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ABSTRACT

A ring-shaped logic circuit is proposed here as a robust design for a True Random Number Generator (TRNG). Most existing TRNGs rely on
physical noise as a source of randomness, where the underlying idealized deterministic system is simply oscillatory. The design proposed here is
based on chaotic dynamics and therefore intrinsically displays random behavior, even in the ideal noise-free situation. The paper presents sev-
eral mathematical models for the circuit having di�erent levels of detail. They take the form of di�erential equations using steep sigmoid terms
for the transfer functions of logic gates. A large part of the analysis is concerned with the hard step-function limit, leading to a model known
in mathematical biology as a Glass network. In this framework, an underlying discrete structure (a state space diagram) is used to describe the
likely structure of the global attractor for this system. The latter takes the form of intertwined periodic paths, along which trajectories alternate
unpredictably. It is also invariant under the action of the cyclic group. A combination of analytical results and numerical investigations con�rms
the occurrence of symmetric chaos in this system, which when implemented in (noisy) hardware, should therefore serve as a robust TRNG.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5079941

Random number generators (RNGs) are an essential element of
most cryptographic systems. Many RGN designs rely on an oscil-
lating ring circuit structure, inwhich physical noise is leveraged to
generate random alterations of the periodic behavior. This paper
discusses an alternative approach, where a ring circuit is intrinsi-
cally able to generate chaos rather than periodic oscillations. We
introduce and analyze several models of this circuit. The anal-
ysis aims to show that these models present chaotic dynamics,
which provides the circuit with inherent unpredictability, even
before considering the noise inherent in the physical circuit. To
achieve this, we use a combination of analytical and numerical
approaches.

I. INTRODUCTION

RNGs are an essential element of most cryptographic systems.1

The unpredictable values they generate are useful for many

applications, including secret-key generation and challenge gener-
ation for challenge/response authentication. Yet, the design com-
plexity of a high-performance True Random Number Generator

(TRNG)—one in which the entropy is derived from a truly ran-
dom physical characteristic that is di�cult to measure and pre-
dict (e.g., thermal noise, metastability)—can be incompatible with
low cost. Most proposed TRNGs leveraging such random physical
features require special-purpose analog circuits, which limit their
applicability to a low-cost design. Therefore, for low-cost chip appli-
cations, an all-digital circuit implementation is preferred, one in
which every circuit element in the TRNG is a simple logic gate that
can be instantiated directly from the design’s standard-cell library.
Moreover, to ensure low cost and low risk, it is important that
such an all-digital circuit be fully compatible with a standard VLSI
design methodology, including synthesized RTL (Register Transfer
Language) and auto-place-and-route circuit blocks, with minimum
design constraints and no need for hands-on �ne-tuning of critical
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signaling paths. But even for large SoCs (Systems on a Chip) and
high-performance processors that can a�ord the higher design cost of
complex analog TRNG circuits, a highly portable all-digital RNG can
provide bene�t, as its outputs can be mixed together with the other
on-die TRNG subsystems, thereby providing some entropy even in
the case when an adversary successfully mitigates one of the TRNG
elements.

The simplest and most well-known way to construct an all-
digital TRNG is by sampling the error (jitter) between phases in ring
oscillators. SuchTRNGs are built from at least two free running oscil-
lators, each of which is usually built by chaining an odd number
of inverters in a feedback loop.2–5 To sample the jitter, a detector is
required for the phase di�erences between the outputs of ring oscil-
lators, which can be implemented using XOR gates. A problem with
true random number generators based on the sampling phase jitter
in ring oscillators is that the phase can be locked with a frequency
injection attack, which destroys or diminishes the randomness of
their combined output, even in the case where the ring oscillators
comprising the TRNG have di�erent intrinsic frequencies.6–9 This
suggests that a TRNGwith an intrinsic behavior that ismore complex
than a simple oscillator could be more robust to frequency injection
attack.

In order to make a TRNG more robust against attack, we
propose using a circuit that is inherently chaotic, also having the
advantage of portability that comes from an all-digital design. S.B.
designed a ring oscillator modi�ed by feedforward and feedback
between units in a way that implements the logic of Wolfram’s
Cellular Automaton Rule 30, as described in Sec. II and ana-
lyzed in the rest of this paper. Other analog electronic networks
displaying complex, even chaotic, behavior have been proposed
before. The most well known is probably Chua’s circuit,10 shown by
Galias11 to be chaotic, and studied quite extensively since (e.g., by
Kuznetsov et al.12,13). Closer to the current idea are the ring
oscillator-based circuits proposed by Hosokawa and Nishio14 and by
Dhanuskodi et al.15These designs, however, are less portable than the
one proposed here, because they are not all-digital. The circuit of the
current paper will be analyzed by methods derived from the theory
of Glass networks, as used in qualitative modeling of gene regula-
tion. Glass and colleagues have previously pointed out that standard
electronic circuits are governed by essentially the same class of equa-
tions, and electronic implementations of Glass networks were built

and studied.16 Other researchers have used Glass network equations
to study ring oscillators without identifying them as such (e.g., Sri-
vastava andRoychowdhury17). Chaotic dynamics in electronic circuit
implementations of Glass networks have also been studied.18Various
alternative designs for chaotic Glass networks (Ref. 38) might also be
investigated in future as potential TRNGs.

The paper is constructed as follows. After describing the cir-
cuit’s architecture in Sec. II, we present a di�erential equation model
of its dynamics, which in the limit of step response functions is
exactly a Glass network. Simpli�ed variants of the model with aggre-
gated variables are also presented. We then proceed to study these
models using both analytical observations and extensive numeri-
cal results. A �nal section (Sec. V) describes a discrete approximate
model often used for Glass networks, allowing us to deduce some
global properties of the structure of trajectories and attractors for
the di�erent models. A conclusion reviews the main �ndings of the
paper.

II. THE CIRCUIT

This article is concerned with the the dynamical behavior of a
circuit consisting of a ring of identical units, as depicted in Fig. 1.

Each unit (green box in Fig. 1) is composed of a logical function
with three inputs

f (a, b, c) = a⊕ (b ∨ c), (1)

where⊕ and ∨, respectively, denote the XOR and OR functions. The
unit is followed by two inverters wired in series. The logical func-
tion, described using XOR and OR gates in the �gure, corresponds to
cellular automaton rule 30 in Wolfram’s nomenclature.19 A physical
implementation of this circuit displays some highly irregular dynam-
ical behavior and suggests that it could be used as a true random
number generator (TRNG).

More speci�cally, the assumption is that this circuit displays
chaotic dynamics, so that even in an ideal situation where all circuit’s
components have perfectly known characteristics, the slightest per-
turbations on the voltage fed to the circuit are ampli�ed and lead to
unpredictable changes in the long-term dynamics. In other words,
the occurrence of chaos entails that the system is able to generate
entropy on its own, even in the absence of any noise.

FIG. 1. The basic unit (within the green
rectangle) receives input from the sec-
ond inverter of both the previous and
next units. Besides two inverters, each
unit comprises a logical gate (blue rect-
angle) coding for the Boolean function
f(zi−1, zi , zi+1), see (1). The overall struc-
ture is periodic: i ∈ {1, . . . , n} and i is
considered modulo n.
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III. MODEL DEFINITION

One key assumption underlying the proposed mathematical
models is that all logical gates involved in the circuit have a very steep
response curve, almost step-like. Furthermore, the dynamics of inter-
est must be robust to changes of parameters to avoid any dynamical
property that would be sensitive to parameter choices, as any phys-
ical implementation of the circuit will have some imprecision in its
quantitative characteristics.

To capture our assumption in a parameter insensitive way, we
represent logical gates using a basic sigmoid response curve, which
we allow to vary within a range of plausible choices. Speci�cally, we
de�ne

h+(x) =
1+ tanh[β(x− θ)]

2
or

xβ

θβ + xβ
(2)

as two possible sigmoid shaped response curves, with β a steepness
parameter and θ a threshold parameter. We also de�ne

h−(x) = 1− h+(x)

as the decreasing counterpart, which will be used to model inverter
gates. Both the above functions will be considered and the nota-
tion h± may be used hereafter without further speci�cation when
discussing a property that is valid for both forms, usually under a
condition that β � 1.

In fact, since the steepness parameter β is typically expected
to be high, the limit β →∞ will also be considered, using the step
functions

s+(x) =
{

0 if x < θ ,
1 if x > θ ,

and s−(x) = 1− s+(x).

The threshold value is left unspeci�ed at this stage. The advantage of
introducing step functions is that they lead to the models taking the
form of piecewise-linear (PL) di�erential equations, for which ana-
lytical results can be obtained, unlike the case of smooth sigmoids. In
addition, it is known that for β large enough, the phase portraits of a
system with a sigmoid and a system with its PL limit are qualitatively
similar in a large range of situations, and exceptions have been partly
characterized.20

Unless stated otherwise, we use the step functions s± as a main
model, as they allow for analytical developments to an extent that
is not possible with their smooth counterpart. We proceed to de�ne
models with di�erent levels of approximation, starting with the most
realistic form. Subsequent models are obtained by lumping variables
present in the initial formulation, which results in lower dimensional
models.

As a generic notation, we denote the total number of variables
by N in the following, where N will equal 4n, 3n, or n, for n units on
the ring depending on the particular model as detailed in Secs. III A
and III B.

A. “Full” 4n-dimensional model

Following the scheme in Fig. 1, we describe the system with the
following system of di�erential equations:

dxi

dt
= κxi

[

s+(zi−1)s
−(ui)+ s−(zi−1)s

+(ui)
]

− γxixi,

dyi

dt
= κyi s

−(xi)− γyiyi,

dzi

dt
= κzi s

−(yi)− γzizi,

dui

dt
= κui

[

1− s−(zi)s
−(zi+1)

]

− γuiui,

(3)

where xi, yi, zi, and ui represent the voltage measured at the output
point of the corresponding gates in Fig. 1, and i ∈ {1, . . . , n} is taken
modulo n. The parameters κ and γ , respectively, represent the max-
imum voltage and characteristic times (or RC constant, or delay) of
the di�erent gates. In each case, we suppose that the threshold is in
the range allowing the variable to switch: e.g., s+(zi−1) has a threshold

θ satisfying 0 < θ <
κzi−1
γzi−1

.

In this �rst formulation, all the logical gates are represented
individually. Even with a fairly low number of units, the number of
variables and parameters to consider is quickly high and even the
dynamics of a single unit of the network is hard to depict graphically.
This leads us to consider the lower dimensional models described in
Sec. III B.

B. Lower dimensional models

Simpli�ed models can be obtained by aggregating pairs of vari-
ables xi and ui, or yi and zi. This could be interpreted by saying that
the discarded variables evolve fast, so that they are approximated by
their steady state value, given exactly by the logical term in their
right-hand side. Alternatively, this can be understood as a description
of a related circuit having less logical gates, where, for instance, the
two inverters are replaced by one non-inverting bu�er, or two XOR
and OR elements are replaced by a single, more complex gate. Either
choice gives a 3n-dimensional model [as opposed to 4n in (3)]. Note
that the inverter element is the fastest (e.g., around 20 ps in a mod-
ern process node), the OR gate is the next fastest (around 30 ps), and
the XOR gate is about the same as the non-inverting bu�er (around
40 ps).21 By grouping xi and ui (still denoted xi for simplicity), i.e.,
considering the overall logic function performed in the blue area in
Fig. 1 as a single gate with three inputs, Eq. (5), one obtains a model
with only two distinct types of gate, and therefore two distinct decay
parameters22

dxi

dt
= κxig(zi−1, zi, zi+1)− γxixi,

dyi

dt
= κyi s

−(xi)− γyiyi,

dzi

dt
= κzi s

−(yi)− γzizi,

(4)
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where κyi = κzi , γyi = γzi , and

g(zi−1, zi, zi+1) = f [s+(zi−1), s
+(zi), s

+(zi+1)]

= s−(zi−1)
[

1− s−(zi)s
−(zi+1)

]

+ s+(zi−1)s
−(zi)s

−(zi+1) (5)

is the continuous version of the Boolean function f .
Finally, we could also consider an even simpler version, where

all the variable aggregations discussed above are applied. As a result,
each unit is described by a single variable xi, whose dynamics is
given by

dxi

dt
= κxig(xi−1, xi, xi+1)− γxixi. (6)

Note that all model equations have some symmetry when
parameters are identical between units; as a directed ring of n units,
the circuit’s group of symmetry is the cyclic group Zn, which is gen-
erated by the “shift” σ , where σ(i) = i+ 1 mod n. Zn acts on the
model’s variables as (σx)i = xσ−1(i).

In general, a system of di�erential equations ẋ = F(x) is sym-
metric (or equivariant) if σF(x) = F(σx) for all x (see, e.g., the stan-
dard text of Golubitsky and Stewart23). For the n-dimensional model
(6), this clearly applies (when units are identical): σ g(x) = g(σx)
since σ−1(i± 1) = σ−1(i)± 1. This extends to the higher dimen-
sional models for the same reason, provided we let σ act on variables
x, y, z, u separately

σ
[

(xi, yi, zi, ui)16i6n

]

= [xσ−1(i), yσ−1(i), zσ−1(i), uσ−1(i)]16i6n.

All of the above applies for any rotation in Zn, which is always of
the form ρ = σ k for some 1 6 k 6 n, i.e., ρ(i) = i+ k mod n. This
symmetry entails the existence of invariant subspaces in R

N , which
amounts to a dimensionality reduction when studying the system. It
also has implications in terms of the bifurcations that can occur.23

IV. MODEL ANALYSIS

Bearing inmind that (3) is a more realistic description, we focus
on the system (4) in this section. Both analytical and numeric results
can be obtained to describe the dynamical behavior of the system.
For the latter, though, it will be useful to make additional hypotheses
on the parameters, so that the overall parameter space is reduced.
We discuss this normalization in Sec. IV A, before presenting some
analysis of the phase space structure of this system.

A. Normalization

To simplify the analysis, we make the following assumptions:

• The maximum voltage of each gate is considered in normalized
units, so that any non-zero steady state value is equal to 1. This
is ensured by setting κi = γi for each i ∈ {1, . . . ,N}, as discussed
also in Sec. V A.

• The steepness β is supposed to be identical for each component
and very high, well approximated by the limit β →∞.

• With all variables normalized to belong to the interval [0, 1], we
set a default threshold value, identical for all units: unless speci�ed
explicitly, we always have θ = 0.5 in the following.

• Identical units are supposed to have strictly identical characteris-
tics. In particular, we denote

µ = γxi = κxi , ν = γyi = κYi = γzi = κzi , 1 6 i 6 n.

Thanks to these assumptions, the parameter space becomes essen-
tially two dimensional, with the pair µ, ν varying in a range of pos-
itive values. Finally, a change of time scale τ = µt or τ = νt allows
to reduce even further, to a single control parameter (ν/µ or µ/ν,
respectively).

For theN = 4nmodel, a third delay parameter λ is required for
ui variables. Like in the N = 3n case, a change of time units can in
fact reduce the parameter space to a two-dimensional domain.

B. The core heteroclinic cycle (the fast inverter, or no

inverter, limit)

1. Perturbed alternating sequences

Consider the n-dimensional model with identical units (so we
can take κi = γi = κ = γ and we will also take θ = 0.5). This can
be thought of as the 3n-dimensional model, Eq. (4), in the limit of
in�nitely fast inverters, or simply with no inverters present, or the
4n-dimensionalmodel inwhich theOR gate is also in�nitely fast. The
closest we can get to a purely alternating state is one in which there
is a single consecutive pair of units that are “on” (11) or a single con-
secutive pair that are “o� ” (00), and all others alternate. Other states,
apart from the all 0 state, converge to the attractor consisting of such
states, as shown later in Proposition 5. Consider what happens to a
state with 0110 embedded in an otherwise alternating sequence, with
n odd and su�ciently large (n ≥ 5). Call the corresponding variables
x1, x2, x3, x4 and the Boolean values b1, b2, b3, b4.

The two 0’s (b1 and b4) have 1’s on either side and so remain
0 (i.e., x1 and x4 are driven to a low value and are already below
the threshold). The �rst 1 (b2) remains 1 since 011→ 1 [i.e.,
f (0, 1, 1) = 1; so x2 is driven to a high value and is already above the
threshold]. The second 1 (b3) is driven to a low value since 110→ 0
(x3 decreases from a value above the threshold). Thus, the only sig-
ni�cant event that can occur initially is for x3 to decrease until it hits
its threshold.

Now, x3 = θ , with x4 < θ is a black wall, since 100→ 1. Thus,
when x3 reaches its threshold, sliding occurs, i.e., x3 remains �xed
at its threshold value, while other variables evolve. Furthermore, in
the box 0100, x4 is driven up since 001→ 1, while in 0110, x4 is
driven down as discussed above. The balance between the vector
�elds on either side of the black wall determines the slidingmotion in
the wall, by applying Filippov’s method, a mathematical method to
de�ne solutions of di�erential equations with discontinuities in set-
valued terms.24,39 Equivalently in this setting, a singular perturbation
analysis can be used, in which the step functions are perturbed as
steep sigmoids (typically Hill functions);20 see Sec. IV B 2.

With identical units, the Filippov method determines that the
focal point of the sliding motion is at the threshold intersection
(x3, x4) = (θ , θ). With unequal unit parameters, the focal point may
be below the threshold intersection, in which case it becomes a sta-
ble equilibrium point and the �ow stops there, or above the threshold
intersection, in which case the solution enters the threshold intersec-
tion with a positive velocity. At that point, a singular perturbation
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FIG. 2. Flow in x3 and x4 including sliding motion in the black wall, when units
have identical parameters, and θ = 0.5.

analysis shows that the �ow continues into the box in which x3 < θ

and x4 > θ , i.e., b3 = 0, b4 = 1.
In the case of identical unit parameters, the same singular per-

turbation analysis (see below) shows that the �ow from the threshold
intersection is into the b3 = 0, b4 = 1 box, but in this case the slid-
ing approach to the threshold intersection takes an in�nite amount
of time. The �ow in the x3, x4 projection of the phase space is shown
in Fig. 2.

2. Singular perturbation analysis of the threshold

intersection

The singular perturbation analysis proceeds as follows.20 First,
approximate the step functions by sigmoids

Zi =
x
1/q
i

θ 1/q + x
1/q
i

≈ s+(xi).

Note that Zi above and in the remainder of this section is distinct
from the one used in table (12).

Now, blow up the threshold intersection by translating from
x3, x4 to Z3,Z4 and rescaling time by τ = t/q. The system becomes20

Z′3 =
Z3(1− Z3)

0.5
[(1− Z3)(1− Z4)− 0.5],

Z′4 =
Z4(1− Z4)

0.5
(1− Z3 − 0.5),

where the derivatives are with respect to τ . Then, consider the limit
q→ 0. The phase plane for this system is shown in Fig. 3.

Note that (0.5, 0) is an equilibrium point with a negative eigen-
value corresponding to the �ow along the edge Z4 = 0 and a zero
eigenvalue corresponding to the �ow into the interior of the square

FIG. 3. Flow in Z3 and Z4 in the blowup of the threshold intersection. Dotted lines
are the nullclines. Arrows show the approximate direction of the flow. The bold
line is the solution from (0.5, 0) to (0, 1).

[the eigenvector is (−1, 2)]. It is easy to show that once in the inte-
rior of the square, all solutions �ow to (0, 1). Thus, in the original x
variables, smooth systems with su�ciently steep sigmoids �ow into
the box x3 < θ , x4 > θ .

3. Global behavior of the n-dimensional system

Once in the box b3 = 0, b4 = 1, we have the state 0101 for
b1, b2, b3, b4, but since b5 = 1 and b6 = 0 by our assumption of an
essentially alternating initial state, the state of the �rst 6 variables has
gone from 011010 initially to 010110 and it is clear that the pair of
sequential 1’s has propagated two units to the right, leaving an oth-
erwise alternating state everywhere else. By symmetry, this process
can now be repeated and the pattern 11 will propagate two units at
a time twice around the ring (since n is odd), to arrive back at the
initial state, following the cyclic attractor described in Sec. V B.

However, in the step-function limit, we know that the approach
to the threshold intersection on the black wall is only asymptotic in
time (this is an interpretation of the 0 eigenvalue in the Z system).
Thus, we have a heteroclinic cycle with �xed points (actually singular
stationary points) at each threshold intersection of consecutive pairs
of variables.

If the parameters are not identical between units, then some of
the focal points of the slidingmotionswill lie above the threshold, and
some below, so some threshold intersections will be passed through,
but trajectories will stop before reaching others.

However, if we introduce relatively fast additional variables
(as in the 3n or 4n models here) we can develop an intuitive sense
of how complex behavior can arise. Sliding in the black wall will be
replaced by oscillations in the additional variables, so the heteroclinic
cycle for the identical unit system will break down and solutions will
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tend to be nudged past the threshold intersections, but not with-
out some potentially complex oscillations as these transitions occur.
Introducing small amplitude noise would have a similar e�ect. Even
if units have non-uniform parameters, if the noise or oscillations are
large enough, solutions may always be pushed far enough to pass the
threshold intersections.

Thus, we expect that the higher dimensional systems or the sys-
tems with noise will have complex oscillations near these transition
points that are nevertheless built around an underlying heteroclinic
cycle. In fact, the perturbations can in this case go farther from the
simple situation where only a single pair of variables are transitioning
at a time, since during the oscillations around the threshold intersec-
tion, the time that a pair of units spends in the “�nal” state (01) can
trigger the next pair of units to start transitioning, even while the �rst
pair is still oscillating back and forth.

For example, Fig. 4(a) shows a projection onto the x2, x3-plane
of a trajectory of the n-dimensional model with n = 9 and steep sig-
moids (Hill functions) with exponent 50, while Fig. 4(b) shows the
corresponding trajectory in the 4n-dimensional model, where only
the XOR gates are slow, and the additional variables are all fast. Simi-
lar to Fig. 2, these plots show the transition of this pair of units from
box 10 (the lower right corner of the plot) to box 01 (the top left cor-
ner of the plot) by going to the wall between the 00 and 10 boxes, and
then moving up to the vicinity of the threshold intersection before
escaping into the 01 box. Even in the n-dimensional case, when the
step functions are replaced by steep sigmoids, the heteroclinic point
at the threshold intersection is avoided and the cycle becomes a peri-
odic orbit. In the 4n-dimensional case, trajectories oscillate around
the black wall, rather than sliding in it, because of the delay caused
by the fast variables y2, z2, u2, until the region around the threshold

intersection is reached, at which point, the trajectory escapes and
goes into the 10 box toward the point (1, 0). The rest of the trajectory
occurs later, when x2 becomes the second of the transitioning pair
x1, x2, and then x3 becomes the �rst of the transitioning pair x3, x4,
after which the trajectory returns, in this projection, close to (1, 0).

C. Cellular automaton behavior (the many inverter

limit)

The core heteroclinic cycle can be thought of as the behavior
of the 3n-dimensional system (4) with identical units in the limit of
in�nitely fast inverters, or equivalently, with the inverters removed.
In the opposite limit of in�nitely many inverters, we converge to the
cellular automaton behavior, at least when initial conditions are such
that all variables that can switch from the initial state do so simulta-
neously. Each xi then has time to converge (almost) to 0 or 1 before
the inverters can react and initiate a new set of changes. If the initial
state has all variables at 0 or 1 and units are identical then those that
�ip state do so at the same instant, and all inverters react at the same
time, so the simultaneous switchings of the cellular automaton are
also simultaneous in the continuous model.

The cellular automaton Rule 30 is known to produce irregular
behavior on an in�nite domain. However, here we have a �xed num-
ber, n, of units, and so the state space of the cellular automaton is
�nite and its behavior ultimately is periodic, even if the cycle is long,
as discussed by Wolfram.25 An example with n = 9 cells and 80 iter-
ations from an initial sequence corresponding to the perturbed cycle
of Sec. IV B 3 is shown in Fig. 5(a). For comparison, 200 iterations
from a perturbed cycle on 81 units are shown in Fig. 5(b).

(a) (b)

FIG. 4. Dynamics of a circuit with n = 9 units and sigmoids with slope parameter β = 50, projected onto the x2, x3-plane. (a) n-dimensional model, with parameter values
κxi = γxi

= 1, θ = 0.5. Note that with the steep Hill function, the heteroclinic points are avoided and the trajectory becomes a periodic orbit. (b) 4n-dimensional model,
with parameters κxi = γxi

= 1, κyi = γyi
= κzi = γzi

= κui = γui
= 50, θ = 0.5. Note that on different circuits, trajectories are slightly different. Thus, the additional fast

variables introduce complexity.
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FIG. 5. (a) Behavior of the cellular
automaton with Rule 30 on a finite domain
of 9 cells. A continuous network similar to
the 3n network (4) approaches this behav-
ior in the limit of infinitely many inverters,
when initial conditions are binary valued.
Although the initial sequence is a perturbed
alternation pattern, the alternation is
quickly lost. Note that after 11 iterations,
a pattern of six successive 1s and three
successive 0s appears, which reappears
19 iterations later, but shifted 4 cells to
the right. Thus, the period of the periodic
orbit is 19× 9 = 171 iterations. (b) 200
iterations from a perturbed alternation
pattern on 81 cells.

Neither limiting behavior (no inverters or in�nitely many
inverters) produces chaotic dynamics. They do provide some intu-
ition, however, about the nature of the dynamics when additional
inverters are present, but only somewhat fast in relation to the main
logic gate(s), where chaotic behavior may occur.

D. Numerical results

1. Simulations

The de�nition of trajectories “box by box” leads to a natural
algorithm to solve ordinary di�erential equations (ODEs) of the form
(3) or (4): the time to exit each box is calculated explicitly from (9)
(see Sec. V) and, togetherwith (9) itself, allows one towrite an explicit
map de�ned on the boundaries of boxes. The details can be found
elsewhere,26 but trajectories calculated using this algorithm will be
shown in the following. In addition, standard ODE solvers will be
used for models with smooth sigmoids.

Given the structure of the discrete transition graph described in
Proposition 5 (see Sec. V B), odd values of n aremore favorable to the
occurrence of complex trajectories. This is con�rmed by simulations
using arbitrary parameters and initial conditions, which often tend to
one of the regular steady states when n is even. Therefore, we restrict
the following to cases where n is odd.

We �rst discuss numerical simulations of the N = 3n model
(4). As discussed earlier, up to a rescaling of time the model has
a unique parameter, chosen here to be µ (i.e., ν = 1 and the time
unit is given by the inverters’ intrinsic delay). We calculated some
trajectories of the PL version of (4) for various arbitrarily chosen val-
ues of µ and random initial conditions, for n taking the odd values
3, 5, 7, 9. From this exploration, it appears that very complex periodic
orbits appear in the system, corresponding to periodic paths com-
prising many hundreds of nodes in the transition graph. Besides, for
n > 5, some aperiodic trajectories are observed: for tens of thousands
of successive boxes, no periodic pattern is found. Some graphical
representations of such orbits are shown in Fig. 6.

As n = 5 seems to be the minimal number of units allowing
for aperiodic dynamics, we performed a more systematic parame-
ter exploration: �xing the inverter delay ν = 1 we varied µ in the
interval [0, 1]. For each tested value of µ, a trajectory through 50 000

boxes was started from a random initial condition and a periodic pat-
tern was sought in the sequence of boxes. If no period was found, the
periodwas recorded as a �xed, large number. The results are reported
in Fig. 7.

As shown in Fig. 7, the period of limit cycles seems to be
inversely proportional to the parameter µ. The same holds when
considering the number of boxes crossed by a limit cycle, the “cycle
length,” rather than the actual period. Since �xing µ to 1 and vary-
ing ν instead would amount to varying the inverse ofµ, we infer that
the period of limit cycles (either expressed in time units or number
of boxes) is bounded from below by a constant when varying ν. This
claim is con�rmed numerically, see Fig. 8. In other words, this seems
to suggest that it is the time the main unit takes to react that deter-
mines the lower bound on the period, and it is almost completely
insensitive to the time the inverters take to react.

Though the lower bound on cycle periods described in the leg-
ends of Figs. 7 and 8 is intriguing, the main feature shown in these
plots is the presence of seemingly full intervals of parameter values
for which the system behaves aperiodically. A bifurcation diagram,
shown in Fig. 9 con�rms this observation: some branches are strongly
suggestive of the existence of a �xed point for the Poincaré returnmap
(i.e., a limit cycle), whereas dense intervals of points indicate chaotic
dynamics.

2. Lyapunov exponents

All the above results show that the system’s dynamics is ape-
riodic for various intervals of parameter values. However, to fully
con�rm the occurrence of chaos, we estimated the Lyapunov expo-
nents (LEs) of the system numerically. Indeed, the existence of a
positive LE is a well-known characteristic of chaotic dynamics. Fur-
thermore, as far as the random number generation is concerned,
one must verify that the system has the ability to generate a posi-
tive entropy. The existence of a positive LE is su�cient to con�rm
the positive entropy, as the Kolmogorov-Sinai entropy of a dynam-
ical system is equal to the sum of positive LEs according to Pesin’s
theorem.27 To estimate these exponents, we implemented a discrete
QR algorithm.27,28 The principle of this algorithm is to compute in
parallel a numerical solution of both the original model, written
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FIG. 6. Numerical simulation of a trajectory for the model (4) with n = 5 units,µ = 1 and ν = 0.6 and a random initial condition. No periodic pattern is found out of 200 000
successive boxes. (a) Time courses; only the variables xi are shown for clarity. (b) Projections of the trajectory on different planes (xj , xj+3) as indicated. Though not perfectly
identical, the plots along each row present some strong similarities, reflecting the symmetry of the system.
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FIG. 7. Period of trajectories calculated for varying values of µ and fixed ν = 1.
A period of 2500 indicates that no period was actually found. In red, the curves’
period= 38/(µ− 0.01) and period= 76/(µ− 0.01) are shown.

compactly as

v̇ = f (v)

and its associated variational equation

Ẏ = Df [v(t)]Y , Y(0) = Id,

where the unknown Y is an N × N matrix and the Jacobian Df is
evaluated along the solution to the ODE v̇ = f (v). The eigenvalues
of the solution to the variational equation can in theory be used to
calculate Lyapunov exponents, but in practice the existence of a pos-
itive exponent entails that all columns of Y become (numerically)

FIG. 9. In the same run as Fig. 7, a sequence of 5000 successive values (after
the transient) of the first variable x1 were recorded, at each time that the trajec-
tory satisfied x2 = θ (the threshold is translated to 0 in the figure), and the other
variables in a particular pattern of above and below the threshold (so this is a
Poincaré section) corresponding to the box b = (101, θ01, 101, 010, 101). The
first unit is “on,” the second unit is transitioning from or to the “on” state with the
main unit at the threshold and the other two where they should be if the main unit
was “on,” the third unit “on,” the fourth “off,” and the fifth “on.”

linearly dependent. To overcome this issue, a QR decomposition of
the approximate solution Y is performed at regular time intervals,
amounting to an orthonormalization of the column space of Y . The
details of the algorithm can be found in the references given above.

Because the existing algorithms are de�ned only for smooth
ODEs, we performed our estimation on a version of the model that
uses tanh sigmoids [with a high steepness coe�cient β > 58, see

FIG. 8. Length (number of boxes) of
periodic trajectories calculated for varying
values of ν and fixed µ = 1. A period of
10 000 indicates that no period was actu-
ally found. The values found for low values
of ν are not reliable as very long cycles
exist in this region, involving repeated pat-
terns of shorter length which can be mis-
takenly taken for periodic patterns in our
implementation.
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Eq. (2)] rather than step functions. The implementation was made in
Python, using the solver odeint for both the original ODEmodel and
its associated variational equation. The codewas tested on the Lorenz
system and returned values agreeing with published estimates.

A �rst exploration, using values of parameters where the previ-
ously presented bifurcation diagrams displayed aperiodic dynamics,
did not lead to a clearly positive LE: though nearly an order of mag-
nitude higher than the second LE (in absolute value), the leading LE
was close to zero, making conclusions uncertain. Additional calcula-
tions for various values of the delay constants did not allow us to �nd
a clearly positive LE. However, the computational time (15 to 70min
to calculate a set of LE estimates) only allowed for a very limited
exploration.

This led to considering themore realisticmodel (3)with 4n vari-
ables. In that case, a positive LE was found, as shown in Fig. 10. To
con�rm at least visually that the dynamics is chaotic, trajectories cal-
culated for the same parameter values as the Lyapunov exponents are

shown in Fig. 11. The main features observed in the N = 3n case are
still present (complex aperiodic orbits, presenting some approximate
symmetries).

Since the LEs were estimated using a smooth version of the
model, we also calculated trajectories for this version of themodel. In
Fig. 12, it appears as expected that trajectories of the smooth and step-
function versions initially agree, but diverge after a short time due
to the system’s sensitivity to perturbations. The overall time courses
have similar features.

3. Effect of noise

An unrealistic feature of our simulations so far is their complete
determinism, as solutions of a system of di�erential equations. It is
possible to compute LEs for stochastic models in a similar way to
di�erential equations.27We took advantage of this feature and imple-
mented di�erent forms of noise in the model, aiming at approximate

FIG. 10. Lyapunov exponent estimates:
the leading exponent is shown in bold
and blue, all remaining exponents are
in red. Abscissa is time. (a) The 3n
model, with n = 5 and (µ, ν) = (1, 0.5).
Though positive, the leading exponent
is very small and numerical inaccura-
cies do not allow one to conclude with
high confidence that the leading expo-
nent is positive (final values≈ 0.015 and
−0.004). (b) The 4n model, with n = 5
and (µ, ν, λ) = (0.6, 1, 0.7). The lead-
ing exponent is significantly higher than
the second exponent, which is very close
to zero as expected (final values≈ 0.097
and−0.004).
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FIG. 11. Numerical simulation of a trajectory for the N = 4n model with n = 5 units, µ = 0.6, ν = 1 and λ = 0.7 and a random initial condition. No periodic pattern is
found out of 200 000 successive boxes. (a) Time courses, only the variables xi are shown for clarity. (b) Projections of the trajectory on different planes (xj , xj+4) as indicated.
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FIG. 12. Initial time course for the first
variable of the model used for Fig. 11
(dark), along with a smooth version using
the tanh form in (2) with a steepness
coefficient β = 58 (light).

descriptions of the natural jitter occurring in any real-life circuit.
More speci�cally, we implemented three di�erent models, described
below.

As detailed by Hajimiri et al.,29 the standard deviation of the
timing uncertainty due to jitter is expected to be proportional to the
square root of the gates’ typical delay. Denoting this relation by k

√
τ ,

the constant k for a modern transistor at room temperature would
be typically k ≈ 15× 10−9, and since the delays used in our models
were all close to one, we use this value of k as the standard deviation
in our simulations. More speci�cally:

• noise 1: the model includes a multiplicative noise term (normally
distributed with mean 1 and standard deviation k) in the delay
parameters γi. The model is therefore a stochastic di�erential
equation and is solved using the Euler-Maruyama algorithm.

• noise 2: the deterministic model is solved as in the noise-free sit-
uation, but a perturbation of the voltage is introduced at regular
time intervals [in our simulations, every1t = 0.1 unit of time the
voltage v(t +1t) is perturbed by adding a normally distributed

term with mean 0 and standard deviation k
√

1tv(t)].
• noise 3: is as noise 2, but with the perturbations introduced at ran-
dom times (the implementation is as in noise 2 but with 1t being
modi�ed by an additive term taken as the maximum of 0 and a
normally distributed variable of mean 0 and standard deviation k).

Overall, none of the noise models seem to induce any major shift of
the Lyapunov spectrum (Fig. 13). The lowest positive exponents are
found for the �rst noise model, but this is most likely explained by
the sensitivity of the integration algorithm to the size of time steps.
Larger time steps led to lower LEs, to the point of getting close to
zero. On the other hand, reducing the time step further comes at a
high computational cost.

The three models are clearly simpli�ed approximations. Fur-
thermore, by their very nature stochastic models would require a
more statistical investigation, for wide ranges of initial conditions
and parameters (such as noise distribution). However, such a survey
would carry us out of the scope of this paper and come at very high

computational cost. The main point made at this stage is that for rea-
sonable ranges and qualitative forms of noise, themeasure of entropy
provided by the LE remains within the chaotic range.

4. Entropy and time series analysis

In Secs. IV D 2 and IV D 3, the complexity estimates are based
on the model, and, in particular, even though analytical results can
only be obtained for the PL model, LE’s have to be calculated for a
smooth version of the model, perhaps with the addition of noise. To
con�rm the robustness of the claim of chaos, we also used an empir-
ical measure of complexity, which is solely based on time series. One
advantage of such approaches is that they can be used with the PL
model, for which the generation of time series is computationally less
expensive. Another is that ultimately, in the implementation of the
TRNG, a sequence of bits will be extracted that should have a positive
entropy. We chose the notion of sample entropy.30 SampEn(m, r,N)

is de�ned as the negative natural logarithm of the conditional proba-
bility that two sequences of length N similar (i.e., within a distance r
of each other) form points remain similar at the next point, ignoring
self-matches.30

We generated various trajectories of various lengths (up to
5× 107 time steps) of the 4n-dimensional model for 9 units and
extracted the Boolean trace, i.e., the position of variables above or
below the threshold over time. With 9 units, the parameters used for
5 units and reported in Fig. 10 led to periodic trajectories. Instead, we
observed that using slightly di�erent decay rates for the same gate in
di�erent units (e.g., adding a small noise term) seemed to be required
for aperiodic behavior to occur. In the remainder of this section, the
following is used (but other choices with close values led to similar
results):

(γx1 , . . . , γu9) = (0.6, 1, 1, 0.7, 0.6, 1, 1, 0.7, 0.5, 1, 1, 0.7,

0.6, 1, 1, 0.6, 0.6, 1, 1, 0.7, 0.6, 1, 1, 0.7,

0.7, 1, 1, 0.8, 0.6, 1, 1, 0.6, 0.6, 1, 1, 0.7).

(7)
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FIG. 13. Lyapunov exponent estimates with noise terms, see the text for a description of the three noise models. Abscissa is time. The 4n-dimensional model is used, with
n = 5 units,µ = 0.6, ν = 1 and λ = 0.7. For each model, two different initial conditions are chosen at random. Only the three leading LEs are plotted for clarity, with thicker
lines for the leading exponent.

From this discretized time series, we extracted the state of the second
inverter gate for all but the last unit, therefore creating a series of 8-bit
Boolean vectors. The latter can be represented as integers taking val-
ues between 0 and 28 − 1 = 255.We calculatedSampEn for various
lengths of these integer sequences, consistently �nding an entropy
≈ 0.2. For example, Fig. 14 reports values as a function of the length
of a sample extracted from a long simulation (1× 106 time steps).
In addition to considering di�erent lengths of subsequences, we con-
sidered increasing the embedding dimension [the tolerance r was set
to a standard 0.2 std(data)], without much e�ect for m 6 7 (most

applications usem = 2, 3).We conclude thatSampEn robustly indi-
cates a signi�cant level of unpredictability, with a positive SampEn
≈ 0.2.

Note that the notion of time step in this context is not a con-
stant: as mentioned in Sec. IV D, the integration of piecewise-linear
equations proceeds “box by box” and each time step corresponds to
the occurrence of a threshold crossing event (i.e., the switch of one
variable). This can take a variable amount of “physical time” depend-
ing on how close the non-switching variables are to their threshold
values.

FIG. 14. Sample entropy on a sequence of 8-bit integers (second inverter output of a 9 unit 4n-dimensional model). The sequences correspond to the k last time steps of a
long time series, as described in the main text. The abscissa denotes the length k of the sub-sequence being analyzed. Parameters are as in (7).
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FIG. 15. A sequence X of 5× 107 digits was generated. Then, for each sampling value k, the last 10 000 values (taken every k time steps) of X are used to calculate
SampEn. Using this method, SampEn is reported above as a function of the sampling rate k (in number of time steps; see the main text) for (a) a sequence of 5-bit integers
generated using the second inverter of each unit in a 3n-dimensional model (µ = 1 ν = 0.5), (b) a sequence of 8-bit integers generated using the second inverter outputs
of 8 out of 9 units in a 4n-dimensional model [parameters as in (7)].

Furthermore in practice, the sequence of Boolean values gener-
ated by the circuit is sampled at time intervals that are signi�cantly
longer than the typical switching time between variables. Typically,
the sampling occurs at 1/100th of the inverter gate’s update rate.
In the model, the latter is the time unit, therefore a similar sam-
pling would correspond to 50 (physical) time units. Based on a long
simulation, there are typically ≈ 1900 switches (with standard devi-
ation ≈ 13) switches (i.e., time steps in the numerical integration)
occurring over 50 actual time units.

Following this discussion, to assess the e�ect of samplingwe also
calculated SampEn of sequences extracted every k time steps, for k
varying between 0 and 2000 (chosen larger than the value 1900 men-
tioned above). The result is shown in Fig. 15. Interestingly, it appears
that the values ≈ 0.2 found above give a lower bound when consid-
ering the e�ect of sampling. Indeed, one sees in Fig. 15 an increase
of SampEn as a function of the sampling interval. For values of k >

700, the entropy reaches a plateau approximately equal to 2.1. This
also indicates that the sampling rate of 1/100th is somewhat optimal:

it is in the plateau, and any faster rate might lead to lower entropy
rates (though of course, this would depend on the actual parameters
of the di�erent gates). The �gure also illustrates that this property is
not restricted to the 4n-dimensional model but also applies for 3n.

Given the local analysis reported in Sec. IV B, it seems reason-
able to speculate that the cause of the increase in SampEn with
the sampling interval is that there are sequences of repeated pat-
terns occurring on smaller time scales (corresponding to the 2-cycles
within the attractor of the discrete model TGn introduced in Sec. V,
see Figs. 16–18).

E. NIST suite assessment of a physical circuit

implementation

Strictly speaking, the numerical results presented so far are only
valid for the proposed models, rather than an actual physical device.
However, for practical use, an actual chip implementing the circuit

FIG. 16. The graph TG
3
and its image

under the action of the shift on ver-
tices. Colors represent the orbits of Z3 ’s
action. Clearly, the two graphs are identi-
cal. The attractors are {000} and {0, 1}n \
{000, 111}.
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FIG. 17. The graph TG
4
and its image under the action of the shift on vertices. Colors represent the orbits of Z4 ’s action. Clearly, the two graphs are identical. The only

attractors are the fixed points 0000, 1010, and 0101.

FIG. 18. The graph TG
5
. Colors represent the orbits of Z5 ’s action. The only attractors are the fixed point 00000 and the shaded nodes at the center, corresponding to the

Z5 orbits of 10101 and 00101. Dotted lines from the “source” node 11111 are used to improve visibility only.
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design from Fig. 1 should be analyzed. Though a complete char-
acterization of the physical circuit is to be reported elsewhere, we
include some statistical assessment of the bit-streams generated from
test chips fabricated in a testchip utilizing TSMC 40 nm technology.

Speci�cally, these bit-streams were assessed using two of the
most widely used test suites for TRNGs or pseudo-random number
generators. Both suites have been released by theNational Institute of
Standards and Technology (NIST) in special publication SP800-2231

and the more recent draft publication SP800-90B,32 respectively.
100 test sequences comprising 1M bytes were collected from the

test chips. These test sequences were applied to all the 15 tests; the
overall pass rate and smallest P-value across all 100 test sequences are
provided in Table I. It was found that all the tests of NIST SP800-22
passed with a high pass rate.

Similarly, Table II reports results for some of the SP800-90B
tests, speci�cally, tests assessing if the bit-streams are plausibly inde-
pendent and identically distributed (iid) randomnumbers. As seen in
the table, the test sequences passed all tests with a minimum entropy
of 7.07026, which is considered random and iid.32

V. PHASE PORTRAIT DESCRIPTION: THE DISCRETE

LEVEL

The switching nature of the equations introduced so far leads to
a natural discretisation of themodels, whereby only the ON/OFF sta-
tus of each variable is recorded. Although this point of view does not
lead to a proof of chaos it provides a framework, valid for any choice
of parameter values, in which to interpret the continuous dynamics
discussed in Secs. III and IV. It also allows formathematical proofs in
support of themain statements, as opposed to themore experimental
nature inherent in any numerical investigation.

A. Transition graph

This section reviews some general properties of PL systems of
ODEs of the form (3)–(6). More detailed discussions can be found in
earlier publications.26,33

Each right-hand side equation is composed of a negative lin-
ear term (a “decay”) and a piecewise constant term, which is �xed
in rectangular regions of the state space R

N . Since the piecewise con-
stant terms can always take exactly two values, 0 and κi, all themodels
(of dimensionN = n, . . . , 4n) considered in this paper can bewritten
in the generic form

dvi

dt
= κiφi[B(v)]− γivi, 1 6 i 6 N,

where v is the N-dimensional vector describing the whole system,
φi ∈ {0, 1}, or after the simple change of variable vi ← γi

κi
vi, reducing

the number of parameters by half

dvi

dt
= γi {φi[B(v)]− vi} , 1 6 i 6 N. (8)

Note that this rescaling also implies that each threshold θi has been
rescaled to κiθi

γi
, though we keep the notation θi in the sequel for sim-

plicity, and that now each θi ∈ (0, 1) to ensure that each variable can

switch. Also note that, in this rescaling, [0, 1]N is an invariant region,
since φi ∈ {0, 1} in Eq. (8).

The position of state variables relative to their threshold can nat-
urally be coded using a Boolean vector B = B(v) ∈ {0, 1}N , where B
is a map de�ned by

Bi(v) = s+(vi).

The domain of B is the set of points where no variable is equal to
its threshold value and will be called the regular set hereafter and

denoted R =
∏N

i=1([0, 1] \ {θi}). Its complement will be referred to
as the singular set S = [0, 1]N \ R.

For any Boolean vector b ∈ {0, 1}N , B−1(b) is a rectangular
region in R

N , i.e., a product of intervals of the form [0, θi) or (θi, 1].
We will call boxes the regions of the form B−1(b), often referring to
“the box b” by abuse of notation, or denoting v ∈ b for v ∈ B−1(b),
i.e., B(v) = b.

Let us also denote bi = 1− bi and b = (bi)16i6N , and b
i =

(b1, . . . , bi−1, bi, bi+1, . . . , bN).
The map φ : {0, 1}N → {0, 1}N is a purely Boolean map, here-

after referred to as the underlying focal pointmap of the system. This
terminology stems from the explicit solution to (8), valid in a given
box b

∀i ∈ {1, . . . ,N}, vi(t) = [vi(0)− φi(b)] e
−γit + φi(b), (9)

so that φ(b) is attracting all trajectories originating from the box b.
Depending on the position ofφ(b) in the state space [0, 1]N , twomain
cases can be distinguished, listed below. Note that because φ(b) is
Boolean, it is exactly equal to the label of the box in which it lies, i.e.,
φ(b) = B[φ(b)].

1. φ(b) = b. In this case, φ(b) is an asymptotically stable steady
state for the system and no trajectory can leave the box b. Indeed,
it is clear from (9) that vi(t)→ φi(b) for all i, in amonotonic way
so that no threshold is crossed (the de�nitions imply that vi(0)
and φi are all on the same side of any threshold).

2. φ(b) 6= b. In this case, all trajectories exit b in �nite time, enter-
ing a neighboring box b′ in which they will tend to the new focal
point φ(b′), as detailed further below.

In summary, the function φ captures the dynamics of (3)–(6) at the
level of boxes: for any box b, φ(b) provides the direction in which all
trajectories tend. This informal description can bemademore precise
by introducing the notion of a transition graph, denoted TG: it is a
directed graph with node set {0, 1}N and edges b→ b′ between any
pairs of boxes such that an open set of trajectories can leave box b
to enter b′. The openness condition implies that b and b′ are adjacent
through anN − 1-dimensional face (hereafter referred to as a “wall”),
of the form (c` denotes the closure)

c`(b) ∩ cl(b′) ⊂ [0, 1]i−1 × {θi} × [0, 1]N−i

i.e., any v in this intersection satis�es vi = θi and Bj(v) = bj = b′j for
all j 6= i. Following the above discussion, this happens exactly when
the boxes containing φ(b) and b di�er in direction i, which can be
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written as

φi(b) = bi.

De�ning the exit directions of the box b as

I(b) = {i |φi(b) 6= bi} = {i |φi(b) = bi},

edges in the transition graph are thus all pairs of the form

(b, b
i
) for i ∈ I(b).

The main point of de�ning TG is that it provides an intuitive and
convenient “coarse grained” description of the dynamics of the sys-
tem: by construction, any sequence of boxes that are intersected by
a solution of (8) is exactly a path in TG. In particular, any attractor
of the original dynamics lies within a strongly connected component
(scc) of TG. The term “attractor” is also used for TG, referring to the
terminal34 scc’s. In this discrete setting, an attractor that is not a �xed
point will be termed a cyclic attractor.35,36

Remark 1. In general, a non-terminal scc in the TG may con-
tain an attractor of the PL di�erential equations for some param-
eter values. For a terminal scc, corresponding to a compact invari-
ant region for the dynamics, there is necessarily always an attractor
for any choice of parameters, see, e.g., the earlier publications26,33 for
related discussions. It is important to keep in mind that in general
some paths in the TG may not be the code of any trajectory (even
within a scc).

B. Transition graphs for the n-dimensional model

To begin with, the transition graph for the simplest, n-
dimensional, model (6) is constructed and analyzed. We denote this
graph by TGn. Higher dimensional models will then be compared
to this simpler version. From (6), we readily deduce the following
expression for the focal point map φ:

φi(b) = f (bi−1, bi, bi+1) = bi−1 ⊕ (bi ∨ bi+1), 1 6 i 6 n,

where as before subscripts are understood modulo n.
To describe TGn, we can take advantage of the circuit’s sym-

metry under the action of the cyclic group Zn, discussed earlier. For
a directed graph G = (V ,E), symmetry occurs if G is left invari-
ant by the action of a group of graph isomorphisms, i.e., bijections
h : V → V such that (i, j) ∈ E ⇐⇒ (h(i), h(j)) ∈ E. In the case of
TGn, V = {0, 1}n and σ ∈ Zn (or its iterates) acts on V as discussed
earlier: σb = σ(b1, . . . , bn) = [bσ−1(1), . . . , bσ−1(n)].

Now, edges in TGn are of the form (b, b
i
) for i such that φi(b) 6=

bi. The discussion after Eq. (6) entails that

φi(σ
kb) = f [bσ−k(i−1), bσ−k(i), bσ−k(i+1)]

= f [bσ−k(i)−1, bσ−k(i), bσ−k(i)+1]

= φσ−k(i)(b) =
(

σ kφ
)

i
(b),

in other words φ is Zn-equivariant

σ kφ(b) = φ(σ kb) for any k and b ∈ {0, 1}n. (10)

Inwords, the coordinates bi andφi(b) are shifted identically byσ k and
therefore bi 6= φi(b) ⇐⇒ bσ k(i) 6= φσ k(i)(b). This means that σ k’s
action is a digraph homomorphism, and edges are identical in TGn

and its image under σ k, i.e., the graph is symmetric under the action
of Zn. This induces a natural decomposition of TGn into the orbits
of Zn’s action, i.e., sets of nodes that are equivalent up to a circular
permutation of subscripts. We denote by Znb ⊂ {0, 1}n the Zn-orbit
of b ∈ {0, 1}n.

We shall consider examples for small values ofn to visualizeTGn

and its invariance under the shift σ ; see Figs. 16–18.
Besides the purely visual aspect, Figs. 16–18 illustrate how sym-

metries constrain the possible attractors in TGn. Indeed, an attractor
A being a terminal scc, it must be a trapping domain, i.e., b ∈ A =⇒
b′ ∈ A for any (b, b′). On the other hand, sinceTGn is invariant under
the action of σ , if a node b belongs to A, all other nodes in the orbit
Znbmust also be inA. In other words, an attractormust be composed
of a union of Zn-orbits. Yet, single Zn-orbits are never invariant,
unless they are composed of �xed points:

Proposition 1. For any b ∈ {0, 1}n, either:

• b is a �xed point, in which case any b′ ∈ Znb is also a �xed point, or
• any successor of b in TGn belongs to {0, 1}n \ Znb, i.e., an orbit other
than that of b. In particular, any cyclic attractor must be composed
of at least two orbits.

Proof. The �rst case follows directly from the fact that F is Zn-
equivariant (10). Indeed, if b is a �xed point, i.e., b = φ(b), one
deduces

φ(σ kb) = σ kφ(b) = σ kb,

i.e., any σ kb is also a �xed point, and therefore the orbit Znb consists
entirely of �xed points.

Now, let b 6= φ(b), i.e., it has one or several successors of the

form b
i
in TGn. Then b and any successor b

i
have a di�erent number

of coordinates equal to 1 (or 0), since the ith di�er. On the other hand,
any cyclic permutation σ k clearly preserves the number of 1’s (and
0’s), from which the claimed property follows. �

Other attractors in TG can be characterized in terms of
Zn-orbits as well. The set of Zn-orbits can be enumerated and is well
known in combinatorics as the set of n-bead necklaces with two col-
ors. In particular, an explicit formula is known for the number of
orbits.37

1

n

∑

d|n

ϕ(d)2n/d =
1

n

n
∑

k=1

2gcd(k,n),

where ϕ is Euler’s totient function (number of smaller coprime inte-
gers). This formula is in fact an application of Burnside’s Lemma,
where the sum counts the number of �xed points of di�erent per-
mutations in Zn. Though not directly of use here, this formula is
indicative of the structure of the set of orbits and its relation to the
divisors of n. In intuitive terms, one can think of Boolean vectors in
terms of blocks of consecutive 0’s or 1’s. If a pattern of such blocks
has a length d that divides n, repeating this block gives a vector whose
orbit size is smaller than n (it equals d). For example, when n is even,
one retrieves the two �xed points 0101 . . . 01 and 1010 . . . 10, which
form a complete orbit of size 2.

A successor of b ∈ {0, 1}n is of the form b
i
for some 1 6 i 6 n

such that fi
.= f (bi−1, bi, bi+1) 6= bi. One can list all possible values of

fi in the truth table below, where ↑marks cases where fi 6= bi, i.e., b
i
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is a successor of b in TG,

bi−1 0 0 0 0 1 1 1 1
bi 0 0 1 1 0 0 1 1
bi+1 0 1 0 1 0 1 0 1
fi 0 1 1 1 1 0 0 0

↑ ↑ ↑ ↑

. (11)

This table can be expressed as rules, which summarize possible
transitions in TGn at a local level.

Proposition 2. b
i
is a successor of b if and only if

R0 : bi = 0 and bi−1 6= bi+1, or
R1 : bi = 1 and bi−1 = 1,

where i is taken modulo n.
Note that this could have been derived directly from the

de�nition of f .
From the rules above, we can deduce how blocks of successive

0’s or 1’s always admit successors in TGn with a di�erent pattern.
First, for blocks of 0’s:

Proposition 3. Consider b ∈ {0, 1}n containing a block of at
least 2 and at most n− 1 successive 0’s. Then, there is a path in TGn

from b to b′, where b′ is as b with all but one of the 0’s replaced by 1’s
in the aforementioned block.

Proof. Let 2 6 p 6 n− 1 denote the length of the block of
0’s. By repeatedly applying rule R0 in Proposition 2, any block
of 0’s preceded (respectively, followed by) a 1 can be replaced
by a block of 1’s, switching each 0 starting from the leftmost
(respectively, rightmost). After p− 1 iterations, a single 0 is left
and since it must be surrounded by two 1’s R0 cannot be applied
any more. �

So, we have that any state containing repeated 0’s can reach
another state where these are replaced by 1’s and only leave iso-
lated 0’s. If a state contains several blocks of 0’s, this can clearly
be applied to all of them (in any order). The next result shows
that a state with blocks of three or more repeated 1’s (e.g., reached
from a state with blocks of 0’s) can reach a state with alternating
values.

Proposition 4. Consider b ∈ {0, 1}n containing a block of at
least 2 successive 1’s. Then, there is a path in TGn from b to b′, de�ned
by substituting 1010 . . . for the block of 1’s occurring in b, resulting in
no repetitions of 1 within the original block position in b, except in the
special case where b = 111 . . . 1 and n is odd, which leads to a single
repeat of the form 11.

Proof. The rule R1 in 2 states that the following transitions can
occur: 11→ 10. The result directly follows from repeatedly applying
the same rule. If the block is of even length this results in 10 . . . 10
and if it is of odd length in 10 . . . 101. In the latter case, if the block
was the whole of b, the �rst and last digits are neighbors and this leads
to a single repeat 11. �

We can now deduce a complete description of attractors inTGn.
Proposition 5. The state 00 . . . 0 is always a �xed point inTGn.

In addition,

• If n is even, the only other attractors in TGn are the �xed points
0101 . . . 01 and 1010 . . . 10.

• If n is odd, the only other attractor is a cyclic attractor composed of
the two orbits

Zn{1010 . . . 101} and Zn{0010 . . . 101},

where . . . denotes repeats of the block 10.

The basin of attraction of the non-zero attractors contains any state
di�erent from 00 . . . 00.

The proof is given in Appendix C. Note that the paths to the
attractor(s) described in the proof above are non-unique, as appears
in Figs. 16–18.

C. Transition graphs for the higher dimensional

models

Section V B completely characterizes the global dynamics of
the n-dimensional model at the discrete level of the transition
graph. The underlying continuous dynamics was discussed in more
detail in Sec. IV, but from the structure of the attractor (Proposi-
tion 5 or Figs. 16–18), one can anticipate the occurrence of length-
2 cycles, which correspond to singular walls attracting trajecto-
ries from both sides (known as “black walls”). In this section, we
describe how the higher dimensional models do not have black
walls, but instead higher dimensional regular cycles in a way which
can be put in systematic correspondence with the n-dimensional
model.

Consider the 3n-dimensional model (4). Since each unit has
now three variables, an analog to the truth table (11) would contain
83 = 512 columns and would be di�cult to interpret. Note how-
ever that the variables of unit i only depend on neighboring units
through their variables xi±1, regardless of yi±1 and zi±1. To keep the
subscripts simple, let us use the redundant notation for Boolean
variables

Vi = (Xi,Yi,Zi) = (b3i−2, b3i−1, b3i).

Then, a box will be described by a Boolean vector of the form
(Vi)16i6n and one can write the successor relation as

(

Xt+1
i ,Y t+1

i ,Zt+1
i

)

=
[

f
(

Zt
i−1,Z

t
i ,Z

t
i+1

)

, Xi
t
, Yi

t
]

.

Leaving Zi−1 and Zi+1 as variables, one can write the truth
table in a compact form, using a primed notation ′ to denote
successors

Xi Yi Zi X′i Y ′i Z′i
0 0 0 Zi−1 ⊕ Zi+1 1 1

0 0 1 Zi−1 1 1

0 1 0 Zi−1 ⊕ Zi+1 1 0

0 1 1 Zi−1 1 0

1 0 0 Zi−1 ⊕ Zi+1 0 1

1 0 1 Zi−1 0 1

1 1 0 Zi−1 ⊕ Zi+1 0 0

1 1 1 Zi−1 0 0

. (12)

It is apparent from the truth table that the two Boolean values Zi−1 ⊕
Zi+1 and Zi−1 completely determine this graph. The relation between
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these values and Zi±1 themselves is summarized in the following
table:

Zi−1, Zi−1 ⊕ Zi+1 00 01 10 11
Zi−1, Zi+1 11 10 00 01

from which we see, in particular, that all the 4 possible combinations
of Zi±1 lead to a distinct table.

By considering single digit (i.e., asynchronous) updates, one can
build a “local” transition graph on the 8 nodes above, for each of the
4 possible values taken by the pair of neighboring inputs Zi−1 and
Zi+1, see Fig. 19 (the analogous graph for the n-dimensional model
is also included for comparison). One can note that the neighbor-
hoods 00 (respectively, 10) give rise to a white wall (respectively,
black wall) in the n-dimensional model, with an unstable (respec-
tively, stable) periodic sequence as analog in the 3n-dimensional
model.

There is an apparent similarity in Fig. 19 between the n and 3n-
dimensional models. In particular, the rules from Proposition 2 can
be extended.

The manifestation of R0 in Fig. 19 is that for both neighbor-
hoods 01 and 10, all con�gurations of unit i having at least one
0 are unstable, whereas 00Z is stable when Zi−1 = Zi+1 = Y , for
Z ∈ {0, 1}. The two states 000 and 001 take the role of a single 0 for
the n-dimensional model.

The manifestation of R1 in Fig. 19 is that for both neighbor-
hoods 10 and 11, all con�gurations of unit i having either Xi = 1 or
Yi = 1 are unstable, whereas 111 is stable whenever Yi−1 = 0. The
state 111 is now the 3n analog of a single 1 in the n-dimensional
model.

Importantly, these main qualitative features extend to the 4n-
dimensionalmodel, which is themost accurate. The local transitions,
though less readable, are shown in Appendix B:

• the state 1011 is analogous to a “1” and stable if and only if the
preceding input is 0,

• the states 0101 and 0100 are analogous to a “0,” stable when both
neighbors are equal,

• the neighborhood 10 leads to a stable cyclic sequence,
• the neighborhood 00 leads to an unstable cyclic sequence. Unlike
the n-dimensional model, this sequence has branching points,
which has the potential to generate entropy
(cf. Sec. IV D 4).

In summary, higher dimensional models are expected to present
qualitatively similar sequences of states to the n-dimensional version,
but with additional steps corresponding to variable updates taking
place sequentially within individual units on the ring. For instance,
the one step changes described by Proposition 2 are still possible,
but require several transitions in TG, with perhaps several alterna-
tive paths possible. Alternations of “0” and “1” still have some level
of persistence (and lead to �xed points with an even number of units)
and the full zero state is �xed, but “0” now corresponds to a di�erent
internal state.

As for the attractors, the combinatorial explosion of possible
paths makes any visual representation impossible. The analogies
at the local level lead us to expect a similar global structure as
described in Proposition 5, albeit each Zn-orbit increases exponen-
tially (with the number 2, 3, 4 or internal variables) in size, and

may include internal transitions (notably cycles which could be
repeated an arbitrary number of times and therefore contribute to
the generation of entropy). As noted in Remark 1, the transition
graphs only o�er an over-approximation of the dynamics and for
a more accurate description one needs to return to the continuous
model.

VI. CONCLUSION

In summary, themain practical result of this investigation is that
the system modeled in this paper does exhibit chaotic dynamics, as
measured by a positive LE, and therefore is able to spontaneously gen-
erate a positive entropy (in the sense of Kolmogorov-Sinai as well as
for the more empirical SampEn).

The amplitude of LEs seemed relatively small (especially for
the 3n model). Of the reasons that could explain this is the strong
restriction on parameter exploration that was imposed by the com-
putational cost of evaluating LEs. In particular, it is expected that real
circuits will not have strictly identical decays for all units of the same
types, i.e., the parametersµ, ν, λ should be consideredwith small per-
turbation terms accounting for hardware variability. Furthermore,
the number of units n, certainly impact the dynamics, but only the
case n = 5 has been considered here when estimating LEs, and n = 9
in estimating SampEn. The more empirical results obtained using
Sample Entropy suggest that the sampling rate plays an important
role in the generation of entropy: sampling too fast may result in
lesser unpredictability.

On the more theoretical side, the construction of a simpli�ed
n-dimensional model has allowed us to completely characterize the
global dynamics of themodel at the discrete level. It is known that the
discrete transition graph underlying a Glass network typically has a
higher entropy than the continuous system itself.26This upper bound
at least shows that a positive entropy cannot be ruled out (indeed
the attractors described in Proposition 5 have a positive topological
entropy).

Beyond this point, the n-dimensional model can be related to
its higher dimensional counterparts quite clearly. The main intuitive
bridge between these models is that black/white walls occurring in
the n-dimensional model (which appear as 2-cycles in Figs. 16–18)
give rise to cycles in the transition graphs of the higher dimensional
models. An outstanding question which we leave for future work is
the following: when it is chaotic, is the continuous dynamics always
restricted to (the higher dimensional analog of) the global attractor
of the n-dimensional model, or can it remain in other parts of state
space? Reasoning in terms of limits of in�nitely fast, slow or many
inverters as we have started in Sec. IV D might provide a good entry
point to address this problem.

In any case, whatever the ultimate source of the chaotic behav-
ior, the complexity of the dynamics of this circuit, combined with the
portability implied by its design using standard logic gates, make it
an excellent candidate for a TRNG.
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APPENDIX A: NIST TEST SUITES RESULTS

TABLE I. Results for 100MB samples under NIST SP800-22 test suite.

Test Smallest Pass
Test Byte/sequence (M) sequences P-value rate Overall

Frequency 1 100 0.494392 100/100 Pass
Block frequency 1 100 0.002374 97/100 Pass
Cumulative sums 1 100 0.108791 99/100 Pass
Runs 1 100 0.108791 99/100 Pass
Longest run 1 100 0.419021 100/100 Pass
Rank 1 100 0.964295 100/100 Pass
FFT 1 100 0.574903 96/100 Pass
Non-overlapping 1 100 0.002559 100/100 Pass
template
Overlapping 1 100 0.145326 98/100 Pass
template
Universal 1 100 0.401199 98/100 Pass
Approximate entropy 1 100 0.090936 97/100 Pass
Random excursions 1 100 0.155209 98/100 Pass
Random 1 100 0.005166 97/100 Pass
excursions variant
Serial 1 100 0.401199 99/100 Pass
Linear complexity 1 100 0.289667 99/100 Pass

TABLE II. The IID test results of 100MB TRNG samples against NIST SP800-90B test suite.

Tests
Results

Ci,0 Ci,1 IID

Permutation test

Excursion 4882 0 Pass
Number of directional runs 6088 7 Pass
Length of directional runs 3952 5993 Pass

Number of increases and decreases 485 4 Pass
Number of runs based on the median 4396 8 Pass

Length of runs based on median 6110 2407 Pass
Average collision test statistic 136 0 Pass

Maximum collision test statistic 1995 790 Pass
Compression test statistic 8229 4 Pass

Periodicity test statistic

Periodicity(1) 7436 52 Pass
Periodicity(2) 4492 64 Pass
Periodicity(8) 7075 57 Pass
Periodicity(16) 9849 4 Pass
Periodicity(32) 6990 54 Pass

Covariance test statistic

Covariance(1) 6073 0 Pass
Covariance(2) 4253 0 Pass
Covariance(8) 4101 0 Pass
Covariance(16) 8045 0 Pass
Covariance(32) 2546 0 Pass

Chi-square independence Pass
Chi-square goodness-of-�t Pass

Length of the longest repeated substring test Pass
Restart tests Pass
Min-entropy 7.07026
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APPENDIX B: 4n-DIMENSIONAL MODEL: LOCAL TRANSITIONS

For the model (3), the truth table below describes transitions. As before the primed notation X′ is used a shorthand for Xt+1

Xi Yi Zi Ui X′i Y ′i Z′i U ′i
0 0 0 0 Zi−1 1 1 Zi+1

0 0 0 1 Zi−1 1 1 Zi+1

0 0 1 0 Zi−1 1 1 1

0 0 1 1 Zi−1 1 1 1

0 1 0 0 Zi−1 1 0 Zi+1

0 1 0 1 Zi−1 1 0 Zi+1

0 1 1 0 Zi−1 1 0 1

0 1 1 1 Zi−1 1 0 1

Xi Yi Zi Ui X′i Y ′i Z′i U ′i
1 0 0 0 Zi−1 0 1 Zi+1

1 0 0 1 Zi−1 0 1 Zi+1

1 0 1 0 Zi−1 0 1 1

1 0 1 1 Zi−1 0 1 1

1 1 0 0 Zi−1 0 0 Zi+1

1 1 0 1 Zi−1 0 0 Zi+1

1 1 1 0 Zi−1 0 0 1

1 1 1 1 Zi−1 0 0 1

We deduce local transition graphs, similar to Fig. 19, see Figs. 20 and 21.

FIG. 19. The possible transitions in a single unit on the ring, assuming all other units remain unchanged, for the 3n- and n- dimensional models (top and bottom graphs,
respectively), for all 4 possible values of the neighboring inputs (denoted Zi±1 generically). Fixed points in red, stable cycles in blue, unstable cycles in green.
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FIG. 20. The local transition graphs, similar to Fig. 19, for the 4n-dimensional model, for 0 left neighbors.

APPENDIX C: PROOF OF PROPOSITION 5

Proof. That 00 . . . 0 is a �xed point can be directly veri�ed, for
instance using the truth table (11).

• Suppose n is even and let b = φ(b) 6= (00 . . . 0) be a �xed
point. b 6= (11 . . . 1) either, since the latter is not �xed. Hence, there
must be a pair 10, which one may assume by symmetry to be b1 = 1
and b2 = 0. FromProposition 2 (ruleR1), b cannot be �xed if bn = 1,

FIG. 21. The local transition graphs, similar to Fig. 19, for the 4n-dimensional model, for 1 left neighbors.

so it must be 0. Then, because of rule R1, bn−1 must be 1 since oth-
erwise b is not �xed, and by induction, one readily deduces that b =
1010 . . . 10 is the only possible �xed point with b1 = 1 and b2 = 0,
which can only occur for n even. Then, from Proposition 1 one gets
0101 . . . 01 as only other point in the same orbit, whichmust be �xed
by symmetry.
• Let now n be an odd integer. We shall prove �rst that the

two orbits do indeed form an attractor. In words, the two orbits are
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composed of repeats of the pair 10, with a single repeated block
of the form 00 or 11, respectively. We denote a = 1010 . . . 01 and
c = 0010 . . . 01 the two orbit representatives appearing in the propo-
sition. From the rules in Proposition 2, one deduces that the only
coordinate susceptible of change in a is a1 = 1. Indeed, its prede-
cessor an = 1, and all other 1’s are preceded by a 0, and all 0’s are
surrounded by two 1’s. Therefore, the only successor of a in TGn

is a1 = 0010 . . . 101 = c. Now, the coordinates susceptible of change
in c are c1 and c2, as the only 0’s surrounded by a pair of di�er-
ent values and given the absence of repeated 1’s. Therefore, c has
exactly two successors in TGn, namely a itself (switching back c1)
and c2 = 0110 . . . 101. One sees that c2 = σ 2a ∈ Zna, so that the two
orbitsZna andZnc do indeed form a trapping domain in TGn, which
from Proposition 1 is minimal and therefore an attractor.

It remains to prove that non-zero attractors have all nonzero
states in their basin of attraction. Let b ∈ {0, 1}n, assumed nonzero
and not in either orbits Zna or Znc for n odd or not one of the �xed
points if n is even. It follows that bmust contain either

(i) at least one block of > 3 consecutive 0’s or at least two blocks of
> 2 consecutive 0’s,

(ii) at least one block of > 3 consecutive 1’s
(iii) at least two blocks of 2 consecutive 1’s.

From Proposition 3, case (i) reduces to (ii) and (iii). From Proposi-
tion 4, in case (ii) all blocks of 1’s can be replaced by alternations of 10.
The same proposition also shows that if a block is of full length, i.e.,
b = 11 . . . 1, there is a path to the attractors described above. So,
assume that the blocks are of length p 6 n− 1. Then they must be
preceded and followed by a 0 (which can be the same if the block
length is n− 1). From Proposition 4, one has that the block and its 0
neighbors can follow a path in TGn of the form

0

1′s
︷ ︸︸ ︷

11 . . . 1 0 −→ 0

10′s
︷ ︸︸ ︷

10 . . . 10 0 if p is even,

0

1′s
︷ ︸︸ ︷

11 . . . 1 0 −→ 0

10′s
︷ ︸︸ ︷

10 . . . 10 10 if p is odd.

For p even the �nal 00 can switch to 10 by applying R0 to the penul-
timate digit. This gives a length-2 block 11, while p odd leads to no
repeats at all. Overall, applying the above to all blocks of length > 3
shows that case (ii) reduces to case (iii).

Case (iii) is treated by relying on the observation that 11 blocks
can be shifted two coordinates to the right along an alternating
sequence

1101 1001 1011
R1 R0

σ 2

all other coordinates of b remaining unchanged.Now, if two 11 blocks
occur from (i) and (ii) above, it can be assumed that the sequence in-
between is an alternation of 0101 . . . 0 and therefore there is an odd
number of coordinates between the two blocks, say p = 2q+ 1. The
overall form is 11 0101 . . . 010 11. The shifting described above gives
after q iterations

11 0101 . . . 010 11
σ 2q

−→ 10 1010 . . . 110 11.

Then, the �nal �ve digits can follow the sequence:

11011
R1−→ 10011

R0−→ 10111
R1−→ 10101.

Therefore, pairs of 11 blocks can cancel out. To conclude, once all
repeats other than 11 have vanished as per (i) and (ii), one has

• For even n, there must be an even number of 11, and the can-
cellation of pairs above eventually reaches one of the two �xed
points.

• For odd n, theremust be an oddnumber of 11, and the cancellation
of pairs leaves a single block 11, corresponding to the attractor.

�
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