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Abstract. In this paper, we consider the inverse problem of determining the

permeability of the subsurface from hydraulic head measurements, within the

framework of a steady Darcy model of groundwater flow. We study geometrically

defined prior permeability fields, which admit layered, fault and channel structures,

in order to mimic realistic subsurface features; within each layer we adopt either

constant or continuous function representation of the permeability. This prior model

leads to a parameter identification problem for a finite number of unknown parameters

determining the geometry, together with either a finite number of permeability values

(in the constant case) or a finite number of fields (in the continuous function case).

We adopt a Bayesian framework showing existence and well-posedness of the posterior

distribution. We also introduce novel Markov Chain-Monte Carlo (MCMC) methods,

which exploit the different character of the geometric and permeability parameters, and

build on recent advances in function space MCMC. These algorithms provide rigorous

estimates of the permeability, as well as the uncertainty associated with it, and only

require forward model evaluations. No adjoint solvers are required and hence the

methodology is applicable to black-box forward models. We then use these methods to

explore the posterior and to illustrate the methodology with numerical experiments.
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1. Introduction

Quantification of uncertainty in the geologic properties of the subsurface is essential

for optimal management and decision-making in subsurface flow applications such

as nuclear waste disposal, geologic storage of CO2 and enhanced-oil-recovery. The

environmental impact of these applications, for example, cannot be properly assessed

without quantifying the uncertainty in geologic properties of the formation. However,

typical uncertainty of a priori geologic information often results in large uncertainty in

the flow predictions. This uncertainty is, in turn, detrimental to optimally managing

the process under consideration. A common strategy to reduce uncertainty and improve

our ability to make decisions is to incorporate (or assimilate) data, typically corrupted

by noise, that arise from the flow response to the given geologic scenario. Because

of the prior uncertainty in geological information, and because of the noise in the

data, this assimilation of data into subsurface flow models is naturally framed in a

Bayesian fashion: the aim is to characterize the posterior (conditional) probability

of geologic properties given the observed data [36] . The Bayesian framework is

therefore a statistical approach for solving the inverse problem of identifying unknown

geologic parameters given noisy data from the flow model. However, in contrast to

deterministic approaches, the Bayesian framework provides a quantification of the

uncertainty via the posterior; this in turn allows an assessment of the uncertainty

arising in the corresponding model predictions. The goal of this paper is to study a

class of inverse problems, arising in subsurface flow, in which both the geometry and

the physical characteristics of the formation are to be inferred, and to demonstrate

how the full power of the Bayesian methodology can be applied to such problems. We

study existence and well-posedness of the posterior distribution, describe Markov Chain-

Monte Carlo (MCMC) methods tailored to the specifics of the problems of interest, and

show numerical results based on this methodology. We work within the context of a

steady single-phase Darcy flow model, but the mathematical approach, and resulting

algorithms, may be employed within more complex subsurface flow models.

1.1. Literature Review: Computational and Mathematical Setting

The first paper to highlight the power of the Bayesian approach to regularization of

inverse problems is [16], where linear inverse problems, including heat kernel inversion,

were discussed. The theory of Bayesian inversion for linear problems was then

further developed in [32, 29] whilst the book [23] demonstrated the potential of the

approach for a range of complex inverse problems, linear and nonlinear, arising in

applications. Alongside these developments was the work of Lasanen which lays the

mathematical foundations of Bayesian inversion for a general class of nonlinear inverse

problems [25, 26, 27]. The papers [33, 34] demonstrate approximation results for the

posterior distribution, employing Kullback-Leibler divergence and total variation metric

respectively, for finite dimensional problems. The paper [39] demonstrated how the

infinite dimensional perspective on Bayesian inversion leads to a well-posedness and
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approximation theory, and in particular to the central role played by the Hellinger

metric in these results. The papers [5, 6, 11] demonstrated application of these theories

to various problems arising in fluid mechanics and in subsurface flow. Most of this work

stemming from [39] concerns the use of Gaussian random field priors and is hence limited

to the reconstruction of continuous fields or to fields with discontinuous properties where

the positions of the discontinuities are known and can be built in explicitly, through the

prior mean, or through construction of the inverse covariance operators as in [22]. The

article [28] introduced Besov priors in order to allow for the solution of linear inverse

problems arising in imaging where edges and discontinuities are important and this

work was subsequently partially generalized to nonlinear inverse problems arising in

subsurface flow [10]. However none of this work is well-adapted to the geometrical

discontinuous structures observed in subsurface formations, where layers, faults and

channels may arise. In this paper we address this by formulating well-posed nonlinear

Bayesian inverse problems allowing for such structures.

The computational approach highlighted in [23] is based primarily on the “discretize

first then apply algorithm” approach with, for example, MCMC methods used as the

algorithm. The work highlighted in [8] shows the power of an approach based on “apply

algorithm then discretize”, leading to new MCMC methods which have the advantage

of having mixing rates which are mesh-independent [19, 40]; the importance of mesh-

independence is also highlighted in the work [28]. However the work overviewed in [8]

is again mainly aimed at problems with Gaussian priors. In this paper we build on this

work and develop MCMC methods which use Metropolis-within-Gibbs methodologies

to separate geometric and physical parameters within the overall MCMC iteration;

furthermore these MCMC methods require only solution of the forward problem and

no linearizations of the forward operator, and are hence suitable in situations where no

adjoint solvers are available and only black-box forward simulation software is provided.

We use the resulting MCMC methodology to solve some hard geometric inverse problems

arising in subsurface modelling.

1.2. Literature Review: Subsurface Applications

While standard approaches for data assimilation in subsurface flow models are mainly

based on the Bayesian formalism, most of those approaches apply the Bayesian

framework to the resulting finite-dimensional approximation of the model under

consideration [36]. However, recent work [20] has shown the potential detrimental

effect of directly applying standard MCMC methods to approximate finite-dimensional

posteriors which arise from discretization of PDE based Bayesian inverse problems. For

standard subsurface flow models, the forward (parameter-to-output) map is nonlinear,

and so even if the prior distribution is Gaussian, the posterior is in general non-

Gaussian. Therefore, the full characterization of the posterior can only be accomplished

by sampling methods such as Markov Chain Monte Carlo (MCMC). On the other

hand, unknown geologic properties are in general described by functions that appear as
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coefficients of the PDE flow model. Then, the Bayesian posterior of these discretized

functions is defined on a very high-dimensional space (e.g 105 ∼ 106) and sampling

with standard MCMC methods [15, 30] becomes computationally prohibitive. Some

standard MCMC approaches avoid the aforementioned issue by parametrizing the

unknown geologic properties in terms a small number of parameters (e.g. 10 ∼ 20)

[14, 34]. Some others, however, consider the full parameterization of the unknown

(i.e. as a discretized function) but are only capable of characterizing posteriors from

one-dimensional problems on a very coarse grids [15, 30]. While the aforementioned

strategies offer a significant insight into to the solution of Bayesian inverse problems

in subsurface models, there remains substantial opportunity for the improvement and

development of Bayesian data assimilation techniques capable of describing the posterior

distributions accurately and efficiently, using the mesh-independent MCMC schemes

overviewed in [8] and applied to subsurface applications in [20]. In particular we aim

to do so in this paper in the context of geometrically defined models of the geologic

properties.

The petrophysical characterization of complex reservoirs involves the identification

of the geologic facies of the formation. For those complex geologies, prior knowledge

may include uncertain information of the interface between the geologic facies as well

as the spatial structure of each of the rock types. In addition, prior knowledge of

complex reservoirs may also include information of potential faults. Moreover, if the

depositional environment is known a priori, then geometrical shapes that characterize

the petrophsyical properties of the formation may constitute an integral part of the

prior information. Whenever the aforementioned information is part of the prior

knowledge, the conditioning or assimilation of data should accommodate the geologic

data provided a priori. This can be accomplished with the proper parameterization

of the geologic properties so that different facies are honored. In [24] for example,

a channelized structure was parameterized with a small number of unknowns and a

deterministic history matching (data assimilation) was conducted on a two-phase flow

model. More sophisticated parameterization of geologic facies involves the level-set

approach for history matching used by [13, 21] in a deterministic framework. Recently,

in [41] the level-set approach is combined with the Bayesian framework to provide

a characterization of the posterior. This Bayesian application is constructed on the

finite-dimensional approximation of the flow-model and is therefore subject to the

computational limitations previously indicated, namely mesh-dependent convergence

properties. While the work of [41] provides an upscaling to provide computational

feasibility, the computations reported involved a limited number of samples, potentially

insufficient for the proper characterization of the Bayesian posterior.

There are also several facies estimation approaches based on ad hoc Gaussian

approximations of the posterior. For example, in [31] a pluri-Gaussian model of

the geologic facies was used with an ensemble Kalman filter (EnKF) approach to

generate an ensemble of realizations. In [42] a randomized likelihood method was used

to estimate the parameters characterized with channels. In [4] a level-set approach
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was used with EnKF to generate an ensemble of updated facies. Although the

aforementioned implementations are computationally feasible and may recover the truth

within credible intervals (Bayesian confidence intervals), the methods may provide

uncontrolled approximations of the posterior. Even for simple Gaussian priors, in

[20] numerical evidence has been provided of the poor characterization that ensemble

methods may produce when compared to a fully resolved posterior.

It is also worth mentioning the recent work of [3] where the Bayesian framework

was used for facies identification in petroleum reservoirs. This work considers a

parametrization of the geologic facies in terms of piecewise constant permeabilities

on a multiphase-flow model. The paper demonstrates the need to properly sample

multi-modal posterior distributions for which the standard ensemble-based methods

will perform poorly.

1.3. Contribution of This Work

We develop a mathematical and numerical framework for Bayesian inversion to identify

geometric and physical parameters of the permeability in a steady Darcy flow model.

The geometric parameters aim at characterizing the location and shape of regions

where discontinuities in the permeability arise due to the presence of different geologic

facies. The physical parameters represent the spatial (usually continuous) variability

of the permeability within each of the geologic facies that constitute the formation.

We make three primary contributions: (i) we demonstrate the existence of a well-

posed posterior distribution on the geometric and physical parameters including both

piecewise constant (finite dimensional) and piecewise continuous (infinite dimensional)

representations of the physical parameters; (ii) we describe appropriate MCMC methods

which respect both the geometry and the possibly infinite dimensional nature of the

physical parameters and which require only forward flow solvers and not the adjoint;

(iii) we exhibit numerical studies of the resulting posterior distributions.

Clearly piecewise continuous fields will be able to represent more detailed features

within the subsurface than piecewise constant ones. On the other hand we expect

that piecewise constant fields will lead to simpler Bayesian inference, and in particular

to speed-up of the Markov chains. There is hence a trade-off between accuracy and

efficiency within geometric models of this type. The decision about which model to

use will depend on the details of the problem at hand and in particular the quantities

of interest under the posterior distribution. For this reason we study both piecewise

continuous and piecewise constant fields.

Continuity of the forward mapping from unknown parameters to data, which is

a key ingredient in establishing the existence of the posterior distribution [39], is not

straightforward within classic elliptic theories based on L∞ permeabilities, because small

changes in the geometry do not induce small changes in L∞. Nonetheless, one can

prove that the forward mapping is continuous with respect to the unknown parameters,

which allows us to show that the posterior distribution is well-defined. Furthermore,
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well-posedness of the inverse problem is established, namely continuity of the posterior

distribution in the Hellinger and total variation metrics, with respect to small changes in

the data. In the piecewise constant case, for log-normal and uniform priors on the values

of the permeability, the data to posterior mapping is Lipschitz in these metrics, whilst for

exponential priors it is Hölder with an exponent less than 1/2 (resp. 1) in the Hellinger

(resp. total variation) metrics; problems for which the dependence is Hölder but not

Lipschitz have not been seen in the examples considered to date, such as those in [39],

and hence this dependence is interesting in its own right and may also have implications

for the rate of convergence of numerical approximations. In the case of log-normal

permeability field, the posterior is Lipschitz continuous with respect to data in both of

these metrics. A novel Metropolis-within-Gibbs method is introduced in which proposals

are made which are prior-reversible, leading to an accept-reject determined purely by the

likelihood (or model-data mismatch) hence having clear physical interpretation, and in

which the geometric and physical parameters are updated alternately, within the Gibbs

framework. Finally some numerical examples are presented, for both multiple layers and

fault models, demonstrating the feasibility of the methodology. We develop a rigorous

application of the Bayesian framework for the estimation of geologic facies parametrized

with small number of parameters, together with a finite or infinite dimensional set of

physical parameters within each of the facies. Regarding the geometry we consider

a general class of problems that includes stratified reservoirs with a potential fault,

similar to the model used in [3]. In addition, we consider a simple channelized structure

parameterized with small number of parameters, similar to the one described in [24].

The content of this paper is organized as follows. In Section 2, we provide

a simplified description of the the forward model, with piecewise continuous

permeabilities, and prove the continuity of the forward and observation map with

respect to the geometric and physical parameters. Section 3 is devoted to the resulting

Bayesian inverse problem from the geometric and physical parameters. The prior model

is built both for the geometry and the values of permeability. We then show that the

posterior measure is well defined and prove well-posedness results with respect to the

data under this prior modeling. In Section 4, we introduce the novel Metropolis-within-

Gibbs MCMC method to probe the posterior distribution. Some numerical results are

shown in Section 5 to illustrate the effectiveness of the proposed methods.

2. Forward Model

In this section we introduce the subsurface flow model that we employ for application of

the Bayesian framework. In subsection 2.1 we describe the underlying Darcy flow PDE

model, in subsection 2.2 we introduce the family of geometrically defined permeabilities

employed within the PDE and in subsection 2.3 we describe the observation model and

the permeability to data map.
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2.1. Darcy Flow Model

We are interested in characterizing the geologic properties of an aquifer whose physical

domain is denoted by D. We assume that D is a bounded open subset of R2 with

Lipschitz boundary ∂D. We define the Hilbert spaces H := (L2(D), 〈·, ·〉, ‖ · ‖),
V := (H1

0 (D), 〈∇·,∇·〉, ‖∇ · ‖), where H1
0 (D) is the usual Sobolev space with zero

trace. Let V ∗ be as the dual space of V . We denote by X the subset of strictly positive

L∞ functions on D that X := {L∞(D;R)|ess infx∈D f(x) > 0}. We consider steady-state

single-phase Darcy-flow described by,

−∇ · (κ∇p) = f, x ∈ D,
p = 0, x ∈ ∂D, (1)

where p denotes the hydraulic head and κ the permeability (proportional to hydraulic

conductivity) tensor. For simplicity, the permeability tensor is assumed to be isotropic

and hence represented as a scalar field. The right hand side f accounts for groundwater

recharge. For simplicity we consider Dirichlet boundary conditions where the hydraulic

head is prescribed.

The forward Darcy flow problem is, given κ ∈ X, to find a weak solution p ∈ V of

(1) for any f ∈ V ∗. This forward problem is well-posed by the Lax-Milgram Lemma: if

κmin = ess infx∈D κ(x) > 0 then there exists a unique weak solution p ∈ V satisfying

‖p‖V ≤ ‖f‖V ∗/κmin, (2)

which enables us to define a forward map G : X → V, by

G(κ) = p. (3)

We concentrate on cases where κ(x) is a piecewise function defined by a geometrical

parameterization designed to represent layers and faults or channels. We now describe

how we do this.

2.2. Permeability Model

We are interested in permeability functions κ(x) which are either piecewise constant or

piecewise continuous function on different subdomains Di of D, each of which represents

a layer or a facies. Thus we write

κ(x) =
n∑
i=1

κiχDi(x), (4)

where {Di}ni=1 are open subsets of D, moreover Di ∩Dj = ∅,∀i 6= j and ∪ni=1Di = D.

Choices of the Di will be specified for two different geometric models in what follows

and we use these models throughout the paper for both our analysis and our numerical

experiments. They are illustrated in Figure 1(a) and Figure 1(b). To completely

specify the models we need to parameterize the geometry {Di}ni=1, and then describe

the variability of the permeability within each subdomain Di. We now describe how

these are both done.
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Figure 1. Test Models

2.2.1. Geometric Parameterization In the layer model of Figure 1(a), we assume

that the interfaces between the layers are straight lines. The slope of the interface

is determined by the thickness of each layer on the two sides. Hence, we use the layer

thicknesses on the two sides to parameterize the geometry of the piecewise permeability

function κ(x). Furthermore, to describe potential faults, we introduce an additional

parameter which determines the displacement of a vertical fault, whose horizontal

location is specified. In the channel model, shown in Figure 1(b), we simply assume

the channel to be sinusoidal as in [24]; the geometry can then be parameterized by the

amplitude, frequency and width together with parameters defining the intersection of

the channel with the boundaries. All of these models are then parameterized by a finite

set of real numbers as we now detail, assuming that D = (0, 1)2 and letting (x, y) ∈ D
denote the horizontal and vertical respectively.

• Test Model 1 (Layer Model with Fault): Given a fixed number n of layers,

the geometry in Figure 1(a) is determined by {ai}ni=0 and {bi}ni=0 and the slip c

that describes the (signed) height of the vertical fault at a specified location (for

simplicity fixed at x = 1
2
). The geometry for the case of three layers is displayed

in Figure 2(a). All the layers on the left hand side slip down(c > 0) or up (c < 0)

with the same displacement c. Moreover because of the constraint that the layer

widths are positive and sum to one we can reduce to finding the 2n− 1 parameters

a = (a1, · · · , an−1), b = (b1, · · · , bn−1), each in

A := {x ∈ Rn−1|
n−1∑
i=1

xi ≤ 1, xi ≥ 0} ⊂ Rn−1,

and c ∈ C := [−c?, c?]. For this case we then define the geometric parameter ug
and the space of geometric parameters Ug by

ug = (a, b, c), Ug = A2 × C

This geometric model thus has 2n− 1 parameters and n domains Di. Note that a

particular case of this model is the layered model shown in Figure 1(c) where we

take c = 0 as a known parameter.
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Figure 2. Geometry of Test Models

• Test Model 2 (Channelized Model): Test model 2 is shown in Figure 2(b). We

assume that the lower boundary of the channel is described by the sinusoid

y = d1 sin(d2x) + tan(d3)x+ d4

and we employ width parameter d5. In this case, we characterize the geometric

with

ug = (d1, · · · , d5) ∈ R5, Ug =
5∏
i=1

[d−i , d
+
i ].

This geometric model thus has 5 parameters and two domains D1 and D2 denoting

the interior and exterior of the channel respectively, which gives n = 2; note that

D2 contains disjoint components.

We now introduce an hypothesis that will be useful when we discuss the continuity

of the forward map. Let uεg represent perturbations of ug and let the Dε
i be the

corresponding induced perturbations of the domains Di. Thus {Dε
i }ni=1 is also a set

of open subsets of D such that Dε
i ∩Dε

j = ∅, for all i 6= j and ∪ni=1D
ε
i = D.

Hypothesis 2.1. For all i 6= j, the Lebesgue measure of Dε
j ∩Di, denoted as |Dε

j ∩Di|
goes to zero, if uεg → ug.

It is clear that this hypothesis holds true for all the test models.

2.2.2. Permeability Values Throughout the paper, we use uκ to denote the unknown

parameters describing κi in (4) and Uκ as the admissible set for the parameters. We

will consider two parameterizations of the functions κi appearing in (4): as constants

and as continuous functions.
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• Piecewise constant: Each κi is a positive constant. We then have the following

choices:

uκ = (κ1, · · · , κn), Uκ = (0,∞)n

• Continuous: We consider each κi to be defined on the whole of D. We work with

log κ as the exponential of this will always give a positive continuous function as

required for the existence of solution to (1). This induces the following choices for

uκ and Uκ:

uκ = (log κ1, . . . , log κn), Uκ = C(D;Rn)

We may consider Test Models 1 or 2 with either constant or continuous κi, leading

to four different models of the permeability. In all four cases we define the unknown

parameter and associated space by

u = (ug, uκ), U = Ug × Uκ.

For the cases of defined above, U is a subset of a separable Banach space (B, ‖ · ‖B).

2.3. Observation Model

Given the parameterizations described at the end of the previous section, we define the

function F : U → X as an abstract map from parameter space to the space of the

permeabilities, by

F (u) = κ. (5)

Let L denote a bounded linear observation operator on V , comprising a finite number

of linear functionals lj ∈ V ∗, j = 1, · · · , J that L(p) = (l1(p), · · · , lJ(p))T . The

measurements are some noisy observations from

yj = lj(p) + ηj,

where ηj represents the noise polluting the observation.

Let y := (y1, · · · , yJ)T ∈ Y, where Y := RJ , equipped with Euclidean norm | · |
and similarly for η; then, given (3,5), we define the observation operator G : U → Y by

G = L ◦G ◦ F . We then have

y = G(u) + η. (6)

In remaining sections of the paper we study the inverse problem of using y to determine

the unknown parameter u ∈ U . A key foundational result underlying our analysis is the

the continuity of G.

Theorem 2.2. For all four of the permeability parameterizations the mapping G : U ⊂
B → Y is continuous.

Proof. See the Appendix.
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3. Bayesian Inverse Problems

The inverse problem of interest here is to estimate the parameter u from y given by

(6). We adopt a Bayesian approach. The pair (u, y) ∈ B × RJ is modeled as a

random variable: we put a prior probability measure µ0 for u viewed as an element

of the separable Banach space B, and define the random variable y|u by assuming that

η ∼ N(0,Γ) independently of u. The Bayesian solution to the inverse problem is then

the posterior measure µy on the random variable u|y. We thereby define the probabilistic

information about the unknown u in terms of the measurements y, forward model

and prior information. The paper [39] and lecture notes [38] describe a mathematical

framework for Bayes’ Theorem in this infinite dimensional setting. We define the priors

and likelihood and then use this mathematical framework to establish the existence and

well-posedness of the posterior distribution; here well-posedness refers to continuity of

the posterior measure µy, in the Hellinger or total variation metrics, with respect to the

data y.

3.1. Prior Modeling

The unknown parameter u is viewed as an element of the separable Banach space B
defined for each of the four permeability models. Under the prior we assume that the

physical parameter uκ is independent of the geometric parameter ug. Therefore we can

build up a prior measure µ0 by defining the geometric prior distribution density πG0 and

the permeability (or log permeability) prior measure µi0 respectively.

3.1.1. Geometric Prior In the layer model with a fault, the geometry variables a, b

satisfy the geometric constraint a, b ∈ A. In addition, we consider the case where there

is no preference that the thickness of a certain layer is larger than another one. In other

words, we consider the case where a and b are i.i.d random vector drawn from uniform

distribution with a density πA,g0 (x) such that

πA,g0 (x) =

{
1
|A| x ∈ A,
0 x /∈ A.

(7)

In addition, the slip parameter c is drawn uniformly from C = [−c?, c?], and

independently of (a, b). Then, the prior density for this geometric model is

πG0 (ug) = πA,g0 (a)πA,g0 (b)πC,g0 (c)

For the Channel Model we assume the geometric parameter ug is drawn uniformly from

the admissible set Ug. Therefore, we consider the prior

πG0 (ug) = Π5
i=1π

[d−i ,d
+
i ]

0 (di)
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3.1.2. Permeability Prior We first discuss the case where the κi are constant. Under

the prior we assume that they are all independent and that each component κi is drawn

from a measure µi0 with Lebesgue density πi0, i = 1, · · · , n, defined by one of the following

three cases:

• Lognormal: log κi has the Gaussian distribution N(mi, σ
2
i ).

• Uniform: κi has the uniform distribution in [κi,−, κi,+], where κi,− > 0.

• Exponential: κi has the exponential distribution with parameter λi.

In the case of variable κi we will assume that each log κi is independent of the others

and is distributed according to a random field prior µi0 = N(mi, Ci) where the mean

and covariance are chosen so that µi0

(
C(D;R)

)
= 1; that is, so that draws from µi0 give

rise to continuous functions almost surely.

3.1.3. The Prior Combining the foregoing we obtain, in the case of piecewise constant

permeabilities, the following Lebesgue density of the prior for the Layer Model with

fault:

π0(u) = πA,g0 (a)πA,g0 (b)πC,g0 (c)
n∏
i=1

πi0(κi). (8)

This may be viewed as the Lebesgue density of a probability measure µ0 on U ; here U

is finite dimensional. In the piecewise function case we have a prior measure µ0 on the

infinite dimensional space U and it is given by

µ0(du) = πA,g0 (a)da⊗ πA,g0 (b)db⊗ πC,g0 (c)dc⊗
n∏
i=1

µi0(dαi), (9)

where αi = log κi. Thus in both cases we have constructed a measure µ0 in the measure

space B equipped with the Borel σ−algebra. Furthermore the measure is constructed

so that µ0(U) = 1. By similar arguments, we may construct the prior measure for the

Channelized Models with the same properties. We omit the details for brevity.

3.2. Likelihood

We assume the noise η in (6) is independent of u, and drawn from the Gaussian

distribution N(0,Γ) on Y , with Γ a self-adjoint positive matrix. Thus y|u ∼ N(G(u),Γ).

We define the model-data misfit function Φ(u; y) : U × Y → R by

Φ(u; y) =
1

2
|y − G(u)|2Γ, (10)

where | · |Γ = |Γ− 1
2 · |. The negative log likelihood is given, up to a constant independent

of (u, y), by Φ(u; y).
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3.3. Posterior Distribution

We now show that the posterior distribution is well-defined by applying the basic theory

in [39, 38]. Let Q0 be the Gaussian distribution N(0,Γ). Define ν0 as a probability

measure on U × Y by

ν0(du, dy) = µ0(du)⊗Q0(dy).

The following Proposition 3.1 is a infinite dimensional version of Bayes Theorem, which

implies the existence of a posterior distribution.

Proposition 3.1 (Bayes Theorem [38]). Assume that Φ : U × Y → is ν0 measurable

and that, for y Q0 -a.s.,

Z =

∫
U

exp(−Φ(u; y))µ0(du) > 0.

Then the conditional distribution of u|y exists and is denoted µy. Furthermore µy � µ0

and for y Q0 -a.s.,

dµy

dµ0

=
1

Z
exp (−Φ(u; y)) .

We establish this Bayes theorem for our specific problem to show the well-

definedness of the posterior distribution µy. The key ingredient is the continuity of

the forward and observation map G(u) (and hence Φ(·; y)) on a full µ0 measure set U ;

this may be used to establish the required measurability. We state two theorems, one

concerning the case of piecewise constant permeability and the other concerning the

case of variable permeability within each subdomain Di.

Theorem 3.2 (Piecewise Constant). Let Φ(u; y) be the model-data misfit function in

(10), µ0 be the prior distribution in (8), then the posterior distribution µy is well-defined.

Moreover, µy � µ0 with a Radon-Nikodym derivative

dµy

dµ0

=
1

Z
exp (−Φ(u; y)) , (11)

where

Z =

∫
U

exp(−Φ(u; y))µ0(du) > 0.

Proof. Since G(u) is continuous on U by Theorem 2.2, Φ(u; y) is continuous on U × Y .

We also have ν0(U × Y ) = µ0(U)Q0(Y ) = 1. Since Φ : U × Y → R is continuous it

is a measurable function (Borel) between the spaces U × Y and R equipped with their

respective Borel σ−algebras. Note that, by using (2), we have

|Φ(u; y)| = 1

2
|y − G(u)|2Γ ≤ |y|2Γ + |G(u)|2Γ ≤ |y|2Γ +

(
C

min{κi}

)2

.
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Thus, for sufficiently small † positive ε > 0,

Z =

∫
U

exp(−Φ(u; y))µ0(du) ≥
∫
∩i{κi>ε}

exp

(
−|y|2Γ −

(
C

ε

)2
)
µ0(du)

= exp

(
−|y|2Γ −

(
C

ε

)2
)
µ0(∩i{κi > ε}) = exp

(
−|y|2Γ −

(
C

ε

)2
)

Πn
i=1µ

i
0({κi > ε}) > 0.

Therefore, by Proposition 3.1 we obtain the desired result.

Remark 3.3. In the piecewise constant case u is in a finite dimensional space. Then

the posterior has a density πy with respect to Lebesgue measure and we can rewrite (11)

as

πy(u) =
1

Z
exp(−Φ(u; y))π0(u), (12)

which is exactly the usual Bayes rule.

Theorem 3.4 (Piecewise Continuous). Let Φ(u; y) be the model-data misfit function

in (10) and µ0 be the prior measure in (9), corresponding to Gaussian log κi in each

domain. Then the posterior distribution µy is well-defined. Moreover, µy � µ0 with a

Radon-Nikodym derivative

dµy

dµ0

=
1

Z
exp (−Φ(u; y)) , (13)

where

Z =

∫
U

exp(−Φ(u; y))µ0(du) > 0.

Proof. Recall that the measure given by (9) is constructed so that µ0(U) = 1. By the

same argument as in the proof of Theorem 3.2, we deduce that Φ(u; y) is ν0 measurable.

Again using (2), we have

|Φ(u; y)| ≤ |y|2Γ +

(
C

κmin

)2

,

where κmin = min
i,x

κi(x). Since κmin ≥ min
i

exp(−‖αi(x)‖∞), we have

1

κmin

≤ max
i

exp(‖αi(x)‖∞) (14)

Thus we have, using that Gaussian measure on a separable Banach space charges all

balls with positive measure,

Z =

∫
U

exp(−Φ(u; y))µ0(du) ≥
∫
U

exp
(
−|y|2Γ −

(
C

κmin

)2)
µ0(du)

≥
∫
∩i{‖αi‖L∞≤1}

exp
(
−|y|2Γ − C2 max

i
exp(2‖αi(x)‖∞)

)
µ0(du)

† This is needed only in the case of uniform priors; for exponential and log-normal any positive ε will

do.
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≥
∫
∩i{‖αi‖L∞≤1}

exp
(
−|y|2Γ − C2 exp(2)

)
µ0(du) = exp

(
−|y|2Γ − C2 exp(2)

)
µ0(∩i{‖αi‖L∞ ≤ 1})

= exp
(
−|y|2Γ − C2 exp(2)

)
Πn
i=1µ

i
0({‖αi‖L∞ ≤ 1}) > 0.

Thus we have the desired result.

3.4. Well-Posedness

Now we study the continuity property of the posterior measure µy with respect to y.

We recall definitions of the total variation metric dTV and Hellinger metric dHell on

measures, and then study Lipschitz and Hölder continuity of the posterior measure µy,

with respect to the data y, in these metrics.

Let µ and µ′ be two measures, and choose a common reference measure with respect

to which both are absolutely continuous (the average of the two measures for example).

Then the Hellinger distance is defined by

dHell(µ, µ
′) =

1

2

∫
U

(√
dµ

dν
−
√
dµ′

dν

)2

dν

 1
2

and the Total variation distance dTV is defined by

dTV (µ, µ′) =
1

2

∫
U

∣∣∣∣dµdν − dµ′

dν

∣∣∣∣ dν.
Furthermore, the Hellinger and total variation distance are related as follows:

1√
2
dTV (µ, µ′) ≤ dHell(µ, µ

′) ≤ dTV (µ, µ′)
1
2 . (15)

The Hellinger metric is stronger than total variation as, for square integrable functions,

the Hellinger metric defines the right order of magnitude of perturbations to expectations

caused by perturbation of the measure; the total variation metric does this only for

bounded functions. See, for example, [39], section 6.7.

The nature of the continuity result that we can prove depends, in general, on the

metric used and on the assumptions made about the prior model that we use for the

permeability κ. This is illustrated for piecewise constant priors in the following theorem.

Theorem 3.5 (Piecewise Constant). Assume that κ(x) is a piecewise constant

function correspond to parameter u ∈ U ⊂ B. Let µ0 be a prior distribution on u

satisfying µ0(U) = 1. The resulting posterior distribution µ(resp. µ′)� µ0 with Radon-

Nikodym derivative is given by (11), for each y(resp. y′) ∈ Y . Then, for each of the test

models we have:

(i) for lognormal and uniform priors on the permeabilities, then for every fixed r > 0,

there is a Ci = Ci(r), i = 1, 2, such that, for all y, y′ with max{|y|Γ, |y′|Γ} < r,

dTV (µ, µ′) ≤ C1 |y − y′|Γ ,
dHell(µ, µ

′) ≤ C2 |y − y′|Γ ;
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(ii) for exponential priors on the permeabilities, then for every fixed r > 0 and ι ∈ (0, 1)

there is Ki = Ki(r, ι) such that for all y, y′,with max{|y|Γ, |y′|Γ} < r,

dTV (µ, µ′) ≤ K1 |y − y′|ιΓ , (16)

dHell(µ, µ
′) ≤ K2 |y − y′|

ι
2
Γ . (17)

Remark 3.6. For (ii), we only need to prove (16), since (17) then follows from (15).

We can also deduce (17) directly by a similar argument as the proof of (16), but this does

not improve the Hölder exponent. Mathematically it would be possible to use uniform

priors on the permeabilities whose support extends to include the origin; in terms of

well-posedness this would result in a degradation of the Hölder exponent as we see in

Theorem 3.5(ii) for exponential priors.

Proof. First note that

|Φ(u; y)− Φ(u, y′)| =
∣∣∣∣12 |y − G(u)|2Γ −

1

2
|y′ − G(u)|2Γ

∣∣∣∣ =
1

2
|〈y − y′, y + y′ − 2G(u)〉Γ|

≤ (r + |G(u)|Γ) |y − y′|Γ. (18)

We denote the Lipschitz constant

M(r, u) := r + |G(u)|Γ.

Throughout the rest of this proof, the constant C may depend on r and changes from

occurrence to occurrence. Let Z and Z ′ denote the normalization constant for µy and

µy
′
, so that

Z =

∫
U

exp(−Φ(u; y))µ0(du) and Z ′ =

∫
U

exp(−Φ(u; y′))µ0(du).

By (2) Z has a positive lower bound as we now show:

Z ≥
∫
∩i{κi>ε}

exp

(
−|y|2Γ −

(
C

ε

)2
)
µ0(du) ≥ exp

(
−r2 −

(
C

ε

)2
)
µ0(∩i{κi > ε}) > 0,

when |y|Γ < r and ε > 0, which should be sufficiently small in the case of uniform prior.

We have an analogous lower bound for Z ′.

The proof of (i) is an application of Theorem 4.3 in [38]: if the prior measure for κ

is uniform distribution with κmin > 0, or a lognormal distribution, then M2(r, u) ∈ L1
µ0

,

which leads to Lipschitz continuity.

Proof of (ii): We just need to prove (16). If we substitute µ and µ′ into dTV (µ, µ′),

we have

dTV (µ, µ′) ≤ I1 + I2.

where

I1 =
1

2Z

∫
U

|exp (−Φ(u, y))− exp (−Φ(u, y′))| dµ0

I2 =
1

2
|Z−1 − (Z ′)−1|

∫
U

exp (−Φ(u, y′)) dµ0.
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Note that

|Z−1 − (Z ′)−1| = |Z − Z
′|

ZZ ′
≤ 1

ZZ ′

∫
U

|exp (−Φ(u, y))− exp (−Φ(u, y′))| dµ0 =
2

Z ′
I1.

Thus, by using the positive bound on Z ′ from below, we have

I2 ≤ CI1.

Therefore, we just need to estimate I1. For any ι ∈ (0, 1),

2ZI1 =

∫
U

|exp (−Φ(u, y))− exp (−Φ(u, y′))|µ0(du)

=

∫
{|Φ(u,y)−Φ(u,y′)|≤1}

| exp (−Φ(u, y))− exp (−Φ(u, y′)) |µ0(du)

+

∫
{|Φ(u,y)−Φ(u,y′)|>1}

| exp (−Φ(u, y))− exp (−Φ(u, y′)) |µ0(du)

≤
∫
{|Φ(u,y)−Φ(u,y′)|≤1}

|Φ(u, y)− Φ(u, y′)|ιµ0(du) + 2µ0 ({|Φ(u, y)− Φ(u, y′)| > 1}) .

By (32) and Lemma 7.2, we have

2ZI1 ≤
∫
U

M ι(r, u)dµ0 |y − y′|ιΓ + 2

∫
U

M ι(r, u)dµ0 |y − y′|ιΓ = 3

∫
U

M ι(r, u)dµ0 |y − y′|ιΓ.

By using the positive lower bound on Z, for any ι ∈ (0, 1), we have

I1 ≤ C1|y − y′|ιΓ

Thus

dTV (µ, µ′) ≤ I1 + I2 6 C1 |y − y′|ιΓ + C2 |y − y′|ιΓ 6 K1(r) |y − y′|ιΓ
therefore, we obtain

dTV (µ, µ′) ≤ K1 |y − y′|ιΓ , 0 < ι < 1,

which completes the proof.

As for the piecewise function case, we have a similar well-posedness result, which

shows Lipschitz continuity with respect to data.

Theorem 3.7 (Piecewise Continuous). Assume that κ(x) is a piecewise continuous

function corresponding to parameter u ∈ U ⊂ B and that the prior µ0 is Gaussian

on the variable log κi and satisfies µ0(U) = 1. The resulting posterior distribution is

µ(resp. µ′)� µ0 with Radon-Nikodym derivative given by (13), for each y(resp. y′) ∈ Y .

Then, for each of the test models we have that for every fixed r > 0, there is a

Ci = Ci(r), i = 1, 2, such that, for all y, y′ with max{|y|Γ, |y′|Γ} < r,

dTV (µ, µ′) ≤ C1 |y − y′|Γ , dHell(µ, µ
′) ≤ C2 |y − y′|Γ .
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Proof. We just need to prove the Hellinger distance case as the TV distance case then

follows from (15). The remainder of the proof is an application of the methods used

Theorem 4.3 in [38] with M1 = 0 and

M2 = r + C max
i

exp(‖αi(x)‖∞),

after noting that the normalization constant Z > 0. By (14), we obtain∫
U

M2
2dµ0 ≤ 2r2µ0(U) + 2C2

∫
U

max
i

exp(2‖αi(x)‖∞)dµ0

≤ 2r2µ0(U) + 2C2

n∑
i=1

∫
U

exp(2‖αi(x)‖∞)dµ0

Since for any ε > 0, there exist a C(ε) that exp(x) ≤ C(ε) exp(εx2) we obtain that for

each i, ∫
U

exp(2‖αi(x)‖∞)dµ0 ≤ C(ε)

∫
U

exp(ε‖αi(x)‖2
∞)dµ0.

From the Fernique Theorem we deduce that, as long as ε is small enough,∫
U

M2(r, u)dµ0 <∞.

4. MCMC Algorithm

We have demonstrated the existence and well-posedness of the posterior distribution,

which is the Bayesian solution to the inverse problem (6). We now demonstrate

numerical methods to extract information from this posterior distribution; one way

to do this, which we focus on in this paper, is to generate samples distributed according

to the posterior distribution. These can be used to approximate expectations with

respect to the posterior and hence to make predictions about, and quantify uncertainty

in, the permeability. In this section we construct a class of MCMC methods to generate

such samples, using a Gibbs splitting to separate geometric and physical parameters,

and using Metropolis (within Gibbs) proposals which exploit the structure of the prior.

We thereby generate samples from the posterior given by (11) or (13) in Theorems 3.2

and 3.4, respectively. The resulting accept-reject parts of the algorithm depend only on

differences in the log-likelihood at the current and proposed states, or alternatively on

differences of the misfit function Φ given by (10). Similar methods have been identified

as beneficial for Gaussian priors in [35, 8] for example and here we extend to the non-

Gaussian prior measure on the permeability values (uniform distribution and exponential

distribution) and on the geometry.



Well-Posed Bayesian Geometric Inverse Problems Arising in Subsurface Flow 19

4.1. Prior Reversible Proposals

We start by demonstrating how prior reversible proposals lead to a simple accept-reject

mechanism, depending only on differences in the model-data misfit function, within

the context of the Metropolis-Hasting algorithm applied to Bayesian inverse problems.

When the target distribution has density π defined on Rd this algorithm proceeds by

proposing to move from current state u to proposed state v, drawn from Markov kernel

q(u, v), and accepting the move with probability

a(u, v) =
π(v)q(v, u)

π(u)q(u, v)
∧ 1. (19)

Crucial to this algorithm is the design of the proposal q(u, v); algorithm efficiency will

increase if we use a proposal which leads to low integrated correlation in the resulting

Markov chain.

When we have piecewise constant permeabilities then the posterior density πy is

given by (12) with Φ defined in (10). If we chose a prior-reversible proposal density

which then satisfies

π0(u)q(u, v) = π0(v)q(v, u) u, v ∈ Rd. (20)

then the acceptance probability from (19) becomes

a(u, v) =
πy(v)q(v, u)

πy(u)q(u, v)
∧ 1 =

π0(v) exp(−Φ(v; y))q(v, u)

π0(u) exp(−Φ(u; y))q(u, v)
∧ 1

so that

a(u, v) = exp(Φ(u; y)− Φ(v; y)) ∧ 1. (21)

Thus, if the proposed state v corresponds to a lower value of the model-data misfit

function Φ(v; y) than the current state Φ(u; y), it will accept the proposal definitely,

otherwise it will accept with probability a(u, v) < 1. Hence, the accept-reject expressions

depend purely on the model-data mismatch function Φ(u; y), having clear physical

interpretation.

4.2. Prior Reversible Proposal on Rd

We now construct prior reversible proposals for the finite dimensional case when the

permeability is piecewise constant. In this case uκ lives in a subset U of Rn where n is

the number of parameters to be determined. The prior distribution π0 constrains the

parameters to the admissible set U , that is π0(x) = 0 if x /∈ U . Given current state v

we then construct a prior reversible proposal kernel q as follows: we let

v =

{
w w ∈ U
u w /∈ U

, (22)

where w is drawn from kernel p(u,w) that satisfies

π0(u)p(u,w) = π0(w)p(w, u) ∀u,w ∈ U. (23)
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Note that the previous expression is constrained to U , rather than Rd as in (20). Note,

however, that we have not assumed that p(u, v) is a Markov kernel on U × U ; it may

generate draws outside U . Therefore, in (22) we just simply accept or reject the proposal

w based on whether w is in U or not. The reversibility with respect to the prior of the

proposal q(u, v) given by (22) follows from:

Proposition 4.1. Consider the Markov kernel q(u, v) on U × U defined via (22)-(23).

Then

π0(u)q(u, v) = π0(v)q(v, u) ∀u, v ∈ U.

Proof. See Appendix.

For a uniform prior π0(u), p(u,w) may be any symmetric function that satisfies

p(u,w) = p(w, u). For example, we can use a Gaussian local move such that p(u,w) ∝
exp

(
− 1

2ε2
|w − u|2

)
or we can also propose w by a local move drawn uniformly from an

ε ball around u. An analogous discussion also applies when the geometric parameter is

uniform (as before) but the permeability values are exponential. For the exponential

permeability prior exp(λ), with support [0,∞), we may choose w = u − λδ +
√

2δξ

with ξ ∼ N (0, 1). For all these examples, it is easy to check that the proposal density

p(u,w) satisfies (23). Therefore, by Proposition 4.1 we obtain that the proposal (22)

is reversible with respect to the prior. Thus, the acceptance probability that results is

given by (21).

4.3. Prior Reversible Proposal on C(D;Rn)

For the case of continuous permeabilities, we recall that uκ,i = log κi has prior Gaussian

measure µκ0(duκ) = N (m,C) with covariance and mean chosen so that it charges the

space C(D;Rn) with full measure. In this case a prior reversible proposal is given by

vκ = m+
√

1− β2(uκ −m) + βξ, ξ ∼ N (0, C), β ∈ [0, 1].

This is the pCN-MCMC method introduced in [1] (see the overview in [8]) and the

acceptance probability is again given by (21) in this infinite dimensional context.

4.4. Metropolis-within-Gibbs: Separating Geometric and Physical Parameters

In practice the geometric and physical parameters have very different effects on the

model-data misfit and efficiency can be improved by changing them separately. Using

the independence between the geometric parameter ug and the physical parameters

(permeabilities) uκ this can be obtained by employing the following Metropolis-within-

Gibbs algorithm.

Algorithm 4.2 (Metropolis-within-Gibbs).

Initialize u(0) = (u
(0)
κ , u

(0)
g ) ∈ U .

For k = 0, . . .
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(1) Propose vg from qg(u
(k)
g , vg)

(1.1) Draw w ∈ Rd from pg(u
(k)
g , w).

(1.2) Let vg ∈ Ug defined by

vg =

{
w w ∈ U
u

(k)
g w /∈ U

.

(2) Accept or reject v = (u
(k)
κ , vg):

(u(k)
κ , u(k+1)

g ) =

{
v with probability a(u(k), v)

u(k) otherwise
.

where u(k) ≡ (u
(k)
κ , u

(k)
g ) and with a(u, v) defined by (21).

(3) Propose vκ from qκ(u
(k)
κ , vκ):

In the constant permeabilities case, propose vκ from qκ(u
(k)
κ , vκ) as follows

(3.1) Draw w ∈ Rd from pκ(u
(k)
κ , w).

(3.2) Let vκ ∈ Uκ defined by

vκ =

{
w w ∈ Uκ
u

(k)
κ w /∈ Uκ

.

In the continuous permeabilities case we propose vκ according to

vκ = m+
√

1− β2(u(k)
κ −m) + βξ, ξ ∼ N (0, C), β ∈ [0, 1],

(4) Accept or reject v = (vκ, u
(k+1)
g ):

(u(k+1)
κ , u(k+1)

g ) =

{
v with probability a(û(k), v)

û(k) otherwise
.

where û(k) ≡ (u
(k)
κ , u

(k+1)
g ) and with a(u, v) defined by (21).

Furthermore, in the experiments which follow we sometimes find it advantageous

to split the geometric parameters into different groupings, and apply the Metropolis-

within-Gibbs idea to these separate groupings; again the independence of the parameters

under the prior allows this to be done in a straightforward fashion, generalizing the

preceding Algorithm 4.2. In particular, by using the independence of the geometric

parameters under the prior, together with prior-reversibility of the proposals used, it

again follows that the accept-reject criterion for each Metropolis-within-Gibbs step is

given by (21). In addition, we generate multiple parallel MCMC chains to sample

the posterior in the subsequent experiments. For some of those chains we often find

that a low probability mode is explored for a very large number of iterations. In

order to accelerate the convergence of these chains, within the Metropolis step of the

aforementioned algorithm, we implement proposals where the local moves described

earlier are replaced, with probability 1/2, by independent samples from the prior.
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5. Numerical Experiments

We present some numerical examples to demonstrate the feasibility of our methodology.

Specifically, the performance is illustrated by application to three examples derived from

our Test Models of Section 2. For these examples, the forward model consists of the

elliptic equation on a domain D = [0, 1] × [0, 1] discretized with the finite difference

method on a mesh of size 50 × 50. In addition, J measurement functionals `j(p) are

defined by

`j(p) =
1

2πσ2

∫
D

exp

(
−|x− xj|

2

2σ2

)
p(x)dx, j ∈ {1, · · · , J} (24)

which can be understood as a smooth approximation of pressure evaluations at certain

locations xj’s in the domain D. This is because the kernel under the integrand

approaches a Dirac measure at xj as σ → 0. Note that `j ∈ V ∗, the dual space of V ,

as required for the analysis of Section 2. In all of the numerical experiments reported σ

takes the value 0.01.

For the subsequent experiments we generate synthetic data by first computing p†,

the solution to the elliptic equation with a “true” permeability κ†(x) associated to

the true parameters u†. Then, synthetic data is defined by yj = `j(p
†) + ηj, where

ηj are i.i.d. Gaussian noise from N (0, γ2). Our choices of u† and γ are described

below. In order to avoid the inverse crime, the synthetic data is computed from the

true permeability defined on a domain discretized on 100× 100 cells while the Bayesian

inversions are performed on a 50× 50 grid. It is important to remark that the effect of

the observational noise, at the scale we introduce it, is sufficient to induce significant

inversion challenges even in this perfect model scenario. Furthermore, if model error is

to be studied, it is perhaps more pertinent to study the effect of modelling the geometry

through a small finite set of parameters, when real interfaces and faults will have more

nuanced structures, or the effect of modelling spatially varying fields as constants. We

leave the detailed study of these and other grid-based model errors for separate study.

5.1. Example. A Three-layer Model With Fault

For this experiment we consider a permeability of the form

κ(x) = κ1χD1(x) + κ2χD2(x) + κ3χD3(x) (25)

where {Di}3
i=1 are the open subsets defined by the geometric parameters a = (a1, a2),

b = (b1, b2) and c as in Figure 2(a). Therefore, the unknown parameter is u =

(a1, a2, b1, b2, c, κ1, κ2, κ3) ∈ R8. We consider the true κ†(x) shown in Figure 3 (top-

left) which corresponds to (25) for the true values u† of Table 1. We consider 16

measurement functionals defined by (24) with measurement locations distributed as

shown in Figure 3 (top-right). Synthetic data (data set 1) is generated as described

above with γ = 2× 10−3.

According to subsection 3.1, the prior distribution for this parameter is defined by

π0(u) = πA,g0 (a)πA,g0 (b)πC,g0 (c)π1
0(κ1)π2

0(κ2)π3
0(κ3)
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parameter true value data set 1 data set 1 data set 2 data set 2

mean variance mean variance

a1 0.39 0.386 3.4× 10−3 0.394 2× 10−4

b1 0.18 0.174 4.6× 10−3 0.177 7× 10−4

a2 0.35 0.486 6.9× 10−3 0.400 6× 10−4

b2 0.6 0.618 8.9× 10−3 0.637 3.5× 10−3

c 0.15 0.239 1.04× 10−2 0.192 1.2× 10−3

κ1 12 11.718 1.796 11.337 1.0128

κ2 1 1.228 4.57× 10−2 1.177 9.5× 10−3

κ3 5 5.148 6.65× 10−1 4.55 1.378× 10−1

Table 1. Data relevant to the experiment with the 3-layers model

where each of the πi0(κi) and πC,g0 (c) is a uniform distribution on a specified interval. The

uniform prior associated to the geometrical parameters a and b is defined with support

everywhere on the edges of the squared domain. However, specific restricted intervals

are specified for the construction of the uniform priors corresponding to the values of the

permeabilities and, in particular, we choose intervals which do not include the origin.

The reason for selecting these restrictive priors for the values of the permeabilities

is motivated by the subsurface flow application where prior knowledge of a range of

nominal values of permeabilities for each rock-type are typically available from geologic

data. The densities πA,G0 (a) and πA,G0 (b) are defined according to expression (7) where

A = {x ∈ R|x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}. In the top row of Figure 4 we display

some permeabilities defined by (25) for parameters u drawn from the prior distribution

defined by the previous expression.

The forward model, the prior distribution and the synthetic data described above

define the posterior measure given by (11), Theorem 3.2, that we sample with a variant

of the MCMC method of Algorithm 4.2. In concrete, we implement the outer Gibbs

loop by considering groupings of the unknown u = (a1, a2, b1, b2, c, κ1, κ2, κ3) as follows:

(i) the high permeabilities κ1 and κ3, (ii) the low permeability κ2, (iii) the slip c, (iv)

the right-hand lengths a = (a1, a2) and (v) the left-hand lengths b = (b1, b2). This

separation of the unknown results in short decorrelation times compared to the ones

when more variables of the unknown are updated simultaneously within the Metropolis

part of Algorithm 4.2. We consider 20 different chains started with random draws from

the prior. Trace plots from the first 105 steps of one of the chains is presented in

Figure 5, together with the running mean and standard deviations. We monitor the

convergence of the multiple chains with the multivariate potential scale reduction factor

(MPSRF) [2]. Once approximate convergence has been reached, all chains are merged

and the samples from the combined chains are used for the subsequent results. In the

middle row of Figure 4 we show permeabilities (defined by (25)) for some samples u

of the posterior distribution. In Table 1 we display the values of the mean û and the

variance of the posterior measure characterized with a total of 1.5 × 107 samples from
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our MCMC chains. The permeability that results from (25) for the mean parameter û

of the posterior is presented in Figure 3 (bottom-left).

We now repeat this experiment with a different set of synthetic data (data set 2)

generated as before but with a smaller error with standard deviation γ = 5 × 10−4.

This set of synthetic data defines a new posterior measure that we characterize with

the MCMC Algorithm 4.2 used for the previous experiments (using exactly the same

parameters in the proposal generators). The corresponding values of u are also displayed

in Table 1 and the resulting permeability is displayed in Figure 3 (bottom-right). Some

permeabilities associated to the samples of the posterior are presented in Figure 4

(bottom row ). For both experiments, the marginals of the posterior distribution are

displayed in Figure 6 along with the marginals of the prior. The marginals of the

posterior pushed forward by the forward operator are displayed in Figure 7. In Figure

8 we display the integrated autocorrelation for each of the components of the unknown

for both posterior that arise from the data set 1 (top) and the data set 2 (bottom).

From Table 1 we observe that, for both experiments, the mean of the parameters

are in very good agreement with the truth. In fact, the corresponding permeabilities

from Figures 3 produce very similar results. However, it comes as no surprise that

more accurate synthetic data (data set 2) result in a posterior density that is more

peaked around the truth ( see Figure 6). In other words, the posterior associated with

smaller error variance quantifies less uncertainty in the unknown parameters. While

both estimates provide a good approximation of the truth, the associated uncertainties

are substantially different from one another. Indeed, from Figure 4 we observe a larger

variability in the samples of the posterior that we obtain from the data set 1.

From Figure 8 we note that the correlation of the samples is larger for observational

error with smaller covariance. Indeed, during the MCMC algorithm for sampling of the

posterior, the local move in the proposal is more likely to be rejected for smaller values

of γ (recall we are using the same MCMC algorithm for both experiments).
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Figure 3. Permeabilities for the 3-layers fault model. Top-left: truth. Top-right:

measurement locations. Bottom-left: mean (from less accurate data). Bottom-right:

mean (from more accurate data).

Figure 4. Permeabilities defined by (25) from samples of the prior (top row), posterior

with less accurate measurements (middle row) and posterior with more accurate

measurements (bottom-row)
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Figure 5. Trace plot from one MCMC chain (data set 1). Top: three geometric

parameters. Bottom: permeability values
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Figure 6. Prior and posterior densities of the unknown u. Vertical line indicates the

true value of u.
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Figure 7. Posterior densities of the data predictions G(u). Vertical lines indicate

the nominal value of synthetic observations: dotted black (less accurate), green (more

accurate)



Well-Posed Bayesian Geometric Inverse Problems Arising in Subsurface Flow 28

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

lag

in
te

g
ra

te
d

 a
u

to
c
o
rr

e
la

ti
o

n

 

 

a
1

b
1

a
2

b
2

slip

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

lag

in
te

g
ra

te
d

 a
u

to
c
o
rr

e
la

ti
o

n

 

 

κ
1

κ
2

κ
3

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

lag

in
te

g
ra

te
d
 a

u
to

c
o
rr

e
la

ti
o

n

 

 

a
1

b
1

a
2

b
2

slip

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

lag

in
te

g
ra

te
d
 a

u
to

c
o
rr

e
la

ti
o

n

 

 

κ
1

κ
2

κ
3

Figure 8. Autocorrelation from one MCMC chain. Top: data 1. Bottom: data 2.

Left: geometric parameters. Right: permeability values.
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5.2. Example. Two-layer Model With Spatially-varying Permeabilities

This is an infinite-dimensional example where the permeability is described by

κ(x) = κ1(x)χD1(x) + κ2(x)χD2(x) (26)

where D1 and D2 are the subsets defined by a and b as shown in Figure 1(c). For this

case we consider the case that c = 0 is a known parameter. The unknown parameter in

this case is u = (a, b, log κ1, log κ2) ∈ [0, 1]2 × C(D;R2).

We consider a prior measure of the form

µ0(du) = πA,g0 (a)da πA,g0 (b)db δ(c)⊗N(m1, C1)N(m2, C2) (27)

where δ is the Dirac distribution (c = 0 is known) and where A = [0, 1] and C1 and C2 are

covariance operators defined from correlation functions typical in geostatistics [37]. In

concrete the correlation functions of C1 (resp. C2) is spherical (resp. exponential) and its

maximum correlation is along π/4 (resp. 3π/4) [37]. It is convenient, both conceptually

and computationally, to parameterize the log permeabilities via their Karhunen-Loeve

(KL) expansions of the form

log(κi(x)) = mi +
∞∑
j=1

√
λj,ivj,i(x)ξj,i (28)

where λj,i and vj,i(x) are the eigenvalues and eigenfunctions of Ci and ξj,i ∈ R. We

assume that in the previous expression {λj,i}∞j=1 are ordered as λ1,i ≥ λ2,i ≥ · · ·.
Under this representation, ξj,i ∼ N(0, 1) produces log κi ∼ N(mi, Ci). Thus, the KL

representation enables us to sample from the prior distribution and therefore generate

proposals in Algorithm 4.2. For the numerical implementation of the Bayesian inversion,

we consider expression (28) truncated to N = 502 terms corresponding to all the

eigenvectors of the discretized (on a 50× 50 grid) covariance Ci. However we emphasize

that the approach we adopt corresponds to a well-defined limiting Bayesian inverse

problem in which the series is not truncated and the PDE is solved exactly. The

theory of paper [6] may be used to quantify the error arising from the truncation of the

KL expansion and the approximation of the solution of the PDE; this gives a distinct

advantage to the “apply then discretize” approach advocated here since all sufficiently

resolved computations are approximating the same limiting problem. In Figure 9 (top

row) we show log-permeabilities computed with (26) with parameter u sampled from

the prior (27). There is substantial variability in these samples.

The true log-permeability log κ†, shown in Figure 10 (top-left), is obtained from

(26) with log κ†1 displayed in Figure 11 (top-left) log κ†2 shown in Figure 11 bottom-left

and from a† = 0.11 and b† = 0.86. The functions log κ†1 and log κ†2 are draws from

the Gaussian measures N(m1, C1) and N(m2, C2) that we use to define the prior (26).

However, in order to avoid the inverse crime, these priors that we use to generate log κ†1
and log κ†2 (and so u†) are defined on a discretized domain (of 100 × 100 grids) that is

finer than the one used for the inversion. Synthetic data (data set 1) is generated by

using the true permeability in the elliptic PDE and applying the measurement functional
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with 9 measurement locations as displayed in Figure 10 (bottom-left). Gaussian noise

of standard deviation γ = 1.0 × 10−3 is added to the observations. For this case, we

sample the posterior with the MCMC Algorithm 4.2 using the following splitting of the

unknown u = (a, b, log κ1, log κ2) for the outer Gibbs loop: (i) log κ1, (ii) log κ2 and

(iii) (a, b). Similar to the previous experiment, splitting the unknown yields the best

performance in terms of decorrelation times. As before, 20 parallel chains were generated

and the MPSRF was computed for assessing the convergence of the independent chains.

Trace plots from one of these chains are presented in Figure 12. The samples from all

chains were combined to produce the mean and variance of the unknown. The mean

and variance of log κ1 and log κ2 are shown in Figure 11 (second column) and Figure

13, respectively (first column). The mean for the geometric parameters are â = 0.198

and b̂ = 0.639. The corresponding variances are σa = 1.03× 10−2 and σb = 9.5× 10−3,

respectively. The permeability (26) corresponding to the mean û is displayed in Figure

10 (top-middle).

We repeat this experiment with a synthetic data (data set 2) that we now generate

from a configuration of 36 measurement locations as specified in Figure 10 (bottom-

right). Mean and variance of log κ1 and log κ2 are displayed in Figure 11 (third column)

and Figure 13 (second column), respectively. The mean and variances for the geometric

parameters are â = 0.088 and b̂ = 0.822 and σa = 8 × 10−4 and σb = 7 × 10−4,

respectively. The permeability (26) corresponding to the mean û is displayed in Figure

10 (top-right).

For both experiments, Figure 14 shows the autocorrelation of the geometric

parameters as well as the KL-coefficients ξ1,i and ξ10,i from (28). In Figure 15 we present

the posterior and the prior densities for geometric parameters and the aforementioned

KL coefficients. From this figure we note that for some of the components of the

unknown (e.g. a, b, ξ1,2), the corresponding posterior density tends to be more

peaked around the truth when more measurements are assimilated. Some less sensitive

parameters seemed to be unaffected when more measurements are included. In

particular, we see that the densities for the coefficients of smaller eigenvalues (e.g.

ξ9,2, ξ10,2) for the permeability in D2 is almost identical to the prior; indicating the

uninformative effect of the data.
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Figure 9. log κ’s defined by (26) from samples of the prior (top row), posterior with

fewer measurements (middle row) and posterior with more measurements (bottom-row)
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Figure 10. Top, from left to right: truth, mean (fewer measurements), mean (more

measurements) of log κ. Bottom: measurement locations for data with less (left) and

more (right) measurements.
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Figure 11. Top: log κ1. Bottom: log κ2. From left to right: truth, mean (fewer

measurements), mean (more measurements).
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Figure 12. Trace plot from one MCMC chain (data 1). Top: geometric parameters.

Bottom: Some KL modes of log κ1 and log κ2
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Figure 13. Top to bottom: fewer measurements to more measurements. Left to right:

variance of log κ1, Right: variance log κ2.

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

lag

in
te

g
ra

te
d
 a

u
to

c
o

rr
e
la

ti
o
n

 

 

a

b

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

lag

in
te

g
ra

te
d
 a

u
to

c
o

rr
e
la

ti
o
n

 

 

xi
1,1

xi
10,1

xi
1,2

xi
10,2

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

lag

in
te

g
ra

te
d
 a

u
to

c
o
rr

e
la

ti
o
n

 

 

a

b

0 2000 4000 6000 8000 10000

0

0.2

0.4

0.6

0.8

1

lag

in
te

g
ra

te
d
 a

u
to

c
o
rr

e
la

ti
o
n

 

 

xi
1,1

xi
10,1

xi
1,2

xi
10,2

Figure 14. Autocorrelation from one MCMC chain. Top: data 1. Bottom: data 2.

Left: geometric parameters. Right: Some KL model of log κ1 and log κ2
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Figure 15. Prior and posterior densities of the unknown u
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5.3. Channelized Permeability

In this experiment we consider channelized permeabilities of the form (26) where D1

and D2 are the domains corresponding to the interior and exterior of the channel,

respectively. These domains are parametrized with five parameters as shown in Figure

2(b). Two fields for log κi are considered as in the previous experiments. The unknown

parameter in this case is u = (d1, . . . , d5, log κ1, log κ2) ∈ R5 ×C(D;R2). We consider a

prior distribution of the form

µ0(du) = Π5
i=1π

Bi,g
0 (di)⊗N(m1, C1)N(m2, C2) (29)

where the set Bi in the definition of πBi,g0 (·) (for each parameter) is a specified interval

in R, and C1 and C2 are covariance operators as in the previous experiment.

The true log-permeability log κ†, shown in Figure 16 (left), is obtained from (26)

with log κ†1 displayed in Figure 17 (top-left) log κ†2 shown in Figure 17 (bottom-left)

and from the geometric parameters specified in Table 2. The true fields log κ†i are

generated as described in the preceding subsection. We consider the measurement

configuration displayed in Figure 16 (right) and generate synthetic data as before.

For the present example, the measurements are corrupted with noise with standard

deviation of γ = 2.5 × 10−4. Algorithm 4.2 is applied to characterize the posterior

distribution with 20 parallel chains that passed Gelman-Rubin MPSRF diagnostic [2].

For this experiment, we use an outer Gibbs loop in which we update each of the

geometric parameters independently; then, both log-permeabilities field are updated

simultaneously. Combined samples from all chains are used to compute the mean and

variance of the unknown. Trace plots can be found in Figure 18. In Figure 19 we

show log-permeabilities with parameter u sampled from the prior (29) (top row) and

the posterior (bottom row) respectively. In Figure 17 we show the posterior mean and

variance for the fields log κ1 (second column) and log κ2 (third column), respectively.

The mean and variance for the geometric parameters are reported in Table 2. The

permeability (26) corresponding to the mean û is displayed in Figure 16 (middle). The

autocorrelation of the geometric parameters and KL-coefficients ξ1,i and ξ10,i are shown

in Figure 20. For these variables, in Figure 21 we display the posterior and the prior

densities. Similar to our previous experiments, we observe that the log-permeability

obtained with the mean parameters resembles the truth. However, the uncertainty in

the problem is reflected in the variability in the possible inverse estimates of the log-

permeability.
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parameter true value mean variance

(amplitude) 0.2 0.225 1.3× 10−3

(frecuency) 11 11.161 1.12× 10−1

(angle) 0.39 0.363 5.3× 10−3

(initial point) 0.4 0.388 1.2× 10−3

(width) 0.3 0.262 1.6× 10−3

Table 2. Data relevant to the experiment with the channelized permeability.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

x

 

y

−1

0

1

2

3

4

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50

x

y

 

 

−1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

x

y

Figure 16. Left: true log κ. Middle: mean log κ. Right: Measurement configuration.
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Figure 17. From left to right: truth, mean and variance of log κ1 (top) and log κ2
(bottom)
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Figure 18. Trace plots from one MCMC chain.

Figure 19. log κ’s defined by (26) (for the channelized geometry) from samples of the

prior (top row) and the posterior(bottom-row)
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Figure 20. Autocorrelation from one MCMC chain. Left: geometric parameters.

Right: Some KL model of log κ1 and log κ2
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Figure 21. Prior and posterior densities of the unknown u
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6. Conclusion

The Bayesian framework provides a rigorous quantification of the uncertainty in the

solution to the inverse problem of estimating rock properties given data from the

subsurface flow. A key aspect of the proposed Bayesian approach is to incorporate

prior knowledge that honors geometric features relevant to the characterization of

complex geologic properties of the subsurface. Although other authors have considered

geometrically defined priors, see for example [14, 34, 31, 4, 41], this is the first paper to

give a rigorous function-space based Bayesian formulation for such problems [39]. Such

formulations lead to the development of improved algorithms and allow for rigorous

estimation of the various approximation errors that necessarily enter into the Bayesian

approximation of inverse problems. In the present work we establish the existence and

well-posedness of the Bayesian posterior that arises from determination of permeability

within a Darcy flow model, define function-space MCMC methods, which therefore have

convergence rates independent of the level of mesh-refinement used, and demonstrate

the efficacy of these methods on a variety of test problems exhibiting faults, channels and

spatial variability within different parts of the rock formations. Particular highlights of

the work include: (i) the introduction of a novel Metropolis-within-Gibbs methodology

which separates the effect of parameters describing the geometry from those describing

spatial variability to accelerate convergence and does not require adjoint solves, only

forward model runs; (ii) demonstration of choices of prior on the permeability values

which lead to Hölder, but not Lipshitz, continuity of the posterior distribution with

respect to perturbations in the data.

Our results indicate that the mean of the posterior often produce parameters whose

permeabilities resemble the truth. However, substantial uncertainty in the inverse

problem arises from the observational noise and the lack of observations. Increasing the

accuracy in the data or increasing the measurement locations resulted in a significant

decrease in the uncertainty in the inverse problem. In other words, we obtained

posterior densities concentrated around the truth. In contrast to deterministic inverse

problems where a variational optimization method is implemented to recover the

truth, the proposed application of the Bayesian framework provides a derivative free

method that produces a reasonable estimate of the truth alongside with an accurate

estimate of its uncertainty. The present study indicates that the Bayesian framework

herein, and resulting algorithmic approaches, have the potential to be applied to more

complex flow models and geometries arising in subsurface applications where uncertainty

quantification is required.

There are a number of natural directions in which this work might be extended. As

mentioned earlier in the text, the study of model error is potentially quite fruitful: there

is substantial gain in computational expediency stemming from imposing simple models

of the geometry; determining how this is balanced by loss of accuracy when the actual

data contains more subtle geometric effects, not captured our models, is of interest. It

is also of interest to consider implementation of reversible jump type algorithms [18],
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in cases where the number of geometric parameters (e.g. the number of layers) is not

known. And finally it will be of interest to construct rigorous Bayesian formulation of

geometric inverse problems where the interfaces are functions, and require an infinite set

of parameters to define them. We also highlight the fact that although we emphasize

the importance of MCMC methods which are mesh-independent this does not mean

that we have identified the definitive version of such methods; indeed it would be very

interesting to combine our mesh-independent approach with other state-of-the art ideas

in MCMC sampling such as adaptivity and delayed acceptance, which are used in the

context of geophysical applications in [9], and Riemannian manifold methods [17], which

also give rise to a natural adaptivity.

7. Appendix

Proof of Theorem 2.2. Since L comprises a finite number of linear functionals it suffices

to prove continuity of the solution p to (1) with respect to changes in the parameters u

which define κ. Assuming p (resp. pε) is the solution of (1) with f ∈ V ∗ and diffusion

coefficient κ ∈ X (resp. κε ∈ X) we first show that

‖pε − p‖V ≤
1

κεmin

(∫
D

|κε − κ|2|∇p|2dx
) 1

2

. (30)

Define e = pε− p, d = κε− κ. Then by (1) we have that e ∈ H1
0 (D), d ∈ L∞(D) satisfy

−∇ · (κε∇e) = ∇ · (d∇p), x ∈ D
e = 0, x ∈ ∂D.

Integration by parts gives∫
D

κε∇e · ∇edx = −
∫
D

d∇p · ∇edx.

Hence,

κεmin‖e‖2
V ≤

∫
D

|d∇p · ∇e|dx ≤
∫
D

|d||∇p||∇e|dx ≤
(∫

D

d2|∇p|2dx
) 1

2

‖e‖V ,

therefore (30) holds. Now, by (4) we have

κε − κ =
n∑
i=1

n∑
j=1

(κεj(x)− κi(x))χDεj∩Di(x). (31)

Substituting (31) into (30), we obtain that

‖pε − p‖V ≤ 1

κεmin

(
n∑
i=1

n∑
j=1

∫
Dεj∩Di

|κεj(x)− κi(x)|2|∇p|2dx

) 1
2

≤ 1

κεmin

( n∑
i=1

‖κεi − κi‖2
X

∫
Dεi∩Di

|∇p|2dx+
∑
i 6=j

‖κεj − κi‖2
X

∫
Dεj∩Di

|∇p|2dx
) 1

2
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≤ 1

κεmin

( n∑
i=1

‖κεi − κi‖2
X

∫
Dεi∩Di

|∇p|2dx+
∑
i 6=j

2(‖κεj‖2
X + ‖κi‖2

X)

∫
Dεj∩Di

|∇p|2dx
) 1

2
.

The first term on the right hand side goes to zero as ε→ 0 because p ∈ V and small

changes in u ∈ U ⊂ B, measured with respect to the norm ‖ · ‖B, lead to small changes

in the κi in X for both the constant and continuous function models. Since Hypothesis

2.1 holds for all these geometric models of the domains Di, and because p ∈ V , the

dominated convergence theorem shows that∫
Dεj∩Di

|∇p|2dx =

∫
D

χDεj∩Di |∇p|
2dx→ 0

as ε → 0. Thus the second term goes to zero since κi and κεj are bounded on bounded

subsets of X.

Lemma 7.1. Assume that κ(x) is a piecewise constant function corresponding to

parameter u ∈ U ⊂ B. Let Φ(u; y) be the model-data misfit function in (10) and

assume that y, y′ ∈ Y with max{|y|Γ, |y′|Γ} < r. If the prior µ0 on u is constructed

from the exponential distribution on the values of the κi, then for any ι ∈ (0, 1),∫
U
M ι(r, u)dµ0 <∞, and∫

U

|Φ(u; y)− Φ(u, y′)|ιdµ0 ≤ C |y − y′|ιΓ, (32)

where C =
∫
U
M ι(r, u)dµ0.

Proof. By the Lax-Milgram Theorem, we have

|G(u)|Γ ≤
C

mini{κi}
= C max

i
{κ−1

i },

which yields∫
U

M ι(r, u)dµ0 ≤
∫
U

(
r + C max

i
{κ−1

i }
)ι
dµ0

=

∫
{r>Cmaxi{κ−1

i }}

(
r + C max

i
{κ−1

i }
)ι
dµ0 +

∫
{r≤C maxi{κ−1

i }}

(
r + C max

i
{κ−1

i }
)ι
dµ0

≤ (2r)ιµ0

(
{r > C max

i
{κ−1

i }}
)

+ (2C)ι
∫
U

max
i
{κ−ιi }dµ0 <∞.

The second term of the right hand side is finite, since when ι ∈ (0, 1),∫
U

max
i
{κ−ιi }dµ0 ≤

∫
U

n∑
i=1

1

κιi
dµ0 =

n∑
i=1

∫ +∞

0

λi
1

κιi
exp(−λiκi)dκi

≤
n∑
i=1

λi

(∫ 1

0

1

κιi
dκi +

∫ +∞

1

exp(−λiκi)dκi
)
<∞.

Therefore, by (18) we obtain∫
U

|Φ(u; y)− Φ(u, y′)|ιdµ0 ≤
∫
U

M ι(r, u)dµ0 |y − y′|ιΓ.
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Lemma 7.2. Assume that κ(x) is a piecewise constant function corresponding to

parameter u ∈ U ⊂ B. Let µ0 be the prior distribution on U and such that the values of

permeability κi are drawn from the exponential distribution. Then for any ι ∈ (0, 1),

µ0 (|Φ(u; y)− Φ(u, y′)| > 1) ≤
∫
U

M ι(r, u)dµ0 |y − y′|ιΓ.

Proof. By the Markov inequality we have

µ0 (|Φ(u, y)− Φ(u, y′)| > 1) = µ0

(
1

2
|〈y − y′, y + y′ − 2G(u)〉Γ| > 1

)

≤ µ0 (|y − y′|Γ |y + y′ − 2G(u)|Γ > 2) = µ0

(
|y + y′ − 2G(u)|Γ >

2

|y − y′|Γ

)
≤ |y − y

′|ιΓ
2ι

∫
U

|y + y′ − 2G(u)|ιΓ dµ0 ≤
|y − y′|ιΓ

2ι

∫
U

2ι (r + |G(u)|Γ)ι dµ0

≤ |y − y′|ιΓ
∫
U

M ι(r, u) dµ0

Proof of Proposition 4.1. In order to construct a prior-reversible proposal for density

π0(u) on U we first extend this density to a target on the whole of Rd by setting the

density to zero outside U . We then draw w from p(u,w) and define v according to

v =

{
w with probability a(u,w)

u otherwise
, (33)

where

a(u,w) =
π0(w)p(w, u)

π0(u)p(u,w)
∧ 1.

Together these steps define a Markov kernel q(u, v) on U × U which is π0 reversible.

Furthermore, as we now show, the method reduces to that given in Proposition 4.1.

Because of the property (23) of p we have that, if u ∈ U , w ∈ U then

a(u,w) =
π0(w)p(w, u)

π0(u)p(u,w)
∧ 1 = 1.

If u ∈ U , w /∈ U then

a(u,w) =
π0(w)p(w, u)

π0(u)p(u,w)
∧ 1 = 0 ∧ 1 = 0.

Therefore, if u ∈ U , then

a(u,w) =

{
1 w ∈ U
0 w /∈ U

,
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and the Metropolis-Hastings algorithm (33) simplifies to give the process where w is

drawn from p(u,w) and we set

v =

{
w w ∈ U
u w /∈ U

.

This coincides with what we construct for q(u, v) in (22). Hence, the process in (22)

is actually generated by a Metropolis-Hastings algorithm for target distribution π0(u).

By the theory of Metropolis-Hastings algorithms, we know that q(u, v) will be reversible

with respect to the equilibrium distribution π0.
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