (accounting for enhanced 
drug efflux).

Thus, the reduction in the expression levels of the organic 
cation transporter 1 (OCT1; SLC22A1) and 3 (OCT3; SLC22A3) 
in CCA can affect CCA response to cationic drugs. These trans‐
porters have been associated with uptake of the TKI sorafenib.191 
Accordingly, a reduction in their expression or the appearance of 
non‐functional forms, by mutation or aberrant splicing, lead to 
lower sensitivity to the cationic drugs taken up by these trans‐
porters.191,192 Also included in MOC‐1a is the altered function of 
members of the families of concentrative nucleoside transporters 
(CNTs) (SLC28) and equilibrative nucleoside transporters (ENTs) 
(SLC29), which are involved in the uptake of nucleoside analogues, 
such as gemcitabine and 5‐fluorouracil (5‐FU). Studies on CCA cells 
have shown downregulation of ENT1 in 5‐FU‐resistant cell lines.193 
Moreover, low ENT1 expression has been suggested as a predic‐
tive biomarker of chemoresistance to gemcitabine in patients with 
advanced CCA.194 Low expression in CCA tumours and cell lines of 
the copper transporter CTR1 (SLC31A1), which is involved in cis‐
platin uptake, has been associated with the poor sensitivity of CCA 
cells to cisplatin.184

On the contrary, upregulation of ATP‐binding cassette (ABC) 
proteins involved in drug efflux leads to a reduced response to che‐
motherapy by reducing the intracellular content of chemotherapeu‐
tic agents (MOC‐1b). A common case of ABC‐mediated reduction in 
drug bioavailability in cancer cells is due to MDR1, previously termed 
P‐glycoprotein (ABCB1). The expression of this protein has been 
detected in archival formalin‐fixed paraffin‐embedded gallbladder 
cancer tissues195 and CCA cell lines.196 MDR1 can play a role in the 
efflux of a large variety of drugs, such as doxorubicin, etoposide, pa‐
clitaxel and vinblastine, and its expression has been associated with 
poor prognosis in iCCA patients.197 In addition, efflux transporters 
of the ABCC family of multidrug resistance‐associated proteins 
(MRP) MRP1 (ABCC1) and MRP3 (ABCC3) are the most abundantly 
expressed in CCA,184 where they could mediate the export of many 
drugs commonly used in CCA chemotherapy.

Among genes included in MOC‐2 are those leading to a de‐
creased ability of cancer cells to activate prodrugs or an enhanced 
detoxifying capability, in either event resulting in a lower propor‐
tion of active vs inactive agent inside the cells and hence to lower 
sensitivity to chemotherapy. The enzyme orotate phosphoribosyl 
transferase that participates in the biotransformation of 5‐FU into 
its active metabolite has been found upregulated in 5‐FU‐sensitive 
CCA tumours whereas it is poorly expressed in 5‐FU‐refractory 
cases.198 The phase I detoxifying enzyme NAD(P)H‐quinone ox‐
idoreductase 1 (NQO1) plays important roles in chemoresistance 
and proliferation in several cancer cell lines including CCA where 
NQO1 has been described to be involved in chemoresistance to 5‐
FU, doxorubicin or gemcitabine. Recent studies indicate that the use 
of the β‐eudesmol (a compound that suppresses NQO1 enzyme ac‐
tivity) enhances chemosensitivity to 5‐FU and doxorubicin in CCA 
cells.199 Metallothioneins, which have been associated with the neu‐
tralization of platinum‐derived drugs, are overexpressed in CCA and 

could be useful to predict the poor response of patients to platinum 
derivative‐based chemotherapy.200

Changes in drug molecular targets, which can also lead to poor 
response to chemotherapy, are classified into MOC‐3. As an exam‐
ple, analysis of the expression levels and/or the detection of the 
presence of genetic variants of EGFR gene have been suggested to 
be useful to predict the pharmacological outcome of CCA patients 
treated with anti‐EGFR therapy.201 Although primary or secondary 
EGFR‐acquired mutations (such as T790M) are the most prevalent 
mechanism of resistance in other cancers, these mutations are not 
frequent in CCA and their impact is unknown. However, resistance 
to anti‐EGFR therapies can also result from mutations in down‐
stream signalling proteins, such as BRAF and KRAS, which are very 
frequent in CCA.202 The recent development of a patient‐derived 
xenograft model of iCCA bearing the most frequent KRAS mutation 
(G12D) should provide answers on the role of this mutation in the 
efficacy of anti‐EGFR and other targeted therapies.145 In addition, 
tumour cells can use alternative signalling pathways through other 
growth receptors. In this sense, an upregulation of IGF2/IR/IGF1R 
signalling pathway has been recently described in CCA cells after 
long‐term exposure to erlotinib.203 Concerning resistance to F‐TKIs 
in iCCA patients carrying FGFR2 fusions, it was observed that a 
major, albeit not unique, mechanism of resistance to BGJ398 was 
drug‐induced selection of tumour subclones carrying mutations in 
the FF tyrosine kinase domain. These mutations inhibited binding of 
BGJ398 to the target.172 Thus, further clinical development of F‐TKIs 
in the management of iCCA will require to invest considerable ef‐
forts in understanding and counteracting molecular mechanisms of 
therapeutic resistance. Perhaps reassuringly, a few options already 
stand up at the horizon. For instance, F‐TKIs capable of binding to 
kinase‐mutated FFs are being developed.204 HSP90 inhibitors have 
also shown promising activity against FFs.36 This is because FFs are 
dependent on the HSP90‐centred chaperone machinery for acquir‐
ing and maintaining a thermodynamically stable fold.36 Accordingly, 
pharmacological inhibition of HSP90 caused precipitous FF degrada‐
tion and consequent suppression of oncogenic signalling.36 Of note, 
BGJ398‐resistant FFs retained sensitivity to the HSP90 inhibitor 
ganetespib. Thus, the BGJ398 + ganetespib combination might not 
only provide more efficient targeting of FFs but also delay/prevent 
BGJ398 resistance mediated by FF mutations.36

The mechanism of action of many cytostatic drugs such as cis‐
platin or 5‐FU is based on the direct or indirect alteration of DNA 
structure. Thus, mechanisms of DNA repair that preclude the effect 
of these drugs have been included in MOC‐4. Some evidences in‐
dicate that p53R2, a ribonucleotide reductase that participates in 
the repair of damaged DNA, is upregulated in gemcitabine‐resistant 
CCA tumours. Moreover, the excision repair cross‐complementing 
1 protein (ERCC1), which has been related with cisplatin resistance, 
has been suggested to have a prognostic value because better sur‐
vival rates after cisplatin treatment have been observed in ERCC1‐
negative CCA tumours.193

Changes in the balance between pro‐ and anti‐apoptotic proteins 
that permit tumour cells to avoid drug‐induced apoptosis have been 
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classified into MOC‐5. Thus, downregulation of pro‐apoptotic medi‐
ators, such as BAX, BAK, caspase‐3 and caspase‐9, has been associ‐
ated with drug resistance, while the upregulation or increase activity 
of anti‐apoptotic factor, such as ERK and Bcl‐2, or over‐activation 
of the pathways PI3K‐AKT and RAF/MEK/ERK has been found to 
play a role in the resistance of CCA cells to activate apoptosis in re‐
sponse to chemotherapeutic drugs. Thus, prevention of escape by 
AKT/mTOR signalling from the RAF/MEK/ERK pathway in sorafenib 
treatment by suppressing mTORC2 activity has been explored as a 
new approach in CCA therapy.152

Finally, changes in tumour microenvironment (MOC‐6), which 
typically include hypoxia and enhanced acidity, and modified phe‐
notype transition (MOC‐7) may also decrease the efficacy of anti‐
tumour drugs. Although these two types of MOC are less known, 
the fact that the carcinogenic process in CCA development includes 
stroma alterations, recruitment of fibroblasts, remodelling of the ex‐
tracellular matrix and changes in angiogenesis suggest that MOC‐6 
and MOC‐7 could have an important impact in determining the over‐
all MDR phenotype of CCA tumours. In this respect, it has been re‐
ported that some factors, such as leukaemia inhibitory factor, and 
proteins of the extracellular matrix, such as laminin‐332, induce 
chemoresistance in CCA tumours. Moreover, alterations associated 
with epithelial‐mesenchymal transition in these tumours also result 
in enhance resistance to chemotherapy.205

4.3 | Novel chemosensitization strategies

As treatment for cancer is moving towards personalized therapy, 
advances in knowledge of the molecular bases of chemoresistance 
and improvement in the detection of the dynamic changes in genetic 
signature characteristic of each tumour at each time point of its evo‐
lution will increase the chances to develop novel therapeutic strate‐
gies and then select the best option for each CCA patient.

One of the promising fields concerns the investigation in non‐
translated RNA. Thus, microRNAs (miRNAs) are able to regulate 
multiple cellular functions, including drug resistance, apoptosis 
and senescence. Increasing evidence suggests the importance of 
miRNAs in the regulation of MDR in CCA. Indeed, global changes 
in the expression of miRNAs have been reported in both CCA cells 
and tumour tissue. Aberrantly expressed miRNAs promote an anti‐
apoptotic and chemoresistant phenotype206 and show that miRNAs 
might be valuable biomarkers as well as potential targets for therapy 
in patients with CCA.

Regarding chemosensitizing strategies, a useful approach to 
improve the effectiveness of anticancer drugs is to enhance the 
amount of agent able to interact with its site of action usually lo‐
cated in intracellular compartment. One way is to use anticancer 
drugs encapsulated into nanoparticles, for instance liposomes or 
nanopolymers that are taken up by CCA cell by endocytosis leading 
to a higher intracellular concentration and enhanced anticancer drug 
efficacy (for details, seeRef. 189).

Additionally, some targeted strategies have been proposed 
to deliver the drug specifically to CCA cells. With this aim, bile 

acid derivatives have been used as ‘Trojan horses’ to enhance the 
uptake by cancer cells of antitumour moieties in enterohepatic 
circulation, such as cisplatin, chemically bound to a bile acid‐like 
moiety that is recognized and transported across the plasma 
membrane by efficient bile acid carriers, such as NTCP, OATPs and 
ASBT.207,208 Thus, bile acid transporters ASBT and OATP1A2 ex‐
pressed in cholangiocytes could be considered a potential target 
for these vectorized agents. Of note, functional ASBT expression 
is well preserved in CCA.208 A good example of this strategy, with 
demonstrated efficacy was Bamet‐UD2, synthesized by linking 
cisplatin to two ursodeoxycholic acid molecules. Both in vitro and 
in vivo assays have demonstrated better antitumoural effect of 
Bamet‐UD2 than cisplatin alone, with less exposure of extrahe‐
patic tissues together with non‐detectable toxicity at therapeutic 
dose.208,209

Gene therapy has also been envisaged as a potential tool to 
overcome drug resistance. One explored rational has been to use 
vectors that express a drug transporter or a tumour suppressor 
protein under the control of a specific promoter that is be upregu‐
lated in the target tumour cell. In this sense, some promoters such 
as those of TERT, CK19 or Cox‐2 have been proposed for their po‐
tential utility in adenoviral gene therapy in CCA.210,211 Using a xe‐
nograft model of CCA in mice, it has been recently demonstrated 
that the specific overexpression of OCT1 at the plasma membrane 
of CCA cells by an adenoviral vector carrying OCT1 open reading 
frame under the transcriptional control of the BIRC5 promoter 
induced in a marked sensitization of otherwise highly chemore‐
sistant CCA cells, which resulted in a strong antitumour effect of 
sorafenib.192

A considerable effort has been employed in the development of 
chemosensitizers, that is, non‐toxic molecules able to inhibit drug 
export pumps with the aim of increasing intracellular drug accu‐
mulation and hence its chemotherapeutic efficacy. Although many 
compounds have been extensively studied,189 no clinical trials on 
CCA patients have been reported. A novel alternative that is being 
explored is the combination of drugs whose chemoresistance is 
due to MOC‐1b. It has been recently recognized that MDR devel‐
opment in tumour cells is usually accompanied by specifically hy‐
persensitive to other drugs, a phenomenon now termed collateral 
sensitivity.212 Thus, the co‐administration of serial treatments with 
antagonistic drugs regarding collateral sensitivity could be useful 
in order to reduce chemoresistance, for instance by inhibiting drug 
efflux. In this sense, some studies have provided evidence that TKIs 
can reverse MDR by blocking the function of ABC transporter and 
subsequently promote drug accumulation. Accordingly, co‐admin‐
istration of TKIs with other conventional chemotherapeutics has 
been proven as a feasible alternative in MDR cancer cells which is 
supported by in vivo, in vitro and ex vivo experiments and some 
clinical trials. Thus, some clinical trials have reported the poten‐
tial of TKIs to reverse MDR; in pancreatic cancer patients, erlo‐
tinib significantly enhanced the response to gemcitabine, and in 
breast cancer patients, lapatinib improved the beneficial effect of 
capecitabin.213
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4.4 | Perspectives in the fight against 
chemoresistance

A better understanding of the molecular bases of mechanisms in‐
volved in the poor response of CCA to chemotherapy is still needed 
to identify the genetic signature underlying the dynamic changes af‐
fecting the ‘resistome’ during cancer development. This would per‐
mit us to predict the failure of a given pharmacological regime and 
decide the best option for each patient at each time, which would 
prevent suffering from unjustified side effects as well as the delay in 
using another therapeutic alternative with higher chance of benefi‐
cial response. In addition, the development of more efficient novel 
drugs and therapeutic strategies to overcome CCA chemoresistance 
will necessarily be based on the advance in our understanding of 
this problem.
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