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ABSTRACT
Motivated by evaluating coating oil films within bearing chambers in an aero-engine application, an analysis is presented for the fluid dynam-
ics relevant in their dual capacity as both the coolant and lubricant in highly sheared flows that may approach microscale thickness. An
extended model is developed for isothermal rimming flow driven by substantial surface shear within a stationary cylinder. In particular, a
partial slip condition replaces the no-slip condition at the wall whilst retaining inertial effects relevant to an intrinsic high speed operation.
A depth-averaged formulation is presented that includes appropriate inertial effects at leading-order within a thin film approximation that
encompasses a more general model of assessing the impact of surface slip. Non-dimensional mass and momentum equations are integrated
across the film depth yielding a one dimensional problem with the a priori assumption of local velocity profiles. The film flow solutions for
rimming flow with wall slip are modeled to a higher order than classical lubrication theory. We investigate the impact of wall slip on the
transition from pooling to uniform films. Numerical solutions of film profiles are provided for the progressively increased Reynolds number,
within a moderate inertia regime, offering evaluation into the effect of film slippage on the dynamics of rimming flow. We find that slip allows
non-unique solution regions and existence of multiple possible steady state solutions evaluated in transforming from smooth to pooling film
solutions. Additionally, boundary slip is shown to enhance the development of recirculation regions within the film which are detrimental to
bearing chamber flows.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5085497

I. INTRODUCTION

Thin film flows are widely used in engineering applications,
notably as a lubricant between moving surfaces and in providing a
thermal conduit for heat exchange. The specific application we have
in mind is in the modeling of oil rimming flows within a bearing
chamber by the thin film approximation. When subjected to a high
surface shear, complex flow dynamics develop that negate a classical
lubrication approach and require high order modeling techniques. A
standard element of conventional analyses is in the no-slip assump-
tion as a boundary condition; however, through surface treatments,

there is growing attention to situations such as progressively thin-
ner films that may invalidate the no-slip condition, as described by
Lauga, Brenner, and Stone.1 This paper investigates the effects of
the slip boundary condition for thin fluid films driven by surface
shear.

A two dimensional stationary bearing chamber, see Fig. 1, is
considered whilst driven by an imposed shear stress at the free sur-
face causing thin films of oil to develop on the chamber surface. In
maintaining a steady state, typically, fluid volume is replenished by
droplet impacts from above the film, with an equal mass subtracted
via an extraction sump, but is outside of the current scope. These
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FIG. 1. Two dimensional cylinder and coordinate system for rimming flow.

conditions describe a rimming flow, seen in Ruschak and Scriven’s
work on cream separation,2 or an equivalent ceramic coating of
pipes by Menekse, Wood, and Riley.3

The addition of a slip boundary condition can be thought of as a
first step in modeling film flow within a porous cylinder. Beavers and
Joseph4 show the shear stress in the film at the wall is proportional to
the difference in tangential velocity between the film and the porous
flow at that point. The slip condition used in this model has the film
shear stress at the wall proportional to the speed of the film at the
wall (the Navier slip condition) which is often applied to micro- or
nanoscale fluids.

For rimming flows, the no-slip condition has been questioned
only recently. On the topic of bearing chambers, Kay5 exhibited
film heights of 100 µm, where surface effects of the chamber wall
may influence the developing film. We are not aware of the slip
condition being used for large scale fluid rimming flows, though a
comparative fluid flow can be found in the work of Barber et al.6
or Bowles and Ducker7 for air lubricated bearings. The surface to
volume ratio leads to surface effects dominating the film dynam-
ics. An air lubricated thrust bearing with the Navier slip condition
is presented by Bailey et al.,8 where the key parameters are com-
parable for extremely small fluid thickness and the intermolecular
distance.

Boundary conditions for flow in a highly sheared bearing cham-
ber, as depicted in Fig. 1, typically adopt the widely accepted no-slip
boundary condition, used from as early as 1738 by Bernoulli for the
fluid-solid interface.1 A partial slip boundary condition was an early
notion by Navier according to Neto et al.,9 in which a liquid may
slip across a solid surface whilst encountering an opposing force rel-
ative to the velocity of the solid arising from friction. This partial
slip is generally defined by a slip length, widely accepted in quan-
tifying the slip of liquid at the solid surface, analogous to defining
the depth of penetration for the velocity profile into the solid and is
the type of slippage used in this paper. Furthermore, there is also the

stagnant layer boundary condition and full slip boundary conditions
for completeness.9,10

Research on the slip condition is heavily linked to surface treat-
ments on the solid surface, characterised by their hydrophobicity
as either hydrophobic or hydrophilic surfaces, and is explored for
a partial slip boundary condition by Choi et al.11 They found that
a hydrophobic surface produced longer slip lengths for water than a
hydrophilic surface, up to several µm. Further studies on hydrophilic
and hydrophobic surfaces on Pyrex were made by Cottin-Bizonne
et al.12 While hydrophilic surfaces were bounded by the no-slip
condition, hydrophobic surfaces had superior slip lengths to several
µm, conjecturing nano-bubbles may coat hydrophobic surfaces and
improve slip.

An interesting proposal for the slip boundary condition is
in hydraulic fracturing of shale, where Javadpour, McClure, and
Naraghi13 documented slip lengths in micro to nano flows for
organic pores of a shale matrix. Their work highlighted the impor-
tance of including and understanding the effect of slip in shale nano-
pores and hydraulic fracturing. Hu and Granick’s review briefly
mentioned that liquid slip may occur at very low shear rates and
the importance of identifying surface effects as tribology approaches
nanometer film thicknesses.14

The Navier slip model is defined as a constant slip model, with
a linear relationship between the tangential shear rate and the inter-
face velocity differences, in which the slip length acts as the constant
of proportionality. The true condition has yet to be fully verified
for all applications due to the complexity involved with individ-
ual effects, for instance, surface roughness of the interface or the
wettability of the surface.

The work by Ruschak and Scriven2 on fluid films driven by
high rotation speeds for a horizontal cylinder equated to a solid-
body approximation for a suitably low fill volume and negligible
gravity. However, under conditions where the fluid is not driven
sufficiently, pooling and recirculation of the fluid is possible and
leads to the breakdown of the solid-body approximation. The film
is then no longer at uniform height as regions of film acceleration
and deceleration due to gravity lead to thinning and thickening,
known as pooling. The original approach by Moffatt15 used a lubri-
cation approximation for a two dimensional coating flow with a thin
film approximation, and for a low fill fraction with surface tension
and inertia negligible, they derived a flux balance equation. This
equation predicts smooth film profiles up to a critical mass, beyond
which fluid pooling invalidates the lubrication approximation. For
rimming flow with a lubrication approximation, Johnson16 arrived
at the same cubic equation of Moffatt15 whilst including a balance
between gravitational and viscous forces to leading order.

On the premise of lubrication theory for rimming flows, the
effects of neglecting surface tension and inertia were investigated by
Tirumkudulu and Acrivos.17 They showed discontinuous regions
between the steady-state film height profiles, leading to an infi-
nite pressure gradient. Upon incorporation of a hydrostatic pres-
sure term at high order, they found reverse flow regions (recircu-
lation zones),15,16 which were not possible to obtain using classical
lubrication theory.

Ashmore, Hosoi, and Stone18 detailed the effects of surface ten-
sion on rimming flow in terms of a ratio of gravitational to viscous
forces, λ. They found that the flow can be divided into 3 distinct
regimes related to gravitational effects, defined by λ. In the first
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regime (0 < λ ≤ 2), viscous forces dominate the flow, resulting in
smooth profiles. In the next regime (2 < λ ≤ 5), where gravity terms
are of the same order as viscous terms, discontinuous profiles are
found. In the last regime for λ > 5, surface tension becomes impor-
tant and the fluid pools at the cylinder base due to high gravitational
effects.

The modified lubrication equation of Acrivos and Jin19

involves first order gravitational terms to model the hydrostatic
pressure gradients that become considerable in the sharp gradient
regions of fluid pooling and recirculation. The inclusion of higher
order terms is also explored by Wilson, Hunt, and Duffy20 by
analytically calculating the smoothing from first order gravity on
the Stokes equations to eliminate discontinuities at critical rotation
rates, and also show the significant potential of surface tension.

The fundamental balancing of surface tension, gravity, and
rotation is at the core of coating flows, with a good review of the
subsequent experimental work on coating flows can be found in
the work of Evans, Schwartz, and Roy,21 whose later lubrication
model22 modeled the axial features of drops, undulations, and rings
presumably due to surface tension.

The combined effects of incorporating surface tension and
pressure are presented by Villegas-Díaz, Power, and Riley23 for their
stabilising effects on the presence of discontinuous profiles. Earlier
work by Villegas-Díaz et al.24 utilised a combination of surface
shear and rotational driving forces, studying their effect on the
stability both numerically and analytically, where the viscous and
gravitational effects were of the same order.

In classical lubrication theory applied to rimming flows, such
as in Refs. 15 and 16, the typical assumption of negligible inertia
leads to a zero Reynolds number. This is contrary to later stud-
ies25,26 which cover a large range of Reynolds numbers, analyzing
the instabilities caused by inertia and highlighting complex pattern
formations such as shark-teeth. The work of Hosoi and Mahade-
van26 extended15,16 for surface tension, pressure gradients, and
inertial effects in response to earlier work in lubrication theory by
Thoroddsen and Mahadevan.25 The addition of inertia in a higher
order lubrication model demonstrates significant instability in the
profile of the film, leading to values of the velocity profile that
accounts for regions of recirculation in rimming flow.

The role of inertia on the Moffatt-Puknachov coating flow is
described by Kelmanson27 for a range of surface tension limits;
a critical Reynolds number, above which no steady-state solution
exists, is calculated due to the destabilizing role inertia plays.

The first order reduced Reynolds number model of Noakes,
King, and Riley28 focused on inertial effects for both rimming and
coating flows in a three dimensional study, where complexity of non-
linear inertia at higher reduced Reynolds numbers can be posed
similar to those of a weaker inertial form. The loading of fluid
both external and internal to a horizontal cylinder in the analyti-
cal approach by Leslie, Wilson, and Duffy29 calculates the existence
of a critical loading threshold due to cylinder rotation before de-
wetting will occur. The constraints of fluid loading or rotational
speed lead to a limitation of the sustainable speed or fluid volume,
respectively.

A model to the first order of the viscous, gravitational, inertial,
and capillarity effects was proposed by Pougatch and Frigaard,30

noting minor changes to the location and amplitude of the film
thickness profile in two and three dimensional flow. They suggest

that gravity provides a stabilising force, whereas surface tension
and inertia tend to destabilise the film for lower levels of iner-
tia. On this instability caused by inertia, the work of Benilov and
O’Brien31 argued that surface tension terms provide a smoothing
effect. Upon balancing the inertia and surface tension, instabili-
ties arising from inertia are suppressed by surface tension leading
to a smoothed solution for short wave disturbances, whereas the
opposite is true for long scale disturbances which are counteracted
by viscosity, see the work of Benilov32 or Benilov and O’Brien31

Recently, Kay5 evaluated a thin film approximation for the effects
of inertia, where low Reynolds numbers exist within the realm of
lubrication theory and high Reynolds numbers corresponded to uni-
form film profiles. The instability of inertia is seen to be dampened
by the presence of gravitational and Marangoni effects in a first order
lubrication model.33 The addition of inertia or viscous drag shifts
the fluid pool in the direction of rotation within the lubrication
approximation. Impregnating the fluid with insoluble surfactants,
Kumawat and Tiwari34 model rimming flow with the effects of grav-
ity, viscosity, surface tension, and inertia. The inertial instability that
appears in the form of oscillations is dampened by higher Marangoni
stresses that arise from inhomogeneous surfactant gradients at the
surface.

Very small cylinders may suppress this instability by surface
tension using the full Navier-Stokes equations; however, the result-
ing unstable disturbances can be absorbed within a shock according
to Benilov and Lapin35 while the smoother films are unstable. This
stabilising role of surface tension is in the regularization of rimming
flow, where regularizating terms are typically intended to eliminate
physically meaningless solutions and are also beneficial for stability
analysis.36

Solutions for the rimming flow problem are feasible with meth-
ods such as direct numerical simulation of the governing equations,
as seen in the work of Benilov, Lapin, and O’Brien.37 However, an
alternative technique was proposed by Kay, Hibberd, and Power;38

by the use of hydraulics theory applied to the lubrication con-
cept via a depth-averaged formulation, retention of inertial terms
to leading order is viable. On using the Karman-Polhausen depth-
averaging of the governing equations between the flow bound-
ary layers, the system is reduced in dimensionality obtaining the
commonly known Shkadov model when using a parabolic velocity
profile.

The technique of depth averaging the governing equations has
been performed for thin film approximations on both planar flows
and rimming flows. The work of Nguyen and Balakotaiah39 formed
two coupled depth-averaged equations from the mass and momen-
tum equations by solving for the mean film properties, in the a priori
selection of a local velocity profile to be substituted into the result-
ing thin film model. The selection of a parabolic film profile was
adapted by Nguyen and Balakotaiah39 and Chang, Demekhin, and
Saprikin40 on the basis of Stokes flow where Re ≪ 1 is having an
exact quadratic solution.

A good formation of a depth-averaged model can be found in
Benilov’s work for a single depth-averaged governing equation,41

with a quadratic velocity profile on an incline planar geometry.
Kay et al.38 covered the depth-averaging method in a rimming
flow context, with a priori use of quadratic profile or cubic veloc-
ity profile when incorporating cylinder roughness for reducing the
dimensionality of the Navier-Stokes equations.
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TABLE I. The bearing chamber geometry and typical flow conditions.

Property Value Symbol

Cylinder radius 1.10× 10−1 m r0
Density 9.30× 102 kg/m3 ρ
Viscosity 4.83× 10−3 Pa s µ
Characteristic height 5.5× 10−4 m h0
Typical film speed 5× 10−1 m/s U0

II. THE ROLE OF THE BEARING CHAMBER

The operating condition within bearing chambers varies due
to the nature of progressive technological deployment of aero-
engine components. The chaotic and turbulent flows are taken
as time averaged to develop steady profiles, with the imposed
surface shearing as an average due to the transience and turbu-
lent nature of the two phase flow. The coating flows of Evans,
Schwartz, and Roy21 report very large thicknesses of 0.11 m in a
heavily loaded case; the typical properties for the films of interest
within the chamber are similar to those of Kakimpa, Morvan, and
Hibberd,42 shown in Table I. Relevant studies on bearing cham-
bers that are experimental or numerical provide a breadth of the
operating conditions expected, of which report the thinnest films of
10 µm.33,43–47

Unlike the bearing chamber geometries and flow characteris-
tics, the research into slip length predictions is less consistent due
to the intrinsic difficulty of measuring nano- and microscale effects.
The flow of water across hydrophobic and specially engineered super
hydrophobic surfaces poses significant difficulties to qualitatively
predict interface velocities, in part due to wettability and surface
roughness.1 In the presence of an air only interface, an infinite slip
length is expected,9 but interfaces of the substrate to support the

TABLE III. Typical slip lengths observed between a fluid and a porous interface.

Author Slip length

Berg et al.54 0 µm–100 µm
Nair and Sameen55 40% of U0
Chun-Yuan and Qin-Feng56 0.024 µm–0.063 µm
Tan et al.57 1.1 at ε = 0.5

3.8 at ε = 0.9

fluid reduce this with a variety of surfaces and fluids detailed in
Table II for observed slip.

Alongside these coated substrates, the free flow of fluid over
a porous medium details a correlation between the internal and
external velocities. This correlation typically assumes a constant slip
length or fraction of the bulk velocity, see Table III. We assume
a surface coating applied on the cylinder will act to provide fluid
slip typically l∗s ∼ 50µm on the free fluid for this study, though
a variety of slip lengths are used to observe their influence on
films.

We present a new effort in rimming flows by applying a slip
boundary condition to the inner surface of a cylinder, using a depth-
averaged approach to account for inertial features. The mathemati-
cal limits of cylinder surfacing for drag reduction are detailed along-
side the physical slip potential for a bearing chamber. Section III
details the formulation of the depth-averaged model with slip. Film
profiles are calculated by numerical differentiation using a pseu-
dospectral method, see Refs. 58 and 59, that is beneficial to the
periodic rimming flow problem for fast convergence and as a global
approach. Section IV presents films consistent with the previous lit-
erature with further detailing on the slip boundary condition reper-
cussions studied. In Sec. V, our main conclusions and summaries are
conferred.

TABLE II. Summary of the slip lengths from experimental studies across solid substrates.

Author Fluid Substrate Slip length

Lauga, Brenner, and Stone1 Water Dimethyldichlorosilane 1 µm–10 µmcoated glass

Mercury Trimethlychlorosilane 70 nmcoated quartz
Propanedial vacuum Silica 1 µm

Lee, Charrault, and Neto48 Water Hydrophobic polymer surface 1.7 µm
Neto et al.9 Water Air ∞ µm
Zhu and Granick49 Deionized water Octadecyltriethoxysilane 2.5 µm

Tetradecane Octadecyltriethoxysilane 1.5 µm
Tetradecane mix Mica 1.0 µm

Ou, Perot, and Rothstein50 Water Ultrahydrophobic silicon 20 µm
Choi and Kim51 Water Ultrahydrophobic silicon 20 µm

30 wt. % glycerin Ultrahydrophobic silicon 50 µm
Aurelian, Patrick, Oil Hydrophobic substrate 0.013 mmand Mohamed52

Maali and Bhushan53 Water Superhydrophobic surface 20 µm
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III. MATHEMATICAL MODEL
A. Film flow in cylindrical coordinates

We assume a spatially two dimensional configuration consis-
tent with a simplified bearing chamber geometry, shown in Fig. 1.
A liquid film wholly coats the chamber interior of constant distance
r0 from the centre while being subjected to a constant surface shear
stress, τ∗a . The superscript ∗ indicates a dimensional variable, while
t∗ represents time. The liquid film has a constant density ρ and vis-
cosity µ, being treated as an incompressible fluid with a pressure
p∗a at the film surface. In cylindrical polar coordinates, the angle θ∗
is measured positive from the vertical downwards direction anti-
clockwise, with r∗ measuring the radial distance from the cylinder
centre. In this coordinate system, gravity acts in the downwards
direction defined as g = (gθ, gr), with the components defined as
gr = g cos(θ∗) and gθ = −g sin(θ∗) for a per unit mass gravitational
force.

The film free surface is described by r∗ = r0 −h∗(t∗, θ∗), with a
surface tension coefficient σ∗. The two dimensional film has a veloc-
ity field u∗ = (u∗θ , u∗r ) and a pressure field p∗. The unit tangent and
unit normal vectors of the free surface are defined as l = l∗r r̂ + l∗θ θ̂ and
n = n∗r r̂ + n∗θ θ̂ with

n∗r = −N∗, n∗θ = −
N∗

H∗

∂h∗

∂θ∗
, (1)

l∗r = −
N∗

H∗

∂h∗

∂θ∗
, l∗θ = N∗, (2)

in which N∗ and H∗ are defined as

N∗
= N∗

(θ∗, t∗) =
⎛

⎝
1 + {

1
H∗

∂h∗

∂θ∗
}

2
⎞

⎠

−
1
2

, (3)

H∗
= H∗

(θ∗, t∗) = r0 − h∗(θ∗, t∗). (4)

Therefore, the governing equations for the conservation of
mass and momentum for the film under the outlined conditions are
given as

∇
∗
⋅ u∗ = 0, (5)

D∗u∗

D∗t∗
= −

1
ρ
∇
∗p∗ + ν∇∗2u∗ + g. (6)

With the dimensional gradient ∇∗ and D∗/D∗t∗, the dimen-
sional convected derivative terms are defined as

∇
∗
=

∂

∂r∗
+

1
r∗

∂

∂θ∗
, (7)

D∗

D∗t∗
=

∂

∂t∗
+ u∗ ⋅ ∇∗. (8)

At the film interface, at r∗ = r0 − h∗(θ∗, t∗), there acts a stress
Tensor T∗ ensuring continuity along with a kinematic equation
described as

nT∗ = −p∗a n − σ
∗κ∗n + τ∗a l, (9)

0 =
∂

∂t∗
r∗ + u∗ ⋅ ∇∗r∗. (10)

The film curvature κ∗ at the free surface interface is thus
defined by

κ∗ =
N∗

H∗

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
(

N∗

H∗

∂h∗

∂θ∗
)

2

− 1
⎞

⎠
(

1
H∗

∂2h∗

∂θ∗2 )

×(
1

H∗

∂h∗

∂θ∗
)

2
⎛

⎝
(

N∗

H∗

∂h∗

∂θ∗
)

2

− 1
⎞

⎠
− 1

⎤
⎥
⎥
⎥
⎥
⎦

. (11)

Typically, the wall surface boundary condition is described by
the no-slip condition; we define a slip boundary condition for a sta-
tionary wall surface, given in (12) along with the no-penetration
condition of (13) at r∗ = r0,

u∗θ = −l∗s [r∗
∂

∂r∗
(

u∗θ
r∗

)], (12)

u∗r = 0. (13)

In order to ensure that the quantity of fluid volume inside the
cylinder remains consistent, a variable A is introduced, known as the
filling fraction, presented as

A =
1
πr0

π

∫
−π

(h∗ −
h∗2

2r0
)dθ∗. (14)

In the studies of Ashmore et al.,18 the filling fraction was used
to reduce the governing equations by acting as a small parameter;
we use the film aspect ratio but retain A for comparisons to other
studies and ensure film mass continuity.

B. Non-dimensional equations
The following scalings are introduced to non-dimensionalise

the model for the further study. The pressure field is scaled to retain
azimuthal pressure gradients by the dynamic pressure, ρU2

0 , leading
to a potentially stabilising mechanism.17,18,38 We also introduce the
scaling ε = h0/r0, known as the film aspect ratio, in which h0 is the
characteristic film height. The subsequent scalings for the model are

t∗ = r0t/U0, r∗ = r0[1 − εy], κ∗ = κ/r0,

u∗θ = U0u, τ∗a = τµU0/h0, θ∗ = s,

u∗r = −εU0v, (p∗a , p∗) = ρU2
0(pa, p), l∗s = lsh0.

(15)

The slip length l∗s is scaled by the film height h0 due to the
nature of slip length as a representation of the film velocity pen-
etration into the boundary in a partial slip condition. The typical
film height, h0 = 500 µm, leads to l∗s being microscale.42 Some key
dimensionless factors to the film flow are the capillary number, Ca,
the Reynolds number, Re, and a ratio between the gravitational to
viscous forces, λ, seen as Re/Fr

Re = ρh0U0/µ, Ca = µU0/σ,

λ = ρgh2
0/µU0, Fr = U2

0/gh0.
(16)

In moving to the non-dimensional coordinate system, the gov-
erning Navier-Stokes equations (5) and (6) separated into radial and
azimuthal components are

(1 − εy)
∂v
∂y

− εv +
∂u
∂s

= 0, (17)
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εRe[ε
∂v
∂t

+ εv
∂v
∂y

+
εu

1 − εy
∂v
∂s

+
u2

1 − εy
]

= −Re
∂p
∂y

− λ cos s + ε
∂2v
∂y2 −

ε2

1 − εy
∂v
∂y

−
ε3

(1 − εy)2
∂2v
∂s2 −

ε3v
(1 − εy)2 +

2ε2

(1 − εy)2
∂u
∂s

, (18)

εRe[
∂u
∂t

+ v
∂u
∂y

+
u

1 − εy
∂u
∂s

−
εuv

1 − εy
]

= −Re
ε

1 − εy
∂p
∂s

− λ sin s +
∂2u
∂s2 −

ε
1 − εy

∂u
∂s

+
ε2

1 − εy
∂2u
∂s2 −

2ε3

(1 − εy)2
∂v
∂s

−
2ε3

(1 − εy)2 . (19)

The tangential stress component along with the normal stress
component of the interface boundary condition (9) at y = h becomes

τ
N2 =

⎛

⎝
1 − (

εh′

H
)

2
⎞

⎠
{
∂u
∂y

+
εu
H

+
ε2

H
∂v
∂s

}

+ 2
εh′

H
(ε2 ∂v

∂y
−
ε2

H
∂u
∂s

+
ε2v
H

), (20)

pa = p −
εκ

ReCa
−

2N2

Re

⎧⎪⎪
⎨
⎪⎪⎩

ε
∂v
∂y

− (
∂u
∂y

+
εu
H

+
ε2

H
∂v
∂s

)
εh′

H

+
⎧⎪⎪
⎨
⎪⎪⎩

(
ε
H

∂u
∂s

−
ε2v
H

)(
εh′

H
)

2⎫⎪⎪
⎬
⎪⎪⎭

⎫⎪⎪
⎬
⎪⎪⎭

. (21)

The kinematic condition (10) at the fluid free surface is
∂h
∂t

+
εh′

H
u − v = 0 (22)

and the curvature at the film surface (11) is

κ =
N

1 − εh

⎧⎪⎪
⎨
⎪⎪⎩

⎛

⎝

εh′′

1 − εh
+ (

εh′

1 − εh
)

2
⎞

⎠

⎛

⎝

⎛

⎝
(
εNh′

1 − εh
)

2

− 1
⎞

⎠
− 1

⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

, (23)

where ′, ″, and ‴ represent first, second, and third order derivatives
with respect to s. The terms (3) and (4) non-dimensionalise as

H(s, t) = 1 − εh(s, t), (24)

N(s, t) =
⎛

⎝
1 + (

εh′

1 − εh
)

2
⎞

⎠

−1/2

. (25)

The filling fraction of the fluid within the cylinder (14)
equates to

A =
ε
π

π

∫
−π

(h −
εh2

2
)ds. (26)

The boundary conditions of (12) and (13) for the stationary
wall at y = 0 reduce to

u = ls[
∂u
∂y

−
εu

1 − εy
], (27)

v = 0. (28)

C. Thin film equations
Within the aero-engine bearing chambers of interest, oil films

may comprise inertial effects of modest intensity which can be of
the leading order, corresponding to εRe ∼ O(1) within a thin film
approximation of ε ≪ 1. The model in this paper is appropriate
to order ε when the non-dimensional parameters with moderate
inertial effects are in the following range:

ε≪ 1, Re ∼ O(1/ε), λ ∼ O(1). (29)

Imposing these limits allows the use of the classical lubrica-
tion theory in this formulation. When taken to O(1), (18) will yield
a constant pressure throughout the film.38 This is inadequate in
regions of large film gradients due to hydrostatic effects in pooling
solutions leading to sharp pressure fluctuations. To include these
effects, gravitational terms of O(ε) must be kept, resulting in an
O(ε) accurate model. For consistency, the inertial terms (centrifu-
gal) to O(ε) must also be included; we note that terms of O(ε) are
factors of h′, allowing for their elevation to leading order in areas of
large film gradients. In satisfying this approximation, the continuity
equation (17) up to O(ε) becomes

∂v
∂y

− εy
∂v
∂y

− εv +
∂u
∂s

= O(ε2
). (30)

The radial momentum equation (18) equates to

ε2Re[u2
] = −εRe

∂p
∂y

− ελ cos s + O(ε2, ε3Re), (31)

and azimuthal momentum equation (19) can be written as

εRe[
∂u
∂t

+ v
∂u
∂y

+ u
∂u
∂s

+ εyu
∂u
∂s

− εvu]

= −εRe
∂p
∂s

− λ sin s +
∂2u
∂y2 − ε

∂u
∂y

+ O(ε2, ε3Re). (32)

The boundary conditions (27) and (28) at the wall surface y = 0
to O(ε) are given as

u = ls[
∂u
∂y

− εu], (33)

v = 0, (34)

and the filling fraction (26) is

A =
ε
π

π

∫
−π

h ds + O(ε2
). (35)

At the film free surface, the kinematic condition (22), normal
stress (21), and tangential stress (20) components at y = h become

∂h
∂t

+ uh′ + εuhh′ − v = O(ε2
), (36)

pa = p −
εκ

ReCa
+ O(ε2

), (37)

τ =
∂u
∂y

+ εu + O(ε2
). (38)

The curvature of the free surface (23) becomes

κ = −εh − εh′′, (39)
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where O(ε2
) have been retained in the normal stress condition due

to h″ acting as a stabilising mechanism that will be explored later
upon depth averaging.

D. Depth averaging
Due to the retention of inertial terms approaching leading

order, an appropriate resolution of the inertial terms is vital. The
chosen method reduces the dependency on the velocity by depth-
averaging,38 giving s and t as the only independents. By the inte-
gration of the radial momentum equation across the film depth, the
distribution of pressure across the film is obtained for the azimuthal
momentum equation. Upon integration across the film height, the
continuity equation (30) becomes

(1 − εh)
∂h
∂t

+
∂q
∂s

= 0 (40)

with a dimensionless variable per unit length, q, defined as the
volume flux

q = q(s, t) =
h

∫

0

u(s, t, y)dy. (41)

The pressure distribution to leading order across the film is
obtained upon integration of the radial momentum equation (31).
The surface kinematic condition (36) and wall surface boundary
condition (34) are used rewrite terms evaluated on the surface, where
the Leibniz rule is used to account for the varying upper limits of
integration, leading to

p(s, t, y) = ε
h

∫

0

u2dy− ε
y

∫

0

u2dy + pa +
εκ

ReCa
+
λ cos s

Re
(h − y); (42)

the integration constant is evaluated at the interface from the nor-
mal stress component (37). This leads to a pressure distribution
through the film that is primarily hydrostatic, with additional effects
from surface tension and centrifugal forces. The depth-averaged
azimuthal momentum equation (32) becomes

εRe
⎡
⎢
⎢
⎢
⎢
⎣

∂

∂t

h

∫

0

udy +
∂

∂s

h

∫

0

u2dy + ε
∂

∂s

h

∫

0

yu2dy − 2ε
h

∫

0

vudy
⎤
⎥
⎥
⎥
⎥
⎦

= −εRe
∂

∂s

h

∫

0

(pa +
εκ

ReCa
) − ε2Re

∂

∂s

×

h

∫

0

⎧⎪⎪
⎨
⎪⎪⎩

h

∫

0

u2dy −
h

∫

0

u2dy
⎫⎪⎪
⎬
⎪⎪⎭

dy − λh sin s

− ε2Re
∂

∂s

h

∫

0

λ cos s(h − y)dy + εRe
∂

∂s

h

∫

0

(pa +
εκ

ReCa
)h′

+ [
∂u
∂y

− εu]
h

0
. (43)

Use of the pressure from (42) evaluates the pressure gradient
term. Surface tension terms are retained up to O(ε3

) due to the
importance of h‴ terms in pooling or shock solutions, where they

provide a stabilising effect according to Refs. 18 and 23. An addi-
tional effect of surface tension is that short-wave perturbations are
dampened when obtaining numerical solutions, conferred in the
work of Kay et al.38

E. Resolving velocity profiles
In a highly sheared flow within a bearing chamber, film thick-

nesses can be micro-scale while inertial effects can still be substantial.
In the case of negligible inertia, i.e., the Stokes flow for Re ≪ 1,
a quadratic velocity profile provides an analytical solution to the
Navier-Stokes equations. For a constant flux q, if the pressure gra-
dients, surface tension, and inertia are negligible, there is a balance
between the gravity and the net shear at the free surface and at the
wall. Following the depth-averaging of the governing equations, the
integrals of the azimuthal momentum equation (43) must be solved.
Based on this, a quadratic form of the velocity profile is assumed to
be O(1) for the velocity profile, having also been used under similar
conditions,38

u = u0 + εu1, (44)
where components u0 and u1 in (44) are given as

u0
= a0

0 + a0
1y + a0

2y2, (45)

u1
= a1

0 + a1
1y + a1

2y2. (46)

Using the definition of the film flux q (41), the surface shear
condition (38) and the cylinder surface slip condition (33) to first
and leading order of the velocity coefficients become

τ =
∂u0

∂y
, 0 = ε

∂u1

∂y
+ εu0, y = h, (47)

u0
= ls(

∂u0

∂y
), u1

= ls(ε
∂u1

∂y
+ εu0

), y = 0, (48)

q =
h

∫

0

u0dy, 0 = ε
h

∫

0

u1dy. (49)

This set of simultaneous Eqs. (47)–(49) leads to a determination
of the velocity coefficients of (45) and (46) defined in terms of h and
q as outlined in Appendix A.

Having defined the azimuthal velocity profile u, in terms of the
first and leading order components, upon integration of the continu-
ity equation prior to depth-averaging (40) gives the radial velocity in
terms of the azimuthal velocity (44)

v =
∂

∂s ∫
u dy + O(ε) =

∂a0
0

∂s
y +

∂a0
1

∂s
y2

2
+
∂a0

2

∂s
y3

3
. (50)

Using the chain rule to differentiate the velocity components,
we obtain the derivatives of each coefficient with respect to h′
and q′.

F. Film model equations
Following the substitution of (43) with the velocity polyno-

mials (44) and (50), each integral is evaluated in Appendix B. A
modified Reynolds number, Re∗ = εRe, is introduced, known as
the reduced Reynolds number with Re∗ ∼ O(1) according to (29).
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The momentum equation can be represented by contributions of the
forces included

Re∗(α + εβ)h′ + Re∗(γ + εω)q′ + Re∗ψ
dq
dt

+ λ sin s −
ε3

Ca
h(h′ + h′′′)

+ ελ(h cos sh′ − sin s
h2

2
) −N0

− εN1
= 0, (51)

where the full coefficients of α, β, γ, ω, ψ, N0, and N1 are given in
Appendix C. The key features are distinctly inertia, gravity, surface
tension, pressure gradients, and the net viscous shear.38 Here, we
have retained the εh′ terms because of the contribution at local levels
for sharp film gradients. Further consolidation of the terms reveals
the final model defined by the momentum equation (51), continuity
equation (40), and volume conservation equation (35). These cou-
pled temporal equations can be solved for the film height, h(s, t),
and film flux, q(s, t).

G. Numerical method
For obtaining solutions to the system of equations proposed

in (51), (40), and (35), a numerical approach is required to solve
the system of non-linear differential equations as described in this
section.

We solve the above system using a pseudospectral method
based on a transformed uniform discretisation and Fourier differ-
entiation matrices, i.e., a global approach for resolving spatial dif-
ferentials. For resolving temporal terms, a first order fully implicit
forward difference approximation is used. A steady-state solver was
used to explore the parameter space with a transient solver deter-
mining the nature of the solutions. An initial Fourier differentiation
matrix as proposed by Trefethen,59 based on a uniform distribution
of N nodes in the domain of η = [−1, 1], is created. A stretching
is applied using a hyperbolic sine coordinate transformation, which
clustered nodes near the formation of capillary ripples at the centre
of the domain,

f (η) =
L sinh cη/π

sinh c
. (52)

Here, parameter c is used to control the nodal distribution from
uniform, for c = 1, to densely clustered in the region where capillary
ripples are formed at c > 1. The definition of L is half the domain
length such that L = π. In transforming the Fourier differentiation
matrices, Boyd58 details a general derivative transformation such
that

d
ds

=
1
f
[

d
dη

], (53)

d2

ds2 =
1
f 3 [ḟ

d2

dη2 − f̈
d

dη
], (54)

d3

ds3 =
1
f 5

⎡
⎢
⎢
⎢
⎢
⎣

(ḟ )
2 d3

dη3 − 3ḟ f̈
d2

dη2 + (3(f̈ )
2
− ḟ

...
f )

d
dη

⎤
⎥
⎥
⎥
⎥
⎦

, (55)

where ḟ, f̈ , and
...
f are the 1st, 2nd, and 3rd derivatives of (52) with

respect to η. In order to maintain a consistent volume of fluid within
the cylinder, the filling fraction is calculated using the trapezium rule
approximation within the grid

ε
π

N
∑
j=1

∆sj,j+1

2
[hj + hj+1] − A = 0, (56)

where hj is the film height at the j node of the domain and ∆sj ,j+1
is the spacing between the jth and jth + 1 nodes with hN = h0 due
to the cylindrical domain. Having established the coupled azimuthal
momentum, continuity, and volume equations that govern the film
listed above, a steady state equation can be formulated, with the
depth-averaged continuity equation establishing the film flux or
filling fraction as a constant value.

In solving the system of non-linear equations, the package from
MATLAB for handling systems of equations fsolve is used for solving
the N + 1 or 2N coupled equations for determining the film height
and film flux at the N nodes.

H. Film profiles within classical lubrication theory
This section focuses on the classical lubrication theory limit,

which within ε ≪ 1 leads to a gravity-viscosity balance in the film
with all other forces (inertia, surface tension, and pressure gradi-
ents) neglected. In this case, the governing equation with a partial
slip boundary condition reduces to

h3 λ sin s
3

− h2
(
τ
2
− lsλ sin s) − hlsτ + q = 0. (57)

This equation is important as the additional forces which are
neglected can be considered as perturbations so that a lot about the
film behavior can be determined from it. It is also algebraic rather
than differential so can be analyzed simply. Analysis of (57) was
first carried out by Moffatt15 and later by Ref. 16 for the case of a
rotating cylinder with no-slip conditions. By exploiting the bound-
edness of the sine function, they determined that the film flow was
separated into three regimes corresponding to flows below, at, and
above a critical value of height and flow rate (flux) which corre-
spond to the values of h and q at s = π/2. Upon treating λ and
τ as constant values, the depressed cubic equation (57) is readily
solvable with the slip condition included, and the critical values
are

hc =
τ − 2lsλ

2λ
+

√
τ2 + 4l2

sλ2

2λ
, (58)

qc = −h3
c
λ
3

+ h2
c(
τ
t
− lsλ) + hclsτ. (59)

Typically, qc is used as the parameter to distinguish between the
regimes though hc can be equivalently used. Previous studies with a
no-slip boundary condition yield the well-known critical film flux of
qc = τ3

/(6λ)2 and the critical film height hc = τ/λ. An asymptotic
analysis for an increasing slip length demonstrates that the critical
film height tends toward hc = τ/2λ and the critical flux approaches
qc = ∞ on an idealized drag free model. The three distinct classifica-
tions of film profiles for a specified film flux are termed sub-critical,
critical, and super-critical, defined as

1. Sub-critical case, q < qc. Two branches of real and positive
solutions exist. One branch represents a completely wetting
solution across the entire domain, in which the cylinder is
completely coated in a fluid. The second branch represents
a non-physical solution in the region 0 ≤ s ≤ π, with an
unbounded film height at the limits of this region.

2. Critical case, q = qc. The previously mentioned two branches
converge at the point s = π/2, forming a completely
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TABLE IV. The effects of increasing slip length, ls, on the critical film values.

Critical film Critical film Critical filling
Slip length, ls height, hc flux, qc fraction, Ac

0.000 1.0000 0.1667 0.1258
0.001 0.9990 0.1667 0.1256
0.010 0.9901 0.1667 0.1238
0.100 0.9099 0.1710 0.1088
1.000 0.6180 0.3484 0.0682
⋮ ⋮ ⋮ ⋮

∞ 0.5000 ∞ 0.0561

wetting solution branch connected to an unbounded solution
that exists within 0 ≤ s ≤ π. At this value of the film flux, the
film height forms a peak known as the critical film height,
hc, and provides the maximum fluid loading for a continuous

FIG. 2. The effect of slip length, ls on the values of the critical film height (a), film
flux (b), and filling fraction (c) in classical lubrication theory.

profile under the lubrication approximation, defined as the
critical filling fraction, Ac.

3. Super-critical case, q > qc. No solutions exist in this region
that completely coat the cylinder’s internal surface for lubri-
cation theory. Two solution branches exist with a discon-
nected region focused at s = π/2 in which no real and positive
film solution can exist. Inclusion of higher order effects has
been shown to bridge this discontinuous region outside of the
typical lubrication theory assumptions.

Within these classifications, a single physical solution exists in the
region s ∈ [−π, 0], while for s ∈ [0,π], the solution is dependent
upon the ratio of q/qc with physical, unbounded, or discontinuous
solutions. These are explored in Fig. 3 and evaluated with moderate
inertial effects to form fully coated rimming flows.

The variation in critical values with increasing slip lengths are
given in Table IV. As the slip length increases, the effects on the crit-
ical film values asymptotically approach their limiting values. The
inclusion of a wall slip is found to limit the maximum sustainable
filling fraction to half of the value in a no-slip case. It should be
noted that for a fixed filling fraction A or film flux q, an increasing
slip length ls alters the transition from sub-critical to super-critical
cases, as discussed in Sec. IV. It can be seen that the diminishing
film critical height hc becomes apparent when ls ∼ O(ε), as shown in
Fig. 2(a), closely matching the trend for the critical filling frac-
tion Ac, as shown in Fig. 2(c). By contrast, the film flux is seen to
exponentially increase with ls in Fig. 2(b).

IV. RESULTS
A. Smoothed solutions subjected to inertia
and slippage

In accordance with classical lubrication theory, the existence
of fully coating flows beyond q > qc is introduced by higher order
effects when taking surface tension to be of first order such that
ε3
/Ca ∼ O(ε). This provides a smoothing effect, bridging across the

non-physical solution region in the super-critical profile as detailed
by Benilov, Benilov, and Kopteva,60 and Kay et al.38 This smoothing
allows for completely wetting film profiles when within the defined
super-critical realm, as shown in Fig. 3(c), unattainable within lubri-
cation theory. The presence of solutions within the super-critical
class allows for the presence of shock-type solutions to be explored.
This is categorised by a film profile that occurs on the smooth solu-
tion with a peak, typically located on the cylinder’s rising side that
connects to the unbounded solution found in sub-critical cases as in
Fig. 3(a). The addition of inertial effects has smoothed the peak film
height, seen at the critical film profile of Fig. 3(b), with the solution
branches intersecting.

B. Increasing gravitational effects
with negligible inertia

In treating the inertial effects as negligible, films with filling
fractions equating to A > Ac are explored. In an equivalent shear-
driven rimming flow by Ashmore et al.,18 they studied the effect
of gravity-dominated solutions in the formation of pooling films.
They varied the equivalent parameter of λ for the ratio of gravi-
tational to viscous forces. Next, we will study the effect of gravity
on film profiles with slip. At the first instance, the slip values are
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FIG. 3. The three possible regimes of sub-critical, critical, and super-critical film
profiles for λ = 1, τ = 1, ls = 0, Re∗ = 30, ε = 10−2, and Ca = 10−3. The unbounded
solutions can be seen in (a) and (b), while the non-physical region is seen in (c).
With dotted curves indicating solutions to (57) and solid curves as solutions to the
coupled equations (51), (40), and (35).

chosen to be small to obtain film heights comparable to Ref. 18.
As noted previously, increasing λ transitions the film profile from
a smooth rimming flow toward a deepening pool solution at the
cylinder base. In accounting for the differences of rotational and
shear driven flow, the film profiles in Fig. 4 are comparable to
Ref. 18 for both high and low gravitational effects consistent with
those reported.

When the gravitational effects are weak (λ = 1 − 2), the film is
seen to spread relatively uniformly across the cylinder, as in Fig. 4.
When λ > 5 however, we observe a solution pooling deeply at
the bottom, where much of the film coating the cylinder becomes
exceedingly thin. Therefore, we expect the effect of slip to become
substantial in the latter case. In Sec. IV C, we will investigate how an

FIG. 4. Profiles for increasing gravitational forces for τ = 1, ε = 0.1, Re∗ = 10−3,
Ca = 0.1, A = 0.10, and ls = 0.01. With the solid curve for λ = 1, the long-dashed
curve for λ = 2, the dotted-dashed curve for λ = 3, the long-dotted-dashed curve
for λ = 5, and the short-dashed curve for λ = 10.

increasing slip length influences the transition from a smooth profile
to a pooling solution.

The pooling solutions, typically where higher film heights exist
around the cylinder base, are synonymous to a recirculation region,
highlighted in Fig. 5 for the flow streamlines of Fig. 4 with λ = 1 and
λ = 3. The bulk of moving fluid from the thin region is driven over
the recirculation by driving the air shear.

C. On the balance of slip and gravity
We will now look at how the transition between smooth and

deeply pooled solutions (presented in Fig. 4) is affected by the slip

FIG. 5. Streamlines of pooled and smooth solutions, for λ = 1 in (a) and λ = 3 in
(b), showing the fluid recirculation of the solutions presented in Fig. 4.
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length. The film profiles for slip lengths up to O(1) are summarised
within Fig. 6. With an equal balance of gravitational to viscous forces
(λ = 1), seen in Fig. 6(a), the film profile shows minor changes
between ls = 0.01 and ls = 0.10. We observe a slight thinning of

FIG. 6. The effect of cylinder slip on the solutions of increasing gravitational effects
for ε = 0.01, Re∗ = 0, Ca = 10−3, and A = 0.10. In (a) λ = 1, (b) λ = 2, (c) λ = 5,
and (d) λ = 10 with dotted-dashed curves representing ls = 0.01, solid curves for
ls = 0.10, and dashed curves for ls = 1.00.

the film outside of 0 < s < π, with the fluid mass accumulating into
a raised peak observed at s = π/2. When the slip length increases
toward a near drag free setting of ls = 1, a substantial thinning of the
film is observed, with a reduction of the thickness up to half of that
reported with ls = 0.01, and a significant deepening of the film for
0 < s < π/2, highlighting the importance of surface effects at
ls ∼ O(1).

Figure 6(b) shows the same collection of film profiles with dif-
ferent ls, but with a relatively stronger gravitational force (λ = 2).
Here, we obtain a pooled solution for all slip lengths; however,
increasing ls results in a significant thinning of the film in areas of
uniform film height (for −π/4 > s and s > π/2). The pooling of fluid
within the domain is attributed to the fixed filling fraction, thereby
resembling a pooling solution even at low gravitational forces. In
Sec. III H, the largest changes to critical film values are observed
around O(ε), with Figs. 6(a) and 6(b) demonstrating a significant
divergence from those of Ashmore, Hosoi, and Stone18 as ls transi-
tions beyond O(ε). A further increase in the slip length encourages
further thinning of the flow profile, leading to excessively further
pooled flows within the low gravitational force range. It is within
the limit of Re∗ ≪ 1 and λ ≤ 5 that one observes the most significant
effects of wall slip, where even small slip lengths, l∗s ∼ O(h∗), result
in observable pooling and thinning.

For exceedingly larger λ, the subsequent effect of ls is seen to
diminish. At λ = 10, even the longer slip lengths of ls ∼ O(1)
lead to negligible changes in the film profile compared to the low
slip conditions. This is due to the overwhelmingly strong gravita-
tional forces affecting the flow, which results in exceedingly low film
heights across the domain outside of the pool at −1 < s < 1.

The controlled fixed filling fraction, such that A > Ac for all
cases, allows for super-critical film states due to stability from the
addition of surface tension, allowing for deeply pooled and shock
formations to exist.

D. Inertial effects for transitioning
to smooth solutions

It is within the realm of A > Ac that the most interesting fea-
tures can be explored for solutions subjected to inertia undefined by
lubrication theory. Previous studies have highlighted the effects of
increased inertia with the no-slip condition, presenting rich features
on film solutions.31,38 Upon exploration of the parameter space for
the reduced Reynolds number, Re∗, and film flux ratio, q/qc, the flow
with slip at the wall is compared to its equivalent no-slip flow. The
influence of slip length on the critical filling fraction, Ac, leads to an
adjusted filling fraction ratio A/Ac being maintained for comparable
results on the flux ratio q/qc for no-slip and partial slip profiles.

Summarising a rimming flow of no-slip film subjected to low
inertial effects, Re∗ = 0.01 for a fixed filling fraction of A > Ac; a typ-
ical pool film develops as seen in Fig. 7(a). Greater inertial effects
lead to the eventual smoothing of the flow, as shown in Fig. 7(f)
(Re∗ = 100). Moreover, for the pooled solutions at q/qc < 1, the fluid
accumulates on the rising cylinder wall exhibiting a sharp front; see
Fig. 7(a). Within the regime of the lubrication approximation (29),
the increase in Re∗ leads to the formation of small wavelength dis-
turbances at the sharp front, observable first in Fig. 7(b), which are
eventually smoothed due to the presence of surface tension, inertial,
and pressure gradients. These small wavelength disturbances, iden-
tified as capillary waves, are seen to grow for greater inertial effects,

Phys. Fluids 31, 033602 (2019); doi: 10.1063/1.5085497 31, 033602-11

© Author(s) 2019

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 7. Effect of increasing Re∗ with and
without slip: ls = 0.00 (solid curve) and
ls = 0.01 (dashed curve), at τ = 1, λ = 1,
Ca = 10−3, ε = 10−2, and A/Ac = 1.073.
The insets correspond to ls = 0.00 at (a)
Re∗ = 0.01, (b) Re∗ = 1.80, (c) Re∗

= 5.00, (d) Re∗ = 10.00, (e) Re∗ = 15.00,
and (f) Re∗ = 100.00.

encapsulated in Figs. 7(c) and 7(d), where the sharp front seen in
low Re∗ is replaced by these capillary waves. Upon moving toward
more dominant inertial flows, of Re∗ > 15, the small capillary rip-
ples are seen to be greatly diminished in Fig. 7(e) and have become
non-existent in Fig. 7(f). The limitation of (29) could be breached
at higher Re∗ unless the film remains smooth, where h′ ≪ 1 which
leads to limited inertial effects.

The possibility of smoothed solutions for super-critical filling
fractions arises from the leveling of the supplementary inertial terms,
therefore satisfying (29) as the film mass is almost uniformly dis-
tributed across the domain. Addition of a slip length, ls = 0.01,
is examined for the behavior in obtaining pool solutions for q/qc
< 1, shock solutions at q/qc = 1, and solutions for q/qc > 1 that exist
outside of lubrication theory.

In establishing the initial solutions for slip flow, displayed in
Fig. 8(a), the sharp front at the start of the solution pool equiva-
lent to that of no-slip is found on the rising cylinder side, exist-
ing within the pool solution regime for q/qc < 1. While containing
steep fronts, akin to a shock solution, regions of recirculation on
the rising cylinder side within a pool are possible, seen in Fig. 5.
Upon advancing Re∗, the pooled solution depth is diminished as the
fluid is spread across a larger portion of the rising cylinder wall. As
Re∗ → 5, a number of small waves begin to form in front of the pre-
viously sharp front, see Fig. 8(c), which has been reduced in depth
further due to inertial effects causing a smoothing across the film.
These small waves reach a peak disturbance upon the film around
Re∗ ∼ 10, where a non-insignificant portion of the film is under the
influence of these waves, known to be an artefact of the additional
surface tension terms, described as capillary ripples, which can pose
challenges in resolving numerically.

At Re∗ ∼ 10, it is possible that (29) is infracted due to h′ not
being negligible. Increasing inertial effects of Re∗ > 10, a transition
toward a smoothed solution occurs. The initially pooled solution
becomes further smoothed due to inertial effects, with fluid mass
rising further along the cylinder wall along with a stretching of the
capillary ripples, shown in Fig. 8(e). This smoothing is culminated in
an almost uniform rimming flow of Fig. 8(f), where h′≪ 1; therefore,
(29) is satisfied as inertia becomes minimal.

For Re∗ > 20, the inertial effects allow for smooth solutions to
exist for q/qc > 1, contrary to classical lubrication theory’s detached
solution branches. Equally, the effects of inertia allow for film flux
ratios of q/qc < 1, seen to be within the sub-critical regime for films
that maintain a super-critical filling fraction A > Ac.

A large slip is shown to increase the rate at which the transi-
tional region between pooled and smooth solutions appears, with
the onset of capillary ripples occurring at lower Re∗. This presents
an interesting case where the increased inertial effects are restricted
in their ability to smooth the pool solution, requiring larger effects to
raise the fluid along the cylinder wall and begin the eventual removal
of the capillary ripples. The overall trends on the pooled, shock, and
smooth solutions are typically unchanged in appearance, notably as
inertial smoothing becomes the dominant mechanism for Re∗ > 20;
only minor ripples are apparent, which dissipate shortly thereafter.
With larger slip lengths, capillary ripple formations are exceedingly
harder to resolve numerically.

This highlights the benefit of the slip boundary condition in
forming a levelled profile, which is not subjected to recirculation
regions seen at low inertia, and hence avoids problems in the
maintenance of fluid properties.

E. On the presence of non-unique solution branches
By the implementation of high order surface terms into (51), a

region within a parameter space has been shown to contain non-
unique solutions.38 Their added wall friction factor highlighted
novel characteristics of the flow dynamics, having employed a cubic
polynomial for improvements in the depth-averaging method. In a
similar fashion, the implementation of a slip boundary condition
was explored across a parameter space, shown in Fig. 9.

Next, we will investigate the solutions at varying filling fraction
A/Ac but at a fixed Reynolds number. We will show that non-unique
solutions exist for a flow with wall slip, while the no-slip flow solu-
tion remains unique for the same parameters. An initial profile of
a fixed low filling fraction passed through the steady-state solver
achieves a smooth rimming flow profile seen in Fig. 9(a). Let us
first focus on the no-slip case (solid line). When the filling fraction
is increased from zero, the smooth solution develops toward the
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FIG. 8. The effect of inertia on the slip boundary condition for τ = 1, λ = 1, Ca = 10−3, ε = 10−2, and A/Ac = 1.073. With (a) representing Re∗ = 0.01, (b) Re∗ = 1.80,
(c) Re∗ = 5.00, (d) Re∗ = 10.00, (e) Re∗ = 15.00, and (f) Re∗ = 100.00 for ls = 0.01.

critical flux ratio q = qc in Fig. 9(b) with the fluid pooling on the
lower rising side of the cylinder. By raising the filling fraction, tran-
sitioning above q > qc and A > Ac, seen in Fig. 9, shows further fluid
accumulating on the rising cylinder wall in Fig. 9(c). This develop-
ment can be understood by the smooth solution profile connecting
the bounded and unbounded solutions from lubrication theory of
(57) for the sub-critical classification of q < qc. Subsequent incre-
ments of the filling fraction lead to a minor reduction in the fluid flux
for film profiles which remain consistently within the sub-critical
classification. The increased fluid within the domain accumulates
within a deepening pool at the lower half of the rising cylinder wall,
captured in Fig. 9(d); further addition to the filling fraction leads to
capillary ripples becoming more prevalent. This parameter space for
no-slip contains only one unique solution for any A/Ac.

The hump for the no-slip parameter space is enlarged with the
inclusion of low reduced Reynolds. Next, we will retrace the filling

fraction-space with a moderate slip length, ls = 0.5. The profile at
low filling fraction is show in Fig. 9(e) and is very similar to the no-
slip profile for the same A/Ac. The profiles approaching A = Ac bear
similarities, beyond which the parameter space and profiles differ
considerably. When increasing the filling fraction above the crit-
ical (A/Ac > 1), the flux ratio q/qc increases toward a maximum
attainable value, for which the profile is shown in Fig. 9(g). Care-
ful adjustment of the filling fraction then leads to a reduction in the
fluid flux to Fig. 9(h), beyond which increases in the filling fraction
fail to resolve solutions.

Enforced reduction of the flux allows for a parameter space
to be explored between Figs. 9(h) and 9(j) with the steady state
solver for a defined flux rather than filling fraction. Beyond Fig. 9(j),
increasing the filling fraction leads to accumulation of the extra fluid
pooling on the rising cylinder wall exhibited in Fig. 9(k) compara-
ble to the no-slip scenario with larger filling fractions [Fig. 9(d)]; the
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FIG. 9. Parameter space q/qc against
A/Ac for smooth solutions transitioning to
deep pooling solutions with wall slip. For
Re∗ = 1, τ = 1, λ = 1, Ca = 10−3, and
ε = 10−2. With ls = 0 represented by
the solid line and dashed curve repre-
senting ls = 0.5. Where parts (a)–(d)
show the key film shapes for no-slip and
(e)–(k) contain key profiles of the param-
eter space for ls = 0.5.

observed shock structure experiences substantial short wavelength
formations ahead of the shock front located on the rising side of
the cylinder. This parameter space shows a region of defined filling
fractions which lead to multiple solution profiles attainable, defined
by the non-unique region between 1 < A/Ac < 1.2. The rimming flow
profile presented in Fig. 9(i) was found to be stable; indeed, between
solutions in Figs. 9(h) and 9(j), all solutions appeared to be stable,
following analysis by the transient solver. This is in agreement with
the theory on the location of shock solution stability, seen in the
work of Villegas-Díaz et al.,24 where the fluid on the rising cylinder
side is stable when on the lower cylinder section.

By advent of slip, the maximum attainable flux ratio is
increased, with a larger fluid filling fraction ratio required before
reaching the transition region between the smooth and shock solu-
tions. The onset of capillary ripples is more profound across the
entire parameter range for slip, exhibited between Figs. 9(g) and
9(k), unlike the no-slip results. Both slip and no-slip cases expe-
rience a flux reduction, located in the transitional region from a
smooth profile into a shock. The accumulation of fluid in the lower
cylinder as a deepening shock solution provides the reduction in
fluid flux required for maintaining of a smooth rimming flow. The
non-unique region reported by Kay et al.38 when implementing a
wall friction factor affirms the use of surface effects at developing
non-unique solution regions.

V. CONCLUSIONS

For the use of highly sheared thin liquid films in aero-engine
components, specifically bearing chambers in which film thick-
nesses can be exceptionally thin, we have investigated the film

flow dynamics where inertial and surface effects can be substan-
tial. A model for rimming flow that retains leading-order inertial
effects with a slip boundary condition imposed upon the cham-
ber surface has been developed. The model consistency is dis-
cussed and compared to cases with negligible inertial effects or
no-slip condition at the wall from previous studies of rimming
flows.

Based upon simplification of the governing equations from
hydraulics theory, a depth-averaged model is presented. An assumed
quadratic velocity profile, recognised from the Stokes flow with a
constant slip boundary condition, yields a physically relevant model
for a range of slip conditions. Inertial terms are retained by depth-
averaging the Navier-Stokes equations under a thin film assump-
tion. The resulting system of equations is solved numerically, with
a coordinate transformation to cluster points near the center. The
computed film height and flux profiles are compared for no-slip and
slip conditions at the wall by a compact numerical approach, with a
global pseudospectral method in obtaining film height and flux pro-
files. The method to include high order effects such as leading order
surface shear and inertial effects by depth-averaging is consistent
with previous studies.38

The addition of slip results in non-unique solution regions,
observed through analysis of a parameter space for comparison
between the no-slip condition of purely unique solutions. Exis-
tence of three simultaneously possible steady solutions is verified
by a steady state solver, and by transient solver, all of them are
determined to be wholly stable. Solution profiles with wall slip
exhibit deeper pooling of films, arising from the thinning at the outer
bounds of the domain, significant when the slip length is comparable
to the film height.

Phys. Fluids 31, 033602 (2019); doi: 10.1063/1.5085497 31, 033602-14

© Author(s) 2019

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

Further analysis within a lubrication theory framework sug-
gests modification of the well-known lubrication equation by wall
slip. The asymptotic analysis of the resulting equation with an
increasing slip length demonstrated reductions in allowable film vol-
ume alongside an escalation of the possible film flux, as a result
of the modification of critical film values where hc asymptotically
approaches τ/2λ and qc continuously increases. Upon fixation of
the filling fraction, the addition of moderate slip lengths leads to a
transition from a sub-critical to super-critical flow.

When inertial and gravitational effects become sufficiently large
to dominate the flow dynamics, slip length has reduced impact on
film profiles with results comparable to previous studies at low to
no slip. The addition of slip leads to a swifter onset of capillary rip-
ples whilst having a deferred transition toward smooth solutions for
growing inertial effects. An introduction of boundary slip demon-
strated a thinning of film profiles toward domain boundaries with
a deeper pooling solution forming and introducing recirculation
regions which are detrimental to bearing chamber flows.
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APPENDIX A: THE VELOCITY PROFILE COEFFICIENTS
The coefficients for the quadratic velocity profile to O(1) aris-

ing from (47)–(49) are

a0
0 =

6lsq − h2lsτ
2h2 + 6lsh

,

a0
1 =

6q − h2τ
2h2 + 6lsh

,

a0
2 =

3h2τ + 6hlsτ − 6q
4h3 + 12h2ls

,

and the coefficients to O(ε) are

a1
0 = ls

h3τ + 6hq + 36qls
8(h + 3ls)2 ,

a1
1 =(h4τ + 4h3lsτ + 12h2l2

s τ + 6h2q + 12hqls − 72ql2
s )/8h(h + 3ls)2,

a1
2 = −

3h3τ + 18h2lsτ + 36hl2
s τ + 18hq + 72qls

16(h2 + 3hls)(h + 3ls)
.

APPENDIX B: THE MOMENTUM
INTEGRAL COEFFICIENTS

From the depth-averaged azimuthal momentum equation (43),
the unknown integrals are evaluated from the radial and azimuthal
velocity components to O(1) and O(ε)

h

∫

0

udy =
h

∫

0

u0dy + ε
h

∫

0

u1dy = I0 + εI1,

h

∫

0

u2dy =
h

∫

0

(u0
)

2
dy + 2ε

h

∫

0

u0u1dy = K0 + εK1,

h

∫

0

yu2dy =
h

∫

0

y(u0
)

2
dy = T0,

h

∫

0

⎛
⎜
⎝

h

∫

0

u2dy −
y

∫

0

u2dy
⎞
⎟
⎠

dy =
h

∫

0

y(u0
)

2
dy = T0,

h

∫

0

vudy = D0 dh
ds

+ D1 dq
ds

,

[
∂u
∂y

− εu]
h

0
= N0 + εN1.

When substitution of the definitions for u0 and u1 into the com-
plete integrals of (43) are evaluated, the coefficients I0, I1, K0, K1, T0,
D0, D1, N0, and N1 are given as functions of h, q, τ, and ls

I0
= q,

I1
= 0,

K0
= (h6τ2 + 9h5lsτ2 + 24h4l2

s τ
2 + 6h4qτ + 42h3qlsτ + 144h2q2

+ 720hq2ls + 1080q2l2
s )/120h(h + 3ls)2,

K1
= −h(h6τ2 + 13h5lsτ2 + 54h4l2

s τ
2 + 9h4qτ + 54h3l3

s τ
2 + 99h3qlsτ

+ 324h2ql2
s τ + 18h2q2 + 540hql3

s τ 162hq2ls + 540q2l2
s )/

× 240(h + 3ls)3,

T0
=(3h6τ2 + 26h5lsτ2 + 60h4l2

s τ
2 + 36h4qτ + 264h3qlsτ

+ 360h2ql2
s τ + 396h2q2 + 1800hq2ls + 2160q2l2

s )/480(h + 3ls)2,

D0
=(h6τ2 + 9h5lsτ2 + 20h4l2

s τ
2 + 20h4qτ + 140h3qlsτ + 240h2ql2

s τ

+ 132h2q2 660hq2ls + 720q2l2
s )/160h(h + 3ls)2,
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D1
=(h6τ2 + 9h5lsτ2 + 20h4l2

s τ
2 + 20h4qτ + 140h3qlsτ + 240h2ql2

s τ

+ 132h2q2 660hq2ls + 720q2l2
s )/160h(h + 3ls)2,

N0
=

3h2τ + 6hlsτ − 6q
2h(h + 3ls)

,

N1
= −(5h3τ + 36h2lsτ + 72hl2

s τ + 30hq + 108qls)/8(h + 3ls)2.

APPENDIX C: THIN FILM MODEL COEFFICIENTS
The full expansion of the coefficients for the depth averaged

azimuthal momentum equation of (51) is given as functions of h, q,
τ, and ls

α = (h7τ2 + 11h6lsτ2 + 44h5l2
s τ

2 + 2h5qτ + 72h4l3
s τ

2 + 18h4qlsτ

+ 84h3ql2
s τ − 48h3q2

− 336h2q2ls − 1080hq2l2
s

−1080q2l3
s )/40h2

(h + 3ls)3,

β = − (− h8τ2
− 63h7lsτ2

− 315h6l2
s τ

2 + 6h6qτ − 783h5l3
s τ

2

+ 102h5qlsτ − 972h4l4
s τ

2 + 504h4ql2
s τ + 396h4q2

+ 1188h3ql3
s τ + 3780h3q2ls + 3240h2ql4

s τ + 14 688h2q2l2
s

+ 29 160hq2l3
s + 19 440q2l4

s )/240h(h + 3ls)4,

γ = (h4τ + 7h3lsτ + 48h2q + 240hqls + 360ql2
s )/20h(h + 3ls)2,

ω =(13h5τ + 135h4lsτ + 432h3lsτ + 332h3q + 360h2l3
s τ + 2604h2qls

+ 6840hql2
s + 6480ql3

s )/80(h + 3ls)3,

ψ = 1,

N0
= −

3h2τ + 6hlsτ − 6q
2h(h + 3ls)

,

N1
= −(5h3τ + 36h2lsτ + 72hl2

s τ + 30hq + 108qls)/8(h + 3ls)2.
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