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Abstract

With at least 60 independent origins spanning monocotyledons and dicotyledons, the C4 photosynthetic pathway
represents one of the most remarkable examples of convergent evolution. The recurrent evolution of this highly complex
trait involving alterations to leaf anatomy, cell biology and biochemistry allows an increase in productivity by ,50% in
tropical and subtropical areas. The extent to which separate lineages of C4 plants use the same genetic networks to
maintain C4 photosynthesis is unknown. We developed a new informatics framework to enable deep evolutionary
comparison of gene expression in species lacking reference genomes. We exploited this to compare gene expression in
species representing two independent C4 lineages (Cleome gynandra and Zea mays) whose last common ancestor diverged
,140 million years ago. We define a cohort of 3,335 genes that represent conserved components of leaf and photosynthetic
development in these species. Furthermore, we show that genes encoding proteins of the C4 cycle are recruited into
networks defined by photosynthesis-related genes. Despite the wide evolutionary separation and independent origins of
the C4 phenotype, we report that these species use homologous transcription factors to both induce C4 photosynthesis and
to maintain the cell specific gene expression required for the pathway to operate. We define a core molecular signature
associated with leaf and photosynthetic maturation that is likely shared by angiosperm species derived from the last
common ancestor of the monocotyledons and dicotyledons. We show that deep evolutionary comparisons of gene
expression can reveal novel insight into the molecular convergence of highly complex phenotypes and that parallel
evolution of trans-factors underpins the repeated appearance of C4 photosynthesis. Thus, exploitation of extant natural
variation associated with complex traits can be used to identify regulators. Moreover, the transcription factors that are
shared by independent C4 lineages are key targets for engineering the C4 pathway into C3 crops such as rice.
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Introduction

C4 photosynthesis is thought to have first evolved around 30

million years ago [1] and despite its complexity is now

documented in more than 60 independent lineages of angiosperm

[2]. Compared with ancestral C3 photosynthesis, the C4 pathway

allows increased productivity in tropical and sub-tropical habitats,

and C4 species represent many of the world’s most productive

crops [3]. The increased productivity of C4 plants is due to the fact

that they concentrate CO2 around Ribulose Bisphosphate

Carboxylase Oxygenase (RuBisCO) [4]. In most C4 species this

is achieved through a spatial partitioning of the photosynthetic

apparatus into two discrete cell types, mesophyll (M) and bundle

sheath (BS) cells [4,5], but in a small number of lineages spatial

partitioning occurs within an individual cell [6,7].

The entry point for CO2 in the canonical two-cell C4 pathway is

via carbonic anhydrase (CA), which catalyses the conversion of

CO2 to HCO3
2 in M cells. Phosphoenolpyruvate carboxylase

(PEPC) utilizes HCO3
2 to generate the C4 acid oxaloacetate and

the subsequent diffusion of organic acids from M to BS cells,

followed by their decarboxylation increases CO2 concentration

around RuBisCO ten-fold [8]. This increase in CO2 concentration

effectively abolishes the oxygenation reaction of RuBisCO and

thus reduces energy loss through photorespiration. At least three

different C4 acid decarboxylases (NAD-dependent malic enzyme,

NADP-dependent malic enzyme and phosphoenolpyruvate car-

boxykinase) have been recruited in different C4 lineages to release

CO2 around RuBisCO in BS cells. To complete the canonical

two-cell C4 cycle, phosphoenolpyruvate is regenerated by pyruva-

te,orthophosphate dikinase (PPDK) in chloroplasts of M cells.

The patterns of gene expression that facilitate the compart-

mentalisation of photosynthesis between M and BS cells of C4

species have been assessed in a limited number of lineages. In

dicotyledons, gene expression associated with maintenance of a

functional C4 pathway has been studied in only two of the thirty-

six known C4 lineages [9]. Moreover, in monocotyledons, the

patterns of gene expression associated with generating a C4 leaf

have so far only been reported in maize [10–13]. To date, several
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regulatory mechanisms have been demonstrated to play a role in

modulating cell-type specific gene expression. These include both

recruitment of cis-elements [14–17] and alterations to trans-factors

[18–20]. While separate lineages of C4 species have co-opted the

same cis-element to generate BS specific gene expression of NAD-

dependent malic enzyme, the trans-factor is yet to be identified

[18], and in fact, only one transcription factor known as G2 has

been shown to regulate photosynthesis gene expression in C4

leaves [20]. However, G2 is not specific to C4 species and also

regulates photosynthesis gene expression in C3 leaves [21].

Overall, these data indicate that the evolution of C4 photosynthesis

is driven by both convergent and parallel changes in gene

expression. However, it is unknown if these changes are governed

by the same regulators.

Here we test the extent to which the same genetic networks

regulate C4 photosynthetic development in independent lineages

of C4 derived from the dicotyledons and monocotyledons. We

defined a developmental gradient of C4 induction in the

dicotyledon Cleome gynandra and characterised patterns of gene

expression underlying this process. Currently, there are no C4

dicotyledons for which genome sequence is available, however

analysis of C. gynandra is greatly facilitated by its phylogenetic

proximity to the C3 model species Arabidopsis thaliana [9]. Through

comparative analysis with an analogous developmental gradient in

the distantly-related C4 monocotyledon maize [11,12] we identify

conserved sets of genes that underlie leaf maturation in both

species. Although leaf maturation in monocotyledons is largely

linear from base to tip [12], while in dicotyledons both basipetal

and lateral gradients are apparent [22–24], we detected significant

convergence in patterns of transcript abundance. We demonstrate

that in both species genes important for the C4 cycle are co-

regulated with photosynthesis-related genes and that eighteen

transcription factor homologues form a common cohort under-

pinning C4 photosynthetic development in these species. We

further report the degree to which M and BS transcriptomes

overlap in C. gynandra and maize. Taken together, this work

indicates that C4 photosynthesis is associated with the parallel

evolution of trans-factors. This finding has major implications for

engineering C4 photosynthesis into C3 crops such as rice [25] as it

indicates that comparative analysis of multiple independent C4

lineages can facilitate the identification of the regulators under-

lying this complex trait.

Results

Immature leaves of Cleome gynandra develop mature C4

properties in a 3 mm interval
Immature 3 mm long leaves of C. gynandra possessed gradients in

Kranz anatomy, vein density and C4 gene expression from base to

tip (Figure 1). Vascular density increased threefold (Figure 1A&B)

achieving a density characteristic of mature leaves in the top third

(tip) of 3 mm leaves (Figure 1B&C). The total cross section area

occupied by mesophyll (M) and bundle sheath (BS) cells increased

two- and six-fold respectively between base and tip sections. In the

tip region of 3 mm leaves cell profiles were analogous to those seen

in fully expanded mature leaves (Figure 1D). There were also

pronounced differences in the rates of BS and M cell expansion

between the base and middle section 3 mm leaves. The total BS

cell area increased from 16% to 60% of the final size (3.8 fold

increase), and the total M cell area only increased from 50% to

63% of the final size (1.3 fold increase, Figure 1D). Analogous

gradients in maturation of cells, including increased chloroplast

volume and vacuolisation, were also observed using transmission

electron microscopy (Figure S1). The abundance of transcripts

derived from key C4 genes [9] such as CA4, PEPC, NADME2 and

PPDK mirrored the increase in vascular density, with increases in

abundance from base to tip of 3 mm leaves, but little difference

between tip and mature leaf (Figure 1E). Similar increases in

relative protein abundance for CA, PEPC, NAD-ME and PPDK

proteins were also observed (Figure 1F). Together, these data

demonstrate a progression of accumulation of key components for

C4 photosynthesis from the base to the tip of 3 mm C. gynandra

leaves. Moreover, the molecular and phenotypic signatures of the

tip section appeared equivalent to mature leaves. Therefore, we

exploited this framework to investigate patterns of gene expression

underlying these phenotypic changes. Furthermore, we deter-

mined the extent to which these patterns of gene expression were

analogous to those observed in the C4 monocotyledon maize [12].

To do this we sequenced RNA isolated from mature leaves as well

as from consecutive 1 mm sections spanning these developing

3 mm leaves (Figure 1A), and implemented a novel bioinformatics

framework that facilitates comparative analysis of gene expression

in distantly related species.

A novel machine learning method for orthology
assignment of whole de novo assembled transcriptomes

To perform comparative analyses of gene expression between C.

gynandra and maize it is necessary to be able to identify homologous

genes between the species in the absence of a reference genome for

C. gynandra. This is non-trivial due to the inherent properties and

artefacts of de novo assembled transcriptomes. For example, it is to

be expected that following de novo assemblies of RNAseq data, most

gene loci will be represented by multiple assembled transcript

variants [26–28]. These transcripts may differ from each other in

several ways, for example through single nucleotide polymor-

phisms, alternative splicing of internal exons, alternative terminal

exons and incomplete/chimeric assembly due to low sequence

coverage or assembly errors. Homologous transcript identification

is further complicated by the large phylogenetic distance between

the species being compared. Increased phylogenetic distance leads

to a concomitant increase in global sequence divergence between

Author Summary

C4 photosynthesis is one of the most successful and
widespread examples of convergent evolution; the first C4

plant evolved long after the extinction of the dinosaurs,
yet C4 species now account for ,30% of primary
productivity on earth. Compared with ancestral C3

photosynthesis, the C4 pathway allows faster rates of
growth, and thus international efforts have been mustered
to introduce advantageous C4 traits into important C3

crops to increase their yield. However, the transition from
C3 to C4 involves complex alterations to leaf anatomy and
biochemistry. Despite these multiple changes, C4 photo-
synthesis has evolved independently at least 60 times.
Through DNA and RNA sequencing we are beginning
define a catalog of genes associated with C3 or C4

photosynthesis. However, we know little about how these
genes act co-ordinately to bring about the convergent C4

phenotype. In this work we develop a new informatics
framework to reveal that two independent lineages of C4

plants have co-opted the same regulators of gene
expression to generate the C4 leaf. Our findings provide
a new paradigm for investigating the genetics of conver-
gent traits and the origin of convergent phenotypes.
Moreover, they reveal significant new insight into the
regulatory mechanisms governing the origins of C4

photosynthesis.
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homologous genes in different species. Therefore any method

which is specifically designed for assignment of homologues in de

novo assembled transcriptomes should be able to identify and group

multiple different transcript variants for any given gene to enable

comparative analysis of gene expression.

To determine the suitability of existing assignment methods for

identifying homologous transcript groups in de novo assembled

transcriptomes we used RNAseq data from rice. Here we carried

out de novo assembly of the short read data, and computed an

abundance estimate for each de novo assembled transcript. We also

computed an abundance estimate for each gene locus in the rice

reference genome using the same short read data. Several different

strategies for identifying homologous transcripts between the de

novo assembled transcriptome and the rice reference genome were

tested and the accuracy of each strategy was assessed by the global

correlation of the abundance estimates that resulted from the

assembled transcripts-to-reference-gene homology map. Global

correlation is negatively affected both by false positive errors

(incorrect homology assignment), false negative errors (missing

orthology assignment) and assembly artefacts (partial and chimeric

transcripts) and so it is a good measure of the utility of an

orthology assignment method for quantitative transcriptome

comparisons. When using simple methods such as a Reciprocal

Best-BLAST (RBB) or fixed e-value cut-offs for assignment

abundance estimate accuracies were low and unsuitable for

comparative gene expression analyses (Figure 2A & 2B). Using

more complex methods such as OrthoMCL improved abundance

estimate accuracy (Figure 2B). However accuracy is still low for

comparative analyses of gene expression.

The abundance estimate accuracy tests revealed that there was

room for substantial improvement of orthology assignment from de

novo assembled transcriptomes. As there are no specific methods

currently available which are designed to account for the

properties and artefacts of de novo assembled transcriptomes as

outlined above, we developed a novel orthology assignment

method to facilitate accurate multispecies comparisons of gene

expression from de novo transcriptome assemblies. The method uses

machine learning to define sequence similarity parameters for

gene homologues and thus compensates for the properties and

artefacts of de novo assembled transcriptomes. The first step in this

method is to undertake a pairwise reciprocal best-BLAST (RBB)

analysis (Figure 2C) using the full set of de novo assembled

transcripts against a reference set derived from a reference

genome. The RBB hits between these two datasets are identified

(Figure 2D) and grouped according to the length of the assembled

transcript. For each length group the RBB hits are ranked and the

e-value of a chosen percentile is recorded. A matrix of all e-values

and query sequence lengths is then fit to a quadratic polynomial

model by least-squares fitting (Figure 2E). While the RBBs are

accepted as homologues, the function describing this curve is used

to classify non-RBB transcripts of any given length, those above

the curve are assigned as homologues and those below the

curve are rejected (Figure 2F). Thus homologue assignment is

conditioned on both the assembled transcript length and also the

global sequence divergence between the de novo assembled and

reference transcriptome. This approach significantly increased the

accuracy of abundance estimates derived from de novo assembled

transcripts when compared with estimates derived from the

genome (Figure 2B and 2G). This accuracy is also robust to large

phylogenetic distances. Even when homologous transcripts were

identified using an intermediary reference genome (Arabidopsis

thaliana), the accuracy of mRNA abundance estimates remained

high (Figure 2H). We conclude our assignment method, condi-

tioned on both sequence length and global sequence divergence, is

suitable for comparative analyses of gene expression after de novo

transcript assembly from short read sequencing. For a detailed

description and validation of this method see Text S1. This

approach is also suitable for identifying homologous groups in

distantly-related species (see Text S1 for validation on Oryza sativa

versus A. thaliana). Thus we used this method to enable comparison

of gene expression between Cleome gynandra and maize, an

equivalent phylogenetic distance. An online implementation of

the method is provided for use at www.bioinformatics.plants.ox.ac.

uk/annotate/index.html.

Transcriptome dynamics during C. gynandra leaf
development

Following de novo assembly, we used our orthology assignment

method to assign all observed transcripts to reference genes in the

genome of A. thaliana. A. thaliana was selected as it is the closest

relative of C. gynandra for which a well annotated set of genes and

gene models is available. This resulted in the identification of

15,751 genes of which 15,315 (97%) were expressed in all C.

gynandra samples (Figure 3A). 36 genes were expressed only in the

base of developing 3 mm leaves, compared with 18 and 28 in the

middle and tip respectively, while there were 81 genes expressed

only in mature leaves (Figure 3A). The higher number of genes

specific to the leaf base compared with the middle and tip likely

reflects the earlier stage of development of this tissue. Consistent

with this, the majority of gene annotations in this subset comprise

regulatory functions such as gene expression, translation and

signalling (Table S1). Genes unique to the middle section of

developing leaves were fewer in number and were mostly

annotated as being involved in DNA binding, gene expression,

protein binding or having unknown functions (Table S1).

Comparative analysis of global gene expression profiles across

this developmental series revealed increases in the expression of

genes associated with the light-dependent reactions of photosyn-

thesis and reductions in markers of cell proliferation (Figure 3B).

Similar to the analysis of unique transcripts, the majority of

statistically significant changes in transcript abundance (2,233 of

transcripts or 14% of the total annotated) occurred between base

and mid sections of the leaf, compared with only 414 transcripts

(3% of total) being differentially expressed between mid and tip

(Table S2). During an analogous leaf development series in maize

more genes were found to be unique to each stage [12]. This is

likely due both to the maize genome sequence allowing detection

of lower abundance transcripts than permitted by de novo assembly

as well as ontogenetic differences between the species.

Figure 1. The C4 maturation gradient in leaves of Cleome gynandra. Venation, bundle sheath cell (BS) size, mesophyll (M) cell size and
abundance of C4 transcripts and proteins in the base, middle and tip of 3 mm leaves as well as fully mature leaves of C. gynandra. (A) Leaves of 3 mm
length possess a gradient in venation density from base to tip, whereas in mature leaves (B) this gradient is no longer visible, insets show
representative images of samples used for RNA isolation. (C) Quantification of venation density and complexity. (D) Transverse sections and
quantification of BS and M cell size. (E) Quantitative RT-PCR for the CA4, PPC2, NAD-ME2 and PPDK of genes important in the C4 cycle. (F) Abundance
of carbonic anhydrase, phosphoenolpyruvate carboxylase, NAD-dependent malic enzyme and pyruvate,orthophosphate dikinase proteins from the
base (B), middle (M), tip (T) and mature (Mat) leaves. Scale bars in A and B represent 0.3 mm and 3 mm respectively, while 1 mm gradations are
shown within the insets.
doi:10.1371/journal.pgen.1004365.g001
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We classified the differentially expressed genes in C. gynandra

along this development gradient into profiles that showed

statistically significant ascending or descending behaviours

(Figure 3C). 1,891 and 8,628 genes showed ascending and

descending profiles respectively from the base of 3 mm leaves to

mature leaves in C. gynandra (Figure 3C). In the descending profiles

as leaves matured Gene Ontology (GO) terms associated with leaf

development, leaf morphogenesis, abaxial-adaxial fate, plasmo-

desmata, histone acetyl transferase activity and DNA endoredu-

plication were significantly over-represented (Table S3). These

data are consistent with a basipetal source to sink transition as has

been observed in C4 Amaranthus hypochondriacus [29]. We also

detected increased abundance of transcripts encoding key enzymes

of sucrose biosynthesis and starch degradation from base to tip of

3 mm leaves from C. gynandra (Figure S2), further supporting a

transition from sink at the leaf base to source at the tip. To gain

insight into the extent to which patterns of gene expression are

conserved between developing leaves of the C4 monocotyledon

maize and the C4 dicotyledon C. gynandra we applied the same

profile classification criteria to the maize expression data [12]

(Figure 3C). In contrast to C. gynandra where approximately 4.5

fold more genes were down-regulated compared with up-regulated

as leaves matured, in maize roughly equal numbers of genes

increased or decreased along the developmental gradient

(Figure 3C). This difference in the dynamics of gene expression

in part likely reflects the pronounced developmental differences

that discriminate monocots and dicots.

Differential transcriptome analysis between C. gynandra
and maize reveals the extent of conservation in leaf
development

To define the extent to which these gene expression patterns

were conserved between maize and C. gynandra we used our

orthology assignment method to construct an orthology map

linking our C. gynandra transcriptome to reference genes in maize.

This analysis is therefore designed to discover the extent to which

homologous genes occupy common genetic networks underpin-

ning photosynthetic development in these distantly related species.

We identified 836 and 2,499 genes whose relative abundance

increased and decreased respectively in both species as leaves

matured (Figure 3D). These upregulated and downregulated genes

encompassed 124 and 121 significantly over-represented GO

terms respectively (Table S4). Groups of genes that showed similar

patterns in both species included those important for the

chloroplast, photosynthesis, response to reactive oxygen species,

plasmodesmata, the nucleus, ribosome, proteasome and DNA and

RNA binding (Table S4). Genes annotated as being involved in

photosynthesis, cell wall and nitrogen metabolism increased as

leaves matured in both species, while genes involved in the cell

cycle, histone function, nucleotide and protein metabolism

decreased.

In the developmental gradient, 216 transcription factors with

identifiable homologues in A. thaliana exhibited the same expres-

sion behaviours in both maize and C. gynandra (Figure 3D). Of

these, 37 increased while 179 decreased in abundance. Transcrip-

tion factors with conserved behaviours between the two species are

known to play a role in both photosynthetic and leaf development.

For example, in the conserved cohort of ascending genes we find

GLK1, which is implicated in the expression of photosynthesis

genes [20,21], and four Sigma factors associated with transcription

of chloroplast photosynthesis genes (Table S5). In the conserved

cohort of descending genes, there were multiple AP2-EREBPs,

ARFs, GRFs and TCPs (Table S5 & Figure S11) that are known to

play a role in auxin-mediated development of veins [30] and

regulation of cell-cycle and leaf development [31]. The descending

conserved cohort also contains genes important in vein patterning

such as SHR, PHV, HB6 and PHB (Table S5 & S6). The

identification of transcription factors that have previously been

characterised as playing roles in leaf and photosynthetic matura-

tion strongly implies that these 216 regulators fulfil highly

conserved roles in these distantly related species.

Comparative supervised classification identifies marked
differences in leaf maturation

We used supervised classification of gene expression to construct

profile-based groups containing all differentially expressed genes

detected. Using this approach we partitioned all genes into one of

twenty-six behaviourally discrete groups, where each group has

statistically significant and distinct ascending or descending

profiles (Figure 4A&B and Figure S12). Importantly, unlike

methods such as k-means clustering, group membership is

unbiased by the expression level of individual genes, and is

defined by strict statistical criteria. This revealed that, although

general behaviour is predominantly conserved, the spatial and

temporal separation of genes is markedly different between the two

species (Figure 4A&B). Moreover, comparative analysis of each

group in C. gynandra with each group in maize (and vice versa)

provided little evidence for a fine-scale unified developmental

trajectory between the two species (Figure 4A&B). Therefore,

although the global ascending and descending series exhibit

marked conservation, and in both cases leaf maturation is

occurring, at finer scales of analysis the two species exhibit

pronounced differences in patterns of gene expression.

The classification method identified genes that showed a

significant change in expression between neighbouring leaf

sections (eg base to mid in A3 of C. gynandra), but also a significant

increase between non-adjacent sections (eg base to tip in A8 of C.

gynandra). In both species, groups containing the largest number of

Figure 2. Overview of the workflow and results of the conditional orthology assignment method. Identification of homologues and
quantification of gene expression after de novo assembly, for full details see Text S1. (A) Correlation in quantification derived from reciprocal best
BLAST (RBB) hits in the de novo assembly and reference summed over all transcript isoforms per reference gene locus. (B) The Spearman correlation in
transcript abundances between the reference guided estimation and estimates generated using different transcript orthology assignment methods
on the same de novo assembled transcriptome. ‘‘RBB only’’ means that only the reciprocal best BLAST transcripts were selected. E-value cut-offs (e.g.
1e-5) indicate the fixed value at which sequences were determined to be homologues. OrthoMCL indicates that OrthoMCL was used to cluster and
identify orthologous transcript groups. Finally, the black bar indicates the effect of varying the percentile cut-off on the abundance estimate accuracy
of the conditional orthology assignment method. (C) Conditional orthology assignment method begins by performing all versus all BLAST searches of
the assembled transcripts against a reference proteome. (D) The reciprocating hits (indicated by blue lines) are selected for self-training. (E) The
reciprocating hits are binned according to assembled transcript length and a quadratic model is fit to the e-value and length data. (F) Non-
reciprocating hits which fall above the curve are accepted as putative homologues, non-reciprocating hits which fall below the curve are rejected. (G)
Correlation in quantification derived from conditional assigned transcripts using species own reference genome. (H) Correlation in quantification
derived from conditional assigned transcripts using intermediary reference genome. For full details, validation and explanation please see the
supplementary methods (Text S1).
doi:10.1371/journal.pgen.1004365.g002
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genes showed either an early or late alteration in transcript

abundance (clusters A3&6 and D3&D6, Figure 4A&B and Figure

S12), indicating that at the level of gene expression the greatest

differences observed were between the base and mid of the

developing leaves, and between the tip of developing leaves and

mature leaves. Combined with the GO term analysis these data

indicate that between the base and middle of developing leaves of

C. gynandra there were considerable changes in both the number

and type of genes expressed, whereas the tip of developing leaves

and fully expanded leaves differ with respect to a large number of

genes with similar functions. The data are consistent with the

ontogenetic framework associated with maturation of C4 photo-

synthesis in leaves of C. gynandra (Figure 1). For example, the

majority of known regulators of vein production in A. thaliana were

present in descending clusters as the leaves matured (Figure S13).

In addition to increased venation, BS and M size increased from

base to tip of C. gynandra leaves (Figure 1D). Consistent with this,

we detected 186 genes involved in cell expansion that were

differentially expressed within the leaf gradient, of which 65 and

121 showed increased and decreased abundance respectively

(Table S7). The clustering of genes implicated in chloroplast

proliferation was consistent with this process occurring prior to the

onset of full photosynthetic capacity, with the majority of

transcripts annotated as being involved in chloroplast division

Figure 3. Convergence in patterns of gene expression in leaf gradients of C. gynandra and maize. (A) Venn diagram indicating numbers
of shared and unique transcripts to each type of C. gynandra leaf tissue. (B) Major bin categories identified using Wilcoxon test implemented in
Pageman [55] tool that alter between the base, middle, tip of 3 mm and mature C. gynandra leaves. (C) Number of genes with ascending (red) and
descending (grey) behaviours as leaves of C. gynandra (Cg) and maize (Zm) mature. (D) Venn diagrams depicting the total number of transcript
homologues that increase or decrease in abundance as leaves of both C. gynandra and maize mature. The number of genes common to the two
gradients is shown in blue, with the number of transcription factors shown in parentheses. Red circles and numbers correspond to genes that
increase in abundance, while grey circles represent genes that show reduced abundance.
doi:10.1371/journal.pgen.1004365.g003
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Figure 4. Classification of gene expression in the two C4 species C. gynandra and maize. As leaves of C. gynandra (A) and maize (B) mature,
transcripts were classified into twenty-six behaviours, thirteen ascending (A&B) and thirteen descending. Statistically significant differences between
neighbouring tissue types are delineated by red circles in ascending filters. The total number of genes within each behaviour is presented in
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decreasing as C. gynandra leaves matured but the rates of decline

differed (Figure S13). For example, it was notable that MIND,

PARC6 and CLMP1 transcripts declined faster and reached low

steady state levels more quickly than the other genes associated

with chloroplast division (Figure S13).

Homologous regulators of C4 photosynthesis in M and
BS cells of independent C4 lineages

In the above analysis photosynthesis genes and genes associated

with the C4 cycle were not distributed evenly across all expression

profiles (Figure 4A). Instead, photosynthesis-related genes popu-

lated eight and nine of the ascending clusters in C. gynandra and

maize respectively (Figure 4A&B and Table S8). Interestingly,

genes that encode the canonical C4 cycle were only found in

profile groups containing photosynthesis-related genes. In maize

C4 cycle genes were found in five of the nine photosynthesis

profiles (Figure 4B) while in C. gynandra, C4 genes were found in six

of the eight photosynthesis profiles (Figure 4A and Table S9). It

therefore appears that in both species, genes that comprise the

known C4 biochemical pathway are co-ordinately regulated with

photosynthesis related genes.

To determine if homologous trans-factors underlie C4 photo-

synthetic development in C. gynandra and maize we compared

transcription factors that populated behaviours containing C4

genes in both species (Figure 4C and Table S10). This identified a

set of 18 transcription factors that are positively co-ordinately

expressed with C4 genes in both C. gynandra and maize (Table S11).

Monte Carlo simulation indicated that it is extremely unlikely

(p = 0.005) for this number of homologous transcription factors to

be present in two equivalent populations of genes by chance.

Overall, these data are strongly indicative of a global regulatory

role for these transcription factors in promoting and maintaining

C4 photosynthesis in both species. Interrogating publicly available

microarray data obtained from a leaf maturation series of the C3

plant A. thaliana [23], we found that sixteen of these eighteen

transcription factors exhibited analogous expression behaviour in

C3 leaves (Figure 4D). We therefore propose that these sixteen

transcription factors have been recruited from a role in leaf

maturation in C3 plants into regulating genes of the C4 cycle in C4

species. This finding also strongly implies that this cohort of sixteen

regulators plays a conserved role in leaf maturation in many

angiosperms.

Once leaf maturation has taken place the C4 pathway requires

compartmentation of gene expression between M and BS cells to

be maintained. We therefore used laser microdissection of M and

BS cells from C. gynandra followed by Illumina sequencing to

investigate the extent to which the transcriptomes of these cell

types from C. gynandra and maize are convergent. In C. gynandra, we

detected 13,615 genes (Table S12), of which 338 were significantly

more abundant in BS cells while 372 were more abundant in M

cells. Despite C. gynandra and maize using different C4 biochem-

istries with major flux in maize being maintained by chloroplastic

NADP-ME whilst C. gynandra using mitochondrial NAD-ME we

detected convergence in the expression of many C4 cycle genes.

For example, genes that encode known components of the C4

cycle showed the expected cell specificity (Figure 5A). Most

exceptions in convergence relate to the known differences in

biochemistry used by the species, for example C. gynandra and

maize using NAD-ME and NADP-ME respectively. However, we

noted that transcripts encoding PEPCK increased dramatically in

maize, but decreased in C. gynandra, and while transcripts encoding

chloroplastic malate dehydrogenase were abundant in maize, this

was not the case in C. gynandra. We also detected a steady increase

in abundance of transcripts encoding NADP-ME, although this

protein is not considered to allow major flux through the C4

pathway in C. gynandra [32,33]. Lastly, we detected transcripts

predicted to encode the mitochondrial ASPAT [34] in the BS of C.

gynandra.

We compared the cell specific transcriptome from C. gynandra

with two analogous transcriptome studies from maize [12,35] and

Table S13). This identified 99 and 195 genes that accumulated

preferentially in M or BS cells respectively of both species

(Figure 5B), of which four and eleven were transcription factors

(Figure 5C). Furthermore, of the 18 homologous transcription

factors in C. gynandra and maize that were co-ordinately expressed

with C4 genes (Figure 4B), the majority were preferentially

expressed in one cell type (Figure 5D–G). For example, two and

seven were at least twofold more abundant in M or BS cells

respectively (Figure 5D & 5E), five were preferentially expressed in

opposite cell types in the two species (Figure 5F), and four

showed equal expression in both cell types (Figure 5G).

Publically available data derived from laser capture microdissec-

tion of M and BS cells in C3 rice followed by microarrays [36]

detected 7,839 genes, of which 1,392 and 295 were differentially

expressed in rice BS and M cells respectively. Whilst rice

homologues to 50 of the 195 genes that were highly expressed in

C4 BS cells (Figure 5B) were detected, only 5 of these were

preferentially expressed in the BS of rice. For the structural genes

preferentially expressed in C4 M cells (Figure 5B), 25 homologues

were detected in rice but none of these were preferentially

expressed in the M. Furthermore, homologues to five of the trans-

factors that accumulated preferentially in either C4 M or BS cells

(Figure 5C) were detected in rice leaves, but none were

preferentially expressed in either cell type (Table S15). Taken

together, these data indicate that parallel evolution of structural

genes as well as transcription factors underlies patterns of gene

expression associated with leaf maturation and also cell specificity

in these distantly related independent C4 lineages.

Discussion

Our analysis of gene expression in the dicotyledon C. gynandra

and monocotyledon maize provides insight into the molecular

processes underlying C4 photosynthesis in these distantly related

lineages, but also into leaf maturation more generally. Despite the

remarkably different physical scale, temporal scale and large

phylogenetic distance between these species we demonstrated that

3,335 genes (comprising 44% of all differentially expressed genes,

and ,10% of genes in the genomes) exhibited analogous

expression behaviours during leaf development and photosynthetic

induction. As expected this included genes associated with the

chloroplast and photosynthesis, but we also found gene categories

relating to response to reactive oxygen species, plasmodesmata, the

nucleus, ribosome, proteasome and DNA and RNA binding

behaving in the same manner. This large overlap is indicative of a

core conserved genetic network that regulates leaf development

parentheses and behaviours containing photosynthesis-related genes are annotated by red boxes around each plot (eg A3, A4 and A6). Genes of the
core C4 cycle occupy six and five of the thirteen ascending filters in C. gynandra and maize respectively (transcripts in green). (C) Venn diagram
representing transcription factors showing the same behaviours as C4-related genes in the maize and in C. gynandra leaf gradients. (D) Behaviour of
homologous genes in C3 A. thaliana.
doi:10.1371/journal.pgen.1004365.g004
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and photosynthetic induction. We discovered 216 transcription

factors that exhibited analogous expression behaviours within the

constraints of the ontogenetic frameworks of both maize and C.

gynandra developing leaves. This result implies that there is

significant conservation in the trans-acting factors in these distantly

related species associated with leaf maturation and photosynthetic

function. Supporting this conclusion we detected GLK1, known to

regulate the expression of photosynthesis genes [20,21], four

Sigma factors associated with transcription of chloroplast photo-

synthesis genes and multiple transcription factors known to

regulate vein development [30], cell-cycle and leaf development

[31] that behaved the same in both species. These findings suggest

that although species-specific differences in mRNA abundance are

numerous, the expression profiles of a significant number of

transcription factors underpinning both morphological and

biochemical development are conserved in C. gynandra and maize.

These patterns of gene expression are also consistent with those

reported in A. thaliana during leaf development [23], and so these

three datasets encapsulate a conserved molecular toolkit associated

with leaf maturation. It is possible these broad-scale similarities in

the patterns of gene expression between maize, A. thaliana and C.

gynandra is associated with convergent evolution, but the most

parsimonious explanation for these distantly-related species

possessing similar patterns of gene expression is that these

behaviours are derived from the last common ancestor. We

therefore infer that these genes encode proteins that are essential

to leaf maturation in all angiosperms derived from the last

common ancestor of these species that is estimated to date to

around 140 million years ago [37].

With respect to C4 photosynthesis in particular, and compared

with other C4 species assessed to date [12,38,39], C. gynandra

develops C4 traits over a short ontogenetic framework of just

3 mm. Similar gradients in leaf maturation have recently been

reported in both C. gynandra and Cleome angustifolia, and

immunolocalisation showed selective localisation of RuBisCO in

chloroplasts of the BS prior to structural differentiation of M and

BS cells [24]. This suggests in C. gynandra, trans-acting factors which

are selectively expressed in M or BS cells, and which appear early

in the basal section of the leaf, may be candidates for cell specific

control of synthesis of some C4 enzymes [24,40]. Equivalent

gradients in gene expression are detected along ,10 cm of maize

leaf. In addition to conservation in global patterns of gene

expression associated with leaf development we were also able to

show that genes important for the C4 pathway show similar

patterns of expression to genes annotated as photosynthesis-

related. While the concept that genes encoding proteins of the C4

photosynthetic pathway should be regulated by existing photo-

synthesis networks is intuitive, this has not been demonstrated

previously. Although the relative abundance of mRNAs from

photosynthesis genes increased from base to tip of both species, the

rate of increase and point at which steady state was reached

varied. Despite this variation in accumulation rate, photosynthesis

genes were tightly co-regulated in both species, occupying only

eight and nine discrete clusters in maize and C. gynandra

respectively. There was little evidence for a one-to-one relationship

between individual clusters indicating that there is significant

divergence in timing and spatial arrangement of photosynthetic

and metabolic maturation between the monocotyledons and

dicotyledons. As C4 pathway genes were distributed among

different photosynthetic clusters in C. gynandra and maize we were

able to identify a small set of transcription factors that were co-

ordinately expressed with C4 photosynthesis genes in both species.

Although this list only contained eighteen transcription factors, this

is significantly enriched compared to the background rate of

transcription factor co-expression for sets of genes of the same size.

Furthermore, we found that 16 of these 18 transcription factors

exhibited analogous expression behaviour in the C3 leaves of A.

thaliana. This finding strongly implies that this cohort of regulators

plays a conserved role in leaf maturation in many angiosperms and

has been co-opted to regulate C4 pathway genes in both C. gynandra

and maize. The fact that fourteen of these eighteen transcription

factors accumulate preferentially either in M or BS cells of C.

gynandra, and that nine show exactly the same distribution in maize

indicates that they very likely underlie regulation of components

required for the C4 pathway. We propose that the five

transcription factors with preferential but opposite patterns of

expression in M and BS cells of maize and C. gynandra underpin

differences in gene expression associated with their belonging to

the distinct NAD-ME and NADP-ME biochemical subtypes. Of

the eighteen transcription factors that we detected as showing the

same behaviours in C. gynandra and maize, only a subset were

detected by an independent microarray analysis of maize leaf

maturation [11], but of these, the majority increased in abundance

as leaves matured, further supporting a role in C4 maturation

(Table S14).

In addition to similarities in the patterns of gene expression as

leaves of C. gynandra and maize matured, we also found significant

overlap in gene expression of M and BS cells between these two

independent C4 lineages. In maize 21–25% of all genes expressed

in leaves were estimated to be differentially expressed in M and BS

cells [13,24]. As these maize experiments were conducted with

very different technologies there are significant differences in their

estimates of gene expression, however we found 1,154 and 1,429

genes that were preferentially expressed in the M or BS

respectively in both maize datasets. Furthermore, of the maize

genes that were consistently differentially expressed in the M and

BS, 99 and 195 were homologous to M and BS specific genes in C.

gynandra. These data indicate that in the two species these cell types

show more differences in gene expression than similarities.

However, we did detect fourteen directly homologous transcrip-

tion factors specific to each cell type in both species. These data

are consistent either with these transcription factors playing

fundamental conserved roles in M and BS cells of all C3 as well as

C4 species, or that they have been recruited into regulate processes

relating to C4 photosynthesis in independent C4 lineages. Previous

analysis of transcript abundance in M and BS cells of C3 rice [36]

provides insight into the extent to which cell specific expression of

these genes is an ancestral characteristic, or, whether this cell

specialisation has occurred in parallel in both C4 lineages. Whilst,

fewer genes were detected in the rice microarray study [36],

homologues to five of the trans-factors preferentially expressed in

BS or M cells of both C. gynandra and maize were detected.

However, none of these were preferentially expressed in the BS or

M cells of rice, strongly implying parallel recruitment into specific

roles in these cells in independent C4 lineages.

In summary, our data indicate that a broad comparative

approach of distantly related species can shed light on the

molecular signatures of highly complex traits. With respect to C4

photosynthesis in particular, we show that not only is it

underpinned by the parallel evolution of cis-elements [41] and

amino acid substitutions [42], but also that expression of

homologous transcription factors follow analogous temporal and

spatial patterns of expression in independent lineages of C4 plants.

Additional studies of C4 species with structurally similar leaves but

differing types of C4 biochemistry may well help identify trans-

factors that act to regulate structural versus biochemical develop-

ment of C4 function. For this to be efficient, the developmental

stage at which samples are taken will need to be carefully selected
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[43]. As key regulators generating the C4 phenotype are shared

between lineages, this opens up the possibility of using natural

variation to identify regulators and therefore to facilitate

engineering C4 photosynthesis into C3 crops [44] to increase their

yield.

Materials and Methods

C. gynandra was grown in soil under long-day conditions in a

cabinet with light intensity of 150 mmol photons m22 s21 and a

temperature of daytime 23uC/20uC. Four hours after dawn, RNA

was extracted (Plant RNeasy kit, Qiagen) from at least 100 mg of

leaf material from at least three plants for each biological replicate.

The amount and quality of RNA was determined using a

Bionanalyzer RNA 6000 nanochip (Agilent). The poly(A)+ RNA

was isolated and sequenced using standard illumina protocols on a

HiSeq to generate 3 Gb of 90 bp pair ended reads for each

biological replicate. Each gradient condition (base, mid, tip,

mature) is a mixture of at least 50 leaves and three replicates for

each condition have been sequenced on the same flow cell.

Histology, quantification of venation pattern
To assess venation leaves were fixed in 70% ethanol at 65uC

prior to clearing in 5% (w/v) NaOH [45]. Venation density (vein

length per unit area) and complexity (sum of the number of end-

points, branching points and vascular elements) were quantified

using LIMANI [46]. For cell size analysis, tissue was fixed in

glutaraldehyde/paraformaldehyde and embedded in Teknovit

7100 resin. 2 mm thick sections were made and then stained with

toluidine blue [45]. For transmission electron microscopy, 50 nm

thick sections were cut with a Leica Ultracut UCT, stained with

saturated uranyl acetate in 50% ethanol and lead citrate, and

viewed in a FEI Philips CM100 operated at 80 kV.

Assembling, annotation and estimation of transcript
abundance

Paired end reads were subject to quality-based trimming using

the FASTX toolkit [47] setting the PHRED quality threshold at 20

and discarding reads less than 21 nucleotides in length. Further

processing was then performed to remove reads corresponding to

poly-A tails and reads containing more than 75% of any single

nucleotide. These processed reads were then subject to read error

correction using the ALLPATHS-LG [48] and then filtered to

remove all redundant read-pairs. Finally reads containing only

unique kmers were discarded. This processed read set was then

subject to de novo assembly using velvet/oases [27,49] using four

different kmer lengths (k = 31, 41, 51, 61) and merged using oases.

Redundant transcripts and partial transcripts (for which a longer

transcript was present that contained .95% of the nucleotides of

the shorter) were discarded using usearch [50]. To estimate

transcript abundances the original unprocessed reads were subject

to quality-based trimming using the FASTX toolkit [47] setting

the PHRED quality threshold at 20 and discarding reads less than

21 nucleotides in length. These trimmed reads were then used to

quantify the assembled transcripts using RSEM [51]. Read library

sizes and Spearman’s ranked correlation coefficients between all

samples and replicates (computed using all expressed genes) are

provided in Figure S14.

De novo assembled transcript sequences with homologues in the

genome of Arabidopsis thaliana were identified using the conditional

orthology assignment method described and validated in the

supplemental methods (Text S1). Annotation information includ-

ing GO terms and MapMan classifications already assigned to

Arabidopsis thaliana genes were directly allocated to the newly

identified homologous in the de novo assembly.

All possible pairwise comparisons between replicated samples

were performed using DESeq [52]. Prior to differential testing,

RNAseq count data were normalised between conditions to

account for differences in library size and any lane biases using the

median ratios method employed in DESeq. In all cases,

differentially expressed genes were identified as those genes with

a Benjamini-Hochberg corrected p-value of less than 0.05 [53].

Supervised classification of gene expression profiles was performed

using p-values and normalised, replicate-averaged expression

estimates derived from DESeq. For all enrichment testing,

significant enrichment was identified as gene groups with a

Benjamini-Hochberg corrected p-value of less than 0.05 following

Wallenius approximation and length normalisation of uncorrected

p-values using goseq [54]. The probability that 18 transcription

factors would be found in C4 behaviours in both species by chance

was evaluated by Monte Carlo simulation. For each sample,

twenty-nine genes (the number of C4 cycle genes) were randomly

selected to define sets of expression behaviours. The number of

transcription factors that were present in these behaviours in both

species was determined. This procedure was repeated one million

times to build the reference distribution of transcription factors

occurring in the gene lists of both species by chance, and to

calculate an empirical p-value.

Laser capture microdissection
Leaf tissue was harvested 4 hrs after dawn and immediately

infiltrated in ethanol:acetic acid (3:1). The tissue was processed

through a series of dehydration and then replaced by Paraplast

Xtra (Sigma). Leaves embedded in wax were sectioned trans-

versely using 8 mm thin sections. Sections were floated in EtOH on

MembraneSlide 1.0 PEN (Zeiss) and dried. For laser capture

microdissection (LCM), slides were deparaffinised using Histo-

clear for 2 min and air dried. LCM was performed using Arcturus

XT (Life Technologies) and mesophyll and bundle-sheath were

captured using adhesive caps (Life Technologies) following

manufacturer instructions. Subsequently RNA was purified using

Picopure RNA extraction kit (Life Technologies) and subjected to

on-column DNAse treatment (Qiagen) and amplified using Nugen

RNA Ovation V2 kit (Nugen) according to the manufacturer’s

Figure 5. Convergence of mesophyll and bundle sheath transcriptomes in C. gynandra and maize. (A) Schematic showing M or BS
accumulation of transcripts involved in the C4 cycle. Shared parts of the pathway are annotated in red, while differences between the species are
shown in grey. CA, carbonic anhydrase; PPC, phosphoenolpyruvate carboxylase; PEPC Kin, phosphoenolpyruvate carboxylase kinase, ASPAT, aspartate
aminotransferase; ALAAT, alanine aminotransferase; PPDK, pyruvate-orthophosphate dikinase; TPI, triose phosphate isomerase; PGK, phosphoglyc-
erate kinase; FBA, fructose-bisphosphate aldolase; SBP, sedoheptulose-bisphosphatase; TKL, transketolase; PRK, phosphoribulokinase; RbcS, RubisCO
small subunit; RCA, RubisCO activase; FBP, fructose 1,6-bisphosphate phosphatase; RPE, D-ribulose-5-phosphate-3-epimerase; NAD-ME, NAD-
dependent malic enzyme, MDH malate dehydrogenase. (B) Venn diagrams representing transcripts expressed in M (left panel) and BS (right panel) of
C. gynandra and maize. Cell-specific maize data represents the overlap between two independent experiments [12,56]. (C) Venn diagrams of
transcription factors expressed in M or BS in maize and C. gynandra. (D–G) Expression in M and BS cells of the 18 homologous transcription factors
showing co-ordinated induction with C4 photosynthesis genes during leaf maturation of both maize and C. gynandra. Abbreviations: Cg data from C.
gynandra (this study), while Zm1 data are from Li et al (2010) [12] and Chang et al (2012) [35] respectively.
doi:10.1371/journal.pgen.1004365.g005
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instructions. RNA quality and quantities were checked at every

stage using a picoRNA chip on Bioanalyzer 2100 (Agilent).

Amplified cDNA libraries were using the Illumina standard

protocol and then multiplexed on HiSeq to generate 2 Gb of

100 bp pair ended reads for each library (in triplicate for each cell

type).

Quantification of cell specific transcriptomes in C.
gynandra and maize

Raw reads for the maize cell specific transcriptomes [12,35]

were downloaded from NCBI SRA. All read datasets (including

those from C. gynandra) were subject to the same quality based

trimming prior to quantification using RSEM as described

above. All possible pairwise comparisons between replicated

samples were performed using DESeq and differentially

expressed genes were identified as those genes with p-value of

less than 0.05. Only genes which exhibited the same cell type

specificity in both maize datasets were considered to be

differentially expressed in maize.

Real-time quantitative PCR
First-strand cDNA synthesis from 0.5 mg RNA was performed

using Superscript II (Invitrogen) prior to quantitative real-Time

PCR using SYBRgreen Jumpstart (Sigma) in a rotor-gene-Q

system (Qiagen). Gene specific primers were designed according to

contigs assembled during the analysis. The relative expression was

normalised based an external alien qRT-PCR RNA spike

(Agilent). For each gene assessed three technical and three

biological replicates were carried out.

Immunoblots
After separation by SDS-PAGE, proteins were transferred to

nitrocellulose membranes according to standard procedures.

Proteins were detected with polyclonal antibodies against rice

CA (1:5000), maize PPC (1:5000), the a-subunit of NAD-ME

(1:5000) and PPDK (1:10,000) as in [32] and were a gift from

Richard Leegood (University of Sheffield. UK). Subsequently, the

membranes were labelled with anti-rabbit secondary antibody

(1:10,000) coupled to HRP (Sigma) and visualised by chemolumi-

nescence using Western lightning Plus-ECL (Perkin-Elmer). For

each protein assessed immunoblots were carried out on duplicates.

Accession numbers
RNAseq data produced in this study have been submitted to the

NCBI/SRA database under accession number SRA066236.

Supporting Information

Figure S1 BS cells contain slightly bigger chloroplasts (A–D&I)

than mesophyll cells (E–H) along the gradient. Granal stacking is

similar in BS and M chloroplasts. Plasmodesmata can be observed

in the base of 3 mm leaves (J–K). Data are derived from at least

three sections from each species. Scale bars = 500 nm.

(TIF)

Figure S2 Expression along C. gynandra leaf gradient for (A)

sucrose synthesis and (B) starch synthesis enzymes indicating a

sink-to-source transition. Data is shown as normalized read counts

(see Materials and Methods) for Base (B), Mid (M), Tip (T), and

Mature (Mat.) leaves.

(TIF)

Figure S3 Flow diagram of the conditional orthology assignment

method. (A) The method begins by performing all versus all

BLAST searches of the assembled transcripts against a reference

proteome. (B) The reciprocating hits (indicated by blue lines)

are selected for self-training. (C) The reciprocating hits are

binned according to assembled transcript length and a

quadratic model is fit to the e-value and length data. D) Non-

reciprocating hits which fall above the curve are accepted as

putative homologues, non-reciprocating hits which fall below

the curve are rejected.

(TIF)

Figure S4 Quantitative differences in generic metrics between

test assemblies. (A) Maximum observed transcript length. (B) Mean

transcript length. (C) Median transcript length. (D) N50. (E)

Number of transcripts longer than 1000 bp. (F) Number of

transcripts longer than the read length (100 bp). For each panel

the number indicates the k-mer length used in the assembly. nrec

means that the assembly was performed on non-redundant error

corrected reads. qcnrec means that the assembly was performed

on quality clipped non-redundant error-corrected reads. Merged

indicates a merged sample which contains the assemblies produced

from all k-mer sizes.

(TIF)

Figure S5 Qualitative differences in transcriptome content

between test assemblies. (A) The mean number of assembled

transcripts which hit each reference transcript. (B) The

proportion of the reference transcriptome which have hits with

e-values better than 161025 in the assembled transcriptome.

(C) The mean number of reference transcripts which hit each

assembled transcript. (D) The proportion of assembled

transcripts which have hits with e-values better than 161025

in the reference transcriptome. For abbreviations see legend to

Figure S3.

(TIF)

Figure S6 The effect of read processing and k-mer size selection

on detection of reference transcripts. In each case the Venn

diagram represents the overlap in detected reference transcripts

between each of the assemblies. (A) Assemblies made from raw

unprocessed sequence reads. (B) Assemblies made from non-

redundant, error corrected sequence reads. (C) Assemblies made

from non-redundant, error corrected and quality-clipped sequence

reads. The k-mer size is indicated next to each oval and the total

number of transcripts contained in the entire set is indicated

below.

(TIF)

Figure S7 The effect of read processing and k-mer size selection

on the accuracy of transcript abundance estimates. (A) Correlation

in quantification derived from reciprocal best BLAST (RBB) hits

in the assemblies and reference. (B) As in (A) but summed over all

transcript isoforms per reference gene locus. For abbreviations see

legend to Figure S3. (C) Scatter plot comparing log transformed

read counts obtained from RSEM quantification of the de novo

assembly and the reference transcriptome (example shown is the

merged non-redundant error corrected assembly). Correlation in

quantification derived from reciprocal best BLAST hits in the

assemblies and reference. (D) as in (C) but integrated over all

transcript isoforms per reference locus. The thin dashed red line

indicates the line of equivalent expression. The thick dashed red

lines indicate the 25% intervals.

(TIF)

Figure S8 Example of conditional orthology assignment data

fitting. (A) Grey dots indicate 1st percentile e-value of reciprocal

best BLAST hits. Black line indicates the quadratic polynomial

curve fit to the data. This line is used to identify putative

homologues. Sequences of a given length that have e-values above
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the line are considered putative homologues. Those below the line

are not. (B) The Spearman correlation in transcript abundances

between the reference guided estimation and estimates gener-

ated using different transcript orthology assignment methods on

the same de novo assembled transcriptome. ‘‘RBB only’’ means

that only the reciprocal best BLAST transcripts were selected.

E-value cut-offs (e.g. 1e-5) indicate the fixed value at which

sequences were determined to be homologues. OrthoMCL

indicates that OrthoMCL was used to cluster and identify

orthologous transcript groups. Finally, the black bar indicates

the effect of varying the percentile cut-off on the abundance

estimate accuracy of the conditional orthology assignment

method.

(TIF)

Figure S9 The effect of conditional orthology assignment on

gene expression estimates. (A) Correlation in quantification

derived from conditional assigned transcripts. (B) As in (A) but

summed over all transcript isoforms per reference locus. For

abbreviations see legend to Figure S4. (C) Scatter plot log

transformed read counts obtained from RSEM quantification of

the conditional assigned de novo assembly and the reference

transcriptome (example shown is the merged non-redundant error

corrected sample). (D) As in (C) but summed over all transcript

isoforms per reference locus. The thin dashed red line indicates the

line of equivalent expression. The thick dashed red lines indicate

the 25% intervals.

(TIF)

Figure S10 The effect of using an intermediary reference

proteome to assign transcripts and compare expression data. (A)

The effect of percentile cut-off on the homologue detection

accuracy (F1 score) of the conditional assignment method. (B)

Comparison between log transformed read counts in assembled

and reference transcriptome using the Arabidopsis thaliana tran-

scriptome as an assignment intermediary. The thin dashed red line

indicates the line of equivalent expression. The thick dashed red

lines indicate the 25% intervals.

(TIF)

Figure S11 Behaviour of all transcription factor families

identified within the C. gynandra leaf gradient. Transcription

factors were classified by family (A) and the proportion of the genes

ascending (red) or descending (blue) were assessed for each of the

70 families detected. A schematic leaf (B) shows specific TF

families with related functions in function of their expression

profile.

(TIF)

Figure S12 Classification of transcripts into thirteen descending

behaviours as leaves of C. gynandra (A) and maize mature (B).

Statistically significant differences between neighbouring tissue

types are delineated by blue circles in descending filters, non-

significant differences are indicated by black circles. The total

number of genes that exhibit each behaviour is presented in

parentheses.

(TIF)

Figure S13 Behaviour of genes involved in chloroplast division,

positioning and venation in the base, middle and tip of 3 mm

leaves as well as mature leaves of C. gynandra. Genes annotated as

being important for venation were found in two ascending and

eight descending filters (A), genes for chloroplast positioning in

two descending and two ascending filters (B), and those annotated

as being involved in plastid division in seven descending clusters

(C). The total number of genes in each filter is annotated in

parentheses, and specific genes in each class depicted in green

text.

(TIF)

Figure S14 Spearman ranked correlation coefficients for pairwise

sample comparisons of global mRNA abundance estimates.

Correlation shown as a heatmap (strongest correlation in red,

weakest correlation black) with numerical provided below. Tripli-

cate sequencing replicates for each of the 4 tissue sections are shown.

(TIF)

Table S1 List of genes detected along C. gynandra leaf gradient.

(XLSX)

Table S2 List of differentially expressed genes in C. gynandra leaf

gradient and pairwise comparisons (base versus middle, middle

versus tip, base versus tip, and tip versus mature).

(XLSX)

Table S3 GO terms that are different between specific tissues

within the C. gynandra leaf gradient.

(XLSX)

Table S4 GO terms that are different between C. gynandra and

maize.

(XLSX)

Table S5 Transcription factors present in ascending or descend-

ing behaviours in both C. gynandra and maize.

(XLSX)

Table S6 Genes showing the same behaviours in both C.

gynandra and maize.

(XLSX)

Table S7 Genes associated with cell wall expansion

(XLSX)

Table S8 Expression profiles of photosynthesis-related genes in

the C. gynandra leaf gradient.

(XLSX)

Table S9 Expression profiles of C4 pathway genes in C. gynandra

leaf gradient.

(XLSX)

Table S10 Transcription factors showing the same behaviours in

both C. gynandra and maize.

(XLSX)

Table S11 Transcription factors in common between C.

gynandra and maize after comparative analysis of gene expression

in leaf gradients. Arabidopsis thaliana accession numbers are listed

more than once if multiple paralogues/homeologues exist in the

maize genome. Genes were classified in potential positive or

negative regulators based on their presence in the C4-related

clusters.

(XLSX)

Table S12 Genes detected in BS and M cells of C. gynandra

harvested by LCM.

(XLSX)

Table S13 List of genes overlapping between C. gynandra BS and

M fractions and Z. mays BS and M fractions (data from Li et al.,

[12], Chang et al. [35]).

(XLSX)

Table S14 Homologous transcription factors expressed in C4-

genes clusters in both Cleome gynandra and maize. Data from Pick et

al. [11].

(XLSX)
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Table S15 Expression of transcription factors in rice BS or M

cells that are homologous to those defined in maize and C. gynandra

(Fig. 5C). Data from Jiao et al. [36].

(XLSX)

Text S1 Supplementary methods.

(DOCX)
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